Merge remote-tracking branch 'regulator/topic/tps65910' into regulator-next
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96
97 int sysctl_tcp_thin_dupack __read_mostly;
98
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
101
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
115
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124 /* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
126 */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
132
133 icsk->icsk_ack.last_seg_size = 0;
134
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
137 */
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
144 *
145 * "len" is invariant segment length, including TCP header.
146 */
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
153 */
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
159 */
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
165 }
166 }
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 }
171 }
172
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
197 {
198 const struct inet_connection_sock *icsk = inet_csk(sk);
199
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
224
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
230 */
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock *)tp);
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 }
240 /* fallinto */
241 default:
242 tp->ecn_flags |= TCP_ECN_SEEN;
243 }
244 }
245
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 return true;
262 return false;
263 }
264
265 /* Buffer size and advertised window tuning.
266 *
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268 */
269
270 static void tcp_fixup_sndbuf(struct sock *sk)
271 {
272 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
273
274 sndmem *= TCP_INIT_CWND;
275 if (sk->sk_sndbuf < sndmem)
276 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
277 }
278
279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
280 *
281 * All tcp_full_space() is split to two parts: "network" buffer, allocated
282 * forward and advertised in receiver window (tp->rcv_wnd) and
283 * "application buffer", required to isolate scheduling/application
284 * latencies from network.
285 * window_clamp is maximal advertised window. It can be less than
286 * tcp_full_space(), in this case tcp_full_space() - window_clamp
287 * is reserved for "application" buffer. The less window_clamp is
288 * the smoother our behaviour from viewpoint of network, but the lower
289 * throughput and the higher sensitivity of the connection to losses. 8)
290 *
291 * rcv_ssthresh is more strict window_clamp used at "slow start"
292 * phase to predict further behaviour of this connection.
293 * It is used for two goals:
294 * - to enforce header prediction at sender, even when application
295 * requires some significant "application buffer". It is check #1.
296 * - to prevent pruning of receive queue because of misprediction
297 * of receiver window. Check #2.
298 *
299 * The scheme does not work when sender sends good segments opening
300 * window and then starts to feed us spaghetti. But it should work
301 * in common situations. Otherwise, we have to rely on queue collapsing.
302 */
303
304 /* Slow part of check#2. */
305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
306 {
307 struct tcp_sock *tp = tcp_sk(sk);
308 /* Optimize this! */
309 int truesize = tcp_win_from_space(skb->truesize) >> 1;
310 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
311
312 while (tp->rcv_ssthresh <= window) {
313 if (truesize <= skb->len)
314 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
315
316 truesize >>= 1;
317 window >>= 1;
318 }
319 return 0;
320 }
321
322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
323 {
324 struct tcp_sock *tp = tcp_sk(sk);
325
326 /* Check #1 */
327 if (tp->rcv_ssthresh < tp->window_clamp &&
328 (int)tp->rcv_ssthresh < tcp_space(sk) &&
329 !sk_under_memory_pressure(sk)) {
330 int incr;
331
332 /* Check #2. Increase window, if skb with such overhead
333 * will fit to rcvbuf in future.
334 */
335 if (tcp_win_from_space(skb->truesize) <= skb->len)
336 incr = 2 * tp->advmss;
337 else
338 incr = __tcp_grow_window(sk, skb);
339
340 if (incr) {
341 incr = max_t(int, incr, 2 * skb->len);
342 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343 tp->window_clamp);
344 inet_csk(sk)->icsk_ack.quick |= 1;
345 }
346 }
347 }
348
349 /* 3. Tuning rcvbuf, when connection enters established state. */
350 static void tcp_fixup_rcvbuf(struct sock *sk)
351 {
352 u32 mss = tcp_sk(sk)->advmss;
353 int rcvmem;
354
355 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
356 tcp_default_init_rwnd(mss);
357
358 if (sk->sk_rcvbuf < rcvmem)
359 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
360 }
361
362 /* 4. Try to fixup all. It is made immediately after connection enters
363 * established state.
364 */
365 void tcp_init_buffer_space(struct sock *sk)
366 {
367 struct tcp_sock *tp = tcp_sk(sk);
368 int maxwin;
369
370 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
371 tcp_fixup_rcvbuf(sk);
372 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
373 tcp_fixup_sndbuf(sk);
374
375 tp->rcvq_space.space = tp->rcv_wnd;
376
377 maxwin = tcp_full_space(sk);
378
379 if (tp->window_clamp >= maxwin) {
380 tp->window_clamp = maxwin;
381
382 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
383 tp->window_clamp = max(maxwin -
384 (maxwin >> sysctl_tcp_app_win),
385 4 * tp->advmss);
386 }
387
388 /* Force reservation of one segment. */
389 if (sysctl_tcp_app_win &&
390 tp->window_clamp > 2 * tp->advmss &&
391 tp->window_clamp + tp->advmss > maxwin)
392 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
393
394 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
395 tp->snd_cwnd_stamp = tcp_time_stamp;
396 }
397
398 /* 5. Recalculate window clamp after socket hit its memory bounds. */
399 static void tcp_clamp_window(struct sock *sk)
400 {
401 struct tcp_sock *tp = tcp_sk(sk);
402 struct inet_connection_sock *icsk = inet_csk(sk);
403
404 icsk->icsk_ack.quick = 0;
405
406 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
407 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
408 !sk_under_memory_pressure(sk) &&
409 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
410 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
411 sysctl_tcp_rmem[2]);
412 }
413 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
414 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
415 }
416
417 /* Initialize RCV_MSS value.
418 * RCV_MSS is an our guess about MSS used by the peer.
419 * We haven't any direct information about the MSS.
420 * It's better to underestimate the RCV_MSS rather than overestimate.
421 * Overestimations make us ACKing less frequently than needed.
422 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
423 */
424 void tcp_initialize_rcv_mss(struct sock *sk)
425 {
426 const struct tcp_sock *tp = tcp_sk(sk);
427 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
428
429 hint = min(hint, tp->rcv_wnd / 2);
430 hint = min(hint, TCP_MSS_DEFAULT);
431 hint = max(hint, TCP_MIN_MSS);
432
433 inet_csk(sk)->icsk_ack.rcv_mss = hint;
434 }
435 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
436
437 /* Receiver "autotuning" code.
438 *
439 * The algorithm for RTT estimation w/o timestamps is based on
440 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
441 * <http://public.lanl.gov/radiant/pubs.html#DRS>
442 *
443 * More detail on this code can be found at
444 * <http://staff.psc.edu/jheffner/>,
445 * though this reference is out of date. A new paper
446 * is pending.
447 */
448 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
449 {
450 u32 new_sample = tp->rcv_rtt_est.rtt;
451 long m = sample;
452
453 if (m == 0)
454 m = 1;
455
456 if (new_sample != 0) {
457 /* If we sample in larger samples in the non-timestamp
458 * case, we could grossly overestimate the RTT especially
459 * with chatty applications or bulk transfer apps which
460 * are stalled on filesystem I/O.
461 *
462 * Also, since we are only going for a minimum in the
463 * non-timestamp case, we do not smooth things out
464 * else with timestamps disabled convergence takes too
465 * long.
466 */
467 if (!win_dep) {
468 m -= (new_sample >> 3);
469 new_sample += m;
470 } else {
471 m <<= 3;
472 if (m < new_sample)
473 new_sample = m;
474 }
475 } else {
476 /* No previous measure. */
477 new_sample = m << 3;
478 }
479
480 if (tp->rcv_rtt_est.rtt != new_sample)
481 tp->rcv_rtt_est.rtt = new_sample;
482 }
483
484 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
485 {
486 if (tp->rcv_rtt_est.time == 0)
487 goto new_measure;
488 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
489 return;
490 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
491
492 new_measure:
493 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
494 tp->rcv_rtt_est.time = tcp_time_stamp;
495 }
496
497 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
498 const struct sk_buff *skb)
499 {
500 struct tcp_sock *tp = tcp_sk(sk);
501 if (tp->rx_opt.rcv_tsecr &&
502 (TCP_SKB_CB(skb)->end_seq -
503 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
504 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
505 }
506
507 /*
508 * This function should be called every time data is copied to user space.
509 * It calculates the appropriate TCP receive buffer space.
510 */
511 void tcp_rcv_space_adjust(struct sock *sk)
512 {
513 struct tcp_sock *tp = tcp_sk(sk);
514 int time;
515 int space;
516
517 if (tp->rcvq_space.time == 0)
518 goto new_measure;
519
520 time = tcp_time_stamp - tp->rcvq_space.time;
521 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
522 return;
523
524 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
525
526 space = max(tp->rcvq_space.space, space);
527
528 if (tp->rcvq_space.space != space) {
529 int rcvmem;
530
531 tp->rcvq_space.space = space;
532
533 if (sysctl_tcp_moderate_rcvbuf &&
534 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
535 int new_clamp = space;
536
537 /* Receive space grows, normalize in order to
538 * take into account packet headers and sk_buff
539 * structure overhead.
540 */
541 space /= tp->advmss;
542 if (!space)
543 space = 1;
544 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
545 while (tcp_win_from_space(rcvmem) < tp->advmss)
546 rcvmem += 128;
547 space *= rcvmem;
548 space = min(space, sysctl_tcp_rmem[2]);
549 if (space > sk->sk_rcvbuf) {
550 sk->sk_rcvbuf = space;
551
552 /* Make the window clamp follow along. */
553 tp->window_clamp = new_clamp;
554 }
555 }
556 }
557
558 new_measure:
559 tp->rcvq_space.seq = tp->copied_seq;
560 tp->rcvq_space.time = tcp_time_stamp;
561 }
562
563 /* There is something which you must keep in mind when you analyze the
564 * behavior of the tp->ato delayed ack timeout interval. When a
565 * connection starts up, we want to ack as quickly as possible. The
566 * problem is that "good" TCP's do slow start at the beginning of data
567 * transmission. The means that until we send the first few ACK's the
568 * sender will sit on his end and only queue most of his data, because
569 * he can only send snd_cwnd unacked packets at any given time. For
570 * each ACK we send, he increments snd_cwnd and transmits more of his
571 * queue. -DaveM
572 */
573 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
574 {
575 struct tcp_sock *tp = tcp_sk(sk);
576 struct inet_connection_sock *icsk = inet_csk(sk);
577 u32 now;
578
579 inet_csk_schedule_ack(sk);
580
581 tcp_measure_rcv_mss(sk, skb);
582
583 tcp_rcv_rtt_measure(tp);
584
585 now = tcp_time_stamp;
586
587 if (!icsk->icsk_ack.ato) {
588 /* The _first_ data packet received, initialize
589 * delayed ACK engine.
