ASoC: rt5645: Add struct dmi_system_id "Google Ultima" for chrome platform
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <linux/vmalloc.h>
76 #include <net/net_namespace.h>
77 #include <net/ip.h>
78 #include <net/protocol.h>
79 #include <net/route.h>
80 #include <net/tcp.h>
81 #include <net/sock.h>
82 #include <net/ip_fib.h>
83 #include <net/switchdev.h>
84 #include "fib_lookup.h"
85
86 #define MAX_STAT_DEPTH 32
87
88 #define KEYLENGTH (8*sizeof(t_key))
89 #define KEY_MAX ((t_key)~0)
90
91 typedef unsigned int t_key;
92
93 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
94 #define IS_TNODE(n) ((n)->bits)
95 #define IS_LEAF(n) (!(n)->bits)
96
97 struct key_vector {
98 t_key key;
99 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
100 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
101 unsigned char slen;
102 union {
103 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
104 struct hlist_head leaf;
105 /* This array is valid if (pos | bits) > 0 (TNODE) */
106 struct key_vector __rcu *tnode[0];
107 };
108 };
109
110 struct tnode {
111 struct rcu_head rcu;
112 t_key empty_children; /* KEYLENGTH bits needed */
113 t_key full_children; /* KEYLENGTH bits needed */
114 struct key_vector __rcu *parent;
115 struct key_vector kv[1];
116 #define tn_bits kv[0].bits
117 };
118
119 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
120 #define LEAF_SIZE TNODE_SIZE(1)
121
122 #ifdef CONFIG_IP_FIB_TRIE_STATS
123 struct trie_use_stats {
124 unsigned int gets;
125 unsigned int backtrack;
126 unsigned int semantic_match_passed;
127 unsigned int semantic_match_miss;
128 unsigned int null_node_hit;
129 unsigned int resize_node_skipped;
130 };
131 #endif
132
133 struct trie_stat {
134 unsigned int totdepth;
135 unsigned int maxdepth;
136 unsigned int tnodes;
137 unsigned int leaves;
138 unsigned int nullpointers;
139 unsigned int prefixes;
140 unsigned int nodesizes[MAX_STAT_DEPTH];
141 };
142
143 struct trie {
144 struct key_vector kv[1];
145 #ifdef CONFIG_IP_FIB_TRIE_STATS
146 struct trie_use_stats __percpu *stats;
147 #endif
148 };
149
150 static struct key_vector *resize(struct trie *t, struct key_vector *tn);
151 static size_t tnode_free_size;
152
153 /*
154 * synchronize_rcu after call_rcu for that many pages; it should be especially
155 * useful before resizing the root node with PREEMPT_NONE configs; the value was
156 * obtained experimentally, aiming to avoid visible slowdown.
157 */
158 static const int sync_pages = 128;
159
160 static struct kmem_cache *fn_alias_kmem __read_mostly;
161 static struct kmem_cache *trie_leaf_kmem __read_mostly;
162
163 static inline struct tnode *tn_info(struct key_vector *kv)
164 {
165 return container_of(kv, struct tnode, kv[0]);
166 }
167
168 /* caller must hold RTNL */
169 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
170 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
171
172 /* caller must hold RCU read lock or RTNL */
173 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
174 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
175
176 /* wrapper for rcu_assign_pointer */
177 static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
178 {
179 if (n)
180 rcu_assign_pointer(tn_info(n)->parent, tp);
181 }
182
183 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
184
185 /* This provides us with the number of children in this node, in the case of a
186 * leaf this will return 0 meaning none of the children are accessible.
187 */
188 static inline unsigned long child_length(const struct key_vector *tn)
189 {
190 return (1ul << tn->bits) & ~(1ul);
191 }
192
193 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
194
195 static inline unsigned long get_index(t_key key, struct key_vector *kv)
196 {
197 unsigned long index = key ^ kv->key;
198
199 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
200 return 0;
201
202 return index >> kv->pos;
203 }
204
205 /* To understand this stuff, an understanding of keys and all their bits is
206 * necessary. Every node in the trie has a key associated with it, but not
207 * all of the bits in that key are significant.
208 *
209 * Consider a node 'n' and its parent 'tp'.
210 *
211 * If n is a leaf, every bit in its key is significant. Its presence is
212 * necessitated by path compression, since during a tree traversal (when
213 * searching for a leaf - unless we are doing an insertion) we will completely
214 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
215 * a potentially successful search, that we have indeed been walking the
216 * correct key path.
217 *
218 * Note that we can never "miss" the correct key in the tree if present by
219 * following the wrong path. Path compression ensures that segments of the key
220 * that are the same for all keys with a given prefix are skipped, but the
221 * skipped part *is* identical for each node in the subtrie below the skipped
222 * bit! trie_insert() in this implementation takes care of that.
223 *
224 * if n is an internal node - a 'tnode' here, the various parts of its key
225 * have many different meanings.
226 *
227 * Example:
228 * _________________________________________________________________
229 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
230 * -----------------------------------------------------------------
231 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
232 *
233 * _________________________________________________________________
234 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
235 * -----------------------------------------------------------------
236 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
237 *
238 * tp->pos = 22
239 * tp->bits = 3
240 * n->pos = 13
241 * n->bits = 4
242 *
243 * First, let's just ignore the bits that come before the parent tp, that is
244 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
245 * point we do not use them for anything.
246 *
247 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
248 * index into the parent's child array. That is, they will be used to find
249 * 'n' among tp's children.
250 *
251 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
252 * for the node n.
253 *
254 * All the bits we have seen so far are significant to the node n. The rest
255 * of the bits are really not needed or indeed known in n->key.
256 *
257 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
258 * n's child array, and will of course be different for each child.
259 *
260 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
261 * at this point.
262 */
263
264 static const int halve_threshold = 25;
265 static const int inflate_threshold = 50;
266 static const int halve_threshold_root = 15;
267 static const int inflate_threshold_root = 30;
268
269 static void __alias_free_mem(struct rcu_head *head)
270 {
271 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
272 kmem_cache_free(fn_alias_kmem, fa);
273 }
274
275 static inline void alias_free_mem_rcu(struct fib_alias *fa)
276 {
277 call_rcu(&fa->rcu, __alias_free_mem);
278 }
279
280 #define TNODE_KMALLOC_MAX \
281 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
282 #define TNODE_VMALLOC_MAX \
283 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
284
285 static void __node_free_rcu(struct rcu_head *head)
286 {
287 struct tnode *n = container_of(head, struct tnode, rcu);
288
289 if (!n->tn_bits)
290 kmem_cache_free(trie_leaf_kmem, n);
291 else if (n->tn_bits <= TNODE_KMALLOC_MAX)
292 kfree(n);
293 else
294 vfree(n);
295 }
296
297 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
298
299 static struct tnode *tnode_alloc(int bits)
300 {
301 size_t size;
302
303 /* verify bits is within bounds */
304 if (bits > TNODE_VMALLOC_MAX)
305 return NULL;
306
307 /* determine size and verify it is non-zero and didn't overflow */
308 size = TNODE_SIZE(1ul << bits);
309
310 if (size <= PAGE_SIZE)
311 return kzalloc(size, GFP_KERNEL);
312 else
313 return vzalloc(size);
314 }
315
316 static inline void empty_child_inc(struct key_vector *n)
317 {
318 ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
319 }
320
321 static inline void empty_child_dec(struct key_vector *n)
322 {
323 tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
324 }
325
326 static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
327 {
328 struct key_vector *l;
329 struct tnode *kv;
330
331 kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
332 if (!kv)
333 return NULL;
334
335 /* initialize key vector */
336 l = kv->kv;
337 l->key = key;
338 l->pos = 0;
339 l->bits = 0;
340 l->slen = fa->fa_slen;
341
342 /* link leaf to fib alias */
343 INIT_HLIST_HEAD(&l->leaf);
344 hlist_add_head(&fa->fa_list, &l->leaf);
345
346 return l;
347 }
348
349 static struct key_vector *tnode_new(t_key key, int pos, int bits)
350 {
351 unsigned int shift = pos + bits;
352 struct key_vector *tn;
353 struct tnode *tnode;
354
355 /* verify bits and pos their msb bits clear and values are valid */
356 BUG_ON(!bits || (shift > KEYLENGTH));
357
358 tnode = tnode_alloc(bits);
359 if (!tnode)
360 return NULL;
361
362 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
363 sizeof(struct key_vector *) << bits);
364
365 if (bits == KEYLENGTH)
366 tnode->full_children = 1;
367 else
368 tnode->empty_children = 1ul << bits;
369
370 tn = tnode->kv;
371 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
372 tn->pos = pos;
373 tn->bits = bits;
374 tn->slen = pos;
375
376 return tn;
377 }
378
379 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
380 * and no bits are skipped. See discussion in dyntree paper p. 6
381 */
382 static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
383 {
384 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
385 }
386
387 /* Add a child at position i overwriting the old value.
388 * Update the value of full_children and empty_children.
