fib_trie: Remove checks for index >= tnode_child_length from tnode_get_child
[deliverable/linux.git] / net / ipv4 / fib_trie.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
12 *
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally described in:
16 *
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 *
26 * Code from fib_hash has been reused which includes the following header:
27 *
28 *
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
32 *
33 * IPv4 FIB: lookup engine and maintenance routines.
34 *
35 *
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
37 *
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
42 *
43 * Substantial contributions to this work comes from:
44 *
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
49 */
50
51 #define VERSION "0.409"
52
53 #include <asm/uaccess.h>
54 #include <linux/bitops.h>
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/mm.h>
58 #include <linux/string.h>
59 #include <linux/socket.h>
60 #include <linux/sockios.h>
61 #include <linux/errno.h>
62 #include <linux/in.h>
63 #include <linux/inet.h>
64 #include <linux/inetdevice.h>
65 #include <linux/netdevice.h>
66 #include <linux/if_arp.h>
67 #include <linux/proc_fs.h>
68 #include <linux/rcupdate.h>
69 #include <linux/skbuff.h>
70 #include <linux/netlink.h>
71 #include <linux/init.h>
72 #include <linux/list.h>
73 #include <linux/slab.h>
74 #include <linux/export.h>
75 #include <net/net_namespace.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
83
84 #define MAX_STAT_DEPTH 32
85
86 #define KEYLENGTH (8*sizeof(t_key))
87
88 typedef unsigned int t_key;
89
90 #define IS_TNODE(n) ((n)->bits)
91 #define IS_LEAF(n) (!(n)->bits)
92
93 #define get_index(_key, _kv) (((_key) ^ (_kv)->key) >> (_kv)->pos)
94
95 struct tnode {
96 t_key key;
97 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
98 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
99 struct tnode __rcu *parent;
100 struct rcu_head rcu;
101 union {
102 /* The fields in this struct are valid if bits > 0 (TNODE) */
103 struct {
104 unsigned int full_children; /* KEYLENGTH bits needed */
105 unsigned int empty_children; /* KEYLENGTH bits needed */
106 struct tnode __rcu *child[0];
107 };
108 /* This list pointer if valid if bits == 0 (LEAF) */
109 struct hlist_head list;
110 };
111 };
112
113 struct leaf_info {
114 struct hlist_node hlist;
115 int plen;
116 u32 mask_plen; /* ntohl(inet_make_mask(plen)) */
117 struct list_head falh;
118 struct rcu_head rcu;
119 };
120
121 #ifdef CONFIG_IP_FIB_TRIE_STATS
122 struct trie_use_stats {
123 unsigned int gets;
124 unsigned int backtrack;
125 unsigned int semantic_match_passed;
126 unsigned int semantic_match_miss;
127 unsigned int null_node_hit;
128 unsigned int resize_node_skipped;
129 };
130 #endif
131
132 struct trie_stat {
133 unsigned int totdepth;
134 unsigned int maxdepth;
135 unsigned int tnodes;
136 unsigned int leaves;
137 unsigned int nullpointers;
138 unsigned int prefixes;
139 unsigned int nodesizes[MAX_STAT_DEPTH];
140 };
141
142 struct trie {
143 struct tnode __rcu *trie;
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 struct trie_use_stats __percpu *stats;
146 #endif
147 };
148
149 static void resize(struct trie *t, struct tnode *tn);
150 static size_t tnode_free_size;
151
152 /*
153 * synchronize_rcu after call_rcu for that many pages; it should be especially
154 * useful before resizing the root node with PREEMPT_NONE configs; the value was
155 * obtained experimentally, aiming to avoid visible slowdown.
156 */
157 static const int sync_pages = 128;
158
159 static struct kmem_cache *fn_alias_kmem __read_mostly;
160 static struct kmem_cache *trie_leaf_kmem __read_mostly;
161
162 /* caller must hold RTNL */
163 #define node_parent(n) rtnl_dereference((n)->parent)
164
165 /* caller must hold RCU read lock or RTNL */
166 #define node_parent_rcu(n) rcu_dereference_rtnl((n)->parent)
167
168 /* wrapper for rcu_assign_pointer */
169 static inline void node_set_parent(struct tnode *n, struct tnode *tp)
170 {
171 if (n)
172 rcu_assign_pointer(n->parent, tp);
173 }
174
175 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER((n)->parent, p)
176
177 /* This provides us with the number of children in this node, in the case of a
178 * leaf this will return 0 meaning none of the children are accessible.
179 */
180 static inline unsigned long tnode_child_length(const struct tnode *tn)
181 {
182 return (1ul << tn->bits) & ~(1ul);
183 }
184
185 /* caller must hold RTNL */
186 static inline struct tnode *tnode_get_child(const struct tnode *tn,
187 unsigned long i)
188 {
189 return rtnl_dereference(tn->child[i]);
190 }
191
192 /* caller must hold RCU read lock or RTNL */
193 static inline struct tnode *tnode_get_child_rcu(const struct tnode *tn,
194 unsigned long i)
195 {
196 return rcu_dereference_rtnl(tn->child[i]);
197 }
198
199 /* To understand this stuff, an understanding of keys and all their bits is
200 * necessary. Every node in the trie has a key associated with it, but not
201 * all of the bits in that key are significant.
202 *
203 * Consider a node 'n' and its parent 'tp'.
204 *
205 * If n is a leaf, every bit in its key is significant. Its presence is
206 * necessitated by path compression, since during a tree traversal (when
207 * searching for a leaf - unless we are doing an insertion) we will completely
208 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
209 * a potentially successful search, that we have indeed been walking the
210 * correct key path.
211 *
212 * Note that we can never "miss" the correct key in the tree if present by
213 * following the wrong path. Path compression ensures that segments of the key
214 * that are the same for all keys with a given prefix are skipped, but the
215 * skipped part *is* identical for each node in the subtrie below the skipped
216 * bit! trie_insert() in this implementation takes care of that.
217 *
218 * if n is an internal node - a 'tnode' here, the various parts of its key
219 * have many different meanings.
220 *
221 * Example:
222 * _________________________________________________________________
223 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
224 * -----------------------------------------------------------------
225 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
226 *
227 * _________________________________________________________________
228 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
229 * -----------------------------------------------------------------
230 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
231 *
232 * tp->pos = 22
233 * tp->bits = 3
234 * n->pos = 13
235 * n->bits = 4
236 *
237 * First, let's just ignore the bits that come before the parent tp, that is
238 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
239 * point we do not use them for anything.
240 *
241 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
242 * index into the parent's child array. That is, they will be used to find
243 * 'n' among tp's children.
244 *
245 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
246 * for the node n.
247 *
248 * All the bits we have seen so far are significant to the node n. The rest
249 * of the bits are really not needed or indeed known in n->key.
250 *
251 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
252 * n's child array, and will of course be different for each child.
253 *
254 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
255 * at this point.
256 */
257
258 static const int halve_threshold = 25;
259 static const int inflate_threshold = 50;
260 static const int halve_threshold_root = 15;
261 static const int inflate_threshold_root = 30;
262
263 static void __alias_free_mem(struct rcu_head *head)
264 {
265 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
266 kmem_cache_free(fn_alias_kmem, fa);
267 }
268
269 static inline void alias_free_mem_rcu(struct fib_alias *fa)
270 {
271 call_rcu(&fa->rcu, __alias_free_mem);
272 }
273
274 #define TNODE_KMALLOC_MAX \
275 ilog2((PAGE_SIZE - sizeof(struct tnode)) / sizeof(struct tnode *))
276
277 static void __node_free_rcu(struct rcu_head *head)
278 {
279 struct tnode *n = container_of(head, struct tnode, rcu);
280
281 if (IS_LEAF(n))
282 kmem_cache_free(trie_leaf_kmem, n);
283 else if (n->bits <= TNODE_KMALLOC_MAX)
284 kfree(n);
285 else
286 vfree(n);
287 }
288
289 #define node_free(n) call_rcu(&n->rcu, __node_free_rcu)
290
291 static inline void free_leaf_info(struct leaf_info *leaf)
292 {
293 kfree_rcu(leaf, rcu);
294 }
295
296 static struct tnode *tnode_alloc(size_t size)
297 {
298 if (size <= PAGE_SIZE)
299 return kzalloc(size, GFP_KERNEL);
300 else
301 return vzalloc(size);
302 }
303
304 static struct tnode *leaf_new(t_key key)
305 {
306 struct tnode *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
307 if (l) {
308 l->parent = NULL;
309 /* set key and pos to reflect full key value
310 * any trailing zeros in the key should be ignored
311 * as the nodes are searched
312 */
313 l->key = key;
314 l->pos = 0;
315 /* set bits to 0 indicating we are not a tnode */
316 l->bits = 0;
317
318 INIT_HLIST_HEAD(&l->list);
319 }
320 return l;
321 }
322
323 static struct leaf_info *leaf_info_new(int plen)
324 {
325 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
326 if (li) {
327 li->plen = plen;
328 li->mask_plen = ntohl(inet_make_mask(plen));
329 INIT_LIST_HEAD(&li->falh);
330 }
331 return li;
332 }
333
334 static struct tnode *tnode_new(t_key key, int pos, int bits)
335 {
336 size_t sz = offsetof(struct tnode, child[1 << bits]);
337 struct tnode *tn = tnode_alloc(sz);
338 unsigned int shift = pos + bits;
339
340 /* verify bits and pos their msb bits clear and values are valid */
341 BUG_ON(!bits || (shift > KEYLENGTH));
342
343 if (tn) {
344 tn->parent = NULL;
345 tn->pos = pos;
346 tn->bits = bits;
347 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
348 tn->full_children = 0;
349 tn->empty_children = 1<<bits;
350 }
351
352 pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode),
353 sizeof(struct tnode *) << bits);
354 return tn;
355 }
356
357 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
358 * and no bits are skipped. See discussion in dyntree paper p. 6
359 */
360 static inline int tnode_full(const struct tnode *tn, const struct tnode *n)
361 {
362 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
363 }
364
365 /* Add a child at position i overwriting the old value.
