0c88df09d25d3d4e5bea877bdcf586cfc32a6c83
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
83
84 #define MAX_STAT_DEPTH 32
85
86 #define KEYLENGTH (8*sizeof(t_key))
87
88 typedef unsigned int t_key;
89
90 #define IS_TNODE(n) ((n)->bits)
91 #define IS_LEAF(n) (!(n)->bits)
92
93 #define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
94
95 struct tnode {
96 t_key key;
97 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
98 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
99 struct tnode __rcu *parent;
100 struct rcu_head rcu;
101 union {
102 /* The fields in this struct are valid if bits > 0 (TNODE) */
103 struct {
104 unsigned int full_children; /* KEYLENGTH bits needed */
105 unsigned int empty_children; /* KEYLENGTH bits needed */
106 struct tnode __rcu *child[0];
107 };
108 /* This list pointer if valid if bits == 0 (LEAF) */
109 struct hlist_head list;
110 };
111 };
112
113 struct leaf_info {
114 struct hlist_node hlist;
115 int plen;
116 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
117 struct list_head falh;
118 struct rcu_head rcu;
119 };
120
121 #ifdef CONFIG_IP_FIB_TRIE_STATS
122 struct trie_use_stats {
123 unsigned int gets;
124 unsigned int backtrack;
125 unsigned int semantic_match_passed;
126 unsigned int semantic_match_miss;
127 unsigned int null_node_hit;
128 unsigned int resize_node_skipped;
129 };
130 #endif
131
132 struct trie_stat {
133 unsigned int totdepth;
134 unsigned int maxdepth;
135 unsigned int tnodes;
136 unsigned int leaves;
137 unsigned int nullpointers;
138 unsigned int prefixes;
139 unsigned int nodesizes[MAX_STAT_DEPTH];
140 };
141
142 struct trie {
143 struct tnode __rcu *trie;
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 struct trie_use_stats __percpu *stats;
146 #endif
147 };
148
149 static void resize(struct trie *t, struct tnode *tn);
150 static size_t tnode_free_size;
151
152 /*
153 * synchronize_rcu after call_rcu for that many pages; it should be especially
154 * useful before resizing the root node with PREEMPT_NONE configs; the value was
155 * obtained experimentally, aiming to avoid visible slowdown.
156 */
157 static const int sync_pages = 128;
158
159 static struct kmem_cache *fn_alias_kmem __read_mostly;
160 static struct kmem_cache *trie_leaf_kmem __read_mostly;
161
162 /* caller must hold RTNL */
163 #define node_parent(n) rtnl_dereference((n)->parent)
164
165 /* caller must hold RCU read lock or RTNL */
166 #define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
167
168 /* wrapper for rcu_assign_pointer */
169 static inline void node_set_parent(struct tnode *n, struct tnode *tp)
170 {
171 if (n)
172 rcu_assign_pointer(n->parent, tp);
173 }
174
175 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)
176
177 /* This provides us with the number of children in this node, in the case of a
178 * leaf this will return 0 meaning none of the children are accessible.
179 */
180 static inline unsigned long tnode_child_length(const struct tnode *tn)
181 {
182 return (1ul << tn->bits) & ~(1ul);
183 }
184
185 /* caller must hold RTNL */
186 static inline struct tnode *tnode_get_child(const struct tnode *tn,
187 unsigned long i)
188 {
189 BUG_ON(i >= tnode_child_length(tn));
190
191 return rtnl_dereference(tn->child[i]);
192 }
193
194 /* caller must hold RCU read lock or RTNL */
195 static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
196 unsigned long i)
197 {
198 BUG_ON(i >= tnode_child_length(tn));
199
200 return rcu_dereference_rtnl(tn->child[i]);
201 }
202
203 /* To understand this stuff, an understanding of keys and all their bits is
204 * necessary. Every node in the trie has a key associated with it, but not
205 * all of the bits in that key are significant.
206 *
207 * Consider a node 'n' and its parent 'tp'.
208 *
209 * If n is a leaf, every bit in its key is significant. Its presence is
210 * necessitated by path compression, since during a tree traversal (when
211 * searching for a leaf - unless we are doing an insertion) we will completely
212 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
213 * a potentially successful search, that we have indeed been walking the
214 * correct key path.
215 *
216 * Note that we can never "miss" the correct key in the tree if present by
217 * following the wrong path. Path compression ensures that segments of the key
218 * that are the same for all keys with a given prefix are skipped, but the
219 * skipped part *is* identical for each node in the subtrie below the skipped
220 * bit! trie_insert() in this implementation takes care of that.
221 *
222 * if n is an internal node - a 'tnode' here, the various parts of its key
223 * have many different meanings.
224 *
225 * Example:
226 * _________________________________________________________________
227 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
228 * -----------------------------------------------------------------
229 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
230 *
231 * _________________________________________________________________
232 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
233 * -----------------------------------------------------------------
234 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
235 *
236 * tp->pos = 22
237 * tp->bits = 3
238 * n->pos = 13
239 * n->bits = 4
240 *
241 * First, let's just ignore the bits that come before the parent tp, that is
242 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
243 * point we do not use them for anything.
244 *
245 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
246 * index into the parent's child array. That is, they will be used to find
247 * 'n' among tp's children.
248 *
249 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
250 * for the node n.
251 *
252 * All the bits we have seen so far are significant to the node n. The rest
253 * of the bits are really not needed or indeed known in n->key.
254 *
255 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
256 * n's child array, and will of course be different for each child.
257 *
258 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
259 * at this point.
260 */
261
262 static const int halve_threshold = 25;
263 static const int inflate_threshold = 50;
264 static const int halve_threshold_root = 15;
265 static const int inflate_threshold_root = 30;
266
267 static void __alias_free_mem(struct rcu_head *head)
268 {
269 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
270 kmem_cache_free(fn_alias_kmem, fa);
271 }
272
273 static inline void alias_free_mem_rcu(struct fib_alias *fa)
274 {
275 call_rcu(&fa->rcu, __alias_free_mem);
276 }
277
278 #define TNODE_KMALLOC_MAX \
279 ilog2((PAGE_SIZE - sizeof(struct tnode)) / sizeof(struct tnode *))
280
281 static void __node_free_rcu(struct rcu_head *head)
282 {
283 struct tnode *n = container_of(head, struct tnode, rcu);
284
285 if (IS_LEAF(n))
286 kmem_cache_free(trie_leaf_kmem, n);
287 else if (n->bits <= TNODE_KMALLOC_MAX)
288 kfree(n);
289 else
290 vfree(n);
291 }
292
293 #define node_free(n) call_rcu(&n->rcu, __node_free_rcu)
294
295 static inline void free_leaf_info(struct leaf_info *leaf)
296 {
297 kfree_rcu(leaf, rcu);
298 }
299
300 static struct tnode *tnode_alloc(size_t size)
301 {
302 if (size <= PAGE_SIZE)
303 return kzalloc(size, GFP_KERNEL);
304 else
305 return vzalloc(size);
306 }
307
308 static struct tnode *leaf_new(t_key key)
309 {
310 struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
311 if (l) {
312 l->parent = NULL;
313 /* set key and pos to reflect full key value
314 * any trailing zeros in the key should be ignored
315 * as the nodes are searched
316 */
317 l->key = key;
318 l->pos = 0;
319 /* set bits to 0 indicating we are not a tnode */
320 l->bits = 0;
321
322 INIT_HLIST_HEAD(&l->list);
323 }
324 return l;
325 }
326
327 static struct leaf_info *leaf_info_new(int plen)
328 {
329 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
330 if (li) {
331 li->plen = plen;
332 li->mask_plen = ntohl(inet_make_mask(plen));
333 INIT_LIST_HEAD(&li->falh);
334 }
335 return li;
336 }
337
338 static struct tnode *tnode_new(t_key key, int pos, int bits)
339 {
340 size_t sz = offsetof(struct tnode, child[1 << bits]);
341 struct tnode *tn = tnode_alloc(sz);
342 unsigned int shift = pos + bits;
343
344 /* verify bits and pos their msb bits clear and values are valid */
345 BUG_ON(!bits || (shift > KEYLENGTH));
346
347 if (tn) {
348 tn->parent = NULL;
349 tn->pos = pos;
350 tn->bits = bits;
351 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
352 tn->full_children = 0;
353 tn->empty_children = 1<<bits;
354 }
355
356 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
357 sizeof(struct tnode *) << bits);
358 return tn;
359 }
360
361 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
362 * and no bits are skipped. See discussion in dyntree paper p. 6
363 */
364 static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
365 {
366 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
367 }
368
369 /* Add a child at position i overwriting the old value.
