Merge tag 'trace-seq-buf-3.19-v2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / net / ipv4 / tcp_cubic.c
1 /*
2 * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
3 * Home page:
4 * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
5 * This is from the implementation of CUBIC TCP in
6 * Sangtae Ha, Injong Rhee and Lisong Xu,
7 * "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
8 * in ACM SIGOPS Operating System Review, July 2008.
9 * Available from:
10 * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
11 *
12 * CUBIC integrates a new slow start algorithm, called HyStart.
13 * The details of HyStart are presented in
14 * Sangtae Ha and Injong Rhee,
15 * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
16 * Available from:
17 * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
18 *
19 * All testing results are available from:
20 * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
21 *
22 * Unless CUBIC is enabled and congestion window is large
23 * this behaves the same as the original Reno.
24 */
25
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/math64.h>
29 #include <net/tcp.h>
30
31 #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
32 * max_cwnd = snd_cwnd * beta
33 */
34 #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
35
36 /* Two methods of hybrid slow start */
37 #define HYSTART_ACK_TRAIN 0x1
38 #define HYSTART_DELAY 0x2
39
40 /* Number of delay samples for detecting the increase of delay */
41 #define HYSTART_MIN_SAMPLES 8
42 #define HYSTART_DELAY_MIN (4U<<3)
43 #define HYSTART_DELAY_MAX (16U<<3)
44 #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
45
46 static int fast_convergence __read_mostly = 1;
47 static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
48 static int initial_ssthresh __read_mostly;
49 static int bic_scale __read_mostly = 41;
50 static int tcp_friendliness __read_mostly = 1;
51
52 static int hystart __read_mostly = 1;
53 static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
54 static int hystart_low_window __read_mostly = 16;
55 static int hystart_ack_delta __read_mostly = 2;
56
57 static u32 cube_rtt_scale __read_mostly;
58 static u32 beta_scale __read_mostly;
59 static u64 cube_factor __read_mostly;
60
61 /* Note parameters that are used for precomputing scale factors are read-only */
62 module_param(fast_convergence, int, 0644);
63 MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
64 module_param(beta, int, 0644);
65 MODULE_PARM_DESC(beta, "beta for multiplicative increase");
66 module_param(initial_ssthresh, int, 0644);
67 MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
68 module_param(bic_scale, int, 0444);
69 MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
70 module_param(tcp_friendliness, int, 0644);
71 MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
72 module_param(hystart, int, 0644);
73 MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
74 module_param(hystart_detect, int, 0644);
75 MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms"
76 " 1: packet-train 2: delay 3: both packet-train and delay");
77 module_param(hystart_low_window, int, 0644);
78 MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
79 module_param(hystart_ack_delta, int, 0644);
80 MODULE_PARM_DESC(hystart_ack_delta, "spacing between ack's indicating train (msecs)");
81
82 /* BIC TCP Parameters */
83 struct bictcp {
84 u32 cnt; /* increase cwnd by 1 after ACKs */
85 u32 last_max_cwnd; /* last maximum snd_cwnd */
86 u32 loss_cwnd; /* congestion window at last loss */
87 u32 last_cwnd; /* the last snd_cwnd */
88 u32 last_time; /* time when updated last_cwnd */
89 u32 bic_origin_point;/* origin point of bic function */
90 u32 bic_K; /* time to origin point
91 from the beginning of the current epoch */
92 u32 delay_min; /* min delay (msec << 3) */
93 u32 epoch_start; /* beginning of an epoch */
94 u32 ack_cnt; /* number of acks */
95 u32 tcp_cwnd; /* estimated tcp cwnd */
96 #define ACK_RATIO_SHIFT 4
97 #define ACK_RATIO_LIMIT (32u << ACK_RATIO_SHIFT)
98 u16 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */
99 u8 sample_cnt; /* number of samples to decide curr_rtt */
100 u8 found; /* the exit point is found? */