366 * Update the value of full_children and empty_children.
367 */
368 static void put_child(struct tnode *tn, unsigned long i, struct tnode *n)
369 {
370 struct tnode *chi = tnode_get_child(tn, i);
371 int isfull, wasfull;
372
373 BUG_ON(i >= tnode_child_length(tn));
374
375 /* update emptyChildren */
376 if (n == NULL && chi != NULL)
377 tn->empty_children++;
378 else if (n != NULL && chi == NULL)
379 tn->empty_children--;
380
381 /* update fullChildren */
382 wasfull = tnode_full(tn, chi);
383 isfull = tnode_full(tn, n);
384
385 if (wasfull && !isfull)
386 tn->full_children--;
387 else if (!wasfull && isfull)
388 tn->full_children++;
389
390 rcu_assign_pointer(tn->child[i], n);
391 }
392
393 static void put_child_root(struct tnode *tp, struct trie *t,
394 t_key key, struct tnode *n)
395 {
396 if (tp)
397 put_child(tp, get_index(key, tp), n);
398 else
399 rcu_assign_pointer(t->trie, n);
400 }
401
402 static inline void tnode_free_init(struct tnode *tn)
403 {
404 tn->rcu.next = NULL;
405 }
406
407 static inline void tnode_free_append(struct tnode *tn, struct tnode *n)
408 {
409 n->rcu.next = tn->rcu.next;
410 tn->rcu.next = &n->rcu;
411 }
412
413 static void tnode_free(struct tnode *tn)
414 {
415 struct callback_head *head = &tn->rcu;
416
417 while (head) {
418 head = head->next;
419 tnode_free_size += offsetof(struct tnode, child[1 << tn->bits]);
420 node_free(tn);
421
422 tn = container_of(head, struct tnode, rcu);
423 }
424
425 if (tnode_free_size >= PAGE_SIZE * sync_pages) {
426 tnode_free_size = 0;
427 synchronize_rcu();
428 }
429 }
430
431 static int inflate(struct trie *t, struct tnode *oldtnode)
432 {
433 struct tnode *inode, *node0, *node1, *tn, *tp;
434 unsigned long i, j, k;
435 t_key m;
436
437 pr_debug("In inflate\n");
438
439 tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
440 if (!tn)
441 return -ENOMEM;
442
443 /* Assemble all of the pointers in our cluster, in this case that
444 * represents all of the pointers out of our allocated nodes that
445 * point to existing tnodes and the links between our allocated
446 * nodes.
447 */
448 for (i = tnode_child_length(oldtnode), m = 1u << tn->pos; i;) {
449 inode = tnode_get_child(oldtnode, --i);
450
451 /* An empty child */
452 if (inode == NULL)
453 continue;
454
455 /* A leaf or an internal node with skipped bits */
456 if (!tnode_full(oldtnode, inode)) {
457 put_child(tn, get_index(inode->key, tn), inode);
458 continue;
459 }
460
461 /* An internal node with two children */
462 if (inode->bits == 1) {
463 put_child(tn, 2 * i + 1, tnode_get_child(inode, 1));
464 put_child(tn, 2 * i, tnode_get_child(inode, 0));
465 continue;
466 }
467
468 /* We will replace this node 'inode' with two new
469 * ones, 'node0' and 'node1', each with half of the
470 * original children. The two new nodes will have
471 * a position one bit further down the key and this
472 * means that the "significant" part of their keys
473 * (see the discussion near the top of this file)
474 * will differ by one bit, which will be "0" in
475 * node0's key and "1" in node1's key. Since we are
476 * moving the key position by one step, the bit that
477 * we are moving away from - the bit at position
478 * (tn->pos) - is the one that will differ between
479 * node0 and node1. So... we synthesize that bit in the
480 * two new keys.
481 */
482 node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
483 if (!node1)
484 goto nomem;
485 tnode_free_append(tn, node1);
486
487 node0 = tnode_new(inode->key & ~m, inode->pos, inode->bits - 1);
488 if (!node0)
489 goto nomem;
490 tnode_free_append(tn, node0);
491
492 /* populate child pointers in new nodes */
493 for (k = tnode_child_length(inode), j = k / 2; j;) {
494 put_child(node1, --j, tnode_get_child(inode, --k));
495 put_child(node0, j, tnode_get_child(inode, j));
496 put_child(node1, --j, tnode_get_child(inode, --k));
497 put_child(node0, j, tnode_get_child(inode, j));
498 }
499
500 /* link new nodes to parent */
501 NODE_INIT_PARENT(node1, tn);
502 NODE_INIT_PARENT(node0, tn);
503
504 /* link parent to nodes */
505 put_child(tn, 2 * i + 1, node1);
506 put_child(tn, 2 * i, node0);
507 }
508
509 /* setup the parent pointer into and out of this node */
510 tp = node_parent(oldtnode);
511 NODE_INIT_PARENT(tn, tp);
512 put_child_root(tp, t, tn->key, tn);
513
514 /* prepare oldtnode to be freed */
515 tnode_free_init(oldtnode);
516
517 /* update all child nodes parent pointers to route to us */
518 for (i = tnode_child_length(oldtnode); i;) {
519 inode = tnode_get_child(oldtnode, --i);
520
521 /* A leaf or an internal node with skipped bits */
522 if (!tnode_full(oldtnode, inode)) {
523 node_set_parent(inode, tn);
524 continue;
525 }
526
527 /* drop the node in the old tnode free list */
528 tnode_free_append(oldtnode, inode);
529
530 /* fetch new nodes */
531 node1 = tnode_get_child(tn, 2 * i + 1);
532 node0 = tnode_get_child(tn, 2 * i);
533
534 /* bits == 1 then node0 and node1 represent inode's children */
535 if (inode->bits == 1) {
536 node_set_parent(node1, tn);
537 node_set_parent(node0, tn);
538 continue;
539 }
540
541 /* update parent pointers in child node's children */
542 for (k = tnode_child_length(inode), j = k / 2; j;) {
543 node_set_parent(tnode_get_child(inode, --k), node1);
544 node_set_parent(tnode_get_child(inode, --j), node0);
545 node_set_parent(tnode_get_child(inode, --k), node1);
546 node_set_parent(tnode_get_child(inode, --j), node0);
547 }
548
549 /* resize child nodes */
550 resize(t, node1);
551 resize(t, node0);
552 }
553
554 /* we completed without error, prepare to free old node */
555 tnode_free(oldtnode);
556 return 0;
557 nomem:
558 /* all pointers should be clean so we are done */
559 tnode_free(tn);
560 return -ENOMEM;
561 }
562
563 static int halve(struct trie *t, struct tnode *oldtnode)
564 {
565 struct tnode *tn, *tp, *inode, *node0, *node1;
566 unsigned long i;
567
568 pr_debug("In halve\n");
569
570 tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
571 if (!tn)
572 return -ENOMEM;
573
574 /* Assemble all of the pointers in our cluster, in this case that
575 * represents all of the pointers out of our allocated nodes that
576 * point to existing tnodes and the links between our allocated
577 * nodes.