590 */
591 tcp_incr_quickack(sk);
592 icsk->icsk_ack.ato = TCP_ATO_MIN;
593 } else {
594 int m = now - icsk->icsk_ack.lrcvtime;
595
596 if (m <= TCP_ATO_MIN / 2) {
597 /* The fastest case is the first. */
598 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
599 } else if (m < icsk->icsk_ack.ato) {
600 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
601 if (icsk->icsk_ack.ato > icsk->icsk_rto)
602 icsk->icsk_ack.ato = icsk->icsk_rto;
603 } else if (m > icsk->icsk_rto) {
604 /* Too long gap. Apparently sender failed to
605 * restart window, so that we send ACKs quickly.
606 */
607 tcp_incr_quickack(sk);
608 sk_mem_reclaim(sk);
609 }
610 }
611 icsk->icsk_ack.lrcvtime = now;
612
613 TCP_ECN_check_ce(tp, skb);
614
615 if (skb->len >= 128)
616 tcp_grow_window(sk, skb);
617 }
618
619 /* Called to compute a smoothed rtt estimate. The data fed to this
620 * routine either comes from timestamps, or from segments that were
621 * known _not_ to have been retransmitted [see Karn/Partridge
622 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
623 * piece by Van Jacobson.
624 * NOTE: the next three routines used to be one big routine.
625 * To save cycles in the RFC 1323 implementation it was better to break
626 * it up into three procedures. -- erics
627 */
628 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
629 {
630 struct tcp_sock *tp = tcp_sk(sk);
631 long m = mrtt; /* RTT */
632
633 /* The following amusing code comes from Jacobson's
634 * article in SIGCOMM '88. Note that rtt and mdev
635 * are scaled versions of rtt and mean deviation.
636 * This is designed to be as fast as possible
637 * m stands for "measurement".
638 *
639 * On a 1990 paper the rto value is changed to:
640 * RTO = rtt + 4 * mdev
641 *
642 * Funny. This algorithm seems to be very broken.
643 * These formulae increase RTO, when it should be decreased, increase
644 * too slowly, when it should be increased quickly, decrease too quickly
645 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
646 * does not matter how to _calculate_ it. Seems, it was trap
647 * that VJ failed to avoid. 8)
648 */
649 if (m == 0)
650 m = 1;
651 if (tp->srtt != 0) {
652 m -= (tp->srtt >> 3); /* m is now error in rtt est */
653 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
654 if (m < 0) {
655 m = -m; /* m is now abs(error) */
656 m -= (tp->mdev >> 2); /* similar update on mdev */
657 /* This is similar to one of Eifel findings.
658 * Eifel blocks mdev updates when rtt decreases.
659 * This solution is a bit different: we use finer gain
660 * for mdev in this case (alpha*beta).
661 * Like Eifel it also prevents growth of rto,
662 * but also it limits too fast rto decreases,
663 * happening in pure Eifel.
664 */
665 if (m > 0)
666 m >>= 3;
667 } else {
668 m -= (tp->mdev >> 2); /* similar update on mdev */
669 }
670 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
671 if (tp->mdev > tp->mdev_max) {
672 tp->mdev_max = tp->mdev;
673 if (tp->mdev_max > tp->rttvar)
674 tp->rttvar = tp->mdev_max;
675 }
676 if (after(tp->snd_una, tp->rtt_seq)) {
677 if (tp->mdev_max < tp->rttvar)
678 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
679 tp->rtt_seq = tp->snd_nxt;
680 tp->mdev_max = tcp_rto_min(sk);
681 }
682 } else {
683 /* no previous measure. */
684 tp->srtt = m << 3; /* take the measured time to be rtt */
685 tp->mdev = m << 1; /* make sure rto = 3*rtt */
686 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
687 tp->rtt_seq = tp->snd_nxt;
688 }
689 }
690
691 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
692 * Note: TCP stack does not yet implement pacing.
693 * FQ packet scheduler can be used to implement cheap but effective
694 * TCP pacing, to smooth the burst on large writes when packets
695 * in flight is significantly lower than cwnd (or rwin)
696 */
697 static void tcp_update_pacing_rate(struct sock *sk)
698 {
699 const struct tcp_sock *tp = tcp_sk(sk);
700 u64 rate;
701
702 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
703 rate = (u64)tp->mss_cache * 2 * (HZ << 3);
704
705 rate *= max(tp->snd_cwnd, tp->packets_out);
706
707 /* Correction for small srtt : minimum srtt being 8 (1 jiffy << 3),
708 * be conservative and assume srtt = 1 (125 us instead of 1.25 ms)
709 * We probably need usec resolution in the future.
710 * Note: This also takes care of possible srtt=0 case,
711 * when tcp_rtt_estimator() was not yet called.
712 */
713 if (tp->srtt > 8 + 2)
714 do_div(rate, tp->srtt);
715
716 sk->sk_pacing_rate = min_t(u64, rate, ~0U);
717 }
718
719 /* Calculate rto without backoff. This is the second half of Van Jacobson's
720 * routine referred to above.
721 */
722 void tcp_set_rto(struct sock *sk)
723 {
724 const struct tcp_sock *tp = tcp_sk(sk);
725 /* Old crap is replaced with new one. 8)
726 *
727 * More seriously:
728 * 1. If rtt variance happened to be less 50msec, it is hallucination.
729 * It cannot be less due to utterly erratic ACK generation made
730 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
731 * to do with delayed acks, because at cwnd>2 true delack timeout
732 * is invisible. Actually, Linux-2.4 also generates erratic
733 * ACKs in some circumstances.
734 */
735 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
736
737 /* 2. Fixups made earlier cannot be right.
738 * If we do not estimate RTO correctly without them,
739 * all the algo is pure shit and should be replaced
740 * with correct one. It is exactly, which we pretend to do.
741 */
742
743 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
744 * guarantees that rto is higher.
745 */
746 tcp_bound_rto(sk);
747 }
748
749 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
750 {
751 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
752
753 if (!cwnd)
754 cwnd = TCP_INIT_CWND;
755 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
756 }
757
758 /*
759 * Packet counting of FACK is based on in-order assumptions, therefore TCP
760 * disables it when reordering is detected
761 */
762 void tcp_disable_fack(struct tcp_sock *tp)
763 {
764 /* RFC3517 uses different metric in lost marker => reset on change */
765 if (tcp_is_fack(tp))
766 tp->lost_skb_hint = NULL;
767 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
768 }
769
770 /* Take a notice that peer is sending D-SACKs */
771 static void tcp_dsack_seen(struct tcp_sock *tp)
772 {
773 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
774 }
775
776 static void tcp_update_reordering(struct sock *sk, const int metric,
777 const int ts)
778 {
779 struct tcp_sock *tp = tcp_sk(sk);
780 if (metric > tp->reordering) {
781 int mib_idx;
782
783 tp->reordering = min(TCP_MAX_REORDERING, metric);
784
785 /* This exciting event is worth to be remembered. 8) */
786 if (ts)
787 mib_idx = LINUX_MIB_TCPTSREORDER;
788 else if (tcp_is_reno(tp))
789 mib_idx = LINUX_MIB_TCPRENOREORDER;
790 else if (tcp_is_fack(tp))
791 mib_idx = LINUX_MIB_TCPFACKREORDER;
792 else
793 mib_idx = LINUX_MIB_TCPSACKREORDER;
794
795 NET_INC_STATS_BH(sock_net(sk), mib_idx);
796 #if FASTRETRANS_DEBUG > 1
797 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
798 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
799 tp->reordering,
800 tp->fackets_out,
801 tp->sacked_out,
802 tp->undo_marker ? tp->undo_retrans : 0);
803 #endif
804 tcp_disable_fack(tp);
805 }
806
807 if (metric > 0)
808 tcp_disable_early_retrans(tp);
809 }
810
811 /* This must be called before lost_out is incremented */
812 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
813 {
814 if ((tp->retransmit_skb_hint == NULL) ||
815 before(TCP_SKB_CB(skb)->seq,
816 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
817 tp->retransmit_skb_hint = skb;
818
819 if (!tp->lost_out ||
820 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
821 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
822 }
823
824 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
825 {
826 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
827 tcp_verify_retransmit_hint(tp, skb);
828
829 tp->lost_out += tcp_skb_pcount(skb);
830 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
831 }
832 }
833
834 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
835 struct sk_buff *skb)
836 {
837 tcp_verify_retransmit_hint(tp, skb);
838
839 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
840 tp->lost_out += tcp_skb_pcount(skb);
841 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
842 }
843 }
844
845 /* This procedure tags the retransmission queue when SACKs arrive.
846 *
847 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
848 * Packets in queue with these bits set are counted in variables
849 * sacked_out, retrans_out and lost_out, correspondingly.
850 *
851 * Valid combinations are:
852 * Tag InFlight Description
853 * 0 1 - orig segment is in flight.
854 * S 0 - nothing flies, orig reached receiver.
855 * L 0 - nothing flies, orig lost by net.
856 * R 2 - both orig and retransmit are in flight.
857 * L|R 1 - orig is lost, retransmit is in flight.
858 * S|R 1 - orig reached receiver, retrans is still in flight.
859 * (L|S|R is logically valid, it could occur when L|R is sacked,
860 * but it is equivalent to plain S and code short-curcuits it to S.
861 * L|S is logically invalid, it would mean -1 packet in flight 8))
862 *
863 * These 6 states form finite state machine, controlled by the following events:
864 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
865 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
866 * 3. Loss detection event of two flavors:
867 * A. Scoreboard estimator decided the packet is lost.
868 * A'. Reno "three dupacks" marks head of queue lost.
869 * A''. Its FACK modification, head until snd.fack is lost.
870 * B. SACK arrives sacking SND.NXT at the moment, when the
871 * segment was retransmitted.
872 * 4. D-SACK added new rule: D-SACK changes any tag to S.
