Merge branch 'component' of git://ftp.arm.linux.org.uk/~rmk/linux-arm
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <linux/prefetch.h>
72 #include <net/dst.h>
73 #include <net/tcp.h>
74 #include <net/inet_common.h>
75 #include <linux/ipsec.h>
76 #include <asm/unaligned.h>
77 #include <linux/errqueue.h>
78
79 int sysctl_tcp_timestamps __read_mostly = 1;
80 int sysctl_tcp_window_scaling __read_mostly = 1;
81 int sysctl_tcp_sack __read_mostly = 1;
82 int sysctl_tcp_fack __read_mostly = 1;
83 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
84 int sysctl_tcp_max_reordering __read_mostly = 300;
85 EXPORT_SYMBOL(sysctl_tcp_reordering);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 100;
93
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98 int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
99
100 int sysctl_tcp_thin_dupack __read_mostly;
101
102 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
103 int sysctl_tcp_early_retrans __read_mostly = 3;
104 int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
105
106 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
107 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
112 #define FLAG_ECE 0x40 /* ECE in this ACK */
113 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
114 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
115 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
116 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
117 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
118 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
119 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
120
121 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
122 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
123 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
124 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
125
126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
128
129 /* Adapt the MSS value used to make delayed ack decision to the
130 * real world.
131 */
132 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
133 {
134 struct inet_connection_sock *icsk = inet_csk(sk);
135 const unsigned int lss = icsk->icsk_ack.last_seg_size;
136 unsigned int len;
137
138 icsk->icsk_ack.last_seg_size = 0;
139
140 /* skb->len may jitter because of SACKs, even if peer
141 * sends good full-sized frames.
142 */
143 len = skb_shinfo(skb)->gso_size ? : skb->len;
144 if (len >= icsk->icsk_ack.rcv_mss) {
145 icsk->icsk_ack.rcv_mss = len;
146 } else {
147 /* Otherwise, we make more careful check taking into account,
148 * that SACKs block is variable.
149 *
150 * "len" is invariant segment length, including TCP header.
151 */
152 len += skb->data - skb_transport_header(skb);
153 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
154 /* If PSH is not set, packet should be
155 * full sized, provided peer TCP is not badly broken.
156 * This observation (if it is correct 8)) allows
157 * to handle super-low mtu links fairly.
158 */
159 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
160 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
161 /* Subtract also invariant (if peer is RFC compliant),
162 * tcp header plus fixed timestamp option length.
163 * Resulting "len" is MSS free of SACK jitter.
164 */
165 len -= tcp_sk(sk)->tcp_header_len;
166 icsk->icsk_ack.last_seg_size = len;
167 if (len == lss) {
168 icsk->icsk_ack.rcv_mss = len;
169 return;
170 }
171 }
172 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
173 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
174 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
175 }
176 }
177
178 static void tcp_incr_quickack(struct sock *sk)
179 {
180 struct inet_connection_sock *icsk = inet_csk(sk);
181 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
182
183 if (quickacks == 0)
184 quickacks = 2;
185 if (quickacks > icsk->icsk_ack.quick)
186 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
187 }
188
189 static void tcp_enter_quickack_mode(struct sock *sk)
190 {
191 struct inet_connection_sock *icsk = inet_csk(sk);
192 tcp_incr_quickack(sk);
193 icsk->icsk_ack.pingpong = 0;
194 icsk->icsk_ack.ato = TCP_ATO_MIN;
195 }
196
197 /* Send ACKs quickly, if "quick" count is not exhausted
198 * and the session is not interactive.
199 */
200
201 static bool tcp_in_quickack_mode(struct sock *sk)
202 {
203 const struct inet_connection_sock *icsk = inet_csk(sk);
204 const struct dst_entry *dst = __sk_dst_get(sk);
205
206 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
207 (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
208 }
209
210 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
211 {
212 if (tp->ecn_flags & TCP_ECN_OK)
213 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
214 }
215
216 static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
217 {
218 if (tcp_hdr(skb)->cwr)
219 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
220 }
221
222 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
223 {
224 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
225 }
226
227 static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
228 {
229 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
230 case INET_ECN_NOT_ECT:
231 /* Funny extension: if ECT is not set on a segment,
232 * and we already seen ECT on a previous segment,
233 * it is probably a retransmit.
234 */
235 if (tp->ecn_flags & TCP_ECN_SEEN)
236 tcp_enter_quickack_mode((struct sock *)tp);
237 break;
238 case INET_ECN_CE:
239 if (tcp_ca_needs_ecn((struct sock *)tp))
240 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
241
242 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
243 /* Better not delay acks, sender can have a very low cwnd */
244 tcp_enter_quickack_mode((struct sock *)tp);
245 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
246 }
247 tp->ecn_flags |= TCP_ECN_SEEN;
248 break;
249 default:
250 if (tcp_ca_needs_ecn((struct sock *)tp))
251 tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
252 tp->ecn_flags |= TCP_ECN_SEEN;
253 break;
254 }
255 }
256
257 static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
258 {
259 if (tp->ecn_flags & TCP_ECN_OK)
260 __tcp_ecn_check_ce(tp, skb);
261 }
262
263 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
264 {
265 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
266 tp->ecn_flags &= ~TCP_ECN_OK;
267 }
268
269 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
270 {
271 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
272 tp->ecn_flags &= ~TCP_ECN_OK;
273 }
274
275 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
276 {
277 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
278 return true;
279 return false;
280 }
281
282 /* Buffer size and advertised window tuning.
283 *
284 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
285 */
286
287 static void tcp_sndbuf_expand(struct sock *sk)
288 {
289 const struct tcp_sock *tp = tcp_sk(sk);
290 int sndmem, per_mss;
291 u32 nr_segs;
292
293 /* Worst case is non GSO/TSO : each frame consumes one skb
294 * and skb->head is kmalloced using power of two area of memory
295 */
296 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
297 MAX_TCP_HEADER +
298 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
299
300 per_mss = roundup_pow_of_two(per_mss) +
301 SKB_DATA_ALIGN(sizeof(struct sk_buff));
302
303 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
304 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
305
306 /* Fast Recovery (RFC 5681 3.2) :
307 * Cubic needs 1.7 factor, rounded to 2 to include
308 * extra cushion (application might react slowly to POLLOUT)
309 */
310 sndmem = 2 * nr_segs * per_mss;
311
312 if (sk->sk_sndbuf < sndmem)
313 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
314 }
315
316 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
317 *
318 * All tcp_full_space() is split to two parts: "network" buffer, allocated
319 * forward and advertised in receiver window (tp->rcv_wnd) and
320 * "application buffer", required to isolate scheduling/application
321 * latencies from network.
322 * window_clamp is maximal advertised window. It can be less than
323 * tcp_full_space(), in this case tcp_full_space() - window_clamp
324 * is reserved for "application" buffer. The less window_clamp is
325 * the smoother our behaviour from viewpoint of network, but the lower
326 * throughput and the higher sensitivity of the connection to losses. 8)
327 *
328 * rcv_ssthresh is more strict window_clamp used at "slow start"
329 * phase to predict further behaviour of this connection.
330 * It is used for two goals:
331 * - to enforce header prediction at sender, even when application
332 * requires some significant "application buffer". It is check #1.
333 * - to prevent pruning of receive queue because of misprediction
334 * of receiver window. Check #2.
335 *
336 * The scheme does not work when sender sends good segments opening
337 * window and then starts to feed us spaghetti. But it should work
338 * in common situations. Otherwise, we have to rely on queue collapsing.
339 */
340
341 /* Slow part of check#2. */
342 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
343 {
344 struct tcp_sock *tp = tcp_sk(sk);
345 /* Optimize this! */
346 int truesize = tcp_win_from_space(skb->truesize) >> 1;
347 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
348
349 while (tp->rcv_ssthresh <= window) {
350 if (truesize <= skb->len)
351 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
352
353 truesize >>= 1;
354 window >>= 1;
355 }
356 return 0;
357 }
358
359 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
360 {
361 struct tcp_sock *tp = tcp_sk(sk);
362
363 /* Check #1 */
364 if (tp->rcv_ssthresh < tp->window_clamp &&
365 (int)tp->rcv_ssthresh < tcp_space(sk) &&
366 !tcp_under_memory_pressure(sk)) {
367 int incr;
368
369 /* Check #2. Increase window, if skb with such overhead
370 * will fit to rcvbuf in future.
371 */
372 if (tcp_win_from_space(skb->truesize) <= skb->len)
373 incr = 2 * tp->advmss;
374 else
375 incr = __tcp_grow_window(sk, skb);
376
377 if (incr) {
378 incr = max_t(int, incr, 2 * skb->len);
379 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
380 tp->window_clamp);
381 inet_csk(sk)->icsk_ack.quick |= 1;
382 }
383 }
384 }
385
386 /* 3. Tuning rcvbuf, when connection enters established state. */
387 static void tcp_fixup_rcvbuf(struct sock *sk)
388 {
389 u32 mss = tcp_sk(sk)->advmss;
390 int rcvmem;
391
392 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
393 tcp_default_init_rwnd(mss);
394
395 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
396 * Allow enough cushion so that sender is not limited by our window
397 */
398 if (sysctl_tcp_moderate_rcvbuf)
399 rcvmem <<= 2;
400
401 if (sk->sk_rcvbuf < rcvmem)
402 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
403 }
404
405 /* 4. Try to fixup all. It is made immediately after connection enters
406 * established state.
407 */
408 void tcp_init_buffer_space(struct sock *sk)
409 {
410 struct tcp_sock *tp = tcp_sk(sk);
411 int maxwin;
412
413 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
414 tcp_fixup_rcvbuf(sk);
415 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
416 tcp_sndbuf_expand(sk);
417
418 tp->rcvq_space.space = tp->rcv_wnd;
419 tp->rcvq_space.time = tcp_time_stamp;
420 tp->rcvq_space.seq = tp->copied_seq;
421
422 maxwin = tcp_full_space(sk);
423
424 if (tp->window_clamp >= maxwin) {
425 tp->window_clamp = maxwin;
426
427 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
428 tp->window_clamp = max(maxwin -
429 (maxwin >> sysctl_tcp_app_win),
430 4 * tp->advmss);
431 }
432
433 /* Force reservation of one segment. */
434 if (sysctl_tcp_app_win &&
435 tp->window_clamp > 2 * tp->advmss &&
436 tp->window_clamp + tp->advmss > maxwin)
437 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
438
439 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
440 tp->snd_cwnd_stamp = tcp_time_stamp;
441 }
442
443 /* 5. Recalculate window clamp after socket hit its memory bounds. */
444 static void tcp_clamp_window(struct sock *sk)
445 {
446 struct tcp_sock *tp = tcp_sk(sk);
447 struct inet_connection_sock *icsk = inet_csk(sk);
448
449 icsk->icsk_ack.quick = 0;
450
451 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
452 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
453 !tcp_under_memory_pressure(sk) &&
454 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
455 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
456 sysctl_tcp_rmem[2]);
457 }
458 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
459 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
460 }
461
462 /* Initialize RCV_MSS value.
463 * RCV_MSS is an our guess about MSS used by the peer.
464 * We haven't any direct information about the MSS.
465 * It's better to underestimate the RCV_MSS rather than overestimate.
466 * Overestimations make us ACKing less frequently than needed.
467 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
468 */
469 void tcp_initialize_rcv_mss(struct sock *sk)
470 {
471 const struct tcp_sock *tp = tcp_sk(sk);
472 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
473
474 hint = min(hint, tp->rcv_wnd / 2);
475 hint = min(hint, TCP_MSS_DEFAULT);
476 hint = max(hint, TCP_MIN_MSS);
477
478 inet_csk(sk)->icsk_ack.rcv_mss = hint;
479 }
480 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
481
482 /* Receiver "autotuning" code.
483 *
484 * The algorithm for RTT estimation w/o timestamps is based on
485 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
486 * <http://public.lanl.gov/radiant/pubs.html#DRS>
487 *
488 * More detail on this code can be found at
489 * <http://staff.psc.edu/jheffner/>,
490 * though this reference is out of date. A new paper
491 * is pending.
492 */
493 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
494 {
495 u32 new_sample = tp->rcv_rtt_est.rtt;
496 long m = sample;
497
498 if (m == 0)
499 m = 1;
500
501 if (new_sample != 0) {
502 /* If we sample in larger samples in the non-timestamp
503 * case, we could grossly overestimate the RTT especially
504 * with chatty applications or bulk transfer apps which
505 * are stalled on filesystem I/O.
506 *
507 * Also, since we are only going for a minimum in the
508 * non-timestamp case, we do not smooth things out
509 * else with timestamps disabled convergence takes too
510 * long.
511 */
512 if (!win_dep) {
513 m -= (new_sample >> 3);
514 new_sample += m;
515 } else {
516 m <<= 3;
517 if (m < new_sample)
518 new_sample = m;
519 }
520 } else {
521 /* No previous measure. */
522 new_sample = m << 3;
523 }
524
525 if (tp->rcv_rtt_est.rtt != new_sample)
526 tp->rcv_rtt_est.rtt = new_sample;
527 }
528
529 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
530 {
531 if (tp->rcv_rtt_est.time == 0)
532 goto new_measure;
533 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
534 return;
535 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
536
537 new_measure:
538 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
539 tp->rcv_rtt_est.time = tcp_time_stamp;
540 }
541
542 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
543 const struct sk_buff *skb)
544 {
545 struct tcp_sock *tp = tcp_sk(sk);
546 if (tp->rx_opt.rcv_tsecr &&
547 (TCP_SKB_CB(skb)->end_seq -
548 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
549 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
550 }
551
552 /*
553 * This function should be called every time data is copied to user space.
554 * It calculates the appropriate TCP receive buffer space.
555 */
556 void tcp_rcv_space_adjust(struct sock *sk)
557 {
558 struct tcp_sock *tp = tcp_sk(sk);
559 int time;
560 int copied;
561
562 time = tcp_time_stamp - tp->rcvq_space.time;
563 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
564 return;
565
566 /* Number of bytes copied to user in last RTT */
567 copied = tp->copied_seq - tp->rcvq_space.seq;
568 if (copied <= tp->rcvq_space.space)
569 goto new_measure;
570
571 /* A bit of theory :
572 * copied = bytes received in previous RTT, our base window
573 * To cope with packet losses, we need a 2x factor
574 * To cope with slow start, and sender growing its cwin by 100 %
575 * every RTT, we need a 4x factor, because the ACK we are sending
576 * now is for the next RTT, not the current one :
577 * <prev RTT . ><current RTT .. ><next RTT .... >
578 */
579
580 if (sysctl_tcp_moderate_rcvbuf &&
581 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
582 int rcvwin, rcvmem, rcvbuf;
583
584 /* minimal window to cope with packet losses, assuming
585 * steady state. Add some cushion because of small variations.
586 */
587 rcvwin = (copied << 1) + 16 * tp->advmss;
588
589 /* If rate increased by 25%,
590 * assume slow start, rcvwin = 3 * copied
591 * If rate increased by 50%,
592 * assume sender can use 2x growth, rcvwin = 4 * copied
593 */
594 if (copied >=
595 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
596 if (copied >=
597 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
598 rcvwin <<= 1;
599 else
600 rcvwin += (rcvwin >> 1);
601 }
602
603 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
604 while (tcp_win_from_space(rcvmem) < tp->advmss)
605 rcvmem += 128;
606
607 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
608 if (rcvbuf > sk->sk_rcvbuf) {
609 sk->sk_rcvbuf = rcvbuf;
610
611 /* Make the window clamp follow along. */
612 tp->window_clamp = rcvwin;
613 }
614 }
615 tp->rcvq_space.space = copied;
616
617 new_measure:
618 tp->rcvq_space.seq = tp->copied_seq;
619 tp->rcvq_space.time = tcp_time_stamp;
620 }
621
622 /* There is something which you must keep in mind when you analyze the
623 * behavior of the tp->ato delayed ack timeout interval. When a
624 * connection starts up, we want to ack as quickly as possible. The
625 * problem is that "good" TCP's do slow start at the beginning of data
626 * transmission. The means that until we send the first few ACK's the
627 * sender will sit on his end and only queue most of his data, because
628 * he can only send snd_cwnd unacked packets at any given time. For
629 * each ACK we send, he increments snd_cwnd and transmits more of his
630 * queue. -DaveM
631 */
632 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
633 {
634 struct tcp_sock *tp = tcp_sk(sk);
635 struct inet_connection_sock *icsk = inet_csk(sk);
636 u32 now;
637
638 inet_csk_schedule_ack(sk);
639
640 tcp_measure_rcv_mss(sk, skb);
641
642 tcp_rcv_rtt_measure(tp);
643
644 now = tcp_time_stamp;
645
646 if (!icsk->icsk_ack.ato) {
647 /* The _first_ data packet received, initialize
648 * delayed ACK engine.
649 */
650 tcp_incr_quickack(sk);
651 icsk->icsk_ack.ato = TCP_ATO_MIN;
652 } else {
653 int m = now - icsk->icsk_ack.lrcvtime;
654
655 if (m <= TCP_ATO_MIN / 2) {
656 /* The fastest case is the first. */
657 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
658 } else if (m < icsk->icsk_ack.ato) {
659 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
660 if (icsk->icsk_ack.ato > icsk->icsk_rto)
661 icsk->icsk_ack.ato = icsk->icsk_rto;
662 } else if (m > icsk->icsk_rto) {
663 /* Too long gap. Apparently sender failed to
664 * restart window, so that we send ACKs quickly.
665 */
666 tcp_incr_quickack(sk);
667 sk_mem_reclaim(sk);
668 }
669 }
670 icsk->icsk_ack.lrcvtime = now;
671
672 tcp_ecn_check_ce(tp, skb);
673
674 if (skb->len >= 128)
675 tcp_grow_window(sk, skb);
676 }
677
678 /* Called to compute a smoothed rtt estimate. The data fed to this
679 * routine either comes from timestamps, or from segments that were
680 * known _not_ to have been retransmitted [see Karn/Partridge
681 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
682 * piece by Van Jacobson.
683 * NOTE: the next three routines used to be one big routine.
684 * To save cycles in the RFC 1323 implementation it was better to break
685 * it up into three procedures. -- erics
686 */
687 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
688 {
689 struct tcp_sock *tp = tcp_sk(sk);
690 long m = mrtt_us; /* RTT */
691 u32 srtt = tp->srtt_us;
692
693 /* The following amusing code comes from Jacobson's
694 * article in SIGCOMM '88. Note that rtt and mdev
695 * are scaled versions of rtt and mean deviation.
696 * This is designed to be as fast as possible
697 * m stands for "measurement".
698 *
699 * On a 1990 paper the rto value is changed to:
700 * RTO = rtt + 4 * mdev
701 *
702 * Funny. This algorithm seems to be very broken.
703 * These formulae increase RTO, when it should be decreased, increase
704 * too slowly, when it should be increased quickly, decrease too quickly
705 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
706 * does not matter how to _calculate_ it. Seems, it was trap
707 * that VJ failed to avoid. 8)
708 */
709 if (srtt != 0) {
710 m -= (srtt >> 3); /* m is now error in rtt est */
711 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
712 if (m < 0) {
713 m = -m; /* m is now abs(error) */
714 m -= (tp->mdev_us >> 2); /* similar update on mdev */
715 /* This is similar to one of Eifel findings.
716 * Eifel blocks mdev updates when rtt decreases.
717 * This solution is a bit different: we use finer gain
718 * for mdev in this case (alpha*beta).
719 * Like Eifel it also prevents growth of rto,
720 * but also it limits too fast rto decreases,
721 * happening in pure Eifel.
722 */
723 if (m > 0)
724 m >>= 3;
725 } else {
726 m -= (tp->mdev_us >> 2); /* similar update on mdev */
727 }
728 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
729 if (tp->mdev_us > tp->mdev_max_us) {
730 tp->mdev_max_us = tp->mdev_us;
731 if (tp->mdev_max_us > tp->rttvar_us)
732 tp->rttvar_us = tp->mdev_max_us;
733 }
734 if (after(tp->snd_una, tp->rtt_seq)) {
735 if (tp->mdev_max_us < tp->rttvar_us)
736 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
737 tp->rtt_seq = tp->snd_nxt;
738 tp->mdev_max_us = tcp_rto_min_us(sk);
739 }
740 } else {
741 /* no previous measure. */
742 srtt = m << 3; /* take the measured time to be rtt */
743 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
744 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
745 tp->mdev_max_us = tp->rttvar_us;
746 tp->rtt_seq = tp->snd_nxt;
747 }
748 tp->srtt_us = max(1U, srtt);
749 }
750
751 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
752 * Note: TCP stack does not yet implement pacing.
753 * FQ packet scheduler can be used to implement cheap but effective
754 * TCP pacing, to smooth the burst on large writes when packets
755 * in flight is significantly lower than cwnd (or rwin)
756 */
757 int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
758 int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
759
760 static void tcp_update_pacing_rate(struct sock *sk)
761 {
762 const struct tcp_sock *tp = tcp_sk(sk);
763 u64 rate;
764
765 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
766 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
767
768 /* current rate is (cwnd * mss) / srtt
769 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
770 * In Congestion Avoidance phase, set it to 120 % the current rate.
771 *
772 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
773 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
774 * end of slow start and should slow down.
775 */
776 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
777 rate *= sysctl_tcp_pacing_ss_ratio;
778 else
779 rate *= sysctl_tcp_pacing_ca_ratio;
780
781 rate *= max(tp->snd_cwnd, tp->packets_out);
782
783 if (likely(tp->srtt_us))
784 do_div(rate, tp->srtt_us);
785
786 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
787 * without any lock. We want to make sure compiler wont store
788 * intermediate values in this location.
789 */
790 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
791 sk->sk_max_pacing_rate);
792 }
793
794 /* Calculate rto without backoff. This is the second half of Van Jacobson's
795 * routine referred to above.
796 */
797 static void tcp_set_rto(struct sock *sk)
798 {
799 const struct tcp_sock *tp = tcp_sk(sk);
800 /* Old crap is replaced with new one. 8)
801 *
802 * More seriously:
803 * 1. If rtt variance happened to be less 50msec, it is hallucination.
804 * It cannot be less due to utterly erratic ACK generation made
805 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
806 * to do with delayed acks, because at cwnd>2 true delack timeout
807 * is invisible. Actually, Linux-2.4 also generates erratic
808 * ACKs in some circumstances.
809 */
810 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
811
812 /* 2. Fixups made earlier cannot be right.
813 * If we do not estimate RTO correctly without them,
814 * all the algo is pure shit and should be replaced
815 * with correct one. It is exactly, which we pretend to do.
816 */
817
818 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
819 * guarantees that rto is higher.
