fib_trie: Fix trie balancing issue if new node pushes down existing node
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
83
84 #define MAX_STAT_DEPTH 32
85
86 #define KEYLENGTH (8*sizeof(t_key))
87
88 typedef unsigned int t_key;
89
90 #define T_TNODE 0
91 #define T_LEAF 1
92 #define NODE_TYPE_MASK 0x1UL
93 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
94
95 #define IS_TNODE(n) (!(n->parent & T_LEAF))
96 #define IS_LEAF(n) (n->parent & T_LEAF)
97
98 struct rt_trie_node {
99 unsigned long parent;
100 t_key key;
101 };
102
103 struct leaf {
104 unsigned long parent;
105 t_key key;
106 struct hlist_head list;
107 struct rcu_head rcu;
108 };
109
110 struct leaf_info {
111 struct hlist_node hlist;
112 int plen;
113 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
114 struct list_head falh;
115 struct rcu_head rcu;
116 };
117
118 struct tnode {
119 unsigned long parent;
120 t_key key;
121 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
123 unsigned int full_children; /* KEYLENGTH bits needed */
124 unsigned int empty_children; /* KEYLENGTH bits needed */
125 union {
126 struct rcu_head rcu;
127 struct tnode *tnode_free;
128 };
129 struct rt_trie_node __rcu *child[0];
130 };
131
132 #ifdef CONFIG_IP_FIB_TRIE_STATS
133 struct trie_use_stats {
134 unsigned int gets;
135 unsigned int backtrack;
136 unsigned int semantic_match_passed;
137 unsigned int semantic_match_miss;
138 unsigned int null_node_hit;
139 unsigned int resize_node_skipped;
140 };
141 #endif
142
143 struct trie_stat {
144 unsigned int totdepth;
145 unsigned int maxdepth;
146 unsigned int tnodes;
147 unsigned int leaves;
148 unsigned int nullpointers;
149 unsigned int prefixes;
150 unsigned int nodesizes[MAX_STAT_DEPTH];
151 };
152
153 struct trie {
154 struct rt_trie_node __rcu *trie;
155 #ifdef CONFIG_IP_FIB_TRIE_STATS
156 struct trie_use_stats stats;
157 #endif
158 };
159
160 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
161 int wasfull);
162 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn);
163 static struct tnode *inflate(struct trie *t, struct tnode *tn);
164 static struct tnode *halve(struct trie *t, struct tnode *tn);
165 /* tnodes to free after resize(); protected by RTNL */
166 static struct tnode *tnode_free_head;
167 static size_t tnode_free_size;
168
169 /*
170 * synchronize_rcu after call_rcu for that many pages; it should be especially
171 * useful before resizing the root node with PREEMPT_NONE configs; the value was
172 * obtained experimentally, aiming to avoid visible slowdown.
173 */
174 static const int sync_pages = 128;
175
176 static struct kmem_cache *fn_alias_kmem __read_mostly;
177 static struct kmem_cache *trie_leaf_kmem __read_mostly;
178
179 /*
180 * caller must hold RTNL
181 */
182 static inline struct tnode *node_parent(const struct rt_trie_node *node)
183 {
184 unsigned long parent;
185
186 parent = rcu_dereference_index_check(node->parent, lockdep_rtnl_is_held());
187
188 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
189 }
190
191 /*
192 * caller must hold RCU read lock or RTNL
193 */
194 static inline struct tnode *node_parent_rcu(const struct rt_trie_node *node)
195 {
196 unsigned long parent;
197
198 parent = rcu_dereference_index_check(node->parent, rcu_read_lock_held() ||
199 lockdep_rtnl_is_held());
200
201 return (struct tnode *)(parent & ~NODE_TYPE_MASK);
202 }
203
204 /* Same as rcu_assign_pointer
205 * but that macro() assumes that value is a pointer.
206 */
207 static inline void node_set_parent(struct rt_trie_node *node, struct tnode *ptr)
208 {
209 smp_wmb();
210 node->parent = (unsigned long)ptr | NODE_TYPE(node);
211 }
212
213 /*
214 * caller must hold RTNL
215 */
216 static inline struct rt_trie_node *tnode_get_child(const struct tnode *tn, unsigned int i)
217 {
218 BUG_ON(i >= 1U << tn->bits);
219
220 return rtnl_dereference(tn->child[i]);
221 }
222
223 /*
224 * caller must hold RCU read lock or RTNL
225 */
226 static inline struct rt_trie_node *tnode_get_child_rcu(const struct tnode *tn, unsigned int i)
227 {
228 BUG_ON(i >= 1U << tn->bits);
229
230 return rcu_dereference_rtnl(tn->child[i]);
231 }
232
233 static inline int tnode_child_length(const struct tnode *tn)
234 {
235 return 1 << tn->bits;
236 }
237
238 static inline t_key mask_pfx(t_key k, unsigned int l)
239 {
240 return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l);
241 }
242
243 static inline t_key tkey_extract_bits(t_key a, unsigned int offset, unsigned int bits)
244 {
245 if (offset < KEYLENGTH)
246 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
247 else
248 return 0;
249 }
250
251 static inline int tkey_equals(t_key a, t_key b)
252 {
253 return a == b;
254 }
255
256 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
257 {
258 if (bits == 0 || offset >= KEYLENGTH)
259 return 1;
260 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
261 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
262 }
263
264 static inline int tkey_mismatch(t_key a, int offset, t_key b)
265 {
266 t_key diff = a ^ b;
267 int i = offset;
268
269 if (!diff)
270 return 0;
271 while ((diff << i) >> (KEYLENGTH-1) == 0)
272 i++;
273 return i;
274 }
275
276 /*
277 To understand this stuff, an understanding of keys and all their bits is
278 necessary. Every node in the trie has a key associated with it, but not
279 all of the bits in that key are significant.
280
281 Consider a node 'n' and its parent 'tp'.
282
283 If n is a leaf, every bit in its key is significant. Its presence is
284 necessitated by path compression, since during a tree traversal (when
285 searching for a leaf - unless we are doing an insertion) we will completely
286 ignore all skipped bits we encounter. Thus we need to verify, at the end of
287 a potentially successful search, that we have indeed been walking the
288 correct key path.
289
290 Note that we can never "miss" the correct key in the tree if present by
291 following the wrong path. Path compression ensures that segments of the key
292 that are the same for all keys with a given prefix are skipped, but the
293 skipped part *is* identical for each node in the subtrie below the skipped
294 bit! trie_insert() in this implementation takes care of that - note the
295 call to tkey_sub_equals() in trie_insert().
296
297 if n is an internal node - a 'tnode' here, the various parts of its key
298 have many different meanings.
299
300 Example:
301 _________________________________________________________________
302 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
303 -----------------------------------------------------------------
304 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
305
306 _________________________________________________________________
307 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
308 -----------------------------------------------------------------
309 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
310
311 tp->pos = 7
312 tp->bits = 3
313 n->pos = 15
314 n->bits = 4
315
316 First, let's just ignore the bits that come before the parent tp, that is
317 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
318 not use them for anything.
319
320 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
321 index into the parent's child array. That is, they will be used to find
322 'n' among tp's children.
323
324 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
325 for the node n.
326
327 All the bits we have seen so far are significant to the node n. The rest
328 of the bits are really not needed or indeed known in n->key.
329
330 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
331 n's child array, and will of course be different for each child.
332
333
334 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
335 at this point.
