net: tcp: move sk_rx_dst_set call after tcp_create_openreq_child()
[deliverable/linux.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/netdma.h>
278 #include <net/sock.h>
279
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282
283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
284
285 struct percpu_counter tcp_orphan_count;
286 EXPORT_SYMBOL_GPL(tcp_orphan_count);
287
288 int sysctl_tcp_wmem[3] __read_mostly;
289 int sysctl_tcp_rmem[3] __read_mostly;
290
291 EXPORT_SYMBOL(sysctl_tcp_rmem);
292 EXPORT_SYMBOL(sysctl_tcp_wmem);
293
294 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
295 EXPORT_SYMBOL(tcp_memory_allocated);
296
297 /*
298 * Current number of TCP sockets.
299 */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302
303 /*
304 * TCP splice context
305 */
306 struct tcp_splice_state {
307 struct pipe_inode_info *pipe;
308 size_t len;
309 unsigned int flags;
310 };
311
312 /*
313 * Pressure flag: try to collapse.
314 * Technical note: it is used by multiple contexts non atomically.
315 * All the __sk_mem_schedule() is of this nature: accounting
316 * is strict, actions are advisory and have some latency.
317 */
318 int tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL(tcp_memory_pressure);
320
321 void tcp_enter_memory_pressure(struct sock *sk)
322 {
323 if (!tcp_memory_pressure) {
324 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
325 tcp_memory_pressure = 1;
326 }
327 }
328 EXPORT_SYMBOL(tcp_enter_memory_pressure);
329
330 /* Convert seconds to retransmits based on initial and max timeout */
331 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
332 {
333 u8 res = 0;
334
335 if (seconds > 0) {
336 int period = timeout;
337
338 res = 1;
339 while (seconds > period && res < 255) {
340 res++;
341 timeout <<= 1;
342 if (timeout > rto_max)
343 timeout = rto_max;
344 period += timeout;
345 }
346 }
347 return res;
348 }
349
350 /* Convert retransmits to seconds based on initial and max timeout */
351 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
352 {
353 int period = 0;
354
355 if (retrans > 0) {
356 period = timeout;
357 while (--retrans) {
358 timeout <<= 1;
359 if (timeout > rto_max)
360 timeout = rto_max;
361 period += timeout;
362 }
363 }
364 return period;
365 }
366
367 /* Address-family independent initialization for a tcp_sock.
368 *
369 * NOTE: A lot of things set to zero explicitly by call to
370 * sk_alloc() so need not be done here.
371 */
372 void tcp_init_sock(struct sock *sk)
373 {
374 struct inet_connection_sock *icsk = inet_csk(sk);
375 struct tcp_sock *tp = tcp_sk(sk);
376
377 skb_queue_head_init(&tp->out_of_order_queue);
378 tcp_init_xmit_timers(sk);
379 tcp_prequeue_init(tp);
380 INIT_LIST_HEAD(&tp->tsq_node);
381
382 icsk->icsk_rto = TCP_TIMEOUT_INIT;
383 tp->mdev = TCP_TIMEOUT_INIT;
384
385 /* So many TCP implementations out there (incorrectly) count the
386 * initial SYN frame in their delayed-ACK and congestion control
387 * algorithms that we must have the following bandaid to talk
388 * efficiently to them. -DaveM
389 */
390 tp->snd_cwnd = TCP_INIT_CWND;
391
392 /* See draft-stevens-tcpca-spec-01 for discussion of the
393 * initialization of these values.
394 */
395 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
396 tp->snd_cwnd_clamp = ~0;
397 tp->mss_cache = TCP_MSS_DEFAULT;
398
399 tp->reordering = sysctl_tcp_reordering;
400 tcp_enable_early_retrans(tp);
401 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
402
403 sk->sk_state = TCP_CLOSE;
404
405 sk->sk_write_space = sk_stream_write_space;
406 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
407
408 icsk->icsk_sync_mss = tcp_sync_mss;
409
410 /* TCP Cookie Transactions */
411 if (sysctl_tcp_cookie_size > 0) {
412 /* Default, cookies without s_data_payload. */
413 tp->cookie_values =
414 kzalloc(sizeof(*tp->cookie_values),
415 sk->sk_allocation);
416 if (tp->cookie_values != NULL)
417 kref_init(&tp->cookie_values->kref);
418 }
419 /* Presumed zeroed, in order of appearance:
420 * cookie_in_always, cookie_out_never,
421 * s_data_constant, s_data_in, s_data_out
422 */
423 sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
425
426 local_bh_disable();
427 sock_update_memcg(sk);
428 sk_sockets_allocated_inc(sk);
429 local_bh_enable();
430 }
431 EXPORT_SYMBOL(tcp_init_sock);
432
433 /*
434 * Wait for a TCP event.
435 *
436 * Note that we don't need to lock the socket, as the upper poll layers
437 * take care of normal races (between the test and the event) and we don't
438 * go look at any of the socket buffers directly.
439 */
440 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
441 {
442 unsigned int mask;
443 struct sock *sk = sock->sk;
444 const struct tcp_sock *tp = tcp_sk(sk);
445
446 sock_poll_wait(file, sk_sleep(sk), wait);
447 if (sk->sk_state == TCP_LISTEN)
448 return inet_csk_listen_poll(sk);
449
450 /* Socket is not locked. We are protected from async events
451 * by poll logic and correct handling of state changes
452 * made by other threads is impossible in any case.
453 */
454
455 mask = 0;
456
457 /*
458 * POLLHUP is certainly not done right. But poll() doesn't
459 * have a notion of HUP in just one direction, and for a
460 * socket the read side is more interesting.
461 *
462 * Some poll() documentation says that POLLHUP is incompatible
463 * with the POLLOUT/POLLWR flags, so somebody should check this
464 * all. But careful, it tends to be safer to return too many
465 * bits than too few, and you can easily break real applications
466 * if you don't tell them that something has hung up!
467 *
468 * Check-me.
469 *
470 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
471 * our fs/select.c). It means that after we received EOF,
472 * poll always returns immediately, making impossible poll() on write()
473 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
474 * if and only if shutdown has been made in both directions.
475 * Actually, it is interesting to look how Solaris and DUX
476 * solve this dilemma. I would prefer, if POLLHUP were maskable,
477 * then we could set it on SND_SHUTDOWN. BTW examples given
478 * in Stevens' books assume exactly this behaviour, it explains
479 * why POLLHUP is incompatible with POLLOUT. --ANK
480 *
481 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
482 * blocking on fresh not-connected or disconnected socket. --ANK
483 */
484 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
485 mask |= POLLHUP;
486 if (sk->sk_shutdown & RCV_SHUTDOWN)
487 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
488
489 /* Connected? */
490 if ((1 << sk->sk_state) & ~(TCPF_SYN_SENT | TCPF_SYN_RECV)) {
491 int target = sock_rcvlowat(sk, 0, INT_MAX);
492
493 if (tp->urg_seq == tp->copied_seq &&
494 !sock_flag(sk, SOCK_URGINLINE) &&
495 tp->urg_data)
496 target++;
497
498 /* Potential race condition. If read of tp below will
499 * escape above sk->sk_state, we can be illegally awaken
500 * in SYN_* states. */
501 if (tp->rcv_nxt - tp->copied_seq >= target)
502 mask |= POLLIN | POLLRDNORM;
503
504 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
505 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
506 mask |= POLLOUT | POLLWRNORM;
507 } else { /* send SIGIO later */
508 set_bit(SOCK_ASYNC_NOSPACE,
509 &sk->sk_socket->flags);
510 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
511
512 /* Race breaker. If space is freed after
513 * wspace test but before the flags are set,
514 * IO signal will be lost.
515 */
516 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk))
517 mask |= POLLOUT | POLLWRNORM;
518 }
519 } else
520 mask |= POLLOUT | POLLWRNORM;
521
522 if (tp->urg_data & TCP_URG_VALID)
523 mask |= POLLPRI;
524 }
525 /* This barrier is coupled with smp_wmb() in tcp_reset() */
526 smp_rmb();
527 if (sk->sk_err)
528 mask |= POLLERR;
529
530 return mask;
531 }
532 EXPORT_SYMBOL(tcp_poll);
533
534 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
535 {
536 struct tcp_sock *tp = tcp_sk(sk);
537 int answ;
538
539 switch (cmd) {
540 case SIOCINQ:
541 if (sk->sk_state == TCP_LISTEN)
542 return -EINVAL;
543
544 lock_sock(sk);
545 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
546 answ = 0;
547 else if (sock_flag(sk, SOCK_URGINLINE) ||
548 !tp->urg_data ||
549 before(tp->urg_seq, tp->copied_seq) ||
550 !before(tp->urg_seq, tp->rcv_nxt)) {
551 struct sk_buff *skb;
552
553 answ = tp->rcv_nxt - tp->copied_seq;
554
555 /* Subtract 1, if FIN is in queue. */
556 skb = skb_peek_tail(&sk->sk_receive_queue);
557 if (answ && skb)
558 answ -= tcp_hdr(skb)->fin;
559 } else
560 answ = tp->urg_seq - tp->copied_seq;
561 release_sock(sk);
562 break;
563 case SIOCATMARK:
564 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
565 break;
566 case SIOCOUTQ:
567 if (sk->sk_state == TCP_LISTEN)
568 return -EINVAL;
569
570 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
571 answ = 0;
572 else
573 answ = tp->write_seq - tp->snd_una;
574 break;
575 case SIOCOUTQNSD:
576 if (sk->sk_state == TCP_LISTEN)
577 return -EINVAL;
578
579 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
580 answ = 0;
581 else
582 answ = tp->write_seq - tp->snd_nxt;
583 break;
584 default:
585 return -ENOIOCTLCMD;
586 }
587
588 return put_user(answ, (int __user *)arg);
589 }
590 EXPORT_SYMBOL(tcp_ioctl);
591
592 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
593 {
594 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
595 tp->pushed_seq = tp->write_seq;
596 }
597
598 static inline bool forced_push(const struct tcp_sock *tp)
599 {
600 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
601 }
602
603 static inline void skb_entail(struct sock *sk, struct sk_buff *skb)
604 {
605 struct tcp_sock *tp = tcp_sk(sk);
606 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
607
608 skb->csum = 0;
609 tcb->seq = tcb->end_seq = tp->write_seq;
610 tcb->tcp_flags = TCPHDR_ACK;
611 tcb->sacked = 0;
612 skb_header_release(skb);
613 tcp_add_write_queue_tail(sk, skb);
614 sk->sk_wmem_queued += skb->truesize;
615 sk_mem_charge(sk, skb->truesize);
616 if (tp->nonagle & TCP_NAGLE_PUSH)
617 tp->nonagle &= ~TCP_NAGLE_PUSH;
618 }
619
620 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
621 {
622 if (flags & MSG_OOB)
623 tp->snd_up = tp->write_seq;
624 }
625
626 static inline void tcp_push(struct sock *sk, int flags, int mss_now,
627 int nonagle)
628 {
629 if (tcp_send_head(sk)) {
630 struct tcp_sock *tp = tcp_sk(sk);
631
632 if (!(flags & MSG_MORE) || forced_push(tp))
633 tcp_mark_push(tp, tcp_write_queue_tail(sk));
634
635 tcp_mark_urg(tp, flags);
636 __tcp_push_pending_frames(sk, mss_now,
637 (flags & MSG_MORE) ? TCP_NAGLE_CORK : nonagle);
638 }
639 }
640
641 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
642 unsigned int offset, size_t len)
643 {
644 struct tcp_splice_state *tss = rd_desc->arg.data;
645 int ret;
646
647 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
648 tss->flags);
649 if (ret > 0)
650 rd_desc->count -= ret;
651 return ret;
652 }
653
654 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
655 {
656 /* Store TCP splice context information in read_descriptor_t. */
657 read_descriptor_t rd_desc = {
658 .arg.data = tss,
659 .count = tss->len,
660 };
661
662 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
663 }
664
665 /**
666 * tcp_splice_read - splice data from TCP socket to a pipe
667 * @sock: socket to splice from
668 * @ppos: position (not valid)
669 * @pipe: pipe to splice to
670 * @len: number of bytes to splice
671 * @flags: splice modifier flags
672 *
673 * Description:
674 * Will read pages from given socket and fill them into a pipe.
675 *
676 **/
677 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
678 struct pipe_inode_info *pipe, size_t len,
679 unsigned int flags)
680 {
681 struct sock *sk = sock->sk;
682 struct tcp_splice_state tss = {
683 .pipe = pipe,
684 .len = len,
685 .flags = flags,
686 };
687 long timeo;
688 ssize_t spliced;
689 int ret;
690
691 sock_rps_record_flow(sk);
692 /*
693 * We can't seek on a socket input
694 */
695 if (unlikely(*ppos))
696 return -ESPIPE;
697
698 ret = spliced = 0;
699
700 lock_sock(sk);
701
702 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
703 while (tss.len) {
704 ret = __tcp_splice_read(sk, &tss);
705 if (ret < 0)
706 break;
707 else if (!ret) {
708 if (spliced)
709 break;
710 if (sock_flag(sk, SOCK_DONE))
711 break;
712 if (sk->sk_err) {
713 ret = sock_error(sk);
714 break;
715 }
716 if (sk->sk_shutdown & RCV_SHUTDOWN)
717 break;
718 if (sk->sk_state == TCP_CLOSE) {
719 /*
720 * This occurs when user tries to read
721 * from never connected socket.
