Merge branch 'pm-sleep'
[deliverable/linux.git] / net / ipv4 / ipmr.c
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
3 *
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
26 *
27 */
28
29 #include <asm/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/timer.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/sock.h>
56 #include <net/icmp.h>
57 #include <net/udp.h>
58 #include <net/raw.h>
59 #include <linux/notifier.h>
60 #include <linux/if_arp.h>
61 #include <linux/netfilter_ipv4.h>
62 #include <linux/compat.h>
63 #include <linux/export.h>
64 #include <net/ip_tunnels.h>
65 #include <net/checksum.h>
66 #include <net/netlink.h>
67 #include <net/fib_rules.h>
68 #include <linux/netconf.h>
69 #include <net/nexthop.h>
70
71 struct ipmr_rule {
72 struct fib_rule common;
73 };
74
75 struct ipmr_result {
76 struct mr_table *mrt;
77 };
78
79 /* Big lock, protecting vif table, mrt cache and mroute socket state.
80 * Note that the changes are semaphored via rtnl_lock.
81 */
82
83 static DEFINE_RWLOCK(mrt_lock);
84
85 /* Multicast router control variables */
86
87 /* Special spinlock for queue of unresolved entries */
88 static DEFINE_SPINLOCK(mfc_unres_lock);
89
90 /* We return to original Alan's scheme. Hash table of resolved
91 * entries is changed only in process context and protected
92 * with weak lock mrt_lock. Queue of unresolved entries is protected
93 * with strong spinlock mfc_unres_lock.
94 *
95 * In this case data path is free of exclusive locks at all.
96 */
97
98 static struct kmem_cache *mrt_cachep __read_mostly;
99
100 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
101 static void ipmr_free_table(struct mr_table *mrt);
102
103 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
104 struct sk_buff *skb, struct mfc_cache *cache,
105 int local);
106 static int ipmr_cache_report(struct mr_table *mrt,
107 struct sk_buff *pkt, vifi_t vifi, int assert);
108 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
109 struct mfc_cache *c, struct rtmsg *rtm);
110 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
111 int cmd);
112 static void mroute_clean_tables(struct mr_table *mrt, bool all);
113 static void ipmr_expire_process(unsigned long arg);
114
115 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
116 #define ipmr_for_each_table(mrt, net) \
117 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
118
119 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
120 {
121 struct mr_table *mrt;
122
123 ipmr_for_each_table(mrt, net) {
124 if (mrt->id == id)
125 return mrt;
126 }
127 return NULL;
128 }
129
130 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
131 struct mr_table **mrt)
132 {
133 int err;
134 struct ipmr_result res;
135 struct fib_lookup_arg arg = {
136 .result = &res,
137 .flags = FIB_LOOKUP_NOREF,
138 };
139
140 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
141 flowi4_to_flowi(flp4), 0, &arg);
142 if (err < 0)
143 return err;
144 *mrt = res.mrt;
145 return 0;
146 }
147
148 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
149 int flags, struct fib_lookup_arg *arg)
150 {
151 struct ipmr_result *res = arg->result;
152 struct mr_table *mrt;
153
154 switch (rule->action) {
155 case FR_ACT_TO_TBL:
156 break;
157 case FR_ACT_UNREACHABLE:
158 return -ENETUNREACH;
159 case FR_ACT_PROHIBIT:
160 return -EACCES;
161 case FR_ACT_BLACKHOLE:
162 default:
163 return -EINVAL;
164 }
165
166 mrt = ipmr_get_table(rule->fr_net, rule->table);
167 if (!mrt)
168 return -EAGAIN;
169 res->mrt = mrt;
170 return 0;
171 }
172
173 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
174 {
175 return 1;
176 }
177
178 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
179 FRA_GENERIC_POLICY,
180 };
181
182 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
183 struct fib_rule_hdr *frh, struct nlattr **tb)
184 {
185 return 0;
186 }
187
188 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
189 struct nlattr **tb)
190 {
191 return 1;
192 }
193
194 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
195 struct fib_rule_hdr *frh)
196 {
197 frh->dst_len = 0;
198 frh->src_len = 0;
199 frh->tos = 0;
200 return 0;
201 }
202
203 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
204 .family = RTNL_FAMILY_IPMR,
205 .rule_size = sizeof(struct ipmr_rule),
206 .addr_size = sizeof(u32),
207 .action = ipmr_rule_action,
208 .match = ipmr_rule_match,
209 .configure = ipmr_rule_configure,
210 .compare = ipmr_rule_compare,
211 .fill = ipmr_rule_fill,
212 .nlgroup = RTNLGRP_IPV4_RULE,
213 .policy = ipmr_rule_policy,
214 .owner = THIS_MODULE,
215 };
216
217 static int __net_init ipmr_rules_init(struct net *net)
218 {
219 struct fib_rules_ops *ops;
220 struct mr_table *mrt;
221 int err;
222
223 ops = fib_rules_register(&ipmr_rules_ops_template, net);
224 if (IS_ERR(ops))
225 return PTR_ERR(ops);
226
227 INIT_LIST_HEAD(&net->ipv4.mr_tables);
228
229 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
230 if (IS_ERR(mrt)) {
231 err = PTR_ERR(mrt);
232 goto err1;
233 }
234
235 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
236 if (err < 0)
237 goto err2;
238
239 net->ipv4.mr_rules_ops = ops;
240 return 0;
241
242 err2:
243 ipmr_free_table(mrt);
244 err1:
245 fib_rules_unregister(ops);
246 return err;
247 }
248
249 static void __net_exit ipmr_rules_exit(struct net *net)
250 {
251 struct mr_table *mrt, *next;
252
253 rtnl_lock();
254 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
255 list_del(&mrt->list);
256 ipmr_free_table(mrt);
257 }
258 fib_rules_unregister(net->ipv4.mr_rules_ops);
259 rtnl_unlock();
260 }
261 #else
262 #define ipmr_for_each_table(mrt, net) \
263 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
264
265 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
266 {
267 return net->ipv4.mrt;
268 }
269
270 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
271 struct mr_table **mrt)
272 {
273 *mrt = net->ipv4.mrt;
274 return 0;
275 }
276
277 static int __net_init ipmr_rules_init(struct net *net)
278 {
279 struct mr_table *mrt;
280
281 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
282 if (IS_ERR(mrt))
283 return PTR_ERR(mrt);
284 net->ipv4.mrt = mrt;
285 return 0;
286 }
287
288 static void __net_exit ipmr_rules_exit(struct net *net)
289 {
290 rtnl_lock();
291 ipmr_free_table(net->ipv4.mrt);
292 net->ipv4.mrt = NULL;
293 rtnl_unlock();
294 }
295 #endif
296
297 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
298 {
299 struct mr_table *mrt;
300 unsigned int i;
301
302 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
303 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
304 return ERR_PTR(-EINVAL);
305
306 mrt = ipmr_get_table(net, id);
307 if (mrt)
308 return mrt;
309
310 mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
311 if (!mrt)
312 return ERR_PTR(-ENOMEM);
313 write_pnet(&mrt->net, net);
314 mrt->id = id;
315
316 /* Forwarding cache */
317 for (i = 0; i < MFC_LINES; i++)
318 INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
319
320 INIT_LIST_HEAD(&mrt->mfc_unres_queue);
321
322 setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
323 (unsigned long)mrt);
324
325 mrt->mroute_reg_vif_num = -1;
326 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
327 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
328 #endif
329 return mrt;
330 }
331
332 static void ipmr_free_table(struct mr_table *mrt)
333 {
334 del_timer_sync(&mrt->ipmr_expire_timer);
335 mroute_clean_tables(mrt, true);
336 kfree(mrt);
337 }
338
339 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
340
341 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
342 {
343 struct net *net = dev_net(dev);
344
345 dev_close(dev);
346
347 dev = __dev_get_by_name(net, "tunl0");
348 if (dev) {
349 const struct net_device_ops *ops = dev->netdev_ops;
350 struct ifreq ifr;
351 struct ip_tunnel_parm p;
352
353 memset(&p, 0, sizeof(p));
354 p.iph.daddr = v->vifc_rmt_addr.s_addr;
355 p.iph.saddr = v->vifc_lcl_addr.s_addr;
356 p.iph.version = 4;
357 p.iph.ihl = 5;
358 p.iph.protocol = IPPROTO_IPIP;
359 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
360 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
361
362 if (ops->ndo_do_ioctl) {
363 mm_segment_t oldfs = get_fs();
364
365 set_fs(KERNEL_DS);
366 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
367 set_fs(oldfs);
368 }
369 }
370 }
371
372 /* Initialize ipmr pimreg/tunnel in_device */
373 static bool ipmr_init_vif_indev(const struct net_device *dev)
374 {
375 struct in_device *in_dev;
376
377 ASSERT_RTNL();
378
379 in_dev = __in_dev_get_rtnl(dev);
380 if (!in_dev)
381 return false;
382 ipv4_devconf_setall(in_dev);
383 neigh_parms_data_state_setall(in_dev->arp_parms);
384 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
385
386 return true;
387 }
388
389 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
390 {
391 struct net_device *dev;
392
393 dev = __dev_get_by_name(net, "tunl0");
394
395 if (dev) {
396 const struct net_device_ops *ops = dev->netdev_ops;
397 int err;
398 struct ifreq ifr;
399 struct ip_tunnel_parm p;
400
401 memset(&p, 0, sizeof(p));
402 p.iph.daddr = v->vifc_rmt_addr.s_addr;
403 p.iph.saddr = v->vifc_lcl_addr.s_addr;
404 p.iph.version = 4;
405 p.iph.ihl = 5;
406 p.iph.protocol = IPPROTO_IPIP;
407 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
408 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
409
410 if (ops->ndo_do_ioctl) {
411 mm_segment_t oldfs = get_fs();
412
413 set_fs(KERNEL_DS);
414 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
415 set_fs(oldfs);
416 } else {
417 err = -EOPNOTSUPP;
418 }
419 dev = NULL;
420
421 if (err == 0 &&
422 (dev = __dev_get_by_name(net, p.name)) != NULL) {
423 dev->flags |= IFF_MULTICAST;
424 if (!ipmr_init_vif_indev(dev))
425 goto failure;
426 if (dev_open(dev))