336
337 */
338
339 static inline void check_tnode(const struct tnode *tn)
340 {
341 WARN_ON(tn && tn->pos+tn->bits > 32);
342 }
343
344 static const int halve_threshold = 25;
345 static const int inflate_threshold = 50;
346 static const int halve_threshold_root = 15;
347 static const int inflate_threshold_root = 30;
348
349 static void __alias_free_mem(struct rcu_head *head)
350 {
351 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
352 kmem_cache_free(fn_alias_kmem, fa);
353 }
354
355 static inline void alias_free_mem_rcu(struct fib_alias *fa)
356 {
357 call_rcu(&fa->rcu, __alias_free_mem);
358 }
359
360 static void __leaf_free_rcu(struct rcu_head *head)
361 {
362 struct leaf *l = container_of(head, struct leaf, rcu);
363 kmem_cache_free(trie_leaf_kmem, l);
364 }
365
366 static inline void free_leaf(struct leaf *l)
367 {
368 call_rcu(&l->rcu, __leaf_free_rcu);
369 }
370
371 static inline void free_leaf_info(struct leaf_info *leaf)
372 {
373 kfree_rcu(leaf, rcu);
374 }
375
376 static struct tnode *tnode_alloc(size_t size)
377 {
378 if (size <= PAGE_SIZE)
379 return kzalloc(size, GFP_KERNEL);
380 else
381 return vzalloc(size);
382 }
383
384 static void __tnode_free_rcu(struct rcu_head *head)
385 {
386 struct tnode *tn = container_of(head, struct tnode, rcu);
387 size_t size = sizeof(struct tnode) +
388 (sizeof(struct rt_trie_node *) << tn->bits);
389
390 if (size <= PAGE_SIZE)
391 kfree(tn);
392 else
393 vfree(tn);
394 }
395
396 static inline void tnode_free(struct tnode *tn)
397 {
398 if (IS_LEAF(tn))
399 free_leaf((struct leaf *) tn);
400 else
401 call_rcu(&tn->rcu, __tnode_free_rcu);
402 }
403
404 static void tnode_free_safe(struct tnode *tn)
405 {
406 BUG_ON(IS_LEAF(tn));
407 tn->tnode_free = tnode_free_head;
408 tnode_free_head = tn;
409 tnode_free_size += sizeof(struct tnode) +
410 (sizeof(struct rt_trie_node *) << tn->bits);
411 }
412
413 static void tnode_free_flush(void)
414 {
415 struct tnode *tn;
416
417 while ((tn = tnode_free_head)) {
418 tnode_free_head = tn->tnode_free;
419 tn->tnode_free = NULL;
420 tnode_free(tn);
421 }
422
423 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
424 tnode_free_size = 0;
425 synchronize_rcu();
426 }
427 }
428
429 static struct leaf *leaf_new(void)
430 {
431 struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
432 if (l) {
433 l->parent = T_LEAF;
434 INIT_HLIST_HEAD(&l->list);
435 }
436 return l;
437 }
438
439 static struct leaf_info *leaf_info_new(int plen)
440 {
441 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
442 if (li) {
443 li->plen = plen;
444 li->mask_plen = ntohl(inet_make_mask(plen));
445 INIT_LIST_HEAD(&li->falh);
446 }
447 return li;
448 }
449
450 static struct tnode *tnode_new(t_key key, int pos, int bits)
451 {
452 size_t sz = sizeof(struct tnode) + (sizeof(struct rt_trie_node *) << bits);
453 struct tnode *tn = tnode_alloc(sz);
454
455 if (tn) {
456 tn->parent = T_TNODE;
457 tn->pos = pos;
458 tn->bits = bits;
459 tn->key = key;
460 tn->full_children = 0;
461 tn->empty_children = 1<<bits;
462 }
463
464 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
465 sizeof(struct rt_trie_node *) << bits);
466 return tn;
467 }
468
469 /*
470 * Check whether a tnode 'n' is "full", i.e. it is an internal node
471 * and no bits are skipped. See discussion in dyntree paper p. 6
472 */
473
474 static inline int tnode_full(const struct tnode *tn, const struct rt_trie_node *n)
475 {
476 if (n == NULL || IS_LEAF(n))
477 return 0;
478
479 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
480 }
481
482 static inline void put_child(struct tnode *tn, int i,
483 struct rt_trie_node *n)
484 {
485 tnode_put_child_reorg(tn, i, n, -1);
486 }
487
488 /*
489 * Add a child at position i overwriting the old value.
490 * Update the value of full_children and empty_children.
491 */
492
493 static void tnode_put_child_reorg(struct tnode *tn, int i, struct rt_trie_node *n,
494 int wasfull)
495 {
496 struct rt_trie_node *chi = rtnl_dereference(tn->child[i]);
497 int isfull;
498
499 BUG_ON(i >= 1<<tn->bits);
500
501 /* update emptyChildren */
502 if (n == NULL && chi != NULL)
503 tn->empty_children++;
504 else if (n != NULL && chi == NULL)
505 tn->empty_children--;
506
507 /* update fullChildren */
508 if (wasfull == -1)
509 wasfull = tnode_full(tn, chi);
510
511 isfull = tnode_full(tn, n);
512 if (wasfull && !isfull)
513 tn->full_children--;
514 else if (!wasfull && isfull)
515 tn->full_children++;
516
517 if (n)
518 node_set_parent(n, tn);
519
520 rcu_assign_pointer(tn->child[i], n);
521 }
522
523 #define MAX_WORK 10
524 static struct rt_trie_node *resize(struct trie *t, struct tnode *tn)
525 {
526 int i;
527 struct tnode *old_tn;
528 int inflate_threshold_use;
529 int halve_threshold_use;
530 int max_work;
531
532 if (!tn)
533 return NULL;
534
535 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
536 tn, inflate_threshold, halve_threshold);
537
538 /* No children */
539 if (tn->empty_children == tnode_child_length(tn)) {
540 tnode_free_safe(tn);
541 return NULL;
542 }
543 /* One child */
544 if (tn->empty_children == tnode_child_length(tn) - 1)
545 goto one_child;
546 /*
547 * Double as long as the resulting node has a number of
548 * nonempty nodes that are above the threshold.
549 */
550
551 /*
552 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
553 * the Helsinki University of Technology and Matti Tikkanen of Nokia
554 * Telecommunications, page 6:
555 * "A node is doubled if the ratio of non-empty children to all
556 * children in the *doubled* node is at least 'high'."
557 *
558 * 'high' in this instance is the variable 'inflate_threshold'. It
559 * is expressed as a percentage, so we multiply it with
560 * tnode_child_length() and instead of multiplying by 2 (since the
561 * child array will be doubled by inflate()) and multiplying
562 * the left-hand side by 100 (to handle the percentage thing) we
563 * multiply the left-hand side by 50.
564 *
565 * The left-hand side may look a bit weird: tnode_child_length(tn)
566 * - tn->empty_children is of course the number of non-null children
567 * in the current node. tn->full_children is the number of "full"
568 * children, that is non-null tnodes with a skip value of 0.
569 * All of those will be doubled in the resulting inflated tnode, so
570 * we just count them one extra time here.
571 *
572 * A clearer way to write this would be:
573 *
574 * to_be_doubled = tn->full_children;
575 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
576 * tn->full_children;
577 *
578 * new_child_length = tnode_child_length(tn) * 2;
579 *
580 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
581 * new_child_length;
582 * if (new_fill_factor >= inflate_threshold)
583 *
584 * ...and so on, tho it would mess up the while () loop.
585 *
586 * anyway,
587 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
588 * inflate_threshold
589 *
590 * avoid a division:
591 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
592 * inflate_threshold * new_child_length
593 *
594 * expand not_to_be_doubled and to_be_doubled, and shorten:
595 * 100 * (tnode_child_length(tn) - tn->empty_children +
596 * tn->full_children) >= inflate_threshold * new_child_length
597 *
598 * expand new_child_length:
599 * 100 * (tnode_child_length(tn) - tn->empty_children +
600 * tn->full_children) >=
601 * inflate_threshold * tnode_child_length(tn) * 2
602 *
603 * shorten again:
604 * 50 * (tn->full_children + tnode_child_length(tn) -
605 * tn->empty_children) >= inflate_threshold *
606 * tnode_child_length(tn)
607 *
608 */
609
610 check_tnode(tn);
611
612 /* Keep root node larger */
613
614 if (!node_parent((struct rt_trie_node *)tn)) {
615 inflate_threshold_use = inflate_threshold_root;
616 halve_threshold_use = halve_threshold_root;
617 } else {
618 inflate_threshold_use = inflate_threshold;
619 halve_threshold_use = halve_threshold;
620 }
621
622 max_work = MAX_WORK;
623 while ((tn->full_children > 0 && max_work-- &&
624 50 * (tn->full_children + tnode_child_length(tn)
625 - tn->empty_children)
626 >= inflate_threshold_use * tnode_child_length(tn))) {
627
628 old_tn = tn;
629 tn = inflate(t, tn);
630
631 if (IS_ERR(tn)) {
632 tn = old_tn;
633 #ifdef CONFIG_IP_FIB_TRIE_STATS
634 t->stats.resize_node_skipped++;
635 #endif
636 break;
637 }
638 }
639
640 check_tnode(tn);
641
642 /* Return if at least one inflate is run */
643 if (max_work != MAX_WORK)
644 return (struct rt_trie_node *) tn;
645
646 /*
647 * Halve as long as the number of empty children in this
648 * node is above threshold.
649 */
650
651 max_work = MAX_WORK;
652 while (tn->bits > 1 && max_work-- &&
653 100 * (tnode_child_length(tn) - tn->empty_children) <
654 halve_threshold_use * tnode_child_length(tn)) {
655
656 old_tn = tn;
657 tn = halve(t, tn);
658 if (IS_ERR(tn)) {
659 tn = old_tn;
660 #ifdef CONFIG_IP_FIB_TRIE_STATS
661 t->stats.resize_node_skipped++;
662 #endif
663 break;
664 }
665 }
666
667
668 /* Only one child remains */
669 if (tn->empty_children == tnode_child_length(tn) - 1) {
670 one_child:
671 for (i = 0; i < tnode_child_length(tn); i++) {
672 struct rt_trie_node *n;
673
674 n = rtnl_dereference(tn->child[i]);
675 if (!n)
676 continue;
677
678 /* compress one level */
679
680 node_set_parent(n, NULL);
681 tnode_free_safe(tn);
682 return n;
683 }
684 }
685 return (struct rt_trie_node *) tn;
686 }
687
688
689 static void tnode_clean_free(struct tnode *tn)
690 {
691 int i;
692 struct tnode *tofree;
693
694 for (i = 0; i < tnode_child_length(tn); i++) {
695 tofree = (struct tnode *)rtnl_dereference(tn->child[i]);
696 if (tofree)
697 tnode_free(tofree);
698 }
699 tnode_free(tn);
700 }
701
702 static struct tnode *inflate(struct trie *t, struct tnode *tn)
703 {
704 struct tnode *oldtnode = tn;
705 int olen = tnode_child_length(tn);
706 int i;
707
708 pr_debug("In inflate\n");
709
710 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
711
712 if (!tn)
713 return ERR_PTR(-ENOMEM);
714
715 /*
716 * Preallocate and store tnodes before the actual work so we
717 * don't get into an inconsistent state if memory allocation
718 * fails. In case of failure we return the oldnode and inflate
719 * of tnode is ignored.