722 */
723 if (!sock_flag(sk, SOCK_DONE))
724 ret = -ENOTCONN;
725 break;
726 }
727 if (!timeo) {
728 ret = -EAGAIN;
729 break;
730 }
731 sk_wait_data(sk, &timeo);
732 if (signal_pending(current)) {
733 ret = sock_intr_errno(timeo);
734 break;
735 }
736 continue;
737 }
738 tss.len -= ret;
739 spliced += ret;
740
741 if (!timeo)
742 break;
743 release_sock(sk);
744 lock_sock(sk);
745
746 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
747 (sk->sk_shutdown & RCV_SHUTDOWN) ||
748 signal_pending(current))
749 break;
750 }
751
752 release_sock(sk);
753
754 if (spliced)
755 return spliced;
756
757 return ret;
758 }
759 EXPORT_SYMBOL(tcp_splice_read);
760
761 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
762 {
763 struct sk_buff *skb;
764
765 /* The TCP header must be at least 32-bit aligned. */
766 size = ALIGN(size, 4);
767
768 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
769 if (skb) {
770 if (sk_wmem_schedule(sk, skb->truesize)) {
771 skb_reserve(skb, sk->sk_prot->max_header);
772 /*
773 * Make sure that we have exactly size bytes
774 * available to the caller, no more, no less.
775 */
776 skb->avail_size = size;
777 return skb;
778 }
779 __kfree_skb(skb);
780 } else {
781 sk->sk_prot->enter_memory_pressure(sk);
782 sk_stream_moderate_sndbuf(sk);
783 }
784 return NULL;
785 }
786
787 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
788 int large_allowed)
789 {
790 struct tcp_sock *tp = tcp_sk(sk);
791 u32 xmit_size_goal, old_size_goal;
792
793 xmit_size_goal = mss_now;
794
795 if (large_allowed && sk_can_gso(sk)) {
796 xmit_size_goal = ((sk->sk_gso_max_size - 1) -
797 inet_csk(sk)->icsk_af_ops->net_header_len -
798 inet_csk(sk)->icsk_ext_hdr_len -
799 tp->tcp_header_len);
800
801 /* TSQ : try to have two TSO segments in flight */
802 xmit_size_goal = min_t(u32, xmit_size_goal,
803 sysctl_tcp_limit_output_bytes >> 1);
804
805 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
806
807 /* We try hard to avoid divides here */
808 old_size_goal = tp->xmit_size_goal_segs * mss_now;
809
810 if (likely(old_size_goal <= xmit_size_goal &&
811 old_size_goal + mss_now > xmit_size_goal)) {
812 xmit_size_goal = old_size_goal;
813 } else {
814 tp->xmit_size_goal_segs =
815 min_t(u16, xmit_size_goal / mss_now,
816 sk->sk_gso_max_segs);
817 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
818 }
819 }
820
821 return max(xmit_size_goal, mss_now);
822 }
823
824 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
825 {
826 int mss_now;
827
828 mss_now = tcp_current_mss(sk);
829 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
830
831 return mss_now;
832 }
833
834 static ssize_t do_tcp_sendpages(struct sock *sk, struct page **pages, int poffset,
835 size_t psize, int flags)
836 {
837 struct tcp_sock *tp = tcp_sk(sk);
838 int mss_now, size_goal;
839 int err;
840 ssize_t copied;
841 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
842
843 /* Wait for a connection to finish. */
844 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
845 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
846 goto out_err;
847
848 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
849
850 mss_now = tcp_send_mss(sk, &size_goal, flags);
851 copied = 0;
852
853 err = -EPIPE;
854 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
855 goto out_err;
856
857 while (psize > 0) {
858 struct sk_buff *skb = tcp_write_queue_tail(sk);
859 struct page *page = pages[poffset / PAGE_SIZE];
860 int copy, i;
861 int offset = poffset % PAGE_SIZE;
862 int size = min_t(size_t, psize, PAGE_SIZE - offset);
863 bool can_coalesce;
864
865 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
866 new_segment:
867 if (!sk_stream_memory_free(sk))
868 goto wait_for_sndbuf;
869
870 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
871 if (!skb)
872 goto wait_for_memory;
873
874 skb_entail(sk, skb);
875 copy = size_goal;
876 }
877
878 if (copy > size)
879 copy = size;
880
881 i = skb_shinfo(skb)->nr_frags;
882 can_coalesce = skb_can_coalesce(skb, i, page, offset);
883 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
884 tcp_mark_push(tp, skb);
885 goto new_segment;
886 }
887 if (!sk_wmem_schedule(sk, copy))
888 goto wait_for_memory;
889
890 if (can_coalesce) {
891 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
892 } else {
893 get_page(page);
894 skb_fill_page_desc(skb, i, page, offset, copy);
895 }
896
897 skb->len += copy;
898 skb->data_len += copy;
899 skb->truesize += copy;
900 sk->sk_wmem_queued += copy;
901 sk_mem_charge(sk, copy);
902 skb->ip_summed = CHECKSUM_PARTIAL;
903 tp->write_seq += copy;
904 TCP_SKB_CB(skb)->end_seq += copy;
905 skb_shinfo(skb)->gso_segs = 0;
906
907 if (!copied)
908 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
909
910 copied += copy;
911 poffset += copy;
912 if (!(psize -= copy))
913 goto out;
914
915 if (skb->len < size_goal || (flags & MSG_OOB))
916 continue;
917
918 if (forced_push(tp)) {
919 tcp_mark_push(tp, skb);
920 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
921 } else if (skb == tcp_send_head(sk))
922 tcp_push_one(sk, mss_now);
923 continue;
924
925 wait_for_sndbuf:
926 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
927 wait_for_memory:
928 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
929
930 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
931 goto do_error;
932
933 mss_now = tcp_send_mss(sk, &size_goal, flags);
934 }
935
936 out:
937 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
938 tcp_push(sk, flags, mss_now, tp->nonagle);
939 return copied;
940
941 do_error:
942 if (copied)
943 goto out;
944 out_err:
945 return sk_stream_error(sk, flags, err);
946 }
947
948 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
949 size_t size, int flags)
950 {
951 ssize_t res;
952
953 if (!(sk->sk_route_caps & NETIF_F_SG) ||
954 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
955 return sock_no_sendpage(sk->sk_socket, page, offset, size,
956 flags);
957
958 lock_sock(sk);
959 res = do_tcp_sendpages(sk, &page, offset, size, flags);
960 release_sock(sk);
961 return res;
962 }
963 EXPORT_SYMBOL(tcp_sendpage);
964
965 static inline int select_size(const struct sock *sk, bool sg)
966 {
967 const struct tcp_sock *tp = tcp_sk(sk);
968 int tmp = tp->mss_cache;
969
970 if (sg) {
971 if (sk_can_gso(sk)) {
972 /* Small frames wont use a full page:
973 * Payload will immediately follow tcp header.
974 */
975 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
976 } else {
977 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
978
979 if (tmp >= pgbreak &&
980 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
981 tmp = pgbreak;
982 }
983 }
984
985 return tmp;
986 }
987
988 void tcp_free_fastopen_req(struct tcp_sock *tp)
989 {
990 if (tp->fastopen_req != NULL) {
991 kfree(tp->fastopen_req);
992 tp->fastopen_req = NULL;
993 }
994 }
995
996 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *size)
997 {
998 struct tcp_sock *tp = tcp_sk(sk);
999 int err, flags;
1000
1001 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1002 return -EOPNOTSUPP;
1003 if (tp->fastopen_req != NULL)
1004 return -EALREADY; /* Another Fast Open is in progress */
1005
1006 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1007 sk->sk_allocation);
1008 if (unlikely(tp->fastopen_req == NULL))
1009 return -ENOBUFS;
1010 tp->fastopen_req->data = msg;
1011
1012 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1013 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1014 msg->msg_namelen, flags);
1015 *size = tp->fastopen_req->copied;
1016 tcp_free_fastopen_req(tp);
1017 return err;
1018 }
1019
1020 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1021 size_t size)
1022 {
1023 struct iovec *iov;
1024 struct tcp_sock *tp = tcp_sk(sk);
1025 struct sk_buff *skb;
1026 int iovlen, flags, err, copied = 0;
1027 int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1028 bool sg;
1029 long timeo;
1030
1031 lock_sock(sk);
1032
1033 flags = msg->msg_flags;
1034 if (flags & MSG_FASTOPEN) {
1035 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn);
1036 if (err == -EINPROGRESS && copied_syn > 0)
1037 goto out;
1038 else if (err)
1039 goto out_err;
1040 offset = copied_syn;
1041 }
1042
1043 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1044
1045 /* Wait for a connection to finish. */
1046 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1047 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1048 goto do_error;
1049
1050 if (unlikely(tp->repair)) {
1051 if (tp->repair_queue == TCP_RECV_QUEUE) {
1052 copied = tcp_send_rcvq(sk, msg, size);
1053 goto out;
1054 }
1055
1056 err = -EINVAL;
1057 if (tp->repair_queue == TCP_NO_QUEUE)
1058 goto out_err;
1059
1060 /* 'common' sending to sendq */
1061 }
1062
1063 /* This should be in poll */
1064 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1065
1066 mss_now = tcp_send_mss(sk, &size_goal, flags);
1067
1068 /* Ok commence sending. */
1069 iovlen = msg->msg_iovlen;
1070 iov = msg->msg_iov;
1071 copied = 0;
1072
1073 err = -EPIPE;
1074 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1075 goto out_err;
1076
1077 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1078
1079 while (--iovlen >= 0) {
1080 size_t seglen = iov->iov_len;
1081 unsigned char __user *from = iov->iov_base;
1082
1083 iov++;
1084 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */
1085 if (offset >= seglen) {
1086 offset -= seglen;
1087 continue;
1088 }
1089 seglen -= offset;
1090 from += offset;
1091 offset = 0;
1092 }
1093
1094 while (seglen > 0) {
1095 int copy = 0;
1096 int max = size_goal;
1097
1098 skb = tcp_write_queue_tail(sk);
1099 if (tcp_send_head(sk)) {
1100 if (skb->ip_summed == CHECKSUM_NONE)
1101 max = mss_now;
1102 copy = max - skb->len;
1103 }
1104
1105 if (copy <= 0) {
1106 new_segment:
1107 /* Allocate new segment. If the interface is SG,
1108 * allocate skb fitting to single page.
1109 */
1110 if (!sk_stream_memory_free(sk))
1111 goto wait_for_sndbuf;
1112
1113 skb = sk_stream_alloc_skb(sk,
1114 select_size(sk, sg),
1115 sk->sk_allocation);
1116 if (!skb)
1117 goto wait_for_memory;
1118
1119 /*
1120 * Check whether we can use HW checksum.
1121 */
1122 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1123 skb->ip_summed = CHECKSUM_PARTIAL;
1124
1125 skb_entail(sk, skb);
1126 copy = size_goal;
1127 max = size_goal;
1128 }
1129
1130 /* Try to append data to the end of skb. */
1131 if (copy > seglen)
1132 copy = seglen;
1133
1134 /* Where to copy to? */
1135 if (skb_availroom(skb) > 0) {
1136 /* We have some space in skb head. Superb! */
1137 copy = min_t(int, copy, skb_availroom(skb));
1138 err = skb_add_data_nocache(sk, skb, from, copy);
1139 if (err)
1140 goto do_fault;
1141 } else {
1142 bool merge = false;
1143 int i = skb_shinfo(skb)->nr_frags;
1144 struct page *page = sk->sk_sndmsg_page;
1145 int off;
1146
1147 if (page && page_count(page) == 1)
1148 sk->sk_sndmsg_off = 0;
1149
1150 off = sk->sk_sndmsg_off;
1151
1152 if (skb_can_coalesce(skb, i, page, off) &&
1153 off != PAGE_SIZE) {
1154 /* We can extend the last page
1155 * fragment. */
1156 merge = true;
1157 } else if (i == MAX_SKB_FRAGS || !sg) {
1158 /* Need to add new fragment and cannot
1159 * do this because interface is non-SG,
1160 * or because all the page slots are
1161 * busy. */
1162 tcp_mark_push(tp, skb);
1163 goto new_segment;
1164 } else if (page) {
1165 if (off == PAGE_SIZE) {
1166 put_page(page);
1167 sk->sk_sndmsg_page = page = NULL;
1168 off = 0;
1169 }
1170 } else
1171 off = 0;
1172
1173 if (copy > PAGE_SIZE - off)
1174 copy = PAGE_SIZE - off;
1175
1176 if (!sk_wmem_schedule(sk, copy))
1177 goto wait_for_memory;
1178
1179 if (!page) {
1180 /* Allocate new cache page. */
1181 if (!(page = sk_stream_alloc_page(sk)))
1182 goto wait_for_memory;
1183 }
1184
1185 /* Time to copy data. We are close to
1186 * the end! */
1187 err = skb_copy_to_page_nocache(sk, from, skb,
1188 page, off, copy);
1189 if (err) {
1190 /* If this page was new, give it to the
1191 * socket so it does not get leaked.