873 *
874 * It is pleasant to note, that state diagram turns out to be commutative,
875 * so that we are allowed not to be bothered by order of our actions,
876 * when multiple events arrive simultaneously. (see the function below).
877 *
878 * Reordering detection.
879 * --------------------
880 * Reordering metric is maximal distance, which a packet can be displaced
881 * in packet stream. With SACKs we can estimate it:
882 *
883 * 1. SACK fills old hole and the corresponding segment was not
884 * ever retransmitted -> reordering. Alas, we cannot use it
885 * when segment was retransmitted.
886 * 2. The last flaw is solved with D-SACK. D-SACK arrives
887 * for retransmitted and already SACKed segment -> reordering..
888 * Both of these heuristics are not used in Loss state, when we cannot
889 * account for retransmits accurately.
890 *
891 * SACK block validation.
892 * ----------------------
893 *
894 * SACK block range validation checks that the received SACK block fits to
895 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
896 * Note that SND.UNA is not included to the range though being valid because
897 * it means that the receiver is rather inconsistent with itself reporting
898 * SACK reneging when it should advance SND.UNA. Such SACK block this is
899 * perfectly valid, however, in light of RFC2018 which explicitly states
900 * that "SACK block MUST reflect the newest segment. Even if the newest
901 * segment is going to be discarded ...", not that it looks very clever
902 * in case of head skb. Due to potentional receiver driven attacks, we
903 * choose to avoid immediate execution of a walk in write queue due to
904 * reneging and defer head skb's loss recovery to standard loss recovery
905 * procedure that will eventually trigger (nothing forbids us doing this).
906 *
907 * Implements also blockage to start_seq wrap-around. Problem lies in the
908 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
909 * there's no guarantee that it will be before snd_nxt (n). The problem
910 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
911 * wrap (s_w):
912 *
913 * <- outs wnd -> <- wrapzone ->
914 * u e n u_w e_w s n_w
915 * | | | | | | |
916 * |<------------+------+----- TCP seqno space --------------+---------->|
917 * ...-- <2^31 ->| |<--------...
918 * ...---- >2^31 ------>| |<--------...
919 *
920 * Current code wouldn't be vulnerable but it's better still to discard such
921 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
922 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
923 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
924 * equal to the ideal case (infinite seqno space without wrap caused issues).
925 *
926 * With D-SACK the lower bound is extended to cover sequence space below
927 * SND.UNA down to undo_marker, which is the last point of interest. Yet
928 * again, D-SACK block must not to go across snd_una (for the same reason as
929 * for the normal SACK blocks, explained above). But there all simplicity
930 * ends, TCP might receive valid D-SACKs below that. As long as they reside
931 * fully below undo_marker they do not affect behavior in anyway and can
932 * therefore be safely ignored. In rare cases (which are more or less
933 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
934 * fragmentation and packet reordering past skb's retransmission. To consider
935 * them correctly, the acceptable range must be extended even more though
936 * the exact amount is rather hard to quantify. However, tp->max_window can
937 * be used as an exaggerated estimate.
938 */
939 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
940 u32 start_seq, u32 end_seq)
941 {
942 /* Too far in future, or reversed (interpretation is ambiguous) */
943 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
944 return false;
945
946 /* Nasty start_seq wrap-around check (see comments above) */
947 if (!before(start_seq, tp->snd_nxt))
948 return false;
949
950 /* In outstanding window? ...This is valid exit for D-SACKs too.
951 * start_seq == snd_una is non-sensical (see comments above)
952 */
953 if (after(start_seq, tp->snd_una))
954 return true;
955
956 if (!is_dsack || !tp->undo_marker)
957 return false;
958
959 /* ...Then it's D-SACK, and must reside below snd_una completely */
960 if (after(end_seq, tp->snd_una))
961 return false;
962
963 if (!before(start_seq, tp->undo_marker))
964 return true;
965
966 /* Too old */
967 if (!after(end_seq, tp->undo_marker))
968 return false;
969
970 /* Undo_marker boundary crossing (overestimates a lot). Known already:
971 * start_seq < undo_marker and end_seq >= undo_marker.
972 */
973 return !before(start_seq, end_seq - tp->max_window);
974 }
975
976 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
977 * Event "B". Later note: FACK people cheated me again 8), we have to account
978 * for reordering! Ugly, but should help.
979 *
980 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
981 * less than what is now known to be received by the other end (derived from
982 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
983 * retransmitted skbs to avoid some costly processing per ACKs.
984 */
985 static void tcp_mark_lost_retrans(struct sock *sk)
986 {
987 const struct inet_connection_sock *icsk = inet_csk(sk);
988 struct tcp_sock *tp = tcp_sk(sk);
989 struct sk_buff *skb;
990 int cnt = 0;
991 u32 new_low_seq = tp->snd_nxt;
992 u32 received_upto = tcp_highest_sack_seq(tp);
993
994 if (!tcp_is_fack(tp) || !tp->retrans_out ||
995 !after(received_upto, tp->lost_retrans_low) ||
996 icsk->icsk_ca_state != TCP_CA_Recovery)
997 return;
998
999 tcp_for_write_queue(skb, sk) {
1000 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1001
1002 if (skb == tcp_send_head(sk))
1003 break;
1004 if (cnt == tp->retrans_out)
1005 break;
1006 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1007 continue;
1008
1009 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1010 continue;
1011
1012 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1013 * constraint here (see above) but figuring out that at
1014 * least tp->reordering SACK blocks reside between ack_seq
1015 * and received_upto is not easy task to do cheaply with
1016 * the available datastructures.
1017 *
1018 * Whether FACK should check here for tp->reordering segs
1019 * in-between one could argue for either way (it would be
1020 * rather simple to implement as we could count fack_count
1021 * during the walk and do tp->fackets_out - fack_count).
1022 */
1023 if (after(received_upto, ack_seq)) {
1024 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1025 tp->retrans_out -= tcp_skb_pcount(skb);
1026
1027 tcp_skb_mark_lost_uncond_verify(tp, skb);
1028 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1029 } else {
1030 if (before(ack_seq, new_low_seq))
1031 new_low_seq = ack_seq;
1032 cnt += tcp_skb_pcount(skb);
1033 }
1034 }
1035
1036 if (tp->retrans_out)
1037 tp->lost_retrans_low = new_low_seq;
1038 }
1039
1040 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1041 struct tcp_sack_block_wire *sp, int num_sacks,
1042 u32 prior_snd_una)
1043 {
1044 struct tcp_sock *tp = tcp_sk(sk);
1045 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1046 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1047 bool dup_sack = false;
1048
1049 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1050 dup_sack = true;
1051 tcp_dsack_seen(tp);
1052 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1053 } else if (num_sacks > 1) {
1054 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1055 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1056
1057 if (!after(end_seq_0, end_seq_1) &&
1058 !before(start_seq_0, start_seq_1)) {
1059 dup_sack = true;
1060 tcp_dsack_seen(tp);
1061 NET_INC_STATS_BH(sock_net(sk),
1062 LINUX_MIB_TCPDSACKOFORECV);
1063 }
1064 }
1065
1066 /* D-SACK for already forgotten data... Do dumb counting. */
1067 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1068 !after(end_seq_0, prior_snd_una) &&
1069 after(end_seq_0, tp->undo_marker))
1070 tp->undo_retrans--;
1071
1072 return dup_sack;
1073 }
1074
1075 struct tcp_sacktag_state {
1076 int reord;
1077 int fack_count;
1078 int flag;
1079 s32 rtt; /* RTT measured by SACKing never-retransmitted data */
1080 };
1081
1082 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1083 * the incoming SACK may not exactly match but we can find smaller MSS
1084 * aligned portion of it that matches. Therefore we might need to fragment
1085 * which may fail and creates some hassle (caller must handle error case
1086 * returns).
1087 *
1088 * FIXME: this could be merged to shift decision code
1089 */
1090 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1091 u32 start_seq, u32 end_seq)
1092 {
1093 int err;
1094 bool in_sack;
1095 unsigned int pkt_len;
1096 unsigned int mss;
1097
1098 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1099 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1100
1101 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1102 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1103 mss = tcp_skb_mss(skb);
1104 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1105
1106 if (!in_sack) {
1107 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1108 if (pkt_len < mss)
1109 pkt_len = mss;
1110 } else {
1111 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1112 if (pkt_len < mss)
1113 return -EINVAL;
1114 }
1115
1116 /* Round if necessary so that SACKs cover only full MSSes
1117 * and/or the remaining small portion (if present)
1118 */
1119 if (pkt_len > mss) {
1120 unsigned int new_len = (pkt_len / mss) * mss;
1121 if (!in_sack && new_len < pkt_len) {
1122 new_len += mss;
1123 if (new_len > skb->len)
1124 return 0;
1125 }
1126 pkt_len = new_len;
1127 }
1128 err = tcp_fragment(sk, skb, pkt_len, mss);
1129 if (err < 0)
1130 return err;
1131 }
1132
1133 return in_sack;
1134 }
1135
1136 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1137 static u8 tcp_sacktag_one(struct sock *sk,
1138 struct tcp_sacktag_state *state, u8 sacked,
1139 u32 start_seq, u32 end_seq,
1140 int dup_sack, int pcount, u32 xmit_time)
1141 {
1142 struct tcp_sock *tp = tcp_sk(sk);
1143 int fack_count = state->fack_count;
1144
1145 /* Account D-SACK for retransmitted packet. */
1146 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1147 if (tp->undo_marker && tp->undo_retrans &&
1148 after(end_seq, tp->undo_marker))
1149 tp->undo_retrans--;
1150 if (sacked & TCPCB_SACKED_ACKED)
1151 state->reord = min(fack_count, state->reord);
1152 }
1153
1154 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1155 if (!after(end_seq, tp->snd_una))
1156 return sacked;
1157
1158 if (!(sacked & TCPCB_SACKED_ACKED)) {
1159 if (sacked & TCPCB_SACKED_RETRANS) {
1160 /* If the segment is not tagged as lost,
1161 * we do not clear RETRANS, believing
1162 * that retransmission is still in flight.
1163 */
1164 if (sacked & TCPCB_LOST) {
1165 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1166 tp->lost_out -= pcount;
1167 tp->retrans_out -= pcount;
1168 }
1169 } else {
1170 if (!(sacked & TCPCB_RETRANS)) {
1171 /* New sack for not retransmitted frame,
1172 * which was in hole. It is reordering.