720 */
721
722 for (i = 0; i < olen; i++) {
723 struct tnode *inode;
724
725 inode = (struct tnode *) tnode_get_child(oldtnode, i);
726 if (inode &&
727 IS_TNODE(inode) &&
728 inode->pos == oldtnode->pos + oldtnode->bits &&
729 inode->bits > 1) {
730 struct tnode *left, *right;
731 t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos;
732
733 left = tnode_new(inode->key&(~m), inode->pos + 1,
734 inode->bits - 1);
735 if (!left)
736 goto nomem;
737
738 right = tnode_new(inode->key|m, inode->pos + 1,
739 inode->bits - 1);
740
741 if (!right) {
742 tnode_free(left);
743 goto nomem;
744 }
745
746 put_child(tn, 2*i, (struct rt_trie_node *) left);
747 put_child(tn, 2*i+1, (struct rt_trie_node *) right);
748 }
749 }
750
751 for (i = 0; i < olen; i++) {
752 struct tnode *inode;
753 struct rt_trie_node *node = tnode_get_child(oldtnode, i);
754 struct tnode *left, *right;
755 int size, j;
756
757 /* An empty child */
758 if (node == NULL)
759 continue;
760
761 /* A leaf or an internal node with skipped bits */
762
763 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
764 tn->pos + tn->bits - 1) {
765 put_child(tn,
766 tkey_extract_bits(node->key, oldtnode->pos, oldtnode->bits + 1),
767 node);
768 continue;
769 }
770
771 /* An internal node with two children */
772 inode = (struct tnode *) node;
773
774 if (inode->bits == 1) {
775 put_child(tn, 2*i, rtnl_dereference(inode->child[0]));
776 put_child(tn, 2*i+1, rtnl_dereference(inode->child[1]));
777
778 tnode_free_safe(inode);
779 continue;
780 }
781
782 /* An internal node with more than two children */
783
784 /* We will replace this node 'inode' with two new
785 * ones, 'left' and 'right', each with half of the
786 * original children. The two new nodes will have
787 * a position one bit further down the key and this
788 * means that the "significant" part of their keys
789 * (see the discussion near the top of this file)
790 * will differ by one bit, which will be "0" in
791 * left's key and "1" in right's key. Since we are
792 * moving the key position by one step, the bit that
793 * we are moving away from - the bit at position
794 * (inode->pos) - is the one that will differ between
795 * left and right. So... we synthesize that bit in the
796 * two new keys.
797 * The mask 'm' below will be a single "one" bit at
798 * the position (inode->pos)
799 */
800
801 /* Use the old key, but set the new significant
802 * bit to zero.
803 */
804
805 left = (struct tnode *) tnode_get_child(tn, 2*i);
806 put_child(tn, 2*i, NULL);
807
808 BUG_ON(!left);
809
810 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
811 put_child(tn, 2*i+1, NULL);
812
813 BUG_ON(!right);
814
815 size = tnode_child_length(left);
816 for (j = 0; j < size; j++) {
817 put_child(left, j, rtnl_dereference(inode->child[j]));
818 put_child(right, j, rtnl_dereference(inode->child[j + size]));
819 }
820 put_child(tn, 2*i, resize(t, left));
821 put_child(tn, 2*i+1, resize(t, right));
822
823 tnode_free_safe(inode);
824 }
825 tnode_free_safe(oldtnode);
826 return tn;
827 nomem:
828 tnode_clean_free(tn);
829 return ERR_PTR(-ENOMEM);
830 }
831
832 static struct tnode *halve(struct trie *t, struct tnode *tn)
833 {
834 struct tnode *oldtnode = tn;
835 struct rt_trie_node *left, *right;
836 int i;
837 int olen = tnode_child_length(tn);
838
839 pr_debug("In halve\n");
840
841 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
842
843 if (!tn)
844 return ERR_PTR(-ENOMEM);
845
846 /*
847 * Preallocate and store tnodes before the actual work so we
848 * don't get into an inconsistent state if memory allocation
849 * fails. In case of failure we return the oldnode and halve
850 * of tnode is ignored.
851 */
852
853 for (i = 0; i < olen; i += 2) {
854 left = tnode_get_child(oldtnode, i);
855 right = tnode_get_child(oldtnode, i+1);
856
857 /* Two nonempty children */
858 if (left && right) {
859 struct tnode *newn;
860
861 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
862
863 if (!newn)
864 goto nomem;
865
866 put_child(tn, i/2, (struct rt_trie_node *)newn);
867 }
868
869 }
870
871 for (i = 0; i < olen; i += 2) {
872 struct tnode *newBinNode;
873
874 left = tnode_get_child(oldtnode, i);
875 right = tnode_get_child(oldtnode, i+1);
876
877 /* At least one of the children is empty */
878 if (left == NULL) {
879 if (right == NULL) /* Both are empty */
880 continue;
881 put_child(tn, i/2, right);
882 continue;
883 }
884
885 if (right == NULL) {
886 put_child(tn, i/2, left);
887 continue;
888 }
889
890 /* Two nonempty children */
891 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
892 put_child(tn, i/2, NULL);
893 put_child(newBinNode, 0, left);
894 put_child(newBinNode, 1, right);
895 put_child(tn, i/2, resize(t, newBinNode));
896 }
897 tnode_free_safe(oldtnode);
898 return tn;
899 nomem:
900 tnode_clean_free(tn);
901 return ERR_PTR(-ENOMEM);
902 }
903
904 /* readside must use rcu_read_lock currently dump routines
905 via get_fa_head and dump */
906
907 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
908 {
909 struct hlist_head *head = &l->list;
910 struct leaf_info *li;
911
912 hlist_for_each_entry_rcu(li, head, hlist)
913 if (li->plen == plen)
914 return li;
915
916 return NULL;
917 }
918
919 static inline struct list_head *get_fa_head(struct leaf *l, int plen)
920 {
921 struct leaf_info *li = find_leaf_info(l, plen);
922
923 if (!li)
924 return NULL;
925
926 return &li->falh;
927 }
928
929 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
930 {
931 struct leaf_info *li = NULL, *last = NULL;
932
933 if (hlist_empty(head)) {
934 hlist_add_head_rcu(&new->hlist, head);
935 } else {
936 hlist_for_each_entry(li, head, hlist) {
937 if (new->plen > li->plen)
938 break;
939
940 last = li;
941 }
942 if (last)
943 hlist_add_behind_rcu(&new->hlist, &last->hlist);
944 else
945 hlist_add_before_rcu(&new->hlist, &li->hlist);
946 }
947 }
948
949 /* rcu_read_lock needs to be hold by caller from readside */
950
951 static struct leaf *
952 fib_find_node(struct trie *t, u32 key)
953 {
954 int pos;
955 struct tnode *tn;
956 struct rt_trie_node *n;
957
958 pos = 0;
959 n = rcu_dereference_rtnl(t->trie);
960
961 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
962 tn = (struct tnode *) n;
963
964 check_tnode(tn);
965
966 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
967 pos = tn->pos + tn->bits;
968 n = tnode_get_child_rcu(tn,
969 tkey_extract_bits(key,
970 tn->pos,
971 tn->bits));
972 } else
973 break;
974 }
975 /* Case we have found a leaf. Compare prefixes */
976
977 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
978 return (struct leaf *)n;
979
980 return NULL;
981 }
982
983 static void trie_rebalance(struct trie *t, struct tnode *tn)
984 {
985 int wasfull;
986 t_key cindex, key;
987 struct tnode *tp;
988
989 key = tn->key;
990
991 while (tn != NULL && (tp = node_parent((struct rt_trie_node *)tn)) != NULL) {
992 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
993 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
994 tn = (struct tnode *)resize(t, tn);
995
996 tnode_put_child_reorg(tp, cindex,
997 (struct rt_trie_node *)tn, wasfull);
998
999 tp = node_parent((struct rt_trie_node *) tn);
1000 if (!tp)
1001 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1002
1003 tnode_free_flush();
1004 if (!tp)
1005 break;
1006 tn = tp;
1007 }
1008
1009 /* Handle last (top) tnode */
1010 if (IS_TNODE(tn))
1011 tn = (struct tnode *)resize(t, tn);
1012
1013 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1014 tnode_free_flush();
1015 }
1016
1017 /* only used from updater-side */
1018
1019 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
1020 {
1021 int pos, newpos;
1022 struct tnode *tp = NULL, *tn = NULL;
1023 struct rt_trie_node *n;
1024 struct leaf *l;
1025 int missbit;
1026 struct list_head *fa_head = NULL;
1027 struct leaf_info *li;
1028 t_key cindex;
1029
1030 pos = 0;
1031 n = rtnl_dereference(t->trie);
1032
1033 /* If we point to NULL, stop. Either the tree is empty and we should
1034 * just put a new leaf in if, or we have reached an empty child slot,
1035 * and we should just put our new leaf in that.
1036 * If we point to a T_TNODE, check if it matches our key. Note that
1037 * a T_TNODE might be skipping any number of bits - its 'pos' need
1038 * not be the parent's 'pos'+'bits'!
1039 *
1040 * If it does match the current key, get pos/bits from it, extract
1041 * the index from our key, push the T_TNODE and walk the tree.