427 goto failure;
428 dev_hold(dev);
429 }
430 }
431 return dev;
432
433 failure:
434 unregister_netdevice(dev);
435 return NULL;
436 }
437
438 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
439 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
440 {
441 struct net *net = dev_net(dev);
442 struct mr_table *mrt;
443 struct flowi4 fl4 = {
444 .flowi4_oif = dev->ifindex,
445 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
446 .flowi4_mark = skb->mark,
447 };
448 int err;
449
450 err = ipmr_fib_lookup(net, &fl4, &mrt);
451 if (err < 0) {
452 kfree_skb(skb);
453 return err;
454 }
455
456 read_lock(&mrt_lock);
457 dev->stats.tx_bytes += skb->len;
458 dev->stats.tx_packets++;
459 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
460 read_unlock(&mrt_lock);
461 kfree_skb(skb);
462 return NETDEV_TX_OK;
463 }
464
465 static int reg_vif_get_iflink(const struct net_device *dev)
466 {
467 return 0;
468 }
469
470 static const struct net_device_ops reg_vif_netdev_ops = {
471 .ndo_start_xmit = reg_vif_xmit,
472 .ndo_get_iflink = reg_vif_get_iflink,
473 };
474
475 static void reg_vif_setup(struct net_device *dev)
476 {
477 dev->type = ARPHRD_PIMREG;
478 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
479 dev->flags = IFF_NOARP;
480 dev->netdev_ops = &reg_vif_netdev_ops;
481 dev->destructor = free_netdev;
482 dev->features |= NETIF_F_NETNS_LOCAL;
483 }
484
485 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
486 {
487 struct net_device *dev;
488 char name[IFNAMSIZ];
489
490 if (mrt->id == RT_TABLE_DEFAULT)
491 sprintf(name, "pimreg");
492 else
493 sprintf(name, "pimreg%u", mrt->id);
494
495 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
496
497 if (!dev)
498 return NULL;
499
500 dev_net_set(dev, net);
501
502 if (register_netdevice(dev)) {
503 free_netdev(dev);
504 return NULL;
505 }
506
507 if (!ipmr_init_vif_indev(dev))
508 goto failure;
509 if (dev_open(dev))
510 goto failure;
511
512 dev_hold(dev);
513
514 return dev;
515
516 failure:
517 unregister_netdevice(dev);
518 return NULL;
519 }
520
521 /* called with rcu_read_lock() */
522 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
523 unsigned int pimlen)
524 {
525 struct net_device *reg_dev = NULL;
526 struct iphdr *encap;
527
528 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
529 /* Check that:
530 * a. packet is really sent to a multicast group
531 * b. packet is not a NULL-REGISTER
532 * c. packet is not truncated
533 */
534 if (!ipv4_is_multicast(encap->daddr) ||
535 encap->tot_len == 0 ||
536 ntohs(encap->tot_len) + pimlen > skb->len)
537 return 1;
538
539 read_lock(&mrt_lock);
540 if (mrt->mroute_reg_vif_num >= 0)
541 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
542 read_unlock(&mrt_lock);
543
544 if (!reg_dev)
545 return 1;
546
547 skb->mac_header = skb->network_header;
548 skb_pull(skb, (u8 *)encap - skb->data);
549 skb_reset_network_header(skb);
550 skb->protocol = htons(ETH_P_IP);
551 skb->ip_summed = CHECKSUM_NONE;
552
553 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
554
555 netif_rx(skb);
556
557 return NET_RX_SUCCESS;
558 }
559 #else
560 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
561 {
562 return NULL;
563 }
564 #endif
565
566 /**
567 * vif_delete - Delete a VIF entry
568 * @notify: Set to 1, if the caller is a notifier_call
569 */
570 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
571 struct list_head *head)
572 {
573 struct vif_device *v;
574 struct net_device *dev;
575 struct in_device *in_dev;
576
577 if (vifi < 0 || vifi >= mrt->maxvif)
578 return -EADDRNOTAVAIL;
579
580 v = &mrt->vif_table[vifi];
581
582 write_lock_bh(&mrt_lock);
583 dev = v->dev;
584 v->dev = NULL;
585
586 if (!dev) {
587 write_unlock_bh(&mrt_lock);
588 return -EADDRNOTAVAIL;
589 }
590
591 if (vifi == mrt->mroute_reg_vif_num)
592 mrt->mroute_reg_vif_num = -1;
593
594 if (vifi + 1 == mrt->maxvif) {
595 int tmp;
596
597 for (tmp = vifi - 1; tmp >= 0; tmp--) {
598 if (VIF_EXISTS(mrt, tmp))
599 break;
600 }
601 mrt->maxvif = tmp+1;
602 }
603
604 write_unlock_bh(&mrt_lock);
605
606 dev_set_allmulti(dev, -1);
607
608 in_dev = __in_dev_get_rtnl(dev);
609 if (in_dev) {
610 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
611 inet_netconf_notify_devconf(dev_net(dev),
612 NETCONFA_MC_FORWARDING,
613 dev->ifindex, &in_dev->cnf);
614 ip_rt_multicast_event(in_dev);
615 }
616
617 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
618 unregister_netdevice_queue(dev, head);
619
620 dev_put(dev);
621 return 0;
622 }
623
624 static void ipmr_cache_free_rcu(struct rcu_head *head)
625 {
626 struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
627
628 kmem_cache_free(mrt_cachep, c);
629 }
630
631 static inline void ipmr_cache_free(struct mfc_cache *c)
632 {
633 call_rcu(&c->rcu, ipmr_cache_free_rcu);
634 }
635
636 /* Destroy an unresolved cache entry, killing queued skbs
637 * and reporting error to netlink readers.
638 */
639 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
640 {
641 struct net *net = read_pnet(&mrt->net);
642 struct sk_buff *skb;
643 struct nlmsgerr *e;
644
645 atomic_dec(&mrt->cache_resolve_queue_len);
646
647 while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
648 if (ip_hdr(skb)->version == 0) {
649 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
650 nlh->nlmsg_type = NLMSG_ERROR;
651 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
652 skb_trim(skb, nlh->nlmsg_len);
653 e = nlmsg_data(nlh);
654 e->error = -ETIMEDOUT;
655 memset(&e->msg, 0, sizeof(e->msg));
656
657 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
658 } else {
659 kfree_skb(skb);
660 }
661 }
662
663 ipmr_cache_free(c);
664 }
665
666 /* Timer process for the unresolved queue. */
667 static void ipmr_expire_process(unsigned long arg)
668 {
669 struct mr_table *mrt = (struct mr_table *)arg;
670 unsigned long now;
671 unsigned long expires;
672 struct mfc_cache *c, *next;
673
674 if (!spin_trylock(&mfc_unres_lock)) {
675 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
676 return;
677 }
678
679 if (list_empty(&mrt->mfc_unres_queue))
680 goto out;
681
682 now = jiffies;
683 expires = 10*HZ;
684
685 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
686 if (time_after(c->mfc_un.unres.expires, now)) {
687 unsigned long interval = c->mfc_un.unres.expires - now;
688 if (interval < expires)
689 expires = interval;
690 continue;
691 }
692
693 list_del(&c->list);
694 mroute_netlink_event(mrt, c, RTM_DELROUTE);
695 ipmr_destroy_unres(mrt, c);
696 }
697
698 if (!list_empty(&mrt->mfc_unres_queue))
699 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
700
701 out:
702 spin_unlock(&mfc_unres_lock);
703 }
704
705 /* Fill oifs list. It is called under write locked mrt_lock. */
706 static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
707 unsigned char *ttls)
708 {
709 int vifi;
710
711 cache->mfc_un.res.minvif = MAXVIFS;
712 cache->mfc_un.res.maxvif = 0;
713 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
714
715 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
716 if (VIF_EXISTS(mrt, vifi) &&
717 ttls[vifi] && ttls[vifi] < 255) {
718 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
719 if (cache->mfc_un.res.minvif > vifi)
720 cache->mfc_un.res.minvif = vifi;
721 if (cache->mfc_un.res.maxvif <= vifi)
722 cache->mfc_un.res.maxvif = vifi + 1;
723 }
724 }
725 }
726
727 static int vif_add(struct net *net, struct mr_table *mrt,
728 struct vifctl *vifc, int mrtsock)
729 {
730 int vifi = vifc->vifc_vifi;
731 struct vif_device *v = &mrt->vif_table[vifi];
732 struct net_device *dev;
733 struct in_device *in_dev;
734 int err;
735
736 /* Is vif busy ? */
737 if (VIF_EXISTS(mrt, vifi))
738 return -EADDRINUSE;
739
740 switch (vifc->vifc_flags) {
741 case VIFF_REGISTER:
742 if (!ipmr_pimsm_enabled())
743 return -EINVAL;
744 /* Special Purpose VIF in PIM
745 * All the packets will be sent to the daemon
746 */
747 if (mrt->mroute_reg_vif_num >= 0)
748 return -EADDRINUSE;
749 dev = ipmr_reg_vif(net, mrt);
750 if (!dev)
751 return -ENOBUFS;
752 err = dev_set_allmulti(dev, 1);
753 if (err) {
754 unregister_netdevice(dev);
755 dev_put(dev);
756 return err;
757 }
758 break;
759 case VIFF_TUNNEL:
760 dev = ipmr_new_tunnel(net, vifc);
761 if (!dev)
762 return -ENOBUFS;
763 err = dev_set_allmulti(dev, 1);
764 if (err) {
765 ipmr_del_tunnel(dev, vifc);
766 dev_put(dev);
767 return err;
768 }
769 break;
770 case VIFF_USE_IFINDEX:
771 case 0:
772 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
773 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
774 if (dev && !__in_dev_get_rtnl(dev)) {
775 dev_put(dev);
776 return -EADDRNOTAVAIL;
777 }
778 } else {
779 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
780 }
781 if (!dev)
782 return -EADDRNOTAVAIL;
783 err = dev_set_allmulti(dev, 1);
784 if (err) {
785 dev_put(dev);
786 return err;
787 }
788 break;
789 default:
790 return -EINVAL;
791 }
792
793 in_dev = __in_dev_get_rtnl(dev);
794 if (!in_dev) {
795 dev_put(dev);
796 return -EADDRNOTAVAIL;
797 }
798 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
799 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
800 &in_dev->cnf);
801 ip_rt_multicast_event(in_dev);
802
803 /* Fill in the VIF structures */
804
805 v->rate_limit = vifc->vifc_rate_limit;
806 v->local = vifc->vifc_lcl_addr.s_addr;
807 v->remote = vifc->vifc_rmt_addr.s_addr;
808 v->flags = vifc->vifc_flags;
809 if (!mrtsock)
810 v->flags |= VIFF_STATIC;
811 v->threshold = vifc->vifc_threshold;
812 v->bytes_in = 0;
813 v->bytes_out = 0;
814 v->pkt_in = 0;
815 v->pkt_out = 0;
816 v->link = dev->ifindex;
817 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
818 v->link = dev_get_iflink(dev);
819
820 /* And finish update writing critical data */
821 write_lock_bh(&mrt_lock);