1173 */
1174 if (before(start_seq,
1175 tcp_highest_sack_seq(tp)))
1176 state->reord = min(fack_count,
1177 state->reord);
1178 if (!after(end_seq, tp->high_seq))
1179 state->flag |= FLAG_ORIG_SACK_ACKED;
1180 /* Pick the earliest sequence sacked for RTT */
1181 if (state->rtt < 0)
1182 state->rtt = tcp_time_stamp - xmit_time;
1183 }
1184
1185 if (sacked & TCPCB_LOST) {
1186 sacked &= ~TCPCB_LOST;
1187 tp->lost_out -= pcount;
1188 }
1189 }
1190
1191 sacked |= TCPCB_SACKED_ACKED;
1192 state->flag |= FLAG_DATA_SACKED;
1193 tp->sacked_out += pcount;
1194
1195 fack_count += pcount;
1196
1197 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1198 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1199 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1200 tp->lost_cnt_hint += pcount;
1201
1202 if (fack_count > tp->fackets_out)
1203 tp->fackets_out = fack_count;
1204 }
1205
1206 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1207 * frames and clear it. undo_retrans is decreased above, L|R frames
1208 * are accounted above as well.
1209 */
1210 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1211 sacked &= ~TCPCB_SACKED_RETRANS;
1212 tp->retrans_out -= pcount;
1213 }
1214
1215 return sacked;
1216 }
1217
1218 /* Shift newly-SACKed bytes from this skb to the immediately previous
1219 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1220 */
1221 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1222 struct tcp_sacktag_state *state,
1223 unsigned int pcount, int shifted, int mss,
1224 bool dup_sack)
1225 {
1226 struct tcp_sock *tp = tcp_sk(sk);
1227 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1228 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1229 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1230
1231 BUG_ON(!pcount);
1232
1233 /* Adjust counters and hints for the newly sacked sequence
1234 * range but discard the return value since prev is already
1235 * marked. We must tag the range first because the seq
1236 * advancement below implicitly advances
1237 * tcp_highest_sack_seq() when skb is highest_sack.
1238 */
1239 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1240 start_seq, end_seq, dup_sack, pcount,
1241 TCP_SKB_CB(skb)->when);
1242
1243 if (skb == tp->lost_skb_hint)
1244 tp->lost_cnt_hint += pcount;
1245
1246 TCP_SKB_CB(prev)->end_seq += shifted;
1247 TCP_SKB_CB(skb)->seq += shifted;
1248
1249 skb_shinfo(prev)->gso_segs += pcount;
1250 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1251 skb_shinfo(skb)->gso_segs -= pcount;
1252
1253 /* When we're adding to gso_segs == 1, gso_size will be zero,
1254 * in theory this shouldn't be necessary but as long as DSACK
1255 * code can come after this skb later on it's better to keep
1256 * setting gso_size to something.
1257 */
1258 if (!skb_shinfo(prev)->gso_size) {
1259 skb_shinfo(prev)->gso_size = mss;
1260 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1261 }
1262
1263 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1264 if (skb_shinfo(skb)->gso_segs <= 1) {
1265 skb_shinfo(skb)->gso_size = 0;
1266 skb_shinfo(skb)->gso_type = 0;
1267 }
1268
1269 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1270 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1271
1272 if (skb->len > 0) {
1273 BUG_ON(!tcp_skb_pcount(skb));
1274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1275 return false;
1276 }
1277
1278 /* Whole SKB was eaten :-) */
1279
1280 if (skb == tp->retransmit_skb_hint)
1281 tp->retransmit_skb_hint = prev;
1282 if (skb == tp->lost_skb_hint) {
1283 tp->lost_skb_hint = prev;
1284 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1285 }
1286
1287 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1288 if (skb == tcp_highest_sack(sk))
1289 tcp_advance_highest_sack(sk, skb);
1290
1291 tcp_unlink_write_queue(skb, sk);
1292 sk_wmem_free_skb(sk, skb);
1293
1294 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1295
1296 return true;
1297 }
1298
1299 /* I wish gso_size would have a bit more sane initialization than
1300 * something-or-zero which complicates things
1301 */
1302 static int tcp_skb_seglen(const struct sk_buff *skb)
1303 {
1304 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1305 }
1306
1307 /* Shifting pages past head area doesn't work */
1308 static int skb_can_shift(const struct sk_buff *skb)
1309 {
1310 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1311 }
1312
1313 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1314 * skb.
1315 */
1316 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1317 struct tcp_sacktag_state *state,
1318 u32 start_seq, u32 end_seq,
1319 bool dup_sack)
1320 {
1321 struct tcp_sock *tp = tcp_sk(sk);
1322 struct sk_buff *prev;
1323 int mss;
1324 int pcount = 0;
1325 int len;
1326 int in_sack;
1327
1328 if (!sk_can_gso(sk))
1329 goto fallback;
1330
1331 /* Normally R but no L won't result in plain S */
1332 if (!dup_sack &&
1333 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1334 goto fallback;
1335 if (!skb_can_shift(skb))
1336 goto fallback;
1337 /* This frame is about to be dropped (was ACKed). */
1338 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1339 goto fallback;
1340
1341 /* Can only happen with delayed DSACK + discard craziness */
1342 if (unlikely(skb == tcp_write_queue_head(sk)))
1343 goto fallback;
1344 prev = tcp_write_queue_prev(sk, skb);
1345
1346 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1347 goto fallback;
1348
1349 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1350 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1351
1352 if (in_sack) {
1353 len = skb->len;
1354 pcount = tcp_skb_pcount(skb);
1355 mss = tcp_skb_seglen(skb);
1356
1357 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1358 * drop this restriction as unnecessary
1359 */
1360 if (mss != tcp_skb_seglen(prev))
1361 goto fallback;
1362 } else {
1363 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1364 goto noop;
1365 /* CHECKME: This is non-MSS split case only?, this will
1366 * cause skipped skbs due to advancing loop btw, original
1367 * has that feature too
1368 */
1369 if (tcp_skb_pcount(skb) <= 1)
1370 goto noop;
1371
1372 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1373 if (!in_sack) {
1374 /* TODO: head merge to next could be attempted here
1375 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1376 * though it might not be worth of the additional hassle
1377 *
1378 * ...we can probably just fallback to what was done
1379 * previously. We could try merging non-SACKed ones
1380 * as well but it probably isn't going to buy off
1381 * because later SACKs might again split them, and
1382 * it would make skb timestamp tracking considerably
1383 * harder problem.
1384 */
1385 goto fallback;
1386 }
1387
1388 len = end_seq - TCP_SKB_CB(skb)->seq;
1389 BUG_ON(len < 0);
1390 BUG_ON(len > skb->len);
1391
1392 /* MSS boundaries should be honoured or else pcount will
1393 * severely break even though it makes things bit trickier.
1394 * Optimize common case to avoid most of the divides
1395 */
1396 mss = tcp_skb_mss(skb);
1397
1398 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1399 * drop this restriction as unnecessary
1400 */
1401 if (mss != tcp_skb_seglen(prev))
1402 goto fallback;
1403
1404 if (len == mss) {
1405 pcount = 1;
1406 } else if (len < mss) {
1407 goto noop;
1408 } else {
1409 pcount = len / mss;
1410 len = pcount * mss;
1411 }
1412 }
1413
1414 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1415 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1416 goto fallback;
1417
1418 if (!skb_shift(prev, skb, len))
1419 goto fallback;
1420 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1421 goto out;
1422
1423 /* Hole filled allows collapsing with the next as well, this is very
1424 * useful when hole on every nth skb pattern happens
1425 */
1426 if (prev == tcp_write_queue_tail(sk))
1427 goto out;
1428 skb = tcp_write_queue_next(sk, prev);
1429
1430 if (!skb_can_shift(skb) ||
1431 (skb == tcp_send_head(sk)) ||
1432 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1433 (mss != tcp_skb_seglen(skb)))
1434 goto out;
1435
1436 len = skb->len;
1437 if (skb_shift(prev, skb, len)) {
1438 pcount += tcp_skb_pcount(skb);
1439 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1440 }
1441
1442 out:
1443 state->fack_count += pcount;
1444 return prev;
1445
1446 noop:
1447 return skb;
1448
1449 fallback:
1450 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1451 return NULL;
1452 }
1453
1454 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1455 struct tcp_sack_block *next_dup,
1456 struct tcp_sacktag_state *state,
1457 u32 start_seq, u32 end_seq,
1458 bool dup_sack_in)
1459 {
1460 struct tcp_sock *tp = tcp_sk(sk);
1461 struct sk_buff *tmp;
1462
1463 tcp_for_write_queue_from(skb, sk) {
1464 int in_sack = 0;
1465 bool dup_sack = dup_sack_in;
1466
1467 if (skb == tcp_send_head(sk))
1468 break;
1469
1470 /* queue is in-order => we can short-circuit the walk early */
1471 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1472 break;
1473
1474 if ((next_dup != NULL) &&
1475 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1476 in_sack = tcp_match_skb_to_sack(sk, skb,
1477 next_dup->start_seq,
1478 next_dup->end_seq);
1479 if (in_sack > 0)
1480 dup_sack = true;
1481 }
1482
1483 /* skb reference here is a bit tricky to get right, since
1484 * shifting can eat and free both this skb and the next,
1485 * so not even _safe variant of the loop is enough.