578 */
579 for (i = tnode_child_length(oldtnode); i;) {
580 node1 = tnode_get_child(oldtnode, --i);
581 node0 = tnode_get_child(oldtnode, --i);
582
583 /* At least one of the children is empty */
584 if (!node1 || !node0) {
585 put_child(tn, i / 2, node1 ? : node0);
586 continue;
587 }
588
589 /* Two nonempty children */
590 inode = tnode_new(node0->key, oldtnode->pos, 1);
591 if (!inode) {
592 tnode_free(tn);
593 return -ENOMEM;
594 }
595 tnode_free_append(tn, inode);
596
597 /* initialize pointers out of node */
598 put_child(inode, 1, node1);
599 put_child(inode, 0, node0);
600 NODE_INIT_PARENT(inode, tn);
601
602 /* link parent to node */
603 put_child(tn, i / 2, inode);
604 }
605
606 /* setup the parent pointer out of and back into this node */
607 tp = node_parent(oldtnode);
608 NODE_INIT_PARENT(tn, tp);
609 put_child_root(tp, t, tn->key, tn);
610
611 /* prepare oldtnode to be freed */
612 tnode_free_init(oldtnode);
613
614 /* update all of the child parent pointers */
615 for (i = tnode_child_length(tn); i;) {
616 inode = tnode_get_child(tn, --i);
617
618 /* only new tnodes will be considered "full" nodes */
619 if (!tnode_full(tn, inode)) {
620 node_set_parent(inode, tn);
621 continue;
622 }
623
624 /* Two nonempty children */
625 node_set_parent(tnode_get_child(inode, 1), inode);
626 node_set_parent(tnode_get_child(inode, 0), inode);
627
628 /* resize child node */
629 resize(t, inode);
630 }
631
632 /* all pointers should be clean so we are done */
633 tnode_free(oldtnode);
634
635 return 0;
636 }
637
638 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
639 * the Helsinki University of Technology and Matti Tikkanen of Nokia
640 * Telecommunications, page 6:
641 * "A node is doubled if the ratio of non-empty children to all
642 * children in the *doubled* node is at least 'high'."
643 *
644 * 'high' in this instance is the variable 'inflate_threshold'. It
645 * is expressed as a percentage, so we multiply it with
646 * tnode_child_length() and instead of multiplying by 2 (since the
647 * child array will be doubled by inflate()) and multiplying
648 * the left-hand side by 100 (to handle the percentage thing) we
649 * multiply the left-hand side by 50.
650 *
651 * The left-hand side may look a bit weird: tnode_child_length(tn)
652 * - tn->empty_children is of course the number of non-null children
653 * in the current node. tn->full_children is the number of "full"
654 * children, that is non-null tnodes with a skip value of 0.
655 * All of those will be doubled in the resulting inflated tnode, so
656 * we just count them one extra time here.
657 *
658 * A clearer way to write this would be:
659 *
660 * to_be_doubled = tn->full_children;
661 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
662 * tn->full_children;
663 *
664 * new_child_length = tnode_child_length(tn) * 2;
665 *
666 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
667 * new_child_length;
668 * if (new_fill_factor >= inflate_threshold)
669 *
670 * ...and so on, tho it would mess up the while () loop.
671 *
672 * anyway,
673 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
674 * inflate_threshold
675 *
676 * avoid a division:
677 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
678 * inflate_threshold * new_child_length
679 *
680 * expand not_to_be_doubled and to_be_doubled, and shorten:
681 * 100 * (tnode_child_length(tn) - tn->empty_children +
682 * tn->full_children) >= inflate_threshold * new_child_length
683 *
684 * expand new_child_length:
685 * 100 * (tnode_child_length(tn) - tn->empty_children +
686 * tn->full_children) >=
687 * inflate_threshold * tnode_child_length(tn) * 2
688 *
689 * shorten again:
690 * 50 * (tn->full_children + tnode_child_length(tn) -
691 * tn->empty_children) >= inflate_threshold *
692 * tnode_child_length(tn)
693 *
694 */
695 static bool should_inflate(const struct tnode *tp, const struct tnode *tn)
696 {
697 unsigned long used = tnode_child_length(tn);
698 unsigned long threshold = used;
699
700 /* Keep root node larger */
701 threshold *= tp ? inflate_threshold : inflate_threshold_root;
702 used += tn->full_children;
703 used -= tn->empty_children;
704
705 return tn->pos && ((50 * used) >= threshold);
706 }
707
708 static bool should_halve(const struct tnode *tp, const struct tnode *tn)
709 {
710 unsigned long used = tnode_child_length(tn);
711 unsigned long threshold = used;
712
713 /* Keep root node larger */
714 threshold *= tp ? halve_threshold : halve_threshold_root;
715 used -= tn->empty_children;
716
717 return (tn->bits > 1) && ((100 * used) < threshold);
718 }
719
720 #define MAX_WORK 10
721 static void resize(struct trie *t, struct tnode *tn)
722 {
723 struct tnode *tp = node_parent(tn), *n = NULL;
724 struct tnode __rcu **cptr;
725 int max_work;
726
727 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
728 tn, inflate_threshold, halve_threshold);
729
730 /* track the tnode via the pointer from the parent instead of
731 * doing it ourselves. This way we can let RCU fully do its
732 * thing without us interfering
733 */
734 cptr = tp ? &tp->child[get_index(tn->key, tp)] : &t->trie;
735 BUG_ON(tn != rtnl_dereference(*cptr));
736
737 /* No children */
738 if (tn->empty_children > (tnode_child_length(tn) - 1))
739 goto no_children;
740
741 /* One child */
742 if (tn->empty_children == (tnode_child_length(tn) - 1))
743 goto one_child;
744
745 /* Double as long as the resulting node has a number of
746 * nonempty nodes that are above the threshold.
747 */
748 max_work = MAX_WORK;
749 while (should_inflate(tp, tn) && max_work--) {
750 if (inflate(t, tn)) {
751 #ifdef CONFIG_IP_FIB_TRIE_STATS
752 this_cpu_inc(t->stats->resize_node_skipped);
753 #endif
754 break;
755 }
756
757 tn = rtnl_dereference(*cptr);
758 }
759
760 /* Return if at least one inflate is run */
761 if (max_work != MAX_WORK)
762 return;
763
764 /* Halve as long as the number of empty children in this
765 * node is above threshold.
766 */
767 max_work = MAX_WORK;
768 while (should_halve(tp, tn) && max_work--) {
769 if (halve(t, tn)) {
770 #ifdef CONFIG_IP_FIB_TRIE_STATS
771 this_cpu_inc(t->stats->resize_node_skipped);
772 #endif
773 break;
774 }
775
776 tn = rtnl_dereference(*cptr);
777 }
778
779 /* Only one child remains */
780 if (tn->empty_children == (tnode_child_length(tn) - 1)) {
781 unsigned long i;
782 one_child:
783 for (i = tnode_child_length(tn); !n && i;)
784 n = tnode_get_child(tn, --i);
785 no_children:
786 /* compress one level */
787 put_child_root(tp, t, tn->key, n);
788 node_set_parent(n, tp);
789
790 /* drop dead node */
791 tnode_free_init(tn);
792 tnode_free(tn);
793 }
794 }
795
796 /* readside must use rcu_read_lock currently dump routines
797 via get_fa_head and dump */
798
799 static struct leaf_info *find_leaf_info(struct tnode *l, int plen)
800 {
801 struct hlist_head *head = &l->list;
802 struct leaf_info *li;
803
804 hlist_for_each_entry_rcu(li, head, hlist)
805 if (li->plen == plen)
806 return li;
807
808 return NULL;
809 }
810
811 static inline struct list_head *get_fa_head(struct tnode *l, int plen)
812 {
813 struct leaf_info *li = find_leaf_info(l, plen);
814
815 if (!li)
816 return NULL;
817
818 return &li->falh;
819 }
820
821 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
822 {
823 struct leaf_info *li = NULL, *last = NULL;
824
825 if (hlist_empty(head)) {
826 hlist_add_head_rcu(&new->hlist, head);
827 } else {
828 hlist_for_each_entry(li, head, hlist) {
829 if (new->plen > li->plen)
830 break;
831
832 last = li;
833 }
834 if (last)
835 hlist_add_behind_rcu(&new->hlist, &last->hlist);
836 else
837 hlist_add_before_rcu(&new->hlist, &li->hlist);
838 }
839 }
840
841 /* rcu_read_lock needs to be hold by caller from readside */
842 static struct tnode *fib_find_node(struct trie *t, u32 key)
843 {
844 struct tnode *n = rcu_dereference_rtnl(t->trie);
845
846 while (n) {
847 unsigned long index = get_index(key, n);
848
849 /* This bit of code is a bit tricky but it combines multiple
850 * checks into a single check. The prefix consists of the
851 * prefix plus zeros for the bits in the cindex. The index
852 * is the difference between the key and this value. From
853 * this we can actually derive several pieces of data.