822 v->dev = dev;
823 if (v->flags & VIFF_REGISTER)
824 mrt->mroute_reg_vif_num = vifi;
825 if (vifi+1 > mrt->maxvif)
826 mrt->maxvif = vifi+1;
827 write_unlock_bh(&mrt_lock);
828 return 0;
829 }
830
831 /* called with rcu_read_lock() */
832 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
833 __be32 origin,
834 __be32 mcastgrp)
835 {
836 int line = MFC_HASH(mcastgrp, origin);
837 struct mfc_cache *c;
838
839 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
840 if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
841 return c;
842 }
843 return NULL;
844 }
845
846 /* Look for a (*,*,oif) entry */
847 static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
848 int vifi)
849 {
850 int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
851 struct mfc_cache *c;
852
853 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
854 if (c->mfc_origin == htonl(INADDR_ANY) &&
855 c->mfc_mcastgrp == htonl(INADDR_ANY) &&
856 c->mfc_un.res.ttls[vifi] < 255)
857 return c;
858
859 return NULL;
860 }
861
862 /* Look for a (*,G) entry */
863 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
864 __be32 mcastgrp, int vifi)
865 {
866 int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
867 struct mfc_cache *c, *proxy;
868
869 if (mcastgrp == htonl(INADDR_ANY))
870 goto skip;
871
872 list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
873 if (c->mfc_origin == htonl(INADDR_ANY) &&
874 c->mfc_mcastgrp == mcastgrp) {
875 if (c->mfc_un.res.ttls[vifi] < 255)
876 return c;
877
878 /* It's ok if the vifi is part of the static tree */
879 proxy = ipmr_cache_find_any_parent(mrt,
880 c->mfc_parent);
881 if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
882 return c;
883 }
884
885 skip:
886 return ipmr_cache_find_any_parent(mrt, vifi);
887 }
888
889 /* Allocate a multicast cache entry */
890 static struct mfc_cache *ipmr_cache_alloc(void)
891 {
892 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
893
894 if (c) {
895 c->mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
896 c->mfc_un.res.minvif = MAXVIFS;
897 }
898 return c;
899 }
900
901 static struct mfc_cache *ipmr_cache_alloc_unres(void)
902 {
903 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
904
905 if (c) {
906 skb_queue_head_init(&c->mfc_un.unres.unresolved);
907 c->mfc_un.unres.expires = jiffies + 10*HZ;
908 }
909 return c;
910 }
911
912 /* A cache entry has gone into a resolved state from queued */
913 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
914 struct mfc_cache *uc, struct mfc_cache *c)
915 {
916 struct sk_buff *skb;
917 struct nlmsgerr *e;
918
919 /* Play the pending entries through our router */
920 while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
921 if (ip_hdr(skb)->version == 0) {
922 struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
923
924 if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
925 nlh->nlmsg_len = skb_tail_pointer(skb) -
926 (u8 *)nlh;
927 } else {
928 nlh->nlmsg_type = NLMSG_ERROR;
929 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
930 skb_trim(skb, nlh->nlmsg_len);
931 e = nlmsg_data(nlh);
932 e->error = -EMSGSIZE;
933 memset(&e->msg, 0, sizeof(e->msg));
934 }
935
936 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
937 } else {
938 ip_mr_forward(net, mrt, skb, c, 0);
939 }
940 }
941 }
942
943 /* Bounce a cache query up to mrouted. We could use netlink for this but mrouted
944 * expects the following bizarre scheme.
945 *
946 * Called under mrt_lock.
947 */
948 static int ipmr_cache_report(struct mr_table *mrt,
949 struct sk_buff *pkt, vifi_t vifi, int assert)
950 {
951 const int ihl = ip_hdrlen(pkt);
952 struct sock *mroute_sk;
953 struct igmphdr *igmp;
954 struct igmpmsg *msg;
955 struct sk_buff *skb;
956 int ret;
957
958 if (assert == IGMPMSG_WHOLEPKT)
959 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
960 else
961 skb = alloc_skb(128, GFP_ATOMIC);
962
963 if (!skb)
964 return -ENOBUFS;
965
966 if (assert == IGMPMSG_WHOLEPKT) {
967 /* Ugly, but we have no choice with this interface.
968 * Duplicate old header, fix ihl, length etc.
969 * And all this only to mangle msg->im_msgtype and
970 * to set msg->im_mbz to "mbz" :-)
971 */
972 skb_push(skb, sizeof(struct iphdr));
973 skb_reset_network_header(skb);
974 skb_reset_transport_header(skb);
975 msg = (struct igmpmsg *)skb_network_header(skb);
976 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
977 msg->im_msgtype = IGMPMSG_WHOLEPKT;
978 msg->im_mbz = 0;
979 msg->im_vif = mrt->mroute_reg_vif_num;
980 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
981 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
982 sizeof(struct iphdr));
983 } else {
984 /* Copy the IP header */
985 skb_set_network_header(skb, skb->len);
986 skb_put(skb, ihl);
987 skb_copy_to_linear_data(skb, pkt->data, ihl);
988 /* Flag to the kernel this is a route add */
989 ip_hdr(skb)->protocol = 0;
990 msg = (struct igmpmsg *)skb_network_header(skb);
991 msg->im_vif = vifi;
992 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
993 /* Add our header */
994 igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
995 igmp->type = assert;
996 msg->im_msgtype = assert;
997 igmp->code = 0;
998 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
999 skb->transport_header = skb->network_header;
1000 }
1001
1002 rcu_read_lock();
1003 mroute_sk = rcu_dereference(mrt->mroute_sk);
1004 if (!mroute_sk) {
1005 rcu_read_unlock();
1006 kfree_skb(skb);
1007 return -EINVAL;
1008 }
1009
1010 /* Deliver to mrouted */
1011 ret = sock_queue_rcv_skb(mroute_sk, skb);
1012 rcu_read_unlock();
1013 if (ret < 0) {
1014 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1015 kfree_skb(skb);
1016 }
1017
1018 return ret;
1019 }
1020
1021 /* Queue a packet for resolution. It gets locked cache entry! */
1022 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1023 struct sk_buff *skb)
1024 {
1025 bool found = false;
1026 int err;
1027 struct mfc_cache *c;
1028 const struct iphdr *iph = ip_hdr(skb);
1029
1030 spin_lock_bh(&mfc_unres_lock);
1031 list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
1032 if (c->mfc_mcastgrp == iph->daddr &&
1033 c->mfc_origin == iph->saddr) {
1034 found = true;
1035 break;
1036 }
1037 }
1038
1039 if (!found) {
1040 /* Create a new entry if allowable */
1041 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1042 (c = ipmr_cache_alloc_unres()) == NULL) {
1043 spin_unlock_bh(&mfc_unres_lock);
1044
1045 kfree_skb(skb);
1046 return -ENOBUFS;
1047 }
1048
1049 /* Fill in the new cache entry */
1050 c->mfc_parent = -1;
1051 c->mfc_origin = iph->saddr;
1052 c->mfc_mcastgrp = iph->daddr;
1053
1054 /* Reflect first query at mrouted. */
1055 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1056 if (err < 0) {
1057 /* If the report failed throw the cache entry
1058 out - Brad Parker
1059 */
1060 spin_unlock_bh(&mfc_unres_lock);
1061
1062 ipmr_cache_free(c);
1063 kfree_skb(skb);
1064 return err;
1065 }
1066
1067 atomic_inc(&mrt->cache_resolve_queue_len);
1068 list_add(&c->list, &mrt->mfc_unres_queue);
1069 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1070
1071 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1072 mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
1073 }
1074
1075 /* See if we can append the packet */
1076 if (c->mfc_un.unres.unresolved.qlen > 3) {
1077 kfree_skb(skb);
1078 err = -ENOBUFS;
1079 } else {
1080 skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
1081 err = 0;
1082 }
1083
1084 spin_unlock_bh(&mfc_unres_lock);
1085 return err;
1086 }
1087
1088 /* MFC cache manipulation by user space mroute daemon */
1089
1090 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1091 {
1092 int line;
1093 struct mfc_cache *c, *next;
1094
1095 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1096
1097 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
1098 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1099 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1100 (parent == -1 || parent == c->mfc_parent)) {
1101 list_del_rcu(&c->list);
1102 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1103 ipmr_cache_free(c);
1104 return 0;
1105 }
1106 }
1107 return -ENOENT;
1108 }
1109
1110 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1111 struct mfcctl *mfc, int mrtsock, int parent)
1112 {
1113 bool found = false;
1114 int line;
1115 struct mfc_cache *uc, *c;
1116
1117 if (mfc->mfcc_parent >= MAXVIFS)
1118 return -ENFILE;
1119
1120 line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
1121
1122 list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
1123 if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
1124 c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
1125 (parent == -1 || parent == c->mfc_parent)) {
1126 found = true;
1127 break;
1128 }
1129 }
1130
1131 if (found) {
1132 write_lock_bh(&mrt_lock);
1133 c->mfc_parent = mfc->mfcc_parent;
1134 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1135 if (!mrtsock)
1136 c->mfc_flags |= MFC_STATIC;
1137 write_unlock_bh(&mrt_lock);
1138 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1139 return 0;
1140 }
1141
1142 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1143 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1144 return -EINVAL;
1145
1146 c = ipmr_cache_alloc();
1147 if (!c)
1148 return -ENOMEM;
1149
1150 c->mfc_origin = mfc->mfcc_origin.s_addr;
1151 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1152 c->mfc_parent = mfc->mfcc_parent;
1153 ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
1154 if (!mrtsock)
1155 c->mfc_flags |= MFC_STATIC;
1156
1157 list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
1158
1159 /* Check to see if we resolved a queued list. If so we
1160 * need to send on the frames and tidy up.
