Merge tag 'pinctrl-v3.18-2' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[deliverable/linux.git] / net / ipv4 / tcp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <asm/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282
283 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
284
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
286
287 int sysctl_tcp_autocorking __read_mostly = 1;
288
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
291
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
295
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
299
300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
302
303 /*
304 * Current number of TCP sockets.
305 */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308
309 /*
310 * TCP splice context
311 */
312 struct tcp_splice_state {
313 struct pipe_inode_info *pipe;
314 size_t len;
315 unsigned int flags;
316 };
317
318 /*
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
323 */
324 int tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL(tcp_memory_pressure);
326
327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 if (!tcp_memory_pressure) {
330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 tcp_memory_pressure = 1;
332 }
333 }
334 EXPORT_SYMBOL(tcp_enter_memory_pressure);
335
336 /* Convert seconds to retransmits based on initial and max timeout */
337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
338 {
339 u8 res = 0;
340
341 if (seconds > 0) {
342 int period = timeout;
343
344 res = 1;
345 while (seconds > period && res < 255) {
346 res++;
347 timeout <<= 1;
348 if (timeout > rto_max)
349 timeout = rto_max;
350 period += timeout;
351 }
352 }
353 return res;
354 }
355
356 /* Convert retransmits to seconds based on initial and max timeout */
357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
358 {
359 int period = 0;
360
361 if (retrans > 0) {
362 period = timeout;
363 while (--retrans) {
364 timeout <<= 1;
365 if (timeout > rto_max)
366 timeout = rto_max;
367 period += timeout;
368 }
369 }
370 return period;
371 }
372
373 /* Address-family independent initialization for a tcp_sock.
374 *
375 * NOTE: A lot of things set to zero explicitly by call to
376 * sk_alloc() so need not be done here.
377 */
378 void tcp_init_sock(struct sock *sk)
379 {
380 struct inet_connection_sock *icsk = inet_csk(sk);
381 struct tcp_sock *tp = tcp_sk(sk);
382
383 __skb_queue_head_init(&tp->out_of_order_queue);
384 tcp_init_xmit_timers(sk);
385 tcp_prequeue_init(tp);
386 INIT_LIST_HEAD(&tp->tsq_node);
387
388 icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390
391 /* So many TCP implementations out there (incorrectly) count the
392 * initial SYN frame in their delayed-ACK and congestion control
393 * algorithms that we must have the following bandaid to talk
394 * efficiently to them. -DaveM
395 */
396 tp->snd_cwnd = TCP_INIT_CWND;
397
398 /* See draft-stevens-tcpca-spec-01 for discussion of the
399 * initialization of these values.
400 */
401 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
402 tp->snd_cwnd_clamp = ~0;
403 tp->mss_cache = TCP_MSS_DEFAULT;
404
405 tp->reordering = sysctl_tcp_reordering;
406 tcp_enable_early_retrans(tp);
407 tcp_assign_congestion_control(sk);
408
409 tp->tsoffset = 0;
410
411 sk->sk_state = TCP_CLOSE;
412
413 sk->sk_write_space = sk_stream_write_space;
414 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
415
416 icsk->icsk_sync_mss = tcp_sync_mss;
417
418 sk->sk_sndbuf = sysctl_tcp_wmem[1];
419 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
420
421 local_bh_disable();
422 sock_update_memcg(sk);
423 sk_sockets_allocated_inc(sk);
424 local_bh_enable();
425 }
426 EXPORT_SYMBOL(tcp_init_sock);
427
428 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
429 {
430 if (sk->sk_tsflags) {
431 struct skb_shared_info *shinfo = skb_shinfo(skb);
432
433 sock_tx_timestamp(sk, &shinfo->tx_flags);
434 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
435 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
436 }
437 }
438
439 /*
440 * Wait for a TCP event.
441 *
442 * Note that we don't need to lock the socket, as the upper poll layers
443 * take care of normal races (between the test and the event) and we don't
444 * go look at any of the socket buffers directly.
445 */
446 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
447 {
448 unsigned int mask;
449 struct sock *sk = sock->sk;
450 const struct tcp_sock *tp = tcp_sk(sk);
451
452 sock_rps_record_flow(sk);
453
454 sock_poll_wait(file, sk_sleep(sk), wait);
455 if (sk->sk_state == TCP_LISTEN)
456 return inet_csk_listen_poll(sk);
457
458 /* Socket is not locked. We are protected from async events
459 * by poll logic and correct handling of state changes
460 * made by other threads is impossible in any case.
461 */
462
463 mask = 0;
464
465 /*
466 * POLLHUP is certainly not done right. But poll() doesn't
467 * have a notion of HUP in just one direction, and for a
468 * socket the read side is more interesting.
469 *
470 * Some poll() documentation says that POLLHUP is incompatible
471 * with the POLLOUT/POLLWR flags, so somebody should check this
472 * all. But careful, it tends to be safer to return too many
473 * bits than too few, and you can easily break real applications
474 * if you don't tell them that something has hung up!
475 *
476 * Check-me.
477 *
478 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
479 * our fs/select.c). It means that after we received EOF,
480 * poll always returns immediately, making impossible poll() on write()
481 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
482 * if and only if shutdown has been made in both directions.
483 * Actually, it is interesting to look how Solaris and DUX
484 * solve this dilemma. I would prefer, if POLLHUP were maskable,
485 * then we could set it on SND_SHUTDOWN. BTW examples given
486 * in Stevens' books assume exactly this behaviour, it explains
487 * why POLLHUP is incompatible with POLLOUT. --ANK
488 *
489 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
490 * blocking on fresh not-connected or disconnected socket. --ANK
491 */
492 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
493 mask |= POLLHUP;
494 if (sk->sk_shutdown & RCV_SHUTDOWN)
495 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
496
497 /* Connected or passive Fast Open socket? */
498 if (sk->sk_state != TCP_SYN_SENT &&
499 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
500 int target = sock_rcvlowat(sk, 0, INT_MAX);
501
502 if (tp->urg_seq == tp->copied_seq &&
503 !sock_flag(sk, SOCK_URGINLINE) &&
504 tp->urg_data)
505 target++;
506
507 /* Potential race condition. If read of tp below will
508 * escape above sk->sk_state, we can be illegally awaken
509 * in SYN_* states. */
510 if (tp->rcv_nxt - tp->copied_seq >= target)
511 mask |= POLLIN | POLLRDNORM;
512
513 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
514 if (sk_stream_is_writeable(sk)) {
515 mask |= POLLOUT | POLLWRNORM;
516 } else { /* send SIGIO later */
517 set_bit(SOCK_ASYNC_NOSPACE,
518 &sk->sk_socket->flags);
519 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
520
521 /* Race breaker. If space is freed after
522 * wspace test but before the flags are set,
523 * IO signal will be lost.
524 */
525 if (sk_stream_is_writeable(sk))
526 mask |= POLLOUT | POLLWRNORM;
527 }
528 } else
529 mask |= POLLOUT | POLLWRNORM;
530
531 if (tp->urg_data & TCP_URG_VALID)
532 mask |= POLLPRI;
533 }
534 /* This barrier is coupled with smp_wmb() in tcp_reset() */
535 smp_rmb();
536 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
537 mask |= POLLERR;
538
539 return mask;
540 }
541 EXPORT_SYMBOL(tcp_poll);
542
543 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
544 {
545 struct tcp_sock *tp = tcp_sk(sk);
546 int answ;
547 bool slow;
548
549 switch (cmd) {
550 case SIOCINQ:
551 if (sk->sk_state == TCP_LISTEN)
552 return -EINVAL;
553
554 slow = lock_sock_fast(sk);
555 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
556 answ = 0;
557 else if (sock_flag(sk, SOCK_URGINLINE) ||
558 !tp->urg_data ||
559 before(tp->urg_seq, tp->copied_seq) ||
560 !before(tp->urg_seq, tp->rcv_nxt)) {
561
562 answ = tp->rcv_nxt - tp->copied_seq;
563
564 /* Subtract 1, if FIN was received */
565 if (answ && sock_flag(sk, SOCK_DONE))
566 answ--;
567 } else
568 answ = tp->urg_seq - tp->copied_seq;
569 unlock_sock_fast(sk, slow);
570 break;
571 case SIOCATMARK:
572 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
573 break;
574 case SIOCOUTQ:
575 if (sk->sk_state == TCP_LISTEN)
576 return -EINVAL;
577
578 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
579 answ = 0;
580 else
581 answ = tp->write_seq - tp->snd_una;
582 break;
583 case SIOCOUTQNSD:
584 if (sk->sk_state == TCP_LISTEN)
585 return -EINVAL;
586
587 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
588 answ = 0;
589 else
590 answ = tp->write_seq - tp->snd_nxt;
591 break;
592 default:
593 return -ENOIOCTLCMD;
594 }
595
596 return put_user(answ, (int __user *)arg);
597 }
598 EXPORT_SYMBOL(tcp_ioctl);
599
600 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
601 {
602 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
603 tp->pushed_seq = tp->write_seq;
604 }
605
606 static inline bool forced_push(const struct tcp_sock *tp)
607 {
608 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
609 }
610
611 static void skb_entail(struct sock *sk, struct sk_buff *skb)
612 {
613 struct tcp_sock *tp = tcp_sk(sk);
614 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
615
616 skb->csum = 0;
617 tcb->seq = tcb->end_seq = tp->write_seq;
618 tcb->tcp_flags = TCPHDR_ACK;
619 tcb->sacked = 0;
620 __skb_header_release(skb);
621 tcp_add_write_queue_tail(sk, skb);
622 sk->sk_wmem_queued += skb->truesize;
623 sk_mem_charge(sk, skb->truesize);
624 if (tp->nonagle & TCP_NAGLE_PUSH)
625 tp->nonagle &= ~TCP_NAGLE_PUSH;
626 }
627
628 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
629 {
630 if (flags & MSG_OOB)
631 tp->snd_up = tp->write_seq;
632 }
633
634 /* If a not yet filled skb is pushed, do not send it if
635 * we have data packets in Qdisc or NIC queues :
636 * Because TX completion will happen shortly, it gives a chance
637 * to coalesce future sendmsg() payload into this skb, without
638 * need for a timer, and with no latency trade off.
639 * As packets containing data payload have a bigger truesize
640 * than pure acks (dataless) packets, the last checks prevent
641 * autocorking if we only have an ACK in Qdisc/NIC queues,
642 * or if TX completion was delayed after we processed ACK packet.