370 * Update the value of full_children and empty_children.
371 */
372 static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
373 {
374 struct tnode *chi = rtnl_dereference(tn->child[i]);
375 int isfull, wasfull;
376
377 BUG_ON(i >= tnode_child_length(tn));
378
379 /* update emptyChildren */
380 if (n == NULL && chi != NULL)
381 tn->empty_children++;
382 else if (n != NULL && chi == NULL)
383 tn->empty_children--;
384
385 /* update fullChildren */
386 wasfull = tnode_full(tn, chi);
387 isfull = tnode_full(tn, n);
388
389 if (wasfull && !isfull)
390 tn->full_children--;
391 else if (!wasfull && isfull)
392 tn->full_children++;
393
394 rcu_assign_pointer(tn->child[i], n);
395 }
396
397 static void put_child_root(struct tnode *tp, struct trie *t,
398 t_key key, struct tnode *n)
399 {
400 if (tp)
401 put_child(tp, get_index(key, tp), n);
402 else
403 rcu_assign_pointer(t->trie, n);
404 }
405
406 static inline void tnode_free_init(struct tnode *tn)
407 {
408 tn->rcu.next = NULL;
409 }
410
411 static inline void tnode_free_append(struct tnode *tn, struct tnode *n)
412 {
413 n->rcu.next = tn->rcu.next;
414 tn->rcu.next = &n->rcu;
415 }
416
417 static void tnode_free(struct tnode *tn)
418 {
419 struct callback_head *head = &tn->rcu;
420
421 while (head) {
422 head = head->next;
423 tnode_free_size += offsetof(struct tnode, child[1 << tn->bits]);
424 node_free(tn);
425
426 tn = container_of(head, struct tnode, rcu);
427 }
428
429 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
430 tnode_free_size = 0;
431 synchronize_rcu();
432 }
433 }
434
435 static int inflate(struct trie *t, struct tnode *oldtnode)
436 {
437 struct tnode *inode, *node0, *node1, *tn, *tp;
438 unsigned long i, j, k;
439 t_key m;
440
441 pr_debug("In inflate\n");
442
443 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
444 if (!tn)
445 return -ENOMEM;
446
447 /* Assemble all of the pointers in our cluster, in this case that
448 * represents all of the pointers out of our allocated nodes that
449 * point to existing tnodes and the links between our allocated
450 * nodes.
451 */
452 for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
453 inode = tnode_get_child(oldtnode, --i);
454
455 /* An empty child */
456 if (inode == NULL)
457 continue;
458
459 /* A leaf or an internal node with skipped bits */
460 if (!tnode_full(oldtnode, inode)) {
461 put_child(tn, get_index(inode->key, tn), inode);
462 continue;
463 }
464
465 /* An internal node with two children */
466 if (inode->bits == 1) {
467 put_child(tn, 2 * i + 1, tnode_get_child(inode, 1));
468 put_child(tn, 2 * i, tnode_get_child(inode, 0));
469 continue;
470 }
471
472 /* We will replace this node 'inode' with two new
473 * ones, 'node0' and 'node1', each with half of the
474 * original children. The two new nodes will have
475 * a position one bit further down the key and this
476 * means that the "significant" part of their keys
477 * (see the discussion near the top of this file)
478 * will differ by one bit, which will be "0" in
479 * node0's key and "1" in node1's key. Since we are
480 * moving the key position by one step, the bit that
481 * we are moving away from - the bit at position
482 * (tn->pos) - is the one that will differ between
483 * node0 and node1. So... we synthesize that bit in the
484 * two new keys.
485 */
486 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
487 if (!node1)
488 goto nomem;
489 tnode_free_append(tn, node1);
490
491 node0 = tnode_new(inode->key & ~m, inode->pos, inode->bits - 1);
492 if (!node0)
493 goto nomem;
494 tnode_free_append(tn, node0);
495
496 /* populate child pointers in new nodes */
497 for (k = tnode_child_length(inode), j = k / 2; j;) {
498 put_child(node1, --j, tnode_get_child(inode, --k));
499 put_child(node0, j, tnode_get_child(inode, j));
500 put_child(node1, --j, tnode_get_child(inode, --k));
501 put_child(node0, j, tnode_get_child(inode, j));
502 }
503
504 /* link new nodes to parent */
505 NODE_INIT_PARENT(node1, tn);
506 NODE_INIT_PARENT(node0, tn);
507
508 /* link parent to nodes */
509 put_child(tn, 2 * i + 1, node1);
510 put_child(tn, 2 * i, node0);
511 }
512
513 /* setup the parent pointer into and out of this node */
514 tp = node_parent(oldtnode);
515 NODE_INIT_PARENT(tn, tp);
516 put_child_root(tp, t, tn->key, tn);
517
518 /* prepare oldtnode to be freed */
519 tnode_free_init(oldtnode);
520
521 /* update all child nodes parent pointers to route to us */
522 for (i = tnode_child_length(oldtnode); i;) {
523 inode = tnode_get_child(oldtnode, --i);
524
525 /* A leaf or an internal node with skipped bits */
526 if (!tnode_full(oldtnode, inode)) {
527 node_set_parent(inode, tn);
528 continue;
529 }
530
531 /* drop the node in the old tnode free list */
532 tnode_free_append(oldtnode, inode);
533
534 /* fetch new nodes */
535 node1 = tnode_get_child(tn, 2 * i + 1);
536 node0 = tnode_get_child(tn, 2 * i);
537
538 /* bits == 1 then node0 and node1 represent inode's children */
539 if (inode->bits == 1) {
540 node_set_parent(node1, tn);
541 node_set_parent(node0, tn);
542 continue;
543 }
544
545 /* update parent pointers in child node's children */
546 for (k = tnode_child_length(inode), j = k / 2; j;) {
547 node_set_parent(tnode_get_child(inode, --k), node1);
548 node_set_parent(tnode_get_child(inode, --j), node0);
549 node_set_parent(tnode_get_child(inode, --k), node1);
550 node_set_parent(tnode_get_child(inode, --j), node0);
551 }
552
553 /* resize child nodes */
554 resize(t, node1);
555 resize(t, node0);
556 }
557
558 /* we completed without error, prepare to free old node */
559 tnode_free(oldtnode);
560 return 0;
561 nomem:
562 /* all pointers should be clean so we are done */
563 tnode_free(tn);
564 return -ENOMEM;
565 }
566
567 static int halve(struct trie *t, struct tnode *oldtnode)
568 {
569 struct tnode *tn, *tp, *inode, *node0, *node1;
570 unsigned long i;
571
572 pr_debug("In halve\n");
573
574 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
575 if (!tn)
576 return -ENOMEM;
577
578 /* Assemble all of the pointers in our cluster, in this case that
579 * represents all of the pointers out of our allocated nodes that
580 * point to existing tnodes and the links between our allocated
581 * nodes.
582 */
583 for (i = tnode_child_length(oldtnode); i;) {
584 node1 = tnode_get_child(oldtnode, --i);
585 node0 = tnode_get_child(oldtnode, --i);
586
587 /* At least one of the children is empty */
588 if (!node1 || !node0) {
589 put_child(tn, i / 2, node1 ? : node0);
590 continue;
591 }
592
593 /* Two nonempty children */
594 inode = tnode_new(node0->key, oldtnode->pos, 1);
595 if (!inode) {
596 tnode_free(tn);
597 return -ENOMEM;
598 }
599 tnode_free_append(tn, inode);
600
601 /* initialize pointers out of node */
602 put_child(inode, 1, node1);
603 put_child(inode, 0, node0);
604 NODE_INIT_PARENT(inode, tn);
605
606 /* link parent to node */
607 put_child(tn, i / 2, inode);
608 }
609
610 /* setup the parent pointer out of and back into this node */
611 tp = node_parent(oldtnode);
612 NODE_INIT_PARENT(tn, tp);
613 put_child_root(tp, t, tn->key, tn);
614
615 /* prepare oldtnode to be freed */
616 tnode_free_init(oldtnode);
617
618 /* update all of the child parent pointers */
619 for (i = tnode_child_length(tn); i;) {
620 inode = tnode_get_child(tn, --i);
621
622 /* only new tnodes will be considered "full" nodes */
623 if (!tnode_full(tn, inode)) {
624 node_set_parent(inode, tn);
625 continue;
626 }
627
628 /* Two nonempty children */
629 node_set_parent(tnode_get_child(inode, 1), inode);
630 node_set_parent(tnode_get_child(inode, 0), inode);
631
632 /* resize child node */
633 resize(t, inode);
634 }
635
636 /* all pointers should be clean so we are done */
637 tnode_free(oldtnode);
638
639 return 0;
640 }
641
642 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
643 * the Helsinki University of Technology and Matti Tikkanen of Nokia
644 * Telecommunications, page 6:
645 * "A node is doubled if the ratio of non-empty children to all
646 * children in the *doubled* node is at least 'high'."