1161 */
1162 found = false;
1163 spin_lock_bh(&mfc_unres_lock);
1164 list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
1165 if (uc->mfc_origin == c->mfc_origin &&
1166 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1167 list_del(&uc->list);
1168 atomic_dec(&mrt->cache_resolve_queue_len);
1169 found = true;
1170 break;
1171 }
1172 }
1173 if (list_empty(&mrt->mfc_unres_queue))
1174 del_timer(&mrt->ipmr_expire_timer);
1175 spin_unlock_bh(&mfc_unres_lock);
1176
1177 if (found) {
1178 ipmr_cache_resolve(net, mrt, uc, c);
1179 ipmr_cache_free(uc);
1180 }
1181 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1182 return 0;
1183 }
1184
1185 /* Close the multicast socket, and clear the vif tables etc */
1186 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1187 {
1188 int i;
1189 LIST_HEAD(list);
1190 struct mfc_cache *c, *next;
1191
1192 /* Shut down all active vif entries */
1193 for (i = 0; i < mrt->maxvif; i++) {
1194 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1195 continue;
1196 vif_delete(mrt, i, 0, &list);
1197 }
1198 unregister_netdevice_many(&list);
1199
1200 /* Wipe the cache */
1201 for (i = 0; i < MFC_LINES; i++) {
1202 list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
1203 if (!all && (c->mfc_flags & MFC_STATIC))
1204 continue;
1205 list_del_rcu(&c->list);
1206 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1207 ipmr_cache_free(c);
1208 }
1209 }
1210
1211 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1212 spin_lock_bh(&mfc_unres_lock);
1213 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
1214 list_del(&c->list);
1215 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1216 ipmr_destroy_unres(mrt, c);
1217 }
1218 spin_unlock_bh(&mfc_unres_lock);
1219 }
1220 }
1221
1222 /* called from ip_ra_control(), before an RCU grace period,
1223 * we dont need to call synchronize_rcu() here
1224 */
1225 static void mrtsock_destruct(struct sock *sk)
1226 {
1227 struct net *net = sock_net(sk);
1228 struct mr_table *mrt;
1229
1230 rtnl_lock();
1231 ipmr_for_each_table(mrt, net) {
1232 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1233 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1234 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1235 NETCONFA_IFINDEX_ALL,
1236 net->ipv4.devconf_all);
1237 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1238 mroute_clean_tables(mrt, false);
1239 }
1240 }
1241 rtnl_unlock();
1242 }
1243
1244 /* Socket options and virtual interface manipulation. The whole
1245 * virtual interface system is a complete heap, but unfortunately
1246 * that's how BSD mrouted happens to think. Maybe one day with a proper
1247 * MOSPF/PIM router set up we can clean this up.
1248 */
1249
1250 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1251 unsigned int optlen)
1252 {
1253 struct net *net = sock_net(sk);
1254 int val, ret = 0, parent = 0;
1255 struct mr_table *mrt;
1256 struct vifctl vif;
1257 struct mfcctl mfc;
1258 u32 uval;
1259
1260 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1261 rtnl_lock();
1262 if (sk->sk_type != SOCK_RAW ||
1263 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1264 ret = -EOPNOTSUPP;
1265 goto out_unlock;
1266 }
1267
1268 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1269 if (!mrt) {
1270 ret = -ENOENT;
1271 goto out_unlock;
1272 }
1273 if (optname != MRT_INIT) {
1274 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1275 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1276 ret = -EACCES;
1277 goto out_unlock;
1278 }
1279 }
1280
1281 switch (optname) {
1282 case MRT_INIT:
1283 if (optlen != sizeof(int)) {
1284 ret = -EINVAL;
1285 break;
1286 }
1287 if (rtnl_dereference(mrt->mroute_sk)) {
1288 ret = -EADDRINUSE;
1289 break;
1290 }
1291
1292 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1293 if (ret == 0) {
1294 rcu_assign_pointer(mrt->mroute_sk, sk);
1295 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1296 inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
1297 NETCONFA_IFINDEX_ALL,
1298 net->ipv4.devconf_all);
1299 }
1300 break;
1301 case MRT_DONE:
1302 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1303 ret = -EACCES;
1304 } else {
1305 /* We need to unlock here because mrtsock_destruct takes
1306 * care of rtnl itself and we can't change that due to
1307 * the IP_ROUTER_ALERT setsockopt which runs without it.
1308 */
1309 rtnl_unlock();
1310 ret = ip_ra_control(sk, 0, NULL);
1311 goto out;
1312 }
1313 break;
1314 case MRT_ADD_VIF:
1315 case MRT_DEL_VIF:
1316 if (optlen != sizeof(vif)) {
1317 ret = -EINVAL;
1318 break;
1319 }
1320 if (copy_from_user(&vif, optval, sizeof(vif))) {
1321 ret = -EFAULT;
1322 break;
1323 }
1324 if (vif.vifc_vifi >= MAXVIFS) {
1325 ret = -ENFILE;
1326 break;
1327 }
1328 if (optname == MRT_ADD_VIF) {
1329 ret = vif_add(net, mrt, &vif,
1330 sk == rtnl_dereference(mrt->mroute_sk));
1331 } else {
1332 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1333 }
1334 break;
1335 /* Manipulate the forwarding caches. These live
1336 * in a sort of kernel/user symbiosis.
1337 */
1338 case MRT_ADD_MFC:
1339 case MRT_DEL_MFC:
1340 parent = -1;
1341 case MRT_ADD_MFC_PROXY:
1342 case MRT_DEL_MFC_PROXY:
1343 if (optlen != sizeof(mfc)) {
1344 ret = -EINVAL;
1345 break;
1346 }
1347 if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1348 ret = -EFAULT;
1349 break;
1350 }
1351 if (parent == 0)
1352 parent = mfc.mfcc_parent;
1353 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1354 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1355 else
1356 ret = ipmr_mfc_add(net, mrt, &mfc,
1357 sk == rtnl_dereference(mrt->mroute_sk),
1358 parent);
1359 break;
1360 /* Control PIM assert. */
1361 case MRT_ASSERT:
1362 if (optlen != sizeof(val)) {
1363 ret = -EINVAL;
1364 break;
1365 }
1366 if (get_user(val, (int __user *)optval)) {
1367 ret = -EFAULT;
1368 break;
1369 }
1370 mrt->mroute_do_assert = val;
1371 break;
1372 case MRT_PIM:
1373 if (!ipmr_pimsm_enabled()) {
1374 ret = -ENOPROTOOPT;
1375 break;
1376 }
1377 if (optlen != sizeof(val)) {
1378 ret = -EINVAL;
1379 break;
1380 }
1381 if (get_user(val, (int __user *)optval)) {
1382 ret = -EFAULT;
1383 break;
1384 }
1385
1386 val = !!val;
1387 if (val != mrt->mroute_do_pim) {
1388 mrt->mroute_do_pim = val;
1389 mrt->mroute_do_assert = val;
1390 }
1391 break;
1392 case MRT_TABLE:
1393 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1394 ret = -ENOPROTOOPT;
1395 break;
1396 }
1397 if (optlen != sizeof(uval)) {
1398 ret = -EINVAL;
1399 break;
1400 }
1401 if (get_user(uval, (u32 __user *)optval)) {
1402 ret = -EFAULT;
1403 break;
1404 }
1405
1406 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1407 ret = -EBUSY;
1408 } else {
1409 mrt = ipmr_new_table(net, uval);
1410 if (IS_ERR(mrt))
1411 ret = PTR_ERR(mrt);
1412 else
1413 raw_sk(sk)->ipmr_table = uval;
1414 }
1415 break;
1416 /* Spurious command, or MRT_VERSION which you cannot set. */
1417 default:
1418 ret = -ENOPROTOOPT;
1419 }
1420 out_unlock:
1421 rtnl_unlock();
1422 out:
1423 return ret;
1424 }
1425
1426 /* Getsock opt support for the multicast routing system. */
1427 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1428 {
1429 int olr;
1430 int val;
1431 struct net *net = sock_net(sk);
1432 struct mr_table *mrt;
1433
1434 if (sk->sk_type != SOCK_RAW ||
1435 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1436 return -EOPNOTSUPP;
1437
1438 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1439 if (!mrt)
1440 return -ENOENT;
1441
1442 switch (optname) {
1443 case MRT_VERSION:
1444 val = 0x0305;
1445 break;
1446 case MRT_PIM:
1447 if (!ipmr_pimsm_enabled())
1448 return -ENOPROTOOPT;
1449 val = mrt->mroute_do_pim;
1450 break;
1451 case MRT_ASSERT:
1452 val = mrt->mroute_do_assert;
1453 break;
1454 default:
1455 return -ENOPROTOOPT;
1456 }
1457
1458 if (get_user(olr, optlen))
1459 return -EFAULT;
1460 olr = min_t(unsigned int, olr, sizeof(int));
1461 if (olr < 0)
1462 return -EINVAL;
1463 if (put_user(olr, optlen))
1464 return -EFAULT;
1465 if (copy_to_user(optval, &val, olr))
1466 return -EFAULT;
1467 return 0;
1468 }
1469
1470 /* The IP multicast ioctl support routines. */
1471 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1472 {
1473 struct sioc_sg_req sr;
1474 struct sioc_vif_req vr;
1475 struct vif_device *vif;
1476 struct mfc_cache *c;
1477 struct net *net = sock_net(sk);
1478 struct mr_table *mrt;
1479
1480 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1481 if (!mrt)
1482 return -ENOENT;
1483
1484 switch (cmd) {
1485 case SIOCGETVIFCNT:
1486 if (copy_from_user(&vr, arg, sizeof(vr)))
1487 return -EFAULT;
1488 if (vr.vifi >= mrt->maxvif)
1489 return -EINVAL;
1490 read_lock(&mrt_lock);
1491 vif = &mrt->vif_table[vr.vifi];
1492 if (VIF_EXISTS(mrt, vr.vifi)) {
1493 vr.icount = vif->pkt_in;
1494 vr.ocount = vif->pkt_out;
1495 vr.ibytes = vif->bytes_in;
1496 vr.obytes = vif->bytes_out;
1497 read_unlock(&mrt_lock);
1498
1499 if (copy_to_user(arg, &vr, sizeof(vr)))
1500 return -EFAULT;
1501 return 0;
1502 }
1503 read_unlock(&mrt_lock);
1504 return -EADDRNOTAVAIL;
1505 case SIOCGETSGCNT:
1506 if (copy_from_user(&sr, arg, sizeof(sr)))
1507 return -EFAULT;