643 */
644 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
645 int size_goal)
646 {
647 return skb->len < size_goal &&
648 sysctl_tcp_autocorking &&
649 skb != tcp_write_queue_head(sk) &&
650 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
651 }
652
653 static void tcp_push(struct sock *sk, int flags, int mss_now,
654 int nonagle, int size_goal)
655 {
656 struct tcp_sock *tp = tcp_sk(sk);
657 struct sk_buff *skb;
658
659 if (!tcp_send_head(sk))
660 return;
661
662 skb = tcp_write_queue_tail(sk);
663 if (!(flags & MSG_MORE) || forced_push(tp))
664 tcp_mark_push(tp, skb);
665
666 tcp_mark_urg(tp, flags);
667
668 if (tcp_should_autocork(sk, skb, size_goal)) {
669
670 /* avoid atomic op if TSQ_THROTTLED bit is already set */
671 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
672 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
673 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
674 }
675 /* It is possible TX completion already happened
676 * before we set TSQ_THROTTLED.
677 */
678 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
679 return;
680 }
681
682 if (flags & MSG_MORE)
683 nonagle = TCP_NAGLE_CORK;
684
685 __tcp_push_pending_frames(sk, mss_now, nonagle);
686 }
687
688 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
689 unsigned int offset, size_t len)
690 {
691 struct tcp_splice_state *tss = rd_desc->arg.data;
692 int ret;
693
694 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
695 tss->flags);
696 if (ret > 0)
697 rd_desc->count -= ret;
698 return ret;
699 }
700
701 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
702 {
703 /* Store TCP splice context information in read_descriptor_t. */
704 read_descriptor_t rd_desc = {
705 .arg.data = tss,
706 .count = tss->len,
707 };
708
709 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
710 }
711
712 /**
713 * tcp_splice_read - splice data from TCP socket to a pipe
714 * @sock: socket to splice from
715 * @ppos: position (not valid)
716 * @pipe: pipe to splice to
717 * @len: number of bytes to splice
718 * @flags: splice modifier flags
719 *
720 * Description:
721 * Will read pages from given socket and fill them into a pipe.
722 *
723 **/
724 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
725 struct pipe_inode_info *pipe, size_t len,
726 unsigned int flags)
727 {
728 struct sock *sk = sock->sk;
729 struct tcp_splice_state tss = {
730 .pipe = pipe,
731 .len = len,
732 .flags = flags,
733 };
734 long timeo;
735 ssize_t spliced;
736 int ret;
737
738 sock_rps_record_flow(sk);
739 /*
740 * We can't seek on a socket input
741 */
742 if (unlikely(*ppos))
743 return -ESPIPE;
744
745 ret = spliced = 0;
746
747 lock_sock(sk);
748
749 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
750 while (tss.len) {
751 ret = __tcp_splice_read(sk, &tss);
752 if (ret < 0)
753 break;
754 else if (!ret) {
755 if (spliced)
756 break;
757 if (sock_flag(sk, SOCK_DONE))
758 break;
759 if (sk->sk_err) {
760 ret = sock_error(sk);
761 break;
762 }
763 if (sk->sk_shutdown & RCV_SHUTDOWN)
764 break;
765 if (sk->sk_state == TCP_CLOSE) {
766 /*
767 * This occurs when user tries to read
768 * from never connected socket.
769 */
770 if (!sock_flag(sk, SOCK_DONE))
771 ret = -ENOTCONN;
772 break;
773 }
774 if (!timeo) {
775 ret = -EAGAIN;
776 break;
777 }
778 sk_wait_data(sk, &timeo);
779 if (signal_pending(current)) {
780 ret = sock_intr_errno(timeo);
781 break;
782 }
783 continue;
784 }
785 tss.len -= ret;
786 spliced += ret;
787
788 if (!timeo)
789 break;
790 release_sock(sk);
791 lock_sock(sk);
792
793 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
794 (sk->sk_shutdown & RCV_SHUTDOWN) ||
795 signal_pending(current))
796 break;
797 }
798
799 release_sock(sk);
800
801 if (spliced)
802 return spliced;
803
804 return ret;
805 }
806 EXPORT_SYMBOL(tcp_splice_read);
807
808 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
809 {
810 struct sk_buff *skb;
811
812 /* The TCP header must be at least 32-bit aligned. */
813 size = ALIGN(size, 4);
814
815 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
816 if (skb) {
817 if (sk_wmem_schedule(sk, skb->truesize)) {
818 skb_reserve(skb, sk->sk_prot->max_header);
819 /*
820 * Make sure that we have exactly size bytes
821 * available to the caller, no more, no less.
822 */
823 skb->reserved_tailroom = skb->end - skb->tail - size;
824 return skb;
825 }
826 __kfree_skb(skb);
827 } else {
828 sk->sk_prot->enter_memory_pressure(sk);
829 sk_stream_moderate_sndbuf(sk);
830 }
831 return NULL;
832 }
833
834 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
835 int large_allowed)
836 {
837 struct tcp_sock *tp = tcp_sk(sk);
838 u32 xmit_size_goal, old_size_goal;
839
840 xmit_size_goal = mss_now;
841
842 if (large_allowed && sk_can_gso(sk)) {
843 u32 gso_size, hlen;
844
845 /* Maybe we should/could use sk->sk_prot->max_header here ? */
846 hlen = inet_csk(sk)->icsk_af_ops->net_header_len +
847 inet_csk(sk)->icsk_ext_hdr_len +
848 tp->tcp_header_len;
849
850 /* Goal is to send at least one packet per ms,
851 * not one big TSO packet every 100 ms.
852 * This preserves ACK clocking and is consistent
853 * with tcp_tso_should_defer() heuristic.
854 */
855 gso_size = sk->sk_pacing_rate / (2 * MSEC_PER_SEC);
856 gso_size = max_t(u32, gso_size,
857 sysctl_tcp_min_tso_segs * mss_now);
858
859 xmit_size_goal = min_t(u32, gso_size,
860 sk->sk_gso_max_size - 1 - hlen);
861
862 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
863
864 /* We try hard to avoid divides here */
865 old_size_goal = tp->xmit_size_goal_segs * mss_now;
866
867 if (likely(old_size_goal <= xmit_size_goal &&
868 old_size_goal + mss_now > xmit_size_goal)) {
869 xmit_size_goal = old_size_goal;
870 } else {
871 tp->xmit_size_goal_segs =
872 min_t(u16, xmit_size_goal / mss_now,
873 sk->sk_gso_max_segs);
874 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
875 }
876 }
877
878 return max(xmit_size_goal, mss_now);
879 }
880
881 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
882 {
883 int mss_now;
884
885 mss_now = tcp_current_mss(sk);
886 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
887
888 return mss_now;
889 }
890
891 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
892 size_t size, int flags)
893 {
894 struct tcp_sock *tp = tcp_sk(sk);
895 int mss_now, size_goal;
896 int err;
897 ssize_t copied;
898 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
899
900 /* Wait for a connection to finish. One exception is TCP Fast Open
901 * (passive side) where data is allowed to be sent before a connection
902 * is fully established.
903 */
904 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
905 !tcp_passive_fastopen(sk)) {
906 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
907 goto out_err;
908 }
909
910 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
911
912 mss_now = tcp_send_mss(sk, &size_goal, flags);
913 copied = 0;
914
915 err = -EPIPE;
916 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
917 goto out_err;
918
919 while (size > 0) {
920 struct sk_buff *skb = tcp_write_queue_tail(sk);
921 int copy, i;
922 bool can_coalesce;
923
924 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
925 new_segment:
926 if (!sk_stream_memory_free(sk))
927 goto wait_for_sndbuf;
928
929 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
930 if (!skb)
931 goto wait_for_memory;
932
933 skb_entail(sk, skb);
934 copy = size_goal;
935 }
936
937 if (copy > size)
938 copy = size;
939
940 i = skb_shinfo(skb)->nr_frags;
941 can_coalesce = skb_can_coalesce(skb, i, page, offset);
942 if (!can_coalesce && i >= MAX_SKB_FRAGS) {
943 tcp_mark_push(tp, skb);
944 goto new_segment;
945 }
946 if (!sk_wmem_schedule(sk, copy))
947 goto wait_for_memory;
948
949 if (can_coalesce) {
950 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
951 } else {
952 get_page(page);
953 skb_fill_page_desc(skb, i, page, offset, copy);
954 }
955 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
956
957 skb->len += copy;
958 skb->data_len += copy;
959 skb->truesize += copy;
960 sk->sk_wmem_queued += copy;
961 sk_mem_charge(sk, copy);
962 skb->ip_summed = CHECKSUM_PARTIAL;
963 tp->write_seq += copy;
964 TCP_SKB_CB(skb)->end_seq += copy;
965 tcp_skb_pcount_set(skb, 0);
966
967 if (!copied)
968 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
969
970 copied += copy;
971 offset += copy;
972 if (!(size -= copy)) {
973 tcp_tx_timestamp(sk, skb);
974 goto out;
975 }
976
977 if (skb->len < size_goal || (flags & MSG_OOB))
978 continue;
979
980 if (forced_push(tp)) {
981 tcp_mark_push(tp, skb);
982 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
983 } else if (skb == tcp_send_head(sk))
984 tcp_push_one(sk, mss_now);
985 continue;
986
987 wait_for_sndbuf:
988 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
989 wait_for_memory:
990 tcp_push(sk, flags & ~MSG_MORE, mss_now,
991 TCP_NAGLE_PUSH, size_goal);
992
993 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
994 goto do_error;
995
996 mss_now = tcp_send_mss(sk, &size_goal, flags);
997 }
998
999 out:
1000 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
1001 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1002 return copied;
1003
1004 do_error:
1005 if (copied)
1006 goto out;
1007 out_err:
1008 return sk_stream_error(sk, flags, err);
1009 }
1010
1011 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1012 size_t size, int flags)
1013 {
1014 ssize_t res;
1015
1016 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1017 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
1018 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1019 flags);
1020
1021 lock_sock(sk);
1022 res = do_tcp_sendpages(sk, page, offset, size, flags);
1023 release_sock(sk);
1024 return res;
1025 }
1026 EXPORT_SYMBOL(tcp_sendpage);
1027
1028 static inline int select_size(const struct sock *sk, bool sg)
1029 {
1030 const struct tcp_sock *tp = tcp_sk(sk);
1031 int tmp = tp->mss_cache;
1032
1033 if (sg) {
1034 if (sk_can_gso(sk)) {
1035 /* Small frames wont use a full page:
1036 * Payload will immediately follow tcp header.