1192 */
1193 if (!sk->sk_sndmsg_page) {
1194 sk->sk_sndmsg_page = page;
1195 sk->sk_sndmsg_off = 0;
1196 }
1197 goto do_error;
1198 }
1199
1200 /* Update the skb. */
1201 if (merge) {
1202 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1203 } else {
1204 skb_fill_page_desc(skb, i, page, off, copy);
1205 if (sk->sk_sndmsg_page) {
1206 get_page(page);
1207 } else if (off + copy < PAGE_SIZE) {
1208 get_page(page);
1209 sk->sk_sndmsg_page = page;
1210 }
1211 }
1212
1213 sk->sk_sndmsg_off = off + copy;
1214 }
1215
1216 if (!copied)
1217 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1218
1219 tp->write_seq += copy;
1220 TCP_SKB_CB(skb)->end_seq += copy;
1221 skb_shinfo(skb)->gso_segs = 0;
1222
1223 from += copy;
1224 copied += copy;
1225 if ((seglen -= copy) == 0 && iovlen == 0)
1226 goto out;
1227
1228 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1229 continue;
1230
1231 if (forced_push(tp)) {
1232 tcp_mark_push(tp, skb);
1233 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1234 } else if (skb == tcp_send_head(sk))
1235 tcp_push_one(sk, mss_now);
1236 continue;
1237
1238 wait_for_sndbuf:
1239 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1240 wait_for_memory:
1241 if (copied && likely(!tp->repair))
1242 tcp_push(sk, flags & ~MSG_MORE, mss_now, TCP_NAGLE_PUSH);
1243
1244 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1245 goto do_error;
1246
1247 mss_now = tcp_send_mss(sk, &size_goal, flags);
1248 }
1249 }
1250
1251 out:
1252 if (copied && likely(!tp->repair))
1253 tcp_push(sk, flags, mss_now, tp->nonagle);
1254 release_sock(sk);
1255 return copied + copied_syn;
1256
1257 do_fault:
1258 if (!skb->len) {
1259 tcp_unlink_write_queue(skb, sk);
1260 /* It is the one place in all of TCP, except connection
1261 * reset, where we can be unlinking the send_head.
1262 */
1263 tcp_check_send_head(sk, skb);
1264 sk_wmem_free_skb(sk, skb);
1265 }
1266
1267 do_error:
1268 if (copied + copied_syn)
1269 goto out;
1270 out_err:
1271 err = sk_stream_error(sk, flags, err);
1272 release_sock(sk);
1273 return err;
1274 }
1275 EXPORT_SYMBOL(tcp_sendmsg);
1276
1277 /*
1278 * Handle reading urgent data. BSD has very simple semantics for
1279 * this, no blocking and very strange errors 8)
1280 */
1281
1282 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1283 {
1284 struct tcp_sock *tp = tcp_sk(sk);
1285
1286 /* No URG data to read. */
1287 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1288 tp->urg_data == TCP_URG_READ)
1289 return -EINVAL; /* Yes this is right ! */
1290
1291 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1292 return -ENOTCONN;
1293
1294 if (tp->urg_data & TCP_URG_VALID) {
1295 int err = 0;
1296 char c = tp->urg_data;
1297
1298 if (!(flags & MSG_PEEK))
1299 tp->urg_data = TCP_URG_READ;
1300
1301 /* Read urgent data. */
1302 msg->msg_flags |= MSG_OOB;
1303
1304 if (len > 0) {
1305 if (!(flags & MSG_TRUNC))
1306 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1307 len = 1;
1308 } else
1309 msg->msg_flags |= MSG_TRUNC;
1310
1311 return err ? -EFAULT : len;
1312 }
1313
1314 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1315 return 0;
1316
1317 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1318 * the available implementations agree in this case:
1319 * this call should never block, independent of the
1320 * blocking state of the socket.
1321 * Mike <pall@rz.uni-karlsruhe.de>
1322 */
1323 return -EAGAIN;
1324 }
1325
1326 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1327 {
1328 struct sk_buff *skb;
1329 int copied = 0, err = 0;
1330
1331 /* XXX -- need to support SO_PEEK_OFF */
1332
1333 skb_queue_walk(&sk->sk_write_queue, skb) {
1334 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1335 if (err)
1336 break;
1337
1338 copied += skb->len;
1339 }
1340
1341 return err ?: copied;
1342 }
1343
1344 /* Clean up the receive buffer for full frames taken by the user,
1345 * then send an ACK if necessary. COPIED is the number of bytes
1346 * tcp_recvmsg has given to the user so far, it speeds up the
1347 * calculation of whether or not we must ACK for the sake of
1348 * a window update.
1349 */
1350 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1351 {
1352 struct tcp_sock *tp = tcp_sk(sk);
1353 bool time_to_ack = false;
1354
1355 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1356
1357 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1358 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1359 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1360
1361 if (inet_csk_ack_scheduled(sk)) {
1362 const struct inet_connection_sock *icsk = inet_csk(sk);
1363 /* Delayed ACKs frequently hit locked sockets during bulk
1364 * receive. */
1365 if (icsk->icsk_ack.blocked ||
1366 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1367 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1368 /*
1369 * If this read emptied read buffer, we send ACK, if
1370 * connection is not bidirectional, user drained
1371 * receive buffer and there was a small segment
1372 * in queue.
1373 */
1374 (copied > 0 &&
1375 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1376 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1377 !icsk->icsk_ack.pingpong)) &&
1378 !atomic_read(&sk->sk_rmem_alloc)))
1379 time_to_ack = true;
1380 }
1381
1382 /* We send an ACK if we can now advertise a non-zero window
1383 * which has been raised "significantly".
1384 *
1385 * Even if window raised up to infinity, do not send window open ACK
1386 * in states, where we will not receive more. It is useless.
1387 */
1388 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1389 __u32 rcv_window_now = tcp_receive_window(tp);
1390
1391 /* Optimize, __tcp_select_window() is not cheap. */
1392 if (2*rcv_window_now <= tp->window_clamp) {
1393 __u32 new_window = __tcp_select_window(sk);
1394
1395 /* Send ACK now, if this read freed lots of space
1396 * in our buffer. Certainly, new_window is new window.
1397 * We can advertise it now, if it is not less than current one.
1398 * "Lots" means "at least twice" here.
1399 */
1400 if (new_window && new_window >= 2 * rcv_window_now)
1401 time_to_ack = true;
1402 }
1403 }
1404 if (time_to_ack)
1405 tcp_send_ack(sk);
1406 }
1407
1408 static void tcp_prequeue_process(struct sock *sk)
1409 {
1410 struct sk_buff *skb;
1411 struct tcp_sock *tp = tcp_sk(sk);
1412
1413 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1414
1415 /* RX process wants to run with disabled BHs, though it is not
1416 * necessary */
1417 local_bh_disable();
1418 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1419 sk_backlog_rcv(sk, skb);
1420 local_bh_enable();
1421
1422 /* Clear memory counter. */
1423 tp->ucopy.memory = 0;
1424 }
1425
1426 #ifdef CONFIG_NET_DMA
1427 static void tcp_service_net_dma(struct sock *sk, bool wait)
1428 {
1429 dma_cookie_t done, used;
1430 dma_cookie_t last_issued;
1431 struct tcp_sock *tp = tcp_sk(sk);
1432
1433 if (!tp->ucopy.dma_chan)
1434 return;
1435
1436 last_issued = tp->ucopy.dma_cookie;
1437 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1438
1439 do {
1440 if (dma_async_memcpy_complete(tp->ucopy.dma_chan,
1441 last_issued, &done,
1442 &used) == DMA_SUCCESS) {
1443 /* Safe to free early-copied skbs now */
1444 __skb_queue_purge(&sk->sk_async_wait_queue);
1445 break;
1446 } else {
1447 struct sk_buff *skb;
1448 while ((skb = skb_peek(&sk->sk_async_wait_queue)) &&
1449 (dma_async_is_complete(skb->dma_cookie, done,
1450 used) == DMA_SUCCESS)) {
1451 __skb_dequeue(&sk->sk_async_wait_queue);
1452 kfree_skb(skb);
1453 }
1454 }
1455 } while (wait);
1456 }
1457 #endif
1458
1459 static inline struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1460 {
1461 struct sk_buff *skb;
1462 u32 offset;
1463
1464 skb_queue_walk(&sk->sk_receive_queue, skb) {
1465 offset = seq - TCP_SKB_CB(skb)->seq;
1466 if (tcp_hdr(skb)->syn)
1467 offset--;
1468 if (offset < skb->len || tcp_hdr(skb)->fin) {
1469 *off = offset;
1470 return skb;
1471 }
1472 }
1473 return NULL;
1474 }
1475
1476 /*
1477 * This routine provides an alternative to tcp_recvmsg() for routines
1478 * that would like to handle copying from skbuffs directly in 'sendfile'
1479 * fashion.
1480 * Note:
1481 * - It is assumed that the socket was locked by the caller.
1482 * - The routine does not block.
1483 * - At present, there is no support for reading OOB data
1484 * or for 'peeking' the socket using this routine
1485 * (although both would be easy to implement).
1486 */
1487 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1488 sk_read_actor_t recv_actor)
1489 {
1490 struct sk_buff *skb;
1491 struct tcp_sock *tp = tcp_sk(sk);
1492 u32 seq = tp->copied_seq;
1493 u32 offset;
1494 int copied = 0;
1495
1496 if (sk->sk_state == TCP_LISTEN)
1497 return -ENOTCONN;
1498 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1499 if (offset < skb->len) {
1500 int used;
1501 size_t len;
1502
1503 len = skb->len - offset;
1504 /* Stop reading if we hit a patch of urgent data */
1505 if (tp->urg_data) {
1506 u32 urg_offset = tp->urg_seq - seq;
1507 if (urg_offset < len)
1508 len = urg_offset;
1509 if (!len)
1510 break;
1511 }
1512 used = recv_actor(desc, skb, offset, len);
1513 if (used < 0) {
1514 if (!copied)
1515 copied = used;
1516 break;
1517 } else if (used <= len) {
1518 seq += used;
1519 copied += used;
1520 offset += used;
1521 }
1522 /*
1523 * If recv_actor drops the lock (e.g. TCP splice
1524 * receive) the skb pointer might be invalid when
1525 * getting here: tcp_collapse might have deleted it
1526 * while aggregating skbs from the socket queue.
1527 */
1528 skb = tcp_recv_skb(sk, seq-1, &offset);
1529 if (!skb || (offset+1 != skb->len))
1530 break;
1531 }
1532 if (tcp_hdr(skb)->fin) {
1533 sk_eat_skb(sk, skb, false);
1534 ++seq;
1535 break;
1536 }
1537 sk_eat_skb(sk, skb, false);
1538 if (!desc->count)
1539 break;
1540 tp->copied_seq = seq;
1541 }
1542 tp->copied_seq = seq;
1543
1544 tcp_rcv_space_adjust(sk);
1545
1546 /* Clean up data we have read: This will do ACK frames. */
1547 if (copied > 0)
1548 tcp_cleanup_rbuf(sk, copied);
1549 return copied;
1550 }
1551 EXPORT_SYMBOL(tcp_read_sock);
1552
1553 /*
1554 * This routine copies from a sock struct into the user buffer.
1555 *
1556 * Technical note: in 2.3 we work on _locked_ socket, so that
1557 * tricks with *seq access order and skb->users are not required.
1558 * Probably, code can be easily improved even more.
1559 */
1560
1561 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1562 size_t len, int nonblock, int flags, int *addr_len)
1563 {
1564 struct tcp_sock *tp = tcp_sk(sk);
1565 int copied = 0;
1566 u32 peek_seq;
1567 u32 *seq;
1568 unsigned long used;
1569 int err;
1570 int target; /* Read at least this many bytes */
1571 long timeo;
1572 struct task_struct *user_recv = NULL;
1573 bool copied_early = false;
1574 struct sk_buff *skb;
1575 u32 urg_hole = 0;
1576
1577 lock_sock(sk);
1578
1579 err = -ENOTCONN;
1580 if (sk->sk_state == TCP_LISTEN)
1581 goto out;
1582
1583 timeo = sock_rcvtimeo(sk, nonblock);
1584
1585 /* Urgent data needs to be handled specially. */
1586 if (flags & MSG_OOB)
1587 goto recv_urg;
1588
1589 if (unlikely(tp->repair)) {
1590 err = -EPERM;
1591 if (!(flags & MSG_PEEK))
1592 goto out;
1593
1594 if (tp->repair_queue == TCP_SEND_QUEUE)
1595 goto recv_sndq;
1596
1597 err = -EINVAL;
1598 if (tp->repair_queue == TCP_NO_QUEUE)
1599 goto out;
1600
1601 /* 'common' recv queue MSG_PEEK-ing */
1602 }
1603
1604 seq = &tp->copied_seq;
1605 if (flags & MSG_PEEK) {
1606 peek_seq = tp->copied_seq;
1607 seq = &peek_seq;
1608 }
1609
1610 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1611
1612 #ifdef CONFIG_NET_DMA
1613 tp->ucopy.dma_chan = NULL;
1614 preempt_disable();
1615 skb = skb_peek_tail(&sk->sk_receive_queue);
1616 {
1617 int available = 0;
1618
1619 if (skb)
1620 available = TCP_SKB_CB(skb)->seq + skb->len - (*seq);
1621 if ((available < target) &&
1622 (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) &&
1623 !sysctl_tcp_low_latency &&
1624 net_dma_find_channel()) {
1625 preempt_enable_no_resched();
1626 tp->ucopy.pinned_list =
1627 dma_pin_iovec_pages(msg->msg_iov, len);
1628 } else {
1629 preempt_enable_no_resched();
1630 }
1631 }
1632 #endif
1633
1634 do {
1635 u32 offset;
1636
1637 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1638 if (tp->urg_data && tp->urg_seq == *seq) {
1639 if (copied)
1640 break;
1641 if (signal_pending(current)) {
1642 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1643 break;
1644 }
1645 }
1646
1647 /* Next get a buffer. */
1648
1649 skb_queue_walk(&sk->sk_receive_queue, skb) {
1650 /* Now that we have two receive queues this
1651 * shouldn't happen.