1042 *
1043 * If it doesn't, we have to replace it with a new T_TNODE.
1044 *
1045 * If we point to a T_LEAF, it might or might not have the same key
1046 * as we do. If it does, just change the value, update the T_LEAF's
1047 * value, and return it.
1048 * If it doesn't, we need to replace it with a T_TNODE.
1049 */
1050
1051 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1052 tn = (struct tnode *) n;
1053
1054 check_tnode(tn);
1055
1056 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1057 tp = tn;
1058 pos = tn->pos + tn->bits;
1059 n = tnode_get_child(tn,
1060 tkey_extract_bits(key,
1061 tn->pos,
1062 tn->bits));
1063
1064 BUG_ON(n && node_parent(n) != tn);
1065 } else
1066 break;
1067 }
1068
1069 /*
1070 * n ----> NULL, LEAF or TNODE
1071 *
1072 * tp is n's (parent) ----> NULL or TNODE
1073 */
1074
1075 BUG_ON(tp && IS_LEAF(tp));
1076
1077 /* Case 1: n is a leaf. Compare prefixes */
1078
1079 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1080 l = (struct leaf *) n;
1081 li = leaf_info_new(plen);
1082
1083 if (!li)
1084 return NULL;
1085
1086 fa_head = &li->falh;
1087 insert_leaf_info(&l->list, li);
1088 goto done;
1089 }
1090 l = leaf_new();
1091
1092 if (!l)
1093 return NULL;
1094
1095 l->key = key;
1096 li = leaf_info_new(plen);
1097
1098 if (!li) {
1099 free_leaf(l);
1100 return NULL;
1101 }
1102
1103 fa_head = &li->falh;
1104 insert_leaf_info(&l->list, li);
1105
1106 if (t->trie && n == NULL) {
1107 /* Case 2: n is NULL, and will just insert a new leaf */
1108
1109 node_set_parent((struct rt_trie_node *)l, tp);
1110
1111 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1112 put_child(tp, cindex, (struct rt_trie_node *)l);
1113 } else {
1114 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1115 /*
1116 * Add a new tnode here
1117 * first tnode need some special handling
1118 */
1119
1120 if (n) {
1121 pos = tp ? tp->pos+tp->bits : 0;
1122 newpos = tkey_mismatch(key, pos, n->key);
1123 tn = tnode_new(n->key, newpos, 1);
1124 } else {
1125 newpos = 0;
1126 tn = tnode_new(key, newpos, 1); /* First tnode */
1127 }
1128
1129 if (!tn) {
1130 free_leaf_info(li);
1131 free_leaf(l);
1132 return NULL;
1133 }
1134
1135 node_set_parent((struct rt_trie_node *)tn, tp);
1136
1137 missbit = tkey_extract_bits(key, newpos, 1);
1138 put_child(tn, missbit, (struct rt_trie_node *)l);
1139 put_child(tn, 1-missbit, n);
1140
1141 if (tp) {
1142 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1143 put_child(tp, cindex, (struct rt_trie_node *)tn);
1144 } else {
1145 rcu_assign_pointer(t->trie, (struct rt_trie_node *)tn);
1146 }
1147
1148 tp = tn;
1149 }
1150
1151 if (tp && tp->pos + tp->bits > 32)
1152 pr_warn("fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1153 tp, tp->pos, tp->bits, key, plen);
1154
1155 /* Rebalance the trie */
1156
1157 trie_rebalance(t, tp);
1158 done:
1159 return fa_head;
1160 }
1161
1162 /*
1163 * Caller must hold RTNL.
1164 */
1165 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
1166 {
1167 struct trie *t = (struct trie *) tb->tb_data;
1168 struct fib_alias *fa, *new_fa;
1169 struct list_head *fa_head = NULL;
1170 struct fib_info *fi;
1171 int plen = cfg->fc_dst_len;
1172 u8 tos = cfg->fc_tos;
1173 u32 key, mask;
1174 int err;
1175 struct leaf *l;
1176
1177 if (plen > 32)
1178 return -EINVAL;
1179
1180 key = ntohl(cfg->fc_dst);
1181
1182 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1183
1184 mask = ntohl(inet_make_mask(plen));
1185
1186 if (key & ~mask)
1187 return -EINVAL;
1188
1189 key = key & mask;
1190
1191 fi = fib_create_info(cfg);
1192 if (IS_ERR(fi)) {
1193 err = PTR_ERR(fi);
1194 goto err;
1195 }
1196
1197 l = fib_find_node(t, key);
1198 fa = NULL;
1199
1200 if (l) {
1201 fa_head = get_fa_head(l, plen);
1202 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1203 }
1204
1205 /* Now fa, if non-NULL, points to the first fib alias
1206 * with the same keys [prefix,tos,priority], if such key already
1207 * exists or to the node before which we will insert new one.
1208 *
1209 * If fa is NULL, we will need to allocate a new one and
1210 * insert to the head of f.
1211 *
1212 * If f is NULL, no fib node matched the destination key
1213 * and we need to allocate a new one of those as well.
1214 */
1215
1216 if (fa && fa->fa_tos == tos &&
1217 fa->fa_info->fib_priority == fi->fib_priority) {
1218 struct fib_alias *fa_first, *fa_match;
1219
1220 err = -EEXIST;
1221 if (cfg->fc_nlflags & NLM_F_EXCL)
1222 goto out;
1223
1224 /* We have 2 goals:
1225 * 1. Find exact match for type, scope, fib_info to avoid
1226 * duplicate routes
1227 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1228 */
1229 fa_match = NULL;
1230 fa_first = fa;
1231 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1232 list_for_each_entry_continue(fa, fa_head, fa_list) {
1233 if (fa->fa_tos != tos)
1234 break;
1235 if (fa->fa_info->fib_priority != fi->fib_priority)
1236 break;
1237 if (fa->fa_type == cfg->fc_type &&
1238 fa->fa_info == fi) {
1239 fa_match = fa;
1240 break;
1241 }
1242 }
1243
1244 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1245 struct fib_info *fi_drop;
1246 u8 state;
1247
1248 fa = fa_first;
1249 if (fa_match) {
1250 if (fa == fa_match)
1251 err = 0;
1252 goto out;
1253 }
1254 err = -ENOBUFS;
1255 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1256 if (new_fa == NULL)
1257 goto out;
1258
1259 fi_drop = fa->fa_info;
1260 new_fa->fa_tos = fa->fa_tos;
1261 new_fa->fa_info = fi;
1262 new_fa->fa_type = cfg->fc_type;
1263 state = fa->fa_state;
1264 new_fa->fa_state = state & ~FA_S_ACCESSED;
1265
1266 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1267 alias_free_mem_rcu(fa);
1268
1269 fib_release_info(fi_drop);
1270 if (state & FA_S_ACCESSED)
1271 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1272 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1273 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1274
1275 goto succeeded;
1276 }
1277 /* Error if we find a perfect match which
1278 * uses the same scope, type, and nexthop
1279 * information.
1280 */
1281 if (fa_match)
1282 goto out;
1283
1284 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1285 fa = fa_first;
1286 }
1287 err = -ENOENT;
1288 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1289 goto out;
1290
1291 err = -ENOBUFS;
1292 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1293 if (new_fa == NULL)
1294 goto out;
1295
1296 new_fa->fa_info = fi;
1297 new_fa->fa_tos = tos;
1298 new_fa->fa_type = cfg->fc_type;
1299 new_fa->fa_state = 0;
1300 /*
1301 * Insert new entry to the list.