1037 */
1038 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1039 } else {
1040 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1041
1042 if (tmp >= pgbreak &&
1043 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1044 tmp = pgbreak;
1045 }
1046 }
1047
1048 return tmp;
1049 }
1050
1051 void tcp_free_fastopen_req(struct tcp_sock *tp)
1052 {
1053 if (tp->fastopen_req != NULL) {
1054 kfree(tp->fastopen_req);
1055 tp->fastopen_req = NULL;
1056 }
1057 }
1058
1059 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1060 int *copied, size_t size)
1061 {
1062 struct tcp_sock *tp = tcp_sk(sk);
1063 int err, flags;
1064
1065 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE))
1066 return -EOPNOTSUPP;
1067 if (tp->fastopen_req != NULL)
1068 return -EALREADY; /* Another Fast Open is in progress */
1069
1070 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1071 sk->sk_allocation);
1072 if (unlikely(tp->fastopen_req == NULL))
1073 return -ENOBUFS;
1074 tp->fastopen_req->data = msg;
1075 tp->fastopen_req->size = size;
1076
1077 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1078 err = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1079 msg->msg_namelen, flags);
1080 *copied = tp->fastopen_req->copied;
1081 tcp_free_fastopen_req(tp);
1082 return err;
1083 }
1084
1085 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1086 size_t size)
1087 {
1088 struct iovec *iov;
1089 struct tcp_sock *tp = tcp_sk(sk);
1090 struct sk_buff *skb;
1091 int iovlen, flags, err, copied = 0;
1092 int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1093 bool sg;
1094 long timeo;
1095
1096 lock_sock(sk);
1097
1098 flags = msg->msg_flags;
1099 if (flags & MSG_FASTOPEN) {
1100 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1101 if (err == -EINPROGRESS && copied_syn > 0)
1102 goto out;
1103 else if (err)
1104 goto out_err;
1105 offset = copied_syn;
1106 }
1107
1108 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1109
1110 /* Wait for a connection to finish. One exception is TCP Fast Open
1111 * (passive side) where data is allowed to be sent before a connection
1112 * is fully established.
1113 */
1114 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1115 !tcp_passive_fastopen(sk)) {
1116 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1117 goto do_error;
1118 }
1119
1120 if (unlikely(tp->repair)) {
1121 if (tp->repair_queue == TCP_RECV_QUEUE) {
1122 copied = tcp_send_rcvq(sk, msg, size);
1123 goto out_nopush;
1124 }
1125
1126 err = -EINVAL;
1127 if (tp->repair_queue == TCP_NO_QUEUE)
1128 goto out_err;
1129
1130 /* 'common' sending to sendq */
1131 }
1132
1133 /* This should be in poll */
1134 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1135
1136 mss_now = tcp_send_mss(sk, &size_goal, flags);
1137
1138 /* Ok commence sending. */
1139 iovlen = msg->msg_iovlen;
1140 iov = msg->msg_iov;
1141 copied = 0;
1142
1143 err = -EPIPE;
1144 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1145 goto out_err;
1146
1147 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1148
1149 while (--iovlen >= 0) {
1150 size_t seglen = iov->iov_len;
1151 unsigned char __user *from = iov->iov_base;
1152
1153 iov++;
1154 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */
1155 if (offset >= seglen) {
1156 offset -= seglen;
1157 continue;
1158 }
1159 seglen -= offset;
1160 from += offset;
1161 offset = 0;
1162 }
1163
1164 while (seglen > 0) {
1165 int copy = 0;
1166 int max = size_goal;
1167
1168 skb = tcp_write_queue_tail(sk);
1169 if (tcp_send_head(sk)) {
1170 if (skb->ip_summed == CHECKSUM_NONE)
1171 max = mss_now;
1172 copy = max - skb->len;
1173 }
1174
1175 if (copy <= 0) {
1176 new_segment:
1177 /* Allocate new segment. If the interface is SG,
1178 * allocate skb fitting to single page.
1179 */
1180 if (!sk_stream_memory_free(sk))
1181 goto wait_for_sndbuf;
1182
1183 skb = sk_stream_alloc_skb(sk,
1184 select_size(sk, sg),
1185 sk->sk_allocation);
1186 if (!skb)
1187 goto wait_for_memory;
1188
1189 /*
1190 * Check whether we can use HW checksum.
1191 */
1192 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1193 skb->ip_summed = CHECKSUM_PARTIAL;
1194
1195 skb_entail(sk, skb);
1196 copy = size_goal;
1197 max = size_goal;
1198
1199 /* All packets are restored as if they have
1200 * already been sent. skb_mstamp isn't set to
1201 * avoid wrong rtt estimation.
1202 */
1203 if (tp->repair)
1204 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1205 }
1206
1207 /* Try to append data to the end of skb. */
1208 if (copy > seglen)
1209 copy = seglen;
1210
1211 /* Where to copy to? */
1212 if (skb_availroom(skb) > 0) {
1213 /* We have some space in skb head. Superb! */
1214 copy = min_t(int, copy, skb_availroom(skb));
1215 err = skb_add_data_nocache(sk, skb, from, copy);
1216 if (err)
1217 goto do_fault;
1218 } else {
1219 bool merge = true;
1220 int i = skb_shinfo(skb)->nr_frags;
1221 struct page_frag *pfrag = sk_page_frag(sk);
1222
1223 if (!sk_page_frag_refill(sk, pfrag))
1224 goto wait_for_memory;
1225
1226 if (!skb_can_coalesce(skb, i, pfrag->page,
1227 pfrag->offset)) {
1228 if (i == MAX_SKB_FRAGS || !sg) {
1229 tcp_mark_push(tp, skb);
1230 goto new_segment;
1231 }
1232 merge = false;
1233 }
1234
1235 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1236
1237 if (!sk_wmem_schedule(sk, copy))
1238 goto wait_for_memory;
1239
1240 err = skb_copy_to_page_nocache(sk, from, skb,
1241 pfrag->page,
1242 pfrag->offset,
1243 copy);
1244 if (err)
1245 goto do_error;
1246
1247 /* Update the skb. */
1248 if (merge) {
1249 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1250 } else {
1251 skb_fill_page_desc(skb, i, pfrag->page,
1252 pfrag->offset, copy);
1253 get_page(pfrag->page);
1254 }
1255 pfrag->offset += copy;
1256 }
1257
1258 if (!copied)
1259 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1260
1261 tp->write_seq += copy;
1262 TCP_SKB_CB(skb)->end_seq += copy;
1263 tcp_skb_pcount_set(skb, 0);
1264
1265 from += copy;
1266 copied += copy;
1267 if ((seglen -= copy) == 0 && iovlen == 0) {
1268 tcp_tx_timestamp(sk, skb);
1269 goto out;
1270 }
1271
1272 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1273 continue;
1274
1275 if (forced_push(tp)) {
1276 tcp_mark_push(tp, skb);
1277 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1278 } else if (skb == tcp_send_head(sk))
1279 tcp_push_one(sk, mss_now);
1280 continue;
1281
1282 wait_for_sndbuf:
1283 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1284 wait_for_memory:
1285 if (copied)
1286 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1287 TCP_NAGLE_PUSH, size_goal);
1288
1289 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1290 goto do_error;
1291
1292 mss_now = tcp_send_mss(sk, &size_goal, flags);
1293 }
1294 }
1295
1296 out:
1297 if (copied)
1298 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1299 out_nopush:
1300 release_sock(sk);
1301 return copied + copied_syn;
1302
1303 do_fault:
1304 if (!skb->len) {
1305 tcp_unlink_write_queue(skb, sk);
1306 /* It is the one place in all of TCP, except connection
1307 * reset, where we can be unlinking the send_head.
1308 */
1309 tcp_check_send_head(sk, skb);
1310 sk_wmem_free_skb(sk, skb);
1311 }
1312
1313 do_error:
1314 if (copied + copied_syn)
1315 goto out;
1316 out_err:
1317 err = sk_stream_error(sk, flags, err);
1318 release_sock(sk);
1319 return err;
1320 }
1321 EXPORT_SYMBOL(tcp_sendmsg);
1322
1323 /*
1324 * Handle reading urgent data. BSD has very simple semantics for
1325 * this, no blocking and very strange errors 8)
1326 */
1327
1328 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1329 {
1330 struct tcp_sock *tp = tcp_sk(sk);
1331
1332 /* No URG data to read. */
1333 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1334 tp->urg_data == TCP_URG_READ)
1335 return -EINVAL; /* Yes this is right ! */
1336
1337 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1338 return -ENOTCONN;
1339
1340 if (tp->urg_data & TCP_URG_VALID) {
1341 int err = 0;
1342 char c = tp->urg_data;
1343
1344 if (!(flags & MSG_PEEK))
1345 tp->urg_data = TCP_URG_READ;
1346
1347 /* Read urgent data. */
1348 msg->msg_flags |= MSG_OOB;
1349
1350 if (len > 0) {
1351 if (!(flags & MSG_TRUNC))
1352 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1353 len = 1;
1354 } else
1355 msg->msg_flags |= MSG_TRUNC;
1356
1357 return err ? -EFAULT : len;
1358 }
1359
1360 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1361 return 0;
1362
1363 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1364 * the available implementations agree in this case:
1365 * this call should never block, independent of the
1366 * blocking state of the socket.
1367 * Mike <pall@rz.uni-karlsruhe.de>
1368 */
1369 return -EAGAIN;
1370 }
1371
1372 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1373 {
1374 struct sk_buff *skb;
1375 int copied = 0, err = 0;
1376
1377 /* XXX -- need to support SO_PEEK_OFF */
1378
1379 skb_queue_walk(&sk->sk_write_queue, skb) {
1380 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1381 if (err)
1382 break;
1383
1384 copied += skb->len;
1385 }
1386
1387 return err ?: copied;
1388 }
1389
1390 /* Clean up the receive buffer for full frames taken by the user,
1391 * then send an ACK if necessary. COPIED is the number of bytes
1392 * tcp_recvmsg has given to the user so far, it speeds up the
1393 * calculation of whether or not we must ACK for the sake of
1394 * a window update.
1395 */
1396 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1397 {
1398 struct tcp_sock *tp = tcp_sk(sk);
1399 bool time_to_ack = false;
1400
1401 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1402
1403 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1404 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1405 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1406
1407 if (inet_csk_ack_scheduled(sk)) {
1408 const struct inet_connection_sock *icsk = inet_csk(sk);
1409 /* Delayed ACKs frequently hit locked sockets during bulk
1410 * receive. */
1411 if (icsk->icsk_ack.blocked ||
1412 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1413 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1414 /*
1415 * If this read emptied read buffer, we send ACK, if
1416 * connection is not bidirectional, user drained
1417 * receive buffer and there was a small segment
1418 * in queue.
1419 */
1420 (copied > 0 &&
1421 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1422 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1423 !icsk->icsk_ack.pingpong)) &&
1424 !atomic_read(&sk->sk_rmem_alloc)))
1425 time_to_ack = true;
1426 }
1427
1428 /* We send an ACK if we can now advertise a non-zero window
1429 * which has been raised "significantly".