1486 */
1487 if (in_sack <= 0) {
1488 tmp = tcp_shift_skb_data(sk, skb, state,
1489 start_seq, end_seq, dup_sack);
1490 if (tmp != NULL) {
1491 if (tmp != skb) {
1492 skb = tmp;
1493 continue;
1494 }
1495
1496 in_sack = 0;
1497 } else {
1498 in_sack = tcp_match_skb_to_sack(sk, skb,
1499 start_seq,
1500 end_seq);
1501 }
1502 }
1503
1504 if (unlikely(in_sack < 0))
1505 break;
1506
1507 if (in_sack) {
1508 TCP_SKB_CB(skb)->sacked =
1509 tcp_sacktag_one(sk,
1510 state,
1511 TCP_SKB_CB(skb)->sacked,
1512 TCP_SKB_CB(skb)->seq,
1513 TCP_SKB_CB(skb)->end_seq,
1514 dup_sack,
1515 tcp_skb_pcount(skb),
1516 TCP_SKB_CB(skb)->when);
1517
1518 if (!before(TCP_SKB_CB(skb)->seq,
1519 tcp_highest_sack_seq(tp)))
1520 tcp_advance_highest_sack(sk, skb);
1521 }
1522
1523 state->fack_count += tcp_skb_pcount(skb);
1524 }
1525 return skb;
1526 }
1527
1528 /* Avoid all extra work that is being done by sacktag while walking in
1529 * a normal way
1530 */
1531 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1532 struct tcp_sacktag_state *state,
1533 u32 skip_to_seq)
1534 {
1535 tcp_for_write_queue_from(skb, sk) {
1536 if (skb == tcp_send_head(sk))
1537 break;
1538
1539 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1540 break;
1541
1542 state->fack_count += tcp_skb_pcount(skb);
1543 }
1544 return skb;
1545 }
1546
1547 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1548 struct sock *sk,
1549 struct tcp_sack_block *next_dup,
1550 struct tcp_sacktag_state *state,
1551 u32 skip_to_seq)
1552 {
1553 if (next_dup == NULL)
1554 return skb;
1555
1556 if (before(next_dup->start_seq, skip_to_seq)) {
1557 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1558 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1559 next_dup->start_seq, next_dup->end_seq,
1560 1);
1561 }
1562
1563 return skb;
1564 }
1565
1566 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1567 {
1568 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1569 }
1570
1571 static int
1572 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1573 u32 prior_snd_una, s32 *sack_rtt)
1574 {
1575 struct tcp_sock *tp = tcp_sk(sk);
1576 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1577 TCP_SKB_CB(ack_skb)->sacked);
1578 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1579 struct tcp_sack_block sp[TCP_NUM_SACKS];
1580 struct tcp_sack_block *cache;
1581 struct tcp_sacktag_state state;
1582 struct sk_buff *skb;
1583 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1584 int used_sacks;
1585 bool found_dup_sack = false;
1586 int i, j;
1587 int first_sack_index;
1588
1589 state.flag = 0;
1590 state.reord = tp->packets_out;
1591 state.rtt = -1;
1592
1593 if (!tp->sacked_out) {
1594 if (WARN_ON(tp->fackets_out))
1595 tp->fackets_out = 0;
1596 tcp_highest_sack_reset(sk);
1597 }
1598
1599 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1600 num_sacks, prior_snd_una);
1601 if (found_dup_sack)
1602 state.flag |= FLAG_DSACKING_ACK;
1603
1604 /* Eliminate too old ACKs, but take into
1605 * account more or less fresh ones, they can
1606 * contain valid SACK info.
1607 */
1608 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1609 return 0;
1610
1611 if (!tp->packets_out)
1612 goto out;
1613
1614 used_sacks = 0;
1615 first_sack_index = 0;
1616 for (i = 0; i < num_sacks; i++) {
1617 bool dup_sack = !i && found_dup_sack;
1618
1619 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1620 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1621
1622 if (!tcp_is_sackblock_valid(tp, dup_sack,
1623 sp[used_sacks].start_seq,
1624 sp[used_sacks].end_seq)) {
1625 int mib_idx;
1626
1627 if (dup_sack) {
1628 if (!tp->undo_marker)
1629 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1630 else
1631 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1632 } else {
1633 /* Don't count olds caused by ACK reordering */
1634 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1635 !after(sp[used_sacks].end_seq, tp->snd_una))
1636 continue;
1637 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1638 }
1639
1640 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1641 if (i == 0)
1642 first_sack_index = -1;
1643 continue;
1644 }
1645
1646 /* Ignore very old stuff early */
1647 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1648 continue;
1649
1650 used_sacks++;
1651 }
1652
1653 /* order SACK blocks to allow in order walk of the retrans queue */
1654 for (i = used_sacks - 1; i > 0; i--) {
1655 for (j = 0; j < i; j++) {
1656 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1657 swap(sp[j], sp[j + 1]);
1658
1659 /* Track where the first SACK block goes to */
1660 if (j == first_sack_index)
1661 first_sack_index = j + 1;
1662 }
1663 }
1664 }
1665
1666 skb = tcp_write_queue_head(sk);
1667 state.fack_count = 0;
1668 i = 0;
1669
1670 if (!tp->sacked_out) {
1671 /* It's already past, so skip checking against it */
1672 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1673 } else {
1674 cache = tp->recv_sack_cache;
1675 /* Skip empty blocks in at head of the cache */
1676 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1677 !cache->end_seq)
1678 cache++;
1679 }
1680
1681 while (i < used_sacks) {
1682 u32 start_seq = sp[i].start_seq;
1683 u32 end_seq = sp[i].end_seq;
1684 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1685 struct tcp_sack_block *next_dup = NULL;
1686
1687 if (found_dup_sack && ((i + 1) == first_sack_index))
1688 next_dup = &sp[i + 1];
1689
1690 /* Skip too early cached blocks */
1691 while (tcp_sack_cache_ok(tp, cache) &&
1692 !before(start_seq, cache->end_seq))
1693 cache++;
1694
1695 /* Can skip some work by looking recv_sack_cache? */
1696 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1697 after(end_seq, cache->start_seq)) {
1698
1699 /* Head todo? */
1700 if (before(start_seq, cache->start_seq)) {
1701 skb = tcp_sacktag_skip(skb, sk, &state,
1702 start_seq);
1703 skb = tcp_sacktag_walk(skb, sk, next_dup,
1704 &state,
1705 start_seq,
1706 cache->start_seq,
1707 dup_sack);
1708 }
1709
1710 /* Rest of the block already fully processed? */
1711 if (!after(end_seq, cache->end_seq))
1712 goto advance_sp;
1713
1714 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1715 &state,
1716 cache->end_seq);
1717
1718 /* ...tail remains todo... */
1719 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1720 /* ...but better entrypoint exists! */
1721 skb = tcp_highest_sack(sk);
1722 if (skb == NULL)
1723 break;
1724 state.fack_count = tp->fackets_out;
1725 cache++;
1726 goto walk;
1727 }
1728
1729 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1730 /* Check overlap against next cached too (past this one already) */
1731 cache++;
1732 continue;
1733 }
1734
1735 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1736 skb = tcp_highest_sack(sk);
1737 if (skb == NULL)
1738 break;
1739 state.fack_count = tp->fackets_out;
1740 }
1741 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1742
1743 walk:
1744 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1745 start_seq, end_seq, dup_sack);
1746
1747 advance_sp:
1748 i++;
1749 }
1750
1751 /* Clear the head of the cache sack blocks so we can skip it next time */
1752 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1753 tp->recv_sack_cache[i].start_seq = 0;
1754 tp->recv_sack_cache[i].end_seq = 0;
1755 }
1756 for (j = 0; j < used_sacks; j++)
1757 tp->recv_sack_cache[i++] = sp[j];
1758
1759 tcp_mark_lost_retrans(sk);
1760
1761 tcp_verify_left_out(tp);
1762
1763 if ((state.reord < tp->fackets_out) &&
1764 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1765 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1766
1767 out:
1768
1769 #if FASTRETRANS_DEBUG > 0
1770 WARN_ON((int)tp->sacked_out < 0);
1771 WARN_ON((int)tp->lost_out < 0);
1772 WARN_ON((int)tp->retrans_out < 0);
1773 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1774 #endif
1775 *sack_rtt = state.rtt;
1776 return state.flag;
1777 }
1778
1779 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1780 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1781 */
1782 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1783 {
1784 u32 holes;
1785
1786 holes = max(tp->lost_out, 1U);
1787 holes = min(holes, tp->packets_out);
1788
1789 if ((tp->sacked_out + holes) > tp->packets_out) {
1790 tp->sacked_out = tp->packets_out - holes;
1791 return true;
1792 }
1793 return false;
1794 }
1795
1796 /* If we receive more dupacks than we expected counting segments
1797 * in assumption of absent reordering, interpret this as reordering.
1798 * The only another reason could be bug in receiver TCP.
1799 */
1800 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1801 {
1802 struct tcp_sock *tp = tcp_sk(sk);
1803 if (tcp_limit_reno_sacked(tp))
1804 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1805 }
1806
1807 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1808
1809 static void tcp_add_reno_sack(struct sock *sk)
1810 {
1811 struct tcp_sock *tp = tcp_sk(sk);
1812 tp->sacked_out++;
1813 tcp_check_reno_reordering(sk, 0);
1814 tcp_verify_left_out(tp);
1815 }
1816
1817 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1818
1819 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1820 {
1821 struct tcp_sock *tp = tcp_sk(sk);
1822
1823 if (acked > 0) {
1824 /* One ACK acked hole. The rest eat duplicate ACKs. */
1825 if (acked - 1 >= tp->sacked_out)
1826 tp->sacked_out = 0;
1827 else
1828 tp->sacked_out -= acked - 1;
1829 }
1830 tcp_check_reno_reordering(sk, acked);
1831 tcp_verify_left_out(tp);
1832 }
1833
1834 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1835 {
1836 tp->sacked_out = 0;
1837 }
1838
1839 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1840 {
1841 tp->retrans_out = 0;
1842 tp->lost_out = 0;
1843
1844 tp->undo_marker = 0;
1845 tp->undo_retrans = 0;
1846 }
1847
1848 void tcp_clear_retrans(struct tcp_sock *tp)
1849 {
1850 tcp_clear_retrans_partial(tp);
1851
1852 tp->fackets_out = 0;
1853 tp->sacked_out = 0;
1854 }
1855
1856 /* Enter Loss state. If "how" is not zero, forget all SACK information
1857 * and reset tags completely, otherwise preserve SACKs. If receiver
1858 * dropped its ofo queue, we will know this due to reneging detection.