389 */
390 static void put_child(struct key_vector *tn, unsigned long i,
391 struct key_vector *n)
392 {
393 struct key_vector *chi = get_child(tn, i);
394 int isfull, wasfull;
395
396 BUG_ON(i >= child_length(tn));
397
398 /* update emptyChildren, overflow into fullChildren */
399 if (!n && chi)
400 empty_child_inc(tn);
401 if (n && !chi)
402 empty_child_dec(tn);
403
404 /* update fullChildren */
405 wasfull = tnode_full(tn, chi);
406 isfull = tnode_full(tn, n);
407
408 if (wasfull && !isfull)
409 tn_info(tn)->full_children--;
410 else if (!wasfull && isfull)
411 tn_info(tn)->full_children++;
412
413 if (n && (tn->slen < n->slen))
414 tn->slen = n->slen;
415
416 rcu_assign_pointer(tn->tnode[i], n);
417 }
418
419 static void update_children(struct key_vector *tn)
420 {
421 unsigned long i;
422
423 /* update all of the child parent pointers */
424 for (i = child_length(tn); i;) {
425 struct key_vector *inode = get_child(tn, --i);
426
427 if (!inode)
428 continue;
429
430 /* Either update the children of a tnode that
431 * already belongs to us or update the child
432 * to point to ourselves.
433 */
434 if (node_parent(inode) == tn)
435 update_children(inode);
436 else
437 node_set_parent(inode, tn);
438 }
439 }
440
441 static inline void put_child_root(struct key_vector *tp, t_key key,
442 struct key_vector *n)
443 {
444 if (IS_TRIE(tp))
445 rcu_assign_pointer(tp->tnode[0], n);
446 else
447 put_child(tp, get_index(key, tp), n);
448 }
449
450 static inline void tnode_free_init(struct key_vector *tn)
451 {
452 tn_info(tn)->rcu.next = NULL;
453 }
454
455 static inline void tnode_free_append(struct key_vector *tn,
456 struct key_vector *n)
457 {
458 tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
459 tn_info(tn)->rcu.next = &tn_info(n)->rcu;
460 }
461
462 static void tnode_free(struct key_vector *tn)
463 {
464 struct callback_head *head = &tn_info(tn)->rcu;
465
466 while (head) {
467 head = head->next;
468 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
469 node_free(tn);
470
471 tn = container_of(head, struct tnode, rcu)->kv;
472 }
473
474 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
475 tnode_free_size = 0;
476 synchronize_rcu();
477 }
478 }
479
480 static struct key_vector *replace(struct trie *t,
481 struct key_vector *oldtnode,
482 struct key_vector *tn)
483 {
484 struct key_vector *tp = node_parent(oldtnode);
485 unsigned long i;
486
487 /* setup the parent pointer out of and back into this node */
488 NODE_INIT_PARENT(tn, tp);
489 put_child_root(tp, tn->key, tn);
490
491 /* update all of the child parent pointers */
492 update_children(tn);
493
494 /* all pointers should be clean so we are done */
495 tnode_free(oldtnode);
496
497 /* resize children now that oldtnode is freed */
498 for (i = child_length(tn); i;) {
499 struct key_vector *inode = get_child(tn, --i);
500
501 /* resize child node */
502 if (tnode_full(tn, inode))
503 tn = resize(t, inode);
504 }
505
506 return tp;
507 }
508
509 static struct key_vector *inflate(struct trie *t,
510 struct key_vector *oldtnode)
511 {
512 struct key_vector *tn;
513 unsigned long i;
514 t_key m;
515
516 pr_debug("In inflate\n");
517
518 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
519 if (!tn)
520 goto notnode;
521
522 /* prepare oldtnode to be freed */
523 tnode_free_init(oldtnode);
524
525 /* Assemble all of the pointers in our cluster, in this case that
526 * represents all of the pointers out of our allocated nodes that
527 * point to existing tnodes and the links between our allocated
528 * nodes.
529 */
530 for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
531 struct key_vector *inode = get_child(oldtnode, --i);
532 struct key_vector *node0, *node1;
533 unsigned long j, k;
534
535 /* An empty child */
536 if (!inode)
537 continue;
538
539 /* A leaf or an internal node with skipped bits */
540 if (!tnode_full(oldtnode, inode)) {
541 put_child(tn, get_index(inode->key, tn), inode);
542 continue;
543 }
544
545 /* drop the node in the old tnode free list */
546 tnode_free_append(oldtnode, inode);
547
548 /* An internal node with two children */
549 if (inode->bits == 1) {
550 put_child(tn, 2 * i + 1, get_child(inode, 1));
551 put_child(tn, 2 * i, get_child(inode, 0));
552 continue;
553 }
554
555 /* We will replace this node 'inode' with two new
556 * ones, 'node0' and 'node1', each with half of the
557 * original children. The two new nodes will have
558 * a position one bit further down the key and this
559 * means that the "significant" part of their keys
560 * (see the discussion near the top of this file)
561 * will differ by one bit, which will be "0" in
562 * node0's key and "1" in node1's key. Since we are
563 * moving the key position by one step, the bit that
564 * we are moving away from - the bit at position
565 * (tn->pos) - is the one that will differ between
566 * node0 and node1. So... we synthesize that bit in the
567 * two new keys.
568 */
569 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
570 if (!node1)
571 goto nomem;
572 node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
573
574 tnode_free_append(tn, node1);
575 if (!node0)
576 goto nomem;
577 tnode_free_append(tn, node0);
578
579 /* populate child pointers in new nodes */
580 for (k = child_length(inode), j = k / 2; j;) {
581 put_child(node1, --j, get_child(inode, --k));
582 put_child(node0, j, get_child(inode, j));
583 put_child(node1, --j, get_child(inode, --k));
584 put_child(node0, j, get_child(inode, j));
585 }
586
587 /* link new nodes to parent */
588 NODE_INIT_PARENT(node1, tn);
589 NODE_INIT_PARENT(node0, tn);
590
591 /* link parent to nodes */
592 put_child(tn, 2 * i + 1, node1);
593 put_child(tn, 2 * i, node0);
594 }
595
596 /* setup the parent pointers into and out of this node */
597 return replace(t, oldtnode, tn);
598 nomem:
599 /* all pointers should be clean so we are done */
600 tnode_free(tn);
601 notnode:
602 return NULL;
603 }
604
605 static struct key_vector *halve(struct trie *t,
606 struct key_vector *oldtnode)
607 {
608 struct key_vector *tn;
609 unsigned long i;
610
611 pr_debug("In halve\n");
612
613 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
614 if (!tn)
615 goto notnode;
616
617 /* prepare oldtnode to be freed */
618 tnode_free_init(oldtnode);
619
620 /* Assemble all of the pointers in our cluster, in this case that
621 * represents all of the pointers out of our allocated nodes that
622 * point to existing tnodes and the links between our allocated
623 * nodes.
624 */
625 for (i = child_length(oldtnode); i;) {
626 struct key_vector *node1 = get_child(oldtnode, --i);
627 struct key_vector *node0 = get_child(oldtnode, --i);
628 struct key_vector *inode;
629
630 /* At least one of the children is empty */
631 if (!node1 || !node0) {
632 put_child(tn, i / 2, node1 ? : node0);
633 continue;
634 }
635
636 /* Two nonempty children */
637 inode = tnode_new(node0->key, oldtnode->pos, 1);
638 if (!inode)
639 goto nomem;
640 tnode_free_append(tn, inode);
641
642 /* initialize pointers out of node */
643 put_child(inode, 1, node1);
644 put_child(inode, 0, node0);
645 NODE_INIT_PARENT(inode, tn);
646
647 /* link parent to node */
648 put_child(tn, i / 2, inode);
649 }
650
651 /* setup the parent pointers into and out of this node */
652 return replace(t, oldtnode, tn);
653 nomem:
654 /* all pointers should be clean so we are done */
655 tnode_free(tn);
656 notnode:
657 return NULL;
658 }
659
660 static struct key_vector *collapse(struct trie *t,
661 struct key_vector *oldtnode)
662 {
663 struct key_vector *n, *tp;
664 unsigned long i;
665
666 /* scan the tnode looking for that one child that might still exist */
667 for (n = NULL, i = child_length(oldtnode); !n && i;)
668 n = get_child(oldtnode, --i);
669
670 /* compress one level */
671 tp = node_parent(oldtnode);
672 put_child_root(tp, oldtnode->key, n);
673 node_set_parent(n, tp);
674
675 /* drop dead node */
676 node_free(oldtnode);
677
678 return tp;
679 }
680
681 static unsigned char update_suffix(struct key_vector *tn)
682 {
683 unsigned char slen = tn->pos;
684 unsigned long stride, i;
685
686 /* search though the list of children looking for nodes that might
687 * have a suffix greater than the one we currently have. This is
688 * why we start with a stride of 2 since a stride of 1 would
689 * represent the nodes with suffix length equal to tn->pos
690 */
691 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
692 struct key_vector *n = get_child(tn, i);
693
694 if (!n || (n->slen <= slen))
695 continue;
696
697 /* update stride and slen based on new value */
698 stride <<= (n->slen - slen);
699 slen = n->slen;
700 i &= ~(stride - 1);
701
702 /* if slen covers all but the last bit we can stop here
703 * there will be nothing longer than that since only node
704 * 0 and 1 << (bits - 1) could have that as their suffix
705 * length.
706 */
707 if ((slen + 1) >= (tn->pos + tn->bits))
708 break;
709 }
710
711 tn->slen = slen;
712
713 return slen;
714 }
715
716 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
717 * the Helsinki University of Technology and Matti Tikkanen of Nokia
718 * Telecommunications, page 6:
719 * "A node is doubled if the ratio of non-empty children to all
720 * children in the *doubled* node is at least 'high'."
721 *
722 * 'high' in this instance is the variable 'inflate_threshold'. It
723 * is expressed as a percentage, so we multiply it with
724 * child_length() and instead of multiplying by 2 (since the
725 * child array will be doubled by inflate()) and multiplying
726 * the left-hand side by 100 (to handle the percentage thing) we
727 * multiply the left-hand side by 50.