1430 *
1431 * Even if window raised up to infinity, do not send window open ACK
1432 * in states, where we will not receive more. It is useless.
1433 */
1434 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1435 __u32 rcv_window_now = tcp_receive_window(tp);
1436
1437 /* Optimize, __tcp_select_window() is not cheap. */
1438 if (2*rcv_window_now <= tp->window_clamp) {
1439 __u32 new_window = __tcp_select_window(sk);
1440
1441 /* Send ACK now, if this read freed lots of space
1442 * in our buffer. Certainly, new_window is new window.
1443 * We can advertise it now, if it is not less than current one.
1444 * "Lots" means "at least twice" here.
1445 */
1446 if (new_window && new_window >= 2 * rcv_window_now)
1447 time_to_ack = true;
1448 }
1449 }
1450 if (time_to_ack)
1451 tcp_send_ack(sk);
1452 }
1453
1454 static void tcp_prequeue_process(struct sock *sk)
1455 {
1456 struct sk_buff *skb;
1457 struct tcp_sock *tp = tcp_sk(sk);
1458
1459 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1460
1461 /* RX process wants to run with disabled BHs, though it is not
1462 * necessary */
1463 local_bh_disable();
1464 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1465 sk_backlog_rcv(sk, skb);
1466 local_bh_enable();
1467
1468 /* Clear memory counter. */
1469 tp->ucopy.memory = 0;
1470 }
1471
1472 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1473 {
1474 struct sk_buff *skb;
1475 u32 offset;
1476
1477 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1478 offset = seq - TCP_SKB_CB(skb)->seq;
1479 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1480 offset--;
1481 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1482 *off = offset;
1483 return skb;
1484 }
1485 /* This looks weird, but this can happen if TCP collapsing
1486 * splitted a fat GRO packet, while we released socket lock
1487 * in skb_splice_bits()
1488 */
1489 sk_eat_skb(sk, skb);
1490 }
1491 return NULL;
1492 }
1493
1494 /*
1495 * This routine provides an alternative to tcp_recvmsg() for routines
1496 * that would like to handle copying from skbuffs directly in 'sendfile'
1497 * fashion.
1498 * Note:
1499 * - It is assumed that the socket was locked by the caller.
1500 * - The routine does not block.
1501 * - At present, there is no support for reading OOB data
1502 * or for 'peeking' the socket using this routine
1503 * (although both would be easy to implement).
1504 */
1505 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1506 sk_read_actor_t recv_actor)
1507 {
1508 struct sk_buff *skb;
1509 struct tcp_sock *tp = tcp_sk(sk);
1510 u32 seq = tp->copied_seq;
1511 u32 offset;
1512 int copied = 0;
1513
1514 if (sk->sk_state == TCP_LISTEN)
1515 return -ENOTCONN;
1516 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1517 if (offset < skb->len) {
1518 int used;
1519 size_t len;
1520
1521 len = skb->len - offset;
1522 /* Stop reading if we hit a patch of urgent data */
1523 if (tp->urg_data) {
1524 u32 urg_offset = tp->urg_seq - seq;
1525 if (urg_offset < len)
1526 len = urg_offset;
1527 if (!len)
1528 break;
1529 }
1530 used = recv_actor(desc, skb, offset, len);
1531 if (used <= 0) {
1532 if (!copied)
1533 copied = used;
1534 break;
1535 } else if (used <= len) {
1536 seq += used;
1537 copied += used;
1538 offset += used;
1539 }
1540 /* If recv_actor drops the lock (e.g. TCP splice
1541 * receive) the skb pointer might be invalid when
1542 * getting here: tcp_collapse might have deleted it
1543 * while aggregating skbs from the socket queue.
1544 */
1545 skb = tcp_recv_skb(sk, seq - 1, &offset);
1546 if (!skb)
1547 break;
1548 /* TCP coalescing might have appended data to the skb.
1549 * Try to splice more frags
1550 */
1551 if (offset + 1 != skb->len)
1552 continue;
1553 }
1554 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1555 sk_eat_skb(sk, skb);
1556 ++seq;
1557 break;
1558 }
1559 sk_eat_skb(sk, skb);
1560 if (!desc->count)
1561 break;
1562 tp->copied_seq = seq;
1563 }
1564 tp->copied_seq = seq;
1565
1566 tcp_rcv_space_adjust(sk);
1567
1568 /* Clean up data we have read: This will do ACK frames. */
1569 if (copied > 0) {
1570 tcp_recv_skb(sk, seq, &offset);
1571 tcp_cleanup_rbuf(sk, copied);
1572 }
1573 return copied;
1574 }
1575 EXPORT_SYMBOL(tcp_read_sock);
1576
1577 /*
1578 * This routine copies from a sock struct into the user buffer.
1579 *
1580 * Technical note: in 2.3 we work on _locked_ socket, so that
1581 * tricks with *seq access order and skb->users are not required.
1582 * Probably, code can be easily improved even more.
1583 */
1584
1585 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1586 size_t len, int nonblock, int flags, int *addr_len)
1587 {
1588 struct tcp_sock *tp = tcp_sk(sk);
1589 int copied = 0;
1590 u32 peek_seq;
1591 u32 *seq;
1592 unsigned long used;
1593 int err;
1594 int target; /* Read at least this many bytes */
1595 long timeo;
1596 struct task_struct *user_recv = NULL;
1597 struct sk_buff *skb;
1598 u32 urg_hole = 0;
1599
1600 if (unlikely(flags & MSG_ERRQUEUE))
1601 return ip_recv_error(sk, msg, len, addr_len);
1602
1603 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1604 (sk->sk_state == TCP_ESTABLISHED))
1605 sk_busy_loop(sk, nonblock);
1606
1607 lock_sock(sk);
1608
1609 err = -ENOTCONN;
1610 if (sk->sk_state == TCP_LISTEN)
1611 goto out;
1612
1613 timeo = sock_rcvtimeo(sk, nonblock);
1614
1615 /* Urgent data needs to be handled specially. */
1616 if (flags & MSG_OOB)
1617 goto recv_urg;
1618
1619 if (unlikely(tp->repair)) {
1620 err = -EPERM;
1621 if (!(flags & MSG_PEEK))
1622 goto out;
1623
1624 if (tp->repair_queue == TCP_SEND_QUEUE)
1625 goto recv_sndq;
1626
1627 err = -EINVAL;
1628 if (tp->repair_queue == TCP_NO_QUEUE)
1629 goto out;
1630
1631 /* 'common' recv queue MSG_PEEK-ing */
1632 }
1633
1634 seq = &tp->copied_seq;
1635 if (flags & MSG_PEEK) {
1636 peek_seq = tp->copied_seq;
1637 seq = &peek_seq;
1638 }
1639
1640 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1641
1642 do {
1643 u32 offset;
1644
1645 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1646 if (tp->urg_data && tp->urg_seq == *seq) {
1647 if (copied)
1648 break;
1649 if (signal_pending(current)) {
1650 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1651 break;
1652 }
1653 }
1654
1655 /* Next get a buffer. */
1656
1657 skb_queue_walk(&sk->sk_receive_queue, skb) {
1658 /* Now that we have two receive queues this
1659 * shouldn't happen.
1660 */
1661 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1662 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1663 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1664 flags))
1665 break;
1666
1667 offset = *seq - TCP_SKB_CB(skb)->seq;
1668 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1669 offset--;
1670 if (offset < skb->len)
1671 goto found_ok_skb;
1672 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1673 goto found_fin_ok;
1674 WARN(!(flags & MSG_PEEK),
1675 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1676 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1677 }
1678
1679 /* Well, if we have backlog, try to process it now yet. */
1680
1681 if (copied >= target && !sk->sk_backlog.tail)
1682 break;
1683
1684 if (copied) {
1685 if (sk->sk_err ||
1686 sk->sk_state == TCP_CLOSE ||
1687 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1688 !timeo ||
1689 signal_pending(current))
1690 break;
1691 } else {
1692 if (sock_flag(sk, SOCK_DONE))
1693 break;
1694
1695 if (sk->sk_err) {
1696 copied = sock_error(sk);
1697 break;
1698 }
1699
1700 if (sk->sk_shutdown & RCV_SHUTDOWN)
1701 break;
1702
1703 if (sk->sk_state == TCP_CLOSE) {
1704 if (!sock_flag(sk, SOCK_DONE)) {
1705 /* This occurs when user tries to read
1706 * from never connected socket.
1707 */
1708 copied = -ENOTCONN;
1709 break;
1710 }
1711 break;
1712 }
1713
1714 if (!timeo) {
1715 copied = -EAGAIN;
1716 break;
1717 }
1718
1719 if (signal_pending(current)) {
1720 copied = sock_intr_errno(timeo);
1721 break;
1722 }
1723 }
1724
1725 tcp_cleanup_rbuf(sk, copied);
1726
1727 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1728 /* Install new reader */
1729 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1730 user_recv = current;
1731 tp->ucopy.task = user_recv;
1732 tp->ucopy.iov = msg->msg_iov;
1733 }
1734
1735 tp->ucopy.len = len;
1736
1737 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1738 !(flags & (MSG_PEEK | MSG_TRUNC)));
1739
1740 /* Ugly... If prequeue is not empty, we have to
1741 * process it before releasing socket, otherwise
1742 * order will be broken at second iteration.
1743 * More elegant solution is required!!!
1744 *
1745 * Look: we have the following (pseudo)queues:
1746 *
1747 * 1. packets in flight
1748 * 2. backlog
1749 * 3. prequeue
1750 * 4. receive_queue
1751 *
1752 * Each queue can be processed only if the next ones
1753 * are empty. At this point we have empty receive_queue.
1754 * But prequeue _can_ be not empty after 2nd iteration,
1755 * when we jumped to start of loop because backlog
1756 * processing added something to receive_queue.
1757 * We cannot release_sock(), because backlog contains
1758 * packets arrived _after_ prequeued ones.
1759 *
1760 * Shortly, algorithm is clear --- to process all
1761 * the queues in order. We could make it more directly,
1762 * requeueing packets from backlog to prequeue, if
1763 * is not empty. It is more elegant, but eats cycles,
1764 * unfortunately.