1508
1509 rcu_read_lock();
1510 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1511 if (c) {
1512 sr.pktcnt = c->mfc_un.res.pkt;
1513 sr.bytecnt = c->mfc_un.res.bytes;
1514 sr.wrong_if = c->mfc_un.res.wrong_if;
1515 rcu_read_unlock();
1516
1517 if (copy_to_user(arg, &sr, sizeof(sr)))
1518 return -EFAULT;
1519 return 0;
1520 }
1521 rcu_read_unlock();
1522 return -EADDRNOTAVAIL;
1523 default:
1524 return -ENOIOCTLCMD;
1525 }
1526 }
1527
1528 #ifdef CONFIG_COMPAT
1529 struct compat_sioc_sg_req {
1530 struct in_addr src;
1531 struct in_addr grp;
1532 compat_ulong_t pktcnt;
1533 compat_ulong_t bytecnt;
1534 compat_ulong_t wrong_if;
1535 };
1536
1537 struct compat_sioc_vif_req {
1538 vifi_t vifi; /* Which iface */
1539 compat_ulong_t icount;
1540 compat_ulong_t ocount;
1541 compat_ulong_t ibytes;
1542 compat_ulong_t obytes;
1543 };
1544
1545 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1546 {
1547 struct compat_sioc_sg_req sr;
1548 struct compat_sioc_vif_req vr;
1549 struct vif_device *vif;
1550 struct mfc_cache *c;
1551 struct net *net = sock_net(sk);
1552 struct mr_table *mrt;
1553
1554 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1555 if (!mrt)
1556 return -ENOENT;
1557
1558 switch (cmd) {
1559 case SIOCGETVIFCNT:
1560 if (copy_from_user(&vr, arg, sizeof(vr)))
1561 return -EFAULT;
1562 if (vr.vifi >= mrt->maxvif)
1563 return -EINVAL;
1564 read_lock(&mrt_lock);
1565 vif = &mrt->vif_table[vr.vifi];
1566 if (VIF_EXISTS(mrt, vr.vifi)) {
1567 vr.icount = vif->pkt_in;
1568 vr.ocount = vif->pkt_out;
1569 vr.ibytes = vif->bytes_in;
1570 vr.obytes = vif->bytes_out;
1571 read_unlock(&mrt_lock);
1572
1573 if (copy_to_user(arg, &vr, sizeof(vr)))
1574 return -EFAULT;
1575 return 0;
1576 }
1577 read_unlock(&mrt_lock);
1578 return -EADDRNOTAVAIL;
1579 case SIOCGETSGCNT:
1580 if (copy_from_user(&sr, arg, sizeof(sr)))
1581 return -EFAULT;
1582
1583 rcu_read_lock();
1584 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1585 if (c) {
1586 sr.pktcnt = c->mfc_un.res.pkt;
1587 sr.bytecnt = c->mfc_un.res.bytes;
1588 sr.wrong_if = c->mfc_un.res.wrong_if;
1589 rcu_read_unlock();
1590
1591 if (copy_to_user(arg, &sr, sizeof(sr)))
1592 return -EFAULT;
1593 return 0;
1594 }
1595 rcu_read_unlock();
1596 return -EADDRNOTAVAIL;
1597 default:
1598 return -ENOIOCTLCMD;
1599 }
1600 }
1601 #endif
1602
1603 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1604 {
1605 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1606 struct net *net = dev_net(dev);
1607 struct mr_table *mrt;
1608 struct vif_device *v;
1609 int ct;
1610
1611 if (event != NETDEV_UNREGISTER)
1612 return NOTIFY_DONE;
1613
1614 ipmr_for_each_table(mrt, net) {
1615 v = &mrt->vif_table[0];
1616 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1617 if (v->dev == dev)
1618 vif_delete(mrt, ct, 1, NULL);
1619 }
1620 }
1621 return NOTIFY_DONE;
1622 }
1623
1624 static struct notifier_block ip_mr_notifier = {
1625 .notifier_call = ipmr_device_event,
1626 };
1627
1628 /* Encapsulate a packet by attaching a valid IPIP header to it.
1629 * This avoids tunnel drivers and other mess and gives us the speed so
1630 * important for multicast video.
1631 */
1632 static void ip_encap(struct net *net, struct sk_buff *skb,
1633 __be32 saddr, __be32 daddr)
1634 {
1635 struct iphdr *iph;
1636 const struct iphdr *old_iph = ip_hdr(skb);
1637
1638 skb_push(skb, sizeof(struct iphdr));
1639 skb->transport_header = skb->network_header;
1640 skb_reset_network_header(skb);
1641 iph = ip_hdr(skb);
1642
1643 iph->version = 4;
1644 iph->tos = old_iph->tos;
1645 iph->ttl = old_iph->ttl;
1646 iph->frag_off = 0;
1647 iph->daddr = daddr;
1648 iph->saddr = saddr;
1649 iph->protocol = IPPROTO_IPIP;
1650 iph->ihl = 5;
1651 iph->tot_len = htons(skb->len);
1652 ip_select_ident(net, skb, NULL);
1653 ip_send_check(iph);
1654
1655 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1656 nf_reset(skb);
1657 }
1658
1659 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1660 struct sk_buff *skb)
1661 {
1662 struct ip_options *opt = &(IPCB(skb)->opt);
1663
1664 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1665 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1666
1667 if (unlikely(opt->optlen))
1668 ip_forward_options(skb);
1669
1670 return dst_output(net, sk, skb);
1671 }
1672
1673 /* Processing handlers for ipmr_forward */
1674
1675 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1676 struct sk_buff *skb, struct mfc_cache *c, int vifi)
1677 {
1678 const struct iphdr *iph = ip_hdr(skb);
1679 struct vif_device *vif = &mrt->vif_table[vifi];
1680 struct net_device *dev;
1681 struct rtable *rt;
1682 struct flowi4 fl4;
1683 int encap = 0;
1684
1685 if (!vif->dev)
1686 goto out_free;
1687
1688 if (vif->flags & VIFF_REGISTER) {
1689 vif->pkt_out++;
1690 vif->bytes_out += skb->len;
1691 vif->dev->stats.tx_bytes += skb->len;
1692 vif->dev->stats.tx_packets++;
1693 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1694 goto out_free;
1695 }
1696
1697 if (vif->flags & VIFF_TUNNEL) {
1698 rt = ip_route_output_ports(net, &fl4, NULL,
1699 vif->remote, vif->local,
1700 0, 0,
1701 IPPROTO_IPIP,
1702 RT_TOS(iph->tos), vif->link);
1703 if (IS_ERR(rt))
1704 goto out_free;
1705 encap = sizeof(struct iphdr);
1706 } else {
1707 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1708 0, 0,
1709 IPPROTO_IPIP,
1710 RT_TOS(iph->tos), vif->link);
1711 if (IS_ERR(rt))
1712 goto out_free;
1713 }
1714
1715 dev = rt->dst.dev;
1716
1717 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1718 /* Do not fragment multicasts. Alas, IPv4 does not
1719 * allow to send ICMP, so that packets will disappear
1720 * to blackhole.
1721 */
1722 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1723 ip_rt_put(rt);
1724 goto out_free;
1725 }
1726
1727 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1728
1729 if (skb_cow(skb, encap)) {
1730 ip_rt_put(rt);
1731 goto out_free;
1732 }
1733
1734 vif->pkt_out++;
1735 vif->bytes_out += skb->len;
1736
1737 skb_dst_drop(skb);
1738 skb_dst_set(skb, &rt->dst);
1739 ip_decrease_ttl(ip_hdr(skb));
1740
1741 /* FIXME: forward and output firewalls used to be called here.
1742 * What do we do with netfilter? -- RR
1743 */
1744 if (vif->flags & VIFF_TUNNEL) {
1745 ip_encap(net, skb, vif->local, vif->remote);
1746 /* FIXME: extra output firewall step used to be here. --RR */
1747 vif->dev->stats.tx_packets++;
1748 vif->dev->stats.tx_bytes += skb->len;
1749 }
1750
1751 IPCB(skb)->flags |= IPSKB_FORWARDED;
1752
1753 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1754 * not only before forwarding, but after forwarding on all output
1755 * interfaces. It is clear, if mrouter runs a multicasting
1756 * program, it should receive packets not depending to what interface
1757 * program is joined.
1758 * If we will not make it, the program will have to join on all
1759 * interfaces. On the other hand, multihoming host (or router, but
1760 * not mrouter) cannot join to more than one interface - it will
1761 * result in receiving multiple packets.
1762 */
1763 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1764 net, NULL, skb, skb->dev, dev,
1765 ipmr_forward_finish);
1766 return;
1767
1768 out_free:
1769 kfree_skb(skb);
1770 }
1771
1772 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1773 {
1774 int ct;
1775
1776 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1777 if (mrt->vif_table[ct].dev == dev)
1778 break;
1779 }
1780 return ct;
1781 }
1782
1783 /* "local" means that we should preserve one skb (for local delivery) */
1784 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1785 struct sk_buff *skb, struct mfc_cache *cache,
1786 int local)
1787 {
1788 int psend = -1;
1789 int vif, ct;
1790 int true_vifi = ipmr_find_vif(mrt, skb->dev);
1791
1792 vif = cache->mfc_parent;
1793 cache->mfc_un.res.pkt++;
1794 cache->mfc_un.res.bytes += skb->len;
1795
1796 if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1797 struct mfc_cache *cache_proxy;
1798
1799 /* For an (*,G) entry, we only check that the incomming
1800 * interface is part of the static tree.
1801 */
1802 cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
1803 if (cache_proxy &&
1804 cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
1805 goto forward;
1806 }
1807
1808 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1809 if (mrt->vif_table[vif].dev != skb->dev) {
1810 if (rt_is_output_route(skb_rtable(skb))) {
1811 /* It is our own packet, looped back.
1812 * Very complicated situation...
1813 *
1814 * The best workaround until routing daemons will be
1815 * fixed is not to redistribute packet, if it was
1816 * send through wrong interface. It means, that
1817 * multicast applications WILL NOT work for
1818 * (S,G), which have default multicast route pointing
1819 * to wrong oif. In any case, it is not a good
1820 * idea to use multicasting applications on router.
1821 */
1822 goto dont_forward;
1823 }
1824
1825 cache->mfc_un.res.wrong_if++;
1826
1827 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1828 /* pimsm uses asserts, when switching from RPT to SPT,
1829 * so that we cannot check that packet arrived on an oif.