1652 */
1653 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1654 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1655 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1656 flags))
1657 break;
1658
1659 offset = *seq - TCP_SKB_CB(skb)->seq;
1660 if (tcp_hdr(skb)->syn)
1661 offset--;
1662 if (offset < skb->len)
1663 goto found_ok_skb;
1664 if (tcp_hdr(skb)->fin)
1665 goto found_fin_ok;
1666 WARN(!(flags & MSG_PEEK),
1667 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1668 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1669 }
1670
1671 /* Well, if we have backlog, try to process it now yet. */
1672
1673 if (copied >= target && !sk->sk_backlog.tail)
1674 break;
1675
1676 if (copied) {
1677 if (sk->sk_err ||
1678 sk->sk_state == TCP_CLOSE ||
1679 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1680 !timeo ||
1681 signal_pending(current))
1682 break;
1683 } else {
1684 if (sock_flag(sk, SOCK_DONE))
1685 break;
1686
1687 if (sk->sk_err) {
1688 copied = sock_error(sk);
1689 break;
1690 }
1691
1692 if (sk->sk_shutdown & RCV_SHUTDOWN)
1693 break;
1694
1695 if (sk->sk_state == TCP_CLOSE) {
1696 if (!sock_flag(sk, SOCK_DONE)) {
1697 /* This occurs when user tries to read
1698 * from never connected socket.
1699 */
1700 copied = -ENOTCONN;
1701 break;
1702 }
1703 break;
1704 }
1705
1706 if (!timeo) {
1707 copied = -EAGAIN;
1708 break;
1709 }
1710
1711 if (signal_pending(current)) {
1712 copied = sock_intr_errno(timeo);
1713 break;
1714 }
1715 }
1716
1717 tcp_cleanup_rbuf(sk, copied);
1718
1719 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1720 /* Install new reader */
1721 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1722 user_recv = current;
1723 tp->ucopy.task = user_recv;
1724 tp->ucopy.iov = msg->msg_iov;
1725 }
1726
1727 tp->ucopy.len = len;
1728
1729 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1730 !(flags & (MSG_PEEK | MSG_TRUNC)));
1731
1732 /* Ugly... If prequeue is not empty, we have to
1733 * process it before releasing socket, otherwise
1734 * order will be broken at second iteration.
1735 * More elegant solution is required!!!
1736 *
1737 * Look: we have the following (pseudo)queues:
1738 *
1739 * 1. packets in flight
1740 * 2. backlog
1741 * 3. prequeue
1742 * 4. receive_queue
1743 *
1744 * Each queue can be processed only if the next ones
1745 * are empty. At this point we have empty receive_queue.
1746 * But prequeue _can_ be not empty after 2nd iteration,
1747 * when we jumped to start of loop because backlog
1748 * processing added something to receive_queue.
1749 * We cannot release_sock(), because backlog contains
1750 * packets arrived _after_ prequeued ones.
1751 *
1752 * Shortly, algorithm is clear --- to process all
1753 * the queues in order. We could make it more directly,
1754 * requeueing packets from backlog to prequeue, if
1755 * is not empty. It is more elegant, but eats cycles,
1756 * unfortunately.
1757 */
1758 if (!skb_queue_empty(&tp->ucopy.prequeue))
1759 goto do_prequeue;
1760
1761 /* __ Set realtime policy in scheduler __ */
1762 }
1763
1764 #ifdef CONFIG_NET_DMA
1765 if (tp->ucopy.dma_chan)
1766 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1767 #endif
1768 if (copied >= target) {
1769 /* Do not sleep, just process backlog. */
1770 release_sock(sk);
1771 lock_sock(sk);
1772 } else
1773 sk_wait_data(sk, &timeo);
1774
1775 #ifdef CONFIG_NET_DMA
1776 tcp_service_net_dma(sk, false); /* Don't block */
1777 tp->ucopy.wakeup = 0;
1778 #endif
1779
1780 if (user_recv) {
1781 int chunk;
1782
1783 /* __ Restore normal policy in scheduler __ */
1784
1785 if ((chunk = len - tp->ucopy.len) != 0) {
1786 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1787 len -= chunk;
1788 copied += chunk;
1789 }
1790
1791 if (tp->rcv_nxt == tp->copied_seq &&
1792 !skb_queue_empty(&tp->ucopy.prequeue)) {
1793 do_prequeue:
1794 tcp_prequeue_process(sk);
1795
1796 if ((chunk = len - tp->ucopy.len) != 0) {
1797 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1798 len -= chunk;
1799 copied += chunk;
1800 }
1801 }
1802 }
1803 if ((flags & MSG_PEEK) &&
1804 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1805 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1806 current->comm,
1807 task_pid_nr(current));
1808 peek_seq = tp->copied_seq;
1809 }
1810 continue;
1811
1812 found_ok_skb:
1813 /* Ok so how much can we use? */
1814 used = skb->len - offset;
1815 if (len < used)
1816 used = len;
1817
1818 /* Do we have urgent data here? */
1819 if (tp->urg_data) {
1820 u32 urg_offset = tp->urg_seq - *seq;
1821 if (urg_offset < used) {
1822 if (!urg_offset) {
1823 if (!sock_flag(sk, SOCK_URGINLINE)) {
1824 ++*seq;
1825 urg_hole++;
1826 offset++;
1827 used--;
1828 if (!used)
1829 goto skip_copy;
1830 }
1831 } else
1832 used = urg_offset;
1833 }
1834 }
1835
1836 if (!(flags & MSG_TRUNC)) {
1837 #ifdef CONFIG_NET_DMA
1838 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1839 tp->ucopy.dma_chan = net_dma_find_channel();
1840
1841 if (tp->ucopy.dma_chan) {
1842 tp->ucopy.dma_cookie = dma_skb_copy_datagram_iovec(
1843 tp->ucopy.dma_chan, skb, offset,
1844 msg->msg_iov, used,
1845 tp->ucopy.pinned_list);
1846
1847 if (tp->ucopy.dma_cookie < 0) {
1848
1849 pr_alert("%s: dma_cookie < 0\n",
1850 __func__);
1851
1852 /* Exception. Bailout! */
1853 if (!copied)
1854 copied = -EFAULT;
1855 break;
1856 }
1857
1858 dma_async_memcpy_issue_pending(tp->ucopy.dma_chan);
1859
1860 if ((offset + used) == skb->len)
1861 copied_early = true;
1862
1863 } else
1864 #endif
1865 {
1866 err = skb_copy_datagram_iovec(skb, offset,
1867 msg->msg_iov, used);
1868 if (err) {
1869 /* Exception. Bailout! */
1870 if (!copied)
1871 copied = -EFAULT;
1872 break;
1873 }
1874 }
1875 }
1876
1877 *seq += used;
1878 copied += used;
1879 len -= used;
1880
1881 tcp_rcv_space_adjust(sk);
1882
1883 skip_copy:
1884 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1885 tp->urg_data = 0;
1886 tcp_fast_path_check(sk);
1887 }
1888 if (used + offset < skb->len)
1889 continue;
1890
1891 if (tcp_hdr(skb)->fin)
1892 goto found_fin_ok;
1893 if (!(flags & MSG_PEEK)) {
1894 sk_eat_skb(sk, skb, copied_early);
1895 copied_early = false;
1896 }
1897 continue;
1898
1899 found_fin_ok:
1900 /* Process the FIN. */
1901 ++*seq;
1902 if (!(flags & MSG_PEEK)) {
1903 sk_eat_skb(sk, skb, copied_early);
1904 copied_early = false;
1905 }
1906 break;
1907 } while (len > 0);
1908
1909 if (user_recv) {
1910 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1911 int chunk;
1912
1913 tp->ucopy.len = copied > 0 ? len : 0;
1914
1915 tcp_prequeue_process(sk);
1916
1917 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1918 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1919 len -= chunk;
1920 copied += chunk;
1921 }
1922 }
1923
1924 tp->ucopy.task = NULL;
1925 tp->ucopy.len = 0;
1926 }
1927
1928 #ifdef CONFIG_NET_DMA
1929 tcp_service_net_dma(sk, true); /* Wait for queue to drain */
1930 tp->ucopy.dma_chan = NULL;
1931
1932 if (tp->ucopy.pinned_list) {
1933 dma_unpin_iovec_pages(tp->ucopy.pinned_list);
1934 tp->ucopy.pinned_list = NULL;
1935 }
1936 #endif
1937
1938 /* According to UNIX98, msg_name/msg_namelen are ignored
1939 * on connected socket. I was just happy when found this 8) --ANK
1940 */
1941
1942 /* Clean up data we have read: This will do ACK frames. */
1943 tcp_cleanup_rbuf(sk, copied);
1944
1945 release_sock(sk);
1946 return copied;
1947
1948 out:
1949 release_sock(sk);
1950 return err;
1951
1952 recv_urg:
1953 err = tcp_recv_urg(sk, msg, len, flags);
1954 goto out;
1955
1956 recv_sndq:
1957 err = tcp_peek_sndq(sk, msg, len);
1958 goto out;
1959 }
1960 EXPORT_SYMBOL(tcp_recvmsg);
1961
1962 void tcp_set_state(struct sock *sk, int state)
1963 {
1964 int oldstate = sk->sk_state;
1965
1966 switch (state) {
1967 case TCP_ESTABLISHED:
1968 if (oldstate != TCP_ESTABLISHED)
1969 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1970 break;
1971
1972 case TCP_CLOSE:
1973 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1974 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1975
1976 sk->sk_prot->unhash(sk);
1977 if (inet_csk(sk)->icsk_bind_hash &&
1978 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1979 inet_put_port(sk);
1980 /* fall through */
1981 default:
1982 if (oldstate == TCP_ESTABLISHED)
1983 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1984 }
1985
1986 /* Change state AFTER socket is unhashed to avoid closed
1987 * socket sitting in hash tables.
1988 */
1989 sk->sk_state = state;
1990
1991 #ifdef STATE_TRACE
1992 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1993 #endif
1994 }
1995 EXPORT_SYMBOL_GPL(tcp_set_state);
1996
1997 /*
1998 * State processing on a close. This implements the state shift for
1999 * sending our FIN frame. Note that we only send a FIN for some
2000 * states. A shutdown() may have already sent the FIN, or we may be
2001 * closed.
2002 */
2003
2004 static const unsigned char new_state[16] = {
2005 /* current state: new state: action: */
2006 /* (Invalid) */ TCP_CLOSE,
2007 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2008 /* TCP_SYN_SENT */ TCP_CLOSE,
2009 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2010 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
2011 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
2012 /* TCP_TIME_WAIT */ TCP_CLOSE,
2013 /* TCP_CLOSE */ TCP_CLOSE,
2014 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
2015 /* TCP_LAST_ACK */ TCP_LAST_ACK,
2016 /* TCP_LISTEN */ TCP_CLOSE,
2017 /* TCP_CLOSING */ TCP_CLOSING,
2018 };
2019
2020 static int tcp_close_state(struct sock *sk)
2021 {
2022 int next = (int)new_state[sk->sk_state];
2023 int ns = next & TCP_STATE_MASK;
2024
2025 tcp_set_state(sk, ns);
2026
2027 return next & TCP_ACTION_FIN;
2028 }
2029
2030 /*
2031 * Shutdown the sending side of a connection. Much like close except
2032 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2033 */
2034
2035 void tcp_shutdown(struct sock *sk, int how)
2036 {
2037 /* We need to grab some memory, and put together a FIN,
2038 * and then put it into the queue to be sent.
2039 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2040 */
2041 if (!(how & SEND_SHUTDOWN))
2042 return;
2043
2044 /* If we've already sent a FIN, or it's a closed state, skip this. */
2045 if ((1 << sk->sk_state) &
2046 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2047 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2048 /* Clear out any half completed packets. FIN if needed. */
2049 if (tcp_close_state(sk))
2050 tcp_send_fin(sk);
2051 }
2052 }
2053 EXPORT_SYMBOL(tcp_shutdown);
2054
2055 bool tcp_check_oom(struct sock *sk, int shift)
2056 {
2057 bool too_many_orphans, out_of_socket_memory;
2058
2059 too_many_orphans = tcp_too_many_orphans(sk, shift);
2060 out_of_socket_memory = tcp_out_of_memory(sk);
2061
2062 if (too_many_orphans)
2063 net_info_ratelimited("too many orphaned sockets\n");
2064 if (out_of_socket_memory)
2065 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2066 return too_many_orphans || out_of_socket_memory;
2067 }
2068
2069 void tcp_close(struct sock *sk, long timeout)
2070 {
2071 struct sk_buff *skb;
2072 int data_was_unread = 0;
2073 int state;
2074
2075 lock_sock(sk);
2076 sk->sk_shutdown = SHUTDOWN_MASK;
2077
2078 if (sk->sk_state == TCP_LISTEN) {
2079 tcp_set_state(sk, TCP_CLOSE);
2080
2081 /* Special case. */
2082 inet_csk_listen_stop(sk);
2083
2084 goto adjudge_to_death;
2085 }
2086
2087 /* We need to flush the recv. buffs. We do this only on the
2088 * descriptor close, not protocol-sourced closes, because the
2089 * reader process may not have drained the data yet!