1765 */
1766 if (!skb_queue_empty(&tp->ucopy.prequeue))
1767 goto do_prequeue;
1768
1769 /* __ Set realtime policy in scheduler __ */
1770 }
1771
1772 if (copied >= target) {
1773 /* Do not sleep, just process backlog. */
1774 release_sock(sk);
1775 lock_sock(sk);
1776 } else
1777 sk_wait_data(sk, &timeo);
1778
1779 if (user_recv) {
1780 int chunk;
1781
1782 /* __ Restore normal policy in scheduler __ */
1783
1784 if ((chunk = len - tp->ucopy.len) != 0) {
1785 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1786 len -= chunk;
1787 copied += chunk;
1788 }
1789
1790 if (tp->rcv_nxt == tp->copied_seq &&
1791 !skb_queue_empty(&tp->ucopy.prequeue)) {
1792 do_prequeue:
1793 tcp_prequeue_process(sk);
1794
1795 if ((chunk = len - tp->ucopy.len) != 0) {
1796 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1797 len -= chunk;
1798 copied += chunk;
1799 }
1800 }
1801 }
1802 if ((flags & MSG_PEEK) &&
1803 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1804 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1805 current->comm,
1806 task_pid_nr(current));
1807 peek_seq = tp->copied_seq;
1808 }
1809 continue;
1810
1811 found_ok_skb:
1812 /* Ok so how much can we use? */
1813 used = skb->len - offset;
1814 if (len < used)
1815 used = len;
1816
1817 /* Do we have urgent data here? */
1818 if (tp->urg_data) {
1819 u32 urg_offset = tp->urg_seq - *seq;
1820 if (urg_offset < used) {
1821 if (!urg_offset) {
1822 if (!sock_flag(sk, SOCK_URGINLINE)) {
1823 ++*seq;
1824 urg_hole++;
1825 offset++;
1826 used--;
1827 if (!used)
1828 goto skip_copy;
1829 }
1830 } else
1831 used = urg_offset;
1832 }
1833 }
1834
1835 if (!(flags & MSG_TRUNC)) {
1836 err = skb_copy_datagram_iovec(skb, offset,
1837 msg->msg_iov, used);
1838 if (err) {
1839 /* Exception. Bailout! */
1840 if (!copied)
1841 copied = -EFAULT;
1842 break;
1843 }
1844 }
1845
1846 *seq += used;
1847 copied += used;
1848 len -= used;
1849
1850 tcp_rcv_space_adjust(sk);
1851
1852 skip_copy:
1853 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1854 tp->urg_data = 0;
1855 tcp_fast_path_check(sk);
1856 }
1857 if (used + offset < skb->len)
1858 continue;
1859
1860 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1861 goto found_fin_ok;
1862 if (!(flags & MSG_PEEK))
1863 sk_eat_skb(sk, skb);
1864 continue;
1865
1866 found_fin_ok:
1867 /* Process the FIN. */
1868 ++*seq;
1869 if (!(flags & MSG_PEEK))
1870 sk_eat_skb(sk, skb);
1871 break;
1872 } while (len > 0);
1873
1874 if (user_recv) {
1875 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1876 int chunk;
1877
1878 tp->ucopy.len = copied > 0 ? len : 0;
1879
1880 tcp_prequeue_process(sk);
1881
1882 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1883 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1884 len -= chunk;
1885 copied += chunk;
1886 }
1887 }
1888
1889 tp->ucopy.task = NULL;
1890 tp->ucopy.len = 0;
1891 }
1892
1893 /* According to UNIX98, msg_name/msg_namelen are ignored
1894 * on connected socket. I was just happy when found this 8) --ANK
1895 */
1896
1897 /* Clean up data we have read: This will do ACK frames. */
1898 tcp_cleanup_rbuf(sk, copied);
1899
1900 release_sock(sk);
1901 return copied;
1902
1903 out:
1904 release_sock(sk);
1905 return err;
1906
1907 recv_urg:
1908 err = tcp_recv_urg(sk, msg, len, flags);
1909 goto out;
1910
1911 recv_sndq:
1912 err = tcp_peek_sndq(sk, msg, len);
1913 goto out;
1914 }
1915 EXPORT_SYMBOL(tcp_recvmsg);
1916
1917 void tcp_set_state(struct sock *sk, int state)
1918 {
1919 int oldstate = sk->sk_state;
1920
1921 switch (state) {
1922 case TCP_ESTABLISHED:
1923 if (oldstate != TCP_ESTABLISHED)
1924 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1925 break;
1926
1927 case TCP_CLOSE:
1928 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1929 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1930
1931 sk->sk_prot->unhash(sk);
1932 if (inet_csk(sk)->icsk_bind_hash &&
1933 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1934 inet_put_port(sk);
1935 /* fall through */
1936 default:
1937 if (oldstate == TCP_ESTABLISHED)
1938 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1939 }
1940
1941 /* Change state AFTER socket is unhashed to avoid closed
1942 * socket sitting in hash tables.
1943 */
1944 sk->sk_state = state;
1945
1946 #ifdef STATE_TRACE
1947 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1948 #endif
1949 }
1950 EXPORT_SYMBOL_GPL(tcp_set_state);
1951
1952 /*
1953 * State processing on a close. This implements the state shift for
1954 * sending our FIN frame. Note that we only send a FIN for some
1955 * states. A shutdown() may have already sent the FIN, or we may be
1956 * closed.
1957 */
1958
1959 static const unsigned char new_state[16] = {
1960 /* current state: new state: action: */
1961 /* (Invalid) */ TCP_CLOSE,
1962 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1963 /* TCP_SYN_SENT */ TCP_CLOSE,
1964 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1965 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1966 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1967 /* TCP_TIME_WAIT */ TCP_CLOSE,
1968 /* TCP_CLOSE */ TCP_CLOSE,
1969 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1970 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1971 /* TCP_LISTEN */ TCP_CLOSE,
1972 /* TCP_CLOSING */ TCP_CLOSING,
1973 };
1974
1975 static int tcp_close_state(struct sock *sk)
1976 {
1977 int next = (int)new_state[sk->sk_state];
1978 int ns = next & TCP_STATE_MASK;
1979
1980 tcp_set_state(sk, ns);
1981
1982 return next & TCP_ACTION_FIN;
1983 }
1984
1985 /*
1986 * Shutdown the sending side of a connection. Much like close except
1987 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
1988 */
1989
1990 void tcp_shutdown(struct sock *sk, int how)
1991 {
1992 /* We need to grab some memory, and put together a FIN,
1993 * and then put it into the queue to be sent.
1994 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
1995 */
1996 if (!(how & SEND_SHUTDOWN))
1997 return;
1998
1999 /* If we've already sent a FIN, or it's a closed state, skip this. */
2000 if ((1 << sk->sk_state) &
2001 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2002 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2003 /* Clear out any half completed packets. FIN if needed. */
2004 if (tcp_close_state(sk))
2005 tcp_send_fin(sk);
2006 }
2007 }
2008 EXPORT_SYMBOL(tcp_shutdown);
2009
2010 bool tcp_check_oom(struct sock *sk, int shift)
2011 {
2012 bool too_many_orphans, out_of_socket_memory;
2013
2014 too_many_orphans = tcp_too_many_orphans(sk, shift);
2015 out_of_socket_memory = tcp_out_of_memory(sk);
2016
2017 if (too_many_orphans)
2018 net_info_ratelimited("too many orphaned sockets\n");
2019 if (out_of_socket_memory)
2020 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2021 return too_many_orphans || out_of_socket_memory;
2022 }
2023
2024 void tcp_close(struct sock *sk, long timeout)
2025 {
2026 struct sk_buff *skb;
2027 int data_was_unread = 0;
2028 int state;
2029
2030 lock_sock(sk);
2031 sk->sk_shutdown = SHUTDOWN_MASK;
2032
2033 if (sk->sk_state == TCP_LISTEN) {
2034 tcp_set_state(sk, TCP_CLOSE);
2035
2036 /* Special case. */
2037 inet_csk_listen_stop(sk);
2038
2039 goto adjudge_to_death;
2040 }
2041
2042 /* We need to flush the recv. buffs. We do this only on the
2043 * descriptor close, not protocol-sourced closes, because the
2044 * reader process may not have drained the data yet!
2045 */
2046 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2047 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2048
2049 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2050 len--;
2051 data_was_unread += len;
2052 __kfree_skb(skb);
2053 }
2054
2055 sk_mem_reclaim(sk);
2056
2057 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2058 if (sk->sk_state == TCP_CLOSE)
2059 goto adjudge_to_death;
2060
2061 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2062 * data was lost. To witness the awful effects of the old behavior of
2063 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2064 * GET in an FTP client, suspend the process, wait for the client to
2065 * advertise a zero window, then kill -9 the FTP client, wheee...
2066 * Note: timeout is always zero in such a case.
2067 */
2068 if (unlikely(tcp_sk(sk)->repair)) {
2069 sk->sk_prot->disconnect(sk, 0);
2070 } else if (data_was_unread) {
2071 /* Unread data was tossed, zap the connection. */
2072 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2073 tcp_set_state(sk, TCP_CLOSE);
2074 tcp_send_active_reset(sk, sk->sk_allocation);
2075 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2076 /* Check zero linger _after_ checking for unread data. */
2077 sk->sk_prot->disconnect(sk, 0);
2078 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2079 } else if (tcp_close_state(sk)) {
2080 /* We FIN if the application ate all the data before
2081 * zapping the connection.
2082 */
2083
2084 /* RED-PEN. Formally speaking, we have broken TCP state
2085 * machine. State transitions:
2086 *
2087 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2088 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2089 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2090 *
2091 * are legal only when FIN has been sent (i.e. in window),
2092 * rather than queued out of window. Purists blame.
2093 *
2094 * F.e. "RFC state" is ESTABLISHED,
2095 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2096 *
2097 * The visible declinations are that sometimes
2098 * we enter time-wait state, when it is not required really
2099 * (harmless), do not send active resets, when they are
2100 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2101 * they look as CLOSING or LAST_ACK for Linux)
2102 * Probably, I missed some more holelets.
2103 * --ANK
2104 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2105 * in a single packet! (May consider it later but will
2106 * probably need API support or TCP_CORK SYN-ACK until
2107 * data is written and socket is closed.)
2108 */
2109 tcp_send_fin(sk);
2110 }
2111
2112 sk_stream_wait_close(sk, timeout);
2113
2114 adjudge_to_death:
2115 state = sk->sk_state;
2116 sock_hold(sk);
2117 sock_orphan(sk);
2118
2119 /* It is the last release_sock in its life. It will remove backlog. */
2120 release_sock(sk);
2121
2122
2123 /* Now socket is owned by kernel and we acquire BH lock
2124 to finish close. No need to check for user refs.
2125 */
2126 local_bh_disable();
2127 bh_lock_sock(sk);
2128 WARN_ON(sock_owned_by_user(sk));
2129
2130 percpu_counter_inc(sk->sk_prot->orphan_count);
2131
2132 /* Have we already been destroyed by a softirq or backlog? */
2133 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2134 goto out;
2135
2136 /* This is a (useful) BSD violating of the RFC. There is a
2137 * problem with TCP as specified in that the other end could
2138 * keep a socket open forever with no application left this end.