820 */
821 tcp_bound_rto(sk);
822 }
823
824 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
825 {
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd)
829 cwnd = TCP_INIT_CWND;
830 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
831 }
832
833 /*
834 * Packet counting of FACK is based on in-order assumptions, therefore TCP
835 * disables it when reordering is detected
836 */
837 void tcp_disable_fack(struct tcp_sock *tp)
838 {
839 /* RFC3517 uses different metric in lost marker => reset on change */
840 if (tcp_is_fack(tp))
841 tp->lost_skb_hint = NULL;
842 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
843 }
844
845 /* Take a notice that peer is sending D-SACKs */
846 static void tcp_dsack_seen(struct tcp_sock *tp)
847 {
848 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
849 }
850
851 static void tcp_update_reordering(struct sock *sk, const int metric,
852 const int ts)
853 {
854 struct tcp_sock *tp = tcp_sk(sk);
855 if (metric > tp->reordering) {
856 int mib_idx;
857
858 tp->reordering = min(sysctl_tcp_max_reordering, metric);
859
860 /* This exciting event is worth to be remembered. 8) */
861 if (ts)
862 mib_idx = LINUX_MIB_TCPTSREORDER;
863 else if (tcp_is_reno(tp))
864 mib_idx = LINUX_MIB_TCPRENOREORDER;
865 else if (tcp_is_fack(tp))
866 mib_idx = LINUX_MIB_TCPFACKREORDER;
867 else
868 mib_idx = LINUX_MIB_TCPSACKREORDER;
869
870 NET_INC_STATS_BH(sock_net(sk), mib_idx);
871 #if FASTRETRANS_DEBUG > 1
872 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
873 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
874 tp->reordering,
875 tp->fackets_out,
876 tp->sacked_out,
877 tp->undo_marker ? tp->undo_retrans : 0);
878 #endif
879 tcp_disable_fack(tp);
880 }
881
882 if (metric > 0)
883 tcp_disable_early_retrans(tp);
884 tp->rack.reord = 1;
885 }
886
887 /* This must be called before lost_out is incremented */
888 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
889 {
890 if (!tp->retransmit_skb_hint ||
891 before(TCP_SKB_CB(skb)->seq,
892 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
893 tp->retransmit_skb_hint = skb;
894
895 if (!tp->lost_out ||
896 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
897 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
898 }
899
900 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
901 {
902 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
903 tcp_verify_retransmit_hint(tp, skb);
904
905 tp->lost_out += tcp_skb_pcount(skb);
906 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
907 }
908 }
909
910 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
911 {
912 tcp_verify_retransmit_hint(tp, skb);
913
914 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
915 tp->lost_out += tcp_skb_pcount(skb);
916 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
917 }
918 }
919
920 /* This procedure tags the retransmission queue when SACKs arrive.
921 *
922 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
923 * Packets in queue with these bits set are counted in variables
924 * sacked_out, retrans_out and lost_out, correspondingly.
925 *
926 * Valid combinations are:
927 * Tag InFlight Description
928 * 0 1 - orig segment is in flight.
929 * S 0 - nothing flies, orig reached receiver.
930 * L 0 - nothing flies, orig lost by net.
931 * R 2 - both orig and retransmit are in flight.
932 * L|R 1 - orig is lost, retransmit is in flight.
933 * S|R 1 - orig reached receiver, retrans is still in flight.
934 * (L|S|R is logically valid, it could occur when L|R is sacked,
935 * but it is equivalent to plain S and code short-curcuits it to S.
936 * L|S is logically invalid, it would mean -1 packet in flight 8))
937 *
938 * These 6 states form finite state machine, controlled by the following events:
939 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
940 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
941 * 3. Loss detection event of two flavors:
942 * A. Scoreboard estimator decided the packet is lost.
943 * A'. Reno "three dupacks" marks head of queue lost.
944 * A''. Its FACK modification, head until snd.fack is lost.
945 * B. SACK arrives sacking SND.NXT at the moment, when the
946 * segment was retransmitted.
947 * 4. D-SACK added new rule: D-SACK changes any tag to S.
948 *
949 * It is pleasant to note, that state diagram turns out to be commutative,
950 * so that we are allowed not to be bothered by order of our actions,
951 * when multiple events arrive simultaneously. (see the function below).
952 *
953 * Reordering detection.
954 * --------------------
955 * Reordering metric is maximal distance, which a packet can be displaced
956 * in packet stream. With SACKs we can estimate it:
957 *
958 * 1. SACK fills old hole and the corresponding segment was not
959 * ever retransmitted -> reordering. Alas, we cannot use it
960 * when segment was retransmitted.
961 * 2. The last flaw is solved with D-SACK. D-SACK arrives
962 * for retransmitted and already SACKed segment -> reordering..
963 * Both of these heuristics are not used in Loss state, when we cannot
964 * account for retransmits accurately.
965 *
966 * SACK block validation.
967 * ----------------------
968 *
969 * SACK block range validation checks that the received SACK block fits to
970 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
971 * Note that SND.UNA is not included to the range though being valid because
972 * it means that the receiver is rather inconsistent with itself reporting
973 * SACK reneging when it should advance SND.UNA. Such SACK block this is
974 * perfectly valid, however, in light of RFC2018 which explicitly states
975 * that "SACK block MUST reflect the newest segment. Even if the newest
976 * segment is going to be discarded ...", not that it looks very clever
977 * in case of head skb. Due to potentional receiver driven attacks, we
978 * choose to avoid immediate execution of a walk in write queue due to
979 * reneging and defer head skb's loss recovery to standard loss recovery
980 * procedure that will eventually trigger (nothing forbids us doing this).
981 *
982 * Implements also blockage to start_seq wrap-around. Problem lies in the
983 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
984 * there's no guarantee that it will be before snd_nxt (n). The problem
985 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
986 * wrap (s_w):
987 *
988 * <- outs wnd -> <- wrapzone ->
989 * u e n u_w e_w s n_w
990 * | | | | | | |
991 * |<------------+------+----- TCP seqno space --------------+---------->|
992 * ...-- <2^31 ->| |<--------...
993 * ...---- >2^31 ------>| |<--------...
994 *
995 * Current code wouldn't be vulnerable but it's better still to discard such
996 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
997 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
998 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
999 * equal to the ideal case (infinite seqno space without wrap caused issues).
1000 *
1001 * With D-SACK the lower bound is extended to cover sequence space below
1002 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1003 * again, D-SACK block must not to go across snd_una (for the same reason as
1004 * for the normal SACK blocks, explained above). But there all simplicity
1005 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1006 * fully below undo_marker they do not affect behavior in anyway and can
1007 * therefore be safely ignored. In rare cases (which are more or less
1008 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1009 * fragmentation and packet reordering past skb's retransmission. To consider
1010 * them correctly, the acceptable range must be extended even more though
1011 * the exact amount is rather hard to quantify. However, tp->max_window can
1012 * be used as an exaggerated estimate.
1013 */
1014 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1015 u32 start_seq, u32 end_seq)
1016 {
1017 /* Too far in future, or reversed (interpretation is ambiguous) */
1018 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1019 return false;
1020
1021 /* Nasty start_seq wrap-around check (see comments above) */
1022 if (!before(start_seq, tp->snd_nxt))
1023 return false;
1024
1025 /* In outstanding window? ...This is valid exit for D-SACKs too.
1026 * start_seq == snd_una is non-sensical (see comments above)
1027 */
1028 if (after(start_seq, tp->snd_una))
1029 return true;
1030
1031 if (!is_dsack || !tp->undo_marker)
1032 return false;
1033
1034 /* ...Then it's D-SACK, and must reside below snd_una completely */
1035 if (after(end_seq, tp->snd_una))
1036 return false;
1037
1038 if (!before(start_seq, tp->undo_marker))
1039 return true;
1040
1041 /* Too old */
1042 if (!after(end_seq, tp->undo_marker))
1043 return false;
1044
1045 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1046 * start_seq < undo_marker and end_seq >= undo_marker.
1047 */
1048 return !before(start_seq, end_seq - tp->max_window);
1049 }
1050
1051 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1052 struct tcp_sack_block_wire *sp, int num_sacks,
1053 u32 prior_snd_una)
1054 {
1055 struct tcp_sock *tp = tcp_sk(sk);
1056 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1057 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1058 bool dup_sack = false;
1059
1060 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1061 dup_sack = true;
1062 tcp_dsack_seen(tp);
1063 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1064 } else if (num_sacks > 1) {
1065 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1066 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1067
1068 if (!after(end_seq_0, end_seq_1) &&
1069 !before(start_seq_0, start_seq_1)) {
1070 dup_sack = true;
1071 tcp_dsack_seen(tp);
1072 NET_INC_STATS_BH(sock_net(sk),
1073 LINUX_MIB_TCPDSACKOFORECV);
1074 }
1075 }
1076
1077 /* D-SACK for already forgotten data... Do dumb counting. */
1078 if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1079 !after(end_seq_0, prior_snd_una) &&
1080 after(end_seq_0, tp->undo_marker))
1081 tp->undo_retrans--;
1082
1083 return dup_sack;
1084 }
1085
1086 struct tcp_sacktag_state {
1087 int reord;
1088 int fack_count;
1089 /* Timestamps for earliest and latest never-retransmitted segment
1090 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1091 * but congestion control should still get an accurate delay signal.
1092 */
1093 struct skb_mstamp first_sackt;
1094 struct skb_mstamp last_sackt;
1095 int flag;
1096 };
1097
1098 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1099 * the incoming SACK may not exactly match but we can find smaller MSS
1100 * aligned portion of it that matches. Therefore we might need to fragment
1101 * which may fail and creates some hassle (caller must handle error case
1102 * returns).
1103 *
1104 * FIXME: this could be merged to shift decision code
1105 */
1106 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1107 u32 start_seq, u32 end_seq)
1108 {
1109 int err;
1110 bool in_sack;
1111 unsigned int pkt_len;
1112 unsigned int mss;
1113
1114 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1115 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1116
1117 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1118 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1119 mss = tcp_skb_mss(skb);
1120 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1121
1122 if (!in_sack) {
1123 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1124 if (pkt_len < mss)
1125 pkt_len = mss;
1126 } else {
1127 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1128 if (pkt_len < mss)
1129 return -EINVAL;
1130 }
1131
1132 /* Round if necessary so that SACKs cover only full MSSes
1133 * and/or the remaining small portion (if present)
1134 */
1135 if (pkt_len > mss) {
1136 unsigned int new_len = (pkt_len / mss) * mss;
1137 if (!in_sack && new_len < pkt_len) {
1138 new_len += mss;
1139 if (new_len >= skb->len)
1140 return 0;
1141 }
1142 pkt_len = new_len;
1143 }
1144 err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1145 if (err < 0)
1146 return err;
1147 }
1148
1149 return in_sack;
1150 }
1151
1152 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1153 static u8 tcp_sacktag_one(struct sock *sk,
1154 struct tcp_sacktag_state *state, u8 sacked,
1155 u32 start_seq, u32 end_seq,
1156 int dup_sack, int pcount,
1157 const struct skb_mstamp *xmit_time)
1158 {
1159 struct tcp_sock *tp = tcp_sk(sk);
1160 int fack_count = state->fack_count;
1161
1162 /* Account D-SACK for retransmitted packet. */
1163 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1164 if (tp->undo_marker && tp->undo_retrans > 0 &&
1165 after(end_seq, tp->undo_marker))
1166 tp->undo_retrans--;
1167 if (sacked & TCPCB_SACKED_ACKED)
1168 state->reord = min(fack_count, state->reord);
1169 }
1170
1171 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1172 if (!after(end_seq, tp->snd_una))
1173 return sacked;
1174
1175 if (!(sacked & TCPCB_SACKED_ACKED)) {
1176 tcp_rack_advance(tp, xmit_time, sacked);
1177
1178 if (sacked & TCPCB_SACKED_RETRANS) {
1179 /* If the segment is not tagged as lost,
1180 * we do not clear RETRANS, believing
1181 * that retransmission is still in flight.
1182 */
1183 if (sacked & TCPCB_LOST) {
1184 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1185 tp->lost_out -= pcount;
1186 tp->retrans_out -= pcount;
1187 }
1188 } else {
1189 if (!(sacked & TCPCB_RETRANS)) {
1190 /* New sack for not retransmitted frame,
1191 * which was in hole. It is reordering.
1192 */
1193 if (before(start_seq,
1194 tcp_highest_sack_seq(tp)))
1195 state->reord = min(fack_count,
1196 state->reord);
1197 if (!after(end_seq, tp->high_seq))
1198 state->flag |= FLAG_ORIG_SACK_ACKED;
1199 if (state->first_sackt.v64 == 0)
1200 state->first_sackt = *xmit_time;
1201 state->last_sackt = *xmit_time;
1202 }
1203
1204 if (sacked & TCPCB_LOST) {
1205 sacked &= ~TCPCB_LOST;
1206 tp->lost_out -= pcount;
1207 }
1208 }
1209
1210 sacked |= TCPCB_SACKED_ACKED;
1211 state->flag |= FLAG_DATA_SACKED;
1212 tp->sacked_out += pcount;
1213
1214 fack_count += pcount;
1215
1216 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1217 if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1218 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1219 tp->lost_cnt_hint += pcount;
1220
1221 if (fack_count > tp->fackets_out)
1222 tp->fackets_out = fack_count;
1223 }
1224
1225 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1226 * frames and clear it. undo_retrans is decreased above, L|R frames
1227 * are accounted above as well.
1228 */
1229 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1230 sacked &= ~TCPCB_SACKED_RETRANS;
1231 tp->retrans_out -= pcount;
1232 }
1233
1234 return sacked;
1235 }
1236
1237 /* Shift newly-SACKed bytes from this skb to the immediately previous
1238 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1239 */
1240 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1241 struct tcp_sacktag_state *state,
1242 unsigned int pcount, int shifted, int mss,
1243 bool dup_sack)
1244 {
1245 struct tcp_sock *tp = tcp_sk(sk);
1246 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1247 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1248 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1249
1250 BUG_ON(!pcount);
1251
1252 /* Adjust counters and hints for the newly sacked sequence
1253 * range but discard the return value since prev is already
1254 * marked. We must tag the range first because the seq
1255 * advancement below implicitly advances
1256 * tcp_highest_sack_seq() when skb is highest_sack.
1257 */
1258 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1259 start_seq, end_seq, dup_sack, pcount,
1260 &skb->skb_mstamp);
1261
1262 if (skb == tp->lost_skb_hint)
1263 tp->lost_cnt_hint += pcount;
1264
1265 TCP_SKB_CB(prev)->end_seq += shifted;
1266 TCP_SKB_CB(skb)->seq += shifted;
1267
1268 tcp_skb_pcount_add(prev, pcount);
1269 BUG_ON(tcp_skb_pcount(skb) < pcount);
1270 tcp_skb_pcount_add(skb, -pcount);
1271
1272 /* When we're adding to gso_segs == 1, gso_size will be zero,
1273 * in theory this shouldn't be necessary but as long as DSACK
1274 * code can come after this skb later on it's better to keep
1275 * setting gso_size to something.
1276 */
1277 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1278 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1279
1280 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1281 if (tcp_skb_pcount(skb) <= 1)
1282 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1283
1284 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1285 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1286
1287 if (skb->len > 0) {
1288 BUG_ON(!tcp_skb_pcount(skb));
1289 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1290 return false;
1291 }
1292
1293 /* Whole SKB was eaten :-) */
1294
1295 if (skb == tp->retransmit_skb_hint)
1296 tp->retransmit_skb_hint = prev;
1297 if (skb == tp->lost_skb_hint) {
1298 tp->lost_skb_hint = prev;
1299 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1300 }
1301
1302 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1303 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1304 TCP_SKB_CB(prev)->end_seq++;
1305
1306 if (skb == tcp_highest_sack(sk))
1307 tcp_advance_highest_sack(sk, skb);
1308
1309 tcp_unlink_write_queue(skb, sk);
1310 sk_wmem_free_skb(sk, skb);
1311
1312 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1313
1314 return true;
1315 }
1316
1317 /* I wish gso_size would have a bit more sane initialization than
1318 * something-or-zero which complicates things
1319 */
1320 static int tcp_skb_seglen(const struct sk_buff *skb)
1321 {
1322 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1323 }
1324
1325 /* Shifting pages past head area doesn't work */
1326 static int skb_can_shift(const struct sk_buff *skb)
1327 {
1328 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1329 }
1330
1331 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1332 * skb.
1333 */
1334 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1335 struct tcp_sacktag_state *state,
1336 u32 start_seq, u32 end_seq,
1337 bool dup_sack)
1338 {
1339 struct tcp_sock *tp = tcp_sk(sk);
1340 struct sk_buff *prev;
1341 int mss;
1342 int pcount = 0;
1343 int len;
1344 int in_sack;
1345
1346 if (!sk_can_gso(sk))
1347 goto fallback;
1348
1349 /* Normally R but no L won't result in plain S */
1350 if (!dup_sack &&
1351 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1352 goto fallback;
1353 if (!skb_can_shift(skb))
1354 goto fallback;
1355 /* This frame is about to be dropped (was ACKed). */
1356 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1357 goto fallback;
1358
1359 /* Can only happen with delayed DSACK + discard craziness */
1360 if (unlikely(skb == tcp_write_queue_head(sk)))
1361 goto fallback;
1362 prev = tcp_write_queue_prev(sk, skb);
1363
1364 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1365 goto fallback;
1366
1367 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1368 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1369
1370 if (in_sack) {
1371 len = skb->len;
1372 pcount = tcp_skb_pcount(skb);
1373 mss = tcp_skb_seglen(skb);
1374
1375 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1376 * drop this restriction as unnecessary
1377 */
1378 if (mss != tcp_skb_seglen(prev))
1379 goto fallback;
1380 } else {
1381 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1382 goto noop;
1383 /* CHECKME: This is non-MSS split case only?, this will
1384 * cause skipped skbs due to advancing loop btw, original
1385 * has that feature too
1386 */
1387 if (tcp_skb_pcount(skb) <= 1)
1388 goto noop;
1389
1390 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1391 if (!in_sack) {
1392 /* TODO: head merge to next could be attempted here
1393 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1394 * though it might not be worth of the additional hassle
1395 *
1396 * ...we can probably just fallback to what was done
1397 * previously. We could try merging non-SACKed ones
1398 * as well but it probably isn't going to buy off
1399 * because later SACKs might again split them, and
1400 * it would make skb timestamp tracking considerably
1401 * harder problem.
1402 */
1403 goto fallback;
1404 }
1405
1406 len = end_seq - TCP_SKB_CB(skb)->seq;
1407 BUG_ON(len < 0);
1408 BUG_ON(len > skb->len);
1409
1410 /* MSS boundaries should be honoured or else pcount will
1411 * severely break even though it makes things bit trickier.
1412 * Optimize common case to avoid most of the divides
1413 */
1414 mss = tcp_skb_mss(skb);
1415
1416 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1417 * drop this restriction as unnecessary
1418 */
1419 if (mss != tcp_skb_seglen(prev))
1420 goto fallback;
1421
1422 if (len == mss) {
1423 pcount = 1;
1424 } else if (len < mss) {
1425 goto noop;
1426 } else {
1427 pcount = len / mss;
1428 len = pcount * mss;
1429 }
1430 }
1431
1432 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1433 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1434 goto fallback;
1435
1436 if (!skb_shift(prev, skb, len))
1437 goto fallback;
1438 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1439 goto out;
1440
1441 /* Hole filled allows collapsing with the next as well, this is very
1442 * useful when hole on every nth skb pattern happens
1443 */
1444 if (prev == tcp_write_queue_tail(sk))
1445 goto out;
1446 skb = tcp_write_queue_next(sk, prev);
1447
1448 if (!skb_can_shift(skb) ||
1449 (skb == tcp_send_head(sk)) ||
1450 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1451 (mss != tcp_skb_seglen(skb)))
1452 goto out;
1453
1454 len = skb->len;
1455 if (skb_shift(prev, skb, len)) {
1456 pcount += tcp_skb_pcount(skb);
1457 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1458 }
1459
1460 out:
1461 state->fack_count += pcount;
1462 return prev;
1463
1464 noop:
1465 return skb;
1466
1467 fallback:
1468 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1469 return NULL;
1470 }
1471
1472 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1473 struct tcp_sack_block *next_dup,
1474 struct tcp_sacktag_state *state,
1475 u32 start_seq, u32 end_seq,
1476 bool dup_sack_in)
1477 {
1478 struct tcp_sock *tp = tcp_sk(sk);
1479 struct sk_buff *tmp;
1480
1481 tcp_for_write_queue_from(skb, sk) {
1482 int in_sack = 0;
1483 bool dup_sack = dup_sack_in;
1484
1485 if (skb == tcp_send_head(sk))
1486 break;
1487
1488 /* queue is in-order => we can short-circuit the walk early */
1489 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1490 break;
1491
1492 if (next_dup &&
1493 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1494 in_sack = tcp_match_skb_to_sack(sk, skb,
1495 next_dup->start_seq,
1496 next_dup->end_seq);
1497 if (in_sack > 0)
1498 dup_sack = true;
1499 }
1500
1501 /* skb reference here is a bit tricky to get right, since
1502 * shifting can eat and free both this skb and the next,
1503 * so not even _safe variant of the loop is enough.
1504 */
1505 if (in_sack <= 0) {
1506 tmp = tcp_shift_skb_data(sk, skb, state,
1507 start_seq, end_seq, dup_sack);
1508 if (tmp) {
1509 if (tmp != skb) {
1510 skb = tmp;
1511 continue;
1512 }
1513
1514 in_sack = 0;
1515 } else {
1516 in_sack = tcp_match_skb_to_sack(sk, skb,
1517 start_seq,
1518 end_seq);
1519 }
1520 }
1521
1522 if (unlikely(in_sack < 0))
1523 break;
1524
1525 if (in_sack) {
1526 TCP_SKB_CB(skb)->sacked =
1527 tcp_sacktag_one(sk,
1528 state,
1529 TCP_SKB_CB(skb)->sacked,
1530 TCP_SKB_CB(skb)->seq,
1531 TCP_SKB_CB(skb)->end_seq,
1532 dup_sack,
1533 tcp_skb_pcount(skb),
1534 &skb->skb_mstamp);
1535
1536 if (!before(TCP_SKB_CB(skb)->seq,
1537 tcp_highest_sack_seq(tp)))
1538 tcp_advance_highest_sack(sk, skb);
1539 }
1540
1541 state->fack_count += tcp_skb_pcount(skb);
1542 }
1543 return skb;
1544 }
1545
1546 /* Avoid all extra work that is being done by sacktag while walking in
1547 * a normal way
1548 */
1549 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1550 struct tcp_sacktag_state *state,
1551 u32 skip_to_seq)
1552 {
1553 tcp_for_write_queue_from(skb, sk) {
1554 if (skb == tcp_send_head(sk))
1555 break;
1556
1557 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1558 break;
1559
1560 state->fack_count += tcp_skb_pcount(skb);
1561 }
1562 return skb;
1563 }
1564
1565 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1566 struct sock *sk,
1567 struct tcp_sack_block *next_dup,
1568 struct tcp_sacktag_state *state,
1569 u32 skip_to_seq)
1570 {
1571 if (!next_dup)
1572 return skb;
1573
1574 if (before(next_dup->start_seq, skip_to_seq)) {
1575 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1576 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1577 next_dup->start_seq, next_dup->end_seq,
1578 1);
1579 }
1580
1581 return skb;
1582 }
1583
1584 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1585 {
1586 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1587 }
1588
1589 static int
1590 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1591 u32 prior_snd_una, struct tcp_sacktag_state *state)
1592 {
1593 struct tcp_sock *tp = tcp_sk(sk);
1594 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1595 TCP_SKB_CB(ack_skb)->sacked);
1596 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1597 struct tcp_sack_block sp[TCP_NUM_SACKS];
1598 struct tcp_sack_block *cache;
1599 struct sk_buff *skb;
1600 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1601 int used_sacks;
1602 bool found_dup_sack = false;
1603 int i, j;
1604 int first_sack_index;
1605
1606 state->flag = 0;
1607 state->reord = tp->packets_out;
1608
1609 if (!tp->sacked_out) {
1610 if (WARN_ON(tp->fackets_out))
1611 tp->fackets_out = 0;
1612 tcp_highest_sack_reset(sk);
1613 }
1614
1615 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1616 num_sacks, prior_snd_una);
1617 if (found_dup_sack)
1618 state->flag |= FLAG_DSACKING_ACK;
1619
1620 /* Eliminate too old ACKs, but take into
1621 * account more or less fresh ones, they can
1622 * contain valid SACK info.