728 *
729 * The left-hand side may look a bit weird: child_length(tn)
730 * - tn->empty_children is of course the number of non-null children
731 * in the current node. tn->full_children is the number of "full"
732 * children, that is non-null tnodes with a skip value of 0.
733 * All of those will be doubled in the resulting inflated tnode, so
734 * we just count them one extra time here.
735 *
736 * A clearer way to write this would be:
737 *
738 * to_be_doubled = tn->full_children;
739 * not_to_be_doubled = child_length(tn) - tn->empty_children -
740 * tn->full_children;
741 *
742 * new_child_length = child_length(tn) * 2;
743 *
744 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
745 * new_child_length;
746 * if (new_fill_factor >= inflate_threshold)
747 *
748 * ...and so on, tho it would mess up the while () loop.
749 *
750 * anyway,
751 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
752 * inflate_threshold
753 *
754 * avoid a division:
755 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
756 * inflate_threshold * new_child_length
757 *
758 * expand not_to_be_doubled and to_be_doubled, and shorten:
759 * 100 * (child_length(tn) - tn->empty_children +
760 * tn->full_children) >= inflate_threshold * new_child_length
761 *
762 * expand new_child_length:
763 * 100 * (child_length(tn) - tn->empty_children +
764 * tn->full_children) >=
765 * inflate_threshold * child_length(tn) * 2
766 *
767 * shorten again:
768 * 50 * (tn->full_children + child_length(tn) -
769 * tn->empty_children) >= inflate_threshold *
770 * child_length(tn)
771 *
772 */
773 static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
774 {
775 unsigned long used = child_length(tn);
776 unsigned long threshold = used;
777
778 /* Keep root node larger */
779 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
780 used -= tn_info(tn)->empty_children;
781 used += tn_info(tn)->full_children;
782
783 /* if bits == KEYLENGTH then pos = 0, and will fail below */
784
785 return (used > 1) && tn->pos && ((50 * used) >= threshold);
786 }
787
788 static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
789 {
790 unsigned long used = child_length(tn);
791 unsigned long threshold = used;
792
793 /* Keep root node larger */
794 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
795 used -= tn_info(tn)->empty_children;
796
797 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
798
799 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
800 }
801
802 static inline bool should_collapse(struct key_vector *tn)
803 {
804 unsigned long used = child_length(tn);
805
806 used -= tn_info(tn)->empty_children;
807
808 /* account for bits == KEYLENGTH case */
809 if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
810 used -= KEY_MAX;
811
812 /* One child or none, time to drop us from the trie */
813 return used < 2;
814 }
815
816 #define MAX_WORK 10
817 static struct key_vector *resize(struct trie *t, struct key_vector *tn)
818 {
819 #ifdef CONFIG_IP_FIB_TRIE_STATS
820 struct trie_use_stats __percpu *stats = t->stats;
821 #endif
822 struct key_vector *tp = node_parent(tn);
823 unsigned long cindex = get_index(tn->key, tp);
824 int max_work = MAX_WORK;
825
826 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
827 tn, inflate_threshold, halve_threshold);
828
829 /* track the tnode via the pointer from the parent instead of
830 * doing it ourselves. This way we can let RCU fully do its
831 * thing without us interfering
832 */
833 BUG_ON(tn != get_child(tp, cindex));
834
835 /* Double as long as the resulting node has a number of
836 * nonempty nodes that are above the threshold.
837 */
838 while (should_inflate(tp, tn) && max_work) {
839 tp = inflate(t, tn);
840 if (!tp) {
841 #ifdef CONFIG_IP_FIB_TRIE_STATS
842 this_cpu_inc(stats->resize_node_skipped);
843 #endif
844 break;
845 }
846
847 max_work--;
848 tn = get_child(tp, cindex);
849 }
850
851 /* update parent in case inflate failed */
852 tp = node_parent(tn);
853
854 /* Return if at least one inflate is run */
855 if (max_work != MAX_WORK)
856 return tp;
857
858 /* Halve as long as the number of empty children in this
859 * node is above threshold.
860 */
861 while (should_halve(tp, tn) && max_work) {
862 tp = halve(t, tn);
863 if (!tp) {
864 #ifdef CONFIG_IP_FIB_TRIE_STATS
865 this_cpu_inc(stats->resize_node_skipped);
866 #endif
867 break;
868 }
869
870 max_work--;
871 tn = get_child(tp, cindex);
872 }
873
874 /* Only one child remains */
875 if (should_collapse(tn))
876 return collapse(t, tn);
877
878 /* update parent in case halve failed */
879 tp = node_parent(tn);
880
881 /* Return if at least one deflate was run */
882 if (max_work != MAX_WORK)
883 return tp;
884
885 /* push the suffix length to the parent node */
886 if (tn->slen > tn->pos) {
887 unsigned char slen = update_suffix(tn);
888
889 if (slen > tp->slen)
890 tp->slen = slen;
891 }
892
893 return tp;
894 }
895
896 static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
897 {
898 while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
899 if (update_suffix(tp) > l->slen)
900 break;
901 tp = node_parent(tp);
902 }
903 }
904
905 static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
906 {
907 /* if this is a new leaf then tn will be NULL and we can sort
908 * out parent suffix lengths as a part of trie_rebalance
909 */
910 while (tn->slen < l->slen) {
911 tn->slen = l->slen;
912 tn = node_parent(tn);
913 }
914 }
915
916 /* rcu_read_lock needs to be hold by caller from readside */
917 static struct key_vector *fib_find_node(struct trie *t,
918 struct key_vector **tp, u32 key)
919 {
920 struct key_vector *pn, *n = t->kv;
921 unsigned long index = 0;
922
923 do {
924 pn = n;
925 n = get_child_rcu(n, index);
926
927 if (!n)
928 break;
929
930 index = get_cindex(key, n);
931
932 /* This bit of code is a bit tricky but it combines multiple
933 * checks into a single check. The prefix consists of the
934 * prefix plus zeros for the bits in the cindex. The index
935 * is the difference between the key and this value. From
936 * this we can actually derive several pieces of data.
937 * if (index >= (1ul << bits))
938 * we have a mismatch in skip bits and failed
939 * else
940 * we know the value is cindex
941 *
942 * This check is safe even if bits == KEYLENGTH due to the
943 * fact that we can only allocate a node with 32 bits if a
944 * long is greater than 32 bits.
945 */
946 if (index >= (1ul << n->bits)) {
947 n = NULL;
948 break;
949 }
950
951 /* keep searching until we find a perfect match leaf or NULL */
952 } while (IS_TNODE(n));
953
954 *tp = pn;
955
956 return n;
957 }
958
959 /* Return the first fib alias matching TOS with
960 * priority less than or equal to PRIO.
961 */
962 static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
963 u8 tos, u32 prio, u32 tb_id)
964 {
965 struct fib_alias *fa;
966
967 if (!fah)
968 return NULL;
969
970 hlist_for_each_entry(fa, fah, fa_list) {
971 if (fa->fa_slen < slen)
972 continue;
973 if (fa->fa_slen != slen)
974 break;
975 if (fa->tb_id > tb_id)
976 continue;
977 if (fa->tb_id != tb_id)
978 break;
979 if (fa->fa_tos > tos)
980 continue;
981 if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
982 return fa;
983 }
984
985 return NULL;
986 }
987
988 static void trie_rebalance(struct trie *t, struct key_vector *tn)
989 {
990 while (!IS_TRIE(tn))
991 tn = resize(t, tn);
992 }
993
994 static int fib_insert_node(struct trie *t, struct key_vector *tp,
995 struct fib_alias *new, t_key key)
996 {
997 struct key_vector *n, *l;
998
999 l = leaf_new(key, new);
1000 if (!l)
1001 goto noleaf;
1002
1003 /* retrieve child from parent node */
1004 n = get_child(tp, get_index(key, tp));
1005
1006 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1007 *
1008 * Add a new tnode here
1009 * first tnode need some special handling
1010 * leaves us in position for handling as case 3
1011 */
1012 if (n) {
1013 struct key_vector *tn;
1014
1015 tn = tnode_new(key, __fls(key ^ n->key), 1);
1016 if (!tn)
1017 goto notnode;
1018
1019 /* initialize routes out of node */
1020 NODE_INIT_PARENT(tn, tp);
1021 put_child(tn, get_index(key, tn) ^ 1, n);
1022
1023 /* start adding routes into the node */
1024 put_child_root(tp, key, tn);
1025 node_set_parent(n, tn);
1026
1027 /* parent now has a NULL spot where the leaf can go */
1028 tp = tn;
1029 }
1030
1031 /* Case 3: n is NULL, and will just insert a new leaf */
1032 NODE_INIT_PARENT(l, tp);
1033 put_child_root(tp, key, l);
1034 trie_rebalance(t, tp);
1035
1036 return 0;
1037 notnode:
1038 node_free(l);
1039 noleaf:
1040 return -ENOMEM;
1041 }
1042
1043 static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1044 struct key_vector *l, struct fib_alias *new,
1045 struct fib_alias *fa, t_key key)
1046 {
1047 if (!l)
1048 return fib_insert_node(t, tp, new, key);
1049
1050 if (fa) {
1051 hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1052 } else {
1053 struct fib_alias *last;
1054
1055 hlist_for_each_entry(last, &l->leaf, fa_list) {
1056 if (new->fa_slen < last->fa_slen)
1057 break;
1058 if ((new->fa_slen == last->fa_slen) &&
1059 (new->tb_id > last->tb_id))
1060 break;
1061 fa = last;
1062 }
1063
1064 if (fa)
1065 hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1066 else
1067 hlist_add_head_rcu(&new->fa_list, &l->leaf);
1068 }
1069
1070 /* if we added to the tail node then we need to update slen */
1071 if (l->slen < new->fa_slen) {
1072 l->slen = new->fa_slen;
1073 leaf_push_suffix(tp, l);
1074 }
1075
1076 return 0;
1077 }
1078
1079 /* Caller must hold RTNL. */
1080 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1081 {
1082 struct trie *t = (struct trie *)tb->tb_data;
1083 struct fib_alias *fa, *new_fa;
1084 struct key_vector *l, *tp;
1085 unsigned int nlflags = 0;
1086 struct fib_info *fi;
1087 u8 plen = cfg->fc_dst_len;
1088 u8 slen = KEYLENGTH - plen;
1089 u8 tos = cfg->fc_tos;
1090 u32 key;
1091 int err;
1092
1093 if (plen > KEYLENGTH)
1094 return -EINVAL;
1095
1096 key = ntohl(cfg->fc_dst);
1097
1098 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1099
1100 if ((plen < KEYLENGTH) && (key << plen))
1101 return -EINVAL;
1102
1103 fi = fib_create_info(cfg);
1104 if (IS_ERR(fi)) {
1105 err = PTR_ERR(fi);
1106 goto err;
1107 }
1108
1109 l = fib_find_node(t, &tp, key);
1110 fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1111 tb->tb_id) : NULL;
1112
1113 /* Now fa, if non-NULL, points to the first fib alias
1114 * with the same keys [prefix,tos,priority], if such key already
1115 * exists or to the node before which we will insert new one.