2139 * We use a 1 minute timeout (about the same as BSD) then kill
2140 * our end. If they send after that then tough - BUT: long enough
2141 * that we won't make the old 4*rto = almost no time - whoops
2142 * reset mistake.
2143 *
2144 * Nope, it was not mistake. It is really desired behaviour
2145 * f.e. on http servers, when such sockets are useless, but
2146 * consume significant resources. Let's do it with special
2147 * linger2 option. --ANK
2148 */
2149
2150 if (sk->sk_state == TCP_FIN_WAIT2) {
2151 struct tcp_sock *tp = tcp_sk(sk);
2152 if (tp->linger2 < 0) {
2153 tcp_set_state(sk, TCP_CLOSE);
2154 tcp_send_active_reset(sk, GFP_ATOMIC);
2155 NET_INC_STATS_BH(sock_net(sk),
2156 LINUX_MIB_TCPABORTONLINGER);
2157 } else {
2158 const int tmo = tcp_fin_time(sk);
2159
2160 if (tmo > TCP_TIMEWAIT_LEN) {
2161 inet_csk_reset_keepalive_timer(sk,
2162 tmo - TCP_TIMEWAIT_LEN);
2163 } else {
2164 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2165 goto out;
2166 }
2167 }
2168 }
2169 if (sk->sk_state != TCP_CLOSE) {
2170 sk_mem_reclaim(sk);
2171 if (tcp_check_oom(sk, 0)) {
2172 tcp_set_state(sk, TCP_CLOSE);
2173 tcp_send_active_reset(sk, GFP_ATOMIC);
2174 NET_INC_STATS_BH(sock_net(sk),
2175 LINUX_MIB_TCPABORTONMEMORY);
2176 }
2177 }
2178
2179 if (sk->sk_state == TCP_CLOSE) {
2180 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2181 /* We could get here with a non-NULL req if the socket is
2182 * aborted (e.g., closed with unread data) before 3WHS
2183 * finishes.
2184 */
2185 if (req != NULL)
2186 reqsk_fastopen_remove(sk, req, false);
2187 inet_csk_destroy_sock(sk);
2188 }
2189 /* Otherwise, socket is reprieved until protocol close. */
2190
2191 out:
2192 bh_unlock_sock(sk);
2193 local_bh_enable();
2194 sock_put(sk);
2195 }
2196 EXPORT_SYMBOL(tcp_close);
2197
2198 /* These states need RST on ABORT according to RFC793 */
2199
2200 static inline bool tcp_need_reset(int state)
2201 {
2202 return (1 << state) &
2203 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2204 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2205 }
2206
2207 int tcp_disconnect(struct sock *sk, int flags)
2208 {
2209 struct inet_sock *inet = inet_sk(sk);
2210 struct inet_connection_sock *icsk = inet_csk(sk);
2211 struct tcp_sock *tp = tcp_sk(sk);
2212 int err = 0;
2213 int old_state = sk->sk_state;
2214
2215 if (old_state != TCP_CLOSE)
2216 tcp_set_state(sk, TCP_CLOSE);
2217
2218 /* ABORT function of RFC793 */
2219 if (old_state == TCP_LISTEN) {
2220 inet_csk_listen_stop(sk);
2221 } else if (unlikely(tp->repair)) {
2222 sk->sk_err = ECONNABORTED;
2223 } else if (tcp_need_reset(old_state) ||
2224 (tp->snd_nxt != tp->write_seq &&
2225 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2226 /* The last check adjusts for discrepancy of Linux wrt. RFC
2227 * states
2228 */
2229 tcp_send_active_reset(sk, gfp_any());
2230 sk->sk_err = ECONNRESET;
2231 } else if (old_state == TCP_SYN_SENT)
2232 sk->sk_err = ECONNRESET;
2233
2234 tcp_clear_xmit_timers(sk);
2235 __skb_queue_purge(&sk->sk_receive_queue);
2236 tcp_write_queue_purge(sk);
2237 __skb_queue_purge(&tp->out_of_order_queue);
2238
2239 inet->inet_dport = 0;
2240
2241 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2242 inet_reset_saddr(sk);
2243
2244 sk->sk_shutdown = 0;
2245 sock_reset_flag(sk, SOCK_DONE);
2246 tp->srtt_us = 0;
2247 if ((tp->write_seq += tp->max_window + 2) == 0)
2248 tp->write_seq = 1;
2249 icsk->icsk_backoff = 0;
2250 tp->snd_cwnd = 2;
2251 icsk->icsk_probes_out = 0;
2252 tp->packets_out = 0;
2253 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2254 tp->snd_cwnd_cnt = 0;
2255 tp->window_clamp = 0;
2256 tcp_set_ca_state(sk, TCP_CA_Open);
2257 tcp_clear_retrans(tp);
2258 inet_csk_delack_init(sk);
2259 tcp_init_send_head(sk);
2260 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2261 __sk_dst_reset(sk);
2262
2263 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2264
2265 sk->sk_error_report(sk);
2266 return err;
2267 }
2268 EXPORT_SYMBOL(tcp_disconnect);
2269
2270 void tcp_sock_destruct(struct sock *sk)
2271 {
2272 inet_sock_destruct(sk);
2273
2274 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2275 }
2276
2277 static inline bool tcp_can_repair_sock(const struct sock *sk)
2278 {
2279 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2280 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2281 }
2282
2283 static int tcp_repair_options_est(struct tcp_sock *tp,
2284 struct tcp_repair_opt __user *optbuf, unsigned int len)
2285 {
2286 struct tcp_repair_opt opt;
2287
2288 while (len >= sizeof(opt)) {
2289 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2290 return -EFAULT;
2291
2292 optbuf++;
2293 len -= sizeof(opt);
2294
2295 switch (opt.opt_code) {
2296 case TCPOPT_MSS:
2297 tp->rx_opt.mss_clamp = opt.opt_val;
2298 break;
2299 case TCPOPT_WINDOW:
2300 {
2301 u16 snd_wscale = opt.opt_val & 0xFFFF;
2302 u16 rcv_wscale = opt.opt_val >> 16;
2303
2304 if (snd_wscale > 14 || rcv_wscale > 14)
2305 return -EFBIG;
2306
2307 tp->rx_opt.snd_wscale = snd_wscale;
2308 tp->rx_opt.rcv_wscale = rcv_wscale;
2309 tp->rx_opt.wscale_ok = 1;
2310 }
2311 break;
2312 case TCPOPT_SACK_PERM:
2313 if (opt.opt_val != 0)
2314 return -EINVAL;
2315
2316 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2317 if (sysctl_tcp_fack)
2318 tcp_enable_fack(tp);
2319 break;
2320 case TCPOPT_TIMESTAMP:
2321 if (opt.opt_val != 0)
2322 return -EINVAL;
2323
2324 tp->rx_opt.tstamp_ok = 1;
2325 break;
2326 }
2327 }
2328
2329 return 0;
2330 }
2331
2332 /*
2333 * Socket option code for TCP.
2334 */
2335 static int do_tcp_setsockopt(struct sock *sk, int level,
2336 int optname, char __user *optval, unsigned int optlen)
2337 {
2338 struct tcp_sock *tp = tcp_sk(sk);
2339 struct inet_connection_sock *icsk = inet_csk(sk);
2340 int val;
2341 int err = 0;
2342
2343 /* These are data/string values, all the others are ints */
2344 switch (optname) {
2345 case TCP_CONGESTION: {
2346 char name[TCP_CA_NAME_MAX];
2347
2348 if (optlen < 1)
2349 return -EINVAL;
2350
2351 val = strncpy_from_user(name, optval,
2352 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2353 if (val < 0)
2354 return -EFAULT;
2355 name[val] = 0;
2356
2357 lock_sock(sk);
2358 err = tcp_set_congestion_control(sk, name);
2359 release_sock(sk);
2360 return err;
2361 }
2362 default:
2363 /* fallthru */
2364 break;
2365 }
2366
2367 if (optlen < sizeof(int))
2368 return -EINVAL;
2369
2370 if (get_user(val, (int __user *)optval))
2371 return -EFAULT;
2372
2373 lock_sock(sk);
2374
2375 switch (optname) {
2376 case TCP_MAXSEG:
2377 /* Values greater than interface MTU won't take effect. However
2378 * at the point when this call is done we typically don't yet
2379 * know which interface is going to be used */
2380 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2381 err = -EINVAL;
2382 break;
2383 }
2384 tp->rx_opt.user_mss = val;
2385 break;
2386
2387 case TCP_NODELAY:
2388 if (val) {
2389 /* TCP_NODELAY is weaker than TCP_CORK, so that
2390 * this option on corked socket is remembered, but
2391 * it is not activated until cork is cleared.
2392 *
2393 * However, when TCP_NODELAY is set we make
2394 * an explicit push, which overrides even TCP_CORK
2395 * for currently queued segments.
2396 */
2397 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2398 tcp_push_pending_frames(sk);
2399 } else {
2400 tp->nonagle &= ~TCP_NAGLE_OFF;
2401 }
2402 break;
2403
2404 case TCP_THIN_LINEAR_TIMEOUTS:
2405 if (val < 0 || val > 1)
2406 err = -EINVAL;
2407 else
2408 tp->thin_lto = val;
2409 break;
2410
2411 case TCP_THIN_DUPACK:
2412 if (val < 0 || val > 1)
2413 err = -EINVAL;
2414 else {
2415 tp->thin_dupack = val;
2416 if (tp->thin_dupack)
2417 tcp_disable_early_retrans(tp);
2418 }
2419 break;
2420
2421 case TCP_REPAIR:
2422 if (!tcp_can_repair_sock(sk))
2423 err = -EPERM;
2424 else if (val == 1) {
2425 tp->repair = 1;
2426 sk->sk_reuse = SK_FORCE_REUSE;
2427 tp->repair_queue = TCP_NO_QUEUE;
2428 } else if (val == 0) {
2429 tp->repair = 0;
2430 sk->sk_reuse = SK_NO_REUSE;
2431 tcp_send_window_probe(sk);
2432 } else
2433 err = -EINVAL;
2434
2435 break;
2436
2437 case TCP_REPAIR_QUEUE:
2438 if (!tp->repair)
2439 err = -EPERM;
2440 else if (val < TCP_QUEUES_NR)
2441 tp->repair_queue = val;
2442 else
2443 err = -EINVAL;
2444 break;
2445
2446 case TCP_QUEUE_SEQ:
2447 if (sk->sk_state != TCP_CLOSE)
2448 err = -EPERM;
2449 else if (tp->repair_queue == TCP_SEND_QUEUE)
2450 tp->write_seq = val;
2451 else if (tp->repair_queue == TCP_RECV_QUEUE)
2452 tp->rcv_nxt = val;
2453 else
2454 err = -EINVAL;
2455 break;
2456
2457 case TCP_REPAIR_OPTIONS:
2458 if (!tp->repair)
2459 err = -EINVAL;
2460 else if (sk->sk_state == TCP_ESTABLISHED)
2461 err = tcp_repair_options_est(tp,
2462 (struct tcp_repair_opt __user *)optval,
2463 optlen);
2464 else
2465 err = -EPERM;
2466 break;
2467
2468 case TCP_CORK:
2469 /* When set indicates to always queue non-full frames.