1623 */
1624 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1625 return 0;
1626
1627 if (!tp->packets_out)
1628 goto out;
1629
1630 used_sacks = 0;
1631 first_sack_index = 0;
1632 for (i = 0; i < num_sacks; i++) {
1633 bool dup_sack = !i && found_dup_sack;
1634
1635 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1636 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1637
1638 if (!tcp_is_sackblock_valid(tp, dup_sack,
1639 sp[used_sacks].start_seq,
1640 sp[used_sacks].end_seq)) {
1641 int mib_idx;
1642
1643 if (dup_sack) {
1644 if (!tp->undo_marker)
1645 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1646 else
1647 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1648 } else {
1649 /* Don't count olds caused by ACK reordering */
1650 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1651 !after(sp[used_sacks].end_seq, tp->snd_una))
1652 continue;
1653 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1654 }
1655
1656 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1657 if (i == 0)
1658 first_sack_index = -1;
1659 continue;
1660 }
1661
1662 /* Ignore very old stuff early */
1663 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1664 continue;
1665
1666 used_sacks++;
1667 }
1668
1669 /* order SACK blocks to allow in order walk of the retrans queue */
1670 for (i = used_sacks - 1; i > 0; i--) {
1671 for (j = 0; j < i; j++) {
1672 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1673 swap(sp[j], sp[j + 1]);
1674
1675 /* Track where the first SACK block goes to */
1676 if (j == first_sack_index)
1677 first_sack_index = j + 1;
1678 }
1679 }
1680 }
1681
1682 skb = tcp_write_queue_head(sk);
1683 state->fack_count = 0;
1684 i = 0;
1685
1686 if (!tp->sacked_out) {
1687 /* It's already past, so skip checking against it */
1688 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1689 } else {
1690 cache = tp->recv_sack_cache;
1691 /* Skip empty blocks in at head of the cache */
1692 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1693 !cache->end_seq)
1694 cache++;
1695 }
1696
1697 while (i < used_sacks) {
1698 u32 start_seq = sp[i].start_seq;
1699 u32 end_seq = sp[i].end_seq;
1700 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1701 struct tcp_sack_block *next_dup = NULL;
1702
1703 if (found_dup_sack && ((i + 1) == first_sack_index))
1704 next_dup = &sp[i + 1];
1705
1706 /* Skip too early cached blocks */
1707 while (tcp_sack_cache_ok(tp, cache) &&
1708 !before(start_seq, cache->end_seq))
1709 cache++;
1710
1711 /* Can skip some work by looking recv_sack_cache? */
1712 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1713 after(end_seq, cache->start_seq)) {
1714
1715 /* Head todo? */
1716 if (before(start_seq, cache->start_seq)) {
1717 skb = tcp_sacktag_skip(skb, sk, state,
1718 start_seq);
1719 skb = tcp_sacktag_walk(skb, sk, next_dup,
1720 state,
1721 start_seq,
1722 cache->start_seq,
1723 dup_sack);
1724 }
1725
1726 /* Rest of the block already fully processed? */
1727 if (!after(end_seq, cache->end_seq))
1728 goto advance_sp;
1729
1730 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1731 state,
1732 cache->end_seq);
1733
1734 /* ...tail remains todo... */
1735 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1736 /* ...but better entrypoint exists! */
1737 skb = tcp_highest_sack(sk);
1738 if (!skb)
1739 break;
1740 state->fack_count = tp->fackets_out;
1741 cache++;
1742 goto walk;
1743 }
1744
1745 skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1746 /* Check overlap against next cached too (past this one already) */
1747 cache++;
1748 continue;
1749 }
1750
1751 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1752 skb = tcp_highest_sack(sk);
1753 if (!skb)
1754 break;
1755 state->fack_count = tp->fackets_out;
1756 }
1757 skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1758
1759 walk:
1760 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1761 start_seq, end_seq, dup_sack);
1762
1763 advance_sp:
1764 i++;
1765 }
1766
1767 /* Clear the head of the cache sack blocks so we can skip it next time */
1768 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1769 tp->recv_sack_cache[i].start_seq = 0;
1770 tp->recv_sack_cache[i].end_seq = 0;
1771 }
1772 for (j = 0; j < used_sacks; j++)
1773 tp->recv_sack_cache[i++] = sp[j];
1774
1775 if ((state->reord < tp->fackets_out) &&
1776 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1777 tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1778
1779 tcp_verify_left_out(tp);
1780 out:
1781
1782 #if FASTRETRANS_DEBUG > 0
1783 WARN_ON((int)tp->sacked_out < 0);
1784 WARN_ON((int)tp->lost_out < 0);
1785 WARN_ON((int)tp->retrans_out < 0);
1786 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1787 #endif
1788 return state->flag;
1789 }
1790
1791 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1792 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1793 */
1794 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1795 {
1796 u32 holes;
1797
1798 holes = max(tp->lost_out, 1U);
1799 holes = min(holes, tp->packets_out);
1800
1801 if ((tp->sacked_out + holes) > tp->packets_out) {
1802 tp->sacked_out = tp->packets_out - holes;
1803 return true;
1804 }
1805 return false;
1806 }
1807
1808 /* If we receive more dupacks than we expected counting segments
1809 * in assumption of absent reordering, interpret this as reordering.
1810 * The only another reason could be bug in receiver TCP.
1811 */
1812 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1813 {
1814 struct tcp_sock *tp = tcp_sk(sk);
1815 if (tcp_limit_reno_sacked(tp))
1816 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1817 }
1818
1819 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1820
1821 static void tcp_add_reno_sack(struct sock *sk)
1822 {
1823 struct tcp_sock *tp = tcp_sk(sk);
1824 tp->sacked_out++;
1825 tcp_check_reno_reordering(sk, 0);
1826 tcp_verify_left_out(tp);
1827 }
1828
1829 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1830
1831 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1832 {
1833 struct tcp_sock *tp = tcp_sk(sk);
1834
1835 if (acked > 0) {
1836 /* One ACK acked hole. The rest eat duplicate ACKs. */
1837 if (acked - 1 >= tp->sacked_out)
1838 tp->sacked_out = 0;
1839 else
1840 tp->sacked_out -= acked - 1;
1841 }
1842 tcp_check_reno_reordering(sk, acked);
1843 tcp_verify_left_out(tp);
1844 }
1845
1846 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1847 {
1848 tp->sacked_out = 0;
1849 }
1850
1851 void tcp_clear_retrans(struct tcp_sock *tp)
1852 {
1853 tp->retrans_out = 0;
1854 tp->lost_out = 0;
1855 tp->undo_marker = 0;
1856 tp->undo_retrans = -1;
1857 tp->fackets_out = 0;
1858 tp->sacked_out = 0;
1859 }
1860
1861 static inline void tcp_init_undo(struct tcp_sock *tp)
1862 {
1863 tp->undo_marker = tp->snd_una;
1864 /* Retransmission still in flight may cause DSACKs later. */
1865 tp->undo_retrans = tp->retrans_out ? : -1;
1866 }
1867
1868 /* Enter Loss state. If we detect SACK reneging, forget all SACK information
1869 * and reset tags completely, otherwise preserve SACKs. If receiver
1870 * dropped its ofo queue, we will know this due to reneging detection.
1871 */
1872 void tcp_enter_loss(struct sock *sk)
1873 {
1874 const struct inet_connection_sock *icsk = inet_csk(sk);
1875 struct tcp_sock *tp = tcp_sk(sk);
1876 struct sk_buff *skb;
1877 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1878 bool is_reneg; /* is receiver reneging on SACKs? */
1879
1880 /* Reduce ssthresh if it has not yet been made inside this window. */
1881 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1882 !after(tp->high_seq, tp->snd_una) ||
1883 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1884 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1885 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1886 tcp_ca_event(sk, CA_EVENT_LOSS);
1887 tcp_init_undo(tp);
1888 }
1889 tp->snd_cwnd = 1;
1890 tp->snd_cwnd_cnt = 0;
1891 tp->snd_cwnd_stamp = tcp_time_stamp;
1892
1893 tp->retrans_out = 0;
1894 tp->lost_out = 0;
1895
1896 if (tcp_is_reno(tp))
1897 tcp_reset_reno_sack(tp);
1898
1899 skb = tcp_write_queue_head(sk);
1900 is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1901 if (is_reneg) {
1902 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1903 tp->sacked_out = 0;
1904 tp->fackets_out = 0;
1905 }
1906 tcp_clear_all_retrans_hints(tp);
1907
1908 tcp_for_write_queue(skb, sk) {
1909 if (skb == tcp_send_head(sk))
1910 break;
1911
1912 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1913 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1914 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1915 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1916 tp->lost_out += tcp_skb_pcount(skb);
1917 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1918 }
1919 }
1920 tcp_verify_left_out(tp);
1921
1922 /* Timeout in disordered state after receiving substantial DUPACKs
1923 * suggests that the degree of reordering is over-estimated.
1924 */
1925 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1926 tp->sacked_out >= sysctl_tcp_reordering)
1927 tp->reordering = min_t(unsigned int, tp->reordering,
1928 sysctl_tcp_reordering);
1929 tcp_set_ca_state(sk, TCP_CA_Loss);
1930 tp->high_seq = tp->snd_nxt;
1931 tcp_ecn_queue_cwr(tp);
1932
1933 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1934 * loss recovery is underway except recurring timeout(s) on
1935 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1936 */
1937 tp->frto = sysctl_tcp_frto &&
1938 (new_recovery || icsk->icsk_retransmits) &&
1939 !inet_csk(sk)->icsk_mtup.probe_size;
1940 }
1941
1942 /* If ACK arrived pointing to a remembered SACK, it means that our
1943 * remembered SACKs do not reflect real state of receiver i.e.
1944 * receiver _host_ is heavily congested (or buggy).
1945 *
1946 * To avoid big spurious retransmission bursts due to transient SACK
1947 * scoreboard oddities that look like reneging, we give the receiver a
1948 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1949 * restore sanity to the SACK scoreboard. If the apparent reneging
1950 * persists until this RTO then we'll clear the SACK scoreboard.
1951 */
1952 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1953 {
1954 if (flag & FLAG_SACK_RENEGING) {
1955 struct tcp_sock *tp = tcp_sk(sk);
1956 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1957 msecs_to_jiffies(10));
1958
1959 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1960 delay, TCP_RTO_MAX);
1961 return true;
1962 }
1963 return false;
1964 }
1965
1966 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1967 {
1968 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1969 }
1970
1971 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1972 * counter when SACK is enabled (without SACK, sacked_out is used for
1973 * that purpose).
1974 *
1975 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1976 * segments up to the highest received SACK block so far and holes in
1977 * between them.
1978 *
1979 * With reordering, holes may still be in flight, so RFC3517 recovery
1980 * uses pure sacked_out (total number of SACKed segments) even though
1981 * it violates the RFC that uses duplicate ACKs, often these are equal
1982 * but when e.g. out-of-window ACKs or packet duplication occurs,
1983 * they differ. Since neither occurs due to loss, TCP should really
1984 * ignore them.
1985 */
1986 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1987 {
1988 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1989 }
1990
1991 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1992 {
1993 struct tcp_sock *tp = tcp_sk(sk);
1994 unsigned long delay;
1995
1996 /* Delay early retransmit and entering fast recovery for
1997 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1998 * available, or RTO is scheduled to fire first.
1999 */
2000 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2001 (flag & FLAG_ECE) || !tp->srtt_us)
2002 return false;
2003
2004 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2005 msecs_to_jiffies(2));
2006
2007 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2008 return false;
2009
2010 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2011 TCP_RTO_MAX);
2012 return true;
2013 }
2014
2015 /* Linux NewReno/SACK/FACK/ECN state machine.
2016 * --------------------------------------
2017 *
2018 * "Open" Normal state, no dubious events, fast path.
2019 * "Disorder" In all the respects it is "Open",
2020 * but requires a bit more attention. It is entered when
2021 * we see some SACKs or dupacks. It is split of "Open"
2022 * mainly to move some processing from fast path to slow one.
2023 * "CWR" CWND was reduced due to some Congestion Notification event.
2024 * It can be ECN, ICMP source quench, local device congestion.
2025 * "Recovery" CWND was reduced, we are fast-retransmitting.
2026 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2027 *
2028 * tcp_fastretrans_alert() is entered:
2029 * - each incoming ACK, if state is not "Open"
2030 * - when arrived ACK is unusual, namely:
2031 * * SACK
2032 * * Duplicate ACK.
2033 * * ECN ECE.
2034 *
2035 * Counting packets in flight is pretty simple.
2036 *
2037 * in_flight = packets_out - left_out + retrans_out
2038 *
2039 * packets_out is SND.NXT-SND.UNA counted in packets.
2040 *
2041 * retrans_out is number of retransmitted segments.
2042 *
2043 * left_out is number of segments left network, but not ACKed yet.
2044 *
2045 * left_out = sacked_out + lost_out
2046 *
2047 * sacked_out: Packets, which arrived to receiver out of order
2048 * and hence not ACKed. With SACKs this number is simply
2049 * amount of SACKed data. Even without SACKs
2050 * it is easy to give pretty reliable estimate of this number,
2051 * counting duplicate ACKs.
2052 *
2053 * lost_out: Packets lost by network. TCP has no explicit
2054 * "loss notification" feedback from network (for now).
2055 * It means that this number can be only _guessed_.
2056 * Actually, it is the heuristics to predict lossage that
2057 * distinguishes different algorithms.
2058 *
2059 * F.e. after RTO, when all the queue is considered as lost,
2060 * lost_out = packets_out and in_flight = retrans_out.
2061 *
2062 * Essentially, we have now two algorithms counting
2063 * lost packets.
2064 *
2065 * FACK: It is the simplest heuristics. As soon as we decided
2066 * that something is lost, we decide that _all_ not SACKed
2067 * packets until the most forward SACK are lost. I.e.
2068 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2069 * It is absolutely correct estimate, if network does not reorder
2070 * packets. And it loses any connection to reality when reordering
2071 * takes place. We use FACK by default until reordering
2072 * is suspected on the path to this destination.
2073 *
2074 * NewReno: when Recovery is entered, we assume that one segment
2075 * is lost (classic Reno). While we are in Recovery and
2076 * a partial ACK arrives, we assume that one more packet
2077 * is lost (NewReno). This heuristics are the same in NewReno
2078 * and SACK.
2079 *
2080 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2081 * deflation etc. CWND is real congestion window, never inflated, changes
2082 * only according to classic VJ rules.
2083 *
2084 * Really tricky (and requiring careful tuning) part of algorithm
2085 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2086 * The first determines the moment _when_ we should reduce CWND and,
2087 * hence, slow down forward transmission. In fact, it determines the moment
2088 * when we decide that hole is caused by loss, rather than by a reorder.
2089 *
2090 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2091 * holes, caused by lost packets.
2092 *
2093 * And the most logically complicated part of algorithm is undo
2094 * heuristics. We detect false retransmits due to both too early
2095 * fast retransmit (reordering) and underestimated RTO, analyzing
2096 * timestamps and D-SACKs. When we detect that some segments were
2097 * retransmitted by mistake and CWND reduction was wrong, we undo
2098 * window reduction and abort recovery phase. This logic is hidden
2099 * inside several functions named tcp_try_undo_<something>.
2100 */
2101
2102 /* This function decides, when we should leave Disordered state
2103 * and enter Recovery phase, reducing congestion window.
2104 *
2105 * Main question: may we further continue forward transmission
2106 * with the same cwnd?
2107 */
2108 static bool tcp_time_to_recover(struct sock *sk, int flag)
2109 {
2110 struct tcp_sock *tp = tcp_sk(sk);
2111 __u32 packets_out;
2112
2113 /* Trick#1: The loss is proven. */
2114 if (tp->lost_out)
2115 return true;
2116
2117 /* Not-A-Trick#2 : Classic rule... */
2118 if (tcp_dupack_heuristics(tp) > tp->reordering)
2119 return true;
2120
2121 /* Trick#4: It is still not OK... But will it be useful to delay
2122 * recovery more?
2123 */
2124 packets_out = tp->packets_out;
2125 if (packets_out <= tp->reordering &&
2126 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2127 !tcp_may_send_now(sk)) {
2128 /* We have nothing to send. This connection is limited
2129 * either by receiver window or by application.
2130 */
2131 return true;
2132 }
2133
2134 /* If a thin stream is detected, retransmit after first
2135 * received dupack. Employ only if SACK is supported in order
2136 * to avoid possible corner-case series of spurious retransmissions
2137 * Use only if there are no unsent data.
2138 */
2139 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2140 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2141 tcp_is_sack(tp) && !tcp_send_head(sk))
2142 return true;
2143
2144 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2145 * retransmissions due to small network reorderings, we implement
2146 * Mitigation A.3 in the RFC and delay the retransmission for a short
2147 * interval if appropriate.
2148 */
2149 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2150 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2151 !tcp_may_send_now(sk))
2152 return !tcp_pause_early_retransmit(sk, flag);
2153
2154 return false;
2155 }
2156
2157 /* Detect loss in event "A" above by marking head of queue up as lost.
2158 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2159 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2160 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2161 * the maximum SACKed segments to pass before reaching this limit.
2162 */
2163 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2164 {
2165 struct tcp_sock *tp = tcp_sk(sk);
2166 struct sk_buff *skb;
2167 int cnt, oldcnt, lost;
2168 unsigned int mss;
2169 /* Use SACK to deduce losses of new sequences sent during recovery */
2170 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2171
2172 WARN_ON(packets > tp->packets_out);
2173 if (tp->lost_skb_hint) {
2174 skb = tp->lost_skb_hint;
2175 cnt = tp->lost_cnt_hint;
2176 /* Head already handled? */
2177 if (mark_head && skb != tcp_write_queue_head(sk))
2178 return;
2179 } else {
2180 skb = tcp_write_queue_head(sk);
2181 cnt = 0;
2182 }
2183
2184 tcp_for_write_queue_from(skb, sk) {
2185 if (skb == tcp_send_head(sk))
2186 break;
2187 /* TODO: do this better */
2188 /* this is not the most efficient way to do this... */
2189 tp->lost_skb_hint = skb;
2190 tp->lost_cnt_hint = cnt;
2191
2192 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2193 break;
2194
2195 oldcnt = cnt;
2196 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2197 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2198 cnt += tcp_skb_pcount(skb);
2199
2200 if (cnt > packets) {
2201 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2202 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2203 (oldcnt >= packets))
2204 break;
2205
2206 mss = tcp_skb_mss(skb);
2207 /* If needed, chop off the prefix to mark as lost. */
2208 lost = (packets - oldcnt) * mss;
2209 if (lost < skb->len &&
2210 tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2211 break;
2212 cnt = packets;
2213 }
2214
2215 tcp_skb_mark_lost(tp, skb);
2216
2217 if (mark_head)
2218 break;
2219 }
2220 tcp_verify_left_out(tp);
2221 }
2222
2223 /* Account newly detected lost packet(s) */
2224
2225 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2226 {
2227 struct tcp_sock *tp = tcp_sk(sk);
2228
2229 if (tcp_is_reno(tp)) {
2230 tcp_mark_head_lost(sk, 1, 1);
2231 } else if (tcp_is_fack(tp)) {
2232 int lost = tp->fackets_out - tp->reordering;
2233 if (lost <= 0)
2234 lost = 1;
2235 tcp_mark_head_lost(sk, lost, 0);
2236 } else {
2237 int sacked_upto = tp->sacked_out - tp->reordering;
2238 if (sacked_upto >= 0)
2239 tcp_mark_head_lost(sk, sacked_upto, 0);
2240 else if (fast_rexmit)
2241 tcp_mark_head_lost(sk, 1, 1);
2242 }
2243 }
2244
2245 /* CWND moderation, preventing bursts due to too big ACKs
2246 * in dubious situations.
2247 */
2248 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2249 {
2250 tp->snd_cwnd = min(tp->snd_cwnd,
2251 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2252 tp->snd_cwnd_stamp = tcp_time_stamp;
2253 }
2254
2255 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2256 {
2257 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2258 before(tp->rx_opt.rcv_tsecr, when);
2259 }
2260
2261 /* skb is spurious retransmitted if the returned timestamp echo
2262 * reply is prior to the skb transmission time
2263 */
2264 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2265 const struct sk_buff *skb)
2266 {
2267 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2268 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2269 }
2270
2271 /* Nothing was retransmitted or returned timestamp is less
2272 * than timestamp of the first retransmission.
2273 */
2274 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2275 {
2276 return !tp->retrans_stamp ||
2277 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2278 }
2279
2280 /* Undo procedures. */
2281
2282 /* We can clear retrans_stamp when there are no retransmissions in the
2283 * window. It would seem that it is trivially available for us in
2284 * tp->retrans_out, however, that kind of assumptions doesn't consider
2285 * what will happen if errors occur when sending retransmission for the
2286 * second time. ...It could the that such segment has only
2287 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2288 * the head skb is enough except for some reneging corner cases that
2289 * are not worth the effort.
2290 *
2291 * Main reason for all this complexity is the fact that connection dying
2292 * time now depends on the validity of the retrans_stamp, in particular,
2293 * that successive retransmissions of a segment must not advance
2294 * retrans_stamp under any conditions.
2295 */
2296 static bool tcp_any_retrans_done(const struct sock *sk)
2297 {
2298 const struct tcp_sock *tp = tcp_sk(sk);
2299 struct sk_buff *skb;
2300
2301 if (tp->retrans_out)
2302 return true;
2303
2304 skb = tcp_write_queue_head(sk);
2305 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2306 return true;
2307
2308 return false;
2309 }
2310
2311 #if FASTRETRANS_DEBUG > 1
2312 static void DBGUNDO(struct sock *sk, const char *msg)
2313 {
2314 struct tcp_sock *tp = tcp_sk(sk);
2315 struct inet_sock *inet = inet_sk(sk);
2316
2317 if (sk->sk_family == AF_INET) {
2318 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2319 msg,
2320 &inet->inet_daddr, ntohs(inet->inet_dport),
2321 tp->snd_cwnd, tcp_left_out(tp),
2322 tp->snd_ssthresh, tp->prior_ssthresh,
2323 tp->packets_out);
2324 }
2325 #if IS_ENABLED(CONFIG_IPV6)
2326 else if (sk->sk_family == AF_INET6) {
2327 struct ipv6_pinfo *np = inet6_sk(sk);
2328 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2329 msg,
2330 &np->daddr, ntohs(inet->inet_dport),
2331 tp->snd_cwnd, tcp_left_out(tp),
2332 tp->snd_ssthresh, tp->prior_ssthresh,
2333 tp->packets_out);
2334 }
2335 #endif
2336 }
2337 #else
2338 #define DBGUNDO(x...) do { } while (0)
2339 #endif
2340
2341 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2342 {
2343 struct tcp_sock *tp = tcp_sk(sk);
2344
2345 if (unmark_loss) {
2346 struct sk_buff *skb;
2347
2348 tcp_for_write_queue(skb, sk) {
2349 if (skb == tcp_send_head(sk))
2350 break;
2351 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2352 }
2353 tp->lost_out = 0;
2354 tcp_clear_all_retrans_hints(tp);
2355 }
2356
2357 if (tp->prior_ssthresh) {
2358 const struct inet_connection_sock *icsk = inet_csk(sk);
2359
2360 if (icsk->icsk_ca_ops->undo_cwnd)
2361 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2362 else
2363 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2364
2365 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2366 tp->snd_ssthresh = tp->prior_ssthresh;
2367 tcp_ecn_withdraw_cwr(tp);
2368 }
2369 }
2370 tp->snd_cwnd_stamp = tcp_time_stamp;
2371 tp->undo_marker = 0;
2372 }
2373
2374 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2375 {
2376 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2377 }
2378
2379 /* People celebrate: "We love our President!" */
2380 static bool tcp_try_undo_recovery(struct sock *sk)
2381 {
2382 struct tcp_sock *tp = tcp_sk(sk);
2383
2384 if (tcp_may_undo(tp)) {
2385 int mib_idx;
2386
2387 /* Happy end! We did not retransmit anything
2388 * or our original transmission succeeded.