1302 */
1303
1304 if (!fa_head) {
1305 fa_head = fib_insert_node(t, key, plen);
1306 if (unlikely(!fa_head)) {
1307 err = -ENOMEM;
1308 goto out_free_new_fa;
1309 }
1310 }
1311
1312 if (!plen)
1313 tb->tb_num_default++;
1314
1315 list_add_tail_rcu(&new_fa->fa_list,
1316 (fa ? &fa->fa_list : fa_head));
1317
1318 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1319 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1320 &cfg->fc_nlinfo, 0);
1321 succeeded:
1322 return 0;
1323
1324 out_free_new_fa:
1325 kmem_cache_free(fn_alias_kmem, new_fa);
1326 out:
1327 fib_release_info(fi);
1328 err:
1329 return err;
1330 }
1331
1332 /* should be called with rcu_read_lock */
1333 static int check_leaf(struct fib_table *tb, struct trie *t, struct leaf *l,
1334 t_key key, const struct flowi4 *flp,
1335 struct fib_result *res, int fib_flags)
1336 {
1337 struct leaf_info *li;
1338 struct hlist_head *hhead = &l->list;
1339
1340 hlist_for_each_entry_rcu(li, hhead, hlist) {
1341 struct fib_alias *fa;
1342
1343 if (l->key != (key & li->mask_plen))
1344 continue;
1345
1346 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1347 struct fib_info *fi = fa->fa_info;
1348 int nhsel, err;
1349
1350 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1351 continue;
1352 if (fi->fib_dead)
1353 continue;
1354 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1355 continue;
1356 fib_alias_accessed(fa);
1357 err = fib_props[fa->fa_type].error;
1358 if (err) {
1359 #ifdef CONFIG_IP_FIB_TRIE_STATS
1360 t->stats.semantic_match_passed++;
1361 #endif
1362 return err;
1363 }
1364 if (fi->fib_flags & RTNH_F_DEAD)
1365 continue;
1366 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1367 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1368
1369 if (nh->nh_flags & RTNH_F_DEAD)
1370 continue;
1371 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1372 continue;
1373
1374 #ifdef CONFIG_IP_FIB_TRIE_STATS
1375 t->stats.semantic_match_passed++;
1376 #endif
1377 res->prefixlen = li->plen;
1378 res->nh_sel = nhsel;
1379 res->type = fa->fa_type;
1380 res->scope = fa->fa_info->fib_scope;
1381 res->fi = fi;
1382 res->table = tb;
1383 res->fa_head = &li->falh;
1384 if (!(fib_flags & FIB_LOOKUP_NOREF))
1385 atomic_inc(&fi->fib_clntref);
1386 return 0;
1387 }
1388 }
1389
1390 #ifdef CONFIG_IP_FIB_TRIE_STATS
1391 t->stats.semantic_match_miss++;
1392 #endif
1393 }
1394
1395 return 1;
1396 }
1397
1398 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1399 struct fib_result *res, int fib_flags)
1400 {
1401 struct trie *t = (struct trie *) tb->tb_data;
1402 int ret;
1403 struct rt_trie_node *n;
1404 struct tnode *pn;
1405 unsigned int pos, bits;
1406 t_key key = ntohl(flp->daddr);
1407 unsigned int chopped_off;
1408 t_key cindex = 0;
1409 unsigned int current_prefix_length = KEYLENGTH;
1410 struct tnode *cn;
1411 t_key pref_mismatch;
1412
1413 rcu_read_lock();
1414
1415 n = rcu_dereference(t->trie);
1416 if (!n)
1417 goto failed;
1418
1419 #ifdef CONFIG_IP_FIB_TRIE_STATS
1420 t->stats.gets++;
1421 #endif
1422
1423 /* Just a leaf? */
1424 if (IS_LEAF(n)) {
1425 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1426 goto found;
1427 }
1428
1429 pn = (struct tnode *) n;
1430 chopped_off = 0;
1431
1432 while (pn) {
1433 pos = pn->pos;
1434 bits = pn->bits;
1435
1436 if (!chopped_off)
1437 cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length),
1438 pos, bits);
1439
1440 n = tnode_get_child_rcu(pn, cindex);
1441
1442 if (n == NULL) {
1443 #ifdef CONFIG_IP_FIB_TRIE_STATS
1444 t->stats.null_node_hit++;
1445 #endif
1446 goto backtrace;
1447 }
1448
1449 if (IS_LEAF(n)) {
1450 ret = check_leaf(tb, t, (struct leaf *)n, key, flp, res, fib_flags);
1451 if (ret > 0)
1452 goto backtrace;
1453 goto found;
1454 }
1455
1456 cn = (struct tnode *)n;
1457
1458 /*
1459 * It's a tnode, and we can do some extra checks here if we
1460 * like, to avoid descending into a dead-end branch.
1461 * This tnode is in the parent's child array at index
1462 * key[p_pos..p_pos+p_bits] but potentially with some bits
1463 * chopped off, so in reality the index may be just a
1464 * subprefix, padded with zero at the end.
1465 * We can also take a look at any skipped bits in this
1466 * tnode - everything up to p_pos is supposed to be ok,
1467 * and the non-chopped bits of the index (se previous
1468 * paragraph) are also guaranteed ok, but the rest is
1469 * considered unknown.
1470 *
1471 * The skipped bits are key[pos+bits..cn->pos].
1472 */
1473
1474 /* If current_prefix_length < pos+bits, we are already doing
1475 * actual prefix matching, which means everything from
1476 * pos+(bits-chopped_off) onward must be zero along some
1477 * branch of this subtree - otherwise there is *no* valid
1478 * prefix present. Here we can only check the skipped
1479 * bits. Remember, since we have already indexed into the
1480 * parent's child array, we know that the bits we chopped of
1481 * *are* zero.
1482 */
1483
1484 /* NOTA BENE: Checking only skipped bits
1485 for the new node here */
1486
1487 if (current_prefix_length < pos+bits) {
1488 if (tkey_extract_bits(cn->key, current_prefix_length,
1489 cn->pos - current_prefix_length)
1490 || !(cn->child[0]))
1491 goto backtrace;
1492 }
1493
1494 /*
1495 * If chopped_off=0, the index is fully validated and we
1496 * only need to look at the skipped bits for this, the new,
1497 * tnode. What we actually want to do is to find out if
1498 * these skipped bits match our key perfectly, or if we will
1499 * have to count on finding a matching prefix further down,
1500 * because if we do, we would like to have some way of
1501 * verifying the existence of such a prefix at this point.
1502 */
1503
1504 /* The only thing we can do at this point is to verify that
1505 * any such matching prefix can indeed be a prefix to our
1506 * key, and if the bits in the node we are inspecting that
1507 * do not match our key are not ZERO, this cannot be true.
1508 * Thus, find out where there is a mismatch (before cn->pos)
1509 * and verify that all the mismatching bits are zero in the
1510 * new tnode's key.
1511 */
1512
1513 /*
1514 * Note: We aren't very concerned about the piece of
1515 * the key that precede pn->pos+pn->bits, since these
1516 * have already been checked. The bits after cn->pos
1517 * aren't checked since these are by definition
1518 * "unknown" at this point. Thus, what we want to see
1519 * is if we are about to enter the "prefix matching"
1520 * state, and in that case verify that the skipped
1521 * bits that will prevail throughout this subtree are
1522 * zero, as they have to be if we are to find a
1523 * matching prefix.
1524 */
1525
1526 pref_mismatch = mask_pfx(cn->key ^ key, cn->pos);
1527
1528 /*
1529 * In short: If skipped bits in this node do not match
1530 * the search key, enter the "prefix matching"
1531 * state.directly.
1532 */
1533 if (pref_mismatch) {
1534 /* fls(x) = __fls(x) + 1 */
1535 int mp = KEYLENGTH - __fls(pref_mismatch) - 1;
1536
1537 if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0)
1538 goto backtrace;
1539
1540 if (current_prefix_length >= cn->pos)
1541 current_prefix_length = mp;
1542 }
1543
1544 pn = (struct tnode *)n; /* Descend */
1545 chopped_off = 0;
1546 continue;
1547
1548 backtrace:
1549 chopped_off++;
1550
1551 /* As zero don't change the child key (cindex) */
1552 while ((chopped_off <= pn->bits)
1553 && !(cindex & (1<<(chopped_off-1))))
1554 chopped_off++;
1555
1556 /* Decrease current_... with bits chopped off */
1557 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1558 current_prefix_length = pn->pos + pn->bits
1559 - chopped_off;
1560
1561 /*
1562 * Either we do the actual chop off according or if we have
1563 * chopped off all bits in this tnode walk up to our parent.
1564 */
1565
1566 if (chopped_off <= pn->bits) {
1567 cindex &= ~(1 << (chopped_off-1));
1568 } else {
1569 struct tnode *parent = node_parent_rcu((struct rt_trie_node *) pn);
1570 if (!parent)
1571 goto failed;
1572
1573 /* Get Child's index */
1574 cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits);
1575 pn = parent;
1576 chopped_off = 0;
1577
1578 #ifdef CONFIG_IP_FIB_TRIE_STATS
1579 t->stats.backtrack++;
1580 #endif
1581 goto backtrace;
1582 }
1583 }
1584 failed:
1585 ret = 1;
1586 found:
1587 rcu_read_unlock();
1588 return ret;
1589 }
1590 EXPORT_SYMBOL_GPL(fib_table_lookup);
1591
1592 /*
1593 * Remove the leaf and return parent.
1594 */
1595 static void trie_leaf_remove(struct trie *t, struct leaf *l)
1596 {
1597 struct tnode *tp = node_parent((struct rt_trie_node *) l);
1598
1599 pr_debug("entering trie_leaf_remove(%p)\n", l);
1600
1601 if (tp) {
1602 t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits);
1603 put_child(tp, cindex, NULL);
1604 trie_rebalance(t, tp);
1605 } else
1606 RCU_INIT_POINTER(t->trie, NULL);
1607
1608 free_leaf(l);
1609 }
1610
1611 /*
1612 * Caller must hold RTNL.