647 *
648 * 'high' in this instance is the variable 'inflate_threshold'. It
649 * is expressed as a percentage, so we multiply it with
650 * tnode_child_length() and instead of multiplying by 2 (since the
651 * child array will be doubled by inflate()) and multiplying
652 * the left-hand side by 100 (to handle the percentage thing) we
653 * multiply the left-hand side by 50.
654 *
655 * The left-hand side may look a bit weird: tnode_child_length(tn)
656 * - tn->empty_children is of course the number of non-null children
657 * in the current node. tn->full_children is the number of "full"
658 * children, that is non-null tnodes with a skip value of 0.
659 * All of those will be doubled in the resulting inflated tnode, so
660 * we just count them one extra time here.
661 *
662 * A clearer way to write this would be:
663 *
664 * to_be_doubled = tn->full_children;
665 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
666 * tn->full_children;
667 *
668 * new_child_length = tnode_child_length(tn) * 2;
669 *
670 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
671 * new_child_length;
672 * if (new_fill_factor >= inflate_threshold)
673 *
674 * ...and so on, tho it would mess up the while () loop.
675 *
676 * anyway,
677 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
678 * inflate_threshold
679 *
680 * avoid a division:
681 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
682 * inflate_threshold * new_child_length
683 *
684 * expand not_to_be_doubled and to_be_doubled, and shorten:
685 * 100 * (tnode_child_length(tn) - tn->empty_children +
686 * tn->full_children) >= inflate_threshold * new_child_length
687 *
688 * expand new_child_length:
689 * 100 * (tnode_child_length(tn) - tn->empty_children +
690 * tn->full_children) >=
691 * inflate_threshold * tnode_child_length(tn) * 2
692 *
693 * shorten again:
694 * 50 * (tn->full_children + tnode_child_length(tn) -
695 * tn->empty_children) >= inflate_threshold *
696 * tnode_child_length(tn)
697 *
698 */
699 static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
700 {
701 unsigned long used = tnode_child_length(tn);
702 unsigned long threshold = used;
703
704 /* Keep root node larger */
705 threshold *= tp ? inflate_threshold : inflate_threshold_root;
706 used += tn->full_children;
707 used -= tn->empty_children;
708
709 return tn->pos && ((50 * used) >= threshold);
710 }
711
712 static bool should_halve(const struct tnode *tp, const struct tnode *tn)
713 {
714 unsigned long used = tnode_child_length(tn);
715 unsigned long threshold = used;
716
717 /* Keep root node larger */
718 threshold *= tp ? halve_threshold : halve_threshold_root;
719 used -= tn->empty_children;
720
721 return (tn->bits > 1) && ((100 * used) < threshold);
722 }
723
724 #define MAX_WORK 10
725 static void resize(struct trie *t, struct tnode *tn)
726 {
727 struct tnode *tp = node_parent(tn), *n = NULL;
728 struct tnode __rcu **cptr;
729 int max_work;
730
731 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
732 tn, inflate_threshold, halve_threshold);
733
734 /* track the tnode via the pointer from the parent instead of
735 * doing it ourselves. This way we can let RCU fully do its
736 * thing without us interfering
737 */
738 cptr = tp ? &tp->child[get_index(tn->key, tp)] : &t->trie;
739 BUG_ON(tn != rtnl_dereference(*cptr));
740
741 /* No children */
742 if (tn->empty_children > (tnode_child_length(tn) - 1))
743 goto no_children;
744
745 /* One child */
746 if (tn->empty_children == (tnode_child_length(tn) - 1))
747 goto one_child;
748
749 /* Double as long as the resulting node has a number of
750 * nonempty nodes that are above the threshold.
751 */
752 max_work = MAX_WORK;
753 while (should_inflate(tp, tn) && max_work--) {
754 if (inflate(t, tn)) {
755 #ifdef CONFIG_IP_FIB_TRIE_STATS
756 this_cpu_inc(t->stats->resize_node_skipped);
757 #endif
758 break;
759 }
760
761 tn = rtnl_dereference(*cptr);
762 }
763
764 /* Return if at least one inflate is run */
765 if (max_work != MAX_WORK)
766 return;
767
768 /* Halve as long as the number of empty children in this
769 * node is above threshold.
770 */
771 max_work = MAX_WORK;
772 while (should_halve(tp, tn) && max_work--) {
773 if (halve(t, tn)) {
774 #ifdef CONFIG_IP_FIB_TRIE_STATS
775 this_cpu_inc(t->stats->resize_node_skipped);
776 #endif
777 break;
778 }
779
780 tn = rtnl_dereference(*cptr);
781 }
782
783 /* Only one child remains */
784 if (tn->empty_children == (tnode_child_length(tn) - 1)) {
785 unsigned long i;
786 one_child:
787 for (i = tnode_child_length(tn); !n && i;)
788 n = tnode_get_child(tn, --i);
789 no_children:
790 /* compress one level */
791 put_child_root(tp, t, tn->key, n);
792 node_set_parent(n, tp);
793
794 /* drop dead node */
795 tnode_free_init(tn);
796 tnode_free(tn);
797 }
798 }
799
800 /* readside must use rcu_read_lock currently dump routines
801 via get_fa_head and dump */
802
803 static struct leaf_info *find_leaf_info(struct tnode *l, int plen)
804 {
805 struct hlist_head *head = &l->list;
806 struct leaf_info *li;
807
808 hlist_for_each_entry_rcu(li, head, hlist)
809 if (li->plen == plen)
810 return li;
811
812 return NULL;
813 }
814
815 static inline struct list_head *get_fa_head(struct tnode *l, int plen)
816 {
817 struct leaf_info *li = find_leaf_info(l, plen);
818
819 if (!li)
820 return NULL;
821
822 return &li->falh;
823 }
824
825 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
826 {
827 struct leaf_info *li = NULL, *last = NULL;
828
829 if (hlist_empty(head)) {
830 hlist_add_head_rcu(&new->hlist, head);
831 } else {
832 hlist_for_each_entry(li, head, hlist) {
833 if (new->plen > li->plen)
834 break;
835
836 last = li;
837 }
838 if (last)
839 hlist_add_behind_rcu(&new->hlist, &last->hlist);
840 else
841 hlist_add_before_rcu(&new->hlist, &li->hlist);
842 }
843 }
844
845 /* rcu_read_lock needs to be hold by caller from readside */
846 static struct tnode *fib_find_node(struct trie *t, u32 key)
847 {
848 struct tnode *n = rcu_dereference_rtnl(t->trie);
849
850 while (n) {
851 unsigned long index = get_index(key, n);
852
853 /* This bit of code is a bit tricky but it combines multiple
854 * checks into a single check. The prefix consists of the
855 * prefix plus zeros for the bits in the cindex. The index
856 * is the difference between the key and this value. From
857 * this we can actually derive several pieces of data.
858 * if !(index >> bits)
859 * we know the value is cindex
860 * else
861 * we have a mismatch in skip bits and failed
862 */
863 if (index >> n->bits)
864 return NULL;
865
866 /* we have found a leaf. Prefixes have already been compared */
867 if (IS_LEAF(n))
868 break;
869
870 n = rcu_dereference_rtnl(n->child[index]);
871 }
872
873 return n;
874 }
875
876 static void trie_rebalance(struct trie *t, struct tnode *tn)
877 {
878 struct tnode *tp;
879
880 while ((tp = node_parent(tn)) != NULL) {
881 resize(t, tn);
882 tn = tp;
883 }
884
885 /* Handle last (top) tnode */
886 if (IS_TNODE(tn))
887 resize(t, tn);
888 }
889
890 /* only used from updater-side */
891
892 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
893 {
894 struct list_head *fa_head = NULL;
895 struct tnode *l, *n, *tp = NULL;
896 struct leaf_info *li;
897
898 li = leaf_info_new(plen);
899 if (!li)
900 return NULL;
901 fa_head = &li->falh;
902
903 n = rtnl_dereference(t->trie);
904
905 /* If we point to NULL, stop. Either the tree is empty and we should
906 * just put a new leaf in if, or we have reached an empty child slot,
907 * and we should just put our new leaf in that.
