net: introduce new macro net_get_random_once
[deliverable/linux.git] / net / ipv4 / syncookies.c
1 /*
2 * Syncookies implementation for the Linux kernel
3 *
4 * Copyright (C) 1997 Andi Kleen
5 * Based on ideas by D.J.Bernstein and Eric Schenk.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/tcp.h>
14 #include <linux/slab.h>
15 #include <linux/random.h>
16 #include <linux/cryptohash.h>
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <net/tcp.h>
20 #include <net/route.h>
21
22 /* Timestamps: lowest bits store TCP options */
23 #define TSBITS 6
24 #define TSMASK (((__u32)1 << TSBITS) - 1)
25
26 extern int sysctl_tcp_syncookies;
27
28 __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
29 EXPORT_SYMBOL(syncookie_secret);
30
31 static __init int init_syncookies(void)
32 {
33 get_random_bytes(syncookie_secret, sizeof(syncookie_secret));
34 return 0;
35 }
36 __initcall(init_syncookies);
37
38 #define COOKIEBITS 24 /* Upper bits store count */
39 #define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
40
41 static DEFINE_PER_CPU(__u32 [16 + 5 + SHA_WORKSPACE_WORDS],
42 ipv4_cookie_scratch);
43
44 static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
45 u32 count, int c)
46 {
47 __u32 *tmp = __get_cpu_var(ipv4_cookie_scratch);
48
49 memcpy(tmp + 4, syncookie_secret[c], sizeof(syncookie_secret[c]));
50 tmp[0] = (__force u32)saddr;
51 tmp[1] = (__force u32)daddr;
52 tmp[2] = ((__force u32)sport << 16) + (__force u32)dport;
53 tmp[3] = count;
54 sha_transform(tmp + 16, (__u8 *)tmp, tmp + 16 + 5);
55
56 return tmp[17];
57 }
58
59
60 /*
61 * when syncookies are in effect and tcp timestamps are enabled we encode
62 * tcp options in the lower bits of the timestamp value that will be
63 * sent in the syn-ack.
64 * Since subsequent timestamps use the normal tcp_time_stamp value, we
65 * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
66 */
67 __u32 cookie_init_timestamp(struct request_sock *req)
68 {
69 struct inet_request_sock *ireq;
70 u32 ts, ts_now = tcp_time_stamp;
71 u32 options = 0;
72
73 ireq = inet_rsk(req);
74
75 options = ireq->wscale_ok ? ireq->snd_wscale : 0xf;
76 options |= ireq->sack_ok << 4;
77 options |= ireq->ecn_ok << 5;
78
79 ts = ts_now & ~TSMASK;
80 ts |= options;
81 if (ts > ts_now) {
82 ts >>= TSBITS;
83 ts--;
84 ts <<= TSBITS;
85 ts |= options;
86 }
87 return ts;
88 }
89
90
91 static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
92 __be16 dport, __u32 sseq, __u32 data)
93 {
94 /*
95 * Compute the secure sequence number.
96 * The output should be:
97 * HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
98 * + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
99 * Where sseq is their sequence number and count increases every
100 * minute by 1.
101 * As an extra hack, we add a small "data" value that encodes the
102 * MSS into the second hash value.
103 */
104 u32 count = tcp_cookie_time();
105 return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
106 sseq + (count << COOKIEBITS) +
107 ((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
108 & COOKIEMASK));
109 }
110
111 /*
112 * This retrieves the small "data" value from the syncookie.
113 * If the syncookie is bad, the data returned will be out of
114 * range. This must be checked by the caller.
115 *
116 * The count value used to generate the cookie must be less than
117 * MAX_SYNCOOKIE_AGE minutes in the past.
118 * The return value (__u32)-1 if this test fails.
119 */
120 static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
121 __be16 sport, __be16 dport, __u32 sseq)
122 {
123 u32 diff, count = tcp_cookie_time();
124
125 /* Strip away the layers from the cookie */
126 cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
127
128 /* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
129 diff = (count - (cookie >> COOKIEBITS)) & ((__u32) - 1 >> COOKIEBITS);
130 if (diff >= MAX_SYNCOOKIE_AGE)
131 return (__u32)-1;
132
133 return (cookie -
134 cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
135 & COOKIEMASK; /* Leaving the data behind */
136 }
137
138 /*
139 * MSS Values are chosen based on the 2011 paper
140 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
141 * Values ..