1613 */
1614 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1615 {
1616 struct trie *t = (struct trie *) tb->tb_data;
1617 u32 key, mask;
1618 int plen = cfg->fc_dst_len;
1619 u8 tos = cfg->fc_tos;
1620 struct fib_alias *fa, *fa_to_delete;
1621 struct list_head *fa_head;
1622 struct leaf *l;
1623 struct leaf_info *li;
1624
1625 if (plen > 32)
1626 return -EINVAL;
1627
1628 key = ntohl(cfg->fc_dst);
1629 mask = ntohl(inet_make_mask(plen));
1630
1631 if (key & ~mask)
1632 return -EINVAL;
1633
1634 key = key & mask;
1635 l = fib_find_node(t, key);
1636
1637 if (!l)
1638 return -ESRCH;
1639
1640 li = find_leaf_info(l, plen);
1641
1642 if (!li)
1643 return -ESRCH;
1644
1645 fa_head = &li->falh;
1646 fa = fib_find_alias(fa_head, tos, 0);
1647
1648 if (!fa)
1649 return -ESRCH;
1650
1651 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1652
1653 fa_to_delete = NULL;
1654 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1655 list_for_each_entry_continue(fa, fa_head, fa_list) {
1656 struct fib_info *fi = fa->fa_info;
1657
1658 if (fa->fa_tos != tos)
1659 break;
1660
1661 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1662 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1663 fa->fa_info->fib_scope == cfg->fc_scope) &&
1664 (!cfg->fc_prefsrc ||
1665 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1666 (!cfg->fc_protocol ||
1667 fi->fib_protocol == cfg->fc_protocol) &&
1668 fib_nh_match(cfg, fi) == 0) {
1669 fa_to_delete = fa;
1670 break;
1671 }
1672 }
1673
1674 if (!fa_to_delete)
1675 return -ESRCH;
1676
1677 fa = fa_to_delete;
1678 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1679 &cfg->fc_nlinfo, 0);
1680
1681 list_del_rcu(&fa->fa_list);
1682
1683 if (!plen)
1684 tb->tb_num_default--;
1685
1686 if (list_empty(fa_head)) {
1687 hlist_del_rcu(&li->hlist);
1688 free_leaf_info(li);
1689 }
1690
1691 if (hlist_empty(&l->list))
1692 trie_leaf_remove(t, l);
1693
1694 if (fa->fa_state & FA_S_ACCESSED)
1695 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1696
1697 fib_release_info(fa->fa_info);
1698 alias_free_mem_rcu(fa);
1699 return 0;
1700 }
1701
1702 static int trie_flush_list(struct list_head *head)
1703 {
1704 struct fib_alias *fa, *fa_node;
1705 int found = 0;
1706
1707 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1708 struct fib_info *fi = fa->fa_info;
1709
1710 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1711 list_del_rcu(&fa->fa_list);
1712 fib_release_info(fa->fa_info);
1713 alias_free_mem_rcu(fa);
1714 found++;
1715 }
1716 }
1717 return found;
1718 }
1719
1720 static int trie_flush_leaf(struct leaf *l)
1721 {
1722 int found = 0;
1723 struct hlist_head *lih = &l->list;
1724 struct hlist_node *tmp;
1725 struct leaf_info *li = NULL;
1726
1727 hlist_for_each_entry_safe(li, tmp, lih, hlist) {
1728 found += trie_flush_list(&li->falh);
1729
1730 if (list_empty(&li->falh)) {
1731 hlist_del_rcu(&li->hlist);
1732 free_leaf_info(li);
1733 }
1734 }
1735 return found;
1736 }
1737
1738 /*
1739 * Scan for the next right leaf starting at node p->child[idx]
1740 * Since we have back pointer, no recursion necessary.
1741 */
1742 static struct leaf *leaf_walk_rcu(struct tnode *p, struct rt_trie_node *c)
1743 {
1744 do {
1745 t_key idx;
1746
1747 if (c)
1748 idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1;
1749 else
1750 idx = 0;
1751
1752 while (idx < 1u << p->bits) {
1753 c = tnode_get_child_rcu(p, idx++);
1754 if (!c)
1755 continue;
1756
1757 if (IS_LEAF(c))
1758 return (struct leaf *) c;
1759
1760 /* Rescan start scanning in new node */
1761 p = (struct tnode *) c;
1762 idx = 0;
1763 }
1764
1765 /* Node empty, walk back up to parent */
1766 c = (struct rt_trie_node *) p;
1767 } while ((p = node_parent_rcu(c)) != NULL);
1768
1769 return NULL; /* Root of trie */
1770 }
1771
1772 static struct leaf *trie_firstleaf(struct trie *t)
1773 {
1774 struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie);
1775
1776 if (!n)
1777 return NULL;
1778
1779 if (IS_LEAF(n)) /* trie is just a leaf */
1780 return (struct leaf *) n;
1781
1782 return leaf_walk_rcu(n, NULL);
1783 }
1784
1785 static struct leaf *trie_nextleaf(struct leaf *l)
1786 {
1787 struct rt_trie_node *c = (struct rt_trie_node *) l;
1788 struct tnode *p = node_parent_rcu(c);
1789
1790 if (!p)
1791 return NULL; /* trie with just one leaf */
1792
1793 return leaf_walk_rcu(p, c);
1794 }
1795
1796 static struct leaf *trie_leafindex(struct trie *t, int index)
1797 {
1798 struct leaf *l = trie_firstleaf(t);
1799
1800 while (l && index-- > 0)
1801 l = trie_nextleaf(l);
1802
1803 return l;
1804 }
1805
1806
1807 /*
1808 * Caller must hold RTNL.
1809 */
1810 int fib_table_flush(struct fib_table *tb)
1811 {
1812 struct trie *t = (struct trie *) tb->tb_data;
1813 struct leaf *l, *ll = NULL;
1814 int found = 0;
1815
1816 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1817 found += trie_flush_leaf(l);
1818
1819 if (ll && hlist_empty(&ll->list))
1820 trie_leaf_remove(t, ll);
1821 ll = l;
1822 }
1823
1824 if (ll && hlist_empty(&ll->list))
1825 trie_leaf_remove(t, ll);
1826
1827 pr_debug("trie_flush found=%d\n", found);
1828 return found;
1829 }
1830
1831 void fib_free_table(struct fib_table *tb)
1832 {
1833 kfree(tb);
1834 }
1835
1836 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1837 struct fib_table *tb,
1838 struct sk_buff *skb, struct netlink_callback *cb)
1839 {
1840 int i, s_i;
1841 struct fib_alias *fa;
1842 __be32 xkey = htonl(key);
1843
1844 s_i = cb->args[5];
1845 i = 0;
1846
1847 /* rcu_read_lock is hold by caller */
1848
1849 list_for_each_entry_rcu(fa, fah, fa_list) {
1850 if (i < s_i) {
1851 i++;
1852 continue;
1853 }
1854
1855 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1856 cb->nlh->nlmsg_seq,
1857 RTM_NEWROUTE,
1858 tb->tb_id,
1859 fa->fa_type,
1860 xkey,
1861 plen,
1862 fa->fa_tos,
1863 fa->fa_info, NLM_F_MULTI) < 0) {
1864 cb->args[5] = i;
1865 return -1;
1866 }
1867 i++;
1868 }
1869 cb->args[5] = i;
1870 return skb->len;
1871 }
1872
1873 static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb,
1874 struct sk_buff *skb, struct netlink_callback *cb)
1875 {
1876 struct leaf_info *li;
1877 int i, s_i;
1878
1879 s_i = cb->args[4];
1880 i = 0;
1881
1882 /* rcu_read_lock is hold by caller */
1883 hlist_for_each_entry_rcu(li, &l->list, hlist) {
1884 if (i < s_i) {
1885 i++;
1886 continue;
1887 }
1888
1889 if (i > s_i)
1890 cb->args[5] = 0;
1891
1892 if (list_empty(&li->falh))
1893 continue;
1894
1895 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1896 cb->args[4] = i;
1897 return -1;
1898 }
1899 i++;
1900 }
1901
1902 cb->args[4] = i;
1903 return skb->len;
1904 }
1905
1906 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1907 struct netlink_callback *cb)
1908 {
1909 struct leaf *l;
1910 struct trie *t = (struct trie *) tb->tb_data;
1911 t_key key = cb->args[2];
1912 int count = cb->args[3];
1913
1914 rcu_read_lock();
1915 /* Dump starting at last key.
1916 * Note: 0.0.0.0/0 (ie default) is first key.