2389 */
2390 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2391 tcp_undo_cwnd_reduction(sk, false);
2392 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2393 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2394 else
2395 mib_idx = LINUX_MIB_TCPFULLUNDO;
2396
2397 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2398 }
2399 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2400 /* Hold old state until something *above* high_seq
2401 * is ACKed. For Reno it is MUST to prevent false
2402 * fast retransmits (RFC2582). SACK TCP is safe. */
2403 tcp_moderate_cwnd(tp);
2404 if (!tcp_any_retrans_done(sk))
2405 tp->retrans_stamp = 0;
2406 return true;
2407 }
2408 tcp_set_ca_state(sk, TCP_CA_Open);
2409 return false;
2410 }
2411
2412 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2413 static bool tcp_try_undo_dsack(struct sock *sk)
2414 {
2415 struct tcp_sock *tp = tcp_sk(sk);
2416
2417 if (tp->undo_marker && !tp->undo_retrans) {
2418 DBGUNDO(sk, "D-SACK");
2419 tcp_undo_cwnd_reduction(sk, false);
2420 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2421 return true;
2422 }
2423 return false;
2424 }
2425
2426 /* Undo during loss recovery after partial ACK or using F-RTO. */
2427 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2428 {
2429 struct tcp_sock *tp = tcp_sk(sk);
2430
2431 if (frto_undo || tcp_may_undo(tp)) {
2432 tcp_undo_cwnd_reduction(sk, true);
2433
2434 DBGUNDO(sk, "partial loss");
2435 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2436 if (frto_undo)
2437 NET_INC_STATS_BH(sock_net(sk),
2438 LINUX_MIB_TCPSPURIOUSRTOS);
2439 inet_csk(sk)->icsk_retransmits = 0;
2440 if (frto_undo || tcp_is_sack(tp))
2441 tcp_set_ca_state(sk, TCP_CA_Open);
2442 return true;
2443 }
2444 return false;
2445 }
2446
2447 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2448 * It computes the number of packets to send (sndcnt) based on packets newly
2449 * delivered:
2450 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2451 * cwnd reductions across a full RTT.
2452 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2453 * But when the retransmits are acked without further losses, PRR
2454 * slow starts cwnd up to ssthresh to speed up the recovery.
2455 */
2456 static void tcp_init_cwnd_reduction(struct sock *sk)
2457 {
2458 struct tcp_sock *tp = tcp_sk(sk);
2459
2460 tp->high_seq = tp->snd_nxt;
2461 tp->tlp_high_seq = 0;
2462 tp->snd_cwnd_cnt = 0;
2463 tp->prior_cwnd = tp->snd_cwnd;
2464 tp->prr_delivered = 0;
2465 tp->prr_out = 0;
2466 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2467 tcp_ecn_queue_cwr(tp);
2468 }
2469
2470 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2471 int fast_rexmit, int flag)
2472 {
2473 struct tcp_sock *tp = tcp_sk(sk);
2474 int sndcnt = 0;
2475 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2476 int newly_acked_sacked = prior_unsacked -
2477 (tp->packets_out - tp->sacked_out);
2478
2479 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2480 return;
2481
2482 tp->prr_delivered += newly_acked_sacked;
2483 if (delta < 0) {
2484 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2485 tp->prior_cwnd - 1;
2486 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2487 } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2488 !(flag & FLAG_LOST_RETRANS)) {
2489 sndcnt = min_t(int, delta,
2490 max_t(int, tp->prr_delivered - tp->prr_out,
2491 newly_acked_sacked) + 1);
2492 } else {
2493 sndcnt = min(delta, newly_acked_sacked);
2494 }
2495 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2496 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2497 }
2498
2499 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2500 {
2501 struct tcp_sock *tp = tcp_sk(sk);
2502
2503 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2504 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2505 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2506 tp->snd_cwnd = tp->snd_ssthresh;
2507 tp->snd_cwnd_stamp = tcp_time_stamp;
2508 }
2509 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2510 }
2511
2512 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2513 void tcp_enter_cwr(struct sock *sk)
2514 {
2515 struct tcp_sock *tp = tcp_sk(sk);
2516
2517 tp->prior_ssthresh = 0;
2518 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2519 tp->undo_marker = 0;
2520 tcp_init_cwnd_reduction(sk);
2521 tcp_set_ca_state(sk, TCP_CA_CWR);
2522 }
2523 }
2524 EXPORT_SYMBOL(tcp_enter_cwr);
2525
2526 static void tcp_try_keep_open(struct sock *sk)
2527 {
2528 struct tcp_sock *tp = tcp_sk(sk);
2529 int state = TCP_CA_Open;
2530
2531 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2532 state = TCP_CA_Disorder;
2533
2534 if (inet_csk(sk)->icsk_ca_state != state) {
2535 tcp_set_ca_state(sk, state);
2536 tp->high_seq = tp->snd_nxt;
2537 }
2538 }
2539
2540 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2541 {
2542 struct tcp_sock *tp = tcp_sk(sk);
2543
2544 tcp_verify_left_out(tp);
2545
2546 if (!tcp_any_retrans_done(sk))
2547 tp->retrans_stamp = 0;
2548
2549 if (flag & FLAG_ECE)
2550 tcp_enter_cwr(sk);
2551
2552 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2553 tcp_try_keep_open(sk);
2554 } else {
2555 tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
2556 }
2557 }
2558
2559 static void tcp_mtup_probe_failed(struct sock *sk)
2560 {
2561 struct inet_connection_sock *icsk = inet_csk(sk);
2562
2563 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2564 icsk->icsk_mtup.probe_size = 0;
2565 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2566 }
2567
2568 static void tcp_mtup_probe_success(struct sock *sk)
2569 {
2570 struct tcp_sock *tp = tcp_sk(sk);
2571 struct inet_connection_sock *icsk = inet_csk(sk);
2572
2573 /* FIXME: breaks with very large cwnd */
2574 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2575 tp->snd_cwnd = tp->snd_cwnd *
2576 tcp_mss_to_mtu(sk, tp->mss_cache) /
2577 icsk->icsk_mtup.probe_size;
2578 tp->snd_cwnd_cnt = 0;
2579 tp->snd_cwnd_stamp = tcp_time_stamp;
2580 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2581
2582 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2583 icsk->icsk_mtup.probe_size = 0;
2584 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2585 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2586 }
2587
2588 /* Do a simple retransmit without using the backoff mechanisms in
2589 * tcp_timer. This is used for path mtu discovery.
2590 * The socket is already locked here.
2591 */
2592 void tcp_simple_retransmit(struct sock *sk)
2593 {
2594 const struct inet_connection_sock *icsk = inet_csk(sk);
2595 struct tcp_sock *tp = tcp_sk(sk);
2596 struct sk_buff *skb;
2597 unsigned int mss = tcp_current_mss(sk);
2598 u32 prior_lost = tp->lost_out;
2599
2600 tcp_for_write_queue(skb, sk) {
2601 if (skb == tcp_send_head(sk))
2602 break;
2603 if (tcp_skb_seglen(skb) > mss &&
2604 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2605 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2606 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2607 tp->retrans_out -= tcp_skb_pcount(skb);
2608 }
2609 tcp_skb_mark_lost_uncond_verify(tp, skb);
2610 }
2611 }
2612
2613 tcp_clear_retrans_hints_partial(tp);
2614
2615 if (prior_lost == tp->lost_out)
2616 return;
2617
2618 if (tcp_is_reno(tp))
2619 tcp_limit_reno_sacked(tp);
2620
2621 tcp_verify_left_out(tp);
2622
2623 /* Don't muck with the congestion window here.
2624 * Reason is that we do not increase amount of _data_
2625 * in network, but units changed and effective
2626 * cwnd/ssthresh really reduced now.
2627 */
2628 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2629 tp->high_seq = tp->snd_nxt;
2630 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2631 tp->prior_ssthresh = 0;
2632 tp->undo_marker = 0;
2633 tcp_set_ca_state(sk, TCP_CA_Loss);
2634 }
2635 tcp_xmit_retransmit_queue(sk);
2636 }
2637 EXPORT_SYMBOL(tcp_simple_retransmit);
2638
2639 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2640 {
2641 struct tcp_sock *tp = tcp_sk(sk);
2642 int mib_idx;
2643
2644 if (tcp_is_reno(tp))
2645 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2646 else
2647 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2648
2649 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2650
2651 tp->prior_ssthresh = 0;
2652 tcp_init_undo(tp);
2653
2654 if (!tcp_in_cwnd_reduction(sk)) {
2655 if (!ece_ack)
2656 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2657 tcp_init_cwnd_reduction(sk);
2658 }
2659 tcp_set_ca_state(sk, TCP_CA_Recovery);
2660 }
2661
2662 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2663 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2664 */
2665 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2666 {
2667 struct tcp_sock *tp = tcp_sk(sk);
2668 bool recovered = !before(tp->snd_una, tp->high_seq);
2669
2670 if ((flag & FLAG_SND_UNA_ADVANCED) &&
2671 tcp_try_undo_loss(sk, false))
2672 return;
2673
2674 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2675 /* Step 3.b. A timeout is spurious if not all data are
2676 * lost, i.e., never-retransmitted data are (s)acked.
2677 */
2678 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2679 tcp_try_undo_loss(sk, true))
2680 return;
2681
2682 if (after(tp->snd_nxt, tp->high_seq)) {
2683 if (flag & FLAG_DATA_SACKED || is_dupack)
2684 tp->frto = 0; /* Step 3.a. loss was real */
2685 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2686 tp->high_seq = tp->snd_nxt;
2687 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2688 TCP_NAGLE_OFF);
2689 if (after(tp->snd_nxt, tp->high_seq))
2690 return; /* Step 2.b */
2691 tp->frto = 0;
2692 }
2693 }
2694
2695 if (recovered) {
2696 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2697 tcp_try_undo_recovery(sk);
2698 return;
2699 }
2700 if (tcp_is_reno(tp)) {
2701 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2702 * delivered. Lower inflight to clock out (re)tranmissions.
2703 */
2704 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2705 tcp_add_reno_sack(sk);
2706 else if (flag & FLAG_SND_UNA_ADVANCED)
2707 tcp_reset_reno_sack(tp);
2708 }
2709 tcp_xmit_retransmit_queue(sk);
2710 }
2711
2712 /* Undo during fast recovery after partial ACK. */
2713 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2714 const int prior_unsacked, int flag)
2715 {
2716 struct tcp_sock *tp = tcp_sk(sk);
2717
2718 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2719 /* Plain luck! Hole if filled with delayed
2720 * packet, rather than with a retransmit.
2721 */
2722 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2723
2724 /* We are getting evidence that the reordering degree is higher
2725 * than we realized. If there are no retransmits out then we
2726 * can undo. Otherwise we clock out new packets but do not
2727 * mark more packets lost or retransmit more.
2728 */
2729 if (tp->retrans_out) {
2730 tcp_cwnd_reduction(sk, prior_unsacked, 0, flag);
2731 return true;
2732 }
2733
2734 if (!tcp_any_retrans_done(sk))
2735 tp->retrans_stamp = 0;
2736
2737 DBGUNDO(sk, "partial recovery");
2738 tcp_undo_cwnd_reduction(sk, true);
2739 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2740 tcp_try_keep_open(sk);
2741 return true;
2742 }
2743 return false;
2744 }
2745
2746 /* Process an event, which can update packets-in-flight not trivially.
2747 * Main goal of this function is to calculate new estimate for left_out,
2748 * taking into account both packets sitting in receiver's buffer and
2749 * packets lost by network.
2750 *
2751 * Besides that it does CWND reduction, when packet loss is detected
2752 * and changes state of machine.
2753 *
2754 * It does _not_ decide what to send, it is made in function
2755 * tcp_xmit_retransmit_queue().
2756 */
2757 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2758 const int prior_unsacked,
2759 bool is_dupack, int flag)
2760 {
2761 struct inet_connection_sock *icsk = inet_csk(sk);
2762 struct tcp_sock *tp = tcp_sk(sk);
2763 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2764 (tcp_fackets_out(tp) > tp->reordering));
2765 int fast_rexmit = 0;
2766
2767 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2768 tp->sacked_out = 0;
2769 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2770 tp->fackets_out = 0;
2771
2772 /* Now state machine starts.
2773 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2774 if (flag & FLAG_ECE)
2775 tp->prior_ssthresh = 0;
2776
2777 /* B. In all the states check for reneging SACKs. */
2778 if (tcp_check_sack_reneging(sk, flag))
2779 return;
2780
2781 /* C. Check consistency of the current state. */
2782 tcp_verify_left_out(tp);
2783
2784 /* D. Check state exit conditions. State can be terminated
2785 * when high_seq is ACKed. */
2786 if (icsk->icsk_ca_state == TCP_CA_Open) {
2787 WARN_ON(tp->retrans_out != 0);
2788 tp->retrans_stamp = 0;
2789 } else if (!before(tp->snd_una, tp->high_seq)) {
2790 switch (icsk->icsk_ca_state) {
2791 case TCP_CA_CWR:
2792 /* CWR is to be held something *above* high_seq
2793 * is ACKed for CWR bit to reach receiver. */
2794 if (tp->snd_una != tp->high_seq) {
2795 tcp_end_cwnd_reduction(sk);
2796 tcp_set_ca_state(sk, TCP_CA_Open);
2797 }
2798 break;
2799
2800 case TCP_CA_Recovery:
2801 if (tcp_is_reno(tp))
2802 tcp_reset_reno_sack(tp);
2803 if (tcp_try_undo_recovery(sk))
2804 return;
2805 tcp_end_cwnd_reduction(sk);
2806 break;
2807 }
2808 }
2809
2810 /* Use RACK to detect loss */
2811 if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2812 tcp_rack_mark_lost(sk))
2813 flag |= FLAG_LOST_RETRANS;
2814
2815 /* E. Process state. */
2816 switch (icsk->icsk_ca_state) {
2817 case TCP_CA_Recovery:
2818 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2819 if (tcp_is_reno(tp) && is_dupack)
2820 tcp_add_reno_sack(sk);
2821 } else {
2822 if (tcp_try_undo_partial(sk, acked, prior_unsacked, flag))
2823 return;
2824 /* Partial ACK arrived. Force fast retransmit. */
2825 do_lost = tcp_is_reno(tp) ||
2826 tcp_fackets_out(tp) > tp->reordering;
2827 }
2828 if (tcp_try_undo_dsack(sk)) {
2829 tcp_try_keep_open(sk);
2830 return;
2831 }
2832 break;
2833 case TCP_CA_Loss:
2834 tcp_process_loss(sk, flag, is_dupack);
2835 if (icsk->icsk_ca_state != TCP_CA_Open &&
2836 !(flag & FLAG_LOST_RETRANS))
2837 return;
2838 /* Change state if cwnd is undone or retransmits are lost */
2839 default:
2840 if (tcp_is_reno(tp)) {
2841 if (flag & FLAG_SND_UNA_ADVANCED)
2842 tcp_reset_reno_sack(tp);
2843 if (is_dupack)
2844 tcp_add_reno_sack(sk);
2845 }
2846
2847 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2848 tcp_try_undo_dsack(sk);
2849
2850 if (!tcp_time_to_recover(sk, flag)) {
2851 tcp_try_to_open(sk, flag, prior_unsacked);
2852 return;
2853 }
2854
2855 /* MTU probe failure: don't reduce cwnd */
2856 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2857 icsk->icsk_mtup.probe_size &&
2858 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2859 tcp_mtup_probe_failed(sk);
2860 /* Restores the reduction we did in tcp_mtup_probe() */
2861 tp->snd_cwnd++;
2862 tcp_simple_retransmit(sk);
2863 return;
2864 }
2865
2866 /* Otherwise enter Recovery state */
2867 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2868 fast_rexmit = 1;
2869 }
2870
2871 if (do_lost)
2872 tcp_update_scoreboard(sk, fast_rexmit);
2873 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit, flag);
2874 tcp_xmit_retransmit_queue(sk);
2875 }
2876
2877 /* Kathleen Nichols' algorithm for tracking the minimum value of
2878 * a data stream over some fixed time interval. (E.g., the minimum
2879 * RTT over the past five minutes.) It uses constant space and constant
2880 * time per update yet almost always delivers the same minimum as an
2881 * implementation that has to keep all the data in the window.
2882 *
2883 * The algorithm keeps track of the best, 2nd best & 3rd best min
2884 * values, maintaining an invariant that the measurement time of the
2885 * n'th best >= n-1'th best. It also makes sure that the three values
2886 * are widely separated in the time window since that bounds the worse
2887 * case error when that data is monotonically increasing over the window.
2888 *
2889 * Upon getting a new min, we can forget everything earlier because it
2890 * has no value - the new min is <= everything else in the window by
2891 * definition and it's the most recent. So we restart fresh on every new min
2892 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2893 * best.
2894 */
2895 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2896 {
2897 const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2898 struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2899 struct rtt_meas rttm = { .rtt = (rtt_us ? : 1), .ts = now };
2900 u32 elapsed;
2901
2902 /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2903 if (unlikely(rttm.rtt <= m[0].rtt))
2904 m[0] = m[1] = m[2] = rttm;
2905 else if (rttm.rtt <= m[1].rtt)
2906 m[1] = m[2] = rttm;
2907 else if (rttm.rtt <= m[2].rtt)
2908 m[2] = rttm;
2909
2910 elapsed = now - m[0].ts;
2911 if (unlikely(elapsed > wlen)) {
2912 /* Passed entire window without a new min so make 2nd choice
2913 * the new min & 3rd choice the new 2nd. So forth and so on.
2914 */
2915 m[0] = m[1];
2916 m[1] = m[2];
2917 m[2] = rttm;
2918 if (now - m[0].ts > wlen) {
2919 m[0] = m[1];
2920 m[1] = rttm;
2921 if (now - m[0].ts > wlen)
2922 m[0] = rttm;
2923 }
2924 } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2925 /* Passed a quarter of the window without a new min so
2926 * take 2nd choice from the 2nd quarter of the window.
2927 */
2928 m[2] = m[1] = rttm;
2929 } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2930 /* Passed half the window without a new min so take the 3rd
2931 * choice from the last half of the window.
2932 */
2933 m[2] = rttm;
2934 }
2935 }
2936
2937 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2938 long seq_rtt_us, long sack_rtt_us,
2939 long ca_rtt_us)
2940 {
2941 const struct tcp_sock *tp = tcp_sk(sk);
2942
2943 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2944 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2945 * Karn's algorithm forbids taking RTT if some retransmitted data
2946 * is acked (RFC6298).
2947 */
2948 if (seq_rtt_us < 0)
2949 seq_rtt_us = sack_rtt_us;
2950
2951 /* RTTM Rule: A TSecr value received in a segment is used to
2952 * update the averaged RTT measurement only if the segment
2953 * acknowledges some new data, i.e., only if it advances the
2954 * left edge of the send window.
2955 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2956 */
2957 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2958 flag & FLAG_ACKED)
2959 seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2960 tp->rx_opt.rcv_tsecr);
2961 if (seq_rtt_us < 0)
2962 return false;
2963
2964 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2965 * always taken together with ACK, SACK, or TS-opts. Any negative
2966 * values will be skipped with the seq_rtt_us < 0 check above.
2967 */
2968 tcp_update_rtt_min(sk, ca_rtt_us);
2969 tcp_rtt_estimator(sk, seq_rtt_us);
2970 tcp_set_rto(sk);
2971
2972 /* RFC6298: only reset backoff on valid RTT measurement. */
2973 inet_csk(sk)->icsk_backoff = 0;
2974 return true;
2975 }
2976
2977 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2978 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2979 {
2980 long rtt_us = -1L;
2981
2982 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2983 struct skb_mstamp now;
2984
2985 skb_mstamp_get(&now);
2986 rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2987 }
2988
2989 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2990 }
2991
2992
2993 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2994 {
2995 const struct inet_connection_sock *icsk = inet_csk(sk);
2996
2997 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2998 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2999 }
3000
3001 /* Restart timer after forward progress on connection.
3002 * RFC2988 recommends to restart timer to now+rto.
3003 */
3004 void tcp_rearm_rto(struct sock *sk)
3005 {
3006 const struct inet_connection_sock *icsk = inet_csk(sk);
3007 struct tcp_sock *tp = tcp_sk(sk);
3008
3009 /* If the retrans timer is currently being used by Fast Open
3010 * for SYN-ACK retrans purpose, stay put.
3011 */
3012 if (tp->fastopen_rsk)
3013 return;
3014
3015 if (!tp->packets_out) {
3016 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3017 } else {
3018 u32 rto = inet_csk(sk)->icsk_rto;
3019 /* Offset the time elapsed after installing regular RTO */
3020 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3021 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3022 struct sk_buff *skb = tcp_write_queue_head(sk);
3023 const u32 rto_time_stamp =
3024 tcp_skb_timestamp(skb) + rto;
3025 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3026 /* delta may not be positive if the socket is locked
3027 * when the retrans timer fires and is rescheduled.
3028 */
3029 if (delta > 0)
3030 rto = delta;
3031 }
3032 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3033 TCP_RTO_MAX);
3034 }
3035 }
3036
3037 /* This function is called when the delayed ER timer fires. TCP enters
3038 * fast recovery and performs fast-retransmit.
3039 */
3040 void tcp_resume_early_retransmit(struct sock *sk)
3041 {
3042 struct tcp_sock *tp = tcp_sk(sk);
3043
3044 tcp_rearm_rto(sk);
3045
3046 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3047 if (!tp->do_early_retrans)
3048 return;
3049
3050 tcp_enter_recovery(sk, false);
3051 tcp_update_scoreboard(sk, 1);
3052 tcp_xmit_retransmit_queue(sk);
3053 }
3054
3055 /* If we get here, the whole TSO packet has not been acked. */
3056 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3057 {
3058 struct tcp_sock *tp = tcp_sk(sk);
3059 u32 packets_acked;
3060
3061 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3062
3063 packets_acked = tcp_skb_pcount(skb);
3064 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3065 return 0;
3066 packets_acked -= tcp_skb_pcount(skb);
3067
3068 if (packets_acked) {
3069 BUG_ON(tcp_skb_pcount(skb) == 0);
3070 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3071 }
3072
3073 return packets_acked;
3074 }
3075
3076 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3077 u32 prior_snd_una)
3078 {
3079 const struct skb_shared_info *shinfo;
3080
3081 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3082 if (likely(!(sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)))
3083 return;
3084
3085 shinfo = skb_shinfo(skb);
3086 if ((shinfo->tx_flags & SKBTX_ACK_TSTAMP) &&
3087 between(shinfo->tskey, prior_snd_una, tcp_sk(sk)->snd_una - 1))
3088 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3089 }
3090
3091 /* Remove acknowledged frames from the retransmission queue. If our packet
3092 * is before the ack sequence we can discard it as it's confirmed to have
3093 * arrived at the other end.