1116 *
1117 * If fa is NULL, we will need to allocate a new one and
1118 * insert to the tail of the section matching the suffix length
1119 * of the new alias.
1120 */
1121
1122 if (fa && fa->fa_tos == tos &&
1123 fa->fa_info->fib_priority == fi->fib_priority) {
1124 struct fib_alias *fa_first, *fa_match;
1125
1126 err = -EEXIST;
1127 if (cfg->fc_nlflags & NLM_F_EXCL)
1128 goto out;
1129
1130 /* We have 2 goals:
1131 * 1. Find exact match for type, scope, fib_info to avoid
1132 * duplicate routes
1133 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1134 */
1135 fa_match = NULL;
1136 fa_first = fa;
1137 hlist_for_each_entry_from(fa, fa_list) {
1138 if ((fa->fa_slen != slen) ||
1139 (fa->tb_id != tb->tb_id) ||
1140 (fa->fa_tos != tos))
1141 break;
1142 if (fa->fa_info->fib_priority != fi->fib_priority)
1143 break;
1144 if (fa->fa_type == cfg->fc_type &&
1145 fa->fa_info == fi) {
1146 fa_match = fa;
1147 break;
1148 }
1149 }
1150
1151 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1152 struct fib_info *fi_drop;
1153 u8 state;
1154
1155 fa = fa_first;
1156 if (fa_match) {
1157 if (fa == fa_match)
1158 err = 0;
1159 goto out;
1160 }
1161 err = -ENOBUFS;
1162 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1163 if (!new_fa)
1164 goto out;
1165
1166 fi_drop = fa->fa_info;
1167 new_fa->fa_tos = fa->fa_tos;
1168 new_fa->fa_info = fi;
1169 new_fa->fa_type = cfg->fc_type;
1170 state = fa->fa_state;
1171 new_fa->fa_state = state & ~FA_S_ACCESSED;
1172 new_fa->fa_slen = fa->fa_slen;
1173 new_fa->tb_id = tb->tb_id;
1174
1175 err = switchdev_fib_ipv4_add(key, plen, fi,
1176 new_fa->fa_tos,
1177 cfg->fc_type,
1178 cfg->fc_nlflags,
1179 tb->tb_id);
1180 if (err) {
1181 switchdev_fib_ipv4_abort(fi);
1182 kmem_cache_free(fn_alias_kmem, new_fa);
1183 goto out;
1184 }
1185
1186 hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1187
1188 alias_free_mem_rcu(fa);
1189
1190 fib_release_info(fi_drop);
1191 if (state & FA_S_ACCESSED)
1192 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1193 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1194 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1195
1196 goto succeeded;
1197 }
1198 /* Error if we find a perfect match which
1199 * uses the same scope, type, and nexthop
1200 * information.
1201 */
1202 if (fa_match)
1203 goto out;
1204
1205 if (cfg->fc_nlflags & NLM_F_APPEND)
1206 nlflags = NLM_F_APPEND;
1207 else
1208 fa = fa_first;
1209 }
1210 err = -ENOENT;
1211 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1212 goto out;
1213
1214 err = -ENOBUFS;
1215 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1216 if (!new_fa)
1217 goto out;
1218
1219 new_fa->fa_info = fi;
1220 new_fa->fa_tos = tos;
1221 new_fa->fa_type = cfg->fc_type;
1222 new_fa->fa_state = 0;
1223 new_fa->fa_slen = slen;
1224 new_fa->tb_id = tb->tb_id;
1225
1226 /* (Optionally) offload fib entry to switch hardware. */
1227 err = switchdev_fib_ipv4_add(key, plen, fi, tos, cfg->fc_type,
1228 cfg->fc_nlflags, tb->tb_id);
1229 if (err) {
1230 switchdev_fib_ipv4_abort(fi);
1231 goto out_free_new_fa;
1232 }
1233
1234 /* Insert new entry to the list. */
1235 err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1236 if (err)
1237 goto out_sw_fib_del;
1238
1239 if (!plen)
1240 tb->tb_num_default++;
1241
1242 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1243 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1244 &cfg->fc_nlinfo, nlflags);
1245 succeeded:
1246 return 0;
1247
1248 out_sw_fib_del:
1249 switchdev_fib_ipv4_del(key, plen, fi, tos, cfg->fc_type, tb->tb_id);
1250 out_free_new_fa:
1251 kmem_cache_free(fn_alias_kmem, new_fa);
1252 out:
1253 fib_release_info(fi);
1254 err:
1255 return err;
1256 }
1257
1258 static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1259 {
1260 t_key prefix = n->key;
1261
1262 return (key ^ prefix) & (prefix | -prefix);
1263 }
1264
1265 /* should be called with rcu_read_lock */
1266 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1267 struct fib_result *res, int fib_flags)
1268 {
1269 struct trie *t = (struct trie *) tb->tb_data;
1270 #ifdef CONFIG_IP_FIB_TRIE_STATS
1271 struct trie_use_stats __percpu *stats = t->stats;
1272 #endif
1273 const t_key key = ntohl(flp->daddr);
1274 struct key_vector *n, *pn;
1275 struct fib_alias *fa;
1276 unsigned long index;
1277 t_key cindex;
1278
1279 pn = t->kv;
1280 cindex = 0;
1281
1282 n = get_child_rcu(pn, cindex);
1283 if (!n)
1284 return -EAGAIN;
1285
1286 #ifdef CONFIG_IP_FIB_TRIE_STATS
1287 this_cpu_inc(stats->gets);
1288 #endif
1289
1290 /* Step 1: Travel to the longest prefix match in the trie */
1291 for (;;) {
1292 index = get_cindex(key, n);
1293
1294 /* This bit of code is a bit tricky but it combines multiple
1295 * checks into a single check. The prefix consists of the
1296 * prefix plus zeros for the "bits" in the prefix. The index
1297 * is the difference between the key and this value. From
1298 * this we can actually derive several pieces of data.
1299 * if (index >= (1ul << bits))
1300 * we have a mismatch in skip bits and failed
1301 * else
1302 * we know the value is cindex
1303 *
1304 * This check is safe even if bits == KEYLENGTH due to the
1305 * fact that we can only allocate a node with 32 bits if a
1306 * long is greater than 32 bits.
1307 */
1308 if (index >= (1ul << n->bits))
1309 break;
1310
1311 /* we have found a leaf. Prefixes have already been compared */
1312 if (IS_LEAF(n))
1313 goto found;
1314
1315 /* only record pn and cindex if we are going to be chopping
1316 * bits later. Otherwise we are just wasting cycles.
1317 */
1318 if (n->slen > n->pos) {
1319 pn = n;
1320 cindex = index;
1321 }
1322
1323 n = get_child_rcu(n, index);
1324 if (unlikely(!n))
1325 goto backtrace;
1326 }
1327
1328 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1329 for (;;) {
1330 /* record the pointer where our next node pointer is stored */
1331 struct key_vector __rcu **cptr = n->tnode;
1332
1333 /* This test verifies that none of the bits that differ
1334 * between the key and the prefix exist in the region of
1335 * the lsb and higher in the prefix.
1336 */
1337 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1338 goto backtrace;
1339
1340 /* exit out and process leaf */
1341 if (unlikely(IS_LEAF(n)))
1342 break;
1343
1344 /* Don't bother recording parent info. Since we are in
1345 * prefix match mode we will have to come back to wherever
1346 * we started this traversal anyway
1347 */
1348
1349 while ((n = rcu_dereference(*cptr)) == NULL) {
1350 backtrace:
1351 #ifdef CONFIG_IP_FIB_TRIE_STATS
1352 if (!n)
1353 this_cpu_inc(stats->null_node_hit);
1354 #endif
1355 /* If we are at cindex 0 there are no more bits for
1356 * us to strip at this level so we must ascend back
1357 * up one level to see if there are any more bits to
1358 * be stripped there.