2090 */
2091 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2092 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq -
2093 tcp_hdr(skb)->fin;
2094 data_was_unread += len;
2095 __kfree_skb(skb);
2096 }
2097
2098 sk_mem_reclaim(sk);
2099
2100 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2101 if (sk->sk_state == TCP_CLOSE)
2102 goto adjudge_to_death;
2103
2104 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2105 * data was lost. To witness the awful effects of the old behavior of
2106 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2107 * GET in an FTP client, suspend the process, wait for the client to
2108 * advertise a zero window, then kill -9 the FTP client, wheee...
2109 * Note: timeout is always zero in such a case.
2110 */
2111 if (unlikely(tcp_sk(sk)->repair)) {
2112 sk->sk_prot->disconnect(sk, 0);
2113 } else if (data_was_unread) {
2114 /* Unread data was tossed, zap the connection. */
2115 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2116 tcp_set_state(sk, TCP_CLOSE);
2117 tcp_send_active_reset(sk, sk->sk_allocation);
2118 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2119 /* Check zero linger _after_ checking for unread data. */
2120 sk->sk_prot->disconnect(sk, 0);
2121 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2122 } else if (tcp_close_state(sk)) {
2123 /* We FIN if the application ate all the data before
2124 * zapping the connection.
2125 */
2126
2127 /* RED-PEN. Formally speaking, we have broken TCP state
2128 * machine. State transitions:
2129 *
2130 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2131 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2132 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2133 *
2134 * are legal only when FIN has been sent (i.e. in window),
2135 * rather than queued out of window. Purists blame.
2136 *
2137 * F.e. "RFC state" is ESTABLISHED,
2138 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2139 *
2140 * The visible declinations are that sometimes
2141 * we enter time-wait state, when it is not required really
2142 * (harmless), do not send active resets, when they are
2143 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2144 * they look as CLOSING or LAST_ACK for Linux)
2145 * Probably, I missed some more holelets.
2146 * --ANK
2147 */
2148 tcp_send_fin(sk);
2149 }
2150
2151 sk_stream_wait_close(sk, timeout);
2152
2153 adjudge_to_death:
2154 state = sk->sk_state;
2155 sock_hold(sk);
2156 sock_orphan(sk);
2157
2158 /* It is the last release_sock in its life. It will remove backlog. */
2159 release_sock(sk);
2160
2161
2162 /* Now socket is owned by kernel and we acquire BH lock
2163 to finish close. No need to check for user refs.
2164 */
2165 local_bh_disable();
2166 bh_lock_sock(sk);
2167 WARN_ON(sock_owned_by_user(sk));
2168
2169 percpu_counter_inc(sk->sk_prot->orphan_count);
2170
2171 /* Have we already been destroyed by a softirq or backlog? */
2172 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2173 goto out;
2174
2175 /* This is a (useful) BSD violating of the RFC. There is a
2176 * problem with TCP as specified in that the other end could
2177 * keep a socket open forever with no application left this end.
2178 * We use a 3 minute timeout (about the same as BSD) then kill
2179 * our end. If they send after that then tough - BUT: long enough
2180 * that we won't make the old 4*rto = almost no time - whoops
2181 * reset mistake.
2182 *
2183 * Nope, it was not mistake. It is really desired behaviour
2184 * f.e. on http servers, when such sockets are useless, but
2185 * consume significant resources. Let's do it with special
2186 * linger2 option. --ANK
2187 */
2188
2189 if (sk->sk_state == TCP_FIN_WAIT2) {
2190 struct tcp_sock *tp = tcp_sk(sk);
2191 if (tp->linger2 < 0) {
2192 tcp_set_state(sk, TCP_CLOSE);
2193 tcp_send_active_reset(sk, GFP_ATOMIC);
2194 NET_INC_STATS_BH(sock_net(sk),
2195 LINUX_MIB_TCPABORTONLINGER);
2196 } else {
2197 const int tmo = tcp_fin_time(sk);
2198
2199 if (tmo > TCP_TIMEWAIT_LEN) {
2200 inet_csk_reset_keepalive_timer(sk,
2201 tmo - TCP_TIMEWAIT_LEN);
2202 } else {
2203 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2204 goto out;
2205 }
2206 }
2207 }
2208 if (sk->sk_state != TCP_CLOSE) {
2209 sk_mem_reclaim(sk);
2210 if (tcp_check_oom(sk, 0)) {
2211 tcp_set_state(sk, TCP_CLOSE);
2212 tcp_send_active_reset(sk, GFP_ATOMIC);
2213 NET_INC_STATS_BH(sock_net(sk),
2214 LINUX_MIB_TCPABORTONMEMORY);
2215 }
2216 }
2217
2218 if (sk->sk_state == TCP_CLOSE)
2219 inet_csk_destroy_sock(sk);
2220 /* Otherwise, socket is reprieved until protocol close. */
2221
2222 out:
2223 bh_unlock_sock(sk);
2224 local_bh_enable();
2225 sock_put(sk);
2226 }
2227 EXPORT_SYMBOL(tcp_close);
2228
2229 /* These states need RST on ABORT according to RFC793 */
2230
2231 static inline bool tcp_need_reset(int state)
2232 {
2233 return (1 << state) &
2234 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2235 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2236 }
2237
2238 int tcp_disconnect(struct sock *sk, int flags)
2239 {
2240 struct inet_sock *inet = inet_sk(sk);
2241 struct inet_connection_sock *icsk = inet_csk(sk);
2242 struct tcp_sock *tp = tcp_sk(sk);
2243 int err = 0;
2244 int old_state = sk->sk_state;
2245
2246 if (old_state != TCP_CLOSE)
2247 tcp_set_state(sk, TCP_CLOSE);
2248
2249 /* ABORT function of RFC793 */
2250 if (old_state == TCP_LISTEN) {
2251 inet_csk_listen_stop(sk);
2252 } else if (unlikely(tp->repair)) {
2253 sk->sk_err = ECONNABORTED;
2254 } else if (tcp_need_reset(old_state) ||
2255 (tp->snd_nxt != tp->write_seq &&
2256 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2257 /* The last check adjusts for discrepancy of Linux wrt. RFC
2258 * states
2259 */
2260 tcp_send_active_reset(sk, gfp_any());
2261 sk->sk_err = ECONNRESET;
2262 } else if (old_state == TCP_SYN_SENT)
2263 sk->sk_err = ECONNRESET;
2264
2265 tcp_clear_xmit_timers(sk);
2266 __skb_queue_purge(&sk->sk_receive_queue);
2267 tcp_write_queue_purge(sk);
2268 __skb_queue_purge(&tp->out_of_order_queue);
2269 #ifdef CONFIG_NET_DMA
2270 __skb_queue_purge(&sk->sk_async_wait_queue);
2271 #endif
2272
2273 inet->inet_dport = 0;
2274
2275 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2276 inet_reset_saddr(sk);
2277
2278 sk->sk_shutdown = 0;
2279 sock_reset_flag(sk, SOCK_DONE);
2280 tp->srtt = 0;
2281 if ((tp->write_seq += tp->max_window + 2) == 0)
2282 tp->write_seq = 1;
2283 icsk->icsk_backoff = 0;
2284 tp->snd_cwnd = 2;
2285 icsk->icsk_probes_out = 0;
2286 tp->packets_out = 0;
2287 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2288 tp->snd_cwnd_cnt = 0;
2289 tp->bytes_acked = 0;
2290 tp->window_clamp = 0;
2291 tcp_set_ca_state(sk, TCP_CA_Open);
2292 tcp_clear_retrans(tp);
2293 inet_csk_delack_init(sk);
2294 tcp_init_send_head(sk);
2295 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2296 __sk_dst_reset(sk);
2297
2298 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2299
2300 sk->sk_error_report(sk);
2301 return err;
2302 }
2303 EXPORT_SYMBOL(tcp_disconnect);
2304
2305 static inline bool tcp_can_repair_sock(const struct sock *sk)
2306 {
2307 return capable(CAP_NET_ADMIN) &&
2308 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2309 }
2310
2311 static int tcp_repair_options_est(struct tcp_sock *tp,
2312 struct tcp_repair_opt __user *optbuf, unsigned int len)
2313 {
2314 struct tcp_repair_opt opt;
2315
2316 while (len >= sizeof(opt)) {
2317 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2318 return -EFAULT;
2319
2320 optbuf++;
2321 len -= sizeof(opt);
2322
2323 switch (opt.opt_code) {
2324 case TCPOPT_MSS:
2325 tp->rx_opt.mss_clamp = opt.opt_val;
2326 break;
2327 case TCPOPT_WINDOW:
2328 if (opt.opt_val > 14)
2329 return -EFBIG;
2330
2331 tp->rx_opt.snd_wscale = opt.opt_val;
2332 break;
2333 case TCPOPT_SACK_PERM:
2334 if (opt.opt_val != 0)
2335 return -EINVAL;
2336
2337 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2338 if (sysctl_tcp_fack)
2339 tcp_enable_fack(tp);
2340 break;
2341 case TCPOPT_TIMESTAMP:
2342 if (opt.opt_val != 0)
2343 return -EINVAL;
2344
2345 tp->rx_opt.tstamp_ok = 1;
2346 break;
2347 }
2348 }
2349
2350 return 0;
2351 }
2352
2353 /*
2354 * Socket option code for TCP.
2355 */
2356 static int do_tcp_setsockopt(struct sock *sk, int level,
2357 int optname, char __user *optval, unsigned int optlen)
2358 {
2359 struct tcp_sock *tp = tcp_sk(sk);
2360 struct inet_connection_sock *icsk = inet_csk(sk);
2361 int val;
2362 int err = 0;
2363
2364 /* These are data/string values, all the others are ints */
2365 switch (optname) {
2366 case TCP_CONGESTION: {
2367 char name[TCP_CA_NAME_MAX];
2368
2369 if (optlen < 1)
2370 return -EINVAL;
2371
2372 val = strncpy_from_user(name, optval,
2373 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2374 if (val < 0)
2375 return -EFAULT;
2376 name[val] = 0;
2377
2378 lock_sock(sk);
2379 err = tcp_set_congestion_control(sk, name);
2380 release_sock(sk);
2381 return err;
2382 }
2383 case TCP_COOKIE_TRANSACTIONS: {
2384 struct tcp_cookie_transactions ctd;
2385 struct tcp_cookie_values *cvp = NULL;
2386
2387 if (sizeof(ctd) > optlen)
2388 return -EINVAL;
2389 if (copy_from_user(&ctd, optval, sizeof(ctd)))
2390 return -EFAULT;
2391
2392 if (ctd.tcpct_used > sizeof(ctd.tcpct_value) ||
2393 ctd.tcpct_s_data_desired > TCP_MSS_DESIRED)
2394 return -EINVAL;
2395
2396 if (ctd.tcpct_cookie_desired == 0) {
2397 /* default to global value */
2398 } else if ((0x1 & ctd.tcpct_cookie_desired) ||
2399 ctd.tcpct_cookie_desired > TCP_COOKIE_MAX ||
2400 ctd.tcpct_cookie_desired < TCP_COOKIE_MIN) {
2401 return -EINVAL;
2402 }
2403
2404 if (TCP_COOKIE_OUT_NEVER & ctd.tcpct_flags) {
2405 /* Supercedes all other values */
2406 lock_sock(sk);
2407 if (tp->cookie_values != NULL) {
2408 kref_put(&tp->cookie_values->kref,
2409 tcp_cookie_values_release);
2410 tp->cookie_values = NULL;
2411 }
2412 tp->rx_opt.cookie_in_always = 0; /* false */
2413 tp->rx_opt.cookie_out_never = 1; /* true */
2414 release_sock(sk);
2415 return err;
2416 }
2417
2418 /* Allocate ancillary memory before locking.
2419 */
2420 if (ctd.tcpct_used > 0 ||
2421 (tp->cookie_values == NULL &&
2422 (sysctl_tcp_cookie_size > 0 ||
2423 ctd.tcpct_cookie_desired > 0 ||
2424 ctd.tcpct_s_data_desired > 0))) {
2425 cvp = kzalloc(sizeof(*cvp) + ctd.tcpct_used,
2426 GFP_KERNEL);
2427 if (cvp == NULL)
2428 return -ENOMEM;
2429
2430 kref_init(&cvp->kref);
2431 }
2432 lock_sock(sk);
2433 tp->rx_opt.cookie_in_always =
2434 (TCP_COOKIE_IN_ALWAYS & ctd.tcpct_flags);
2435 tp->rx_opt.cookie_out_never = 0; /* false */
2436
2437 if (tp->cookie_values != NULL) {
2438 if (cvp != NULL) {
2439 /* Changed values are recorded by a changed
2440 * pointer, ensuring the cookie will differ,
2441 * without separately hashing each value later.
2442 */
2443 kref_put(&tp->cookie_values->kref,
2444 tcp_cookie_values_release);
2445 } else {
2446 cvp = tp->cookie_values;
2447 }
2448 }
2449
2450 if (cvp != NULL) {
2451 cvp->cookie_desired = ctd.tcpct_cookie_desired;
2452
2453 if (ctd.tcpct_used > 0) {
2454 memcpy(cvp->s_data_payload, ctd.tcpct_value,
2455 ctd.tcpct_used);
2456 cvp->s_data_desired = ctd.tcpct_used;
2457 cvp->s_data_constant = 1; /* true */
2458 } else {
2459 /* No constant payload data. */
2460 cvp->s_data_desired = ctd.tcpct_s_data_desired;
2461 cvp->s_data_constant = 0; /* false */
2462 }
2463
2464 tp->cookie_values = cvp;
2465 }
2466 release_sock(sk);
2467 return err;
2468 }
2469 default:
2470 /* fallthru */
2471 break;
2472 }
2473
2474 if (optlen < sizeof(int))
2475 return -EINVAL;
2476
2477 if (get_user(val, (int __user *)optval))
2478 return -EFAULT;
2479
2480 lock_sock(sk);
2481
2482 switch (optname) {
2483 case TCP_MAXSEG:
2484 /* Values greater than interface MTU won't take effect. However
2485 * at the point when this call is done we typically don't yet
2486 * know which interface is going to be used */
2487 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2488 err = -EINVAL;
2489 break;
2490 }
2491 tp->rx_opt.user_mss = val;
2492 break;
2493
2494 case TCP_NODELAY:
2495 if (val) {
2496 /* TCP_NODELAY is weaker than TCP_CORK, so that
2497 * this option on corked socket is remembered, but
2498 * it is not activated until cork is cleared.