3094 */
3095 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3096 u32 prior_snd_una,
3097 struct tcp_sacktag_state *sack)
3098 {
3099 const struct inet_connection_sock *icsk = inet_csk(sk);
3100 struct skb_mstamp first_ackt, last_ackt, now;
3101 struct tcp_sock *tp = tcp_sk(sk);
3102 u32 prior_sacked = tp->sacked_out;
3103 u32 reord = tp->packets_out;
3104 bool fully_acked = true;
3105 long sack_rtt_us = -1L;
3106 long seq_rtt_us = -1L;
3107 long ca_rtt_us = -1L;
3108 struct sk_buff *skb;
3109 u32 pkts_acked = 0;
3110 bool rtt_update;
3111 int flag = 0;
3112
3113 first_ackt.v64 = 0;
3114
3115 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3116 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3117 u8 sacked = scb->sacked;
3118 u32 acked_pcount;
3119
3120 tcp_ack_tstamp(sk, skb, prior_snd_una);
3121
3122 /* Determine how many packets and what bytes were acked, tso and else */
3123 if (after(scb->end_seq, tp->snd_una)) {
3124 if (tcp_skb_pcount(skb) == 1 ||
3125 !after(tp->snd_una, scb->seq))
3126 break;
3127
3128 acked_pcount = tcp_tso_acked(sk, skb);
3129 if (!acked_pcount)
3130 break;
3131
3132 fully_acked = false;
3133 } else {
3134 /* Speedup tcp_unlink_write_queue() and next loop */
3135 prefetchw(skb->next);
3136 acked_pcount = tcp_skb_pcount(skb);
3137 }
3138
3139 if (unlikely(sacked & TCPCB_RETRANS)) {
3140 if (sacked & TCPCB_SACKED_RETRANS)
3141 tp->retrans_out -= acked_pcount;
3142 flag |= FLAG_RETRANS_DATA_ACKED;
3143 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3144 last_ackt = skb->skb_mstamp;
3145 WARN_ON_ONCE(last_ackt.v64 == 0);
3146 if (!first_ackt.v64)
3147 first_ackt = last_ackt;
3148
3149 reord = min(pkts_acked, reord);
3150 if (!after(scb->end_seq, tp->high_seq))
3151 flag |= FLAG_ORIG_SACK_ACKED;
3152 }
3153
3154 if (sacked & TCPCB_SACKED_ACKED)
3155 tp->sacked_out -= acked_pcount;
3156 else if (tcp_is_sack(tp) && !tcp_skb_spurious_retrans(tp, skb))
3157 tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3158 if (sacked & TCPCB_LOST)
3159 tp->lost_out -= acked_pcount;
3160
3161 tp->packets_out -= acked_pcount;
3162 pkts_acked += acked_pcount;
3163
3164 /* Initial outgoing SYN's get put onto the write_queue
3165 * just like anything else we transmit. It is not
3166 * true data, and if we misinform our callers that
3167 * this ACK acks real data, we will erroneously exit
3168 * connection startup slow start one packet too
3169 * quickly. This is severely frowned upon behavior.
3170 */
3171 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3172 flag |= FLAG_DATA_ACKED;
3173 } else {
3174 flag |= FLAG_SYN_ACKED;
3175 tp->retrans_stamp = 0;
3176 }
3177
3178 if (!fully_acked)
3179 break;
3180
3181 tcp_unlink_write_queue(skb, sk);
3182 sk_wmem_free_skb(sk, skb);
3183 if (unlikely(skb == tp->retransmit_skb_hint))
3184 tp->retransmit_skb_hint = NULL;
3185 if (unlikely(skb == tp->lost_skb_hint))
3186 tp->lost_skb_hint = NULL;
3187 }
3188
3189 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3190 tp->snd_up = tp->snd_una;
3191
3192 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3193 flag |= FLAG_SACK_RENEGING;
3194
3195 skb_mstamp_get(&now);
3196 if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3197 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3198 ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3199 }
3200 if (sack->first_sackt.v64) {
3201 sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3202 ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3203 }
3204
3205 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3206 ca_rtt_us);
3207
3208 if (flag & FLAG_ACKED) {
3209 tcp_rearm_rto(sk);
3210 if (unlikely(icsk->icsk_mtup.probe_size &&
3211 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3212 tcp_mtup_probe_success(sk);
3213 }
3214
3215 if (tcp_is_reno(tp)) {
3216 tcp_remove_reno_sacks(sk, pkts_acked);
3217 } else {
3218 int delta;
3219
3220 /* Non-retransmitted hole got filled? That's reordering */
3221 if (reord < prior_fackets)
3222 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3223
3224 delta = tcp_is_fack(tp) ? pkts_acked :
3225 prior_sacked - tp->sacked_out;
3226 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3227 }
3228
3229 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3230
3231 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3232 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3233 /* Do not re-arm RTO if the sack RTT is measured from data sent
3234 * after when the head was last (re)transmitted. Otherwise the
3235 * timeout may continue to extend in loss recovery.
3236 */
3237 tcp_rearm_rto(sk);
3238 }
3239
3240 if (icsk->icsk_ca_ops->pkts_acked)
3241 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked, ca_rtt_us);
3242
3243 #if FASTRETRANS_DEBUG > 0
3244 WARN_ON((int)tp->sacked_out < 0);
3245 WARN_ON((int)tp->lost_out < 0);
3246 WARN_ON((int)tp->retrans_out < 0);
3247 if (!tp->packets_out && tcp_is_sack(tp)) {
3248 icsk = inet_csk(sk);
3249 if (tp->lost_out) {
3250 pr_debug("Leak l=%u %d\n",
3251 tp->lost_out, icsk->icsk_ca_state);
3252 tp->lost_out = 0;
3253 }
3254 if (tp->sacked_out) {
3255 pr_debug("Leak s=%u %d\n",
3256 tp->sacked_out, icsk->icsk_ca_state);
3257 tp->sacked_out = 0;
3258 }
3259 if (tp->retrans_out) {
3260 pr_debug("Leak r=%u %d\n",
3261 tp->retrans_out, icsk->icsk_ca_state);
3262 tp->retrans_out = 0;
3263 }
3264 }
3265 #endif
3266 return flag;
3267 }
3268
3269 static void tcp_ack_probe(struct sock *sk)
3270 {
3271 const struct tcp_sock *tp = tcp_sk(sk);
3272 struct inet_connection_sock *icsk = inet_csk(sk);
3273
3274 /* Was it a usable window open? */
3275
3276 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3277 icsk->icsk_backoff = 0;
3278 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3279 /* Socket must be waked up by subsequent tcp_data_snd_check().
3280 * This function is not for random using!
3281 */
3282 } else {
3283 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3284
3285 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3286 when, TCP_RTO_MAX);
3287 }
3288 }
3289
3290 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3291 {
3292 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3293 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3294 }
3295
3296 /* Decide wheather to run the increase function of congestion control. */
3297 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3298 {
3299 if (tcp_in_cwnd_reduction(sk))
3300 return false;
3301
3302 /* If reordering is high then always grow cwnd whenever data is
3303 * delivered regardless of its ordering. Otherwise stay conservative
3304 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3305 * new SACK or ECE mark may first advance cwnd here and later reduce
3306 * cwnd in tcp_fastretrans_alert() based on more states.
3307 */
3308 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3309 return flag & FLAG_FORWARD_PROGRESS;
3310
3311 return flag & FLAG_DATA_ACKED;
3312 }
3313
3314 /* Check that window update is acceptable.
3315 * The function assumes that snd_una<=ack<=snd_next.
3316 */
3317 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3318 const u32 ack, const u32 ack_seq,
3319 const u32 nwin)
3320 {
3321 return after(ack, tp->snd_una) ||
3322 after(ack_seq, tp->snd_wl1) ||
3323 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3324 }
3325
3326 /* If we update tp->snd_una, also update tp->bytes_acked */
3327 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3328 {
3329 u32 delta = ack - tp->snd_una;
3330
3331 u64_stats_update_begin(&tp->syncp);
3332 tp->bytes_acked += delta;
3333 u64_stats_update_end(&tp->syncp);
3334 tp->snd_una = ack;
3335 }
3336
3337 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3338 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3339 {
3340 u32 delta = seq - tp->rcv_nxt;
3341
3342 u64_stats_update_begin(&tp->syncp);
3343 tp->bytes_received += delta;
3344 u64_stats_update_end(&tp->syncp);
3345 tp->rcv_nxt = seq;
3346 }
3347
3348 /* Update our send window.
3349 *
3350 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3351 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3352 */
3353 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3354 u32 ack_seq)
3355 {
3356 struct tcp_sock *tp = tcp_sk(sk);
3357 int flag = 0;
3358 u32 nwin = ntohs(tcp_hdr(skb)->window);
3359
3360 if (likely(!tcp_hdr(skb)->syn))
3361 nwin <<= tp->rx_opt.snd_wscale;
3362
3363 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3364 flag |= FLAG_WIN_UPDATE;
3365 tcp_update_wl(tp, ack_seq);
3366
3367 if (tp->snd_wnd != nwin) {
3368 tp->snd_wnd = nwin;
3369
3370 /* Note, it is the only place, where
3371 * fast path is recovered for sending TCP.
3372 */
3373 tp->pred_flags = 0;
3374 tcp_fast_path_check(sk);
3375
3376 if (tcp_send_head(sk))
3377 tcp_slow_start_after_idle_check(sk);
3378
3379 if (nwin > tp->max_window) {
3380 tp->max_window = nwin;
3381 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3382 }
3383 }
3384 }
3385
3386 tcp_snd_una_update(tp, ack);
3387
3388 return flag;
3389 }
3390
3391 /* Return true if we're currently rate-limiting out-of-window ACKs and
3392 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3393 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3394 * attacks that send repeated SYNs or ACKs for the same connection. To
3395 * do this, we do not send a duplicate SYNACK or ACK if the remote
3396 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3397 */
3398 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3399 int mib_idx, u32 *last_oow_ack_time)
3400 {
3401 /* Data packets without SYNs are not likely part of an ACK loop. */
3402 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3403 !tcp_hdr(skb)->syn)
3404 goto not_rate_limited;
3405
3406 if (*last_oow_ack_time) {
3407 s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3408
3409 if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3410 NET_INC_STATS_BH(net, mib_idx);
3411 return true; /* rate-limited: don't send yet! */
3412 }
3413 }
3414
3415 *last_oow_ack_time = tcp_time_stamp;
3416
3417 not_rate_limited:
3418 return false; /* not rate-limited: go ahead, send dupack now! */
3419 }
3420
3421 /* RFC 5961 7 [ACK Throttling] */
3422 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3423 {
3424 /* unprotected vars, we dont care of overwrites */
3425 static u32 challenge_timestamp;
3426 static unsigned int challenge_count;
3427 struct tcp_sock *tp = tcp_sk(sk);
3428 u32 now;
3429
3430 /* First check our per-socket dupack rate limit. */
3431 if (tcp_oow_rate_limited(sock_net(sk), skb,
3432 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3433 &tp->last_oow_ack_time))
3434 return;
3435
3436 /* Then check the check host-wide RFC 5961 rate limit. */
3437 now = jiffies / HZ;
3438 if (now != challenge_timestamp) {
3439 challenge_timestamp = now;
3440 challenge_count = 0;
3441 }
3442 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3443 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3444 tcp_send_ack(sk);
3445 }
3446 }
3447
3448 static void tcp_store_ts_recent(struct tcp_sock *tp)
3449 {
3450 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3451 tp->rx_opt.ts_recent_stamp = get_seconds();
3452 }
3453
3454 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3455 {
3456 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3457 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3458 * extra check below makes sure this can only happen
3459 * for pure ACK frames. -DaveM
3460 *
3461 * Not only, also it occurs for expired timestamps.
3462 */
3463
3464 if (tcp_paws_check(&tp->rx_opt, 0))
3465 tcp_store_ts_recent(tp);
3466 }
3467 }
3468
3469 /* This routine deals with acks during a TLP episode.
3470 * We mark the end of a TLP episode on receiving TLP dupack or when
3471 * ack is after tlp_high_seq.
3472 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3473 */
3474 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3475 {
3476 struct tcp_sock *tp = tcp_sk(sk);
3477
3478 if (before(ack, tp->tlp_high_seq))
3479 return;
3480
3481 if (flag & FLAG_DSACKING_ACK) {
3482 /* This DSACK means original and TLP probe arrived; no loss */
3483 tp->tlp_high_seq = 0;
3484 } else if (after(ack, tp->tlp_high_seq)) {
3485 /* ACK advances: there was a loss, so reduce cwnd. Reset
3486 * tlp_high_seq in tcp_init_cwnd_reduction()
3487 */
3488 tcp_init_cwnd_reduction(sk);
3489 tcp_set_ca_state(sk, TCP_CA_CWR);
3490 tcp_end_cwnd_reduction(sk);
3491 tcp_try_keep_open(sk);
3492 NET_INC_STATS_BH(sock_net(sk),
3493 LINUX_MIB_TCPLOSSPROBERECOVERY);
3494 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3495 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3496 /* Pure dupack: original and TLP probe arrived; no loss */
3497 tp->tlp_high_seq = 0;
3498 }
3499 }
3500
3501 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3502 {
3503 const struct inet_connection_sock *icsk = inet_csk(sk);
3504
3505 if (icsk->icsk_ca_ops->in_ack_event)
3506 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3507 }
3508
3509 /* This routine deals with incoming acks, but not outgoing ones. */
3510 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3511 {
3512 struct inet_connection_sock *icsk = inet_csk(sk);
3513 struct tcp_sock *tp = tcp_sk(sk);
3514 struct tcp_sacktag_state sack_state;
3515 u32 prior_snd_una = tp->snd_una;
3516 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3517 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3518 bool is_dupack = false;
3519 u32 prior_fackets;
3520 int prior_packets = tp->packets_out;
3521 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3522 int acked = 0; /* Number of packets newly acked */
3523
3524 sack_state.first_sackt.v64 = 0;
3525
3526 /* We very likely will need to access write queue head. */
3527 prefetchw(sk->sk_write_queue.next);
3528
3529 /* If the ack is older than previous acks
3530 * then we can probably ignore it.
3531 */
3532 if (before(ack, prior_snd_una)) {
3533 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3534 if (before(ack, prior_snd_una - tp->max_window)) {
3535 tcp_send_challenge_ack(sk, skb);
3536 return -1;
3537 }
3538 goto old_ack;
3539 }
3540
3541 /* If the ack includes data we haven't sent yet, discard
3542 * this segment (RFC793 Section 3.9).
3543 */
3544 if (after(ack, tp->snd_nxt))
3545 goto invalid_ack;
3546
3547 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3548 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3549 tcp_rearm_rto(sk);
3550
3551 if (after(ack, prior_snd_una)) {
3552 flag |= FLAG_SND_UNA_ADVANCED;
3553 icsk->icsk_retransmits = 0;
3554 }
3555
3556 prior_fackets = tp->fackets_out;
3557
3558 /* ts_recent update must be made after we are sure that the packet
3559 * is in window.
3560 */
3561 if (flag & FLAG_UPDATE_TS_RECENT)
3562 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3563
3564 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3565 /* Window is constant, pure forward advance.
3566 * No more checks are required.
3567 * Note, we use the fact that SND.UNA>=SND.WL2.
3568 */
3569 tcp_update_wl(tp, ack_seq);
3570 tcp_snd_una_update(tp, ack);
3571 flag |= FLAG_WIN_UPDATE;
3572
3573 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3574
3575 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3576 } else {
3577 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3578
3579 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3580 flag |= FLAG_DATA;
3581 else
3582 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3583
3584 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3585
3586 if (TCP_SKB_CB(skb)->sacked)
3587 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3588 &sack_state);
3589
3590 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3591 flag |= FLAG_ECE;
3592 ack_ev_flags |= CA_ACK_ECE;
3593 }
3594
3595 if (flag & FLAG_WIN_UPDATE)
3596 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3597
3598 tcp_in_ack_event(sk, ack_ev_flags);
3599 }
3600
3601 /* We passed data and got it acked, remove any soft error
3602 * log. Something worked...
3603 */
3604 sk->sk_err_soft = 0;
3605 icsk->icsk_probes_out = 0;
3606 tp->rcv_tstamp = tcp_time_stamp;
3607 if (!prior_packets)
3608 goto no_queue;
3609
3610 /* See if we can take anything off of the retransmit queue. */
3611 acked = tp->packets_out;
3612 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3613 &sack_state);
3614 acked -= tp->packets_out;
3615
3616 if (tcp_ack_is_dubious(sk, flag)) {
3617 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3618 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3619 is_dupack, flag);
3620 }
3621 if (tp->tlp_high_seq)
3622 tcp_process_tlp_ack(sk, ack, flag);
3623
3624 /* Advance cwnd if state allows */
3625 if (tcp_may_raise_cwnd(sk, flag))
3626 tcp_cong_avoid(sk, ack, acked);
3627
3628 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3629 struct dst_entry *dst = __sk_dst_get(sk);
3630 if (dst)
3631 dst_confirm(dst);
3632 }
3633
3634 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3635 tcp_schedule_loss_probe(sk);
3636 tcp_update_pacing_rate(sk);
3637 return 1;
3638
3639 no_queue:
3640 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3641 if (flag & FLAG_DSACKING_ACK)
3642 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3643 is_dupack, flag);
3644 /* If this ack opens up a zero window, clear backoff. It was
3645 * being used to time the probes, and is probably far higher than
3646 * it needs to be for normal retransmission.
3647 */
3648 if (tcp_send_head(sk))
3649 tcp_ack_probe(sk);
3650
3651 if (tp->tlp_high_seq)
3652 tcp_process_tlp_ack(sk, ack, flag);
3653 return 1;
3654
3655 invalid_ack:
3656 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3657 return -1;
3658
3659 old_ack:
3660 /* If data was SACKed, tag it and see if we should send more data.
3661 * If data was DSACKed, see if we can undo a cwnd reduction.
3662 */
3663 if (TCP_SKB_CB(skb)->sacked) {
3664 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3665 &sack_state);
3666 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3667 is_dupack, flag);
3668 }
3669
3670 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3671 return 0;
3672 }
3673
3674 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3675 bool syn, struct tcp_fastopen_cookie *foc,
3676 bool exp_opt)
3677 {
3678 /* Valid only in SYN or SYN-ACK with an even length. */
3679 if (!foc || !syn || len < 0 || (len & 1))
3680 return;
3681
3682 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3683 len <= TCP_FASTOPEN_COOKIE_MAX)
3684 memcpy(foc->val, cookie, len);
3685 else if (len != 0)
3686 len = -1;
3687 foc->len = len;
3688 foc->exp = exp_opt;
3689 }
3690
3691 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3692 * But, this can also be called on packets in the established flow when
3693 * the fast version below fails.
3694 */
3695 void tcp_parse_options(const struct sk_buff *skb,
3696 struct tcp_options_received *opt_rx, int estab,
3697 struct tcp_fastopen_cookie *foc)
3698 {
3699 const unsigned char *ptr;
3700 const struct tcphdr *th = tcp_hdr(skb);
3701 int length = (th->doff * 4) - sizeof(struct tcphdr);
3702
3703 ptr = (const unsigned char *)(th + 1);
3704 opt_rx->saw_tstamp = 0;
3705
3706 while (length > 0) {
3707 int opcode = *ptr++;
3708 int opsize;
3709
3710 switch (opcode) {
3711 case TCPOPT_EOL:
3712 return;
3713 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3714 length--;
3715 continue;
3716 default:
3717 opsize = *ptr++;
3718 if (opsize < 2) /* "silly options" */
3719 return;
3720 if (opsize > length)
3721 return; /* don't parse partial options */
3722 switch (opcode) {
3723 case TCPOPT_MSS:
3724 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3725 u16 in_mss = get_unaligned_be16(ptr);
3726 if (in_mss) {
3727 if (opt_rx->user_mss &&
3728 opt_rx->user_mss < in_mss)
3729 in_mss = opt_rx->user_mss;
3730 opt_rx->mss_clamp = in_mss;
3731 }
3732 }
3733 break;
3734 case TCPOPT_WINDOW:
3735 if (opsize == TCPOLEN_WINDOW && th->syn &&
3736 !estab && sysctl_tcp_window_scaling) {
3737 __u8 snd_wscale = *(__u8 *)ptr;
3738 opt_rx->wscale_ok = 1;
3739 if (snd_wscale > 14) {
3740 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3741 __func__,
3742 snd_wscale);
3743 snd_wscale = 14;
3744 }
3745 opt_rx->snd_wscale = snd_wscale;
3746 }
3747 break;
3748 case TCPOPT_TIMESTAMP:
3749 if ((opsize == TCPOLEN_TIMESTAMP) &&
3750 ((estab && opt_rx->tstamp_ok) ||
3751 (!estab && sysctl_tcp_timestamps))) {
3752 opt_rx->saw_tstamp = 1;
3753 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3754 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3755 }
3756 break;
3757 case TCPOPT_SACK_PERM:
3758 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3759 !estab && sysctl_tcp_sack) {
3760 opt_rx->sack_ok = TCP_SACK_SEEN;
3761 tcp_sack_reset(opt_rx);
3762 }
3763 break;
3764
3765 case TCPOPT_SACK:
3766 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3767 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3768 opt_rx->sack_ok) {
3769 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3770 }
3771 break;
3772 #ifdef CONFIG_TCP_MD5SIG
3773 case TCPOPT_MD5SIG:
3774 /*
3775 * The MD5 Hash has already been
3776 * checked (see tcp_v{4,6}_do_rcv()).
3777 */
3778 break;
3779 #endif
3780 case TCPOPT_FASTOPEN:
3781 tcp_parse_fastopen_option(
3782 opsize - TCPOLEN_FASTOPEN_BASE,
3783 ptr, th->syn, foc, false);
3784 break;
3785
3786 case TCPOPT_EXP:
3787 /* Fast Open option shares code 254 using a
3788 * 16 bits magic number.
3789 */
3790 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3791 get_unaligned_be16(ptr) ==
3792 TCPOPT_FASTOPEN_MAGIC)
3793 tcp_parse_fastopen_option(opsize -
3794 TCPOLEN_EXP_FASTOPEN_BASE,
3795 ptr + 2, th->syn, foc, true);
3796 break;
3797
3798 }
3799 ptr += opsize-2;
3800 length -= opsize;
3801 }
3802 }
3803 }
3804 EXPORT_SYMBOL(tcp_parse_options);
3805
3806 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3807 {
3808 const __be32 *ptr = (const __be32 *)(th + 1);
3809
3810 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3811 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3812 tp->rx_opt.saw_tstamp = 1;
3813 ++ptr;
3814 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3815 ++ptr;
3816 if (*ptr)
3817 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3818 else
3819 tp->rx_opt.rcv_tsecr = 0;
3820 return true;
3821 }
3822 return false;
3823 }
3824
3825 /* Fast parse options. This hopes to only see timestamps.
3826 * If it is wrong it falls back on tcp_parse_options().
3827 */
3828 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3829 const struct tcphdr *th, struct tcp_sock *tp)
3830 {
3831 /* In the spirit of fast parsing, compare doff directly to constant
3832 * values. Because equality is used, short doff can be ignored here.
3833 */
3834 if (th->doff == (sizeof(*th) / 4)) {
3835 tp->rx_opt.saw_tstamp = 0;
3836 return false;
3837 } else if (tp->rx_opt.tstamp_ok &&
3838 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3839 if (tcp_parse_aligned_timestamp(tp, th))
3840 return true;
3841 }
3842
3843 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3844 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3845 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3846
3847 return true;
3848 }
3849
3850 #ifdef CONFIG_TCP_MD5SIG
3851 /*
3852 * Parse MD5 Signature option
3853 */
3854 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3855 {
3856 int length = (th->doff << 2) - sizeof(*th);
3857 const u8 *ptr = (const u8 *)(th + 1);
3858
3859 /* If the TCP option is too short, we can short cut */
3860 if (length < TCPOLEN_MD5SIG)
3861 return NULL;
3862
3863 while (length > 0) {
3864 int opcode = *ptr++;
3865 int opsize;
3866
3867 switch (opcode) {
3868 case TCPOPT_EOL:
3869 return NULL;
3870 case TCPOPT_NOP:
3871 length--;
3872 continue;
3873 default:
3874 opsize = *ptr++;
3875 if (opsize < 2 || opsize > length)
3876 return NULL;
3877 if (opcode == TCPOPT_MD5SIG)
3878 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3879 }
3880 ptr += opsize - 2;
3881 length -= opsize;
3882 }
3883 return NULL;
3884 }
3885 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3886 #endif
3887
3888 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3889 *
3890 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3891 * it can pass through stack. So, the following predicate verifies that
3892 * this segment is not used for anything but congestion avoidance or
3893 * fast retransmit. Moreover, we even are able to eliminate most of such
3894 * second order effects, if we apply some small "replay" window (~RTO)
3895 * to timestamp space.
3896 *
3897 * All these measures still do not guarantee that we reject wrapped ACKs
3898 * on networks with high bandwidth, when sequence space is recycled fastly,
3899 * but it guarantees that such events will be very rare and do not affect
3900 * connection seriously. This doesn't look nice, but alas, PAWS is really
3901 * buggy extension.
3902 *
3903 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3904 * states that events when retransmit arrives after original data are rare.
3905 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3906 * the biggest problem on large power networks even with minor reordering.