1859 */
1860 void tcp_enter_loss(struct sock *sk, int how)
1861 {
1862 const struct inet_connection_sock *icsk = inet_csk(sk);
1863 struct tcp_sock *tp = tcp_sk(sk);
1864 struct sk_buff *skb;
1865 bool new_recovery = false;
1866
1867 /* Reduce ssthresh if it has not yet been made inside this window. */
1868 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1869 !after(tp->high_seq, tp->snd_una) ||
1870 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1871 new_recovery = true;
1872 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1873 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1874 tcp_ca_event(sk, CA_EVENT_LOSS);
1875 }
1876 tp->snd_cwnd = 1;
1877 tp->snd_cwnd_cnt = 0;
1878 tp->snd_cwnd_stamp = tcp_time_stamp;
1879
1880 tcp_clear_retrans_partial(tp);
1881
1882 if (tcp_is_reno(tp))
1883 tcp_reset_reno_sack(tp);
1884
1885 tp->undo_marker = tp->snd_una;
1886 if (how) {
1887 tp->sacked_out = 0;
1888 tp->fackets_out = 0;
1889 }
1890 tcp_clear_all_retrans_hints(tp);
1891
1892 tcp_for_write_queue(skb, sk) {
1893 if (skb == tcp_send_head(sk))
1894 break;
1895
1896 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1897 tp->undo_marker = 0;
1898 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1899 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1900 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1901 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1902 tp->lost_out += tcp_skb_pcount(skb);
1903 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1904 }
1905 }
1906 tcp_verify_left_out(tp);
1907
1908 /* Timeout in disordered state after receiving substantial DUPACKs
1909 * suggests that the degree of reordering is over-estimated.
1910 */
1911 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1912 tp->sacked_out >= sysctl_tcp_reordering)
1913 tp->reordering = min_t(unsigned int, tp->reordering,
1914 sysctl_tcp_reordering);
1915 tcp_set_ca_state(sk, TCP_CA_Loss);
1916 tp->high_seq = tp->snd_nxt;
1917 TCP_ECN_queue_cwr(tp);
1918
1919 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1920 * loss recovery is underway except recurring timeout(s) on
1921 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1922 */
1923 tp->frto = sysctl_tcp_frto &&
1924 (new_recovery || icsk->icsk_retransmits) &&
1925 !inet_csk(sk)->icsk_mtup.probe_size;
1926 }
1927
1928 /* If ACK arrived pointing to a remembered SACK, it means that our
1929 * remembered SACKs do not reflect real state of receiver i.e.
1930 * receiver _host_ is heavily congested (or buggy).
1931 *
1932 * Do processing similar to RTO timeout.
1933 */
1934 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1935 {
1936 if (flag & FLAG_SACK_RENEGING) {
1937 struct inet_connection_sock *icsk = inet_csk(sk);
1938 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1939
1940 tcp_enter_loss(sk, 1);
1941 icsk->icsk_retransmits++;
1942 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1943 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1944 icsk->icsk_rto, TCP_RTO_MAX);
1945 return true;
1946 }
1947 return false;
1948 }
1949
1950 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1951 {
1952 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1953 }
1954
1955 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1956 * counter when SACK is enabled (without SACK, sacked_out is used for
1957 * that purpose).
1958 *
1959 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1960 * segments up to the highest received SACK block so far and holes in
1961 * between them.
1962 *
1963 * With reordering, holes may still be in flight, so RFC3517 recovery
1964 * uses pure sacked_out (total number of SACKed segments) even though
1965 * it violates the RFC that uses duplicate ACKs, often these are equal
1966 * but when e.g. out-of-window ACKs or packet duplication occurs,
1967 * they differ. Since neither occurs due to loss, TCP should really
1968 * ignore them.
1969 */
1970 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1971 {
1972 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1973 }
1974
1975 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1976 {
1977 struct tcp_sock *tp = tcp_sk(sk);
1978 unsigned long delay;
1979
1980 /* Delay early retransmit and entering fast recovery for
1981 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1982 * available, or RTO is scheduled to fire first.
1983 */
1984 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
1985 (flag & FLAG_ECE) || !tp->srtt)
1986 return false;
1987
1988 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
1989 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
1990 return false;
1991
1992 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
1993 TCP_RTO_MAX);
1994 return true;
1995 }
1996
1997 /* Linux NewReno/SACK/FACK/ECN state machine.
1998 * --------------------------------------
1999 *
2000 * "Open" Normal state, no dubious events, fast path.
2001 * "Disorder" In all the respects it is "Open",
2002 * but requires a bit more attention. It is entered when
2003 * we see some SACKs or dupacks. It is split of "Open"
2004 * mainly to move some processing from fast path to slow one.
2005 * "CWR" CWND was reduced due to some Congestion Notification event.
2006 * It can be ECN, ICMP source quench, local device congestion.
2007 * "Recovery" CWND was reduced, we are fast-retransmitting.
2008 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2009 *
2010 * tcp_fastretrans_alert() is entered:
2011 * - each incoming ACK, if state is not "Open"
2012 * - when arrived ACK is unusual, namely:
2013 * * SACK
2014 * * Duplicate ACK.
2015 * * ECN ECE.
2016 *
2017 * Counting packets in flight is pretty simple.
2018 *
2019 * in_flight = packets_out - left_out + retrans_out
2020 *
2021 * packets_out is SND.NXT-SND.UNA counted in packets.
2022 *
2023 * retrans_out is number of retransmitted segments.
2024 *
2025 * left_out is number of segments left network, but not ACKed yet.
2026 *
2027 * left_out = sacked_out + lost_out
2028 *
2029 * sacked_out: Packets, which arrived to receiver out of order
2030 * and hence not ACKed. With SACKs this number is simply
2031 * amount of SACKed data. Even without SACKs
2032 * it is easy to give pretty reliable estimate of this number,
2033 * counting duplicate ACKs.
2034 *
2035 * lost_out: Packets lost by network. TCP has no explicit
2036 * "loss notification" feedback from network (for now).
2037 * It means that this number can be only _guessed_.
2038 * Actually, it is the heuristics to predict lossage that
2039 * distinguishes different algorithms.
2040 *
2041 * F.e. after RTO, when all the queue is considered as lost,
2042 * lost_out = packets_out and in_flight = retrans_out.
2043 *
2044 * Essentially, we have now two algorithms counting
2045 * lost packets.
2046 *
2047 * FACK: It is the simplest heuristics. As soon as we decided
2048 * that something is lost, we decide that _all_ not SACKed
2049 * packets until the most forward SACK are lost. I.e.
2050 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2051 * It is absolutely correct estimate, if network does not reorder
2052 * packets. And it loses any connection to reality when reordering
2053 * takes place. We use FACK by default until reordering
2054 * is suspected on the path to this destination.
2055 *
2056 * NewReno: when Recovery is entered, we assume that one segment
2057 * is lost (classic Reno). While we are in Recovery and
2058 * a partial ACK arrives, we assume that one more packet
2059 * is lost (NewReno). This heuristics are the same in NewReno
2060 * and SACK.
2061 *
2062 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2063 * deflation etc. CWND is real congestion window, never inflated, changes
2064 * only according to classic VJ rules.
2065 *
2066 * Really tricky (and requiring careful tuning) part of algorithm
2067 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2068 * The first determines the moment _when_ we should reduce CWND and,
2069 * hence, slow down forward transmission. In fact, it determines the moment
2070 * when we decide that hole is caused by loss, rather than by a reorder.
2071 *
2072 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2073 * holes, caused by lost packets.
2074 *
2075 * And the most logically complicated part of algorithm is undo
2076 * heuristics. We detect false retransmits due to both too early
2077 * fast retransmit (reordering) and underestimated RTO, analyzing
2078 * timestamps and D-SACKs. When we detect that some segments were
2079 * retransmitted by mistake and CWND reduction was wrong, we undo
2080 * window reduction and abort recovery phase. This logic is hidden
2081 * inside several functions named tcp_try_undo_<something>.
2082 */
2083
2084 /* This function decides, when we should leave Disordered state
2085 * and enter Recovery phase, reducing congestion window.
2086 *
2087 * Main question: may we further continue forward transmission
2088 * with the same cwnd?
2089 */
2090 static bool tcp_time_to_recover(struct sock *sk, int flag)
2091 {
2092 struct tcp_sock *tp = tcp_sk(sk);
2093 __u32 packets_out;
2094
2095 /* Trick#1: The loss is proven. */
2096 if (tp->lost_out)
2097 return true;
2098
2099 /* Not-A-Trick#2 : Classic rule... */
2100 if (tcp_dupack_heuristics(tp) > tp->reordering)
2101 return true;
2102
2103 /* Trick#4: It is still not OK... But will it be useful to delay
2104 * recovery more?
2105 */
2106 packets_out = tp->packets_out;
2107 if (packets_out <= tp->reordering &&
2108 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2109 !tcp_may_send_now(sk)) {
2110 /* We have nothing to send. This connection is limited
2111 * either by receiver window or by application.
2112 */
2113 return true;
2114 }
2115
2116 /* If a thin stream is detected, retransmit after first
2117 * received dupack. Employ only if SACK is supported in order
2118 * to avoid possible corner-case series of spurious retransmissions
2119 * Use only if there are no unsent data.
2120 */
2121 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2122 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2123 tcp_is_sack(tp) && !tcp_send_head(sk))
2124 return true;
2125
2126 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2127 * retransmissions due to small network reorderings, we implement
2128 * Mitigation A.3 in the RFC and delay the retransmission for a short
2129 * interval if appropriate.
2130 */
2131 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2132 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2133 !tcp_may_send_now(sk))
2134 return !tcp_pause_early_retransmit(sk, flag);
2135
2136 return false;
2137 }
2138
2139 /* Detect loss in event "A" above by marking head of queue up as lost.
2140 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2141 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2142 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2143 * the maximum SACKed segments to pass before reaching this limit.