142 * .. lower than 536 are rare (< 0.2%)
143 * .. between 537 and 1299 account for less than < 1.5% of observed values
144 * .. in the 1300-1349 range account for about 15 to 20% of observed mss values
145 * .. exceeding 1460 are very rare (< 0.04%)
146 *
147 * 1460 is the single most frequently announced mss value (30 to 46% depending
148 * on monitor location). Table must be sorted.
149 */
150 static __u16 const msstab[] = {
151 536,
152 1300,
153 1440, /* 1440, 1452: PPPoE */
154 1460,
155 };
156
157 /*
158 * Generate a syncookie. mssp points to the mss, which is returned
159 * rounded down to the value encoded in the cookie.
160 */
161 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
162 u16 *mssp)
163 {
164 int mssind;
165 const __u16 mss = *mssp;
166
167 for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
168 if (mss >= msstab[mssind])
169 break;
170 *mssp = msstab[mssind];
171
172 return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
173 th->source, th->dest, ntohl(th->seq),
174 mssind);
175 }
176 EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
177
178 __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb, __u16 *mssp)
179 {
180 const struct iphdr *iph = ip_hdr(skb);
181 const struct tcphdr *th = tcp_hdr(skb);
182
183 tcp_synq_overflow(sk);
184 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
185
186 return __cookie_v4_init_sequence(iph, th, mssp);
187 }
188
189 /*
190 * Check if a ack sequence number is a valid syncookie.
191 * Return the decoded mss if it is, or 0 if not.
192 */
193 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
194 u32 cookie)
195 {
196 __u32 seq = ntohl(th->seq) - 1;
197 __u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
198 th->source, th->dest, seq);
199
200 return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
201 }
202 EXPORT_SYMBOL_GPL(__cookie_v4_check);
203
204 static inline struct sock *get_cookie_sock(struct sock *sk, struct sk_buff *skb,
205 struct request_sock *req,
206 struct dst_entry *dst)
207 {
208 struct inet_connection_sock *icsk = inet_csk(sk);
209 struct sock *child;
210
211 child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst);
212 if (child)
213 inet_csk_reqsk_queue_add(sk, req, child);
214 else
215 reqsk_free(req);
216
217 return child;
218 }
219
220
221 /*
222 * when syncookies are in effect and tcp timestamps are enabled we stored
223 * additional tcp options in the timestamp.
224 * This extracts these options from the timestamp echo.
225 *
226 * The lowest 4 bits store snd_wscale.
227 * next 2 bits indicate SACK and ECN support.
228 *
229 * return false if we decode an option that should not be.
230 */
231 bool cookie_check_timestamp(struct tcp_options_received *tcp_opt,
232 struct net *net, bool *ecn_ok)
233 {
234 /* echoed timestamp, lowest bits contain options */
235 u32 options = tcp_opt->rcv_tsecr & TSMASK;
236
237 if (!tcp_opt->saw_tstamp) {
238 tcp_clear_options(tcp_opt);
239 return true;
240 }
241
242 if (!sysctl_tcp_timestamps)
243 return false;
244
245 tcp_opt->sack_ok = (options & (1 << 4)) ? TCP_SACK_SEEN : 0;
246 *ecn_ok = (options >> 5) & 1;
247 if (*ecn_ok && !net->ipv4.sysctl_tcp_ecn)
248 return false;
249
250 if (tcp_opt->sack_ok && !sysctl_tcp_sack)
251 return false;
252
253 if ((options & 0xf) == 0xf)
254 return true; /* no window scaling */
255
256 tcp_opt->wscale_ok = 1;
257 tcp_opt->snd_wscale = options & 0xf;
258 return sysctl_tcp_window_scaling != 0;
259 }
260 EXPORT_SYMBOL(cookie_check_timestamp);
261
262 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
263 struct ip_options *opt)
264 {