3907 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3908 * up to bandwidth of 18Gigabit/sec. 8) ]
3909 */
3910
3911 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3912 {
3913 const struct tcp_sock *tp = tcp_sk(sk);
3914 const struct tcphdr *th = tcp_hdr(skb);
3915 u32 seq = TCP_SKB_CB(skb)->seq;
3916 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3917
3918 return (/* 1. Pure ACK with correct sequence number. */
3919 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3920
3921 /* 2. ... and duplicate ACK. */
3922 ack == tp->snd_una &&
3923
3924 /* 3. ... and does not update window. */
3925 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3926
3927 /* 4. ... and sits in replay window. */
3928 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3929 }
3930
3931 static inline bool tcp_paws_discard(const struct sock *sk,
3932 const struct sk_buff *skb)
3933 {
3934 const struct tcp_sock *tp = tcp_sk(sk);
3935
3936 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3937 !tcp_disordered_ack(sk, skb);
3938 }
3939
3940 /* Check segment sequence number for validity.
3941 *
3942 * Segment controls are considered valid, if the segment
3943 * fits to the window after truncation to the window. Acceptability
3944 * of data (and SYN, FIN, of course) is checked separately.
3945 * See tcp_data_queue(), for example.
3946 *
3947 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3948 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3949 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3950 * (borrowed from freebsd)
3951 */
3952
3953 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3954 {
3955 return !before(end_seq, tp->rcv_wup) &&
3956 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3957 }
3958
3959 /* When we get a reset we do this. */
3960 void tcp_reset(struct sock *sk)
3961 {
3962 /* We want the right error as BSD sees it (and indeed as we do). */
3963 switch (sk->sk_state) {
3964 case TCP_SYN_SENT:
3965 sk->sk_err = ECONNREFUSED;
3966 break;
3967 case TCP_CLOSE_WAIT:
3968 sk->sk_err = EPIPE;
3969 break;
3970 case TCP_CLOSE:
3971 return;
3972 default:
3973 sk->sk_err = ECONNRESET;
3974 }
3975 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3976 smp_wmb();
3977
3978 if (!sock_flag(sk, SOCK_DEAD))
3979 sk->sk_error_report(sk);
3980
3981 tcp_done(sk);
3982 }
3983
3984 /*
3985 * Process the FIN bit. This now behaves as it is supposed to work
3986 * and the FIN takes effect when it is validly part of sequence
3987 * space. Not before when we get holes.
3988 *
3989 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3990 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3991 * TIME-WAIT)
3992 *
3993 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3994 * close and we go into CLOSING (and later onto TIME-WAIT)
3995 *
3996 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3997 */
3998 static void tcp_fin(struct sock *sk)
3999 {
4000 struct tcp_sock *tp = tcp_sk(sk);
4001
4002 inet_csk_schedule_ack(sk);
4003
4004 sk->sk_shutdown |= RCV_SHUTDOWN;
4005 sock_set_flag(sk, SOCK_DONE);
4006
4007 switch (sk->sk_state) {
4008 case TCP_SYN_RECV:
4009 case TCP_ESTABLISHED:
4010 /* Move to CLOSE_WAIT */
4011 tcp_set_state(sk, TCP_CLOSE_WAIT);
4012 inet_csk(sk)->icsk_ack.pingpong = 1;
4013 break;
4014
4015 case TCP_CLOSE_WAIT:
4016 case TCP_CLOSING:
4017 /* Received a retransmission of the FIN, do
4018 * nothing.
4019 */
4020 break;
4021 case TCP_LAST_ACK:
4022 /* RFC793: Remain in the LAST-ACK state. */
4023 break;
4024
4025 case TCP_FIN_WAIT1:
4026 /* This case occurs when a simultaneous close
4027 * happens, we must ack the received FIN and
4028 * enter the CLOSING state.
4029 */
4030 tcp_send_ack(sk);
4031 tcp_set_state(sk, TCP_CLOSING);
4032 break;
4033 case TCP_FIN_WAIT2:
4034 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4035 tcp_send_ack(sk);
4036 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4037 break;
4038 default:
4039 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4040 * cases we should never reach this piece of code.
4041 */
4042 pr_err("%s: Impossible, sk->sk_state=%d\n",
4043 __func__, sk->sk_state);
4044 break;
4045 }
4046
4047 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4048 * Probably, we should reset in this case. For now drop them.
4049 */
4050 __skb_queue_purge(&tp->out_of_order_queue);
4051 if (tcp_is_sack(tp))
4052 tcp_sack_reset(&tp->rx_opt);
4053 sk_mem_reclaim(sk);
4054
4055 if (!sock_flag(sk, SOCK_DEAD)) {
4056 sk->sk_state_change(sk);
4057
4058 /* Do not send POLL_HUP for half duplex close. */
4059 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4060 sk->sk_state == TCP_CLOSE)
4061 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4062 else
4063 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4064 }
4065 }
4066
4067 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4068 u32 end_seq)
4069 {
4070 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4071 if (before(seq, sp->start_seq))
4072 sp->start_seq = seq;
4073 if (after(end_seq, sp->end_seq))
4074 sp->end_seq = end_seq;
4075 return true;
4076 }
4077 return false;
4078 }
4079
4080 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4081 {
4082 struct tcp_sock *tp = tcp_sk(sk);
4083
4084 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4085 int mib_idx;
4086
4087 if (before(seq, tp->rcv_nxt))
4088 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4089 else
4090 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4091
4092 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4093
4094 tp->rx_opt.dsack = 1;
4095 tp->duplicate_sack[0].start_seq = seq;
4096 tp->duplicate_sack[0].end_seq = end_seq;
4097 }
4098 }
4099
4100 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4101 {
4102 struct tcp_sock *tp = tcp_sk(sk);
4103
4104 if (!tp->rx_opt.dsack)
4105 tcp_dsack_set(sk, seq, end_seq);
4106 else
4107 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4108 }
4109
4110 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4111 {
4112 struct tcp_sock *tp = tcp_sk(sk);
4113
4114 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4115 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4116 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4117 tcp_enter_quickack_mode(sk);
4118
4119 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4120 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4121
4122 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4123 end_seq = tp->rcv_nxt;
4124 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4125 }
4126 }
4127
4128 tcp_send_ack(sk);
4129 }
4130
4131 /* These routines update the SACK block as out-of-order packets arrive or
4132 * in-order packets close up the sequence space.
4133 */
4134 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4135 {
4136 int this_sack;
4137 struct tcp_sack_block *sp = &tp->selective_acks[0];
4138 struct tcp_sack_block *swalk = sp + 1;
4139
4140 /* See if the recent change to the first SACK eats into
4141 * or hits the sequence space of other SACK blocks, if so coalesce.
4142 */
4143 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4144 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4145 int i;
4146
4147 /* Zap SWALK, by moving every further SACK up by one slot.
4148 * Decrease num_sacks.
4149 */
4150 tp->rx_opt.num_sacks--;
4151 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4152 sp[i] = sp[i + 1];
4153 continue;
4154 }
4155 this_sack++, swalk++;
4156 }
4157 }
4158
4159 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4160 {
4161 struct tcp_sock *tp = tcp_sk(sk);
4162 struct tcp_sack_block *sp = &tp->selective_acks[0];
4163 int cur_sacks = tp->rx_opt.num_sacks;
4164 int this_sack;
4165
4166 if (!cur_sacks)
4167 goto new_sack;
4168
4169 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4170 if (tcp_sack_extend(sp, seq, end_seq)) {
4171 /* Rotate this_sack to the first one. */
4172 for (; this_sack > 0; this_sack--, sp--)
4173 swap(*sp, *(sp - 1));
4174 if (cur_sacks > 1)
4175 tcp_sack_maybe_coalesce(tp);
4176 return;
4177 }
4178 }
4179
4180 /* Could not find an adjacent existing SACK, build a new one,
4181 * put it at the front, and shift everyone else down. We
4182 * always know there is at least one SACK present already here.
4183 *
4184 * If the sack array is full, forget about the last one.
4185 */
4186 if (this_sack >= TCP_NUM_SACKS) {
4187 this_sack--;
4188 tp->rx_opt.num_sacks--;
4189 sp--;
4190 }
4191 for (; this_sack > 0; this_sack--, sp--)
4192 *sp = *(sp - 1);
4193
4194 new_sack:
4195 /* Build the new head SACK, and we're done. */
4196 sp->start_seq = seq;
4197 sp->end_seq = end_seq;
4198 tp->rx_opt.num_sacks++;
4199 }
4200
4201 /* RCV.NXT advances, some SACKs should be eaten. */
4202
4203 static void tcp_sack_remove(struct tcp_sock *tp)
4204 {
4205 struct tcp_sack_block *sp = &tp->selective_acks[0];
4206 int num_sacks = tp->rx_opt.num_sacks;
4207 int this_sack;
4208
4209 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4210 if (skb_queue_empty(&tp->out_of_order_queue)) {
4211 tp->rx_opt.num_sacks = 0;
4212 return;
4213 }
4214
4215 for (this_sack = 0; this_sack < num_sacks;) {
4216 /* Check if the start of the sack is covered by RCV.NXT. */
4217 if (!before(tp->rcv_nxt, sp->start_seq)) {
4218 int i;
4219
4220 /* RCV.NXT must cover all the block! */
4221 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4222
4223 /* Zap this SACK, by moving forward any other SACKS. */
4224 for (i = this_sack+1; i < num_sacks; i++)
4225 tp->selective_acks[i-1] = tp->selective_acks[i];
4226 num_sacks--;
4227 continue;
4228 }
4229 this_sack++;
4230 sp++;
4231 }
4232 tp->rx_opt.num_sacks = num_sacks;
4233 }
4234
4235 /**
4236 * tcp_try_coalesce - try to merge skb to prior one
4237 * @sk: socket
4238 * @to: prior buffer
4239 * @from: buffer to add in queue
4240 * @fragstolen: pointer to boolean
4241 *
4242 * Before queueing skb @from after @to, try to merge them
4243 * to reduce overall memory use and queue lengths, if cost is small.
4244 * Packets in ofo or receive queues can stay a long time.
4245 * Better try to coalesce them right now to avoid future collapses.
4246 * Returns true if caller should free @from instead of queueing it
4247 */
4248 static bool tcp_try_coalesce(struct sock *sk,
4249 struct sk_buff *to,
4250 struct sk_buff *from,
4251 bool *fragstolen)
4252 {
4253 int delta;
4254
4255 *fragstolen = false;
4256
4257 /* Its possible this segment overlaps with prior segment in queue */
4258 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4259 return false;
4260
4261 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4262 return false;
4263
4264 atomic_add(delta, &sk->sk_rmem_alloc);
4265 sk_mem_charge(sk, delta);
4266 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4267 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4268 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4269 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4270 return true;
4271 }
4272
4273 /* This one checks to see if we can put data from the
4274 * out_of_order queue into the receive_queue.
4275 */
4276 static void tcp_ofo_queue(struct sock *sk)
4277 {
4278 struct tcp_sock *tp = tcp_sk(sk);
4279 __u32 dsack_high = tp->rcv_nxt;
4280 struct sk_buff *skb, *tail;
4281 bool fragstolen, eaten;
4282
4283 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4284 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4285 break;
4286
4287 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4288 __u32 dsack = dsack_high;
4289 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4290 dsack_high = TCP_SKB_CB(skb)->end_seq;
4291 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4292 }
4293
4294 __skb_unlink(skb, &tp->out_of_order_queue);
4295 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4296 SOCK_DEBUG(sk, "ofo packet was already received\n");
4297 __kfree_skb(skb);
4298 continue;
4299 }
4300 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4301 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4302 TCP_SKB_CB(skb)->end_seq);
4303
4304 tail = skb_peek_tail(&sk->sk_receive_queue);
4305 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4306 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4307 if (!eaten)
4308 __skb_queue_tail(&sk->sk_receive_queue, skb);
4309 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4310 tcp_fin(sk);
4311 if (eaten)
4312 kfree_skb_partial(skb, fragstolen);
4313 }
4314 }
4315
4316 static bool tcp_prune_ofo_queue(struct sock *sk);
4317 static int tcp_prune_queue(struct sock *sk);
4318
4319 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4320 unsigned int size)
4321 {
4322 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4323 !sk_rmem_schedule(sk, skb, size)) {
4324
4325 if (tcp_prune_queue(sk) < 0)
4326 return -1;
4327
4328 if (!sk_rmem_schedule(sk, skb, size)) {
4329 if (!tcp_prune_ofo_queue(sk))
4330 return -1;
4331
4332 if (!sk_rmem_schedule(sk, skb, size))
4333 return -1;
4334 }
4335 }
4336 return 0;
4337 }
4338
4339 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4340 {
4341 struct tcp_sock *tp = tcp_sk(sk);
4342 struct sk_buff *skb1;
4343 u32 seq, end_seq;
4344
4345 tcp_ecn_check_ce(tp, skb);
4346
4347 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4348 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4349 __kfree_skb(skb);
4350 return;
4351 }
4352
4353 /* Disable header prediction. */
4354 tp->pred_flags = 0;
4355 inet_csk_schedule_ack(sk);
4356
4357 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4358 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4359 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4360
4361 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4362 if (!skb1) {
4363 /* Initial out of order segment, build 1 SACK. */
4364 if (tcp_is_sack(tp)) {
4365 tp->rx_opt.num_sacks = 1;
4366 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4367 tp->selective_acks[0].end_seq =
4368 TCP_SKB_CB(skb)->end_seq;
4369 }
4370 __skb_queue_head(&tp->out_of_order_queue, skb);
4371 goto end;
4372 }
4373
4374 seq = TCP_SKB_CB(skb)->seq;
4375 end_seq = TCP_SKB_CB(skb)->end_seq;
4376
4377 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4378 bool fragstolen;
4379
4380 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4381 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4382 } else {
4383 tcp_grow_window(sk, skb);
4384 kfree_skb_partial(skb, fragstolen);
4385 skb = NULL;
4386 }
4387
4388 if (!tp->rx_opt.num_sacks ||
4389 tp->selective_acks[0].end_seq != seq)
4390 goto add_sack;
4391
4392 /* Common case: data arrive in order after hole. */
4393 tp->selective_acks[0].end_seq = end_seq;
4394 goto end;
4395 }
4396
4397 /* Find place to insert this segment. */
4398 while (1) {
4399 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4400 break;
4401 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4402 skb1 = NULL;
4403 break;
4404 }
4405 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4406 }
4407
4408 /* Do skb overlap to previous one? */
4409 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4410 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4411 /* All the bits are present. Drop. */
4412 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4413 __kfree_skb(skb);
4414 skb = NULL;
4415 tcp_dsack_set(sk, seq, end_seq);
4416 goto add_sack;
4417 }
4418 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4419 /* Partial overlap. */
4420 tcp_dsack_set(sk, seq,
4421 TCP_SKB_CB(skb1)->end_seq);
4422 } else {
4423 if (skb_queue_is_first(&tp->out_of_order_queue,
4424 skb1))
4425 skb1 = NULL;
4426 else
4427 skb1 = skb_queue_prev(
4428 &tp->out_of_order_queue,
4429 skb1);
4430 }
4431 }
4432 if (!skb1)
4433 __skb_queue_head(&tp->out_of_order_queue, skb);
4434 else
4435 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4436
4437 /* And clean segments covered by new one as whole. */
4438 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4439 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4440
4441 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4442 break;
4443 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4444 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4445 end_seq);
4446 break;
4447 }
4448 __skb_unlink(skb1, &tp->out_of_order_queue);
4449 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4450 TCP_SKB_CB(skb1)->end_seq);
4451 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4452 __kfree_skb(skb1);
4453 }
4454
4455 add_sack:
4456 if (tcp_is_sack(tp))
4457 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4458 end:
4459 if (skb) {
4460 tcp_grow_window(sk, skb);
4461 skb_set_owner_r(skb, sk);
4462 }
4463 }
4464
4465 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4466 bool *fragstolen)
4467 {
4468 int eaten;
4469 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4470
4471 __skb_pull(skb, hdrlen);
4472 eaten = (tail &&
4473 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4474 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4475 if (!eaten) {
4476 __skb_queue_tail(&sk->sk_receive_queue, skb);
4477 skb_set_owner_r(skb, sk);
4478 }
4479 return eaten;
4480 }
4481
4482 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4483 {
4484 struct sk_buff *skb;
4485 int err = -ENOMEM;
4486 int data_len = 0;
4487 bool fragstolen;
4488
4489 if (size == 0)
4490 return 0;
4491
4492 if (size > PAGE_SIZE) {
4493 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4494
4495 data_len = npages << PAGE_SHIFT;
4496 size = data_len + (size & ~PAGE_MASK);
4497 }
4498 skb = alloc_skb_with_frags(size - data_len, data_len,
4499 PAGE_ALLOC_COSTLY_ORDER,
4500 &err, sk->sk_allocation);
4501 if (!skb)
4502 goto err;
4503
4504 skb_put(skb, size - data_len);
4505 skb->data_len = data_len;
4506 skb->len = size;
4507
4508 if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4509 goto err_free;
4510
4511 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4512 if (err)
4513 goto err_free;
4514
4515 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4516 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4517 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4518
4519 if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4520 WARN_ON_ONCE(fragstolen); /* should not happen */
4521 __kfree_skb(skb);
4522 }
4523 return size;
4524
4525 err_free:
4526 kfree_skb(skb);
4527 err:
4528 return err;
4529
4530 }
4531
4532 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4533 {
4534 struct tcp_sock *tp = tcp_sk(sk);
4535 int eaten = -1;
4536 bool fragstolen = false;
4537
4538 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4539 goto drop;
4540
4541 skb_dst_drop(skb);
4542 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4543
4544 tcp_ecn_accept_cwr(tp, skb);
4545
4546 tp->rx_opt.dsack = 0;
4547
4548 /* Queue data for delivery to the user.
4549 * Packets in sequence go to the receive queue.
4550 * Out of sequence packets to the out_of_order_queue.
4551 */
4552 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4553 if (tcp_receive_window(tp) == 0)
4554 goto out_of_window;
4555
4556 /* Ok. In sequence. In window. */
4557 if (tp->ucopy.task == current &&
4558 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4559 sock_owned_by_user(sk) && !tp->urg_data) {
4560 int chunk = min_t(unsigned int, skb->len,
4561 tp->ucopy.len);
4562
4563 __set_current_state(TASK_RUNNING);
4564
4565 local_bh_enable();
4566 if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4567 tp->ucopy.len -= chunk;
4568 tp->copied_seq += chunk;
4569 eaten = (chunk == skb->len);
4570 tcp_rcv_space_adjust(sk);
4571 }
4572 local_bh_disable();
4573 }
4574
4575 if (eaten <= 0) {
4576 queue_and_out:
4577 if (eaten < 0) {
4578 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4579 sk_forced_mem_schedule(sk, skb->truesize);
4580 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4581 goto drop;
4582 }
4583 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4584 }
4585 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4586 if (skb->len)
4587 tcp_event_data_recv(sk, skb);
4588 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4589 tcp_fin(sk);
4590
4591 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4592 tcp_ofo_queue(sk);
4593
4594 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4595 * gap in queue is filled.
4596 */
4597 if (skb_queue_empty(&tp->out_of_order_queue))
4598 inet_csk(sk)->icsk_ack.pingpong = 0;
4599 }
4600
4601 if (tp->rx_opt.num_sacks)
4602 tcp_sack_remove(tp);
4603
4604 tcp_fast_path_check(sk);
4605
4606 if (eaten > 0)
4607 kfree_skb_partial(skb, fragstolen);
4608 if (!sock_flag(sk, SOCK_DEAD))
4609 sk->sk_data_ready(sk);
4610 return;
4611 }
4612
4613 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4614 /* A retransmit, 2nd most common case. Force an immediate ack. */
4615 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4616 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4617
4618 out_of_window:
4619 tcp_enter_quickack_mode(sk);
4620 inet_csk_schedule_ack(sk);
4621 drop:
4622 __kfree_skb(skb);
4623 return;
4624 }
4625
4626 /* Out of window. F.e. zero window probe. */
4627 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4628 goto out_of_window;
4629
4630 tcp_enter_quickack_mode(sk);
4631
4632 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4633 /* Partial packet, seq < rcv_next < end_seq */
4634 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4635 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4636 TCP_SKB_CB(skb)->end_seq);
4637
4638 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4639
4640 /* If window is closed, drop tail of packet. But after
4641 * remembering D-SACK for its head made in previous line.
4642 */
4643 if (!tcp_receive_window(tp))
4644 goto out_of_window;
4645 goto queue_and_out;
4646 }
4647
4648 tcp_data_queue_ofo(sk, skb);
4649 }
4650
4651 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4652 struct sk_buff_head *list)
4653 {
4654 struct sk_buff *next = NULL;
4655
4656 if (!skb_queue_is_last(list, skb))
4657 next = skb_queue_next(list, skb);
4658
4659 __skb_unlink(skb, list);
4660 __kfree_skb(skb);
4661 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4662
4663 return next;
4664 }
4665
4666 /* Collapse contiguous sequence of skbs head..tail with
4667 * sequence numbers start..end.
4668 *
4669 * If tail is NULL, this means until the end of the list.
4670 *
4671 * Segments with FIN/SYN are not collapsed (only because this
4672 * simplifies code)
4673 */
4674 static void
4675 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4676 struct sk_buff *head, struct sk_buff *tail,
4677 u32 start, u32 end)
4678 {
4679 struct sk_buff *skb, *n;
4680 bool end_of_skbs;
4681
4682 /* First, check that queue is collapsible and find
4683 * the point where collapsing can be useful. */
4684 skb = head;
4685 restart:
4686 end_of_skbs = true;
4687 skb_queue_walk_from_safe(list, skb, n) {
4688 if (skb == tail)
4689 break;
4690 /* No new bits? It is possible on ofo queue. */
4691 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4692 skb = tcp_collapse_one(sk, skb, list);
4693 if (!skb)
4694 break;
4695 goto restart;
4696 }
4697
4698 /* The first skb to collapse is:
4699 * - not SYN/FIN and
4700 * - bloated or contains data before "start" or
4701 * overlaps to the next one.
4702 */
4703 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4704 (tcp_win_from_space(skb->truesize) > skb->len ||
4705 before(TCP_SKB_CB(skb)->seq, start))) {
4706 end_of_skbs = false;
4707 break;
4708 }
4709
4710 if (!skb_queue_is_last(list, skb)) {
4711 struct sk_buff *next = skb_queue_next(list, skb);
4712 if (next != tail &&
4713 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4714 end_of_skbs = false;
4715 break;
4716 }
4717 }
4718
4719 /* Decided to skip this, advance start seq. */
4720 start = TCP_SKB_CB(skb)->end_seq;
4721 }
4722 if (end_of_skbs ||
4723 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4724 return;
4725
4726 while (before(start, end)) {
4727 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4728 struct sk_buff *nskb;
4729
4730 nskb = alloc_skb(copy, GFP_ATOMIC);
4731 if (!nskb)
4732 return;
4733
4734 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4735 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4736 __skb_queue_before(list, skb, nskb);
4737 skb_set_owner_r(nskb, sk);
4738
4739 /* Copy data, releasing collapsed skbs. */
4740 while (copy > 0) {
4741 int offset = start - TCP_SKB_CB(skb)->seq;
4742 int size = TCP_SKB_CB(skb)->end_seq - start;
4743
4744 BUG_ON(offset < 0);
4745 if (size > 0) {
4746 size = min(copy, size);
4747 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4748 BUG();
4749 TCP_SKB_CB(nskb)->end_seq += size;
4750 copy -= size;
4751 start += size;
4752 }
4753 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4754 skb = tcp_collapse_one(sk, skb, list);
4755 if (!skb ||
4756 skb == tail ||
4757 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4758 return;
4759 }
4760 }
4761 }
4762 }
4763
4764 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4765 * and tcp_collapse() them until all the queue is collapsed.