908 *
909 * If we hit a node with a key that does't match then we should stop
910 * and create a new tnode to replace that node and insert ourselves
911 * and the other node into the new tnode.
912 */
913 while (n) {
914 unsigned long index = get_index(key, n);
915
916 /* This bit of code is a bit tricky but it combines multiple
917 * checks into a single check. The prefix consists of the
918 * prefix plus zeros for the "bits" in the prefix. The index
919 * is the difference between the key and this value. From
920 * this we can actually derive several pieces of data.
921 * if !(index >> bits)
922 * we know the value is child index
923 * else
924 * we have a mismatch in skip bits and failed
925 */
926 if (index >> n->bits)
927 break;
928
929 /* we have found a leaf. Prefixes have already been compared */
930 if (IS_LEAF(n)) {
931 /* Case 1: n is a leaf, and prefixes match*/
932 insert_leaf_info(&n->list, li);
933 return fa_head;
934 }
935
936 tp = n;
937 n = rcu_dereference_rtnl(n->child[index]);
938 }
939
940 l = leaf_new(key);
941 if (!l) {
942 free_leaf_info(li);
943 return NULL;
944 }
945
946 insert_leaf_info(&l->list, li);
947
948 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
949 *
950 * Add a new tnode here
951 * first tnode need some special handling
952 * leaves us in position for handling as case 3
953 */
954 if (n) {
955 struct tnode *tn;
956
957 tn = tnode_new(key, __fls(key ^ n->key), 1);
958 if (!tn) {
959 free_leaf_info(li);
960 node_free(l);
961 return NULL;
962 }
963
964 /* initialize routes out of node */
965 NODE_INIT_PARENT(tn, tp);
966 put_child(tn, get_index(key, tn) ^ 1, n);
967
968 /* start adding routes into the node */
969 put_child_root(tp, t, key, tn);
970 node_set_parent(n, tn);
971
972 /* parent now has a NULL spot where the leaf can go */
973 tp = tn;
974 }
975
976 /* Case 3: n is NULL, and will just insert a new leaf */
977 if (tp) {
978 NODE_INIT_PARENT(l, tp);
979 put_child(tp, get_index(key, tp), l);
980 trie_rebalance(t, tp);
981 } else {
982 rcu_assign_pointer(t->trie, l);
983 }
984
985 return fa_head;
986 }
987
988 /*
989 * Caller must hold RTNL.
990 */
991 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
992 {
993 struct trie *t = (struct trie *) tb->tb_data;
994 struct fib_alias *fa, *new_fa;
995 struct list_head *fa_head = NULL;
996 struct fib_info *fi;
997 int plen = cfg->fc_dst_len;
998 u8 tos = cfg->fc_tos;
999 u32 key, mask;
1000 int err;
1001 struct tnode *l;
1002
1003 if (plen > 32)
1004 return -EINVAL;
1005
1006 key = ntohl(cfg->fc_dst);
1007
1008 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1009
1010 mask = ntohl(inet_make_mask(plen));
1011
1012 if (key & ~mask)
1013 return -EINVAL;
1014
1015 key = key & mask;
1016
1017 fi = fib_create_info(cfg);
1018 if (IS_ERR(fi)) {
1019 err = PTR_ERR(fi);
1020 goto err;
1021 }
1022
1023 l = fib_find_node(t, key);
1024 fa = NULL;
1025
1026 if (l) {
1027 fa_head = get_fa_head(l, plen);
1028 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1029 }
1030
1031 /* Now fa, if non-NULL, points to the first fib alias
1032 * with the same keys [prefix,tos,priority], if such key already
1033 * exists or to the node before which we will insert new one.
1034 *
1035 * If fa is NULL, we will need to allocate a new one and
1036 * insert to the head of f.
1037 *
1038 * If f is NULL, no fib node matched the destination key
1039 * and we need to allocate a new one of those as well.
1040 */
1041
1042 if (fa && fa->fa_tos == tos &&
1043 fa->fa_info->fib_priority == fi->fib_priority) {
1044 struct fib_alias *fa_first, *fa_match;
1045
1046 err = -EEXIST;
1047 if (cfg->fc_nlflags & NLM_F_EXCL)
1048 goto out;
1049
1050 /* We have 2 goals:
1051 * 1. Find exact match for type, scope, fib_info to avoid
1052 * duplicate routes
1053 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1054 */
1055 fa_match = NULL;
1056 fa_first = fa;
1057 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1058 list_for_each_entry_continue(fa, fa_head, fa_list) {
1059 if (fa->fa_tos != tos)
1060 break;
1061 if (fa->fa_info->fib_priority != fi->fib_priority)
1062 break;
1063 if (fa->fa_type == cfg->fc_type &&
1064 fa->fa_info == fi) {
1065 fa_match = fa;
1066 break;
1067 }
1068 }
1069
1070 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1071 struct fib_info *fi_drop;
1072 u8 state;
1073
1074 fa = fa_first;
1075 if (fa_match) {
1076 if (fa == fa_match)
1077 err = 0;
1078 goto out;
1079 }
1080 err = -ENOBUFS;
1081 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1082 if (new_fa == NULL)
1083 goto out;
1084
1085 fi_drop = fa->fa_info;
1086 new_fa->fa_tos = fa->fa_tos;
1087 new_fa->fa_info = fi;
1088 new_fa->fa_type = cfg->fc_type;
1089 state = fa->fa_state;
1090 new_fa->fa_state = state & ~FA_S_ACCESSED;
1091
1092 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1093 alias_free_mem_rcu(fa);
1094
1095 fib_release_info(fi_drop);
1096 if (state & FA_S_ACCESSED)
1097 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1098 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1099 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1100
1101 goto succeeded;
1102 }
1103 /* Error if we find a perfect match which
1104 * uses the same scope, type, and nexthop
1105 * information.
1106 */
1107 if (fa_match)
1108 goto out;
1109
1110 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1111 fa = fa_first;
1112 }
1113 err = -ENOENT;
1114 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1115 goto out;
1116
1117 err = -ENOBUFS;
1118 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1119 if (new_fa == NULL)
1120 goto out;
1121
1122 new_fa->fa_info = fi;
1123 new_fa->fa_tos = tos;
1124 new_fa->fa_type = cfg->fc_type;
1125 new_fa->fa_state = 0;
1126 /*
1127 * Insert new entry to the list.
1128 */
1129
1130 if (!fa_head) {
1131 fa_head = fib_insert_node(t, key, plen);
1132 if (unlikely(!fa_head)) {
1133 err = -ENOMEM;
1134 goto out_free_new_fa;
1135 }
1136 }
1137
1138 if (!plen)
1139 tb->tb_num_default++;
1140
1141 list_add_tail_rcu(&new_fa->fa_list,
1142 (fa ? &fa->fa_list : fa_head));
1143
1144 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1145 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1146 &cfg->fc_nlinfo, 0);
1147 succeeded:
1148 return 0;
1149
1150 out_free_new_fa:
1151 kmem_cache_free(fn_alias_kmem, new_fa);
1152 out:
1153 fib_release_info(fi);
1154 err:
1155 return err;
1156 }
1157
1158 static inline t_key prefix_mismatch(t_key key, struct tnode *n)
1159 {
1160 t_key prefix = n->key;
1161
1162 return (key ^ prefix) & (prefix | -prefix);
1163 }
1164
1165 /* should be called with rcu_read_lock */
1166 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1167 struct fib_result *res, int fib_flags)
1168 {
1169 struct trie *t = (struct trie *)tb->tb_data;
1170 #ifdef CONFIG_IP_FIB_TRIE_STATS
1171 struct trie_use_stats __percpu *stats = t->stats;
1172 #endif
1173 const t_key key = ntohl(flp->daddr);
1174 struct tnode *n, *pn;
1175 struct leaf_info *li;
1176 t_key cindex;
1177
1178 n = rcu_dereference(t->trie);
1179 if (!n)
1180 return -EAGAIN;
1181
1182 #ifdef CONFIG_IP_FIB_TRIE_STATS
1183 this_cpu_inc(stats->gets);
1184 #endif
1185
1186 pn = n;
1187 cindex = 0;
1188
1189 /* Step 1: Travel to the longest prefix match in the trie */
1190 for (;;) {
1191 unsigned long index = get_index(key, n);
1192
1193 /* This bit of code is a bit tricky but it combines multiple
1194 * checks into a single check. The prefix consists of the
1195 * prefix plus zeros for the "bits" in the prefix. The index
1196 * is the difference between the key and this value. From
1197 * this we can actually derive several pieces of data.