101 u32 round_start; /* beginning of each round */
102 u32 end_seq; /* end_seq of the round */
103 u32 last_ack; /* last time when the ACK spacing is close */
104 u32 curr_rtt; /* the minimum rtt of current round */
105 };
106
107 static inline void bictcp_reset(struct bictcp *ca)
108 {
109 ca->cnt = 0;
110 ca->last_max_cwnd = 0;
111 ca->last_cwnd = 0;
112 ca->last_time = 0;
113 ca->bic_origin_point = 0;
114 ca->bic_K = 0;
115 ca->delay_min = 0;
116 ca->epoch_start = 0;
117 ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
118 ca->ack_cnt = 0;
119 ca->tcp_cwnd = 0;
120 ca->found = 0;
121 }
122
123 static inline u32 bictcp_clock(void)
124 {
125 #if HZ < 1000
126 return ktime_to_ms(ktime_get_real());
127 #else
128 return jiffies_to_msecs(jiffies);
129 #endif
130 }
131
132 static inline void bictcp_hystart_reset(struct sock *sk)
133 {
134 struct tcp_sock *tp = tcp_sk(sk);
135 struct bictcp *ca = inet_csk_ca(sk);
136
137 ca->round_start = ca->last_ack = bictcp_clock();
138 ca->end_seq = tp->snd_nxt;
139 ca->curr_rtt = 0;
140 ca->sample_cnt = 0;
141 }
142
143 static void bictcp_init(struct sock *sk)
144 {
145 struct bictcp *ca = inet_csk_ca(sk);
146
147 bictcp_reset(ca);
148 ca->loss_cwnd = 0;
149
150 if (hystart)
151 bictcp_hystart_reset(sk);
152
153 if (!hystart && initial_ssthresh)
154 tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
155 }
156
157 /* calculate the cubic root of x using a table lookup followed by one
158 * Newton-Raphson iteration.
159 * Avg err ~= 0.195%
160 */
161 static u32 cubic_root(u64 a)
162 {
163 u32 x, b, shift;
164 /*
165 * cbrt(x) MSB values for x MSB values in [0..63].
166 * Precomputed then refined by hand - Willy Tarreau
167 *
168 * For x in [0..63],
169 * v = cbrt(x << 18) - 1
170 * cbrt(x) = (v[x] + 10) >> 6
171 */
172 static const u8 v[] = {
173 /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
174 /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
175 /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
176 /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
177 /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
178 /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
179 /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
180 /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
181 };
182
183 b = fls64(a);
184 if (b < 7) {
185 /* a in [0..63] */
186 return ((u32)v[(u32)a] + 35) >> 6;
187 }
188
189 b = ((b * 84) >> 8) - 1;
190 shift = (a >> (b * 3));
191
192 x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
193
194 /*
195 * Newton-Raphson iteration
196 * 2
197 * x = ( 2 * x + a / x ) / 3
198 * k+1 k k
199 */
200 x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
201 x = ((x * 341) >> 10);
202 return x;
203 }
204
205 /*
206 * Compute congestion window to use.
207 */
208 static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
209 {
210 u32 delta, bic_target, max_cnt;
211 u64 offs, t;
212
213 ca->ack_cnt++; /* count the number of ACKs */
214
215 if (ca->last_cwnd == cwnd &&
216 (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
217 return;
218
219 ca->last_cwnd = cwnd;
220 ca->last_time = tcp_time_stamp;
221
222 if (ca->epoch_start == 0) {
223 ca->epoch_start = tcp_time_stamp; /* record beginning */
224 ca->ack_cnt = 1; /* start counting */
225 ca->tcp_cwnd = cwnd; /* syn with cubic */
226
227 if (ca->last_max_cwnd <= cwnd) {
228 ca->bic_K = 0;
229 ca->bic_origin_point = cwnd;
230 } else {
231 /* Compute new K based on
232 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
233 */
234 ca->bic_K = cubic_root(cube_factor
235 * (ca->last_max_cwnd - cwnd));
236 ca->bic_origin_point = ca->last_max_cwnd;
237 }
238 }
239
240 /* cubic function - calc*/
241 /* calculate c * time^3 / rtt,
242 * while considering overflow in calculation of time^3
243 * (so time^3 is done by using 64 bit)
244 * and without the support of division of 64bit numbers
245 * (so all divisions are done by using 32 bit)
246 * also NOTE the unit of those veriables
247 * time = (t - K) / 2^bictcp_HZ
248 * c = bic_scale >> 10
249 * rtt = (srtt >> 3) / HZ
250 * !!! The following code does not have overflow problems,
251 * if the cwnd < 1 million packets !!!