854 * if !(index >> bits)
855 * we know the value is cindex
856 * else
857 * we have a mismatch in skip bits and failed
858 */
859 if (index >> n->bits)
860 return NULL;
861
862 /* we have found a leaf. Prefixes have already been compared */
863 if (IS_LEAF(n))
864 break;
865
866 n = tnode_get_child_rcu(n, index);
867 }
868
869 return n;
870 }
871
872 static void trie_rebalance(struct trie *t, struct tnode *tn)
873 {
874 struct tnode *tp;
875
876 while ((tp = node_parent(tn)) != NULL) {
877 resize(t, tn);
878 tn = tp;
879 }
880
881 /* Handle last (top) tnode */
882 if (IS_TNODE(tn))
883 resize(t, tn);
884 }
885
886 /* only used from updater-side */
887
888 static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen)
889 {
890 struct list_head *fa_head = NULL;
891 struct tnode *l, *n, *tp = NULL;
892 struct leaf_info *li;
893
894 li = leaf_info_new(plen);
895 if (!li)
896 return NULL;
897 fa_head = &li->falh;
898
899 n = rtnl_dereference(t->trie);
900
901 /* If we point to NULL, stop. Either the tree is empty and we should
902 * just put a new leaf in if, or we have reached an empty child slot,
903 * and we should just put our new leaf in that.
904 *
905 * If we hit a node with a key that does't match then we should stop
906 * and create a new tnode to replace that node and insert ourselves
907 * and the other node into the new tnode.
908 */
909 while (n) {
910 unsigned long index = get_index(key, n);
911
912 /* This bit of code is a bit tricky but it combines multiple
913 * checks into a single check. The prefix consists of the
914 * prefix plus zeros for the "bits" in the prefix. The index
915 * is the difference between the key and this value. From
916 * this we can actually derive several pieces of data.
917 * if !(index >> bits)
918 * we know the value is child index
919 * else
920 * we have a mismatch in skip bits and failed
921 */
922 if (index >> n->bits)
923 break;
924
925 /* we have found a leaf. Prefixes have already been compared */
926 if (IS_LEAF(n)) {
927 /* Case 1: n is a leaf, and prefixes match*/
928 insert_leaf_info(&n->list, li);
929 return fa_head;
930 }
931
932 tp = n;
933 n = tnode_get_child_rcu(n, index);
934 }
935
936 l = leaf_new(key);
937 if (!l) {
938 free_leaf_info(li);
939 return NULL;
940 }
941
942 insert_leaf_info(&l->list, li);
943
944 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
945 *
946 * Add a new tnode here
947 * first tnode need some special handling
948 * leaves us in position for handling as case 3
949 */
950 if (n) {
951 struct tnode *tn;
952
953 tn = tnode_new(key, __fls(key ^ n->key), 1);
954 if (!tn) {
955 free_leaf_info(li);
956 node_free(l);
957 return NULL;
958 }
959
960 /* initialize routes out of node */
961 NODE_INIT_PARENT(tn, tp);
962 put_child(tn, get_index(key, tn) ^ 1, n);
963
964 /* start adding routes into the node */
965 put_child_root(tp, t, key, tn);
966 node_set_parent(n, tn);
967
968 /* parent now has a NULL spot where the leaf can go */
969 tp = tn;
970 }
971
972 /* Case 3: n is NULL, and will just insert a new leaf */
973 if (tp) {
974 NODE_INIT_PARENT(l, tp);
975 put_child(tp, get_index(key, tp), l);
976 trie_rebalance(t, tp);
977 } else {
978 rcu_assign_pointer(t->trie, l);
979 }
980
981 return fa_head;
982 }
983
984 /*
985 * Caller must hold RTNL.
986 */
987 int fib_table_insert(struct fib_table *tb, struct fib_config *cfg)
988 {
989 struct trie *t = (struct trie *) tb->tb_data;
990 struct fib_alias *fa, *new_fa;
991 struct list_head *fa_head = NULL;
992 struct fib_info *fi;
993 int plen = cfg->fc_dst_len;
994 u8 tos = cfg->fc_tos;
995 u32 key, mask;
996 int err;
997 struct tnode *l;
998
999 if (plen > 32)
1000 return -EINVAL;
1001
1002 key = ntohl(cfg->fc_dst);
1003
1004 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1005
1006 mask = ntohl(inet_make_mask(plen));
1007
1008 if (key & ~mask)
1009 return -EINVAL;
1010
1011 key = key & mask;
1012
1013 fi = fib_create_info(cfg);
1014 if (IS_ERR(fi)) {
1015 err = PTR_ERR(fi);
1016 goto err;
1017 }
1018
1019 l = fib_find_node(t, key);
1020 fa = NULL;
1021
1022 if (l) {
1023 fa_head = get_fa_head(l, plen);
1024 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1025 }
1026
1027 /* Now fa, if non-NULL, points to the first fib alias
1028 * with the same keys [prefix,tos,priority], if such key already
1029 * exists or to the node before which we will insert new one.
1030 *
1031 * If fa is NULL, we will need to allocate a new one and
1032 * insert to the head of f.
1033 *
1034 * If f is NULL, no fib node matched the destination key
1035 * and we need to allocate a new one of those as well.
1036 */
1037
1038 if (fa && fa->fa_tos == tos &&
1039 fa->fa_info->fib_priority == fi->fib_priority) {
1040 struct fib_alias *fa_first, *fa_match;
1041
1042 err = -EEXIST;
1043 if (cfg->fc_nlflags & NLM_F_EXCL)
1044 goto out;
1045
1046 /* We have 2 goals:
1047 * 1. Find exact match for type, scope, fib_info to avoid
1048 * duplicate routes
1049 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1050 */
1051 fa_match = NULL;
1052 fa_first = fa;
1053 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1054 list_for_each_entry_continue(fa, fa_head, fa_list) {
1055 if (fa->fa_tos != tos)
1056 break;
1057 if (fa->fa_info->fib_priority != fi->fib_priority)
1058 break;
1059 if (fa->fa_type == cfg->fc_type &&
1060 fa->fa_info == fi) {
1061 fa_match = fa;
1062 break;
1063 }
1064 }
1065
1066 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1067 struct fib_info *fi_drop;
1068 u8 state;
1069
1070 fa = fa_first;
1071 if (fa_match) {
1072 if (fa == fa_match)
1073 err = 0;
1074 goto out;
1075 }
1076 err = -ENOBUFS;
1077 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1078 if (new_fa == NULL)
1079 goto out;
1080
1081 fi_drop = fa->fa_info;
1082 new_fa->fa_tos = fa->fa_tos;
1083 new_fa->fa_info = fi;
1084 new_fa->fa_type = cfg->fc_type;
1085 state = fa->fa_state;
1086 new_fa->fa_state = state & ~FA_S_ACCESSED;
1087
1088 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1089 alias_free_mem_rcu(fa);
1090
1091 fib_release_info(fi_drop);
1092 if (state & FA_S_ACCESSED)
1093 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1094 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1095 tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE);
1096
1097 goto succeeded;
1098 }
1099 /* Error if we find a perfect match which
1100 * uses the same scope, type, and nexthop
1101 * information.
1102 */
1103 if (fa_match)
1104 goto out;
1105
1106 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1107 fa = fa_first;
1108 }
1109 err = -ENOENT;
1110 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1111 goto out;
1112
1113 err = -ENOBUFS;
1114 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1115 if (new_fa == NULL)
1116 goto out;
1117
1118 new_fa->fa_info = fi;
1119 new_fa->fa_tos = tos;
1120 new_fa->fa_type = cfg->fc_type;
1121 new_fa->fa_state = 0;
1122 /*
1123 * Insert new entry to the list.
1124 */
1125
1126 if (!fa_head) {
1127 fa_head = fib_insert_node(t, key, plen);
1128 if (unlikely(!fa_head)) {
1129 err = -ENOMEM;
1130 goto out_free_new_fa;
1131 }
1132 }
1133
1134 if (!plen)
1135 tb->tb_num_default++;
1136
1137 list_add_tail_rcu(&new_fa->fa_list,
1138 (fa ? &fa->fa_list : fa_head));
1139
1140 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1141 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1142 &cfg->fc_nlinfo, 0);
1143 succeeded:
1144 return 0;
1145
1146 out_free_new_fa:
1147 kmem_cache_free(fn_alias_kmem, new_fa);
1148 out:
1149 fib_release_info(fi);
1150 err:
1151 return err;
1152 }
1153
1154 static inline t_key prefix_mismatch(t_key key, struct tnode *n)
1155 {
1156 t_key prefix = n->key;
1157
1158 return (key ^ prefix) & (prefix | -prefix);
1159 }
1160
1161 /* should be called with rcu_read_lock */
1162 int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1163 struct fib_result *res, int fib_flags)
1164 {
1165 struct trie *t = (struct trie *)tb->tb_data;
1166 #ifdef CONFIG_IP_FIB_TRIE_STATS
1167 struct trie_use_stats __percpu *stats = t->stats;
1168 #endif
1169 const t_key key = ntohl(flp->daddr);
1170 struct tnode *n, *pn;
1171 struct leaf_info *li;
1172 t_key cindex;
1173
1174 n = rcu_dereference(t->trie);
1175 if (!n)
1176 return -EAGAIN;
1177
1178 #ifdef CONFIG_IP_FIB_TRIE_STATS
1179 this_cpu_inc(stats->gets);
1180 #endif
1181
1182 pn = n;
1183 cindex = 0;
1184
1185 /* Step 1: Travel to the longest prefix match in the trie */
1186 for (;;) {
1187 unsigned long index = get_index(key, n);
1188
1189 /* This bit of code is a bit tricky but it combines multiple
1190 * checks into a single check. The prefix consists of the
1191 * prefix plus zeros for the "bits" in the prefix. The index
1192 * is the difference between the key and this value. From
1193 * this we can actually derive several pieces of data.