2499 *
2500 * However, when TCP_NODELAY is set we make
2501 * an explicit push, which overrides even TCP_CORK
2502 * for currently queued segments.
2503 */
2504 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2505 tcp_push_pending_frames(sk);
2506 } else {
2507 tp->nonagle &= ~TCP_NAGLE_OFF;
2508 }
2509 break;
2510
2511 case TCP_THIN_LINEAR_TIMEOUTS:
2512 if (val < 0 || val > 1)
2513 err = -EINVAL;
2514 else
2515 tp->thin_lto = val;
2516 break;
2517
2518 case TCP_THIN_DUPACK:
2519 if (val < 0 || val > 1)
2520 err = -EINVAL;
2521 else
2522 tp->thin_dupack = val;
2523 if (tp->thin_dupack)
2524 tcp_disable_early_retrans(tp);
2525 break;
2526
2527 case TCP_REPAIR:
2528 if (!tcp_can_repair_sock(sk))
2529 err = -EPERM;
2530 else if (val == 1) {
2531 tp->repair = 1;
2532 sk->sk_reuse = SK_FORCE_REUSE;
2533 tp->repair_queue = TCP_NO_QUEUE;
2534 } else if (val == 0) {
2535 tp->repair = 0;
2536 sk->sk_reuse = SK_NO_REUSE;
2537 tcp_send_window_probe(sk);
2538 } else
2539 err = -EINVAL;
2540
2541 break;
2542
2543 case TCP_REPAIR_QUEUE:
2544 if (!tp->repair)
2545 err = -EPERM;
2546 else if (val < TCP_QUEUES_NR)
2547 tp->repair_queue = val;
2548 else
2549 err = -EINVAL;
2550 break;
2551
2552 case TCP_QUEUE_SEQ:
2553 if (sk->sk_state != TCP_CLOSE)
2554 err = -EPERM;
2555 else if (tp->repair_queue == TCP_SEND_QUEUE)
2556 tp->write_seq = val;
2557 else if (tp->repair_queue == TCP_RECV_QUEUE)
2558 tp->rcv_nxt = val;
2559 else
2560 err = -EINVAL;
2561 break;
2562
2563 case TCP_REPAIR_OPTIONS:
2564 if (!tp->repair)
2565 err = -EINVAL;
2566 else if (sk->sk_state == TCP_ESTABLISHED)
2567 err = tcp_repair_options_est(tp,
2568 (struct tcp_repair_opt __user *)optval,
2569 optlen);
2570 else
2571 err = -EPERM;
2572 break;
2573
2574 case TCP_CORK:
2575 /* When set indicates to always queue non-full frames.
2576 * Later the user clears this option and we transmit
2577 * any pending partial frames in the queue. This is
2578 * meant to be used alongside sendfile() to get properly
2579 * filled frames when the user (for example) must write
2580 * out headers with a write() call first and then use
2581 * sendfile to send out the data parts.
2582 *
2583 * TCP_CORK can be set together with TCP_NODELAY and it is
2584 * stronger than TCP_NODELAY.
2585 */
2586 if (val) {
2587 tp->nonagle |= TCP_NAGLE_CORK;
2588 } else {
2589 tp->nonagle &= ~TCP_NAGLE_CORK;
2590 if (tp->nonagle&TCP_NAGLE_OFF)
2591 tp->nonagle |= TCP_NAGLE_PUSH;
2592 tcp_push_pending_frames(sk);
2593 }
2594 break;
2595
2596 case TCP_KEEPIDLE:
2597 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2598 err = -EINVAL;
2599 else {
2600 tp->keepalive_time = val * HZ;
2601 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2602 !((1 << sk->sk_state) &
2603 (TCPF_CLOSE | TCPF_LISTEN))) {
2604 u32 elapsed = keepalive_time_elapsed(tp);
2605 if (tp->keepalive_time > elapsed)
2606 elapsed = tp->keepalive_time - elapsed;
2607 else
2608 elapsed = 0;
2609 inet_csk_reset_keepalive_timer(sk, elapsed);
2610 }
2611 }
2612 break;
2613 case TCP_KEEPINTVL:
2614 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2615 err = -EINVAL;
2616 else
2617 tp->keepalive_intvl = val * HZ;
2618 break;
2619 case TCP_KEEPCNT:
2620 if (val < 1 || val > MAX_TCP_KEEPCNT)
2621 err = -EINVAL;
2622 else
2623 tp->keepalive_probes = val;
2624 break;
2625 case TCP_SYNCNT:
2626 if (val < 1 || val > MAX_TCP_SYNCNT)
2627 err = -EINVAL;
2628 else
2629 icsk->icsk_syn_retries = val;
2630 break;
2631
2632 case TCP_LINGER2:
2633 if (val < 0)
2634 tp->linger2 = -1;
2635 else if (val > sysctl_tcp_fin_timeout / HZ)
2636 tp->linger2 = 0;
2637 else
2638 tp->linger2 = val * HZ;
2639 break;
2640
2641 case TCP_DEFER_ACCEPT:
2642 /* Translate value in seconds to number of retransmits */
2643 icsk->icsk_accept_queue.rskq_defer_accept =
2644 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2645 TCP_RTO_MAX / HZ);
2646 break;
2647
2648 case TCP_WINDOW_CLAMP:
2649 if (!val) {
2650 if (sk->sk_state != TCP_CLOSE) {
2651 err = -EINVAL;
2652 break;
2653 }
2654 tp->window_clamp = 0;
2655 } else
2656 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2657 SOCK_MIN_RCVBUF / 2 : val;
2658 break;
2659
2660 case TCP_QUICKACK:
2661 if (!val) {
2662 icsk->icsk_ack.pingpong = 1;
2663 } else {
2664 icsk->icsk_ack.pingpong = 0;
2665 if ((1 << sk->sk_state) &
2666 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2667 inet_csk_ack_scheduled(sk)) {
2668 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2669 tcp_cleanup_rbuf(sk, 1);
2670 if (!(val & 1))
2671 icsk->icsk_ack.pingpong = 1;
2672 }
2673 }
2674 break;
2675
2676 #ifdef CONFIG_TCP_MD5SIG
2677 case TCP_MD5SIG:
2678 /* Read the IP->Key mappings from userspace */
2679 err = tp->af_specific->md5_parse(sk, optval, optlen);
2680 break;
2681 #endif
2682 case TCP_USER_TIMEOUT:
2683 /* Cap the max timeout in ms TCP will retry/retrans
2684 * before giving up and aborting (ETIMEDOUT) a connection.
2685 */
2686 if (val < 0)
2687 err = -EINVAL;
2688 else
2689 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2690 break;
2691 default:
2692 err = -ENOPROTOOPT;
2693 break;
2694 }
2695
2696 release_sock(sk);
2697 return err;
2698 }
2699
2700 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2701 unsigned int optlen)
2702 {
2703 const struct inet_connection_sock *icsk = inet_csk(sk);
2704
2705 if (level != SOL_TCP)
2706 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2707 optval, optlen);
2708 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2709 }
2710 EXPORT_SYMBOL(tcp_setsockopt);
2711
2712 #ifdef CONFIG_COMPAT
2713 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2714 char __user *optval, unsigned int optlen)
2715 {
2716 if (level != SOL_TCP)
2717 return inet_csk_compat_setsockopt(sk, level, optname,
2718 optval, optlen);
2719 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2720 }
2721 EXPORT_SYMBOL(compat_tcp_setsockopt);
2722 #endif
2723
2724 /* Return information about state of tcp endpoint in API format. */
2725 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2726 {
2727 const struct tcp_sock *tp = tcp_sk(sk);
2728 const struct inet_connection_sock *icsk = inet_csk(sk);
2729 u32 now = tcp_time_stamp;
2730
2731 memset(info, 0, sizeof(*info));
2732
2733 info->tcpi_state = sk->sk_state;
2734 info->tcpi_ca_state = icsk->icsk_ca_state;
2735 info->tcpi_retransmits = icsk->icsk_retransmits;
2736 info->tcpi_probes = icsk->icsk_probes_out;
2737 info->tcpi_backoff = icsk->icsk_backoff;
2738
2739 if (tp->rx_opt.tstamp_ok)
2740 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2741 if (tcp_is_sack(tp))
2742 info->tcpi_options |= TCPI_OPT_SACK;
2743 if (tp->rx_opt.wscale_ok) {
2744 info->tcpi_options |= TCPI_OPT_WSCALE;
2745 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2746 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2747 }
2748
2749 if (tp->ecn_flags & TCP_ECN_OK)
2750 info->tcpi_options |= TCPI_OPT_ECN;
2751 if (tp->ecn_flags & TCP_ECN_SEEN)
2752 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2753
2754 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2755 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2756 info->tcpi_snd_mss = tp->mss_cache;
2757 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2758
2759 if (sk->sk_state == TCP_LISTEN) {
2760 info->tcpi_unacked = sk->sk_ack_backlog;
2761 info->tcpi_sacked = sk->sk_max_ack_backlog;
2762 } else {
2763 info->tcpi_unacked = tp->packets_out;
2764 info->tcpi_sacked = tp->sacked_out;
2765 }
2766 info->tcpi_lost = tp->lost_out;
2767 info->tcpi_retrans = tp->retrans_out;
2768 info->tcpi_fackets = tp->fackets_out;
2769
2770 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2771 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2772 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2773
2774 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2775 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2776 info->tcpi_rtt = jiffies_to_usecs(tp->srtt)>>3;
2777 info->tcpi_rttvar = jiffies_to_usecs(tp->mdev)>>2;
2778 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2779 info->tcpi_snd_cwnd = tp->snd_cwnd;
2780 info->tcpi_advmss = tp->advmss;
2781 info->tcpi_reordering = tp->reordering;
2782
2783 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2784 info->tcpi_rcv_space = tp->rcvq_space.space;
2785
2786 info->tcpi_total_retrans = tp->total_retrans;
2787 }
2788 EXPORT_SYMBOL_GPL(tcp_get_info);
2789
2790 static int do_tcp_getsockopt(struct sock *sk, int level,
2791 int optname, char __user *optval, int __user *optlen)
2792 {
2793 struct inet_connection_sock *icsk = inet_csk(sk);
2794 struct tcp_sock *tp = tcp_sk(sk);
2795 int val, len;
2796
2797 if (get_user(len, optlen))
2798 return -EFAULT;
2799
2800 len = min_t(unsigned int, len, sizeof(int));
2801
2802 if (len < 0)
2803 return -EINVAL;
2804
2805 switch (optname) {
2806 case TCP_MAXSEG:
2807 val = tp->mss_cache;
2808 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2809 val = tp->rx_opt.user_mss;
2810 if (tp->repair)
2811 val = tp->rx_opt.mss_clamp;
2812 break;
2813 case TCP_NODELAY:
2814 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2815 break;
2816 case TCP_CORK:
2817 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2818 break;
2819 case TCP_KEEPIDLE:
2820 val = keepalive_time_when(tp) / HZ;
2821 break;
2822 case TCP_KEEPINTVL:
2823 val = keepalive_intvl_when(tp) / HZ;
2824 break;
2825 case TCP_KEEPCNT:
2826 val = keepalive_probes(tp);
2827 break;
2828 case TCP_SYNCNT:
2829 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2830 break;
2831 case TCP_LINGER2:
2832 val = tp->linger2;
2833 if (val >= 0)
2834 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2835 break;
2836 case TCP_DEFER_ACCEPT:
2837 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2838 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2839 break;
2840 case TCP_WINDOW_CLAMP:
2841 val = tp->window_clamp;
2842 break;
2843 case TCP_INFO: {
2844 struct tcp_info info;
2845
2846 if (get_user(len, optlen))
2847 return -EFAULT;
2848
2849 tcp_get_info(sk, &info);
2850
2851 len = min_t(unsigned int, len, sizeof(info));
2852 if (put_user(len, optlen))
2853 return -EFAULT;
2854 if (copy_to_user(optval, &info, len))
2855 return -EFAULT;
2856 return 0;
2857 }
2858 case TCP_QUICKACK:
2859 val = !icsk->icsk_ack.pingpong;
2860 break;
2861
2862 case TCP_CONGESTION:
2863 if (get_user(len, optlen))
2864 return -EFAULT;
2865 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2866 if (put_user(len, optlen))
2867 return -EFAULT;
2868 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2869 return -EFAULT;
2870 return 0;
2871
2872 case TCP_COOKIE_TRANSACTIONS: {
2873 struct tcp_cookie_transactions ctd;
2874 struct tcp_cookie_values *cvp = tp->cookie_values;
2875
2876 if (get_user(len, optlen))
2877 return -EFAULT;
2878 if (len < sizeof(ctd))
2879 return -EINVAL;
2880
2881 memset(&ctd, 0, sizeof(ctd));
2882 ctd.tcpct_flags = (tp->rx_opt.cookie_in_always ?