2144 */
2145 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2146 {
2147 struct tcp_sock *tp = tcp_sk(sk);
2148 struct sk_buff *skb;
2149 int cnt, oldcnt;
2150 int err;
2151 unsigned int mss;
2152 /* Use SACK to deduce losses of new sequences sent during recovery */
2153 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2154
2155 WARN_ON(packets > tp->packets_out);
2156 if (tp->lost_skb_hint) {
2157 skb = tp->lost_skb_hint;
2158 cnt = tp->lost_cnt_hint;
2159 /* Head already handled? */
2160 if (mark_head && skb != tcp_write_queue_head(sk))
2161 return;
2162 } else {
2163 skb = tcp_write_queue_head(sk);
2164 cnt = 0;
2165 }
2166
2167 tcp_for_write_queue_from(skb, sk) {
2168 if (skb == tcp_send_head(sk))
2169 break;
2170 /* TODO: do this better */
2171 /* this is not the most efficient way to do this... */
2172 tp->lost_skb_hint = skb;
2173 tp->lost_cnt_hint = cnt;
2174
2175 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2176 break;
2177
2178 oldcnt = cnt;
2179 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2180 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2181 cnt += tcp_skb_pcount(skb);
2182
2183 if (cnt > packets) {
2184 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2185 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2186 (oldcnt >= packets))
2187 break;
2188
2189 mss = skb_shinfo(skb)->gso_size;
2190 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2191 if (err < 0)
2192 break;
2193 cnt = packets;
2194 }
2195
2196 tcp_skb_mark_lost(tp, skb);
2197
2198 if (mark_head)
2199 break;
2200 }
2201 tcp_verify_left_out(tp);
2202 }
2203
2204 /* Account newly detected lost packet(s) */
2205
2206 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2207 {
2208 struct tcp_sock *tp = tcp_sk(sk);
2209
2210 if (tcp_is_reno(tp)) {
2211 tcp_mark_head_lost(sk, 1, 1);
2212 } else if (tcp_is_fack(tp)) {
2213 int lost = tp->fackets_out - tp->reordering;
2214 if (lost <= 0)
2215 lost = 1;
2216 tcp_mark_head_lost(sk, lost, 0);
2217 } else {
2218 int sacked_upto = tp->sacked_out - tp->reordering;
2219 if (sacked_upto >= 0)
2220 tcp_mark_head_lost(sk, sacked_upto, 0);
2221 else if (fast_rexmit)
2222 tcp_mark_head_lost(sk, 1, 1);
2223 }
2224 }
2225
2226 /* CWND moderation, preventing bursts due to too big ACKs
2227 * in dubious situations.
2228 */
2229 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2230 {
2231 tp->snd_cwnd = min(tp->snd_cwnd,
2232 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2233 tp->snd_cwnd_stamp = tcp_time_stamp;
2234 }
2235
2236 /* Nothing was retransmitted or returned timestamp is less
2237 * than timestamp of the first retransmission.
2238 */
2239 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2240 {
2241 return !tp->retrans_stamp ||
2242 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2243 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2244 }
2245
2246 /* Undo procedures. */
2247
2248 #if FASTRETRANS_DEBUG > 1
2249 static void DBGUNDO(struct sock *sk, const char *msg)
2250 {
2251 struct tcp_sock *tp = tcp_sk(sk);
2252 struct inet_sock *inet = inet_sk(sk);
2253
2254 if (sk->sk_family == AF_INET) {
2255 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2256 msg,
2257 &inet->inet_daddr, ntohs(inet->inet_dport),
2258 tp->snd_cwnd, tcp_left_out(tp),
2259 tp->snd_ssthresh, tp->prior_ssthresh,
2260 tp->packets_out);
2261 }
2262 #if IS_ENABLED(CONFIG_IPV6)
2263 else if (sk->sk_family == AF_INET6) {
2264 struct ipv6_pinfo *np = inet6_sk(sk);
2265 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2266 msg,
2267 &np->daddr, ntohs(inet->inet_dport),
2268 tp->snd_cwnd, tcp_left_out(tp),
2269 tp->snd_ssthresh, tp->prior_ssthresh,
2270 tp->packets_out);
2271 }
2272 #endif
2273 }
2274 #else
2275 #define DBGUNDO(x...) do { } while (0)
2276 #endif
2277
2278 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2279 {
2280 struct tcp_sock *tp = tcp_sk(sk);
2281
2282 if (unmark_loss) {
2283 struct sk_buff *skb;
2284
2285 tcp_for_write_queue(skb, sk) {
2286 if (skb == tcp_send_head(sk))
2287 break;
2288 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2289 }
2290 tp->lost_out = 0;
2291 tcp_clear_all_retrans_hints(tp);
2292 }
2293
2294 if (tp->prior_ssthresh) {
2295 const struct inet_connection_sock *icsk = inet_csk(sk);
2296
2297 if (icsk->icsk_ca_ops->undo_cwnd)
2298 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2299 else
2300 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2301
2302 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2303 tp->snd_ssthresh = tp->prior_ssthresh;
2304 TCP_ECN_withdraw_cwr(tp);
2305 }
2306 } else {
2307 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2308 }
2309 tp->snd_cwnd_stamp = tcp_time_stamp;
2310 tp->undo_marker = 0;
2311 }
2312
2313 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2314 {
2315 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2316 }
2317
2318 /* People celebrate: "We love our President!" */
2319 static bool tcp_try_undo_recovery(struct sock *sk)
2320 {
2321 struct tcp_sock *tp = tcp_sk(sk);
2322
2323 if (tcp_may_undo(tp)) {
2324 int mib_idx;
2325
2326 /* Happy end! We did not retransmit anything
2327 * or our original transmission succeeded.
2328 */
2329 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2330 tcp_undo_cwnd_reduction(sk, false);
2331 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2332 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2333 else
2334 mib_idx = LINUX_MIB_TCPFULLUNDO;
2335
2336 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2337 }
2338 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2339 /* Hold old state until something *above* high_seq
2340 * is ACKed. For Reno it is MUST to prevent false
2341 * fast retransmits (RFC2582). SACK TCP is safe. */
2342 tcp_moderate_cwnd(tp);
2343 return true;
2344 }
2345 tcp_set_ca_state(sk, TCP_CA_Open);
2346 return false;
2347 }
2348
2349 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2350 static bool tcp_try_undo_dsack(struct sock *sk)
2351 {
2352 struct tcp_sock *tp = tcp_sk(sk);
2353
2354 if (tp->undo_marker && !tp->undo_retrans) {
2355 DBGUNDO(sk, "D-SACK");
2356 tcp_undo_cwnd_reduction(sk, false);
2357 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2358 return true;
2359 }
2360 return false;
2361 }
2362
2363 /* We can clear retrans_stamp when there are no retransmissions in the
2364 * window. It would seem that it is trivially available for us in
2365 * tp->retrans_out, however, that kind of assumptions doesn't consider
2366 * what will happen if errors occur when sending retransmission for the
2367 * second time. ...It could the that such segment has only
2368 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2369 * the head skb is enough except for some reneging corner cases that
2370 * are not worth the effort.
2371 *
2372 * Main reason for all this complexity is the fact that connection dying
2373 * time now depends on the validity of the retrans_stamp, in particular,
2374 * that successive retransmissions of a segment must not advance
2375 * retrans_stamp under any conditions.
2376 */
2377 static bool tcp_any_retrans_done(const struct sock *sk)
2378 {
2379 const struct tcp_sock *tp = tcp_sk(sk);
2380 struct sk_buff *skb;
2381
2382 if (tp->retrans_out)
2383 return true;
2384
2385 skb = tcp_write_queue_head(sk);
2386 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2387 return true;
2388
2389 return false;
2390 }
2391
2392 /* Undo during loss recovery after partial ACK or using F-RTO. */
2393 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2394 {
2395 struct tcp_sock *tp = tcp_sk(sk);
2396
2397 if (frto_undo || tcp_may_undo(tp)) {
2398 tcp_undo_cwnd_reduction(sk, true);
2399
2400 DBGUNDO(sk, "partial loss");
2401 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2402 if (frto_undo)
2403 NET_INC_STATS_BH(sock_net(sk),
2404 LINUX_MIB_TCPSPURIOUSRTOS);
2405 inet_csk(sk)->icsk_retransmits = 0;
2406 if (frto_undo || tcp_is_sack(tp))
2407 tcp_set_ca_state(sk, TCP_CA_Open);
2408 return true;
2409 }
2410 return false;
2411 }
2412
2413 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2414 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2415 * It computes the number of packets to send (sndcnt) based on packets newly
2416 * delivered:
2417 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2418 * cwnd reductions across a full RTT.
2419 * 2) If packets in flight is lower than ssthresh (such as due to excess
2420 * losses and/or application stalls), do not perform any further cwnd
2421 * reductions, but instead slow start up to ssthresh.
2422 */
2423 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2424 {
2425 struct tcp_sock *tp = tcp_sk(sk);
2426
2427 tp->high_seq = tp->snd_nxt;
2428 tp->tlp_high_seq = 0;
2429 tp->snd_cwnd_cnt = 0;
2430 tp->prior_cwnd = tp->snd_cwnd;
2431 tp->prr_delivered = 0;
2432 tp->prr_out = 0;
2433 if (set_ssthresh)
2434 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2435 TCP_ECN_queue_cwr(tp);
2436 }
2437
2438 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2439 int fast_rexmit)
2440 {
2441 struct tcp_sock *tp = tcp_sk(sk);
2442 int sndcnt = 0;
2443 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2444 int newly_acked_sacked = prior_unsacked -
2445 (tp->packets_out - tp->sacked_out);
2446
2447 tp->prr_delivered += newly_acked_sacked;
2448 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2449 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2450 tp->prior_cwnd - 1;
2451 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2452 } else {
2453 sndcnt = min_t(int, delta,
2454 max_t(int, tp->prr_delivered - tp->prr_out,
2455 newly_acked_sacked) + 1);
2456 }
2457
2458 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2459 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2460 }
2461
2462 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2463 {
2464 struct tcp_sock *tp = tcp_sk(sk);
2465
2466 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2467 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2468 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2469 tp->snd_cwnd = tp->snd_ssthresh;
2470 tp->snd_cwnd_stamp = tcp_time_stamp;
2471 }
2472 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2473 }
2474
2475 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2476 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2477 {
2478 struct tcp_sock *tp = tcp_sk(sk);
2479
2480 tp->prior_ssthresh = 0;
2481 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2482 tp->undo_marker = 0;
2483 tcp_init_cwnd_reduction(sk, set_ssthresh);
2484 tcp_set_ca_state(sk, TCP_CA_CWR);
2485 }
2486 }
2487
2488 static void tcp_try_keep_open(struct sock *sk)
2489 {
2490 struct tcp_sock *tp = tcp_sk(sk);
2491 int state = TCP_CA_Open;
2492
2493 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2494 state = TCP_CA_Disorder;
2495
2496 if (inet_csk(sk)->icsk_ca_state != state) {
2497 tcp_set_ca_state(sk, state);
2498 tp->high_seq = tp->snd_nxt;
2499 }
2500 }
2501
2502 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2503 {
2504 struct tcp_sock *tp = tcp_sk(sk);
2505
2506 tcp_verify_left_out(tp);
2507
2508 if (!tcp_any_retrans_done(sk))
2509 tp->retrans_stamp = 0;
2510
2511 if (flag & FLAG_ECE)
2512 tcp_enter_cwr(sk, 1);
2513
2514 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2515 tcp_try_keep_open(sk);
2516 } else {
2517 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2518 }
2519 }
2520
2521 static void tcp_mtup_probe_failed(struct sock *sk)
2522 {
2523 struct inet_connection_sock *icsk = inet_csk(sk);
2524
2525 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2526 icsk->icsk_mtup.probe_size = 0;
2527 }
2528
2529 static void tcp_mtup_probe_success(struct sock *sk)
2530 {
2531 struct tcp_sock *tp = tcp_sk(sk);
2532 struct inet_connection_sock *icsk = inet_csk(sk);
2533
2534 /* FIXME: breaks with very large cwnd */
2535 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2536 tp->snd_cwnd = tp->snd_cwnd *
2537 tcp_mss_to_mtu(sk, tp->mss_cache) /
2538 icsk->icsk_mtup.probe_size;
2539 tp->snd_cwnd_cnt = 0;
2540 tp->snd_cwnd_stamp = tcp_time_stamp;
2541 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2542
2543 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2544 icsk->icsk_mtup.probe_size = 0;
2545 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2546 }
2547
2548 /* Do a simple retransmit without using the backoff mechanisms in
2549 * tcp_timer. This is used for path mtu discovery.