1194 * if !(index >> bits)
1195 * we know the value is child index
1196 * else
1197 * we have a mismatch in skip bits and failed
1198 */
1199 if (index >> n->bits)
1200 break;
1201
1202 /* we have found a leaf. Prefixes have already been compared */
1203 if (IS_LEAF(n))
1204 goto found;
1205
1206 /* only record pn and cindex if we are going to be chopping
1207 * bits later. Otherwise we are just wasting cycles.
1208 */
1209 if (index) {
1210 pn = n;
1211 cindex = index;
1212 }
1213
1214 n = tnode_get_child_rcu(n, index);
1215 if (unlikely(!n))
1216 goto backtrace;
1217 }
1218
1219 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1220 for (;;) {
1221 /* record the pointer where our next node pointer is stored */
1222 struct tnode __rcu **cptr = n->child;
1223
1224 /* This test verifies that none of the bits that differ
1225 * between the key and the prefix exist in the region of
1226 * the lsb and higher in the prefix.
1227 */
1228 if (unlikely(prefix_mismatch(key, n)))
1229 goto backtrace;
1230
1231 /* exit out and process leaf */
1232 if (unlikely(IS_LEAF(n)))
1233 break;
1234
1235 /* Don't bother recording parent info. Since we are in
1236 * prefix match mode we will have to come back to wherever
1237 * we started this traversal anyway
1238 */
1239
1240 while ((n = rcu_dereference(*cptr)) == NULL) {
1241 backtrace:
1242 #ifdef CONFIG_IP_FIB_TRIE_STATS
1243 if (!n)
1244 this_cpu_inc(stats->null_node_hit);
1245 #endif
1246 /* If we are at cindex 0 there are no more bits for
1247 * us to strip at this level so we must ascend back
1248 * up one level to see if there are any more bits to
1249 * be stripped there.
1250 */
1251 while (!cindex) {
1252 t_key pkey = pn->key;
1253
1254 pn = node_parent_rcu(pn);
1255 if (unlikely(!pn))
1256 return -EAGAIN;
1257 #ifdef CONFIG_IP_FIB_TRIE_STATS
1258 this_cpu_inc(stats->backtrack);
1259 #endif
1260 /* Get Child's index */
1261 cindex = get_index(pkey, pn);
1262 }
1263
1264 /* strip the least significant bit from the cindex */
1265 cindex &= cindex - 1;
1266
1267 /* grab pointer for next child node */
1268 cptr = &pn->child[cindex];
1269 }
1270 }
1271
1272 found:
1273 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1274 hlist_for_each_entry_rcu(li, &n->list, hlist) {
1275 struct fib_alias *fa;
1276
1277 if ((key ^ n->key) & li->mask_plen)
1278 continue;
1279
1280 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1281 struct fib_info *fi = fa->fa_info;
1282 int nhsel, err;
1283
1284 if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1285 continue;
1286 if (fi->fib_dead)
1287 continue;
1288 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1289 continue;
1290 fib_alias_accessed(fa);
1291 err = fib_props[fa->fa_type].error;
1292 if (unlikely(err < 0)) {
1293 #ifdef CONFIG_IP_FIB_TRIE_STATS
1294 this_cpu_inc(stats->semantic_match_passed);
1295 #endif
1296 return err;
1297 }
1298 if (fi->fib_flags & RTNH_F_DEAD)
1299 continue;
1300 for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1301 const struct fib_nh *nh = &fi->fib_nh[nhsel];
1302
1303 if (nh->nh_flags & RTNH_F_DEAD)
1304 continue;
1305 if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1306 continue;
1307
1308 if (!(fib_flags & FIB_LOOKUP_NOREF))
1309 atomic_inc(&fi->fib_clntref);
1310
1311 res->prefixlen = li->plen;
1312 res->nh_sel = nhsel;
1313 res->type = fa->fa_type;
1314 res->scope = fi->fib_scope;
1315 res->fi = fi;
1316 res->table = tb;
1317 res->fa_head = &li->falh;
1318 #ifdef CONFIG_IP_FIB_TRIE_STATS
1319 this_cpu_inc(stats->semantic_match_passed);
1320 #endif
1321 return err;
1322 }
1323 }
1324
1325 #ifdef CONFIG_IP_FIB_TRIE_STATS
1326 this_cpu_inc(stats->semantic_match_miss);
1327 #endif
1328 }
1329 goto backtrace;
1330 }
1331 EXPORT_SYMBOL_GPL(fib_table_lookup);
1332
1333 /*
1334 * Remove the leaf and return parent.
1335 */
1336 static void trie_leaf_remove(struct trie *t, struct tnode *l)
1337 {
1338 struct tnode *tp = node_parent(l);
1339
1340 pr_debug("entering trie_leaf_remove(%p)\n", l);
1341
1342 if (tp) {
1343 put_child(tp, get_index(l->key, tp), NULL);
1344 trie_rebalance(t, tp);
1345 } else {
1346 RCU_INIT_POINTER(t->trie, NULL);
1347 }
1348
1349 node_free(l);
1350 }
1351
1352 /*
1353 * Caller must hold RTNL.
1354 */
1355 int fib_table_delete(struct fib_table *tb, struct fib_config *cfg)
1356 {
1357 struct trie *t = (struct trie *) tb->tb_data;
1358 u32 key, mask;
1359 int plen = cfg->fc_dst_len;
1360 u8 tos = cfg->fc_tos;
1361 struct fib_alias *fa, *fa_to_delete;
1362 struct list_head *fa_head;
1363 struct tnode *l;
1364 struct leaf_info *li;
1365
1366 if (plen > 32)
1367 return -EINVAL;
1368
1369 key = ntohl(cfg->fc_dst);
1370 mask = ntohl(inet_make_mask(plen));
1371
1372 if (key & ~mask)
1373 return -EINVAL;
1374
1375 key = key & mask;
1376 l = fib_find_node(t, key);
1377
1378 if (!l)
1379 return -ESRCH;
1380
1381 li = find_leaf_info(l, plen);
1382
1383 if (!li)
1384 return -ESRCH;
1385
1386 fa_head = &li->falh;
1387 fa = fib_find_alias(fa_head, tos, 0);
1388
1389 if (!fa)
1390 return -ESRCH;
1391
1392 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1393
1394 fa_to_delete = NULL;
1395 fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list);
1396 list_for_each_entry_continue(fa, fa_head, fa_list) {
1397 struct fib_info *fi = fa->fa_info;
1398
1399 if (fa->fa_tos != tos)
1400 break;
1401
1402 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1403 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1404 fa->fa_info->fib_scope == cfg->fc_scope) &&
1405 (!cfg->fc_prefsrc ||
1406 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1407 (!cfg->fc_protocol ||
1408 fi->fib_protocol == cfg->fc_protocol) &&
1409 fib_nh_match(cfg, fi) == 0) {
1410 fa_to_delete = fa;
1411 break;
1412 }
1413 }
1414
1415 if (!fa_to_delete)
1416 return -ESRCH;
1417
1418 fa = fa_to_delete;
1419 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1420 &cfg->fc_nlinfo, 0);
1421
1422 list_del_rcu(&fa->fa_list);
1423
1424 if (!plen)
1425 tb->tb_num_default--;
1426
1427 if (list_empty(fa_head)) {
1428 hlist_del_rcu(&li->hlist);
1429 free_leaf_info(li);
1430 }
1431
1432 if (hlist_empty(&l->list))
1433 trie_leaf_remove(t, l);
1434
1435 if (fa->fa_state & FA_S_ACCESSED)
1436 rt_cache_flush(cfg->fc_nlinfo.nl_net);
1437
1438 fib_release_info(fa->fa_info);
1439 alias_free_mem_rcu(fa);
1440 return 0;
1441 }
1442
1443 static int trie_flush_list(struct list_head *head)
1444 {
1445 struct fib_alias *fa, *fa_node;
1446 int found = 0;
1447
1448 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1449 struct fib_info *fi = fa->fa_info;
1450
1451 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1452 list_del_rcu(&fa->fa_list);
1453 fib_release_info(fa->fa_info);
1454 alias_free_mem_rcu(fa);
1455 found++;
1456 }
1457 }
1458 return found;
1459 }
1460
1461 static int trie_flush_leaf(struct tnode *l)
1462 {
1463 int found = 0;
1464 struct hlist_head *lih = &l->list;
1465 struct hlist_node *tmp;
1466 struct leaf_info *li = NULL;
1467
1468 hlist_for_each_entry_safe(li, tmp, lih, hlist) {
1469 found += trie_flush_list(&li->falh);
1470
1471 if (list_empty(&li->falh)) {
1472 hlist_del_rcu(&li->hlist);
1473 free_leaf_info(li);
1474 }
1475 }
1476 return found;
1477 }
1478
1479 /*
1480 * Scan for the next right leaf starting at node p->child[idx]
1481 * Since we have back pointer, no recursion necessary.