1830 * It is bad, but otherwise we would need to move pretty
1831 * large chunk of pimd to kernel. Ough... --ANK
1832 */
1833 (mrt->mroute_do_pim ||
1834 cache->mfc_un.res.ttls[true_vifi] < 255) &&
1835 time_after(jiffies,
1836 cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
1837 cache->mfc_un.res.last_assert = jiffies;
1838 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1839 }
1840 goto dont_forward;
1841 }
1842
1843 forward:
1844 mrt->vif_table[vif].pkt_in++;
1845 mrt->vif_table[vif].bytes_in += skb->len;
1846
1847 /* Forward the frame */
1848 if (cache->mfc_origin == htonl(INADDR_ANY) &&
1849 cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
1850 if (true_vifi >= 0 &&
1851 true_vifi != cache->mfc_parent &&
1852 ip_hdr(skb)->ttl >
1853 cache->mfc_un.res.ttls[cache->mfc_parent]) {
1854 /* It's an (*,*) entry and the packet is not coming from
1855 * the upstream: forward the packet to the upstream
1856 * only.
1857 */
1858 psend = cache->mfc_parent;
1859 goto last_forward;
1860 }
1861 goto dont_forward;
1862 }
1863 for (ct = cache->mfc_un.res.maxvif - 1;
1864 ct >= cache->mfc_un.res.minvif; ct--) {
1865 /* For (*,G) entry, don't forward to the incoming interface */
1866 if ((cache->mfc_origin != htonl(INADDR_ANY) ||
1867 ct != true_vifi) &&
1868 ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
1869 if (psend != -1) {
1870 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1871
1872 if (skb2)
1873 ipmr_queue_xmit(net, mrt, skb2, cache,
1874 psend);
1875 }
1876 psend = ct;
1877 }
1878 }
1879 last_forward:
1880 if (psend != -1) {
1881 if (local) {
1882 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1883
1884 if (skb2)
1885 ipmr_queue_xmit(net, mrt, skb2, cache, psend);
1886 } else {
1887 ipmr_queue_xmit(net, mrt, skb, cache, psend);
1888 return;
1889 }
1890 }
1891
1892 dont_forward:
1893 if (!local)
1894 kfree_skb(skb);
1895 }
1896
1897 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
1898 {
1899 struct rtable *rt = skb_rtable(skb);
1900 struct iphdr *iph = ip_hdr(skb);
1901 struct flowi4 fl4 = {
1902 .daddr = iph->daddr,
1903 .saddr = iph->saddr,
1904 .flowi4_tos = RT_TOS(iph->tos),
1905 .flowi4_oif = (rt_is_output_route(rt) ?
1906 skb->dev->ifindex : 0),
1907 .flowi4_iif = (rt_is_output_route(rt) ?
1908 LOOPBACK_IFINDEX :
1909 skb->dev->ifindex),
1910 .flowi4_mark = skb->mark,
1911 };
1912 struct mr_table *mrt;
1913 int err;
1914
1915 err = ipmr_fib_lookup(net, &fl4, &mrt);
1916 if (err)
1917 return ERR_PTR(err);
1918 return mrt;
1919 }
1920
1921 /* Multicast packets for forwarding arrive here
1922 * Called with rcu_read_lock();
1923 */
1924 int ip_mr_input(struct sk_buff *skb)
1925 {
1926 struct mfc_cache *cache;
1927 struct net *net = dev_net(skb->dev);
1928 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
1929 struct mr_table *mrt;
1930
1931 /* Packet is looped back after forward, it should not be
1932 * forwarded second time, but still can be delivered locally.
1933 */
1934 if (IPCB(skb)->flags & IPSKB_FORWARDED)
1935 goto dont_forward;
1936
1937 mrt = ipmr_rt_fib_lookup(net, skb);
1938 if (IS_ERR(mrt)) {
1939 kfree_skb(skb);
1940 return PTR_ERR(mrt);
1941 }
1942 if (!local) {
1943 if (IPCB(skb)->opt.router_alert) {
1944 if (ip_call_ra_chain(skb))
1945 return 0;
1946 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
1947 /* IGMPv1 (and broken IGMPv2 implementations sort of
1948 * Cisco IOS <= 11.2(8)) do not put router alert
1949 * option to IGMP packets destined to routable
1950 * groups. It is very bad, because it means
1951 * that we can forward NO IGMP messages.
1952 */
1953 struct sock *mroute_sk;
1954
1955 mroute_sk = rcu_dereference(mrt->mroute_sk);
1956 if (mroute_sk) {
1957 nf_reset(skb);
1958 raw_rcv(mroute_sk, skb);
1959 return 0;
1960 }
1961 }
1962 }
1963
1964 /* already under rcu_read_lock() */
1965 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
1966 if (!cache) {
1967 int vif = ipmr_find_vif(mrt, skb->dev);
1968
1969 if (vif >= 0)
1970 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
1971 vif);
1972 }
1973
1974 /* No usable cache entry */
1975 if (!cache) {
1976 int vif;
1977
1978 if (local) {
1979 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1980 ip_local_deliver(skb);
1981 if (!skb2)
1982 return -ENOBUFS;
1983 skb = skb2;
1984 }
1985
1986 read_lock(&mrt_lock);
1987 vif = ipmr_find_vif(mrt, skb->dev);
1988 if (vif >= 0) {
1989 int err2 = ipmr_cache_unresolved(mrt, vif, skb);
1990 read_unlock(&mrt_lock);
1991
1992 return err2;
1993 }
1994 read_unlock(&mrt_lock);
1995 kfree_skb(skb);
1996 return -ENODEV;
1997 }
1998
1999 read_lock(&mrt_lock);
2000 ip_mr_forward(net, mrt, skb, cache, local);
2001 read_unlock(&mrt_lock);
2002
2003 if (local)
2004 return ip_local_deliver(skb);
2005
2006 return 0;
2007
2008 dont_forward:
2009 if (local)
2010 return ip_local_deliver(skb);
2011 kfree_skb(skb);
2012 return 0;
2013 }
2014
2015 #ifdef CONFIG_IP_PIMSM_V1
2016 /* Handle IGMP messages of PIMv1 */
2017 int pim_rcv_v1(struct sk_buff *skb)
2018 {
2019 struct igmphdr *pim;
2020 struct net *net = dev_net(skb->dev);
2021 struct mr_table *mrt;
2022
2023 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2024 goto drop;
2025
2026 pim = igmp_hdr(skb);
2027
2028 mrt = ipmr_rt_fib_lookup(net, skb);
2029 if (IS_ERR(mrt))
2030 goto drop;
2031 if (!mrt->mroute_do_pim ||
2032 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2033 goto drop;
2034
2035 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2036 drop:
2037 kfree_skb(skb);
2038 }
2039 return 0;
2040 }
2041 #endif
2042
2043 #ifdef CONFIG_IP_PIMSM_V2
2044 static int pim_rcv(struct sk_buff *skb)
2045 {
2046 struct pimreghdr *pim;
2047 struct net *net = dev_net(skb->dev);
2048 struct mr_table *mrt;
2049
2050 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2051 goto drop;
2052
2053 pim = (struct pimreghdr *)skb_transport_header(skb);
2054 if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
2055 (pim->flags & PIM_NULL_REGISTER) ||
2056 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2057 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2058 goto drop;
2059
2060 mrt = ipmr_rt_fib_lookup(net, skb);
2061 if (IS_ERR(mrt))
2062 goto drop;
2063 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2064 drop:
2065 kfree_skb(skb);
2066 }
2067 return 0;
2068 }
2069 #endif
2070
2071 static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2072 struct mfc_cache *c, struct rtmsg *rtm)
2073 {
2074 int ct;
2075 struct rtnexthop *nhp;
2076 struct nlattr *mp_attr;
2077 struct rta_mfc_stats mfcs;
2078
2079 /* If cache is unresolved, don't try to parse IIF and OIF */
2080 if (c->mfc_parent >= MAXVIFS)
2081 return -ENOENT;
2082
2083 if (VIF_EXISTS(mrt, c->mfc_parent) &&
2084 nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
2085 return -EMSGSIZE;
2086
2087 if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
2088 return -EMSGSIZE;
2089
2090 for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
2091 if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
2092 if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
2093 nla_nest_cancel(skb, mp_attr);
2094 return -EMSGSIZE;
2095 }
2096
2097 nhp->rtnh_flags = 0;
2098 nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
2099 nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
2100 nhp->rtnh_len = sizeof(*nhp);
2101 }
2102 }
2103
2104 nla_nest_end(skb, mp_attr);
2105
2106 mfcs.mfcs_packets = c->mfc_un.res.pkt;
2107 mfcs.mfcs_bytes = c->mfc_un.res.bytes;
2108 mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
2109 if (nla_put_64bit(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs, RTA_PAD) < 0)
2110 return -EMSGSIZE;
2111
2112 rtm->rtm_type = RTN_MULTICAST;
2113 return 1;
2114 }
2115
2116 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2117 __be32 saddr, __be32 daddr,
2118 struct rtmsg *rtm, int nowait)
2119 {
2120 struct mfc_cache *cache;
2121 struct mr_table *mrt;
2122 int err;
2123
2124 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2125 if (!mrt)
2126 return -ENOENT;
2127
2128 rcu_read_lock();
2129 cache = ipmr_cache_find(mrt, saddr, daddr);
2130 if (!cache && skb->dev) {
2131 int vif = ipmr_find_vif(mrt, skb->dev);
2132
2133 if (vif >= 0)
2134 cache = ipmr_cache_find_any(mrt, daddr, vif);
2135 }
2136 if (!cache) {
2137 struct sk_buff *skb2;
2138 struct iphdr *iph;
2139 struct net_device *dev;
2140 int vif = -1;
2141
2142 if (nowait) {
2143 rcu_read_unlock();
2144 return -EAGAIN;
2145 }
2146
2147 dev = skb->dev;
2148 read_lock(&mrt_lock);
2149 if (dev)
2150 vif = ipmr_find_vif(mrt, dev);
2151 if (vif < 0) {
2152 read_unlock(&mrt_lock);
2153 rcu_read_unlock();
2154 return -ENODEV;
2155 }
2156 skb2 = skb_clone(skb, GFP_ATOMIC);
2157 if (!skb2) {
2158 read_unlock(&mrt_lock);
2159 rcu_read_unlock();
2160 return -ENOMEM;
2161 }
2162