1917 */
1918 if (count == 0)
1919 l = trie_firstleaf(t);
1920 else {
1921 /* Normally, continue from last key, but if that is missing
1922 * fallback to using slow rescan
1923 */
1924 l = fib_find_node(t, key);
1925 if (!l)
1926 l = trie_leafindex(t, count);
1927 }
1928
1929 while (l) {
1930 cb->args[2] = l->key;
1931 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1932 cb->args[3] = count;
1933 rcu_read_unlock();
1934 return -1;
1935 }
1936
1937 ++count;
1938 l = trie_nextleaf(l);
1939 memset(&cb->args[4], 0,
1940 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1941 }
1942 cb->args[3] = count;
1943 rcu_read_unlock();
1944
1945 return skb->len;
1946 }
1947
1948 void __init fib_trie_init(void)
1949 {
1950 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1951 sizeof(struct fib_alias),
1952 0, SLAB_PANIC, NULL);
1953
1954 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1955 max(sizeof(struct leaf),
1956 sizeof(struct leaf_info)),
1957 0, SLAB_PANIC, NULL);
1958 }
1959
1960
1961 struct fib_table *fib_trie_table(u32 id)
1962 {
1963 struct fib_table *tb;
1964 struct trie *t;
1965
1966 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1967 GFP_KERNEL);
1968 if (tb == NULL)
1969 return NULL;
1970
1971 tb->tb_id = id;
1972 tb->tb_default = -1;
1973 tb->tb_num_default = 0;
1974
1975 t = (struct trie *) tb->tb_data;
1976 memset(t, 0, sizeof(*t));
1977
1978 return tb;
1979 }
1980
1981 #ifdef CONFIG_PROC_FS
1982 /* Depth first Trie walk iterator */
1983 struct fib_trie_iter {
1984 struct seq_net_private p;
1985 struct fib_table *tb;
1986 struct tnode *tnode;
1987 unsigned int index;
1988 unsigned int depth;
1989 };
1990
1991 static struct rt_trie_node *fib_trie_get_next(struct fib_trie_iter *iter)
1992 {
1993 struct tnode *tn = iter->tnode;
1994 unsigned int cindex = iter->index;
1995 struct tnode *p;
1996
1997 /* A single entry routing table */
1998 if (!tn)
1999 return NULL;
2000
2001 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2002 iter->tnode, iter->index, iter->depth);
2003 rescan:
2004 while (cindex < (1<<tn->bits)) {
2005 struct rt_trie_node *n = tnode_get_child_rcu(tn, cindex);
2006
2007 if (n) {
2008 if (IS_LEAF(n)) {
2009 iter->tnode = tn;
2010 iter->index = cindex + 1;
2011 } else {
2012 /* push down one level */
2013 iter->tnode = (struct tnode *) n;
2014 iter->index = 0;
2015 ++iter->depth;
2016 }
2017 return n;
2018 }
2019
2020 ++cindex;
2021 }
2022
2023 /* Current node exhausted, pop back up */
2024 p = node_parent_rcu((struct rt_trie_node *)tn);
2025 if (p) {
2026 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2027 tn = p;
2028 --iter->depth;
2029 goto rescan;
2030 }
2031
2032 /* got root? */
2033 return NULL;
2034 }
2035
2036 static struct rt_trie_node *fib_trie_get_first(struct fib_trie_iter *iter,
2037 struct trie *t)
2038 {
2039 struct rt_trie_node *n;
2040
2041 if (!t)
2042 return NULL;
2043
2044 n = rcu_dereference(t->trie);
2045 if (!n)
2046 return NULL;
2047
2048 if (IS_TNODE(n)) {
2049 iter->tnode = (struct tnode *) n;
2050 iter->index = 0;
2051 iter->depth = 1;
2052 } else {
2053 iter->tnode = NULL;
2054 iter->index = 0;
2055 iter->depth = 0;
2056 }
2057
2058 return n;
2059 }
2060
2061 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2062 {
2063 struct rt_trie_node *n;
2064 struct fib_trie_iter iter;
2065
2066 memset(s, 0, sizeof(*s));
2067
2068 rcu_read_lock();
2069 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2070 if (IS_LEAF(n)) {
2071 struct leaf *l = (struct leaf *)n;
2072 struct leaf_info *li;
2073
2074 s->leaves++;
2075 s->totdepth += iter.depth;
2076 if (iter.depth > s->maxdepth)
2077 s->maxdepth = iter.depth;
2078
2079 hlist_for_each_entry_rcu(li, &l->list, hlist)
2080 ++s->prefixes;
2081 } else {
2082 const struct tnode *tn = (const struct tnode *) n;
2083 int i;
2084
2085 s->tnodes++;
2086 if (tn->bits < MAX_STAT_DEPTH)
2087 s->nodesizes[tn->bits]++;
2088
2089 for (i = 0; i < (1<<tn->bits); i++)
2090 if (!tn->child[i])
2091 s->nullpointers++;
2092 }
2093 }
2094 rcu_read_unlock();
2095 }
2096
2097 /*
2098 * This outputs /proc/net/fib_triestats
2099 */
2100 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2101 {
2102 unsigned int i, max, pointers, bytes, avdepth;
2103
2104 if (stat->leaves)
2105 avdepth = stat->totdepth*100 / stat->leaves;
2106 else
2107 avdepth = 0;
2108
2109 seq_printf(seq, "\tAver depth: %u.%02d\n",
2110 avdepth / 100, avdepth % 100);
2111 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2112
2113 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2114 bytes = sizeof(struct leaf) * stat->leaves;
2115
2116 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
2117 bytes += sizeof(struct leaf_info) * stat->prefixes;
2118
2119 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2120 bytes += sizeof(struct tnode) * stat->tnodes;
2121
2122 max = MAX_STAT_DEPTH;
2123 while (max > 0 && stat->nodesizes[max-1] == 0)
2124 max--;
2125
2126 pointers = 0;
2127 for (i = 1; i < max; i++)
2128 if (stat->nodesizes[i] != 0) {
2129 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
2130 pointers += (1<<i) * stat->nodesizes[i];
2131 }
2132 seq_putc(seq, '\n');
2133 seq_printf(seq, "\tPointers: %u\n", pointers);
2134
2135 bytes += sizeof(struct rt_trie_node *) * pointers;
2136 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2137 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
2138 }
2139
2140 #ifdef CONFIG_IP_FIB_TRIE_STATS
2141 static void trie_show_usage(struct seq_file *seq,
2142 const struct trie_use_stats *stats)
2143 {
2144 seq_printf(seq, "\nCounters:\n---------\n");
2145 seq_printf(seq, "gets = %u\n", stats->gets);
2146 seq_printf(seq, "backtracks = %u\n", stats->backtrack);
2147 seq_printf(seq, "semantic match passed = %u\n",
2148 stats->semantic_match_passed);
2149 seq_printf(seq, "semantic match miss = %u\n",
2150 stats->semantic_match_miss);
2151 seq_printf(seq, "null node hit= %u\n", stats->null_node_hit);
2152 seq_printf(seq, "skipped node resize = %u\n\n",
2153 stats->resize_node_skipped);
2154 }
2155 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2156
2157 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2158 {
2159 if (tb->tb_id == RT_TABLE_LOCAL)
2160 seq_puts(seq, "Local:\n");
2161 else if (tb->tb_id == RT_TABLE_MAIN)
2162 seq_puts(seq, "Main:\n");
2163 else
2164 seq_printf(seq, "Id %d:\n", tb->tb_id);
2165 }
2166
2167
2168 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2169 {
2170 struct net *net = (struct net *)seq->private;
2171 unsigned int h;
2172
2173 seq_printf(seq,
2174 "Basic info: size of leaf:"
2175 " %Zd bytes, size of tnode: %Zd bytes.\n",
2176 sizeof(struct leaf), sizeof(struct tnode));
2177
2178 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2179 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2180 struct fib_table *tb;
2181
2182 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2183 struct trie *t = (struct trie *) tb->tb_data;
2184 struct trie_stat stat;
2185
2186 if (!t)
2187 continue;
2188
2189 fib_table_print(seq, tb);
2190
2191 trie_collect_stats(t, &stat);
2192 trie_show_stats(seq, &stat);
2193 #ifdef CONFIG_IP_FIB_TRIE_STATS
2194 trie_show_usage(seq, &t->stats);
2195 #endif
2196 }
2197 }
2198
2199 return 0;
2200 }
2201
2202 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2203 {
2204 return single_open_net(inode, file, fib_triestat_seq_show);
2205 }
2206
2207 static const struct file_operations fib_triestat_fops = {
2208 .owner = THIS_MODULE,
2209 .open = fib_triestat_seq_open,
2210 .read = seq_read,
2211 .llseek = seq_lseek,
2212 .release = single_release_net,
2213 };
2214
2215 static struct rt_trie_node *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2216 {
2217 struct fib_trie_iter *iter = seq->private;
2218 struct net *net = seq_file_net(seq);
2219 loff_t idx = 0;
2220 unsigned int h;
2221
2222 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2223 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2224 struct fib_table *tb;
2225
2226 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2227 struct rt_trie_node *n;
2228
2229 for (n = fib_trie_get_first(iter,
2230 (struct trie *) tb->tb_data);
2231 n; n = fib_trie_get_next(iter))
2232 if (pos == idx++) {
2233 iter->tb = tb;
2234 return n;
2235 }
2236 }
2237 }
2238
2239 return NULL;
2240 }
2241
2242 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2243 __acquires(RCU)
2244 {
2245 rcu_read_lock();
2246 return fib_trie_get_idx(seq, *pos);
2247 }
2248
2249 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2250 {
2251 struct fib_trie_iter *iter = seq->private;
2252 struct net *net = seq_file_net(seq);
2253 struct fib_table *tb = iter->tb;
2254 struct hlist_node *tb_node;
2255 unsigned int h;
2256 struct rt_trie_node *n;
2257
2258 ++*pos;
2259 /* next node in same table */
2260 n = fib_trie_get_next(iter);
2261 if (n)
2262 return n;
2263
2264 /* walk rest of this hash chain */