1482 */
1483 static struct tnode *leaf_walk_rcu(struct tnode *p, struct tnode *c)
1484 {
1485 do {
1486 unsigned long idx = c ? idx = get_index(c->key, p) + 1 : 0;
1487
1488 while (idx < tnode_child_length(p)) {
1489 c = tnode_get_child_rcu(p, idx++);
1490 if (!c)
1491 continue;
1492
1493 if (IS_LEAF(c))
1494 return c;
1495
1496 /* Rescan start scanning in new node */
1497 p = c;
1498 idx = 0;
1499 }
1500
1501 /* Node empty, walk back up to parent */
1502 c = p;
1503 } while ((p = node_parent_rcu(c)) != NULL);
1504
1505 return NULL; /* Root of trie */
1506 }
1507
1508 static struct tnode *trie_firstleaf(struct trie *t)
1509 {
1510 struct tnode *n = rcu_dereference_rtnl(t->trie);
1511
1512 if (!n)
1513 return NULL;
1514
1515 if (IS_LEAF(n)) /* trie is just a leaf */
1516 return n;
1517
1518 return leaf_walk_rcu(n, NULL);
1519 }
1520
1521 static struct tnode *trie_nextleaf(struct tnode *l)
1522 {
1523 struct tnode *p = node_parent_rcu(l);
1524
1525 if (!p)
1526 return NULL; /* trie with just one leaf */
1527
1528 return leaf_walk_rcu(p, l);
1529 }
1530
1531 static struct tnode *trie_leafindex(struct trie *t, int index)
1532 {
1533 struct tnode *l = trie_firstleaf(t);
1534
1535 while (l && index-- > 0)
1536 l = trie_nextleaf(l);
1537
1538 return l;
1539 }
1540
1541
1542 /*
1543 * Caller must hold RTNL.
1544 */
1545 int fib_table_flush(struct fib_table *tb)
1546 {
1547 struct trie *t = (struct trie *) tb->tb_data;
1548 struct tnode *l, *ll = NULL;
1549 int found = 0;
1550
1551 for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) {
1552 found += trie_flush_leaf(l);
1553
1554 if (ll && hlist_empty(&ll->list))
1555 trie_leaf_remove(t, ll);
1556 ll = l;
1557 }
1558
1559 if (ll && hlist_empty(&ll->list))
1560 trie_leaf_remove(t, ll);
1561
1562 pr_debug("trie_flush found=%d\n", found);
1563 return found;
1564 }
1565
1566 void fib_free_table(struct fib_table *tb)
1567 {
1568 #ifdef CONFIG_IP_FIB_TRIE_STATS
1569 struct trie *t = (struct trie *)tb->tb_data;
1570
1571 free_percpu(t->stats);
1572 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1573 kfree(tb);
1574 }
1575
1576 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah,
1577 struct fib_table *tb,
1578 struct sk_buff *skb, struct netlink_callback *cb)
1579 {
1580 int i, s_i;
1581 struct fib_alias *fa;
1582 __be32 xkey = htonl(key);
1583
1584 s_i = cb->args[5];
1585 i = 0;
1586
1587 /* rcu_read_lock is hold by caller */
1588
1589 list_for_each_entry_rcu(fa, fah, fa_list) {
1590 if (i < s_i) {
1591 i++;
1592 continue;
1593 }
1594
1595 if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1596 cb->nlh->nlmsg_seq,
1597 RTM_NEWROUTE,
1598 tb->tb_id,
1599 fa->fa_type,
1600 xkey,
1601 plen,
1602 fa->fa_tos,
1603 fa->fa_info, NLM_F_MULTI) < 0) {
1604 cb->args[5] = i;
1605 return -1;
1606 }
1607 i++;
1608 }
1609 cb->args[5] = i;
1610 return skb->len;
1611 }
1612
1613 static int fn_trie_dump_leaf(struct tnode *l, struct fib_table *tb,
1614 struct sk_buff *skb, struct netlink_callback *cb)
1615 {
1616 struct leaf_info *li;
1617 int i, s_i;
1618
1619 s_i = cb->args[4];
1620 i = 0;
1621
1622 /* rcu_read_lock is hold by caller */
1623 hlist_for_each_entry_rcu(li, &l->list, hlist) {
1624 if (i < s_i) {
1625 i++;
1626 continue;
1627 }
1628
1629 if (i > s_i)
1630 cb->args[5] = 0;
1631
1632 if (list_empty(&li->falh))
1633 continue;
1634
1635 if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) {
1636 cb->args[4] = i;
1637 return -1;
1638 }
1639 i++;
1640 }
1641
1642 cb->args[4] = i;
1643 return skb->len;
1644 }
1645
1646 int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1647 struct netlink_callback *cb)
1648 {
1649 struct tnode *l;
1650 struct trie *t = (struct trie *) tb->tb_data;
1651 t_key key = cb->args[2];
1652 int count = cb->args[3];
1653
1654 rcu_read_lock();
1655 /* Dump starting at last key.
1656 * Note: 0.0.0.0/0 (ie default) is first key.
1657 */
1658 if (count == 0)
1659 l = trie_firstleaf(t);
1660 else {
1661 /* Normally, continue from last key, but if that is missing
1662 * fallback to using slow rescan
1663 */
1664 l = fib_find_node(t, key);
1665 if (!l)
1666 l = trie_leafindex(t, count);
1667 }
1668
1669 while (l) {
1670 cb->args[2] = l->key;
1671 if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1672 cb->args[3] = count;
1673 rcu_read_unlock();
1674 return -1;
1675 }
1676
1677 ++count;
1678 l = trie_nextleaf(l);
1679 memset(&cb->args[4], 0,
1680 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1681 }
1682 cb->args[3] = count;
1683 rcu_read_unlock();
1684
1685 return skb->len;
1686 }
1687
1688 void __init fib_trie_init(void)
1689 {
1690 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1691 sizeof(struct fib_alias),
1692 0, SLAB_PANIC, NULL);
1693
1694 trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1695 max(sizeof(struct tnode),
1696 sizeof(struct leaf_info)),
1697 0, SLAB_PANIC, NULL);
1698 }
1699
1700
1701 struct fib_table *fib_trie_table(u32 id)
1702 {
1703 struct fib_table *tb;
1704 struct trie *t;
1705
1706 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1707 GFP_KERNEL);
1708 if (tb == NULL)
1709 return NULL;
1710
1711 tb->tb_id = id;
1712 tb->tb_default = -1;
1713 tb->tb_num_default = 0;
1714
1715 t = (struct trie *) tb->tb_data;
1716 RCU_INIT_POINTER(t->trie, NULL);
1717 #ifdef CONFIG_IP_FIB_TRIE_STATS
1718 t->stats = alloc_percpu(struct trie_use_stats);
1719 if (!t->stats) {
1720 kfree(tb);
1721 tb = NULL;
1722 }
1723 #endif
1724
1725 return tb;
1726 }
1727
1728 #ifdef CONFIG_PROC_FS
1729 /* Depth first Trie walk iterator */
1730 struct fib_trie_iter {
1731 struct seq_net_private p;
1732 struct fib_table *tb;
1733 struct tnode *tnode;
1734 unsigned int index;
1735 unsigned int depth;
1736 };
1737
1738 static struct tnode *fib_trie_get_next(struct fib_trie_iter *iter)
1739 {
1740 unsigned long cindex = iter->index;
1741 struct tnode *tn = iter->tnode;
1742 struct tnode *p;
1743
1744 /* A single entry routing table */
1745 if (!tn)
1746 return NULL;
1747
1748 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1749 iter->tnode, iter->index, iter->depth);
1750 rescan:
1751 while (cindex < tnode_child_length(tn)) {
1752 struct tnode *n = tnode_get_child_rcu(tn, cindex);
1753
1754 if (n) {
1755 if (IS_LEAF(n)) {
1756 iter->tnode = tn;
1757 iter->index = cindex + 1;
1758 } else {
1759 /* push down one level */
1760 iter->tnode = n;
1761 iter->index = 0;
1762 ++iter->depth;
1763 }
1764 return n;
1765 }
1766
1767 ++cindex;
1768 }
1769
1770 /* Current node exhausted, pop back up */
1771 p = node_parent_rcu(tn);
1772 if (p) {
1773 cindex = get_index(tn->key, p) + 1;
1774 tn = p;
1775 --iter->depth;
1776 goto rescan;
1777 }
1778
1779 /* got root? */
1780 return NULL;
1781 }
1782
1783 static struct tnode *fib_trie_get_first(struct fib_trie_iter *iter,
1784 struct trie *t)
1785 {
1786 struct tnode *n;
1787
1788 if (!t)
1789 return NULL;
1790
1791 n = rcu_dereference(t->trie);
1792 if (!n)
1793 return NULL;
1794
1795 if (IS_TNODE(n)) {
1796 iter->tnode = n;
1797 iter->index = 0;
1798 iter->depth = 1;
1799 } else {
1800 iter->tnode = NULL;
1801 iter->index = 0;
1802 iter->depth = 0;
1803 }
1804
1805 return n;
1806 }
1807
1808 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
1809 {
1810 struct tnode *n;
1811 struct fib_trie_iter iter;
1812
1813 memset(s, 0, sizeof(*s));
1814
1815 rcu_read_lock();
1816 for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