2163 skb_push(skb2, sizeof(struct iphdr));
2164 skb_reset_network_header(skb2);
2165 iph = ip_hdr(skb2);
2166 iph->ihl = sizeof(struct iphdr) >> 2;
2167 iph->saddr = saddr;
2168 iph->daddr = daddr;
2169 iph->version = 0;
2170 err = ipmr_cache_unresolved(mrt, vif, skb2);
2171 read_unlock(&mrt_lock);
2172 rcu_read_unlock();
2173 return err;
2174 }
2175
2176 read_lock(&mrt_lock);
2177 err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
2178 read_unlock(&mrt_lock);
2179 rcu_read_unlock();
2180 return err;
2181 }
2182
2183 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2184 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2185 int flags)
2186 {
2187 struct nlmsghdr *nlh;
2188 struct rtmsg *rtm;
2189 int err;
2190
2191 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2192 if (!nlh)
2193 return -EMSGSIZE;
2194
2195 rtm = nlmsg_data(nlh);
2196 rtm->rtm_family = RTNL_FAMILY_IPMR;
2197 rtm->rtm_dst_len = 32;
2198 rtm->rtm_src_len = 32;
2199 rtm->rtm_tos = 0;
2200 rtm->rtm_table = mrt->id;
2201 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2202 goto nla_put_failure;
2203 rtm->rtm_type = RTN_MULTICAST;
2204 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2205 if (c->mfc_flags & MFC_STATIC)
2206 rtm->rtm_protocol = RTPROT_STATIC;
2207 else
2208 rtm->rtm_protocol = RTPROT_MROUTED;
2209 rtm->rtm_flags = 0;
2210
2211 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2212 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2213 goto nla_put_failure;
2214 err = __ipmr_fill_mroute(mrt, skb, c, rtm);
2215 /* do not break the dump if cache is unresolved */
2216 if (err < 0 && err != -ENOENT)
2217 goto nla_put_failure;
2218
2219 nlmsg_end(skb, nlh);
2220 return 0;
2221
2222 nla_put_failure:
2223 nlmsg_cancel(skb, nlh);
2224 return -EMSGSIZE;
2225 }
2226
2227 static size_t mroute_msgsize(bool unresolved, int maxvif)
2228 {
2229 size_t len =
2230 NLMSG_ALIGN(sizeof(struct rtmsg))
2231 + nla_total_size(4) /* RTA_TABLE */
2232 + nla_total_size(4) /* RTA_SRC */
2233 + nla_total_size(4) /* RTA_DST */
2234 ;
2235
2236 if (!unresolved)
2237 len = len
2238 + nla_total_size(4) /* RTA_IIF */
2239 + nla_total_size(0) /* RTA_MULTIPATH */
2240 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2241 /* RTA_MFC_STATS */
2242 + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2243 ;
2244
2245 return len;
2246 }
2247
2248 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2249 int cmd)
2250 {
2251 struct net *net = read_pnet(&mrt->net);
2252 struct sk_buff *skb;
2253 int err = -ENOBUFS;
2254
2255 skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
2256 GFP_ATOMIC);
2257 if (!skb)
2258 goto errout;
2259
2260 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2261 if (err < 0)
2262 goto errout;
2263
2264 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2265 return;
2266
2267 errout:
2268 kfree_skb(skb);
2269 if (err < 0)
2270 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2271 }
2272
2273 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2274 {
2275 struct net *net = sock_net(skb->sk);
2276 struct mr_table *mrt;
2277 struct mfc_cache *mfc;
2278 unsigned int t = 0, s_t;
2279 unsigned int h = 0, s_h;
2280 unsigned int e = 0, s_e;
2281
2282 s_t = cb->args[0];
2283 s_h = cb->args[1];
2284 s_e = cb->args[2];
2285
2286 rcu_read_lock();
2287 ipmr_for_each_table(mrt, net) {
2288 if (t < s_t)
2289 goto next_table;
2290 if (t > s_t)
2291 s_h = 0;
2292 for (h = s_h; h < MFC_LINES; h++) {
2293 list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
2294 if (e < s_e)
2295 goto next_entry;
2296 if (ipmr_fill_mroute(mrt, skb,
2297 NETLINK_CB(cb->skb).portid,
2298 cb->nlh->nlmsg_seq,
2299 mfc, RTM_NEWROUTE,
2300 NLM_F_MULTI) < 0)
2301 goto done;
2302 next_entry:
2303 e++;
2304 }
2305 e = s_e = 0;
2306 }
2307 spin_lock_bh(&mfc_unres_lock);
2308 list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
2309 if (e < s_e)
2310 goto next_entry2;
2311 if (ipmr_fill_mroute(mrt, skb,
2312 NETLINK_CB(cb->skb).portid,
2313 cb->nlh->nlmsg_seq,
2314 mfc, RTM_NEWROUTE,
2315 NLM_F_MULTI) < 0) {
2316 spin_unlock_bh(&mfc_unres_lock);
2317 goto done;
2318 }
2319 next_entry2:
2320 e++;
2321 }
2322 spin_unlock_bh(&mfc_unres_lock);
2323 e = s_e = 0;
2324 s_h = 0;
2325 next_table:
2326 t++;
2327 }
2328 done:
2329 rcu_read_unlock();
2330
2331 cb->args[2] = e;
2332 cb->args[1] = h;
2333 cb->args[0] = t;
2334
2335 return skb->len;
2336 }
2337
2338 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2339 [RTA_SRC] = { .type = NLA_U32 },
2340 [RTA_DST] = { .type = NLA_U32 },
2341 [RTA_IIF] = { .type = NLA_U32 },
2342 [RTA_TABLE] = { .type = NLA_U32 },
2343 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2344 };
2345
2346 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2347 {
2348 switch (rtm_protocol) {
2349 case RTPROT_STATIC:
2350 case RTPROT_MROUTED:
2351 return true;
2352 }
2353 return false;
2354 }
2355
2356 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2357 {
2358 struct rtnexthop *rtnh = nla_data(nla);
2359 int remaining = nla_len(nla), vifi = 0;
2360
2361 while (rtnh_ok(rtnh, remaining)) {
2362 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2363 if (++vifi == MAXVIFS)
2364 break;
2365 rtnh = rtnh_next(rtnh, &remaining);
2366 }
2367
2368 return remaining > 0 ? -EINVAL : vifi;
2369 }
2370
2371 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2372 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2373 struct mfcctl *mfcc, int *mrtsock,
2374 struct mr_table **mrtret)
2375 {
2376 struct net_device *dev = NULL;
2377 u32 tblid = RT_TABLE_DEFAULT;
2378 struct mr_table *mrt;
2379 struct nlattr *attr;
2380 struct rtmsg *rtm;
2381 int ret, rem;
2382
2383 ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy);
2384 if (ret < 0)
2385 goto out;
2386 rtm = nlmsg_data(nlh);
2387
2388 ret = -EINVAL;
2389 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2390 rtm->rtm_type != RTN_MULTICAST ||
2391 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2392 !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2393 goto out;
2394
2395 memset(mfcc, 0, sizeof(*mfcc));
2396 mfcc->mfcc_parent = -1;
2397 ret = 0;
2398 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2399 switch (nla_type(attr)) {
2400 case RTA_SRC:
2401 mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2402 break;
2403 case RTA_DST:
2404 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2405 break;
2406 case RTA_IIF:
2407 dev = __dev_get_by_index(net, nla_get_u32(attr));
2408 if (!dev) {
2409 ret = -ENODEV;
2410 goto out;
2411 }
2412 break;
2413 case RTA_MULTIPATH:
2414 if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2415 ret = -EINVAL;
2416 goto out;
2417 }
2418 break;
2419 case RTA_PREFSRC:
2420 ret = 1;
2421 break;
2422 case RTA_TABLE:
2423 tblid = nla_get_u32(attr);
2424 break;
2425 }
2426 }
2427 mrt = ipmr_get_table(net, tblid);
2428 if (!mrt) {
2429 ret = -ENOENT;
2430 goto out;
2431 }
2432 *mrtret = mrt;
2433 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2434 if (dev)
2435 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2436
2437 out:
2438 return ret;
2439 }
2440
2441 /* takes care of both newroute and delroute */
2442 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh)
2443 {
2444 struct net *net = sock_net(skb->sk);
2445 int ret, mrtsock, parent;
2446 struct mr_table *tbl;
2447 struct mfcctl mfcc;
2448
2449 mrtsock = 0;
2450 tbl = NULL;
2451 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl);
2452 if (ret < 0)
2453 return ret;
2454
2455 parent = ret ? mfcc.mfcc_parent : -1;
2456 if (nlh->nlmsg_type == RTM_NEWROUTE)
2457 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2458 else
2459 return ipmr_mfc_delete(tbl, &mfcc, parent);
2460 }
2461
2462 #ifdef CONFIG_PROC_FS
2463 /* The /proc interfaces to multicast routing :
2464 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2465 */
2466 struct ipmr_vif_iter {
2467 struct seq_net_private p;
2468 struct mr_table *mrt;
2469 int ct;
2470 };
2471
2472 static struct vif_device *ipmr_vif_seq_idx(struct net *net,
2473 struct ipmr_vif_iter *iter,
2474 loff_t pos)
2475 {
2476 struct mr_table *mrt = iter->mrt;
2477
2478 for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
2479 if (!VIF_EXISTS(mrt, iter->ct))
2480 continue;
2481 if (pos-- == 0)
2482 return &mrt->vif_table[iter->ct];
2483 }
2484 return NULL;
2485 }
2486
2487 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2488 __acquires(mrt_lock)
2489 {
2490 struct ipmr_vif_iter *iter = seq->private;
2491 struct net *net = seq_file_net(seq);
2492 struct mr_table *mrt;
2493
2494 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2495 if (!mrt)
2496 return ERR_PTR(-ENOENT);
2497
2498 iter->mrt = mrt;
2499
2500 read_lock(&mrt_lock);
2501 return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
2502 : SEQ_START_TOKEN;
2503 }
2504