1359 */
1360 while (!cindex) {
1361 t_key pkey = pn->key;
1362
1363 /* If we don't have a parent then there is
1364 * nothing for us to do as we do not have any
1365 * further nodes to parse.
1366 */
1367 if (IS_TRIE(pn))
1368 return -EAGAIN;
1369 #ifdef CONFIG_IP_FIB_TRIE_STATS
1370 this_cpu_inc(stats->backtrack);
1371 #endif
1372 /* Get Child's index */
1373 pn = node_parent_rcu(pn);
1374 cindex = get_index(pkey, pn);
1375 }
1376
1377 /* strip the least significant bit from the cindex */
1378 cindex &= cindex - 1;
1379
1380 /* grab pointer for next child node */
1381 cptr = &pn->tnode[cindex];
1382 }
1383 }
1384
1385 found:
1386 /* this line carries forward the xor from earlier in the function */
1387 index = key ^ n->key;
1388
1389 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1390 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1391 struct fib_info *fi = fa->fa_info;
1392 int nhsel, err;
1393
1394 if ((index >= (1ul << fa->fa_slen)) &&
1395 ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1396 continue;
1397 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1398 continue;
1399 if (fi->fib_dead)
1400 continue;
1401 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1402 continue;
1403 fib_alias_accessed(fa);
1404 err = fib_props[fa->fa_type].error;
1405 if (unlikely(err < 0)) {
1406 #ifdef CONFIG_IP_FIB_TRIE_STATS
1407 this_cpu_inc(stats->semantic_match_passed);
1408 #endif
1409 return err;
1410 }
1411 if (fi->fib_flags & RTNH_F_DEAD)
1412 continue;
1413 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1414 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1415 struct in_device *in_dev = __in_dev_get_rcu(nh->nh_dev);
1416
1417 if (nh->nh_flags & RTNH_F_DEAD)
1418 continue;
1419 if (in_dev &&
1420 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev) &&
1421 nh->nh_flags & RTNH_F_LINKDOWN &&
1422 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1423 continue;
1424 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1425 continue;
1426
1427 if (!(fib_flags & FIB_LOOKUP_NOREF))
1428 atomic_inc(&fi->fib_clntref);
1429
1430 res->prefixlen = KEYLENGTH - fa->fa_slen;
1431 res->nh_sel = nhsel;
1432 res->type = fa->fa_type;
1433 res->scope = fi->fib_scope;
1434 res->fi = fi;
1435 res->table = tb;
1436 res->fa_head = &n->leaf;
1437 #ifdef CONFIG_IP_FIB_TRIE_STATS
1438 this_cpu_inc(stats->semantic_match_passed);
1439 #endif
1440 return err;
1441 }
1442 }
1443 #ifdef CONFIG_IP_FIB_TRIE_STATS
1444 this_cpu_inc(stats->semantic_match_miss);
1445 #endif
1446 goto backtrace;
1447 }
1448 EXPORT_SYMBOL_GPL(fib_table_lookup);
1449
1450 static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1451 struct key_vector *l, struct fib_alias *old)
1452 {
1453 /* record the location of the previous list_info entry */
1454 struct hlist_node **pprev = old->fa_list.pprev;
1455 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1456
1457 /* remove the fib_alias from the list */
1458 hlist_del_rcu(&old->fa_list);
1459
1460 /* if we emptied the list this leaf will be freed and we can sort
1461 * out parent suffix lengths as a part of trie_rebalance
1462 */
1463 if (hlist_empty(&l->leaf)) {
1464 put_child_root(tp, l->key, NULL);
1465 node_free(l);
1466 trie_rebalance(t, tp);
1467 return;
1468 }
1469
1470 /* only access fa if it is pointing at the last valid hlist_node */
1471 if (*pprev)
1472 return;
1473
1474 /* update the trie with the latest suffix length */
1475 l->slen = fa->fa_slen;
1476 leaf_pull_suffix(tp, l);
1477 }
1478
1479 /* Caller must hold RTNL. */
1480 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1481 {
1482 struct trie *t = (struct trie *) tb->tb_data;
1483 struct fib_alias *fa, *fa_to_delete;
1484 struct key_vector *l, *tp;
1485 u8 plen = cfg->fc_dst_len;
1486 u8 slen = KEYLENGTH - plen;
1487 u8 tos = cfg->fc_tos;
1488 u32 key;
1489
1490 if (plen > KEYLENGTH)
1491 return -EINVAL;
1492
1493 key = ntohl(cfg->fc_dst);
1494
1495 if ((plen < KEYLENGTH) && (key << plen))
1496 return -EINVAL;
1497
1498 l = fib_find_node(t, &tp, key);
1499 if (!l)
1500 return -ESRCH;
1501
1502 fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1503 if (!fa)
1504 return -ESRCH;
1505
1506 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1507
1508 fa_to_delete = NULL;
1509 hlist_for_each_entry_from(fa, fa_list) {
1510 struct fib_info *fi = fa->fa_info;
1511
1512 if ((fa->fa_slen != slen) ||
1513 (fa->tb_id != tb->tb_id) ||
1514 (fa->fa_tos != tos))
1515 break;
1516
1517 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1518 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1519 fa->fa_info->fib_scope == cfg->fc_scope) &&
1520 (!cfg->fc_prefsrc ||
1521 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1522 (!cfg->fc_protocol ||
1523 fi->fib_protocol == cfg->fc_protocol) &&
1524 fib_nh_match(cfg, fi) == 0) {
1525 fa_to_delete = fa;
1526 break;
1527 }
1528 }
1529
1530 if (!fa_to_delete)
1531 return -ESRCH;
1532
1533 switchdev_fib_ipv4_del(key, plen, fa_to_delete->fa_info, tos,
1534 cfg->fc_type, tb->tb_id);
1535
1536 rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1537 &cfg->fc_nlinfo, 0);
1538
1539 if (!plen)
1540 tb->tb_num_default--;
1541
1542 fib_remove_alias(t, tp, l, fa_to_delete);
1543
1544 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1545 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1546
1547 fib_release_info(fa_to_delete->fa_info);
1548 alias_free_mem_rcu(fa_to_delete);
1549 return 0;
1550 }
1551
1552 /* Scan for the next leaf starting at the provided key value */
1553 static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1554 {
1555 struct key_vector *pn, *n = *tn;
1556 unsigned long cindex;
1557
1558 /* this loop is meant to try and find the key in the trie */
1559 do {
1560 /* record parent and next child index */
1561 pn = n;
1562 cindex = key ? get_index(key, pn) : 0;
1563
1564 if (cindex >> pn->bits)
1565 break;
1566
1567 /* descend into the next child */
1568 n = get_child_rcu(pn, cindex++);
1569 if (!n)
1570 break;
1571
1572 /* guarantee forward progress on the keys */
1573 if (IS_LEAF(n) && (n->key >= key))
1574 goto found;
1575 } while (IS_TNODE(n));
1576
1577 /* this loop will search for the next leaf with a greater key */
1578 while (!IS_TRIE(pn)) {
1579 /* if we exhausted the parent node we will need to climb */
1580 if (cindex >= (1ul << pn->bits)) {
1581 t_key pkey = pn->key;
1582
1583 pn = node_parent_rcu(pn);
1584 cindex = get_index(pkey, pn) + 1;
1585 continue;
1586 }
1587
1588 /* grab the next available node */
1589 n = get_child_rcu(pn, cindex++);
1590 if (!n)
1591 continue;
1592
1593 /* no need to compare keys since we bumped the index */
1594 if (IS_LEAF(n))
1595 goto found;
1596
1597 /* Rescan start scanning in new node */
1598 pn = n;
1599 cindex = 0;
1600 }
1601
1602 *tn = pn;
1603 return NULL; /* Root of trie */
1604 found:
1605 /* if we are at the limit for keys just return NULL for the tnode */
1606 *tn = pn;
1607 return n;
1608 }
1609
1610 static void fib_trie_free(struct fib_table *tb)
1611 {
1612 struct trie *t = (struct trie *)tb->tb_data;
1613 struct key_vector *pn = t->kv;
1614 unsigned long cindex = 1;
1615 struct hlist_node *tmp;
1616 struct fib_alias *fa;
1617
1618 /* walk trie in reverse order and free everything */
1619 for (;;) {