1817 if (IS_LEAF(n)) {
1818 struct leaf_info *li;
1819
1820 s->leaves++;
1821 s->totdepth += iter.depth;
1822 if (iter.depth > s->maxdepth)
1823 s->maxdepth = iter.depth;
1824
1825 hlist_for_each_entry_rcu(li, &n->list, hlist)
1826 ++s->prefixes;
1827 } else {
1828 unsigned long i;
1829
1830 s->tnodes++;
1831 if (n->bits < MAX_STAT_DEPTH)
1832 s->nodesizes[n->bits]++;
1833
1834 for (i = tnode_child_length(n); i--;) {
1835 if (!rcu_access_pointer(n->child[i]))
1836 s->nullpointers++;
1837 }
1838 }
1839 }
1840 rcu_read_unlock();
1841 }
1842
1843 /*
1844 * This outputs /proc/net/fib_triestats
1845 */
1846 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
1847 {
1848 unsigned int i, max, pointers, bytes, avdepth;
1849
1850 if (stat->leaves)
1851 avdepth = stat->totdepth*100 / stat->leaves;
1852 else
1853 avdepth = 0;
1854
1855 seq_printf(seq, "\tAver depth: %u.%02d\n",
1856 avdepth / 100, avdepth % 100);
1857 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
1858
1859 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
1860 bytes = sizeof(struct tnode) * stat->leaves;
1861
1862 seq_printf(seq, "\tPrefixes: %u\n", stat->prefixes);
1863 bytes += sizeof(struct leaf_info) * stat->prefixes;
1864
1865 seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
1866 bytes += sizeof(struct tnode) * stat->tnodes;
1867
1868 max = MAX_STAT_DEPTH;
1869 while (max > 0 && stat->nodesizes[max-1] == 0)
1870 max--;
1871
1872 pointers = 0;
1873 for (i = 1; i < max; i++)
1874 if (stat->nodesizes[i] != 0) {
1875 seq_printf(seq, " %u: %u", i, stat->nodesizes[i]);
1876 pointers += (1<<i) * stat->nodesizes[i];
1877 }
1878 seq_putc(seq, '\n');
1879 seq_printf(seq, "\tPointers: %u\n", pointers);
1880
1881 bytes += sizeof(struct tnode *) * pointers;
1882 seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
1883 seq_printf(seq, "Total size: %u kB\n", (bytes + 1023) / 1024);
1884 }
1885
1886 #ifdef CONFIG_IP_FIB_TRIE_STATS
1887 static void trie_show_usage(struct seq_file *seq,
1888 const struct trie_use_stats __percpu *stats)
1889 {
1890 struct trie_use_stats s = { 0 };
1891 int cpu;
1892
1893 /* loop through all of the CPUs and gather up the stats */
1894 for_each_possible_cpu(cpu) {
1895 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
1896
1897 s.gets += pcpu->gets;
1898 s.backtrack += pcpu->backtrack;
1899 s.semantic_match_passed += pcpu->semantic_match_passed;
1900 s.semantic_match_miss += pcpu->semantic_match_miss;
1901 s.null_node_hit += pcpu->null_node_hit;
1902 s.resize_node_skipped += pcpu->resize_node_skipped;
1903 }
1904
1905 seq_printf(seq, "\nCounters:\n---------\n");
1906 seq_printf(seq, "gets = %u\n", s.gets);
1907 seq_printf(seq, "backtracks = %u\n", s.backtrack);
1908 seq_printf(seq, "semantic match passed = %u\n",
1909 s.semantic_match_passed);
1910 seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
1911 seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
1912 seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
1913 }
1914 #endif /* CONFIG_IP_FIB_TRIE_STATS */
1915
1916 static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
1917 {
1918 if (tb->tb_id == RT_TABLE_LOCAL)
1919 seq_puts(seq, "Local:\n");
1920 else if (tb->tb_id == RT_TABLE_MAIN)
1921 seq_puts(seq, "Main:\n");
1922 else
1923 seq_printf(seq, "Id %d:\n", tb->tb_id);
1924 }
1925
1926
1927 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
1928 {
1929 struct net *net = (struct net *)seq->private;
1930 unsigned int h;
1931
1932 seq_printf(seq,
1933 "Basic info: size of leaf:"
1934 " %Zd bytes, size of tnode: %Zd bytes.\n",
1935 sizeof(struct tnode), sizeof(struct tnode));
1936
1937 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1938 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1939 struct fib_table *tb;
1940
1941 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
1942 struct trie *t = (struct trie *) tb->tb_data;
1943 struct trie_stat stat;
1944
1945 if (!t)
1946 continue;
1947
1948 fib_table_print(seq, tb);
1949
1950 trie_collect_stats(t, &stat);
1951 trie_show_stats(seq, &stat);
1952 #ifdef CONFIG_IP_FIB_TRIE_STATS
1953 trie_show_usage(seq, t->stats);
1954 #endif
1955 }
1956 }
1957
1958 return 0;
1959 }
1960
1961 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
1962 {
1963 return single_open_net(inode, file, fib_triestat_seq_show);
1964 }
1965
1966 static const struct file_operations fib_triestat_fops = {
1967 .owner = THIS_MODULE,
1968 .open = fib_triestat_seq_open,
1969 .read = seq_read,
1970 .llseek = seq_lseek,
1971 .release = single_release_net,
1972 };
1973
1974 static struct tnode *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
1975 {
1976 struct fib_trie_iter *iter = seq->private;
1977 struct net *net = seq_file_net(seq);
1978 loff_t idx = 0;
1979 unsigned int h;
1980
1981 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1982 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1983 struct fib_table *tb;
1984
1985 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
1986 struct tnode *n;
1987
1988 for (n = fib_trie_get_first(iter,
1989 (struct trie *) tb->tb_data);
1990 n; n = fib_trie_get_next(iter))
1991 if (pos == idx++) {
1992 iter->tb = tb;
1993 return n;
1994 }
1995 }
1996 }
1997
1998 return NULL;
1999 }
2000
2001 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2002 __acquires(RCU)
2003 {
2004 rcu_read_lock();
2005 return fib_trie_get_idx(seq, *pos);
2006 }
2007
2008 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2009 {
2010 struct fib_trie_iter *iter = seq->private;
2011 struct net *net = seq_file_net(seq);
2012 struct fib_table *tb = iter->tb;
2013 struct hlist_node *tb_node;
2014 unsigned int h;
2015 struct tnode *n;
2016
2017 ++*pos;
2018 /* next node in same table */
2019 n = fib_trie_get_next(iter);
2020 if (n)
2021 return n;
2022
2023 /* walk rest of this hash chain */
2024 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2025 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2026 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2027 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2028 if (n)
2029 goto found;
2030 }
2031
2032 /* new hash chain */
2033 while (++h < FIB_TABLE_HASHSZ) {
2034 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2035 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2036 n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2037 if (n)
2038 goto found;
2039 }
2040 }
2041 return NULL;
2042
2043 found:
2044 iter->tb = tb;
2045 return n;
2046 }
2047
2048 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2049 __releases(RCU)
2050 {
2051 rcu_read_unlock();
2052 }
2053
2054 static void seq_indent(struct seq_file *seq, int n)
2055 {
2056 while (n-- > 0)
2057 seq_puts(seq, " ");
2058 }
2059
2060 static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2061 {
2062 switch (s) {
2063 case RT_SCOPE_UNIVERSE: return "universe";
2064 case RT_SCOPE_SITE: return "site";
2065 case RT_SCOPE_LINK: return "link";
2066 case RT_SCOPE_HOST: return "host";
2067 case RT_SCOPE_NOWHERE: return "nowhere";
2068 default:
2069 snprintf(buf, len, "scope=%d", s);
2070 return buf;
2071 }
2072 }
2073
2074 static const char *const rtn_type_names[__RTN_MAX] = {
2075 [RTN_UNSPEC] = "UNSPEC",
2076 [RTN_UNICAST] = "UNICAST",
2077 [RTN_LOCAL] = "LOCAL",
2078 [RTN_BROADCAST] = "BROADCAST",
2079 [RTN_ANYCAST] = "ANYCAST",
2080 [RTN_MULTICAST] = "MULTICAST",