1198 * if !(index >> bits)
1199 * we know the value is child index
1200 * else
1201 * we have a mismatch in skip bits and failed
1202 */
1203 if (index >> n->bits)
1204 break;
1205
1206 /* we have found a leaf. Prefixes have already been compared */
1207 if (IS_LEAF(n))
1208 goto found;
1209
1210 /* only record pn and cindex if we are going to be chopping
1211 * bits later. Otherwise we are just wasting cycles.
1212 */
1213 if (index) {
1214 pn = n;
1215 cindex = index;
1216 }
1217
1218 n = rcu_dereference(n->child[index]);
1219 if (unlikely(!n))
1220 goto backtrace;
1221 }
1222
1223 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1224 for (;;) {
1225 /* record the pointer where our next node pointer is stored */
1226 struct tnode __rcu **cptr = n->child;
1227
1228 /* This test verifies that none of the bits that differ
1229 * between the key and the prefix exist in the region of
1230 * the lsb and higher in the prefix.
1231 */
1232 if (unlikely(prefix_mismatch(key, n)))
1233 goto backtrace;
1234
1235 /* exit out and process leaf */
1236 if (unlikely(IS_LEAF(n)))
1237 break;
1238
1239 /* Don't bother recording parent info. Since we are in
1240 * prefix match mode we will have to come back to wherever
1241 * we started this traversal anyway
1242 */
1243
1244 while ((n = rcu_dereference(*cptr)) == NULL) {
1245 backtrace:
1246 #ifdef CONFIG_IP_FIB_TRIE_STATS
1247 if (!n)
1248 this_cpu_inc(stats->null_node_hit);
1249 #endif
1250 /* If we are at cindex 0 there are no more bits for
1251 * us to strip at this level so we must ascend back
1252 * up one level to see if there are any more bits to
1253 * be stripped there.
1254 */
1255 while (!cindex) {
1256 t_key pkey = pn->key;
1257
1258 pn = node_parent_rcu(pn);
1259 if (unlikely(!pn))
1260 return -EAGAIN;
1261 #ifdef CONFIG_IP_FIB_TRIE_STATS
1262 this_cpu_inc(stats->backtrack);
1263 #endif
1264 /* Get Child's index */
1265 cindex = get_index(pkey, pn);
1266 }
1267
1268 /* strip the least significant bit from the cindex */
1269 cindex &= cindex - 1;
1270
1271 /* grab pointer for next child node */
1272 cptr = &pn->child[cindex];
1273 }
1274 }
1275
1276 found:
1277 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1278 hlist_for_each_entry_rcu(li, &n->list, hlist) {
1279 struct fib_alias *fa;
1280
1281 if ((key ^ n->key) & li->mask_plen)
1282 continue;
1283
1284 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1285 struct fib_info *fi = fa->fa_info;
1286 int nhsel, err;
1287
1288 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1289 continue;
1290 if (fi->fib_dead)
1291 continue;
1292 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1293 continue;
1294 fib_alias_accessed(fa);
1295 err = fib_props[fa->fa_type].error;
1296 if (unlikely(err < 0)) {
1297 #ifdef CONFIG_IP_FIB_TRIE_STATS
1298 this_cpu_inc(stats->semantic_match_passed);
1299 #endif
1300 return err;
1301 }
1302 if (fi->fib_flags & RTNH_F_DEAD)
1303 continue;
1304 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1305 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1306
1307 if (nh->nh_flags & RTNH_F_DEAD)
1308 continue;
1309 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1310 continue;
1311
1312 if (!(fib_flags & FIB_LOOKUP_NOREF))
1313 atomic_inc(&fi->fib_clntref);
1314
1315 res->prefixlen = li->plen;
1316 res->nh_sel = nhsel;
1317 res->type = fa->fa_type;
1318 res->scope = fi->fib_scope;
1319 res->fi = fi;
1320 res->table = tb;
1321 res->fa_head = &li->falh;
1322 #ifdef CONFIG_IP_FIB_TRIE_STATS
1323 this_cpu_inc(stats->semantic_match_passed);
1324 #endif
1325 return err;
1326 }
1327 }
1328
1329 #ifdef CONFIG_IP_FIB_TRIE_STATS
1330 this_cpu_inc(stats->semantic_match_miss);
1331 #endif
1332 }
1333 goto backtrace;
1334 }
1335 EXPORT_SYMBOL_GPL(fib_table_lookup);
1336
1337 /*
1338 * Remove the leaf and return parent.
1339 */
1340 static void trie_leaf_remove(struct trie *t, struct tnode *l)
1341 {
1342 struct tnode *tp = node_parent(l);
1343
1344 pr_debug("entering trie_leaf_remove(%p)\n", l);
1345
1346 if (tp) {
1347 put_child(tp, get_index(l->key, tp), NULL);
1348 trie_rebalance(t, tp);
1349 } else {
1350 RCU_INIT_POINTER(t->trie, NULL);
1351 }
1352
1353 node_free(l);
1354 }
1355
1356 /*
1357 * Caller must hold RTNL.
1358 */
1359 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1360 {
1361 struct trie *t = (struct trie *) tb->tb_data;
1362 u32 key, mask;
1363 int plen = cfg->fc_dst_len;
1364 u8 tos = cfg->fc_tos;
1365 struct fib_alias *fa, *fa_to_delete;
1366 struct list_head *fa_head;
1367 struct tnode *l;
1368 struct leaf_info *li;
1369
1370 if (plen > 32)
1371 return -EINVAL;
1372
1373 key = ntohl(cfg->fc_dst);
1374 mask = ntohl(inet_make_mask(plen));
1375
1376 if (key & ~mask)
1377 return -EINVAL;
1378
1379 key = key & mask;
1380 l = fib_find_node(t, key);
1381
1382 if (!l)
1383 return -ESRCH;
1384
1385 li = find_leaf_info(l, plen);
1386
1387 if (!li)
1388 return -ESRCH;
1389
1390 fa_head = &li->falh;
1391 fa = fib_find_alias(fa_head, tos, 0);
1392
1393 if (!fa)
1394 return -ESRCH;
1395
1396 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1397
1398 fa_to_delete = NULL;
1399 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1400 list_for_each_entry_continue(fa, fa_head, fa_list) {
1401 struct fib_info *fi = fa->fa_info;
1402
1403 if (fa->fa_tos != tos)
1404 break;
1405
1406 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1407 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1408 fa->fa_info->fib_scope == cfg->fc_scope) &&
1409 (!cfg->fc_prefsrc ||
1410 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1411 (!cfg->fc_protocol ||
1412 fi->fib_protocol == cfg->fc_protocol) &&
1413 fib_nh_match(cfg, fi) == 0) {
1414 fa_to_delete = fa;
1415 break;
1416 }
1417 }
1418
1419 if (!fa_to_delete)
1420 return -ESRCH;
1421
1422 fa = fa_to_delete;
1423 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1424 &cfg->fc_nlinfo, 0);
1425
1426 list_del_rcu(&fa->fa_list);
1427
1428 if (!plen)
1429 tb->tb_num_default--;
1430
1431 if (list_empty(fa_head)) {
1432 hlist_del_rcu(&li->hlist);
1433 free_leaf_info(li);
1434 }
1435
1436 if (hlist_empty(&l->list))
1437 trie_leaf_remove(t, l);
1438
1439 if (fa->fa_state & FA_S_ACCESSED)
1440 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1441
1442 fib_release_info(fa->fa_info);
1443 alias_free_mem_rcu(fa);
1444 return 0;
1445 }
1446
1447 static int trie_flush_list(struct list_head *head)
1448 {
1449 struct fib_alias *fa, *fa_node;
1450 int found = 0;
1451
1452 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1453 struct fib_info *fi = fa->fa_info;
1454
1455 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1456 list_del_rcu(&fa->fa_list);
1457 fib_release_info(fa->fa_info);
1458 alias_free_mem_rcu(fa);
1459 found++;
1460 }
1461 }
1462 return found;
1463 }
1464
1465 static int trie_flush_leaf(struct tnode *l)
1466 {
1467 int found = 0;
1468 struct hlist_head *lih = &l->list;
1469 struct hlist_node *tmp;
1470 struct leaf_info *li = NULL;
1471
1472 hlist_for_each_entry_safe(li, tmp, lih, hlist) {
1473 found += trie_flush_list(&li->falh);
1474
1475 if (list_empty(&li->falh)) {
1476 hlist_del_rcu(&li->hlist);
1477 free_leaf_info(li);
1478 }
1479 }
1480 return found;
1481 }
1482
1483 /*
1484 * Scan for the next right leaf starting at node p->child[idx]
1485 * Since we have back pointer, no recursion necessary.