4766 */
4767 static void tcp_collapse_ofo_queue(struct sock *sk)
4768 {
4769 struct tcp_sock *tp = tcp_sk(sk);
4770 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4771 struct sk_buff *head;
4772 u32 start, end;
4773
4774 if (!skb)
4775 return;
4776
4777 start = TCP_SKB_CB(skb)->seq;
4778 end = TCP_SKB_CB(skb)->end_seq;
4779 head = skb;
4780
4781 for (;;) {
4782 struct sk_buff *next = NULL;
4783
4784 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4785 next = skb_queue_next(&tp->out_of_order_queue, skb);
4786 skb = next;
4787
4788 /* Segment is terminated when we see gap or when
4789 * we are at the end of all the queue. */
4790 if (!skb ||
4791 after(TCP_SKB_CB(skb)->seq, end) ||
4792 before(TCP_SKB_CB(skb)->end_seq, start)) {
4793 tcp_collapse(sk, &tp->out_of_order_queue,
4794 head, skb, start, end);
4795 head = skb;
4796 if (!skb)
4797 break;
4798 /* Start new segment */
4799 start = TCP_SKB_CB(skb)->seq;
4800 end = TCP_SKB_CB(skb)->end_seq;
4801 } else {
4802 if (before(TCP_SKB_CB(skb)->seq, start))
4803 start = TCP_SKB_CB(skb)->seq;
4804 if (after(TCP_SKB_CB(skb)->end_seq, end))
4805 end = TCP_SKB_CB(skb)->end_seq;
4806 }
4807 }
4808 }
4809
4810 /*
4811 * Purge the out-of-order queue.
4812 * Return true if queue was pruned.
4813 */
4814 static bool tcp_prune_ofo_queue(struct sock *sk)
4815 {
4816 struct tcp_sock *tp = tcp_sk(sk);
4817 bool res = false;
4818
4819 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4820 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4821 __skb_queue_purge(&tp->out_of_order_queue);
4822
4823 /* Reset SACK state. A conforming SACK implementation will
4824 * do the same at a timeout based retransmit. When a connection
4825 * is in a sad state like this, we care only about integrity
4826 * of the connection not performance.
4827 */
4828 if (tp->rx_opt.sack_ok)
4829 tcp_sack_reset(&tp->rx_opt);
4830 sk_mem_reclaim(sk);
4831 res = true;
4832 }
4833 return res;
4834 }
4835
4836 /* Reduce allocated memory if we can, trying to get
4837 * the socket within its memory limits again.
4838 *
4839 * Return less than zero if we should start dropping frames
4840 * until the socket owning process reads some of the data
4841 * to stabilize the situation.
4842 */
4843 static int tcp_prune_queue(struct sock *sk)
4844 {
4845 struct tcp_sock *tp = tcp_sk(sk);
4846
4847 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4848
4849 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4850
4851 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4852 tcp_clamp_window(sk);
4853 else if (tcp_under_memory_pressure(sk))
4854 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4855
4856 tcp_collapse_ofo_queue(sk);
4857 if (!skb_queue_empty(&sk->sk_receive_queue))
4858 tcp_collapse(sk, &sk->sk_receive_queue,
4859 skb_peek(&sk->sk_receive_queue),
4860 NULL,
4861 tp->copied_seq, tp->rcv_nxt);
4862 sk_mem_reclaim(sk);
4863
4864 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4865 return 0;
4866
4867 /* Collapsing did not help, destructive actions follow.
4868 * This must not ever occur. */
4869
4870 tcp_prune_ofo_queue(sk);
4871
4872 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4873 return 0;
4874
4875 /* If we are really being abused, tell the caller to silently
4876 * drop receive data on the floor. It will get retransmitted
4877 * and hopefully then we'll have sufficient space.
4878 */
4879 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4880
4881 /* Massive buffer overcommit. */
4882 tp->pred_flags = 0;
4883 return -1;
4884 }
4885
4886 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4887 {
4888 const struct tcp_sock *tp = tcp_sk(sk);
4889
4890 /* If the user specified a specific send buffer setting, do
4891 * not modify it.
4892 */
4893 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4894 return false;
4895
4896 /* If we are under global TCP memory pressure, do not expand. */
4897 if (tcp_under_memory_pressure(sk))
4898 return false;
4899
4900 /* If we are under soft global TCP memory pressure, do not expand. */
4901 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4902 return false;
4903
4904 /* If we filled the congestion window, do not expand. */
4905 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4906 return false;
4907
4908 return true;
4909 }
4910
4911 /* When incoming ACK allowed to free some skb from write_queue,
4912 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4913 * on the exit from tcp input handler.
4914 *
4915 * PROBLEM: sndbuf expansion does not work well with largesend.
4916 */
4917 static void tcp_new_space(struct sock *sk)
4918 {
4919 struct tcp_sock *tp = tcp_sk(sk);
4920
4921 if (tcp_should_expand_sndbuf(sk)) {
4922 tcp_sndbuf_expand(sk);
4923 tp->snd_cwnd_stamp = tcp_time_stamp;
4924 }
4925
4926 sk->sk_write_space(sk);
4927 }
4928
4929 static void tcp_check_space(struct sock *sk)
4930 {
4931 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4932 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4933 /* pairs with tcp_poll() */
4934 smp_mb__after_atomic();
4935 if (sk->sk_socket &&
4936 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4937 tcp_new_space(sk);
4938 }
4939 }
4940
4941 static inline void tcp_data_snd_check(struct sock *sk)
4942 {
4943 tcp_push_pending_frames(sk);
4944 tcp_check_space(sk);
4945 }
4946
4947 /*
4948 * Check if sending an ack is needed.
4949 */
4950 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4951 {
4952 struct tcp_sock *tp = tcp_sk(sk);
4953
4954 /* More than one full frame received... */
4955 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4956 /* ... and right edge of window advances far enough.
4957 * (tcp_recvmsg() will send ACK otherwise). Or...
4958 */
4959 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4960 /* We ACK each frame or... */
4961 tcp_in_quickack_mode(sk) ||
4962 /* We have out of order data. */
4963 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4964 /* Then ack it now */
4965 tcp_send_ack(sk);
4966 } else {
4967 /* Else, send delayed ack. */
4968 tcp_send_delayed_ack(sk);
4969 }
4970 }
4971
4972 static inline void tcp_ack_snd_check(struct sock *sk)
4973 {
4974 if (!inet_csk_ack_scheduled(sk)) {
4975 /* We sent a data segment already. */
4976 return;
4977 }
4978 __tcp_ack_snd_check(sk, 1);
4979 }
4980
4981 /*
4982 * This routine is only called when we have urgent data
4983 * signaled. Its the 'slow' part of tcp_urg. It could be
4984 * moved inline now as tcp_urg is only called from one
4985 * place. We handle URGent data wrong. We have to - as
4986 * BSD still doesn't use the correction from RFC961.
4987 * For 1003.1g we should support a new option TCP_STDURG to permit
4988 * either form (or just set the sysctl tcp_stdurg).
4989 */
4990
4991 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4992 {
4993 struct tcp_sock *tp = tcp_sk(sk);
4994 u32 ptr = ntohs(th->urg_ptr);
4995
4996 if (ptr && !sysctl_tcp_stdurg)
4997 ptr--;
4998 ptr += ntohl(th->seq);
4999
5000 /* Ignore urgent data that we've already seen and read. */
5001 if (after(tp->copied_seq, ptr))
5002 return;
5003
5004 /* Do not replay urg ptr.
5005 *
5006 * NOTE: interesting situation not covered by specs.
5007 * Misbehaving sender may send urg ptr, pointing to segment,
5008 * which we already have in ofo queue. We are not able to fetch
5009 * such data and will stay in TCP_URG_NOTYET until will be eaten
5010 * by recvmsg(). Seems, we are not obliged to handle such wicked
5011 * situations. But it is worth to think about possibility of some
5012 * DoSes using some hypothetical application level deadlock.
5013 */
5014 if (before(ptr, tp->rcv_nxt))
5015 return;
5016
5017 /* Do we already have a newer (or duplicate) urgent pointer? */
5018 if (tp->urg_data && !after(ptr, tp->urg_seq))
5019 return;
5020
5021 /* Tell the world about our new urgent pointer. */
5022 sk_send_sigurg(sk);
5023
5024 /* We may be adding urgent data when the last byte read was
5025 * urgent. To do this requires some care. We cannot just ignore
5026 * tp->copied_seq since we would read the last urgent byte again
5027 * as data, nor can we alter copied_seq until this data arrives
5028 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5029 *
5030 * NOTE. Double Dutch. Rendering to plain English: author of comment
5031 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5032 * and expect that both A and B disappear from stream. This is _wrong_.
5033 * Though this happens in BSD with high probability, this is occasional.
5034 * Any application relying on this is buggy. Note also, that fix "works"
5035 * only in this artificial test. Insert some normal data between A and B and we will
5036 * decline of BSD again. Verdict: it is better to remove to trap
5037 * buggy users.
5038 */
5039 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5040 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5041 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5042 tp->copied_seq++;
5043 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5044 __skb_unlink(skb, &sk->sk_receive_queue);
5045 __kfree_skb(skb);
5046 }
5047 }
5048
5049 tp->urg_data = TCP_URG_NOTYET;
5050 tp->urg_seq = ptr;
5051
5052 /* Disable header prediction. */
5053 tp->pred_flags = 0;
5054 }
5055
5056 /* This is the 'fast' part of urgent handling. */
5057 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5058 {
5059 struct tcp_sock *tp = tcp_sk(sk);
5060
5061 /* Check if we get a new urgent pointer - normally not. */
5062 if (th->urg)
5063 tcp_check_urg(sk, th);
5064
5065 /* Do we wait for any urgent data? - normally not... */
5066 if (tp->urg_data == TCP_URG_NOTYET) {
5067 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5068 th->syn;
5069
5070 /* Is the urgent pointer pointing into this packet? */
5071 if (ptr < skb->len) {
5072 u8 tmp;
5073 if (skb_copy_bits(skb, ptr, &tmp, 1))
5074 BUG();
5075 tp->urg_data = TCP_URG_VALID | tmp;
5076 if (!sock_flag(sk, SOCK_DEAD))
5077 sk->sk_data_ready(sk);
5078 }
5079 }
5080 }
5081
5082 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5083 {
5084 struct tcp_sock *tp = tcp_sk(sk);
5085 int chunk = skb->len - hlen;
5086 int err;
5087
5088 local_bh_enable();
5089 if (skb_csum_unnecessary(skb))
5090 err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5091 else
5092 err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5093
5094 if (!err) {
5095 tp->ucopy.len -= chunk;
5096 tp->copied_seq += chunk;
5097 tcp_rcv_space_adjust(sk);
5098 }
5099
5100 local_bh_disable();
5101 return err;
5102 }
5103
5104 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5105 struct sk_buff *skb)
5106 {
5107 __sum16 result;
5108
5109 if (sock_owned_by_user(sk)) {
5110 local_bh_enable();
5111 result = __tcp_checksum_complete(skb);
5112 local_bh_disable();
5113 } else {
5114 result = __tcp_checksum_complete(skb);
5115 }
5116 return result;
5117 }
5118
5119 static inline bool tcp_checksum_complete_user(struct sock *sk,
5120 struct sk_buff *skb)
5121 {
5122 return !skb_csum_unnecessary(skb) &&
5123 __tcp_checksum_complete_user(sk, skb);
5124 }
5125
5126 /* Does PAWS and seqno based validation of an incoming segment, flags will
5127 * play significant role here.
5128 */
5129 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5130 const struct tcphdr *th, int syn_inerr)
5131 {
5132 struct tcp_sock *tp = tcp_sk(sk);
5133
5134 /* RFC1323: H1. Apply PAWS check first. */
5135 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5136 tcp_paws_discard(sk, skb)) {
5137 if (!th->rst) {
5138 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5139 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5140 LINUX_MIB_TCPACKSKIPPEDPAWS,
5141 &tp->last_oow_ack_time))
5142 tcp_send_dupack(sk, skb);
5143 goto discard;
5144 }
5145 /* Reset is accepted even if it did not pass PAWS. */
5146 }
5147
5148 /* Step 1: check sequence number */
5149 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5150 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5151 * (RST) segments are validated by checking their SEQ-fields."
5152 * And page 69: "If an incoming segment is not acceptable,
5153 * an acknowledgment should be sent in reply (unless the RST
5154 * bit is set, if so drop the segment and return)".
5155 */
5156 if (!th->rst) {
5157 if (th->syn)
5158 goto syn_challenge;
5159 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5160 LINUX_MIB_TCPACKSKIPPEDSEQ,
5161 &tp->last_oow_ack_time))
5162 tcp_send_dupack(sk, skb);
5163 }
5164 goto discard;
5165 }
5166
5167 /* Step 2: check RST bit */
5168 if (th->rst) {
5169 /* RFC 5961 3.2 :
5170 * If sequence number exactly matches RCV.NXT, then
5171 * RESET the connection
5172 * else
5173 * Send a challenge ACK
5174 */
5175 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5176 tcp_reset(sk);
5177 else
5178 tcp_send_challenge_ack(sk, skb);
5179 goto discard;
5180 }
5181
5182 /* step 3: check security and precedence [ignored] */
5183
5184 /* step 4: Check for a SYN
5185 * RFC 5961 4.2 : Send a challenge ack
5186 */
5187 if (th->syn) {
5188 syn_challenge:
5189 if (syn_inerr)
5190 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5191 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5192 tcp_send_challenge_ack(sk, skb);
5193 goto discard;
5194 }
5195
5196 return true;
5197
5198 discard:
5199 __kfree_skb(skb);
5200 return false;
5201 }
5202
5203 /*
5204 * TCP receive function for the ESTABLISHED state.
5205 *
5206 * It is split into a fast path and a slow path. The fast path is
5207 * disabled when:
5208 * - A zero window was announced from us - zero window probing
5209 * is only handled properly in the slow path.
5210 * - Out of order segments arrived.
5211 * - Urgent data is expected.
5212 * - There is no buffer space left
5213 * - Unexpected TCP flags/window values/header lengths are received
5214 * (detected by checking the TCP header against pred_flags)
5215 * - Data is sent in both directions. Fast path only supports pure senders
5216 * or pure receivers (this means either the sequence number or the ack
5217 * value must stay constant)
5218 * - Unexpected TCP option.
5219 *
5220 * When these conditions are not satisfied it drops into a standard
5221 * receive procedure patterned after RFC793 to handle all cases.
5222 * The first three cases are guaranteed by proper pred_flags setting,
5223 * the rest is checked inline. Fast processing is turned on in
5224 * tcp_data_queue when everything is OK.
5225 */
5226 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5227 const struct tcphdr *th, unsigned int len)
5228 {
5229 struct tcp_sock *tp = tcp_sk(sk);
5230
5231 if (unlikely(!sk->sk_rx_dst))
5232 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5233 /*
5234 * Header prediction.
5235 * The code loosely follows the one in the famous
5236 * "30 instruction TCP receive" Van Jacobson mail.
5237 *
5238 * Van's trick is to deposit buffers into socket queue
5239 * on a device interrupt, to call tcp_recv function
5240 * on the receive process context and checksum and copy
5241 * the buffer to user space. smart...
5242 *
5243 * Our current scheme is not silly either but we take the
5244 * extra cost of the net_bh soft interrupt processing...
5245 * We do checksum and copy also but from device to kernel.
5246 */
5247
5248 tp->rx_opt.saw_tstamp = 0;
5249
5250 /* pred_flags is 0xS?10 << 16 + snd_wnd
5251 * if header_prediction is to be made
5252 * 'S' will always be tp->tcp_header_len >> 2
5253 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5254 * turn it off (when there are holes in the receive
5255 * space for instance)
5256 * PSH flag is ignored.
5257 */
5258
5259 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5260 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5261 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5262 int tcp_header_len = tp->tcp_header_len;
5263
5264 /* Timestamp header prediction: tcp_header_len
5265 * is automatically equal to th->doff*4 due to pred_flags
5266 * match.
5267 */
5268
5269 /* Check timestamp */
5270 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5271 /* No? Slow path! */
5272 if (!tcp_parse_aligned_timestamp(tp, th))
5273 goto slow_path;
5274
5275 /* If PAWS failed, check it more carefully in slow path */
5276 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5277 goto slow_path;
5278
5279 /* DO NOT update ts_recent here, if checksum fails
5280 * and timestamp was corrupted part, it will result
5281 * in a hung connection since we will drop all
5282 * future packets due to the PAWS test.
5283 */
5284 }
5285
5286 if (len <= tcp_header_len) {
5287 /* Bulk data transfer: sender */
5288 if (len == tcp_header_len) {
5289 /* Predicted packet is in window by definition.
5290 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5291 * Hence, check seq<=rcv_wup reduces to:
5292 */
5293 if (tcp_header_len ==
5294 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5295 tp->rcv_nxt == tp->rcv_wup)
5296 tcp_store_ts_recent(tp);
5297
5298 /* We know that such packets are checksummed
5299 * on entry.
5300 */
5301 tcp_ack(sk, skb, 0);
5302 __kfree_skb(skb);
5303 tcp_data_snd_check(sk);
5304 return;
5305 } else { /* Header too small */
5306 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5307 goto discard;
5308 }
5309 } else {
5310 int eaten = 0;
5311 bool fragstolen = false;
5312
5313 if (tp->ucopy.task == current &&
5314 tp->copied_seq == tp->rcv_nxt &&
5315 len - tcp_header_len <= tp->ucopy.len &&
5316 sock_owned_by_user(sk)) {
5317 __set_current_state(TASK_RUNNING);
5318
5319 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5320 /* Predicted packet is in window by definition.
5321 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5322 * Hence, check seq<=rcv_wup reduces to:
5323 */
5324 if (tcp_header_len ==
5325 (sizeof(struct tcphdr) +
5326 TCPOLEN_TSTAMP_ALIGNED) &&
5327 tp->rcv_nxt == tp->rcv_wup)
5328 tcp_store_ts_recent(tp);
5329
5330 tcp_rcv_rtt_measure_ts(sk, skb);
5331
5332 __skb_pull(skb, tcp_header_len);
5333 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5334 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5335 eaten = 1;
5336 }
5337 }
5338 if (!eaten) {
5339 if (tcp_checksum_complete_user(sk, skb))
5340 goto csum_error;
5341
5342 if ((int)skb->truesize > sk->sk_forward_alloc)
5343 goto step5;
5344
5345 /* Predicted packet is in window by definition.
5346 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5347 * Hence, check seq<=rcv_wup reduces to:
5348 */
5349 if (tcp_header_len ==
5350 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5351 tp->rcv_nxt == tp->rcv_wup)
5352 tcp_store_ts_recent(tp);
5353
5354 tcp_rcv_rtt_measure_ts(sk, skb);
5355
5356 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5357
5358 /* Bulk data transfer: receiver */
5359 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5360 &fragstolen);
5361 }
5362
5363 tcp_event_data_recv(sk, skb);
5364
5365 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5366 /* Well, only one small jumplet in fast path... */
5367 tcp_ack(sk, skb, FLAG_DATA);
5368 tcp_data_snd_check(sk);
5369 if (!inet_csk_ack_scheduled(sk))
5370 goto no_ack;
5371 }
5372
5373 __tcp_ack_snd_check(sk, 0);
5374 no_ack:
5375 if (eaten)
5376 kfree_skb_partial(skb, fragstolen);
5377 sk->sk_data_ready(sk);
5378 return;
5379 }
5380 }
5381
5382 slow_path:
5383 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5384 goto csum_error;
5385
5386 if (!th->ack && !th->rst && !th->syn)
5387 goto discard;
5388
5389 /*
5390 * Standard slow path.
5391 */
5392
5393 if (!tcp_validate_incoming(sk, skb, th, 1))
5394 return;
5395
5396 step5:
5397 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5398 goto discard;
5399
5400 tcp_rcv_rtt_measure_ts(sk, skb);
5401
5402 /* Process urgent data. */
5403 tcp_urg(sk, skb, th);
5404
5405 /* step 7: process the segment text */
5406 tcp_data_queue(sk, skb);
5407
5408 tcp_data_snd_check(sk);
5409 tcp_ack_snd_check(sk);
5410 return;
5411
5412 csum_error:
5413 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5414 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5415
5416 discard:
5417 __kfree_skb(skb);
5418 }
5419 EXPORT_SYMBOL(tcp_rcv_established);
5420
5421 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5422 {
5423 struct tcp_sock *tp = tcp_sk(sk);
5424 struct inet_connection_sock *icsk = inet_csk(sk);
5425
5426 tcp_set_state(sk, TCP_ESTABLISHED);
5427
5428 if (skb) {
5429 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5430 security_inet_conn_established(sk, skb);
5431 }
5432
5433 /* Make sure socket is routed, for correct metrics. */
5434 icsk->icsk_af_ops->rebuild_header(sk);
5435
5436 tcp_init_metrics(sk);
5437
5438 tcp_init_congestion_control(sk);
5439
5440 /* Prevent spurious tcp_cwnd_restart() on first data
5441 * packet.
5442 */
5443 tp->lsndtime = tcp_time_stamp;
5444
5445 tcp_init_buffer_space(sk);
5446
5447 if (sock_flag(sk, SOCK_KEEPOPEN))
5448 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5449
5450 if (!tp->rx_opt.snd_wscale)
5451 __tcp_fast_path_on(tp, tp->snd_wnd);
5452 else
5453 tp->pred_flags = 0;
5454
5455 if (!sock_flag(sk, SOCK_DEAD)) {
5456 sk->sk_state_change(sk);
5457 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5458 }
5459 }
5460
5461 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5462 struct tcp_fastopen_cookie *cookie)
5463 {
5464 struct tcp_sock *tp = tcp_sk(sk);
5465 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5466 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5467 bool syn_drop = false;
5468
5469 if (mss == tp->rx_opt.user_mss) {
5470 struct tcp_options_received opt;
5471
5472 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5473 tcp_clear_options(&opt);
5474 opt.user_mss = opt.mss_clamp = 0;
5475 tcp_parse_options(synack, &opt, 0, NULL);
5476 mss = opt.mss_clamp;
5477 }
5478
5479 if (!tp->syn_fastopen) {
5480 /* Ignore an unsolicited cookie */
5481 cookie->len = -1;
5482 } else if (tp->total_retrans) {
5483 /* SYN timed out and the SYN-ACK neither has a cookie nor
5484 * acknowledges data. Presumably the remote received only
5485 * the retransmitted (regular) SYNs: either the original
5486 * SYN-data or the corresponding SYN-ACK was dropped.
5487 */
5488 syn_drop = (cookie->len < 0 && data);
5489 } else if (cookie->len < 0 && !tp->syn_data) {
5490 /* We requested a cookie but didn't get it. If we did not use
5491 * the (old) exp opt format then try so next time (try_exp=1).
5492 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5493 */
5494 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5495 }
5496
5497 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5498
5499 if (data) { /* Retransmit unacked data in SYN */
5500 tcp_for_write_queue_from(data, sk) {
5501 if (data == tcp_send_head(sk) ||
5502 __tcp_retransmit_skb(sk, data))
5503 break;
5504 }
5505 tcp_rearm_rto(sk);
5506 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5507 return true;
5508 }
5509 tp->syn_data_acked = tp->syn_data;
5510 if (tp->syn_data_acked)
5511 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5512 return false;
5513 }
5514
5515 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5516 const struct tcphdr *th)
5517 {
5518 struct inet_connection_sock *icsk = inet_csk(sk);
5519 struct tcp_sock *tp = tcp_sk(sk);
5520 struct tcp_fastopen_cookie foc = { .len = -1 };
5521 int saved_clamp = tp->rx_opt.mss_clamp;
5522
5523 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5524 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5525 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5526
5527 if (th->ack) {
5528 /* rfc793:
5529 * "If the state is SYN-SENT then
5530 * first check the ACK bit
5531 * If the ACK bit is set
5532 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5533 * a reset (unless the RST bit is set, if so drop
5534 * the segment and return)"
5535 */
5536 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5537 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5538 goto reset_and_undo;
5539
5540 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5541 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5542 tcp_time_stamp)) {
5543 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5544 goto reset_and_undo;
5545 }
5546
5547 /* Now ACK is acceptable.