2883 TCP_COOKIE_IN_ALWAYS : 0)
2884 | (tp->rx_opt.cookie_out_never ?
2885 TCP_COOKIE_OUT_NEVER : 0);
2886
2887 if (cvp != NULL) {
2888 ctd.tcpct_flags |= (cvp->s_data_in ?
2889 TCP_S_DATA_IN : 0)
2890 | (cvp->s_data_out ?
2891 TCP_S_DATA_OUT : 0);
2892
2893 ctd.tcpct_cookie_desired = cvp->cookie_desired;
2894 ctd.tcpct_s_data_desired = cvp->s_data_desired;
2895
2896 memcpy(&ctd.tcpct_value[0], &cvp->cookie_pair[0],
2897 cvp->cookie_pair_size);
2898 ctd.tcpct_used = cvp->cookie_pair_size;
2899 }
2900
2901 if (put_user(sizeof(ctd), optlen))
2902 return -EFAULT;
2903 if (copy_to_user(optval, &ctd, sizeof(ctd)))
2904 return -EFAULT;
2905 return 0;
2906 }
2907 case TCP_THIN_LINEAR_TIMEOUTS:
2908 val = tp->thin_lto;
2909 break;
2910 case TCP_THIN_DUPACK:
2911 val = tp->thin_dupack;
2912 break;
2913
2914 case TCP_REPAIR:
2915 val = tp->repair;
2916 break;
2917
2918 case TCP_REPAIR_QUEUE:
2919 if (tp->repair)
2920 val = tp->repair_queue;
2921 else
2922 return -EINVAL;
2923 break;
2924
2925 case TCP_QUEUE_SEQ:
2926 if (tp->repair_queue == TCP_SEND_QUEUE)
2927 val = tp->write_seq;
2928 else if (tp->repair_queue == TCP_RECV_QUEUE)
2929 val = tp->rcv_nxt;
2930 else
2931 return -EINVAL;
2932 break;
2933
2934 case TCP_USER_TIMEOUT:
2935 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2936 break;
2937 default:
2938 return -ENOPROTOOPT;
2939 }
2940
2941 if (put_user(len, optlen))
2942 return -EFAULT;
2943 if (copy_to_user(optval, &val, len))
2944 return -EFAULT;
2945 return 0;
2946 }
2947
2948 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2949 int __user *optlen)
2950 {
2951 struct inet_connection_sock *icsk = inet_csk(sk);
2952
2953 if (level != SOL_TCP)
2954 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2955 optval, optlen);
2956 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2957 }
2958 EXPORT_SYMBOL(tcp_getsockopt);
2959
2960 #ifdef CONFIG_COMPAT
2961 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2962 char __user *optval, int __user *optlen)
2963 {
2964 if (level != SOL_TCP)
2965 return inet_csk_compat_getsockopt(sk, level, optname,
2966 optval, optlen);
2967 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2968 }
2969 EXPORT_SYMBOL(compat_tcp_getsockopt);
2970 #endif
2971
2972 struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
2973 netdev_features_t features)
2974 {
2975 struct sk_buff *segs = ERR_PTR(-EINVAL);
2976 struct tcphdr *th;
2977 unsigned int thlen;
2978 unsigned int seq;
2979 __be32 delta;
2980 unsigned int oldlen;
2981 unsigned int mss;
2982
2983 if (!pskb_may_pull(skb, sizeof(*th)))
2984 goto out;
2985
2986 th = tcp_hdr(skb);
2987 thlen = th->doff * 4;
2988 if (thlen < sizeof(*th))
2989 goto out;
2990
2991 if (!pskb_may_pull(skb, thlen))
2992 goto out;
2993
2994 oldlen = (u16)~skb->len;
2995 __skb_pull(skb, thlen);
2996
2997 mss = skb_shinfo(skb)->gso_size;
2998 if (unlikely(skb->len <= mss))
2999 goto out;
3000
3001 if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
3002 /* Packet is from an untrusted source, reset gso_segs. */
3003 int type = skb_shinfo(skb)->gso_type;
3004
3005 if (unlikely(type &
3006 ~(SKB_GSO_TCPV4 |
3007 SKB_GSO_DODGY |
3008 SKB_GSO_TCP_ECN |
3009 SKB_GSO_TCPV6 |
3010 0) ||
3011 !(type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))))
3012 goto out;
3013
3014 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
3015
3016 segs = NULL;
3017 goto out;
3018 }
3019
3020 segs = skb_segment(skb, features);
3021 if (IS_ERR(segs))
3022 goto out;
3023
3024 delta = htonl(oldlen + (thlen + mss));
3025
3026 skb = segs;
3027 th = tcp_hdr(skb);
3028 seq = ntohl(th->seq);
3029
3030 do {
3031 th->fin = th->psh = 0;
3032
3033 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3034 (__force u32)delta));
3035 if (skb->ip_summed != CHECKSUM_PARTIAL)
3036 th->check =
3037 csum_fold(csum_partial(skb_transport_header(skb),
3038 thlen, skb->csum));
3039
3040 seq += mss;
3041 skb = skb->next;
3042 th = tcp_hdr(skb);
3043
3044 th->seq = htonl(seq);
3045 th->cwr = 0;
3046 } while (skb->next);
3047
3048 delta = htonl(oldlen + (skb->tail - skb->transport_header) +
3049 skb->data_len);
3050 th->check = ~csum_fold((__force __wsum)((__force u32)th->check +
3051 (__force u32)delta));
3052 if (skb->ip_summed != CHECKSUM_PARTIAL)
3053 th->check = csum_fold(csum_partial(skb_transport_header(skb),
3054 thlen, skb->csum));
3055
3056 out:
3057 return segs;
3058 }
3059 EXPORT_SYMBOL(tcp_tso_segment);
3060
3061 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3062 {
3063 struct sk_buff **pp = NULL;
3064 struct sk_buff *p;
3065 struct tcphdr *th;
3066 struct tcphdr *th2;
3067 unsigned int len;
3068 unsigned int thlen;
3069 __be32 flags;
3070 unsigned int mss = 1;
3071 unsigned int hlen;
3072 unsigned int off;
3073 int flush = 1;
3074 int i;
3075
3076 off = skb_gro_offset(skb);
3077 hlen = off + sizeof(*th);
3078 th = skb_gro_header_fast(skb, off);
3079 if (skb_gro_header_hard(skb, hlen)) {
3080 th = skb_gro_header_slow(skb, hlen, off);
3081 if (unlikely(!th))
3082 goto out;
3083 }
3084
3085 thlen = th->doff * 4;
3086 if (thlen < sizeof(*th))
3087 goto out;
3088
3089 hlen = off + thlen;
3090 if (skb_gro_header_hard(skb, hlen)) {
3091 th = skb_gro_header_slow(skb, hlen, off);
3092 if (unlikely(!th))
3093 goto out;
3094 }
3095
3096 skb_gro_pull(skb, thlen);
3097
3098 len = skb_gro_len(skb);
3099 flags = tcp_flag_word(th);
3100
3101 for (; (p = *head); head = &p->next) {
3102 if (!NAPI_GRO_CB(p)->same_flow)
3103 continue;
3104
3105 th2 = tcp_hdr(p);
3106
3107 if (*(u32 *)&th->source ^ *(u32 *)&th2->source) {
3108 NAPI_GRO_CB(p)->same_flow = 0;
3109 continue;
3110 }
3111
3112 goto found;
3113 }
3114
3115 goto out_check_final;
3116
3117 found:
3118 flush = NAPI_GRO_CB(p)->flush;
3119 flush |= (__force int)(flags & TCP_FLAG_CWR);
3120 flush |= (__force int)((flags ^ tcp_flag_word(th2)) &
3121 ~(TCP_FLAG_CWR | TCP_FLAG_FIN | TCP_FLAG_PSH));
3122 flush |= (__force int)(th->ack_seq ^ th2->ack_seq);
3123 for (i = sizeof(*th); i < thlen; i += 4)
3124 flush |= *(u32 *)((u8 *)th + i) ^
3125 *(u32 *)((u8 *)th2 + i);
3126
3127 mss = skb_shinfo(p)->gso_size;
3128
3129 flush |= (len - 1) >= mss;
3130 flush |= (ntohl(th2->seq) + skb_gro_len(p)) ^ ntohl(th->seq);
3131
3132 if (flush || skb_gro_receive(head, skb)) {
3133 mss = 1;
3134 goto out_check_final;
3135 }
3136
3137 p = *head;
3138 th2 = tcp_hdr(p);
3139 tcp_flag_word(th2) |= flags & (TCP_FLAG_FIN | TCP_FLAG_PSH);
3140
3141 out_check_final:
3142 flush = len < mss;
3143 flush |= (__force int)(flags & (TCP_FLAG_URG | TCP_FLAG_PSH |
3144 TCP_FLAG_RST | TCP_FLAG_SYN |
3145 TCP_FLAG_FIN));
3146
3147 if (p && (!NAPI_GRO_CB(skb)->same_flow || flush))
3148 pp = head;
3149
3150 out:
3151 NAPI_GRO_CB(skb)->flush |= flush;
3152
3153 return pp;
3154 }
3155 EXPORT_SYMBOL(tcp_gro_receive);
3156
3157 int tcp_gro_complete(struct sk_buff *skb)
3158 {
3159 struct tcphdr *th = tcp_hdr(skb);
3160
3161 skb->csum_start = skb_transport_header(skb) - skb->head;
3162 skb->csum_offset = offsetof(struct tcphdr, check);
3163 skb->ip_summed = CHECKSUM_PARTIAL;
3164
3165 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3166
3167 if (th->cwr)
3168 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3169
3170 return 0;
3171 }
3172 EXPORT_SYMBOL(tcp_gro_complete);
3173
3174 #ifdef CONFIG_TCP_MD5SIG
3175 static unsigned long tcp_md5sig_users;
3176 static struct tcp_md5sig_pool __percpu *tcp_md5sig_pool;
3177 static DEFINE_SPINLOCK(tcp_md5sig_pool_lock);
3178
3179 static void __tcp_free_md5sig_pool(struct tcp_md5sig_pool __percpu *pool)
3180 {
3181 int cpu;
3182
3183 for_each_possible_cpu(cpu) {
3184 struct tcp_md5sig_pool *p = per_cpu_ptr(pool, cpu);
3185
3186 if (p->md5_desc.tfm)
3187 crypto_free_hash(p->md5_desc.tfm);
3188 }
3189 free_percpu(pool);
3190 }
3191
3192 void tcp_free_md5sig_pool(void)
3193 {
3194 struct tcp_md5sig_pool __percpu *pool = NULL;
3195
3196 spin_lock_bh(&tcp_md5sig_pool_lock);
3197 if (--tcp_md5sig_users == 0) {
3198 pool = tcp_md5sig_pool;
3199 tcp_md5sig_pool = NULL;
3200 }
3201 spin_unlock_bh(&tcp_md5sig_pool_lock);
3202 if (pool)
3203 __tcp_free_md5sig_pool(pool);
3204 }
3205 EXPORT_SYMBOL(tcp_free_md5sig_pool);
3206
3207 static struct tcp_md5sig_pool __percpu *
3208 __tcp_alloc_md5sig_pool(struct sock *sk)
3209 {
3210 int cpu;
3211 struct tcp_md5sig_pool __percpu *pool;
3212
3213 pool = alloc_percpu(struct tcp_md5sig_pool);
3214 if (!pool)
3215 return NULL;
3216
3217 for_each_possible_cpu(cpu) {
3218 struct crypto_hash *hash;
3219
3220 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
3221 if (!hash || IS_ERR(hash))
3222 goto out_free;
3223
3224 per_cpu_ptr(pool, cpu)->md5_desc.tfm = hash;
3225 }
3226 return pool;
3227 out_free:
3228 __tcp_free_md5sig_pool(pool);
3229 return NULL;
3230 }
3231
3232 struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *sk)
3233 {
3234 struct tcp_md5sig_pool __percpu *pool;
3235 bool alloc = false;
3236
3237 retry:
3238 spin_lock_bh(&tcp_md5sig_pool_lock);
3239 pool = tcp_md5sig_pool;
3240 if (tcp_md5sig_users++ == 0) {
3241 alloc = true;
3242 spin_unlock_bh(&tcp_md5sig_pool_lock);
3243 } else if (!pool) {
3244 tcp_md5sig_users--;
3245 spin_unlock_bh(&tcp_md5sig_pool_lock);
3246 cpu_relax();
3247 goto retry;
3248 } else
3249 spin_unlock_bh(&tcp_md5sig_pool_lock);
3250
3251 if (alloc) {
3252 /* we cannot hold spinlock here because this may sleep. */
3253 struct tcp_md5sig_pool __percpu *p;
3254
3255 p = __tcp_alloc_md5sig_pool(sk);
3256 spin_lock_bh(&tcp_md5sig_pool_lock);
3257 if (!p) {
3258 tcp_md5sig_users--;
3259 spin_unlock_bh(&tcp_md5sig_pool_lock);
3260 return NULL;
3261 }
3262 pool = tcp_md5sig_pool;
3263 if (pool) {
3264 /* oops, it has already been assigned. */
3265 spin_unlock_bh(&tcp_md5sig_pool_lock);
3266 __tcp_free_md5sig_pool(p);
3267 } else {
3268 tcp_md5sig_pool = pool = p;
3269 spin_unlock_bh(&tcp_md5sig_pool_lock);
3270 }
3271 }
3272 return pool;
3273 }
3274 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3275
3276
3277 /**
3278 * tcp_get_md5sig_pool - get md5sig_pool for this user
3279 *
3280 * We use percpu structure, so if we succeed, we exit with preemption
3281 * and BH disabled, to make sure another thread or softirq handling
3282 * wont try to get same context.