1486 */
1487 static struct tnode *leaf_walk_rcu(struct tnode *p, struct tnode *c)
1488 {
1489 do {
1490 unsigned long idx = c ? idx = get_index(c->key, p) + 1 : 0;
1491
1492 while (idx < tnode_child_length(p)) {
1493 c = tnode_get_child_rcu(p, idx++);
1494 if (!c)
1495 continue;
1496
1497 if (IS_LEAF(c))
1498 return c;
1499
1500 /* Rescan start scanning in new node */
1501 p = c;
1502 idx = 0;
1503 }
1504
1505 /* Node empty, walk back up to parent */
1506 c = p;
1507 } while ((p = node_parent_rcu(c)) != NULL);
1508
1509 return NULL; /* Root of trie */
1510 }
1511
1512 static struct tnode *trie_firstleaf(struct trie *t)
1513 {
1514 struct tnode *n = rcu_dereference_rtnl(t->trie);
1515
1516 if (!n)
1517 return NULL;
1518
1519 if (IS_LEAF(n)) /* trie is just a leaf */
1520 return n;
1521
1522 return leaf_walk_rcu(n, NULL);
1523 }
1524
1525 static struct tnode *trie_nextleaf(struct tnode *l)
1526 {
1527 struct tnode *p = node_parent_rcu(l);
1528
1529 if (!p)
1530 return NULL; /* trie with just one leaf */
1531
1532 return leaf_walk_rcu(p, l);
1533 }
1534
1535 static struct tnode *trie_leafindex(struct trie *t, int index)
1536 {
1537 struct tnode *l = trie_firstleaf(t);
1538
1539 while (l && index-- > 0)
1540 l = trie_nextleaf(l);
1541
1542 return l;
1543 }
1544
1545
1546 /*
1547 * Caller must hold RTNL.
1548 */
1549 int fib_table_flush(struct fib_table *tb)
1550 {
1551 struct trie *t = (struct trie *) tb->tb_data;
1552 struct tnode *l, *ll = NULL;
1553 int found = 0;
1554
1555 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1556 found += trie_flush_leaf(l);
1557
1558 if (ll && hlist_empty(&ll->list))
1559 trie_leaf_remove(t, ll);
1560 ll = l;
1561 }
1562
1563 if (ll && hlist_empty(&ll->list))
1564 trie_leaf_remove(t, ll);
1565
1566 pr_debug("trie_flush found=%d\n", found);
1567 return found;
1568 }
1569
1570 void fib_free_table(struct fib_table *tb)
1571 {
1572 #ifdef CONFIG_IP_FIB_TRIE_STATS
1573 struct trie *t = (struct trie *)tb->tb_data;
1574
1575 free_percpu(t->stats);
1576 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1577 kfree(tb);
1578 }
1579
1580 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1581 struct fib_table *tb,
1582 struct sk_buff *skb, struct netlink_callback *cb)
1583 {
1584 int i, s_i;
1585 struct fib_alias *fa;
1586 __be32 xkey = htonl(key);
1587
1588 s_i = cb->args[5];
1589 i = 0;
1590
1591 /* rcu_read_lock is hold by caller */
1592
1593 list_for_each_entry_rcu(fa, fah, fa_list) {
1594 if (i < s_i) {
1595 i++;
1596 continue;
1597 }
1598
1599 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1600 cb->nlh->nlmsg_seq,
1601 RTM_NEWROUTE,
1602 tb->tb_id,
1603 fa->fa_type,
1604 xkey,
1605 plen,
1606 fa->fa_tos,
1607 fa->fa_info, NLM_F_MULTI) < 0) {
1608 cb->args[5] = i;
1609 return -1;
1610 }
1611 i++;
1612 }
1613 cb->args[5] = i;
1614 return skb->len;
1615 }
1616
1617 static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
1618 struct sk_buff *skb, struct netlink_callback *cb)
1619 {
1620 struct leaf_info *li;
1621 int i, s_i;
1622
1623 s_i = cb->args[4];
1624 i = 0;
1625
1626 /* rcu_read_lock is hold by caller */
1627 hlist_for_each_entry_rcu(li, &l->list, hlist) {
1628 if (i < s_i) {
1629 i++;
1630 continue;
1631 }
1632
1633 if (i > s_i)
1634 cb->args[5] = 0;
1635
1636 if (list_empty(&li->falh))
1637 continue;
1638
1639 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1640 cb->args[4] = i;
1641 return -1;
1642 }
1643 i++;
1644 }
1645
1646 cb->args[4] = i;
1647 return skb->len;
1648 }
1649
1650 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1651 struct netlink_callback *cb)
1652 {
1653 struct tnode *l;
1654 struct trie *t = (struct trie *) tb->tb_data;
1655 t_key key = cb->args[2];
1656 int count = cb->args[3];
1657
1658 rcu_read_lock();
1659 /* Dump starting at last key.
1660 * Note: 0.0.0.0/0 (ie default) is first key.
1661 */
1662 if (count == 0)
1663 l = trie_firstleaf(t);
1664 else {
1665 /* Normally, continue from last key, but if that is missing
1666 * fallback to using slow rescan
1667 */
1668 l = fib_find_node(t, key);
1669 if (!l)
1670 l = trie_leafindex(t, count);
1671 }
1672
1673 while (l) {
1674 cb->args[2] = l->key;
1675 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1676 cb->args[3] = count;
1677 rcu_read_unlock();
1678 return -1;
1679 }
1680
1681 ++count;
1682 l = trie_nextleaf(l);
1683 memset(&cb->args[4], 0,
1684 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1685 }
1686 cb->args[3] = count;
1687 rcu_read_unlock();
1688
1689 return skb->len;
1690 }
1691
1692 void __init fib_trie_init(void)
1693 {
1694 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1695 sizeof(struct fib_alias),
1696 0, SLAB_PANIC, NULL);
1697
1698 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1699 max(sizeof(struct tnode),
1700 sizeof(struct leaf_info)),
1701 0, SLAB_PANIC, NULL);
1702 }
1703
1704
1705 struct fib_table *fib_trie_table(u32 id)
1706 {
1707 struct fib_table *tb;
1708 struct trie *t;
1709
1710 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1711 GFP_KERNEL);
1712 if (tb == NULL)
1713 return NULL;
1714
1715 tb->tb_id = id;
1716 tb->tb_default = -1;
1717 tb->tb_num_default = 0;
1718
1719 t = (struct trie *) tb->tb_data;
1720 RCU_INIT_POINTER(t->trie, NULL);
1721 #ifdef CONFIG_IP_FIB_TRIE_STATS
1722 t->stats = alloc_percpu(struct trie_use_stats);
1723 if (!t->stats) {
1724 kfree(tb);
1725 tb = NULL;
1726 }
1727 #endif
1728
1729 return tb;
1730 }
1731
1732 #ifdef CONFIG_PROC_FS
1733 /* Depth first Trie walk iterator */
1734 struct fib_trie_iter {
1735 struct seq_net_private p;
1736 struct fib_table *tb;
1737 struct tnode *tnode;
1738 unsigned int index;
1739 unsigned int depth;
1740 };
1741
1742 static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
1743 {
1744 unsigned long cindex = iter->index;
1745 struct tnode *tn = iter->tnode;
1746 struct tnode *p;
1747
1748 /* A single entry routing table */
1749 if (!tn)
1750 return NULL;
1751
1752 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1753 iter->tnode, iter->index, iter->depth);
1754 rescan:
1755 while (cindex < tnode_child_length(tn)) {
1756 struct tnode *n = tnode_get_child_rcu(tn, cindex);
1757
1758 if (n) {
1759 if (IS_LEAF(n)) {
1760 iter->tnode = tn;
1761 iter->index = cindex + 1;
1762 } else {
1763 /* push down one level */
1764 iter->tnode = n;
1765 iter->index = 0;
1766 ++iter->depth;
1767 }
1768 return n;
1769 }
1770
1771 ++cindex;
1772 }
1773
1774 /* Current node exhausted, pop back up */
1775 p = node_parent_rcu(tn);
1776 if (p) {
1777 cindex = get_index(tn->key, p) + 1;
1778 tn = p;
1779 --iter->depth;
1780 goto rescan;
1781 }
1782
1783 /* got root? */
1784 return NULL;
1785 }
1786
1787 static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
1788 struct trie *t)
1789 {
1790 struct tnode *n;
1791
1792 if (!t)
1793 return NULL;
1794
1795 n = rcu_dereference(t->trie);
1796 if (!n)
1797 return NULL;
1798
1799 if (IS_TNODE(n)) {
1800 iter->tnode = n;
1801 iter->index = 0;
1802 iter->depth = 1;
1803 } else {
1804 iter->tnode = NULL;
1805 iter->index = 0;
1806 iter->depth = 0;
1807 }
1808
1809 return n;
1810 }
1811
1812 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1813 {
1814 struct tnode *n;
1815 struct fib_trie_iter iter;
1816
1817 memset(s, 0, sizeof(*s));
1818
1819 rcu_read_lock();
1820 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1821 if (IS_LEAF(n)) {