2470 * Later the user clears this option and we transmit
2471 * any pending partial frames in the queue. This is
2472 * meant to be used alongside sendfile() to get properly
2473 * filled frames when the user (for example) must write
2474 * out headers with a write() call first and then use
2475 * sendfile to send out the data parts.
2476 *
2477 * TCP_CORK can be set together with TCP_NODELAY and it is
2478 * stronger than TCP_NODELAY.
2479 */
2480 if (val) {
2481 tp->nonagle |= TCP_NAGLE_CORK;
2482 } else {
2483 tp->nonagle &= ~TCP_NAGLE_CORK;
2484 if (tp->nonagle&TCP_NAGLE_OFF)
2485 tp->nonagle |= TCP_NAGLE_PUSH;
2486 tcp_push_pending_frames(sk);
2487 }
2488 break;
2489
2490 case TCP_KEEPIDLE:
2491 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2492 err = -EINVAL;
2493 else {
2494 tp->keepalive_time = val * HZ;
2495 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2496 !((1 << sk->sk_state) &
2497 (TCPF_CLOSE | TCPF_LISTEN))) {
2498 u32 elapsed = keepalive_time_elapsed(tp);
2499 if (tp->keepalive_time > elapsed)
2500 elapsed = tp->keepalive_time - elapsed;
2501 else
2502 elapsed = 0;
2503 inet_csk_reset_keepalive_timer(sk, elapsed);
2504 }
2505 }
2506 break;
2507 case TCP_KEEPINTVL:
2508 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2509 err = -EINVAL;
2510 else
2511 tp->keepalive_intvl = val * HZ;
2512 break;
2513 case TCP_KEEPCNT:
2514 if (val < 1 || val > MAX_TCP_KEEPCNT)
2515 err = -EINVAL;
2516 else
2517 tp->keepalive_probes = val;
2518 break;
2519 case TCP_SYNCNT:
2520 if (val < 1 || val > MAX_TCP_SYNCNT)
2521 err = -EINVAL;
2522 else
2523 icsk->icsk_syn_retries = val;
2524 break;
2525
2526 case TCP_LINGER2:
2527 if (val < 0)
2528 tp->linger2 = -1;
2529 else if (val > sysctl_tcp_fin_timeout / HZ)
2530 tp->linger2 = 0;
2531 else
2532 tp->linger2 = val * HZ;
2533 break;
2534
2535 case TCP_DEFER_ACCEPT:
2536 /* Translate value in seconds to number of retransmits */
2537 icsk->icsk_accept_queue.rskq_defer_accept =
2538 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2539 TCP_RTO_MAX / HZ);
2540 break;
2541
2542 case TCP_WINDOW_CLAMP:
2543 if (!val) {
2544 if (sk->sk_state != TCP_CLOSE) {
2545 err = -EINVAL;
2546 break;
2547 }
2548 tp->window_clamp = 0;
2549 } else
2550 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2551 SOCK_MIN_RCVBUF / 2 : val;
2552 break;
2553
2554 case TCP_QUICKACK:
2555 if (!val) {
2556 icsk->icsk_ack.pingpong = 1;
2557 } else {
2558 icsk->icsk_ack.pingpong = 0;
2559 if ((1 << sk->sk_state) &
2560 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2561 inet_csk_ack_scheduled(sk)) {
2562 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2563 tcp_cleanup_rbuf(sk, 1);
2564 if (!(val & 1))
2565 icsk->icsk_ack.pingpong = 1;
2566 }
2567 }
2568 break;
2569
2570 #ifdef CONFIG_TCP_MD5SIG
2571 case TCP_MD5SIG:
2572 /* Read the IP->Key mappings from userspace */
2573 err = tp->af_specific->md5_parse(sk, optval, optlen);
2574 break;
2575 #endif
2576 case TCP_USER_TIMEOUT:
2577 /* Cap the max time in ms TCP will retry or probe the window
2578 * before giving up and aborting (ETIMEDOUT) a connection.
2579 */
2580 if (val < 0)
2581 err = -EINVAL;
2582 else
2583 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2584 break;
2585
2586 case TCP_FASTOPEN:
2587 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2588 TCPF_LISTEN)))
2589 err = fastopen_init_queue(sk, val);
2590 else
2591 err = -EINVAL;
2592 break;
2593 case TCP_TIMESTAMP:
2594 if (!tp->repair)
2595 err = -EPERM;
2596 else
2597 tp->tsoffset = val - tcp_time_stamp;
2598 break;
2599 case TCP_NOTSENT_LOWAT:
2600 tp->notsent_lowat = val;
2601 sk->sk_write_space(sk);
2602 break;
2603 default:
2604 err = -ENOPROTOOPT;
2605 break;
2606 }
2607
2608 release_sock(sk);
2609 return err;
2610 }
2611
2612 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2613 unsigned int optlen)
2614 {
2615 const struct inet_connection_sock *icsk = inet_csk(sk);
2616
2617 if (level != SOL_TCP)
2618 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2619 optval, optlen);
2620 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2621 }
2622 EXPORT_SYMBOL(tcp_setsockopt);
2623
2624 #ifdef CONFIG_COMPAT
2625 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2626 char __user *optval, unsigned int optlen)
2627 {
2628 if (level != SOL_TCP)
2629 return inet_csk_compat_setsockopt(sk, level, optname,
2630 optval, optlen);
2631 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2632 }
2633 EXPORT_SYMBOL(compat_tcp_setsockopt);
2634 #endif
2635
2636 /* Return information about state of tcp endpoint in API format. */
2637 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2638 {
2639 const struct tcp_sock *tp = tcp_sk(sk);
2640 const struct inet_connection_sock *icsk = inet_csk(sk);
2641 u32 now = tcp_time_stamp;
2642
2643 memset(info, 0, sizeof(*info));
2644
2645 info->tcpi_state = sk->sk_state;
2646 info->tcpi_ca_state = icsk->icsk_ca_state;
2647 info->tcpi_retransmits = icsk->icsk_retransmits;
2648 info->tcpi_probes = icsk->icsk_probes_out;
2649 info->tcpi_backoff = icsk->icsk_backoff;
2650
2651 if (tp->rx_opt.tstamp_ok)
2652 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2653 if (tcp_is_sack(tp))
2654 info->tcpi_options |= TCPI_OPT_SACK;
2655 if (tp->rx_opt.wscale_ok) {
2656 info->tcpi_options |= TCPI_OPT_WSCALE;
2657 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2658 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2659 }
2660
2661 if (tp->ecn_flags & TCP_ECN_OK)
2662 info->tcpi_options |= TCPI_OPT_ECN;
2663 if (tp->ecn_flags & TCP_ECN_SEEN)
2664 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2665 if (tp->syn_data_acked)
2666 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2667
2668 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2669 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2670 info->tcpi_snd_mss = tp->mss_cache;
2671 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2672
2673 if (sk->sk_state == TCP_LISTEN) {
2674 info->tcpi_unacked = sk->sk_ack_backlog;
2675 info->tcpi_sacked = sk->sk_max_ack_backlog;
2676 } else {
2677 info->tcpi_unacked = tp->packets_out;
2678 info->tcpi_sacked = tp->sacked_out;
2679 }
2680 info->tcpi_lost = tp->lost_out;
2681 info->tcpi_retrans = tp->retrans_out;
2682 info->tcpi_fackets = tp->fackets_out;
2683
2684 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2685 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2686 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2687
2688 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2689 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2690 info->tcpi_rtt = tp->srtt_us >> 3;
2691 info->tcpi_rttvar = tp->mdev_us >> 2;
2692 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2693 info->tcpi_snd_cwnd = tp->snd_cwnd;
2694 info->tcpi_advmss = tp->advmss;
2695 info->tcpi_reordering = tp->reordering;
2696
2697 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2698 info->tcpi_rcv_space = tp->rcvq_space.space;
2699
2700 info->tcpi_total_retrans = tp->total_retrans;
2701
2702 info->tcpi_pacing_rate = sk->sk_pacing_rate != ~0U ?
2703 sk->sk_pacing_rate : ~0ULL;
2704 info->tcpi_max_pacing_rate = sk->sk_max_pacing_rate != ~0U ?