2505 static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2506 {
2507 struct ipmr_vif_iter *iter = seq->private;
2508 struct net *net = seq_file_net(seq);
2509 struct mr_table *mrt = iter->mrt;
2510
2511 ++*pos;
2512 if (v == SEQ_START_TOKEN)
2513 return ipmr_vif_seq_idx(net, iter, 0);
2514
2515 while (++iter->ct < mrt->maxvif) {
2516 if (!VIF_EXISTS(mrt, iter->ct))
2517 continue;
2518 return &mrt->vif_table[iter->ct];
2519 }
2520 return NULL;
2521 }
2522
2523 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2524 __releases(mrt_lock)
2525 {
2526 read_unlock(&mrt_lock);
2527 }
2528
2529 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2530 {
2531 struct ipmr_vif_iter *iter = seq->private;
2532 struct mr_table *mrt = iter->mrt;
2533
2534 if (v == SEQ_START_TOKEN) {
2535 seq_puts(seq,
2536 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2537 } else {
2538 const struct vif_device *vif = v;
2539 const char *name = vif->dev ? vif->dev->name : "none";
2540
2541 seq_printf(seq,
2542 "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2543 vif - mrt->vif_table,
2544 name, vif->bytes_in, vif->pkt_in,
2545 vif->bytes_out, vif->pkt_out,
2546 vif->flags, vif->local, vif->remote);
2547 }
2548 return 0;
2549 }
2550
2551 static const struct seq_operations ipmr_vif_seq_ops = {
2552 .start = ipmr_vif_seq_start,
2553 .next = ipmr_vif_seq_next,
2554 .stop = ipmr_vif_seq_stop,
2555 .show = ipmr_vif_seq_show,
2556 };
2557
2558 static int ipmr_vif_open(struct inode *inode, struct file *file)
2559 {
2560 return seq_open_net(inode, file, &ipmr_vif_seq_ops,
2561 sizeof(struct ipmr_vif_iter));
2562 }
2563
2564 static const struct file_operations ipmr_vif_fops = {
2565 .owner = THIS_MODULE,
2566 .open = ipmr_vif_open,
2567 .read = seq_read,
2568 .llseek = seq_lseek,
2569 .release = seq_release_net,
2570 };
2571
2572 struct ipmr_mfc_iter {
2573 struct seq_net_private p;
2574 struct mr_table *mrt;
2575 struct list_head *cache;
2576 int ct;
2577 };
2578
2579
2580 static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
2581 struct ipmr_mfc_iter *it, loff_t pos)
2582 {
2583 struct mr_table *mrt = it->mrt;
2584 struct mfc_cache *mfc;
2585
2586 rcu_read_lock();
2587 for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
2588 it->cache = &mrt->mfc_cache_array[it->ct];
2589 list_for_each_entry_rcu(mfc, it->cache, list)
2590 if (pos-- == 0)
2591 return mfc;
2592 }
2593 rcu_read_unlock();
2594
2595 spin_lock_bh(&mfc_unres_lock);
2596 it->cache = &mrt->mfc_unres_queue;
2597 list_for_each_entry(mfc, it->cache, list)
2598 if (pos-- == 0)
2599 return mfc;
2600 spin_unlock_bh(&mfc_unres_lock);
2601
2602 it->cache = NULL;
2603 return NULL;
2604 }
2605
2606
2607 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2608 {
2609 struct ipmr_mfc_iter *it = seq->private;
2610 struct net *net = seq_file_net(seq);
2611 struct mr_table *mrt;
2612
2613 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2614 if (!mrt)
2615 return ERR_PTR(-ENOENT);
2616
2617 it->mrt = mrt;
2618 it->cache = NULL;
2619 it->ct = 0;
2620 return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
2621 : SEQ_START_TOKEN;
2622 }
2623
2624 static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2625 {
2626 struct mfc_cache *mfc = v;
2627 struct ipmr_mfc_iter *it = seq->private;
2628 struct net *net = seq_file_net(seq);
2629 struct mr_table *mrt = it->mrt;
2630
2631 ++*pos;
2632
2633 if (v == SEQ_START_TOKEN)
2634 return ipmr_mfc_seq_idx(net, seq->private, 0);
2635
2636 if (mfc->list.next != it->cache)
2637 return list_entry(mfc->list.next, struct mfc_cache, list);
2638
2639 if (it->cache == &mrt->mfc_unres_queue)
2640 goto end_of_list;
2641
2642 BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
2643
2644 while (++it->ct < MFC_LINES) {
2645 it->cache = &mrt->mfc_cache_array[it->ct];
2646 if (list_empty(it->cache))
2647 continue;
2648 return list_first_entry(it->cache, struct mfc_cache, list);
2649 }
2650
2651 /* exhausted cache_array, show unresolved */
2652 rcu_read_unlock();
2653 it->cache = &mrt->mfc_unres_queue;
2654 it->ct = 0;
2655
2656 spin_lock_bh(&mfc_unres_lock);
2657 if (!list_empty(it->cache))
2658 return list_first_entry(it->cache, struct mfc_cache, list);
2659
2660 end_of_list:
2661 spin_unlock_bh(&mfc_unres_lock);
2662 it->cache = NULL;
2663
2664 return NULL;
2665 }
2666
2667 static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
2668 {
2669 struct ipmr_mfc_iter *it = seq->private;
2670 struct mr_table *mrt = it->mrt;
2671
2672 if (it->cache == &mrt->mfc_unres_queue)
2673 spin_unlock_bh(&mfc_unres_lock);
2674 else if (it->cache == &mrt->mfc_cache_array[it->ct])
2675 rcu_read_unlock();
2676 }
2677
2678 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2679 {
2680 int n;
2681
2682 if (v == SEQ_START_TOKEN) {
2683 seq_puts(seq,
2684 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2685 } else {
2686 const struct mfc_cache *mfc = v;
2687 const struct ipmr_mfc_iter *it = seq->private;
2688 const struct mr_table *mrt = it->mrt;
2689
2690 seq_printf(seq, "%08X %08X %-3hd",
2691 (__force u32) mfc->mfc_mcastgrp,
2692 (__force u32) mfc->mfc_origin,
2693 mfc->mfc_parent);
2694
2695 if (it->cache != &mrt->mfc_unres_queue) {
2696 seq_printf(seq, " %8lu %8lu %8lu",
2697 mfc->mfc_un.res.pkt,
2698 mfc->mfc_un.res.bytes,
2699 mfc->mfc_un.res.wrong_if);
2700 for (n = mfc->mfc_un.res.minvif;
2701 n < mfc->mfc_un.res.maxvif; n++) {
2702 if (VIF_EXISTS(mrt, n) &&
2703 mfc->mfc_un.res.ttls[n] < 255)
2704 seq_printf(seq,
2705 " %2d:%-3d",
2706 n, mfc->mfc_un.res.ttls[n]);
2707 }
2708 } else {
2709 /* unresolved mfc_caches don't contain
2710 * pkt, bytes and wrong_if values
2711 */
2712 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2713 }
2714 seq_putc(seq, '\n');
2715 }
2716 return 0;
2717 }
2718
2719 static const struct seq_operations ipmr_mfc_seq_ops = {
2720 .start = ipmr_mfc_seq_start,
2721 .next = ipmr_mfc_seq_next,
2722 .stop = ipmr_mfc_seq_stop,
2723 .show = ipmr_mfc_seq_show,
2724 };
2725
2726 static int ipmr_mfc_open(struct inode *inode, struct file *file)
2727 {
2728 return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
2729 sizeof(struct ipmr_mfc_iter));
2730 }
2731
2732 static const struct file_operations ipmr_mfc_fops = {
2733 .owner = THIS_MODULE,
2734 .open = ipmr_mfc_open,
2735 .read = seq_read,
2736 .llseek = seq_lseek,
2737 .release = seq_release_net,
2738 };
2739 #endif
2740
2741 #ifdef CONFIG_IP_PIMSM_V2
2742 static const struct net_protocol pim_protocol = {
2743 .handler = pim_rcv,
2744 .netns_ok = 1,
2745 };
2746 #endif
2747
2748 /* Setup for IP multicast routing */
2749 static int __net_init ipmr_net_init(struct net *net)
2750 {
2751 int err;
2752
2753 err = ipmr_rules_init(net);
2754 if (err < 0)
2755 goto fail;
2756
2757 #ifdef CONFIG_PROC_FS
2758 err = -ENOMEM;
2759 if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
2760 goto proc_vif_fail;
2761 if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
2762 goto proc_cache_fail;
2763 #endif
2764 return 0;
2765
2766 #ifdef CONFIG_PROC_FS
2767 proc_cache_fail:
2768 remove_proc_entry("ip_mr_vif", net->proc_net);
2769 proc_vif_fail:
2770 ipmr_rules_exit(net);
2771 #endif
2772 fail:
2773 return err;
2774 }
2775
2776 static void __net_exit ipmr_net_exit(struct net *net)
2777 {
2778 #ifdef CONFIG_PROC_FS
2779 remove_proc_entry("ip_mr_cache", net->proc_net);
2780 remove_proc_entry("ip_mr_vif", net->proc_net);
2781 #endif
2782 ipmr_rules_exit(net);
2783 }
2784
2785 static struct pernet_operations ipmr_net_ops = {
2786 .init = ipmr_net_init,
2787 .exit = ipmr_net_exit,
2788 };
2789
2790 int __init ip_mr_init(void)
2791 {
2792 int err;
2793
2794 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2795 sizeof(struct mfc_cache),
2796 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2797 NULL);
2798
2799 err = register_pernet_subsys(&ipmr_net_ops);
2800 if (err)
2801 goto reg_pernet_fail;
2802
2803 err = register_netdevice_notifier(&ip_mr_notifier);
2804 if (err)
2805 goto reg_notif_fail;
2806 #ifdef CONFIG_IP_PIMSM_V2
2807 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
2808 pr_err("%s: can't add PIM protocol\n", __func__);
2809 err = -EAGAIN;
2810 goto add_proto_fail;
2811 }
2812 #endif
2813 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
2814 NULL, ipmr_rtm_dumproute, NULL);
2815 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
2816 ipmr_rtm_route, NULL, NULL);
2817 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
2818 ipmr_rtm_route, NULL, NULL);
2819 return 0;
2820
2821 #ifdef CONFIG_IP_PIMSM_V2
2822 add_proto_fail:
2823 unregister_netdevice_notifier(&ip_mr_notifier);
2824 #endif
2825 reg_notif_fail:
2826 unregister_pernet_subsys(&ipmr_net_ops);
2827 reg_pernet_fail:
2828 kmem_cache_destroy(mrt_cachep);
2829 return err;
2830 }
This page took 0.124443 seconds and 6 git commands to generate.