1822 struct leaf_info *li;
1823
1824 s->leaves++;
1825 s->totdepth += iter.depth;
1826 if (iter.depth > s->maxdepth)
1827 s->maxdepth = iter.depth;
1828
1829 hlist_for_each_entry_rcu(li, &n->list, hlist)
1830 ++s->prefixes;
1831 } else {
1832 unsigned long i;
1833
1834 s->tnodes++;
1835 if (n->bits < MAX_STAT_DEPTH)
1836 s->nodesizes[n->bits]++;
1837
1838 for (i = 0; i < tnode_child_length(n); i++) {
1839 if (!rcu_access_pointer(n->child[i]))
1840 s->nullpointers++;
1841 }
1842 }
1843 }
1844 rcu_read_unlock();
1845 }
1846
1847 /*
1848 * This outputs /proc/net/fib_triestats
1849 */
1850 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
1851 {
1852 unsigned int i, max, pointers, bytes, avdepth;
1853
1854 if (stat->leaves)
1855 avdepth = stat->totdepth*100 / stat->leaves;
1856 else
1857 avdepth = 0;
1858
1859 seq_printf(seq, "\tAver depth: %u.%02d\n",
1860 avdepth / 100, avdepth % 100);
1861 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
1862
1863 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
1864 bytes = sizeof(struct tnode) * stat->leaves;
1865
1866 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
1867 bytes += sizeof(struct leaf_info) * stat->prefixes;
1868
1869 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
1870 bytes += sizeof(struct tnode) * stat->tnodes;
1871
1872 max = MAX_STAT_DEPTH;
1873 while (max > 0 && stat->nodesizes[max-1] == 0)
1874 max--;
1875
1876 pointers = 0;
1877 for (i = 1; i < max; i++)
1878 if (stat->nodesizes[i] != 0) {
1879 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
1880 pointers += (1<<i) * stat->nodesizes[i];
1881 }
1882 seq_putc(seq, '\n');
1883 seq_printf(seq, "\tPointers: %u\n", pointers);
1884
1885 bytes += sizeof(struct tnode *) * pointers;
1886 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
1887 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
1888 }
1889
1890 #ifdef CONFIG_IP_FIB_TRIE_STATS
1891 static void trie_show_usage(struct seq_file *seq,
1892 const struct trie_use_stats __percpu *stats)
1893 {
1894 struct trie_use_stats s = { 0 };
1895 int cpu;
1896
1897 /* loop through all of the CPUs and gather up the stats */
1898 for_each_possible_cpu(cpu) {
1899 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
1900
1901 s.gets += pcpu->gets;
1902 s.backtrack += pcpu->backtrack;
1903 s.semantic_match_passed += pcpu->semantic_match_passed;
1904 s.semantic_match_miss += pcpu->semantic_match_miss;
1905 s.null_node_hit += pcpu->null_node_hit;
1906 s.resize_node_skipped += pcpu->resize_node_skipped;
1907 }
1908
1909 seq_printf(seq, "\nCounters:\n---------\n");
1910 seq_printf(seq, "gets = %u\n", s.gets);
1911 seq_printf(seq, "backtracks = %u\n", s.backtrack);
1912 seq_printf(seq, "semantic match passed = %u\n",
1913 s.semantic_match_passed);
1914 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
1915 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
1916 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
1917 }
1918 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1919
1920 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
1921 {
1922 if (tb->tb_id == RT_TABLE_LOCAL)
1923 seq_puts(seq, "Local:\n");
1924 else if (tb->tb_id == RT_TABLE_MAIN)
1925 seq_puts(seq, "Main:\n");
1926 else
1927 seq_printf(seq, "Id %d:\n", tb->tb_id);
1928 }
1929
1930
1931 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
1932 {
1933 struct net *net = (struct net *)seq->private;
1934 unsigned int h;
1935
1936 seq_printf(seq,
1937 "Basic info: size of leaf:"
1938 " %Zd bytes, size of tnode: %Zd bytes.\n",
1939 sizeof(struct tnode), sizeof(struct tnode));
1940
1941 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1942 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1943 struct fib_table *tb;
1944
1945 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
1946 struct trie *t = (struct trie *) tb->tb_data;
1947 struct trie_stat stat;
1948
1949 if (!t)
1950 continue;
1951
1952 fib_table_print(seq, tb);
1953
1954 trie_collect_stats(t, &stat);
1955 trie_show_stats(seq, &stat);
1956 #ifdef CONFIG_IP_FIB_TRIE_STATS
1957 trie_show_usage(seq, t->stats);
1958 #endif
1959 }
1960 }
1961
1962 return 0;
1963 }
1964
1965 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
1966 {
1967 return single_open_net(inode, file, fib_triestat_seq_show);
1968 }
1969
1970 static const struct file_operations fib_triestat_fops = {
1971 .owner = THIS_MODULE,
1972 .open = fib_triestat_seq_open,
1973 .read = seq_read,
1974 .llseek = seq_lseek,
1975 .release = single_release_net,
1976 };
1977
1978 static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
1979 {
1980 struct fib_trie_iter *iter = seq->private;
1981 struct net *net = seq_file_net(seq);
1982 loff_t idx = 0;
1983 unsigned int h;
1984
1985 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1986 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1987 struct fib_table *tb;
1988
1989 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
1990 struct tnode *n;
1991
1992 for (n = fib_trie_get_first(iter,
1993 (struct trie *) tb->tb_data);
1994 n; n = fib_trie_get_next(iter))
1995 if (pos == idx++) {
1996 iter->tb = tb;
1997 return n;
1998 }
1999 }
2000 }
2001
2002 return NULL;
2003 }
2004
2005 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2006 __acquires(RCU)
2007 {
2008 rcu_read_lock();
2009 return fib_trie_get_idx(seq, *pos);
2010 }
2011
2012 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2013 {
2014 struct fib_trie_iter *iter = seq->private;
2015 struct net *net = seq_file_net(seq);
2016 struct fib_table *tb = iter->tb;
2017 struct hlist_node *tb_node;
2018 unsigned int h;
2019 struct tnode *n;
2020
2021 ++*pos;
2022 /* next node in same table */
2023 n = fib_trie_get_next(iter);
2024 if (n)
2025 return n;
2026
2027 /* walk rest of this hash chain */
2028 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2029 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2030 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2031 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2032 if (n)
2033 goto found;
2034 }
2035
2036 /* new hash chain */
2037 while (++h < FIB_TABLE_HASHSZ) {
2038 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2039 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2040 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2041 if (n)
2042 goto found;
2043 }
2044 }
2045 return NULL;
2046
2047 found:
2048 iter->tb = tb;
2049 return n;
2050 }
2051
2052 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2053 __releases(RCU)
2054 {
2055 rcu_read_unlock();
2056 }
2057
2058 static void seq_indent(struct seq_file *seq, int n)
2059 {
2060 while (n-- > 0)
2061 seq_puts(seq, " ");
2062 }
2063
2064 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2065 {
2066 switch (s) {
2067 case RT_SCOPE_UNIVERSE: return "universe";
2068 case RT_SCOPE_SITE: return "site";
2069 case RT_SCOPE_LINK: return "link";
2070 case RT_SCOPE_HOST: return "host";
2071 case RT_SCOPE_NOWHERE: return "nowhere";
2072 default:
2073 snprintf(buf, len, "scope=%d", s);
2074 return buf;
2075 }
2076 }
2077
2078 static const char *const rtn_type_names[__RTN_MAX] = {
2079 [RTN_UNSPEC] = "UNSPEC",
2080 [RTN_UNICAST] = "UNICAST",
2081 [RTN_LOCAL] = "LOCAL",
2082 [RTN_BROADCAST] = "BROADCAST",
2083 [RTN_ANYCAST] = "ANYCAST",
2084 [RTN_MULTICAST] = "MULTICAST",