3283 */
3284 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3285 {
3286 struct tcp_md5sig_pool __percpu *p;
3287
3288 local_bh_disable();
3289
3290 spin_lock(&tcp_md5sig_pool_lock);
3291 p = tcp_md5sig_pool;
3292 if (p)
3293 tcp_md5sig_users++;
3294 spin_unlock(&tcp_md5sig_pool_lock);
3295
3296 if (p)
3297 return this_cpu_ptr(p);
3298
3299 local_bh_enable();
3300 return NULL;
3301 }
3302 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3303
3304 void tcp_put_md5sig_pool(void)
3305 {
3306 local_bh_enable();
3307 tcp_free_md5sig_pool();
3308 }
3309 EXPORT_SYMBOL(tcp_put_md5sig_pool);
3310
3311 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
3312 const struct tcphdr *th)
3313 {
3314 struct scatterlist sg;
3315 struct tcphdr hdr;
3316 int err;
3317
3318 /* We are not allowed to change tcphdr, make a local copy */
3319 memcpy(&hdr, th, sizeof(hdr));
3320 hdr.check = 0;
3321
3322 /* options aren't included in the hash */
3323 sg_init_one(&sg, &hdr, sizeof(hdr));
3324 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
3325 return err;
3326 }
3327 EXPORT_SYMBOL(tcp_md5_hash_header);
3328
3329 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3330 const struct sk_buff *skb, unsigned int header_len)
3331 {
3332 struct scatterlist sg;
3333 const struct tcphdr *tp = tcp_hdr(skb);
3334 struct hash_desc *desc = &hp->md5_desc;
3335 unsigned int i;
3336 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3337 skb_headlen(skb) - header_len : 0;
3338 const struct skb_shared_info *shi = skb_shinfo(skb);
3339 struct sk_buff *frag_iter;
3340
3341 sg_init_table(&sg, 1);
3342
3343 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3344 if (crypto_hash_update(desc, &sg, head_data_len))
3345 return 1;
3346
3347 for (i = 0; i < shi->nr_frags; ++i) {
3348 const struct skb_frag_struct *f = &shi->frags[i];
3349 struct page *page = skb_frag_page(f);
3350 sg_set_page(&sg, page, skb_frag_size(f), f->page_offset);
3351 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3352 return 1;
3353 }
3354
3355 skb_walk_frags(skb, frag_iter)
3356 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3357 return 1;
3358
3359 return 0;
3360 }
3361 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3362
3363 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3364 {
3365 struct scatterlist sg;
3366
3367 sg_init_one(&sg, key->key, key->keylen);
3368 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3369 }
3370 EXPORT_SYMBOL(tcp_md5_hash_key);
3371
3372 #endif
3373
3374 /* Each Responder maintains up to two secret values concurrently for
3375 * efficient secret rollover. Each secret value has 4 states:
3376 *
3377 * Generating. (tcp_secret_generating != tcp_secret_primary)
3378 * Generates new Responder-Cookies, but not yet used for primary
3379 * verification. This is a short-term state, typically lasting only
3380 * one round trip time (RTT).
3381 *
3382 * Primary. (tcp_secret_generating == tcp_secret_primary)
3383 * Used both for generation and primary verification.
3384 *
3385 * Retiring. (tcp_secret_retiring != tcp_secret_secondary)
3386 * Used for verification, until the first failure that can be
3387 * verified by the newer Generating secret. At that time, this
3388 * cookie's state is changed to Secondary, and the Generating
3389 * cookie's state is changed to Primary. This is a short-term state,
3390 * typically lasting only one round trip time (RTT).
3391 *
3392 * Secondary. (tcp_secret_retiring == tcp_secret_secondary)
3393 * Used for secondary verification, after primary verification
3394 * failures. This state lasts no more than twice the Maximum Segment
3395 * Lifetime (2MSL). Then, the secret is discarded.
3396 */
3397 struct tcp_cookie_secret {
3398 /* The secret is divided into two parts. The digest part is the
3399 * equivalent of previously hashing a secret and saving the state,
3400 * and serves as an initialization vector (IV). The message part
3401 * serves as the trailing secret.
3402 */
3403 u32 secrets[COOKIE_WORKSPACE_WORDS];
3404 unsigned long expires;
3405 };
3406
3407 #define TCP_SECRET_1MSL (HZ * TCP_PAWS_MSL)
3408 #define TCP_SECRET_2MSL (HZ * TCP_PAWS_MSL * 2)
3409 #define TCP_SECRET_LIFE (HZ * 600)
3410
3411 static struct tcp_cookie_secret tcp_secret_one;
3412 static struct tcp_cookie_secret tcp_secret_two;
3413
3414 /* Essentially a circular list, without dynamic allocation. */
3415 static struct tcp_cookie_secret *tcp_secret_generating;
3416 static struct tcp_cookie_secret *tcp_secret_primary;
3417 static struct tcp_cookie_secret *tcp_secret_retiring;
3418 static struct tcp_cookie_secret *tcp_secret_secondary;
3419
3420 static DEFINE_SPINLOCK(tcp_secret_locker);
3421
3422 /* Select a pseudo-random word in the cookie workspace.
3423 */
3424 static inline u32 tcp_cookie_work(const u32 *ws, const int n)
3425 {
3426 return ws[COOKIE_DIGEST_WORDS + ((COOKIE_MESSAGE_WORDS-1) & ws[n])];
3427 }
3428
3429 /* Fill bakery[COOKIE_WORKSPACE_WORDS] with generator, updating as needed.
3430 * Called in softirq context.
3431 * Returns: 0 for success.
3432 */
3433 int tcp_cookie_generator(u32 *bakery)
3434 {
3435 unsigned long jiffy = jiffies;
3436
3437 if (unlikely(time_after_eq(jiffy, tcp_secret_generating->expires))) {
3438 spin_lock_bh(&tcp_secret_locker);
3439 if (!time_after_eq(jiffy, tcp_secret_generating->expires)) {
3440 /* refreshed by another */
3441 memcpy(bakery,
3442 &tcp_secret_generating->secrets[0],
3443 COOKIE_WORKSPACE_WORDS);
3444 } else {
3445 /* still needs refreshing */
3446 get_random_bytes(bakery, COOKIE_WORKSPACE_WORDS);
3447
3448 /* The first time, paranoia assumes that the
3449 * randomization function isn't as strong. But,
3450 * this secret initialization is delayed until
3451 * the last possible moment (packet arrival).
3452 * Although that time is observable, it is
3453 * unpredictably variable. Mash in the most
3454 * volatile clock bits available, and expire the
3455 * secret extra quickly.
3456 */
3457 if (unlikely(tcp_secret_primary->expires ==
3458 tcp_secret_secondary->expires)) {
3459 struct timespec tv;
3460
3461 getnstimeofday(&tv);
3462 bakery[COOKIE_DIGEST_WORDS+0] ^=
3463 (u32)tv.tv_nsec;
3464
3465 tcp_secret_secondary->expires = jiffy
3466 + TCP_SECRET_1MSL
3467 + (0x0f & tcp_cookie_work(bakery, 0));
3468 } else {
3469 tcp_secret_secondary->expires = jiffy
3470 + TCP_SECRET_LIFE
3471 + (0xff & tcp_cookie_work(bakery, 1));
3472 tcp_secret_primary->expires = jiffy
3473 + TCP_SECRET_2MSL
3474 + (0x1f & tcp_cookie_work(bakery, 2));
3475 }
3476 memcpy(&tcp_secret_secondary->secrets[0],
3477 bakery, COOKIE_WORKSPACE_WORDS);
3478
3479 rcu_assign_pointer(tcp_secret_generating,
3480 tcp_secret_secondary);
3481 rcu_assign_pointer(tcp_secret_retiring,
3482 tcp_secret_primary);
3483 /*
3484 * Neither call_rcu() nor synchronize_rcu() needed.
3485 * Retiring data is not freed. It is replaced after
3486 * further (locked) pointer updates, and a quiet time
3487 * (minimum 1MSL, maximum LIFE - 2MSL).
3488 */
3489 }
3490 spin_unlock_bh(&tcp_secret_locker);
3491 } else {
3492 rcu_read_lock_bh();
3493 memcpy(bakery,
3494 &rcu_dereference(tcp_secret_generating)->secrets[0],
3495 COOKIE_WORKSPACE_WORDS);
3496 rcu_read_unlock_bh();
3497 }
3498 return 0;
3499 }
3500 EXPORT_SYMBOL(tcp_cookie_generator);
3501
3502 void tcp_done(struct sock *sk)
3503 {
3504 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3505 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3506
3507 tcp_set_state(sk, TCP_CLOSE);
3508 tcp_clear_xmit_timers(sk);
3509
3510 sk->sk_shutdown = SHUTDOWN_MASK;
3511
3512 if (!sock_flag(sk, SOCK_DEAD))
3513 sk->sk_state_change(sk);
3514 else
3515 inet_csk_destroy_sock(sk);
3516 }
3517 EXPORT_SYMBOL_GPL(tcp_done);
3518
3519 extern struct tcp_congestion_ops tcp_reno;
3520
3521 static __initdata unsigned long thash_entries;
3522 static int __init set_thash_entries(char *str)
3523 {
3524 ssize_t ret;
3525
3526 if (!str)
3527 return 0;
3528
3529 ret = kstrtoul(str, 0, &thash_entries);
3530 if (ret)
3531 return 0;
3532
3533 return 1;
3534 }
3535 __setup("thash_entries=", set_thash_entries);
3536
3537 void tcp_init_mem(struct net *net)
3538 {
3539 unsigned long limit = nr_free_buffer_pages() / 8;
3540 limit = max(limit, 128UL);
3541 net->ipv4.sysctl_tcp_mem[0] = limit / 4 * 3;
3542 net->ipv4.sysctl_tcp_mem[1] = limit;
3543 net->ipv4.sysctl_tcp_mem[2] = net->ipv4.sysctl_tcp_mem[0] * 2;
3544 }
3545
3546 void __init tcp_init(void)
3547 {
3548 struct sk_buff *skb = NULL;
3549 unsigned long limit;
3550 int max_rshare, max_wshare, cnt;
3551 unsigned int i;
3552 unsigned long jiffy = jiffies;
3553
3554 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3555
3556 percpu_counter_init(&tcp_sockets_allocated, 0);
3557 percpu_counter_init(&tcp_orphan_count, 0);
3558 tcp_hashinfo.bind_bucket_cachep =
3559 kmem_cache_create("tcp_bind_bucket",
3560 sizeof(struct inet_bind_bucket), 0,
3561 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3562
3563 /* Size and allocate the main established and bind bucket
3564 * hash tables.
3565 *
3566 * The methodology is similar to that of the buffer cache.
3567 */
3568 tcp_hashinfo.ehash =
3569 alloc_large_system_hash("TCP established",
3570 sizeof(struct inet_ehash_bucket),
3571 thash_entries,
3572 (totalram_pages >= 128 * 1024) ?
3573 13 : 15,
3574 0,
3575 NULL,
3576 &tcp_hashinfo.ehash_mask,
3577 0,
3578 thash_entries ? 0 : 512 * 1024);
3579 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) {
3580 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3581 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].twchain, i);
3582 }
3583 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3584 panic("TCP: failed to alloc ehash_locks");
3585 tcp_hashinfo.bhash =
3586 alloc_large_system_hash("TCP bind",
3587 sizeof(struct inet_bind_hashbucket),
3588 tcp_hashinfo.ehash_mask + 1,
3589 (totalram_pages >= 128 * 1024) ?
3590 13 : 15,
3591 0,
3592 &tcp_hashinfo.bhash_size,
3593 NULL,
3594 0,
3595 64 * 1024);
3596 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3597 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3598 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3599 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3600 }
3601
3602
3603 cnt = tcp_hashinfo.ehash_mask + 1;
3604
3605 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3606 sysctl_tcp_max_orphans = cnt / 2;
3607 sysctl_max_syn_backlog = max(128, cnt / 256);
3608
3609 tcp_init_mem(&init_net);
3610 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3611 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3612 max_wshare = min(4UL*1024*1024, limit);
3613 max_rshare = min(6UL*1024*1024, limit);
3614
3615 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3616 sysctl_tcp_wmem[1] = 16*1024;
3617 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3618
3619 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3620 sysctl_tcp_rmem[1] = 87380;
3621 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3622
3623 pr_info("Hash tables configured (established %u bind %u)\n",
3624 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3625
3626 tcp_metrics_init();
3627
3628 tcp_register_congestion_control(&tcp_reno);
3629
3630 memset(&tcp_secret_one.secrets[0], 0, sizeof(tcp_secret_one.secrets));
3631 memset(&tcp_secret_two.secrets[0], 0, sizeof(tcp_secret_two.secrets));
3632 tcp_secret_one.expires = jiffy; /* past due */
3633 tcp_secret_two.expires = jiffy; /* past due */
3634 tcp_secret_generating = &tcp_secret_one;
3635 tcp_secret_primary = &tcp_secret_one;
3636 tcp_secret_retiring = &tcp_secret_two;
3637 tcp_secret_secondary = &tcp_secret_two;
3638 tcp_tasklet_init();
3639 }
This page took 0.106377 seconds and 5 git commands to generate.