1620 struct key_vector *n;
1621
1622 if (!(cindex--)) {
1623 t_key pkey = pn->key;
1624
1625 if (IS_TRIE(pn))
1626 break;
1627
1628 n = pn;
1629 pn = node_parent(pn);
1630
1631 /* drop emptied tnode */
1632 put_child_root(pn, n->key, NULL);
1633 node_free(n);
1634
1635 cindex = get_index(pkey, pn);
1636
1637 continue;
1638 }
1639
1640 /* grab the next available node */
1641 n = get_child(pn, cindex);
1642 if (!n)
1643 continue;
1644
1645 if (IS_TNODE(n)) {
1646 /* record pn and cindex for leaf walking */
1647 pn = n;
1648 cindex = 1ul << n->bits;
1649
1650 continue;
1651 }
1652
1653 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1654 hlist_del_rcu(&fa->fa_list);
1655 alias_free_mem_rcu(fa);
1656 }
1657
1658 put_child_root(pn, n->key, NULL);
1659 node_free(n);
1660 }
1661
1662 #ifdef CONFIG_IP_FIB_TRIE_STATS
1663 free_percpu(t->stats);
1664 #endif
1665 kfree(tb);
1666 }
1667
1668 struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1669 {
1670 struct trie *ot = (struct trie *)oldtb->tb_data;
1671 struct key_vector *l, *tp = ot->kv;
1672 struct fib_table *local_tb;
1673 struct fib_alias *fa;
1674 struct trie *lt;
1675 t_key key = 0;
1676
1677 if (oldtb->tb_data == oldtb->__data)
1678 return oldtb;
1679
1680 local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1681 if (!local_tb)
1682 return NULL;
1683
1684 lt = (struct trie *)local_tb->tb_data;
1685
1686 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1687 struct key_vector *local_l = NULL, *local_tp;
1688
1689 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1690 struct fib_alias *new_fa;
1691
1692 if (local_tb->tb_id != fa->tb_id)
1693 continue;
1694
1695 /* clone fa for new local table */
1696 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1697 if (!new_fa)
1698 goto out;
1699
1700 memcpy(new_fa, fa, sizeof(*fa));
1701
1702 /* insert clone into table */
1703 if (!local_l)
1704 local_l = fib_find_node(lt, &local_tp, l->key);
1705
1706 if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1707 NULL, l->key))
1708 goto out;
1709 }
1710
1711 /* stop loop if key wrapped back to 0 */
1712 key = l->key + 1;
1713 if (key < l->key)
1714 break;
1715 }
1716
1717 return local_tb;
1718 out:
1719 fib_trie_free(local_tb);
1720
1721 return NULL;
1722 }
1723
1724 /* Caller must hold RTNL */
1725 void fib_table_flush_external(struct fib_table *tb)
1726 {
1727 struct trie *t = (struct trie *)tb->tb_data;
1728 struct key_vector *pn = t->kv;
1729 unsigned long cindex = 1;
1730 struct hlist_node *tmp;
1731 struct fib_alias *fa;
1732
1733 /* walk trie in reverse order */
1734 for (;;) {
1735 unsigned char slen = 0;
1736 struct key_vector *n;
1737
1738 if (!(cindex--)) {
1739 t_key pkey = pn->key;
1740
1741 /* cannot resize the trie vector */
1742 if (IS_TRIE(pn))
1743 break;
1744
1745 /* resize completed node */
1746 pn = resize(t, pn);
1747 cindex = get_index(pkey, pn);
1748
1749 continue;
1750 }
1751
1752 /* grab the next available node */
1753 n = get_child(pn, cindex);
1754 if (!n)
1755 continue;
1756
1757 if (IS_TNODE(n)) {
1758 /* record pn and cindex for leaf walking */
1759 pn = n;
1760 cindex = 1ul << n->bits;
1761
1762 continue;
1763 }
1764
1765 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1766 struct fib_info *fi = fa->fa_info;
1767
1768 /* if alias was cloned to local then we just
1769 * need to remove the local copy from main
1770 */
1771 if (tb->tb_id != fa->tb_id) {
1772 hlist_del_rcu(&fa->fa_list);
1773 alias_free_mem_rcu(fa);
1774 continue;
1775 }
1776
1777 /* record local slen */
1778 slen = fa->fa_slen;
1779
1780 if (!fi || !(fi->fib_flags & RTNH_F_OFFLOAD))
1781 continue;
1782
1783 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1784 fi, fa->fa_tos, fa->fa_type,
1785 tb->tb_id);
1786 }
1787
1788 /* update leaf slen */
1789 n->slen = slen;
1790
1791 if (hlist_empty(&n->leaf)) {
1792 put_child_root(pn, n->key, NULL);
1793 node_free(n);
1794 } else {
1795 leaf_pull_suffix(pn, n);
1796 }
1797 }
1798 }
1799
1800 /* Caller must hold RTNL. */
1801 int fib_table_flush(struct fib_table *tb)
1802 {
1803 struct trie *t = (struct trie *)tb->tb_data;
1804 struct key_vector *pn = t->kv;
1805 unsigned long cindex = 1;
1806 struct hlist_node *tmp;
1807 struct fib_alias *fa;
1808 int found = 0;
1809
1810 /* walk trie in reverse order */
1811 for (;;) {
1812 unsigned char slen = 0;
1813 struct key_vector *n;
1814
1815 if (!(cindex--)) {
1816 t_key pkey = pn->key;
1817
1818 /* cannot resize the trie vector */
1819 if (IS_TRIE(pn))
1820 break;
1821
1822 /* resize completed node */
1823 pn = resize(t, pn);
1824 cindex = get_index(pkey, pn);
1825
1826 continue;
1827 }
1828
1829 /* grab the next available node */
1830 n = get_child(pn, cindex);
1831 if (!n)
1832 continue;
1833
1834 if (IS_TNODE(n)) {
1835 /* record pn and cindex for leaf walking */
1836 pn = n;
1837 cindex = 1ul << n->bits;
1838
1839 continue;
1840 }
1841
1842 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1843 struct fib_info *fi = fa->fa_info;
1844
1845 if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1846 slen = fa->fa_slen;
1847 continue;
1848 }
1849
1850 switchdev_fib_ipv4_del(n->key, KEYLENGTH - fa->fa_slen,
1851 fi, fa->fa_tos, fa->fa_type,
1852 tb->tb_id);
1853 hlist_del_rcu(&fa->fa_list);
1854 fib_release_info(fa->fa_info);
1855 alias_free_mem_rcu(fa);
1856 found++;
1857 }
1858
1859 /* update leaf slen */
1860 n->slen = slen;
1861
1862 if (hlist_empty(&n->leaf)) {
1863 put_child_root(pn, n->key, NULL);
1864 node_free(n);
1865 } else {
1866 leaf_pull_suffix(pn, n);
1867 }
1868 }
1869
1870 pr_debug("trie_flush found=%d\n", found);
1871 return found;
1872 }
1873
1874 static void __trie_free_rcu(struct rcu_head *head)
1875 {
1876 struct fib_table *tb = container_of(head, struct fib_table, rcu);
1877 #ifdef CONFIG_IP_FIB_TRIE_STATS
1878 struct trie *t = (struct trie *)tb->tb_data;
1879
1880 if (tb->tb_data == tb->__data)
1881 free_percpu(t->stats);
1882 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1883 kfree(tb);
1884 }
1885
1886 void fib_free_table(struct fib_table *tb)
1887 {
1888 call_rcu(&tb->rcu, __trie_free_rcu);
1889 }
1890
1891 static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1892 struct sk_buff *skb, struct netlink_callback *cb)
1893 {
1894 __be32 xkey = htonl(l->key);
1895 struct fib_alias *fa;
1896 int i, s_i;
1897
1898 s_i = cb->args[4];
1899 i = 0;
1900
1901 /* rcu_read_lock is hold by caller */
1902 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1903 if (i < s_i) {
1904 i++;
1905 continue;
1906 }
1907
1908 if (tb->tb_id != fa->tb_id) {
1909 i++;
1910 continue;
1911 }
1912
1913 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1914 cb->nlh->nlmsg_seq,
1915 RTM_NEWROUTE,
1916 tb->tb_id,
1917 fa->fa_type,
1918 xkey,
1919 KEYLENGTH - fa->fa_slen,
1920 fa->fa_tos,
1921 fa->fa_info, NLM_F_MULTI) < 0) {
1922 cb->args[4] = i;
1923 return -1;
1924 }
1925 i++;
1926 }
1927
1928 cb->args[4] = i;
1929 return skb->len;
1930 }
1931
1932 /* rcu_read_lock needs to be hold by caller from readside */
1933 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1934 struct netlink_callback *cb)
1935 {
1936 struct trie *t = (struct trie *)tb->tb_data;
1937 struct key_vector *l, *tp = t->kv;
1938 /* Dump starting at last key.
1939 * Note: 0.0.0.0/0 (ie default) is first key.