5548 *
5549 * "If the RST bit is set
5550 * If the ACK was acceptable then signal the user "error:
5551 * connection reset", drop the segment, enter CLOSED state,
5552 * delete TCB, and return."
5553 */
5554
5555 if (th->rst) {
5556 tcp_reset(sk);
5557 goto discard;
5558 }
5559
5560 /* rfc793:
5561 * "fifth, if neither of the SYN or RST bits is set then
5562 * drop the segment and return."
5563 *
5564 * See note below!
5565 * --ANK(990513)
5566 */
5567 if (!th->syn)
5568 goto discard_and_undo;
5569
5570 /* rfc793:
5571 * "If the SYN bit is on ...
5572 * are acceptable then ...
5573 * (our SYN has been ACKed), change the connection
5574 * state to ESTABLISHED..."
5575 */
5576
5577 tcp_ecn_rcv_synack(tp, th);
5578
5579 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5580 tcp_ack(sk, skb, FLAG_SLOWPATH);
5581
5582 /* Ok.. it's good. Set up sequence numbers and
5583 * move to established.
5584 */
5585 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5586 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5587
5588 /* RFC1323: The window in SYN & SYN/ACK segments is
5589 * never scaled.
5590 */
5591 tp->snd_wnd = ntohs(th->window);
5592
5593 if (!tp->rx_opt.wscale_ok) {
5594 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5595 tp->window_clamp = min(tp->window_clamp, 65535U);
5596 }
5597
5598 if (tp->rx_opt.saw_tstamp) {
5599 tp->rx_opt.tstamp_ok = 1;
5600 tp->tcp_header_len =
5601 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5602 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5603 tcp_store_ts_recent(tp);
5604 } else {
5605 tp->tcp_header_len = sizeof(struct tcphdr);
5606 }
5607
5608 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5609 tcp_enable_fack(tp);
5610
5611 tcp_mtup_init(sk);
5612 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5613 tcp_initialize_rcv_mss(sk);
5614
5615 /* Remember, tcp_poll() does not lock socket!
5616 * Change state from SYN-SENT only after copied_seq
5617 * is initialized. */
5618 tp->copied_seq = tp->rcv_nxt;
5619
5620 smp_mb();
5621
5622 tcp_finish_connect(sk, skb);
5623
5624 if ((tp->syn_fastopen || tp->syn_data) &&
5625 tcp_rcv_fastopen_synack(sk, skb, &foc))
5626 return -1;
5627
5628 if (sk->sk_write_pending ||
5629 icsk->icsk_accept_queue.rskq_defer_accept ||
5630 icsk->icsk_ack.pingpong) {
5631 /* Save one ACK. Data will be ready after
5632 * several ticks, if write_pending is set.
5633 *
5634 * It may be deleted, but with this feature tcpdumps
5635 * look so _wonderfully_ clever, that I was not able
5636 * to stand against the temptation 8) --ANK
5637 */
5638 inet_csk_schedule_ack(sk);
5639 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5640 tcp_enter_quickack_mode(sk);
5641 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5642 TCP_DELACK_MAX, TCP_RTO_MAX);
5643
5644 discard:
5645 __kfree_skb(skb);
5646 return 0;
5647 } else {
5648 tcp_send_ack(sk);
5649 }
5650 return -1;
5651 }
5652
5653 /* No ACK in the segment */
5654
5655 if (th->rst) {
5656 /* rfc793:
5657 * "If the RST bit is set
5658 *
5659 * Otherwise (no ACK) drop the segment and return."
5660 */
5661
5662 goto discard_and_undo;
5663 }
5664
5665 /* PAWS check. */
5666 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5667 tcp_paws_reject(&tp->rx_opt, 0))
5668 goto discard_and_undo;
5669
5670 if (th->syn) {
5671 /* We see SYN without ACK. It is attempt of
5672 * simultaneous connect with crossed SYNs.
5673 * Particularly, it can be connect to self.
5674 */
5675 tcp_set_state(sk, TCP_SYN_RECV);
5676
5677 if (tp->rx_opt.saw_tstamp) {
5678 tp->rx_opt.tstamp_ok = 1;
5679 tcp_store_ts_recent(tp);
5680 tp->tcp_header_len =
5681 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5682 } else {
5683 tp->tcp_header_len = sizeof(struct tcphdr);
5684 }
5685
5686 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5687 tp->copied_seq = tp->rcv_nxt;
5688 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5689
5690 /* RFC1323: The window in SYN & SYN/ACK segments is
5691 * never scaled.
5692 */
5693 tp->snd_wnd = ntohs(th->window);
5694 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5695 tp->max_window = tp->snd_wnd;
5696
5697 tcp_ecn_rcv_syn(tp, th);
5698
5699 tcp_mtup_init(sk);
5700 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5701 tcp_initialize_rcv_mss(sk);
5702
5703 tcp_send_synack(sk);
5704 #if 0
5705 /* Note, we could accept data and URG from this segment.
5706 * There are no obstacles to make this (except that we must
5707 * either change tcp_recvmsg() to prevent it from returning data
5708 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5709 *
5710 * However, if we ignore data in ACKless segments sometimes,
5711 * we have no reasons to accept it sometimes.
5712 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5713 * is not flawless. So, discard packet for sanity.
5714 * Uncomment this return to process the data.
5715 */
5716 return -1;
5717 #else
5718 goto discard;
5719 #endif
5720 }
5721 /* "fifth, if neither of the SYN or RST bits is set then
5722 * drop the segment and return."
5723 */
5724
5725 discard_and_undo:
5726 tcp_clear_options(&tp->rx_opt);
5727 tp->rx_opt.mss_clamp = saved_clamp;
5728 goto discard;
5729
5730 reset_and_undo:
5731 tcp_clear_options(&tp->rx_opt);
5732 tp->rx_opt.mss_clamp = saved_clamp;
5733 return 1;
5734 }
5735
5736 /*
5737 * This function implements the receiving procedure of RFC 793 for
5738 * all states except ESTABLISHED and TIME_WAIT.
5739 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5740 * address independent.
5741 */
5742
5743 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5744 {
5745 struct tcp_sock *tp = tcp_sk(sk);
5746 struct inet_connection_sock *icsk = inet_csk(sk);
5747 const struct tcphdr *th = tcp_hdr(skb);
5748 struct request_sock *req;
5749 int queued = 0;
5750 bool acceptable;
5751
5752 tp->rx_opt.saw_tstamp = 0;
5753
5754 switch (sk->sk_state) {
5755 case TCP_CLOSE:
5756 goto discard;
5757
5758 case TCP_LISTEN:
5759 if (th->ack)
5760 return 1;
5761
5762 if (th->rst)
5763 goto discard;
5764
5765 if (th->syn) {
5766 if (th->fin)
5767 goto discard;
5768 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5769 return 1;
5770
5771 /* Now we have several options: In theory there is
5772 * nothing else in the frame. KA9Q has an option to
5773 * send data with the syn, BSD accepts data with the
5774 * syn up to the [to be] advertised window and
5775 * Solaris 2.1 gives you a protocol error. For now
5776 * we just ignore it, that fits the spec precisely
5777 * and avoids incompatibilities. It would be nice in
5778 * future to drop through and process the data.
5779 *
5780 * Now that TTCP is starting to be used we ought to
5781 * queue this data.
5782 * But, this leaves one open to an easy denial of
5783 * service attack, and SYN cookies can't defend
5784 * against this problem. So, we drop the data
5785 * in the interest of security over speed unless
5786 * it's still in use.
5787 */
5788 kfree_skb(skb);
5789 return 0;
5790 }
5791 goto discard;
5792
5793 case TCP_SYN_SENT:
5794 queued = tcp_rcv_synsent_state_process(sk, skb, th);
5795 if (queued >= 0)
5796 return queued;
5797
5798 /* Do step6 onward by hand. */
5799 tcp_urg(sk, skb, th);
5800 __kfree_skb(skb);
5801 tcp_data_snd_check(sk);
5802 return 0;
5803 }
5804
5805 req = tp->fastopen_rsk;
5806 if (req) {
5807 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5808 sk->sk_state != TCP_FIN_WAIT1);
5809
5810 if (!tcp_check_req(sk, skb, req, true))
5811 goto discard;
5812 }
5813
5814 if (!th->ack && !th->rst && !th->syn)
5815 goto discard;
5816
5817 if (!tcp_validate_incoming(sk, skb, th, 0))
5818 return 0;
5819
5820 /* step 5: check the ACK field */
5821 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5822 FLAG_UPDATE_TS_RECENT) > 0;
5823
5824 switch (sk->sk_state) {
5825 case TCP_SYN_RECV:
5826 if (!acceptable)
5827 return 1;
5828
5829 if (!tp->srtt_us)
5830 tcp_synack_rtt_meas(sk, req);
5831
5832 /* Once we leave TCP_SYN_RECV, we no longer need req
5833 * so release it.
5834 */
5835 if (req) {
5836 tp->total_retrans = req->num_retrans;
5837 reqsk_fastopen_remove(sk, req, false);
5838 } else {
5839 /* Make sure socket is routed, for correct metrics. */
5840 icsk->icsk_af_ops->rebuild_header(sk);
5841 tcp_init_congestion_control(sk);
5842
5843 tcp_mtup_init(sk);
5844 tp->copied_seq = tp->rcv_nxt;
5845 tcp_init_buffer_space(sk);
5846 }
5847 smp_mb();
5848 tcp_set_state(sk, TCP_ESTABLISHED);
5849 sk->sk_state_change(sk);
5850
5851 /* Note, that this wakeup is only for marginal crossed SYN case.
5852 * Passively open sockets are not waked up, because
5853 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5854 */
5855 if (sk->sk_socket)
5856 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5857
5858 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5859 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5860 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5861
5862 if (tp->rx_opt.tstamp_ok)
5863 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5864
5865 if (req) {
5866 /* Re-arm the timer because data may have been sent out.
5867 * This is similar to the regular data transmission case
5868 * when new data has just been ack'ed.
5869 *
5870 * (TFO) - we could try to be more aggressive and
5871 * retransmitting any data sooner based on when they
5872 * are sent out.
5873 */
5874 tcp_rearm_rto(sk);
5875 } else
5876 tcp_init_metrics(sk);
5877
5878 tcp_update_pacing_rate(sk);
5879
5880 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5881 tp->lsndtime = tcp_time_stamp;
5882
5883 tcp_initialize_rcv_mss(sk);
5884 tcp_fast_path_on(tp);
5885 break;
5886
5887 case TCP_FIN_WAIT1: {
5888 struct dst_entry *dst;
5889 int tmo;
5890
5891 /* If we enter the TCP_FIN_WAIT1 state and we are a
5892 * Fast Open socket and this is the first acceptable
5893 * ACK we have received, this would have acknowledged
5894 * our SYNACK so stop the SYNACK timer.
5895 */
5896 if (req) {
5897 /* Return RST if ack_seq is invalid.
5898 * Note that RFC793 only says to generate a
5899 * DUPACK for it but for TCP Fast Open it seems
5900 * better to treat this case like TCP_SYN_RECV
5901 * above.
5902 */
5903 if (!acceptable)
5904 return 1;
5905 /* We no longer need the request sock. */
5906 reqsk_fastopen_remove(sk, req, false);
5907 tcp_rearm_rto(sk);
5908 }
5909 if (tp->snd_una != tp->write_seq)
5910 break;
5911
5912 tcp_set_state(sk, TCP_FIN_WAIT2);
5913 sk->sk_shutdown |= SEND_SHUTDOWN;
5914
5915 dst = __sk_dst_get(sk);
5916 if (dst)
5917 dst_confirm(dst);
5918
5919 if (!sock_flag(sk, SOCK_DEAD)) {
5920 /* Wake up lingering close() */
5921 sk->sk_state_change(sk);
5922 break;
5923 }
5924
5925 if (tp->linger2 < 0 ||
5926 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5927 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5928 tcp_done(sk);
5929 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5930 return 1;
5931 }
5932
5933 tmo = tcp_fin_time(sk);
5934 if (tmo > TCP_TIMEWAIT_LEN) {
5935 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5936 } else if (th->fin || sock_owned_by_user(sk)) {
5937 /* Bad case. We could lose such FIN otherwise.
5938 * It is not a big problem, but it looks confusing
5939 * and not so rare event. We still can lose it now,
5940 * if it spins in bh_lock_sock(), but it is really
5941 * marginal case.
5942 */
5943 inet_csk_reset_keepalive_timer(sk, tmo);
5944 } else {
5945 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5946 goto discard;
5947 }
5948 break;
5949 }
5950
5951 case TCP_CLOSING:
5952 if (tp->snd_una == tp->write_seq) {
5953 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5954 goto discard;
5955 }
5956 break;
5957
5958 case TCP_LAST_ACK:
5959 if (tp->snd_una == tp->write_seq) {
5960 tcp_update_metrics(sk);
5961 tcp_done(sk);
5962 goto discard;
5963 }
5964 break;
5965 }
5966
5967 /* step 6: check the URG bit */
5968 tcp_urg(sk, skb, th);
5969
5970 /* step 7: process the segment text */
5971 switch (sk->sk_state) {
5972 case TCP_CLOSE_WAIT:
5973 case TCP_CLOSING:
5974 case TCP_LAST_ACK:
5975 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5976 break;
5977 case TCP_FIN_WAIT1:
5978 case TCP_FIN_WAIT2:
5979 /* RFC 793 says to queue data in these states,
5980 * RFC 1122 says we MUST send a reset.
5981 * BSD 4.4 also does reset.
5982 */
5983 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5984 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5985 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5986 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5987 tcp_reset(sk);
5988 return 1;
5989 }
5990 }
5991 /* Fall through */
5992 case TCP_ESTABLISHED:
5993 tcp_data_queue(sk, skb);
5994 queued = 1;
5995 break;
5996 }
5997
5998 /* tcp_data could move socket to TIME-WAIT */
5999 if (sk->sk_state != TCP_CLOSE) {
6000 tcp_data_snd_check(sk);
6001 tcp_ack_snd_check(sk);
6002 }
6003
6004 if (!queued) {
6005 discard:
6006 __kfree_skb(skb);
6007 }
6008 return 0;
6009 }
6010 EXPORT_SYMBOL(tcp_rcv_state_process);
6011
6012 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6013 {
6014 struct inet_request_sock *ireq = inet_rsk(req);
6015
6016 if (family == AF_INET)
6017 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6018 &ireq->ir_rmt_addr, port);
6019 #if IS_ENABLED(CONFIG_IPV6)
6020 else if (family == AF_INET6)
6021 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6022 &ireq->ir_v6_rmt_addr, port);
6023 #endif
6024 }
6025
6026 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6027 *
6028 * If we receive a SYN packet with these bits set, it means a
6029 * network is playing bad games with TOS bits. In order to
6030 * avoid possible false congestion notifications, we disable
6031 * TCP ECN negotiation.
6032 *
6033 * Exception: tcp_ca wants ECN. This is required for DCTCP
6034 * congestion control: Linux DCTCP asserts ECT on all packets,
6035 * including SYN, which is most optimal solution; however,
6036 * others, such as FreeBSD do not.
6037 */
6038 static void tcp_ecn_create_request(struct request_sock *req,
6039 const struct sk_buff *skb,
6040 const struct sock *listen_sk,
6041 const struct dst_entry *dst)
6042 {
6043 const struct tcphdr *th = tcp_hdr(skb);
6044 const struct net *net = sock_net(listen_sk);
6045 bool th_ecn = th->ece && th->cwr;
6046 bool ect, ecn_ok;
6047 u32 ecn_ok_dst;
6048
6049 if (!th_ecn)
6050 return;
6051
6052 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6053 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6054 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6055
6056 if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6057 (ecn_ok_dst & DST_FEATURE_ECN_CA))
6058 inet_rsk(req)->ecn_ok = 1;
6059 }
6060
6061 static void tcp_openreq_init(struct request_sock *req,
6062 const struct tcp_options_received *rx_opt,
6063 struct sk_buff *skb, const struct sock *sk)
6064 {
6065 struct inet_request_sock *ireq = inet_rsk(req);
6066
6067 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6068 req->cookie_ts = 0;
6069 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6070 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6071 skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6072 tcp_rsk(req)->last_oow_ack_time = 0;
6073 req->mss = rx_opt->mss_clamp;
6074 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6075 ireq->tstamp_ok = rx_opt->tstamp_ok;
6076 ireq->sack_ok = rx_opt->sack_ok;
6077 ireq->snd_wscale = rx_opt->snd_wscale;
6078 ireq->wscale_ok = rx_opt->wscale_ok;
6079 ireq->acked = 0;
6080 ireq->ecn_ok = 0;
6081 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6082 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6083 ireq->ir_mark = inet_request_mark(sk, skb);
6084 }
6085
6086 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6087 struct sock *sk_listener,
6088 bool attach_listener)
6089 {
6090 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6091 attach_listener);
6092
6093 if (req) {
6094 struct inet_request_sock *ireq = inet_rsk(req);
6095
6096 kmemcheck_annotate_bitfield(ireq, flags);
6097 ireq->opt = NULL;
6098 atomic64_set(&ireq->ir_cookie, 0);
6099 ireq->ireq_state = TCP_NEW_SYN_RECV;
6100 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6101 ireq->ireq_family = sk_listener->sk_family;
6102 }
6103
6104 return req;
6105 }
6106 EXPORT_SYMBOL(inet_reqsk_alloc);
6107
6108 /*
6109 * Return true if a syncookie should be sent
6110 */
6111 static bool tcp_syn_flood_action(const struct sock *sk,
6112 const struct sk_buff *skb,
6113 const char *proto)
6114 {
6115 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6116 const char *msg = "Dropping request";
6117 bool want_cookie = false;
6118
6119 #ifdef CONFIG_SYN_COOKIES
6120 if (sysctl_tcp_syncookies) {
6121 msg = "Sending cookies";
6122 want_cookie = true;
6123 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6124 } else
6125 #endif
6126 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6127
6128 if (!queue->synflood_warned &&
6129 sysctl_tcp_syncookies != 2 &&
6130 xchg(&queue->synflood_warned, 1) == 0)
6131 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6132 proto, ntohs(tcp_hdr(skb)->dest), msg);
6133
6134 return want_cookie;
6135 }
6136
6137 static void tcp_reqsk_record_syn(const struct sock *sk,
6138 struct request_sock *req,
6139 const struct sk_buff *skb)
6140 {
6141 if (tcp_sk(sk)->save_syn) {
6142 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6143 u32 *copy;
6144
6145 copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6146 if (copy) {
6147 copy[0] = len;
6148 memcpy(&copy[1], skb_network_header(skb), len);
6149 req->saved_syn = copy;
6150 }
6151 }
6152 }
6153
6154 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6155 const struct tcp_request_sock_ops *af_ops,
6156 struct sock *sk, struct sk_buff *skb)
6157 {
6158 struct tcp_fastopen_cookie foc = { .len = -1 };
6159 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6160 struct tcp_options_received tmp_opt;
6161 struct tcp_sock *tp = tcp_sk(sk);
6162 struct sock *fastopen_sk = NULL;
6163 struct dst_entry *dst = NULL;
6164 struct request_sock *req;
6165 bool want_cookie = false;
6166 struct flowi fl;
6167
6168 /* TW buckets are converted to open requests without
6169 * limitations, they conserve resources and peer is
6170 * evidently real one.
6171 */
6172 if ((sysctl_tcp_syncookies == 2 ||
6173 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6174 want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6175 if (!want_cookie)
6176 goto drop;
6177 }
6178
6179
6180 /* Accept backlog is full. If we have already queued enough
6181 * of warm entries in syn queue, drop request. It is better than
6182 * clogging syn queue with openreqs with exponentially increasing
6183 * timeout.
6184 */
6185 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6186 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6187 goto drop;
6188 }
6189
6190 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6191 if (!req)
6192 goto drop;
6193
6194 tcp_rsk(req)->af_specific = af_ops;
6195
6196 tcp_clear_options(&tmp_opt);
6197 tmp_opt.mss_clamp = af_ops->mss_clamp;
6198 tmp_opt.user_mss = tp->rx_opt.user_mss;
6199 tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6200
6201 if (want_cookie && !tmp_opt.saw_tstamp)
6202 tcp_clear_options(&tmp_opt);
6203
6204 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6205 tcp_openreq_init(req, &tmp_opt, skb, sk);
6206
6207 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6208 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6209
6210 af_ops->init_req(req, sk, skb);
6211
6212 if (security_inet_conn_request(sk, skb, req))
6213 goto drop_and_free;
6214
6215 if (!want_cookie && !isn) {
6216 /* VJ's idea. We save last timestamp seen
6217 * from the destination in peer table, when entering
6218 * state TIME-WAIT, and check against it before
6219 * accepting new connection request.
6220 *
6221 * If "isn" is not zero, this request hit alive
6222 * timewait bucket, so that all the necessary checks
6223 * are made in the function processing timewait state.
6224 */
6225 if (tcp_death_row.sysctl_tw_recycle) {
6226 bool strict;
6227
6228 dst = af_ops->route_req(sk, &fl, req, &strict);
6229
6230 if (dst && strict &&
6231 !tcp_peer_is_proven(req, dst, true,
6232 tmp_opt.saw_tstamp)) {
6233 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6234 goto drop_and_release;
6235 }
6236 }
6237 /* Kill the following clause, if you dislike this way. */
6238 else if (!sysctl_tcp_syncookies &&
6239 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6240 (sysctl_max_syn_backlog >> 2)) &&
6241 !tcp_peer_is_proven(req, dst, false,
6242 tmp_opt.saw_tstamp)) {
6243 /* Without syncookies last quarter of
6244 * backlog is filled with destinations,
6245 * proven to be alive.
6246 * It means that we continue to communicate
6247 * to destinations, already remembered
6248 * to the moment of synflood.
6249 */
6250 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6251 rsk_ops->family);
6252 goto drop_and_release;
6253 }
6254
6255 isn = af_ops->init_seq(skb);
6256 }
6257 if (!dst) {
6258 dst = af_ops->route_req(sk, &fl, req, NULL);
6259 if (!dst)
6260 goto drop_and_free;
6261 }
6262
6263 tcp_ecn_create_request(req, skb, sk, dst);
6264
6265 if (want_cookie) {
6266 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6267 req->cookie_ts = tmp_opt.tstamp_ok;
6268 if (!tmp_opt.tstamp_ok)
6269 inet_rsk(req)->ecn_ok = 0;
6270 }
6271
6272 tcp_rsk(req)->snt_isn = isn;
6273 tcp_rsk(req)->txhash = net_tx_rndhash();
6274 tcp_openreq_init_rwin(req, sk, dst);
6275 if (!want_cookie) {
6276 tcp_reqsk_record_syn(sk, req, skb);
6277 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6278 }
6279 if (fastopen_sk) {
6280 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6281 &foc, false);
6282 /* Add the child socket directly into the accept queue */
6283 inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6284 sk->sk_data_ready(sk);
6285 bh_unlock_sock(fastopen_sk);
6286 sock_put(fastopen_sk);
6287 } else {
6288 tcp_rsk(req)->tfo_listener = false;
6289 if (!want_cookie)
6290 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6291 af_ops->send_synack(sk, dst, &fl, req,
6292 &foc, !want_cookie);
6293 if (want_cookie)
6294 goto drop_and_free;
6295 }
6296 reqsk_put(req);
6297 return 0;
6298
6299 drop_and_release:
6300 dst_release(dst);
6301 drop_and_free:
6302 reqsk_free(req);
6303 drop:
6304 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
6305 return 0;
6306 }
6307 EXPORT_SYMBOL(tcp_conn_request);
This page took 0.168138 seconds and 5 git commands to generate.