265 struct tcp_options_received tcp_opt;
266 struct inet_request_sock *ireq;
267 struct tcp_request_sock *treq;
268 struct tcp_sock *tp = tcp_sk(sk);
269 const struct tcphdr *th = tcp_hdr(skb);
270 __u32 cookie = ntohl(th->ack_seq) - 1;
271 struct sock *ret = sk;
272 struct request_sock *req;
273 int mss;
274 struct rtable *rt;
275 __u8 rcv_wscale;
276 bool ecn_ok = false;
277 struct flowi4 fl4;
278
279 if (!sysctl_tcp_syncookies || !th->ack || th->rst)
280 goto out;
281
282 if (tcp_synq_no_recent_overflow(sk) ||
283 (mss = __cookie_v4_check(ip_hdr(skb), th, cookie)) == 0) {
284 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
285 goto out;
286 }
287
288 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
289
290 /* check for timestamp cookie support */
291 memset(&tcp_opt, 0, sizeof(tcp_opt));
292 tcp_parse_options(skb, &tcp_opt, 0, NULL);
293
294 if (!cookie_check_timestamp(&tcp_opt, sock_net(sk), &ecn_ok))
295 goto out;
296
297 ret = NULL;
298 req = inet_reqsk_alloc(&tcp_request_sock_ops); /* for safety */
299 if (!req)
300 goto out;
301
302 ireq = inet_rsk(req);
303 treq = tcp_rsk(req);
304 treq->rcv_isn = ntohl(th->seq) - 1;
305 treq->snt_isn = cookie;
306 req->mss = mss;
307 ireq->ir_num = ntohs(th->dest);
308 ireq->ir_rmt_port = th->source;
309 ireq->ir_loc_addr = ip_hdr(skb)->daddr;
310 ireq->ir_rmt_addr = ip_hdr(skb)->saddr;
311 ireq->ecn_ok = ecn_ok;
312 ireq->snd_wscale = tcp_opt.snd_wscale;
313 ireq->sack_ok = tcp_opt.sack_ok;
314 ireq->wscale_ok = tcp_opt.wscale_ok;
315 ireq->tstamp_ok = tcp_opt.saw_tstamp;
316 req->ts_recent = tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
317 treq->snt_synack = tcp_opt.saw_tstamp ? tcp_opt.rcv_tsecr : 0;
318 treq->listener = NULL;
319
320 /* We throwed the options of the initial SYN away, so we hope
321 * the ACK carries the same options again (see RFC1122 4.2.3.8)
322 */
323 if (opt && opt->optlen) {
324 int opt_size = sizeof(struct ip_options_rcu) + opt->optlen;
325
326 ireq->opt = kmalloc(opt_size, GFP_ATOMIC);
327 if (ireq->opt != NULL && ip_options_echo(&ireq->opt->opt, skb)) {
328 kfree(ireq->opt);
329 ireq->opt = NULL;
330 }
331 }
332
333 if (security_inet_conn_request(sk, skb, req)) {
334 reqsk_free(req);
335 goto out;
336 }
337
338 req->expires = 0UL;
339 req->num_retrans = 0;
340
341 /*
342 * We need to lookup the route here to get at the correct
343 * window size. We should better make sure that the window size
344 * hasn't changed since we received the original syn, but I see
345 * no easy way to do this.
346 */
347 flowi4_init_output(&fl4, sk->sk_bound_dev_if, sk->sk_mark,
348 RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
349 inet_sk_flowi_flags(sk),
350 (opt && opt->srr) ? opt->faddr : ireq->ir_rmt_addr,
351 ireq->ir_loc_addr, th->source, th->dest);
352 security_req_classify_flow(req, flowi4_to_flowi(&fl4));
353 rt = ip_route_output_key(sock_net(sk), &fl4);
354 if (IS_ERR(rt)) {
355 reqsk_free(req);
356 goto out;
357 }
358
359 /* Try to redo what tcp_v4_send_synack did. */
360 req->window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
361
362 tcp_select_initial_window(tcp_full_space(sk), req->mss,
363 &req->rcv_wnd, &req->window_clamp,
364 ireq->wscale_ok, &rcv_wscale,
365 dst_metric(&rt->dst, RTAX_INITRWND));
366
367 ireq->rcv_wscale = rcv_wscale;
368
369 ret = get_cookie_sock(sk, skb, req, &rt->dst);
370 /* ip_queue_xmit() depends on our flow being setup
371 * Normal sockets get it right from inet_csk_route_child_sock()
372 */
373 if (ret)
374 inet_sk(ret)->cork.fl.u.ip4 = fl4;
375 out: return ret;
376 }
This page took 0.044216 seconds and 6 git commands to generate.