1940 */
1941 int count = cb->args[2];
1942 t_key key = cb->args[3];
1943
1944 while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1945 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1946 cb->args[3] = key;
1947 cb->args[2] = count;
1948 return -1;
1949 }
1950
1951 ++count;
1952 key = l->key + 1;
1953
1954 memset(&cb->args[4], 0,
1955 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1956
1957 /* stop loop if key wrapped back to 0 */
1958 if (key < l->key)
1959 break;
1960 }
1961
1962 cb->args[3] = key;
1963 cb->args[2] = count;
1964
1965 return skb->len;
1966 }
1967
1968 void __init fib_trie_init(void)
1969 {
1970 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1971 sizeof(struct fib_alias),
1972 0, SLAB_PANIC, NULL);
1973
1974 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1975 LEAF_SIZE,
1976 0, SLAB_PANIC, NULL);
1977 }
1978
1979 struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
1980 {
1981 struct fib_table *tb;
1982 struct trie *t;
1983 size_t sz = sizeof(*tb);
1984
1985 if (!alias)
1986 sz += sizeof(struct trie);
1987
1988 tb = kzalloc(sz, GFP_KERNEL);
1989 if (!tb)
1990 return NULL;
1991
1992 tb->tb_id = id;
1993 tb->tb_default = -1;
1994 tb->tb_num_default = 0;
1995 tb->tb_data = (alias ? alias->__data : tb->__data);
1996
1997 if (alias)
1998 return tb;
1999
2000 t = (struct trie *) tb->tb_data;
2001 t->kv[0].pos = KEYLENGTH;
2002 t->kv[0].slen = KEYLENGTH;
2003 #ifdef CONFIG_IP_FIB_TRIE_STATS
2004 t->stats = alloc_percpu(struct trie_use_stats);
2005 if (!t->stats) {
2006 kfree(tb);
2007 tb = NULL;
2008 }
2009 #endif
2010
2011 return tb;
2012 }
2013
2014 #ifdef CONFIG_PROC_FS
2015 /* Depth first Trie walk iterator */
2016 struct fib_trie_iter {
2017 struct seq_net_private p;
2018 struct fib_table *tb;
2019 struct key_vector *tnode;
2020 unsigned int index;
2021 unsigned int depth;
2022 };
2023
2024 static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2025 {
2026 unsigned long cindex = iter->index;
2027 struct key_vector *pn = iter->tnode;
2028 t_key pkey;
2029
2030 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2031 iter->tnode, iter->index, iter->depth);
2032
2033 while (!IS_TRIE(pn)) {
2034 while (cindex < child_length(pn)) {
2035 struct key_vector *n = get_child_rcu(pn, cindex++);
2036
2037 if (!n)
2038 continue;
2039
2040 if (IS_LEAF(n)) {
2041 iter->tnode = pn;
2042 iter->index = cindex;
2043 } else {
2044 /* push down one level */
2045 iter->tnode = n;
2046 iter->index = 0;
2047 ++iter->depth;
2048 }
2049
2050 return n;
2051 }
2052
2053 /* Current node exhausted, pop back up */
2054 pkey = pn->key;
2055 pn = node_parent_rcu(pn);
2056 cindex = get_index(pkey, pn) + 1;
2057 --iter->depth;
2058 }
2059
2060 /* record root node so further searches know we are done */
2061 iter->tnode = pn;
2062 iter->index = 0;
2063
2064 return NULL;
2065 }
2066
2067 static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2068 struct trie *t)
2069 {
2070 struct key_vector *n, *pn;
2071
2072 if (!t)
2073 return NULL;
2074
2075 pn = t->kv;
2076 n = rcu_dereference(pn->tnode[0]);
2077 if (!n)
2078 return NULL;
2079
2080 if (IS_TNODE(n)) {
2081 iter->tnode = n;
2082 iter->index = 0;
2083 iter->depth = 1;
2084 } else {
2085 iter->tnode = pn;
2086 iter->index = 0;
2087 iter->depth = 0;
2088 }
2089
2090 return n;
2091 }
2092
2093 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2094 {
2095 struct key_vector *n;
2096 struct fib_trie_iter iter;
2097
2098 memset(s, 0, sizeof(*s));
2099
2100 rcu_read_lock();
2101 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2102 if (IS_LEAF(n)) {
2103 struct fib_alias *fa;
2104
2105 s->leaves++;
2106 s->totdepth += iter.depth;
2107 if (iter.depth > s->maxdepth)
2108 s->maxdepth = iter.depth;
2109
2110 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2111 ++s->prefixes;
2112 } else {
2113 s->tnodes++;
2114 if (n->bits < MAX_STAT_DEPTH)
2115 s->nodesizes[n->bits]++;
2116 s->nullpointers += tn_info(n)->empty_children;
2117 }
2118 }
2119 rcu_read_unlock();
2120 }
2121
2122 /*
2123 * This outputs /proc/net/fib_triestats
2124 */
2125 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2126 {
2127 unsigned int i, max, pointers, bytes, avdepth;
2128
2129 if (stat->leaves)
2130 avdepth = stat->totdepth*100 / stat->leaves;
2131 else
2132 avdepth = 0;
2133
2134 seq_printf(seq, "\tAver depth: %u.%02d\n",
2135 avdepth / 100, avdepth % 100);
2136 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2137
2138 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2139 bytes = LEAF_SIZE * stat->leaves;
2140
2141 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2142 bytes += sizeof(struct fib_alias) * stat->prefixes;
2143
2144 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2145 bytes += TNODE_SIZE(0) * stat->tnodes;
2146
2147 max = MAX_STAT_DEPTH;
2148 while (max > 0 && stat->nodesizes[max-1] == 0)
2149 max--;
2150
2151 pointers = 0;
2152 for (i = 1; i < max; i++)
2153 if (stat->nodesizes[i] != 0) {
2154 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2155 pointers += (1<<i) * stat->nodesizes[i];
2156 }
2157 seq_putc(seq, '\n');
2158 seq_printf(seq, "\tPointers: %u\n", pointers);
2159
2160 bytes += sizeof(struct key_vector *) * pointers;
2161 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2162 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2163 }
2164
2165 #ifdef CONFIG_IP_FIB_TRIE_STATS
2166 static void trie_show_usage(struct seq_file *seq,
2167 const struct trie_use_stats __percpu *stats)
2168 {
2169 struct trie_use_stats s = { 0 };
2170 int cpu;
2171
2172 /* loop through all of the CPUs and gather up the stats */
2173 for_each_possible_cpu(cpu) {
2174 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2175
2176 s.gets += pcpu->gets;
2177 s.backtrack += pcpu->backtrack;
2178 s.semantic_match_passed += pcpu->semantic_match_passed;
2179 s.semantic_match_miss += pcpu->semantic_match_miss;
2180 s.null_node_hit += pcpu->null_node_hit;
2181 s.resize_node_skipped += pcpu->resize_node_skipped;
2182 }
2183
2184 seq_printf(seq, "\nCounters:\n---------\n");
2185 seq_printf(seq, "gets = %u\n", s.gets);
2186 seq_printf(seq, "backtracks = %u\n", s.backtrack);
2187 seq_printf(seq, "semantic match passed = %u\n",
2188 s.semantic_match_passed);
2189 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2190 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2191 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2192 }
2193 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2194
2195 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2196 {
2197 if (tb->tb_id == RT_TABLE_LOCAL)
2198 seq_puts(seq, "Local:\n");
2199 else if (tb->tb_id == RT_TABLE_MAIN)
2200 seq_puts(seq, "Main:\n");
2201 else
2202 seq_printf(seq, "Id %d:\n", tb->tb_id);
2203 }
2204
2205
2206 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2207 {
2208 struct net *net = (struct net *)seq->private;
2209 unsigned int h;
2210
2211 seq_printf(seq,
2212 "Basic info: size of leaf:"
2213 " %Zd bytes, size of tnode: %Zd bytes.\n",
2214 LEAF_SIZE, TNODE_SIZE(0));
2215
2216 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2217 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2218 struct fib_table *tb;
2219
2220 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2221 struct trie *t = (struct trie *) tb->tb_data;
2222 struct trie_stat stat;
2223
2224 if (!t)
2225 continue;
2226
2227 fib_table_print(seq, tb);
2228
2229 trie_collect_stats(t, &stat);
2230 trie_show_stats(seq, &stat);
2231 #ifdef CONFIG_IP_FIB_TRIE_STATS
2232 trie_show_usage(seq, t->stats);
2233 #endif
2234 }
2235 }
2236
2237 return 0;
2238 }
2239
2240 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2241 {
2242 return single_open_net(inode, file, fib_triestat_seq_show);
2243 }
2244
2245 static const struct file_operations fib_triestat_fops = {
2246 .owner = THIS_MODULE,
2247 .open = fib_triestat_seq_open,
2248 .read = seq_read,
2249 .llseek = seq_lseek,
2250 .release = single_release_net,
2251 };
2252
2253 static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2254 {
2255 struct fib_trie_iter *iter = seq->private;
2256 struct net *net = seq_file_net(seq);
2257 loff_t idx = 0;
2258 unsigned int h;
2259
2260 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2261 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2262 struct fib_table *tb;
2263
2264 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2265 struct key_vector *n;
2266
2267 for (n = fib_trie_get_first(iter,
2268 (struct trie *) tb->tb_data);
2269 n; n = fib_trie_get_next(iter))
2270 if (pos == idx++) {
2271 iter->tb = tb;
2272 return n;
2273 }
2274 }
2275 }
2276
2277 return NULL;
2278 }
2279
2280 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2281 __acquires(RCU)
2282 {
2283 rcu_read_lock();
2284 return fib_trie_get_idx(seq, *pos);
2285 }
2286
2287 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2288 {
2289 struct fib_trie_iter *iter = seq->private;
2290 struct net *net = seq_file_net(seq);
2291 struct fib_table *tb = iter->tb;
2292 struct hlist_node *tb_node;
2293 unsigned int h;
2294 struct key_vector *n;
2295
2296 ++*pos;
2297 /* next node in same table */
2298 n = fib_trie_get_next(iter);
2299 if (n)
2300 return n;
2301
2302 /* walk rest of this hash chain */