2081 [RTN_BLACKHOLE] = "BLACKHOLE",
2082 [RTN_UNREACHABLE] = "UNREACHABLE",
2083 [RTN_PROHIBIT] = "PROHIBIT",
2084 [RTN_THROW] = "THROW",
2085 [RTN_NAT] = "NAT",
2086 [RTN_XRESOLVE] = "XRESOLVE",
2087 };
2088
2089 static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2090 {
2091 if (t < __RTN_MAX && rtn_type_names[t])
2092 return rtn_type_names[t];
2093 snprintf(buf, len, "type %u", t);
2094 return buf;
2095 }
2096
2097 /* Pretty print the trie */
2098 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2099 {
2100 const struct fib_trie_iter *iter = seq->private;
2101 struct tnode *n = v;
2102
2103 if (!node_parent_rcu(n))
2104 fib_table_print(seq, iter->tb);
2105
2106 if (IS_TNODE(n)) {
2107 __be32 prf = htonl(n->key);
2108
2109 seq_indent(seq, iter->depth-1);
2110 seq_printf(seq, " +-- %pI4/%zu %u %u %u\n",
2111 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2112 n->full_children, n->empty_children);
2113 } else {
2114 struct leaf_info *li;
2115 __be32 val = htonl(n->key);
2116
2117 seq_indent(seq, iter->depth);
2118 seq_printf(seq, " |-- %pI4\n", &val);
2119
2120 hlist_for_each_entry_rcu(li, &n->list, hlist) {
2121 struct fib_alias *fa;
2122
2123 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2124 char buf1[32], buf2[32];
2125
2126 seq_indent(seq, iter->depth+1);
2127 seq_printf(seq, " /%d %s %s", li->plen,
2128 rtn_scope(buf1, sizeof(buf1),
2129 fa->fa_info->fib_scope),
2130 rtn_type(buf2, sizeof(buf2),
2131 fa->fa_type));
2132 if (fa->fa_tos)
2133 seq_printf(seq, " tos=%d", fa->fa_tos);
2134 seq_putc(seq, '\n');
2135 }
2136 }
2137 }
2138
2139 return 0;
2140 }
2141
2142 static const struct seq_operations fib_trie_seq_ops = {
2143 .start = fib_trie_seq_start,
2144 .next = fib_trie_seq_next,
2145 .stop = fib_trie_seq_stop,
2146 .show = fib_trie_seq_show,
2147 };
2148
2149 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2150 {
2151 return seq_open_net(inode, file, &fib_trie_seq_ops,
2152 sizeof(struct fib_trie_iter));
2153 }
2154
2155 static const struct file_operations fib_trie_fops = {
2156 .owner = THIS_MODULE,
2157 .open = fib_trie_seq_open,
2158 .read = seq_read,
2159 .llseek = seq_lseek,
2160 .release = seq_release_net,
2161 };
2162
2163 struct fib_route_iter {
2164 struct seq_net_private p;
2165 struct trie *main_trie;
2166 loff_t pos;
2167 t_key key;
2168 };
2169
2170 static struct tnode *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos)
2171 {
2172 struct tnode *l = NULL;
2173 struct trie *t = iter->main_trie;
2174
2175 /* use cache location of last found key */
2176 if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key)))
2177 pos -= iter->pos;
2178 else {
2179 iter->pos = 0;
2180 l = trie_firstleaf(t);
2181 }
2182
2183 while (l && pos-- > 0) {
2184 iter->pos++;
2185 l = trie_nextleaf(l);
2186 }
2187
2188 if (l)
2189 iter->key = pos; /* remember it */
2190 else
2191 iter->pos = 0; /* forget it */
2192
2193 return l;
2194 }
2195
2196 static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2197 __acquires(RCU)
2198 {
2199 struct fib_route_iter *iter = seq->private;
2200 struct fib_table *tb;
2201
2202 rcu_read_lock();
2203 tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2204 if (!tb)
2205 return NULL;
2206
2207 iter->main_trie = (struct trie *) tb->tb_data;
2208 if (*pos == 0)
2209 return SEQ_START_TOKEN;
2210 else
2211 return fib_route_get_idx(iter, *pos - 1);
2212 }
2213
2214 static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2215 {
2216 struct fib_route_iter *iter = seq->private;
2217 struct tnode *l = v;
2218
2219 ++*pos;
2220 if (v == SEQ_START_TOKEN) {
2221 iter->pos = 0;
2222 l = trie_firstleaf(iter->main_trie);
2223 } else {
2224 iter->pos++;
2225 l = trie_nextleaf(l);
2226 }
2227
2228 if (l)
2229 iter->key = l->key;
2230 else
2231 iter->pos = 0;
2232 return l;
2233 }
2234
2235 static void fib_route_seq_stop(struct seq_file *seq, void *v)
2236 __releases(RCU)
2237 {
2238 rcu_read_unlock();
2239 }
2240
2241 static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2242 {
2243 unsigned int flags = 0;
2244
2245 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2246 flags = RTF_REJECT;
2247 if (fi && fi->fib_nh->nh_gw)
2248 flags |= RTF_GATEWAY;
2249 if (mask == htonl(0xFFFFFFFF))
2250 flags |= RTF_HOST;
2251 flags |= RTF_UP;
2252 return flags;
2253 }
2254
2255 /*
2256 * This outputs /proc/net/route.
2257 * The format of the file is not supposed to be changed
2258 * and needs to be same as fib_hash output to avoid breaking
2259 * legacy utilities
2260 */
2261 static int fib_route_seq_show(struct seq_file *seq, void *v)
2262 {
2263 struct tnode *l = v;
2264 struct leaf_info *li;
2265
2266 if (v == SEQ_START_TOKEN) {
2267 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2268 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2269 "\tWindow\tIRTT");
2270 return 0;
2271 }
2272
2273 hlist_for_each_entry_rcu(li, &l->list, hlist) {
2274 struct fib_alias *fa;
2275 __be32 mask, prefix;
2276
2277 mask = inet_make_mask(li->plen);
2278 prefix = htonl(l->key);
2279
2280 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2281 const struct fib_info *fi = fa->fa_info;
2282 unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2283
2284 if (fa->fa_type == RTN_BROADCAST
2285 || fa->fa_type == RTN_MULTICAST)
2286 continue;
2287
2288 seq_setwidth(seq, 127);
2289
2290 if (fi)
2291 seq_printf(seq,
2292 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2293 "%d\t%08X\t%d\t%u\t%u",
2294 fi->fib_dev ? fi->fib_dev->name : "*",
2295 prefix,
2296 fi->fib_nh->nh_gw, flags, 0, 0,
2297 fi->fib_priority,
2298 mask,
2299 (fi->fib_advmss ?
2300 fi->fib_advmss + 40 : 0),
2301 fi->fib_window,
2302 fi->fib_rtt >> 3);
2303 else
2304 seq_printf(seq,
2305 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2306 "%d\t%08X\t%d\t%u\t%u",
2307 prefix, 0, flags, 0, 0, 0,
2308 mask, 0, 0, 0);
2309
2310 seq_pad(seq, '\n');
2311 }
2312 }
2313
2314 return 0;
2315 }
2316
2317 static const struct seq_operations fib_route_seq_ops = {
2318 .start = fib_route_seq_start,
2319 .next = fib_route_seq_next,
2320 .stop = fib_route_seq_stop,
2321 .show = fib_route_seq_show,
2322 };
2323
2324 static int fib_route_seq_open(struct inode *inode, struct file *file)
2325 {
2326 return seq_open_net(inode, file, &fib_route_seq_ops,
2327 sizeof(struct fib_route_iter));
2328 }
2329
2330 static const struct file_operations fib_route_fops = {
2331 .owner = THIS_MODULE,
2332 .open = fib_route_seq_open,
2333 .read = seq_read,
2334 .llseek = seq_lseek,
2335 .release = seq_release_net,
2336 };
2337
2338 int __net_init fib_proc_init(struct net *net)
2339 {
2340 if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2341 goto out1;
2342
2343 if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2344 &fib_triestat_fops))
2345 goto out2;
2346
2347 if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2348 goto out3;
2349
2350 return 0;
2351
2352 out3:
2353 remove_proc_entry("fib_triestat", net->proc_net);
2354 out2:
2355 remove_proc_entry("fib_trie", net->proc_net);
2356 out1:
2357 return -ENOMEM;
2358 }
2359
2360 void __net_exit fib_proc_exit(struct net *net)
2361 {
2362 remove_proc_entry("fib_trie", net->proc_net);
2363 remove_proc_entry("fib_triestat", net->proc_net);
2364 remove_proc_entry("route", net->proc_net);
2365 }
2366
2367 #endif /* CONFIG_PROC_FS */
This page took 0.082688 seconds and 5 git commands to generate.