2705 sk->sk_max_pacing_rate : ~0ULL;
2706 }
2707 EXPORT_SYMBOL_GPL(tcp_get_info);
2708
2709 static int do_tcp_getsockopt(struct sock *sk, int level,
2710 int optname, char __user *optval, int __user *optlen)
2711 {
2712 struct inet_connection_sock *icsk = inet_csk(sk);
2713 struct tcp_sock *tp = tcp_sk(sk);
2714 int val, len;
2715
2716 if (get_user(len, optlen))
2717 return -EFAULT;
2718
2719 len = min_t(unsigned int, len, sizeof(int));
2720
2721 if (len < 0)
2722 return -EINVAL;
2723
2724 switch (optname) {
2725 case TCP_MAXSEG:
2726 val = tp->mss_cache;
2727 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2728 val = tp->rx_opt.user_mss;
2729 if (tp->repair)
2730 val = tp->rx_opt.mss_clamp;
2731 break;
2732 case TCP_NODELAY:
2733 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2734 break;
2735 case TCP_CORK:
2736 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2737 break;
2738 case TCP_KEEPIDLE:
2739 val = keepalive_time_when(tp) / HZ;
2740 break;
2741 case TCP_KEEPINTVL:
2742 val = keepalive_intvl_when(tp) / HZ;
2743 break;
2744 case TCP_KEEPCNT:
2745 val = keepalive_probes(tp);
2746 break;
2747 case TCP_SYNCNT:
2748 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2749 break;
2750 case TCP_LINGER2:
2751 val = tp->linger2;
2752 if (val >= 0)
2753 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2754 break;
2755 case TCP_DEFER_ACCEPT:
2756 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2757 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2758 break;
2759 case TCP_WINDOW_CLAMP:
2760 val = tp->window_clamp;
2761 break;
2762 case TCP_INFO: {
2763 struct tcp_info info;
2764
2765 if (get_user(len, optlen))
2766 return -EFAULT;
2767
2768 tcp_get_info(sk, &info);
2769
2770 len = min_t(unsigned int, len, sizeof(info));
2771 if (put_user(len, optlen))
2772 return -EFAULT;
2773 if (copy_to_user(optval, &info, len))
2774 return -EFAULT;
2775 return 0;
2776 }
2777 case TCP_QUICKACK:
2778 val = !icsk->icsk_ack.pingpong;
2779 break;
2780
2781 case TCP_CONGESTION:
2782 if (get_user(len, optlen))
2783 return -EFAULT;
2784 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2785 if (put_user(len, optlen))
2786 return -EFAULT;
2787 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2788 return -EFAULT;
2789 return 0;
2790
2791 case TCP_THIN_LINEAR_TIMEOUTS:
2792 val = tp->thin_lto;
2793 break;
2794 case TCP_THIN_DUPACK:
2795 val = tp->thin_dupack;
2796 break;
2797
2798 case TCP_REPAIR:
2799 val = tp->repair;
2800 break;
2801
2802 case TCP_REPAIR_QUEUE:
2803 if (tp->repair)
2804 val = tp->repair_queue;
2805 else
2806 return -EINVAL;
2807 break;
2808
2809 case TCP_QUEUE_SEQ:
2810 if (tp->repair_queue == TCP_SEND_QUEUE)
2811 val = tp->write_seq;
2812 else if (tp->repair_queue == TCP_RECV_QUEUE)
2813 val = tp->rcv_nxt;
2814 else
2815 return -EINVAL;
2816 break;
2817
2818 case TCP_USER_TIMEOUT:
2819 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2820 break;
2821
2822 case TCP_FASTOPEN:
2823 if (icsk->icsk_accept_queue.fastopenq != NULL)
2824 val = icsk->icsk_accept_queue.fastopenq->max_qlen;
2825 else
2826 val = 0;
2827 break;
2828
2829 case TCP_TIMESTAMP:
2830 val = tcp_time_stamp + tp->tsoffset;
2831 break;
2832 case TCP_NOTSENT_LOWAT:
2833 val = tp->notsent_lowat;
2834 break;
2835 default:
2836 return -ENOPROTOOPT;
2837 }
2838
2839 if (put_user(len, optlen))
2840 return -EFAULT;
2841 if (copy_to_user(optval, &val, len))
2842 return -EFAULT;
2843 return 0;
2844 }
2845
2846 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2847 int __user *optlen)
2848 {
2849 struct inet_connection_sock *icsk = inet_csk(sk);
2850
2851 if (level != SOL_TCP)
2852 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2853 optval, optlen);
2854 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2855 }
2856 EXPORT_SYMBOL(tcp_getsockopt);
2857
2858 #ifdef CONFIG_COMPAT
2859 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2860 char __user *optval, int __user *optlen)
2861 {
2862 if (level != SOL_TCP)
2863 return inet_csk_compat_getsockopt(sk, level, optname,
2864 optval, optlen);
2865 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2866 }
2867 EXPORT_SYMBOL(compat_tcp_getsockopt);
2868 #endif
2869
2870 #ifdef CONFIG_TCP_MD5SIG
2871 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2872 static DEFINE_MUTEX(tcp_md5sig_mutex);
2873 static bool tcp_md5sig_pool_populated = false;
2874
2875 static void __tcp_alloc_md5sig_pool(void)
2876 {
2877 int cpu;
2878
2879 for_each_possible_cpu(cpu) {
2880 if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2881 struct crypto_hash *hash;
2882
2883 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2884 if (IS_ERR_OR_NULL(hash))
2885 return;
2886 per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2887 }
2888 }
2889 /* before setting tcp_md5sig_pool_populated, we must commit all writes
2890 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2891 */
2892 smp_wmb();
2893 tcp_md5sig_pool_populated = true;
2894 }
2895
2896 bool tcp_alloc_md5sig_pool(void)
2897 {
2898 if (unlikely(!tcp_md5sig_pool_populated)) {
2899 mutex_lock(&tcp_md5sig_mutex);
2900
2901 if (!tcp_md5sig_pool_populated)
2902 __tcp_alloc_md5sig_pool();
2903
2904 mutex_unlock(&tcp_md5sig_mutex);
2905 }
2906 return tcp_md5sig_pool_populated;
2907 }
2908 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2909
2910
2911 /**
2912 * tcp_get_md5sig_pool - get md5sig_pool for this user
2913 *
2914 * We use percpu structure, so if we succeed, we exit with preemption
2915 * and BH disabled, to make sure another thread or softirq handling
2916 * wont try to get same context.
2917 */
2918 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2919 {
2920 local_bh_disable();
2921
2922 if (tcp_md5sig_pool_populated) {
2923 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
2924 smp_rmb();
2925 return this_cpu_ptr(&tcp_md5sig_pool);
2926 }
2927 local_bh_enable();
2928 return NULL;
2929 }
2930 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2931
2932 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2933 const struct tcphdr *th)
2934 {
2935 struct scatterlist sg;
2936 struct tcphdr hdr;
2937 int err;
2938
2939 /* We are not allowed to change tcphdr, make a local copy */
2940 memcpy(&hdr, th, sizeof(hdr));
2941 hdr.check = 0;
2942
2943 /* options aren't included in the hash */
2944 sg_init_one(&sg, &hdr, sizeof(hdr));
2945 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
2946 return err;
2947 }
2948 EXPORT_SYMBOL(tcp_md5_hash_header);
2949
2950 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2951 const struct sk_buff *skb, unsigned int header_len)
2952 {
2953 struct scatterlist sg;
2954 const struct tcphdr *tp = tcp_hdr(skb);
2955 struct hash_desc *desc = &hp->md5_desc;
2956 unsigned int i;
2957 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
2958 skb_headlen(skb) - header_len : 0;
2959 const struct skb_shared_info *shi = skb_shinfo(skb);
2960 struct sk_buff *frag_iter;
2961
2962 sg_init_table(&sg, 1);
2963
2964 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
2965 if (crypto_hash_update(desc, &sg, head_data_len))
2966 return 1;
2967
2968 for (i = 0; i < shi->nr_frags; ++i) {
2969 const struct skb_frag_struct *f = &shi->frags[i];
2970 unsigned int offset = f->page_offset;
2971 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
2972
2973 sg_set_page(&sg, page, skb_frag_size(f),
2974 offset_in_page(offset));
2975 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
2976 return 1;
2977 }
2978
2979 skb_walk_frags(skb, frag_iter)
2980 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
2981 return 1;
2982
2983 return 0;
2984 }
2985 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
2986
2987 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
2988 {
2989 struct scatterlist sg;
2990
2991 sg_init_one(&sg, key->key, key->keylen);
2992 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
2993 }
2994 EXPORT_SYMBOL(tcp_md5_hash_key);
2995
2996 #endif
2997
2998 void tcp_done(struct sock *sk)
2999 {
3000 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3001
3002 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3003 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3004
3005 tcp_set_state(sk, TCP_CLOSE);
3006 tcp_clear_xmit_timers(sk);
3007 if (req != NULL)
3008 reqsk_fastopen_remove(sk, req, false);
3009
3010 sk->sk_shutdown = SHUTDOWN_MASK;
3011
3012 if (!sock_flag(sk, SOCK_DEAD))
3013 sk->sk_state_change(sk);
3014 else
3015 inet_csk_destroy_sock(sk);
3016 }
3017 EXPORT_SYMBOL_GPL(tcp_done);
3018
3019 extern struct tcp_congestion_ops tcp_reno;
3020
3021 static __initdata unsigned long thash_entries;
3022 static int __init set_thash_entries(char *str)
3023 {
3024 ssize_t ret;
3025
3026 if (!str)
3027 return 0;
3028
3029 ret = kstrtoul(str, 0, &thash_entries);
3030 if (ret)
3031 return 0;
3032
3033 return 1;
3034 }
3035 __setup("thash_entries=", set_thash_entries);
3036
3037 static void __init tcp_init_mem(void)
3038 {
3039 unsigned long limit = nr_free_buffer_pages() / 8;
3040 limit = max(limit, 128UL);
3041 sysctl_tcp_mem[0] = limit / 4 * 3;
3042 sysctl_tcp_mem[1] = limit;
3043 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3044 }
3045
3046 void __init tcp_init(void)
3047 {
3048 struct sk_buff *skb = NULL;
3049 unsigned long limit;
3050 int max_rshare, max_wshare, cnt;
3051 unsigned int i;
3052
3053 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3054
3055 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3056 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3057 tcp_hashinfo.bind_bucket_cachep =
3058 kmem_cache_create("tcp_bind_bucket",
3059 sizeof(struct inet_bind_bucket), 0,
3060 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3061
3062 /* Size and allocate the main established and bind bucket
3063 * hash tables.
3064 *
3065 * The methodology is similar to that of the buffer cache.
3066 */
3067 tcp_hashinfo.ehash =
3068 alloc_large_system_hash("TCP established",
3069 sizeof(struct inet_ehash_bucket),
3070 thash_entries,
3071 17, /* one slot per 128 KB of memory */
3072 0,
3073 NULL,
3074 &tcp_hashinfo.ehash_mask,
3075 0,
3076 thash_entries ? 0 : 512 * 1024);
3077 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3078 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3079
3080 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3081 panic("TCP: failed to alloc ehash_locks");
3082 tcp_hashinfo.bhash =
3083 alloc_large_system_hash("TCP bind",
3084 sizeof(struct inet_bind_hashbucket),
3085 tcp_hashinfo.ehash_mask + 1,
3086 17, /* one slot per 128 KB of memory */
3087 0,
3088 &tcp_hashinfo.bhash_size,
3089 NULL,
3090 0,
3091 64 * 1024);
3092 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3093 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3094 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3095 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3096 }
3097
3098
3099 cnt = tcp_hashinfo.ehash_mask + 1;
3100
3101 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3102 sysctl_tcp_max_orphans = cnt / 2;
3103 sysctl_max_syn_backlog = max(128, cnt / 256);
3104
3105 tcp_init_mem();
3106 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3107 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3108 max_wshare = min(4UL*1024*1024, limit);
3109 max_rshare = min(6UL*1024*1024, limit);
3110
3111 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3112 sysctl_tcp_wmem[1] = 16*1024;
3113 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3114
3115 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3116 sysctl_tcp_rmem[1] = 87380;
3117 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3118
3119 pr_info("Hash tables configured (established %u bind %u)\n",
3120 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3121
3122 tcp_metrics_init();
3123 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3124 tcp_tasklet_init();
3125 }
This page took 0.093145 seconds and 6 git commands to generate.