2085 [RTN_BLACKHOLE] = "BLACKHOLE",
2086 [RTN_UNREACHABLE] = "UNREACHABLE",
2087 [RTN_PROHIBIT] = "PROHIBIT",
2088 [RTN_THROW] = "THROW",
2089 [RTN_NAT] = "NAT",
2090 [RTN_XRESOLVE] = "XRESOLVE",
2091 };
2092
2093 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2094 {
2095 if (t < __RTN_MAX && rtn_type_names[t])
2096 return rtn_type_names[t];
2097 snprintf(buf, len, "type %u", t);
2098 return buf;
2099 }
2100
2101 /* Pretty print the trie */
2102 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2103 {
2104 const struct fib_trie_iter *iter = seq->private;
2105 struct tnode *n = v;
2106
2107 if (!node_parent_rcu(n))
2108 fib_table_print(seq, iter->tb);
2109
2110 if (IS_TNODE(n)) {
2111 __be32 prf = htonl(n->key);
2112
2113 seq_indent(seq, iter->depth-1);
2114 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2115 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2116 n->full_children, n->empty_children);
2117 } else {
2118 struct leaf_info *li;
2119 __be32 val = htonl(n->key);
2120
2121 seq_indent(seq, iter->depth);
2122 seq_printf(seq, " |-- %pI4\n", &val);
2123
2124 hlist_for_each_entry_rcu(li, &n->list, hlist) {
2125 struct fib_alias *fa;
2126
2127 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2128 char buf1[32], buf2[32];
2129
2130 seq_indent(seq, iter->depth+1);
2131 seq_printf(seq, " /%d %s %s", li->plen,
2132 rtn_scope(buf1, sizeof(buf1),
2133 fa->fa_info->fib_scope),
2134 rtn_type(buf2, sizeof(buf2),
2135 fa->fa_type));
2136 if (fa->fa_tos)
2137 seq_printf(seq, " tos=%d", fa->fa_tos);
2138 seq_putc(seq, '\n');
2139 }
2140 }
2141 }
2142
2143 return 0;
2144 }
2145
2146 static const struct seq_operations fib_trie_seq_ops = {
2147 .start = fib_trie_seq_start,
2148 .next = fib_trie_seq_next,
2149 .stop = fib_trie_seq_stop,
2150 .show = fib_trie_seq_show,
2151 };
2152
2153 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2154 {
2155 return seq_open_net(inode, file, &fib_trie_seq_ops,
2156 sizeof(struct fib_trie_iter));
2157 }
2158
2159 static const struct file_operations fib_trie_fops = {
2160 .owner = THIS_MODULE,
2161 .open = fib_trie_seq_open,
2162 .read = seq_read,
2163 .llseek = seq_lseek,
2164 .release = seq_release_net,
2165 };
2166
2167 struct fib_route_iter {
2168 struct seq_net_private p;
2169 struct trie *main_trie;
2170 loff_t pos;
2171 t_key key;
2172 };
2173
2174 static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2175 {
2176 struct tnode *l = NULL;
2177 struct trie *t = iter->main_trie;
2178
2179 /* use cache location of last found key */
2180 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2181 pos -= iter->pos;
2182 else {
2183 iter->pos = 0;
2184 l = trie_firstleaf(t);
2185 }
2186
2187 while (l && pos-- > 0) {
2188 iter->pos++;
2189 l = trie_nextleaf(l);
2190 }
2191
2192 if (l)
2193 iter->key = pos; /* remember it */
2194 else
2195 iter->pos = 0; /* forget it */
2196
2197 return l;
2198 }
2199
2200 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2201 __acquires(RCU)
2202 {
2203 struct fib_route_iter *iter = seq->private;
2204 struct fib_table *tb;
2205
2206 rcu_read_lock();
2207 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2208 if (!tb)
2209 return NULL;
2210
2211 iter->main_trie = (struct trie *) tb->tb_data;
2212 if (*pos == 0)
2213 return SEQ_START_TOKEN;
2214 else
2215 return fib_route_get_idx(iter, *pos - 1);
2216 }
2217
2218 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2219 {
2220 struct fib_route_iter *iter = seq->private;
2221 struct tnode *l = v;
2222
2223 ++*pos;
2224 if (v == SEQ_START_TOKEN) {
2225 iter->pos = 0;
2226 l = trie_firstleaf(iter->main_trie);
2227 } else {
2228 iter->pos++;
2229 l = trie_nextleaf(l);
2230 }
2231
2232 if (l)
2233 iter->key = l->key;
2234 else
2235 iter->pos = 0;
2236 return l;
2237 }
2238
2239 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2240 __releases(RCU)
2241 {
2242 rcu_read_unlock();
2243 }
2244
2245 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2246 {
2247 unsigned int flags = 0;
2248
2249 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2250 flags = RTF_REJECT;
2251 if (fi && fi->fib_nh->nh_gw)
2252 flags |= RTF_GATEWAY;
2253 if (mask == htonl(0xFFFFFFFF))
2254 flags |= RTF_HOST;
2255 flags |= RTF_UP;
2256 return flags;
2257 }
2258
2259 /*
2260 * This outputs /proc/net/route.
2261 * The format of the file is not supposed to be changed
2262 * and needs to be same as fib_hash output to avoid breaking
2263 * legacy utilities
2264 */
2265 static int fib_route_seq_show(struct seq_file *seq, void *v)
2266 {
2267 struct tnode *l = v;
2268 struct leaf_info *li;
2269
2270 if (v == SEQ_START_TOKEN) {
2271 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2272 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2273 "\tWindow\tIRTT");
2274 return 0;
2275 }
2276
2277 hlist_for_each_entry_rcu(li, &l->list, hlist) {
2278 struct fib_alias *fa;
2279 __be32 mask, prefix;
2280
2281 mask = inet_make_mask(li->plen);
2282 prefix = htonl(l->key);
2283
2284 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2285 const struct fib_info *fi = fa->fa_info;
2286 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2287
2288 if (fa->fa_type == RTN_BROADCAST
2289 || fa->fa_type == RTN_MULTICAST)
2290 continue;
2291
2292 seq_setwidth(seq, 127);
2293
2294 if (fi)
2295 seq_printf(seq,
2296 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2297 "%d\t%08X\t%d\t%u\t%u",
2298 fi->fib_dev ? fi->fib_dev->name : "*",
2299 prefix,
2300 fi->fib_nh->nh_gw, flags, 0, 0,
2301 fi->fib_priority,
2302 mask,
2303 (fi->fib_advmss ?
2304 fi->fib_advmss + 40 : 0),
2305 fi->fib_window,
2306 fi->fib_rtt >> 3);
2307 else
2308 seq_printf(seq,
2309 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2310 "%d\t%08X\t%d\t%u\t%u",
2311 prefix, 0, flags, 0, 0, 0,
2312 mask, 0, 0, 0);
2313
2314 seq_pad(seq, '\n');
2315 }
2316 }
2317
2318 return 0;
2319 }
2320
2321 static const struct seq_operations fib_route_seq_ops = {
2322 .start = fib_route_seq_start,
2323 .next = fib_route_seq_next,
2324 .stop = fib_route_seq_stop,
2325 .show = fib_route_seq_show,
2326 };
2327
2328 static int fib_route_seq_open(struct inode *inode, struct file *file)
2329 {
2330 return seq_open_net(inode, file, &fib_route_seq_ops,
2331 sizeof(struct fib_route_iter));
2332 }
2333
2334 static const struct file_operations fib_route_fops = {
2335 .owner = THIS_MODULE,
2336 .open = fib_route_seq_open,
2337 .read = seq_read,
2338 .llseek = seq_lseek,
2339 .release = seq_release_net,
2340 };
2341
2342 int __net_init fib_proc_init(struct net *net)
2343 {
2344 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2345 goto out1;
2346
2347 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2348 &fib_triestat_fops))
2349 goto out2;
2350
2351 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2352 goto out3;
2353
2354 return 0;
2355
2356 out3:
2357 remove_proc_entry("fib_triestat", net->proc_net);
2358 out2:
2359 remove_proc_entry("fib_trie", net->proc_net);
2360 out1:
2361 return -ENOMEM;
2362 }
2363
2364 void __net_exit fib_proc_exit(struct net *net)
2365 {
2366 remove_proc_entry("fib_trie", net->proc_net);
2367 remove_proc_entry("fib_triestat", net->proc_net);
2368 remove_proc_entry("route", net->proc_net);
2369 }
2370
2371 #endif /* CONFIG_PROC_FS */
This page took 0.077378 seconds and 4 git commands to generate.