2265 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2266 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2267 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2268 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2269 if (n)
2270 goto found;
2271 }
2272
2273 /* new hash chain */
2274 while (++h < FIB_TABLE_HASHSZ) {
2275 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2276 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2277 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2278 if (n)
2279 goto found;
2280 }
2281 }
2282 return NULL;
2283
2284 found:
2285 iter->tb = tb;
2286 return n;
2287 }
2288
2289 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2290 __releases(RCU)
2291 {
2292 rcu_read_unlock();
2293 }
2294
2295 static void seq_indent(struct seq_file *seq, int n)
2296 {
2297 while (n-- > 0)
2298 seq_puts(seq, " ");
2299 }
2300
2301 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2302 {
2303 switch (s) {
2304 case RT_SCOPE_UNIVERSE: return "universe";
2305 case RT_SCOPE_SITE: return "site";
2306 case RT_SCOPE_LINK: return "link";
2307 case RT_SCOPE_HOST: return "host";
2308 case RT_SCOPE_NOWHERE: return "nowhere";
2309 default:
2310 snprintf(buf, len, "scope=%d", s);
2311 return buf;
2312 }
2313 }
2314
2315 static const char *const rtn_type_names[__RTN_MAX] = {
2316 [RTN_UNSPEC] = "UNSPEC",
2317 [RTN_UNICAST] = "UNICAST",
2318 [RTN_LOCAL] = "LOCAL",
2319 [RTN_BROADCAST] = "BROADCAST",
2320 [RTN_ANYCAST] = "ANYCAST",
2321 [RTN_MULTICAST] = "MULTICAST",
2322 [RTN_BLACKHOLE] = "BLACKHOLE",
2323 [RTN_UNREACHABLE] = "UNREACHABLE",
2324 [RTN_PROHIBIT] = "PROHIBIT",
2325 [RTN_THROW] = "THROW",
2326 [RTN_NAT] = "NAT",
2327 [RTN_XRESOLVE] = "XRESOLVE",
2328 };
2329
2330 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2331 {
2332 if (t < __RTN_MAX && rtn_type_names[t])
2333 return rtn_type_names[t];
2334 snprintf(buf, len, "type %u", t);
2335 return buf;
2336 }
2337
2338 /* Pretty print the trie */
2339 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2340 {
2341 const struct fib_trie_iter *iter = seq->private;
2342 struct rt_trie_node *n = v;
2343
2344 if (!node_parent_rcu(n))
2345 fib_table_print(seq, iter->tb);
2346
2347 if (IS_TNODE(n)) {
2348 struct tnode *tn = (struct tnode *) n;
2349 __be32 prf = htonl(mask_pfx(tn->key, tn->pos));
2350
2351 seq_indent(seq, iter->depth-1);
2352 seq_printf(seq, " +-- %pI4/%d %d %d %d\n",
2353 &prf, tn->pos, tn->bits, tn->full_children,
2354 tn->empty_children);
2355
2356 } else {
2357 struct leaf *l = (struct leaf *) n;
2358 struct leaf_info *li;
2359 __be32 val = htonl(l->key);
2360
2361 seq_indent(seq, iter->depth);
2362 seq_printf(seq, " |-- %pI4\n", &val);
2363
2364 hlist_for_each_entry_rcu(li, &l->list, hlist) {
2365 struct fib_alias *fa;
2366
2367 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2368 char buf1[32], buf2[32];
2369
2370 seq_indent(seq, iter->depth+1);
2371 seq_printf(seq, " /%d %s %s", li->plen,
2372 rtn_scope(buf1, sizeof(buf1),
2373 fa->fa_info->fib_scope),
2374 rtn_type(buf2, sizeof(buf2),
2375 fa->fa_type));
2376 if (fa->fa_tos)
2377 seq_printf(seq, " tos=%d", fa->fa_tos);
2378 seq_putc(seq, '\n');
2379 }
2380 }
2381 }
2382
2383 return 0;
2384 }
2385
2386 static const struct seq_operations fib_trie_seq_ops = {
2387 .start = fib_trie_seq_start,
2388 .next = fib_trie_seq_next,
2389 .stop = fib_trie_seq_stop,
2390 .show = fib_trie_seq_show,
2391 };
2392
2393 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2394 {
2395 return seq_open_net(inode, file, &fib_trie_seq_ops,
2396 sizeof(struct fib_trie_iter));
2397 }
2398
2399 static const struct file_operations fib_trie_fops = {
2400 .owner = THIS_MODULE,
2401 .open = fib_trie_seq_open,
2402 .read = seq_read,
2403 .llseek = seq_lseek,
2404 .release = seq_release_net,
2405 };
2406
2407 struct fib_route_iter {
2408 struct seq_net_private p;
2409 struct trie *main_trie;
2410 loff_t pos;
2411 t_key key;
2412 };
2413
2414 static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2415 {
2416 struct leaf *l = NULL;
2417 struct trie *t = iter->main_trie;
2418
2419 /* use cache location of last found key */
2420 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2421 pos -= iter->pos;
2422 else {
2423 iter->pos = 0;
2424 l = trie_firstleaf(t);
2425 }
2426
2427 while (l && pos-- > 0) {
2428 iter->pos++;
2429 l = trie_nextleaf(l);
2430 }
2431
2432 if (l)
2433 iter->key = pos; /* remember it */
2434 else
2435 iter->pos = 0; /* forget it */
2436
2437 return l;
2438 }
2439
2440 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2441 __acquires(RCU)
2442 {
2443 struct fib_route_iter *iter = seq->private;
2444 struct fib_table *tb;
2445
2446 rcu_read_lock();
2447 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2448 if (!tb)
2449 return NULL;
2450
2451 iter->main_trie = (struct trie *) tb->tb_data;
2452 if (*pos == 0)
2453 return SEQ_START_TOKEN;
2454 else
2455 return fib_route_get_idx(iter, *pos - 1);
2456 }
2457
2458 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2459 {
2460 struct fib_route_iter *iter = seq->private;
2461 struct leaf *l = v;
2462
2463 ++*pos;
2464 if (v == SEQ_START_TOKEN) {
2465 iter->pos = 0;
2466 l = trie_firstleaf(iter->main_trie);
2467 } else {
2468 iter->pos++;
2469 l = trie_nextleaf(l);
2470 }
2471
2472 if (l)
2473 iter->key = l->key;
2474 else
2475 iter->pos = 0;
2476 return l;
2477 }
2478
2479 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2480 __releases(RCU)
2481 {
2482 rcu_read_unlock();
2483 }
2484
2485 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2486 {
2487 unsigned int flags = 0;
2488
2489 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2490 flags = RTF_REJECT;
2491 if (fi && fi->fib_nh->nh_gw)
2492 flags |= RTF_GATEWAY;
2493 if (mask == htonl(0xFFFFFFFF))
2494 flags |= RTF_HOST;
2495 flags |= RTF_UP;
2496 return flags;
2497 }
2498
2499 /*
2500 * This outputs /proc/net/route.
2501 * The format of the file is not supposed to be changed
2502 * and needs to be same as fib_hash output to avoid breaking
2503 * legacy utilities
2504 */
2505 static int fib_route_seq_show(struct seq_file *seq, void *v)
2506 {
2507 struct leaf *l = v;
2508 struct leaf_info *li;
2509
2510 if (v == SEQ_START_TOKEN) {
2511 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2512 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2513 "\tWindow\tIRTT");
2514 return 0;
2515 }
2516
2517 hlist_for_each_entry_rcu(li, &l->list, hlist) {
2518 struct fib_alias *fa;
2519 __be32 mask, prefix;
2520
2521 mask = inet_make_mask(li->plen);
2522 prefix = htonl(l->key);
2523
2524 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2525 const struct fib_info *fi = fa->fa_info;
2526 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2527
2528 if (fa->fa_type == RTN_BROADCAST
2529 || fa->fa_type == RTN_MULTICAST)
2530 continue;
2531
2532 seq_setwidth(seq, 127);
2533
2534 if (fi)
2535 seq_printf(seq,
2536 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2537 "%d\t%08X\t%d\t%u\t%u",
2538 fi->fib_dev ? fi->fib_dev->name : "*",
2539 prefix,
2540 fi->fib_nh->nh_gw, flags, 0, 0,
2541 fi->fib_priority,
2542 mask,
2543 (fi->fib_advmss ?
2544 fi->fib_advmss + 40 : 0),
2545 fi->fib_window,
2546 fi->fib_rtt >> 3);
2547 else
2548 seq_printf(seq,
2549 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2550 "%d\t%08X\t%d\t%u\t%u",
2551 prefix, 0, flags, 0, 0, 0,
2552 mask, 0, 0, 0);
2553
2554 seq_pad(seq, '\n');
2555 }
2556 }
2557
2558 return 0;
2559 }
2560
2561 static const struct seq_operations fib_route_seq_ops = {
2562 .start = fib_route_seq_start,
2563 .next = fib_route_seq_next,
2564 .stop = fib_route_seq_stop,
2565 .show = fib_route_seq_show,
2566 };
2567
2568 static int fib_route_seq_open(struct inode *inode, struct file *file)
2569 {
2570 return seq_open_net(inode, file, &fib_route_seq_ops,
2571 sizeof(struct fib_route_iter));
2572 }
2573
2574 static const struct file_operations fib_route_fops = {
2575 .owner = THIS_MODULE,
2576 .open = fib_route_seq_open,
2577 .read = seq_read,
2578 .llseek = seq_lseek,
2579 .release = seq_release_net,
2580 };
2581
2582 int __net_init fib_proc_init(struct net *net)
2583 {
2584 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2585 goto out1;
2586
2587 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2588 &fib_triestat_fops))
2589 goto out2;
2590
2591 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2592 goto out3;
2593
2594 return 0;
2595
2596 out3:
2597 remove_proc_entry("fib_triestat", net->proc_net);
2598 out2:
2599 remove_proc_entry("fib_trie", net->proc_net);
2600 out1:
2601 return -ENOMEM;
2602 }
2603
2604 void __net_exit fib_proc_exit(struct net *net)
2605 {
2606 remove_proc_entry("fib_trie", net->proc_net);
2607 remove_proc_entry("fib_triestat", net->proc_net);
2608 remove_proc_entry("route", net->proc_net);
2609 }
2610
2611 #endif /* CONFIG_PROC_FS */
This page took 0.088653 seconds and 5 git commands to generate.