2303 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2304 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2305 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2306 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2307 if (n)
2308 goto found;
2309 }
2310
2311 /* new hash chain */
2312 while (++h < FIB_TABLE_HASHSZ) {
2313 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2314 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2315 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2316 if (n)
2317 goto found;
2318 }
2319 }
2320 return NULL;
2321
2322 found:
2323 iter->tb = tb;
2324 return n;
2325 }
2326
2327 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2328 __releases(RCU)
2329 {
2330 rcu_read_unlock();
2331 }
2332
2333 static void seq_indent(struct seq_file *seq, int n)
2334 {
2335 while (n-- > 0)
2336 seq_puts(seq, " ");
2337 }
2338
2339 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2340 {
2341 switch (s) {
2342 case RT_SCOPE_UNIVERSE: return "universe";
2343 case RT_SCOPE_SITE: return "site";
2344 case RT_SCOPE_LINK: return "link";
2345 case RT_SCOPE_HOST: return "host";
2346 case RT_SCOPE_NOWHERE: return "nowhere";
2347 default:
2348 snprintf(buf, len, "scope=%d", s);
2349 return buf;
2350 }
2351 }
2352
2353 static const char *const rtn_type_names[__RTN_MAX] = {
2354 [RTN_UNSPEC] = "UNSPEC",
2355 [RTN_UNICAST] = "UNICAST",
2356 [RTN_LOCAL] = "LOCAL",
2357 [RTN_BROADCAST] = "BROADCAST",
2358 [RTN_ANYCAST] = "ANYCAST",
2359 [RTN_MULTICAST] = "MULTICAST",
2360 [RTN_BLACKHOLE] = "BLACKHOLE",
2361 [RTN_UNREACHABLE] = "UNREACHABLE",
2362 [RTN_PROHIBIT] = "PROHIBIT",
2363 [RTN_THROW] = "THROW",
2364 [RTN_NAT] = "NAT",
2365 [RTN_XRESOLVE] = "XRESOLVE",
2366 };
2367
2368 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2369 {
2370 if (t < __RTN_MAX && rtn_type_names[t])
2371 return rtn_type_names[t];
2372 snprintf(buf, len, "type %u", t);
2373 return buf;
2374 }
2375
2376 /* Pretty print the trie */
2377 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2378 {
2379 const struct fib_trie_iter *iter = seq->private;
2380 struct key_vector *n = v;
2381
2382 if (IS_TRIE(node_parent_rcu(n)))
2383 fib_table_print(seq, iter->tb);
2384
2385 if (IS_TNODE(n)) {
2386 __be32 prf = htonl(n->key);
2387
2388 seq_indent(seq, iter->depth-1);
2389 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2390 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2391 tn_info(n)->full_children,
2392 tn_info(n)->empty_children);
2393 } else {
2394 __be32 val = htonl(n->key);
2395 struct fib_alias *fa;
2396
2397 seq_indent(seq, iter->depth);
2398 seq_printf(seq, " |-- %pI4\n", &val);
2399
2400 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2401 char buf1[32], buf2[32];
2402
2403 seq_indent(seq, iter->depth + 1);
2404 seq_printf(seq, " /%zu %s %s",
2405 KEYLENGTH - fa->fa_slen,
2406 rtn_scope(buf1, sizeof(buf1),
2407 fa->fa_info->fib_scope),
2408 rtn_type(buf2, sizeof(buf2),
2409 fa->fa_type));
2410 if (fa->fa_tos)
2411 seq_printf(seq, " tos=%d", fa->fa_tos);
2412 seq_putc(seq, '\n');
2413 }
2414 }
2415
2416 return 0;
2417 }
2418
2419 static const struct seq_operations fib_trie_seq_ops = {
2420 .start = fib_trie_seq_start,
2421 .next = fib_trie_seq_next,
2422 .stop = fib_trie_seq_stop,
2423 .show = fib_trie_seq_show,
2424 };
2425
2426 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2427 {
2428 return seq_open_net(inode, file, &fib_trie_seq_ops,
2429 sizeof(struct fib_trie_iter));
2430 }
2431
2432 static const struct file_operations fib_trie_fops = {
2433 .owner = THIS_MODULE,
2434 .open = fib_trie_seq_open,
2435 .read = seq_read,
2436 .llseek = seq_lseek,
2437 .release = seq_release_net,
2438 };
2439
2440 struct fib_route_iter {
2441 struct seq_net_private p;
2442 struct fib_table *main_tb;
2443 struct key_vector *tnode;
2444 loff_t pos;
2445 t_key key;
2446 };
2447
2448 static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2449 loff_t pos)
2450 {
2451 struct fib_table *tb = iter->main_tb;
2452 struct key_vector *l, **tp = &iter->tnode;
2453 struct trie *t;
2454 t_key key;
2455
2456 /* use cache location of next-to-find key */
2457 if (iter->pos > 0 && pos >= iter->pos) {
2458 pos -= iter->pos;
2459 key = iter->key;
2460 } else {
2461 t = (struct trie *)tb->tb_data;
2462 iter->tnode = t->kv;
2463 iter->pos = 0;
2464 key = 0;
2465 }
2466
2467 while ((l = leaf_walk_rcu(tp, key)) != NULL) {
2468 key = l->key + 1;
2469 iter->pos++;
2470
2471 if (pos-- <= 0)
2472 break;
2473
2474 l = NULL;
2475
2476 /* handle unlikely case of a key wrap */
2477 if (!key)
2478 break;
2479 }
2480
2481 if (l)
2482 iter->key = key; /* remember it */
2483 else
2484 iter->pos = 0; /* forget it */
2485
2486 return l;
2487 }
2488
2489 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2490 __acquires(RCU)
2491 {
2492 struct fib_route_iter *iter = seq->private;
2493 struct fib_table *tb;
2494 struct trie *t;
2495
2496 rcu_read_lock();
2497
2498 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2499 if (!tb)
2500 return NULL;
2501
2502 iter->main_tb = tb;
2503
2504 if (*pos != 0)
2505 return fib_route_get_idx(iter, *pos);
2506
2507 t = (struct trie *)tb->tb_data;
2508 iter->tnode = t->kv;
2509 iter->pos = 0;
2510 iter->key = 0;
2511
2512 return SEQ_START_TOKEN;
2513 }
2514
2515 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2516 {
2517 struct fib_route_iter *iter = seq->private;
2518 struct key_vector *l = NULL;
2519 t_key key = iter->key;
2520
2521 ++*pos;
2522
2523 /* only allow key of 0 for start of sequence */
2524 if ((v == SEQ_START_TOKEN) || key)
2525 l = leaf_walk_rcu(&iter->tnode, key);
2526
2527 if (l) {
2528 iter->key = l->key + 1;
2529 iter->pos++;
2530 } else {
2531 iter->pos = 0;
2532 }
2533
2534 return l;
2535 }
2536
2537 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2538 __releases(RCU)
2539 {
2540 rcu_read_unlock();
2541 }
2542
2543 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2544 {
2545 unsigned int flags = 0;
2546
2547 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2548 flags = RTF_REJECT;
2549 if (fi && fi->fib_nh->nh_gw)
2550 flags |= RTF_GATEWAY;
2551 if (mask == htonl(0xFFFFFFFF))
2552 flags |= RTF_HOST;
2553 flags |= RTF_UP;
2554 return flags;
2555 }
2556
2557 /*
2558 * This outputs /proc/net/route.
2559 * The format of the file is not supposed to be changed
2560 * and needs to be same as fib_hash output to avoid breaking
2561 * legacy utilities
2562 */
2563 static int fib_route_seq_show(struct seq_file *seq, void *v)
2564 {
2565 struct fib_route_iter *iter = seq->private;
2566 struct fib_table *tb = iter->main_tb;
2567 struct fib_alias *fa;
2568 struct key_vector *l = v;
2569 __be32 prefix;
2570
2571 if (v == SEQ_START_TOKEN) {
2572 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2573 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2574 "\tWindow\tIRTT");
2575 return 0;
2576 }
2577
2578 prefix = htonl(l->key);
2579
2580 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2581 const struct fib_info *fi = fa->fa_info;
2582 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2583 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2584
2585 if ((fa->fa_type == RTN_BROADCAST) ||
2586 (fa->fa_type == RTN_MULTICAST))
2587 continue;
2588
2589 if (fa->tb_id != tb->tb_id)
2590 continue;
2591
2592 seq_setwidth(seq, 127);
2593
2594 if (fi)
2595 seq_printf(seq,
2596 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2597 "%d\t%08X\t%d\t%u\t%u",
2598 fi->fib_dev ? fi->fib_dev->name : "*",
2599 prefix,
2600 fi->fib_nh->nh_gw, flags, 0, 0,
2601 fi->fib_priority,
2602 mask,
2603 (fi->fib_advmss ?
2604 fi->fib_advmss + 40 : 0),
2605 fi->fib_window,
2606 fi->fib_rtt >> 3);
2607 else
2608 seq_printf(seq,
2609 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2610 "%d\t%08X\t%d\t%u\t%u",
2611 prefix, 0, flags, 0, 0, 0,
2612 mask, 0, 0, 0);
2613
2614 seq_pad(seq, '\n');
2615 }
2616
2617 return 0;
2618 }
2619
2620 static const struct seq_operations fib_route_seq_ops = {
2621 .start = fib_route_seq_start,
2622 .next = fib_route_seq_next,
2623 .stop = fib_route_seq_stop,
2624 .show = fib_route_seq_show,
2625 };
2626
2627 static int fib_route_seq_open(struct inode *inode, struct file *file)
2628 {
2629 return seq_open_net(inode, file, &fib_route_seq_ops,
2630 sizeof(struct fib_route_iter));
2631 }
2632
2633 static const struct file_operations fib_route_fops = {
2634 .owner = THIS_MODULE,
2635 .open = fib_route_seq_open,
2636 .read = seq_read,
2637 .llseek = seq_lseek,
2638 .release = seq_release_net,
2639 };
2640
2641 int __net_init fib_proc_init(struct net *net)
2642 {
2643 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2644 goto out1;
2645
2646 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2647 &fib_triestat_fops))
2648 goto out2;
2649
2650 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2651 goto out3;
2652
2653 return 0;
2654
2655 out3:
2656 remove_proc_entry("fib_triestat", net->proc_net);
2657 out2:
2658 remove_proc_entry("fib_trie", net->proc_net);
2659 out1:
2660 return -ENOMEM;
2661 }
2662
2663 void __net_exit fib_proc_exit(struct net *net)
2664 {
2665 remove_proc_entry("fib_trie", net->proc_net);
2666 remove_proc_entry("fib_triestat", net->proc_net);
2667 remove_proc_entry("route", net->proc_net);
2668 }
2669
2670 #endif /* CONFIG_PROC_FS */
This page took 0.084937 seconds and 5 git commands to generate.