252 */
253
254 t = (s32)(tcp_time_stamp - ca->epoch_start);
255 t += msecs_to_jiffies(ca->delay_min >> 3);
256 /* change the unit from HZ to bictcp_HZ */
257 t <<= BICTCP_HZ;
258 do_div(t, HZ);
259
260 if (t < ca->bic_K) /* t - K */
261 offs = ca->bic_K - t;
262 else
263 offs = t - ca->bic_K;
264
265 /* c/rtt * (t-K)^3 */
266 delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
267 if (t < ca->bic_K) /* below origin*/
268 bic_target = ca->bic_origin_point - delta;
269 else /* above origin*/
270 bic_target = ca->bic_origin_point + delta;
271
272 /* cubic function - calc bictcp_cnt*/
273 if (bic_target > cwnd) {
274 ca->cnt = cwnd / (bic_target - cwnd);
275 } else {
276 ca->cnt = 100 * cwnd; /* very small increment*/
277 }
278
279 /*
280 * The initial growth of cubic function may be too conservative
281 * when the available bandwidth is still unknown.
282 */
283 if (ca->last_max_cwnd == 0 && ca->cnt > 20)
284 ca->cnt = 20; /* increase cwnd 5% per RTT */
285
286 /* TCP Friendly */
287 if (tcp_friendliness) {
288 u32 scale = beta_scale;
289
290 delta = (cwnd * scale) >> 3;
291 while (ca->ack_cnt > delta) { /* update tcp cwnd */
292 ca->ack_cnt -= delta;
293 ca->tcp_cwnd++;
294 }
295
296 if (ca->tcp_cwnd > cwnd) { /* if bic is slower than tcp */
297 delta = ca->tcp_cwnd - cwnd;
298 max_cnt = cwnd / delta;
299 if (ca->cnt > max_cnt)
300 ca->cnt = max_cnt;
301 }
302 }
303
304 ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
305 if (ca->cnt == 0) /* cannot be zero */
306 ca->cnt = 1;
307 }
308
309 static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
310 {
311 struct tcp_sock *tp = tcp_sk(sk);
312 struct bictcp *ca = inet_csk_ca(sk);
313
314 if (!tcp_is_cwnd_limited(sk))
315 return;
316
317 if (tp->snd_cwnd <= tp->snd_ssthresh) {
318 if (hystart && after(ack, ca->end_seq))
319 bictcp_hystart_reset(sk);
320 tcp_slow_start(tp, acked);
321 } else {
322 bictcp_update(ca, tp->snd_cwnd);
323 tcp_cong_avoid_ai(tp, ca->cnt);
324 }
325 }
326
327 static u32 bictcp_recalc_ssthresh(struct sock *sk)
328 {
329 const struct tcp_sock *tp = tcp_sk(sk);
330 struct bictcp *ca = inet_csk_ca(sk);
331
332 ca->epoch_start = 0; /* end of epoch */
333
334 /* Wmax and fast convergence */
335 if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
336 ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
337 / (2 * BICTCP_BETA_SCALE);
338 else
339 ca->last_max_cwnd = tp->snd_cwnd;
340
341 ca->loss_cwnd = tp->snd_cwnd;
342
343 return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
344 }
345
346 static u32 bictcp_undo_cwnd(struct sock *sk)
347 {
348 struct bictcp *ca = inet_csk_ca(sk);
349
350 return max(tcp_sk(sk)->snd_cwnd, ca->loss_cwnd);
351 }
352
353 static void bictcp_state(struct sock *sk, u8 new_state)
354 {
355 if (new_state == TCP_CA_Loss) {
356 bictcp_reset(inet_csk_ca(sk));
357 bictcp_hystart_reset(sk);
358 }
359 }
360
361 static void hystart_update(struct sock *sk, u32 delay)
362 {
363 struct tcp_sock *tp = tcp_sk(sk);
364 struct bictcp *ca = inet_csk_ca(sk);
365
366 if (ca->found & hystart_detect)
367 return;
368
369 if (hystart_detect & HYSTART_ACK_TRAIN) {
370 u32 now = bictcp_clock();
371
372 /* first detection parameter - ack-train detection */
373 if ((s32)(now - ca->last_ack) <= hystart_ack_delta) {
374 ca->last_ack = now;
375 if ((s32)(now - ca->round_start) > ca->delay_min >> 4) {
376 ca->found |= HYSTART_ACK_TRAIN;
377 NET_INC_STATS_BH(sock_net(sk),
378 LINUX_MIB_TCPHYSTARTTRAINDETECT);
379 NET_ADD_STATS_BH(sock_net(sk),
380 LINUX_MIB_TCPHYSTARTTRAINCWND,
381 tp->snd_cwnd);
382 tp->snd_ssthresh = tp->snd_cwnd;
383 }
384 }
385 }
386
387 if (hystart_detect & HYSTART_DELAY) {
388 /* obtain the minimum delay of more than sampling packets */
389 if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
390 if (ca->curr_rtt == 0 || ca->curr_rtt > delay)
391 ca->curr_rtt = delay;
392
393 ca->sample_cnt++;
394 } else {
395 if (ca->curr_rtt > ca->delay_min +
396 HYSTART_DELAY_THRESH(ca->delay_min >> 3)) {
397 ca->found |= HYSTART_DELAY;
398 NET_INC_STATS_BH(sock_net(sk),
399 LINUX_MIB_TCPHYSTARTDELAYDETECT);
400 NET_ADD_STATS_BH(sock_net(sk),
401 LINUX_MIB_TCPHYSTARTDELAYCWND,
402 tp->snd_cwnd);
403 tp->snd_ssthresh = tp->snd_cwnd;
404 }
405 }
406 }
407 }
408
409 /* Track delayed acknowledgment ratio using sliding window
410 * ratio = (15*ratio + sample) / 16
411 */
412 static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
413 {
414 const struct inet_connection_sock *icsk = inet_csk(sk);
415 const struct tcp_sock *tp = tcp_sk(sk);
416 struct bictcp *ca = inet_csk_ca(sk);
417 u32 delay;
418
419 if (icsk->icsk_ca_state == TCP_CA_Open) {
420 u32 ratio = ca->delayed_ack;
421
422 ratio -= ca->delayed_ack >> ACK_RATIO_SHIFT;
423 ratio += cnt;
424
425 ca->delayed_ack = clamp(ratio, 1U, ACK_RATIO_LIMIT);
426 }
427
428 /* Some calls are for duplicates without timetamps */
429 if (rtt_us < 0)
430 return;
431
432 /* Discard delay samples right after fast recovery */
433 if (ca->epoch_start && (s32)(tcp_time_stamp - ca->epoch_start) < HZ)
434 return;
435
436 delay = (rtt_us << 3) / USEC_PER_MSEC;
437 if (delay == 0)
438 delay = 1;
439
440 /* first time call or link delay decreases */
441 if (ca->delay_min == 0 || ca->delay_min > delay)
442 ca->delay_min = delay;
443
444 /* hystart triggers when cwnd is larger than some threshold */
445 if (hystart && tp->snd_cwnd <= tp->snd_ssthresh &&
446 tp->snd_cwnd >= hystart_low_window)
447 hystart_update(sk, delay);
448 }
449
450 static struct tcp_congestion_ops cubictcp __read_mostly = {
451 .init = bictcp_init,
452 .ssthresh = bictcp_recalc_ssthresh,
453 .cong_avoid = bictcp_cong_avoid,
454 .set_state = bictcp_state,
455 .undo_cwnd = bictcp_undo_cwnd,
456 .pkts_acked = bictcp_acked,
457 .owner = THIS_MODULE,
458 .name = "cubic",
459 };
460
461 static int __init cubictcp_register(void)
462 {
463 BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
464
465 /* Precompute a bunch of the scaling factors that are used per-packet
466 * based on SRTT of 100ms
467 */
468
469 beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3
470 / (BICTCP_BETA_SCALE - beta);
471
472 cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */
473
474 /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
475 * so K = cubic_root( (wmax-cwnd)*rtt/c )
476 * the unit of K is bictcp_HZ=2^10, not HZ
477 *
478 * c = bic_scale >> 10
479 * rtt = 100ms
480 *
481 * the following code has been designed and tested for
482 * cwnd < 1 million packets
483 * RTT < 100 seconds
484 * HZ < 1,000,00 (corresponding to 10 nano-second)
485 */
486
487 /* 1/c * 2^2*bictcp_HZ * srtt */
488 cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
489
490 /* divide by bic_scale and by constant Srtt (100ms) */
491 do_div(cube_factor, bic_scale * 10);
492
493 return tcp_register_congestion_control(&cubictcp);
494 }
495
496 static void __exit cubictcp_unregister(void)
497 {
498 tcp_unregister_congestion_control(&cubictcp);
499 }
500
501 module_init(cubictcp_register);
502 module_exit(cubictcp_unregister);
503
504 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
505 MODULE_LICENSE("GPL");
506 MODULE_DESCRIPTION("CUBIC TCP");
507 MODULE_VERSION("2.3");
This page took 0.04133 seconds and 6 git commands to generate.