2550 * The socket is already locked here.
2551 */
2552 void tcp_simple_retransmit(struct sock *sk)
2553 {
2554 const struct inet_connection_sock *icsk = inet_csk(sk);
2555 struct tcp_sock *tp = tcp_sk(sk);
2556 struct sk_buff *skb;
2557 unsigned int mss = tcp_current_mss(sk);
2558 u32 prior_lost = tp->lost_out;
2559
2560 tcp_for_write_queue(skb, sk) {
2561 if (skb == tcp_send_head(sk))
2562 break;
2563 if (tcp_skb_seglen(skb) > mss &&
2564 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2565 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2566 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2567 tp->retrans_out -= tcp_skb_pcount(skb);
2568 }
2569 tcp_skb_mark_lost_uncond_verify(tp, skb);
2570 }
2571 }
2572
2573 tcp_clear_retrans_hints_partial(tp);
2574
2575 if (prior_lost == tp->lost_out)
2576 return;
2577
2578 if (tcp_is_reno(tp))
2579 tcp_limit_reno_sacked(tp);
2580
2581 tcp_verify_left_out(tp);
2582
2583 /* Don't muck with the congestion window here.
2584 * Reason is that we do not increase amount of _data_
2585 * in network, but units changed and effective
2586 * cwnd/ssthresh really reduced now.
2587 */
2588 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2589 tp->high_seq = tp->snd_nxt;
2590 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2591 tp->prior_ssthresh = 0;
2592 tp->undo_marker = 0;
2593 tcp_set_ca_state(sk, TCP_CA_Loss);
2594 }
2595 tcp_xmit_retransmit_queue(sk);
2596 }
2597 EXPORT_SYMBOL(tcp_simple_retransmit);
2598
2599 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2600 {
2601 struct tcp_sock *tp = tcp_sk(sk);
2602 int mib_idx;
2603
2604 if (tcp_is_reno(tp))
2605 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2606 else
2607 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2608
2609 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2610
2611 tp->prior_ssthresh = 0;
2612 tp->undo_marker = tp->snd_una;
2613 tp->undo_retrans = tp->retrans_out;
2614
2615 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2616 if (!ece_ack)
2617 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2618 tcp_init_cwnd_reduction(sk, true);
2619 }
2620 tcp_set_ca_state(sk, TCP_CA_Recovery);
2621 }
2622
2623 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2624 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2625 */
2626 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2627 {
2628 struct inet_connection_sock *icsk = inet_csk(sk);
2629 struct tcp_sock *tp = tcp_sk(sk);
2630 bool recovered = !before(tp->snd_una, tp->high_seq);
2631
2632 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2633 if (flag & FLAG_ORIG_SACK_ACKED) {
2634 /* Step 3.b. A timeout is spurious if not all data are
2635 * lost, i.e., never-retransmitted data are (s)acked.
2636 */
2637 tcp_try_undo_loss(sk, true);
2638 return;
2639 }
2640 if (after(tp->snd_nxt, tp->high_seq) &&
2641 (flag & FLAG_DATA_SACKED || is_dupack)) {
2642 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2643 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2644 tp->high_seq = tp->snd_nxt;
2645 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2646 TCP_NAGLE_OFF);
2647 if (after(tp->snd_nxt, tp->high_seq))
2648 return; /* Step 2.b */
2649 tp->frto = 0;
2650 }
2651 }
2652
2653 if (recovered) {
2654 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2655 icsk->icsk_retransmits = 0;
2656 tcp_try_undo_recovery(sk);
2657 return;
2658 }
2659 if (flag & FLAG_DATA_ACKED)
2660 icsk->icsk_retransmits = 0;
2661 if (tcp_is_reno(tp)) {
2662 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2663 * delivered. Lower inflight to clock out (re)tranmissions.
2664 */
2665 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2666 tcp_add_reno_sack(sk);
2667 else if (flag & FLAG_SND_UNA_ADVANCED)
2668 tcp_reset_reno_sack(tp);
2669 }
2670 if (tcp_try_undo_loss(sk, false))
2671 return;
2672 tcp_xmit_retransmit_queue(sk);
2673 }
2674
2675 /* Undo during fast recovery after partial ACK. */
2676 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2677 const int prior_unsacked)
2678 {
2679 struct tcp_sock *tp = tcp_sk(sk);
2680
2681 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2682 /* Plain luck! Hole if filled with delayed
2683 * packet, rather than with a retransmit.
2684 */
2685 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2686
2687 /* We are getting evidence that the reordering degree is higher
2688 * than we realized. If there are no retransmits out then we
2689 * can undo. Otherwise we clock out new packets but do not
2690 * mark more packets lost or retransmit more.
2691 */
2692 if (tp->retrans_out) {
2693 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2694 return true;
2695 }
2696
2697 if (!tcp_any_retrans_done(sk))
2698 tp->retrans_stamp = 0;
2699
2700 DBGUNDO(sk, "partial recovery");
2701 tcp_undo_cwnd_reduction(sk, true);
2702 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2703 tcp_try_keep_open(sk);
2704 return true;
2705 }
2706 return false;
2707 }
2708
2709 /* Process an event, which can update packets-in-flight not trivially.
2710 * Main goal of this function is to calculate new estimate for left_out,
2711 * taking into account both packets sitting in receiver's buffer and
2712 * packets lost by network.
2713 *
2714 * Besides that it does CWND reduction, when packet loss is detected
2715 * and changes state of machine.
2716 *
2717 * It does _not_ decide what to send, it is made in function
2718 * tcp_xmit_retransmit_queue().
2719 */
2720 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2721 const int prior_unsacked,
2722 bool is_dupack, int flag)
2723 {
2724 struct inet_connection_sock *icsk = inet_csk(sk);
2725 struct tcp_sock *tp = tcp_sk(sk);
2726 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2727 (tcp_fackets_out(tp) > tp->reordering));
2728 int fast_rexmit = 0;
2729
2730 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2731 tp->sacked_out = 0;
2732 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2733 tp->fackets_out = 0;
2734
2735 /* Now state machine starts.
2736 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2737 if (flag & FLAG_ECE)
2738 tp->prior_ssthresh = 0;
2739
2740 /* B. In all the states check for reneging SACKs. */
2741 if (tcp_check_sack_reneging(sk, flag))
2742 return;
2743
2744 /* C. Check consistency of the current state. */
2745 tcp_verify_left_out(tp);
2746
2747 /* D. Check state exit conditions. State can be terminated
2748 * when high_seq is ACKed. */
2749 if (icsk->icsk_ca_state == TCP_CA_Open) {
2750 WARN_ON(tp->retrans_out != 0);
2751 tp->retrans_stamp = 0;
2752 } else if (!before(tp->snd_una, tp->high_seq)) {
2753 switch (icsk->icsk_ca_state) {
2754 case TCP_CA_CWR:
2755 /* CWR is to be held something *above* high_seq
2756 * is ACKed for CWR bit to reach receiver. */
2757 if (tp->snd_una != tp->high_seq) {
2758 tcp_end_cwnd_reduction(sk);
2759 tcp_set_ca_state(sk, TCP_CA_Open);
2760 }
2761 break;
2762
2763 case TCP_CA_Recovery:
2764 if (tcp_is_reno(tp))
2765 tcp_reset_reno_sack(tp);
2766 if (tcp_try_undo_recovery(sk))
2767 return;
2768 tcp_end_cwnd_reduction(sk);
2769 break;
2770 }
2771 }
2772
2773 /* E. Process state. */
2774 switch (icsk->icsk_ca_state) {
2775 case TCP_CA_Recovery:
2776 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2777 if (tcp_is_reno(tp) && is_dupack)
2778 tcp_add_reno_sack(sk);
2779 } else {
2780 if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2781 return;
2782 /* Partial ACK arrived. Force fast retransmit. */
2783 do_lost = tcp_is_reno(tp) ||
2784 tcp_fackets_out(tp) > tp->reordering;
2785 }
2786 if (tcp_try_undo_dsack(sk)) {
2787 tcp_try_keep_open(sk);
2788 return;
2789 }
2790 break;
2791 case TCP_CA_Loss:
2792 tcp_process_loss(sk, flag, is_dupack);
2793 if (icsk->icsk_ca_state != TCP_CA_Open)
2794 return;
2795 /* Fall through to processing in Open state. */
2796 default:
2797 if (tcp_is_reno(tp)) {
2798 if (flag & FLAG_SND_UNA_ADVANCED)
2799 tcp_reset_reno_sack(tp);
2800 if (is_dupack)
2801 tcp_add_reno_sack(sk);
2802 }
2803
2804 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2805 tcp_try_undo_dsack(sk);
2806
2807 if (!tcp_time_to_recover(sk, flag)) {
2808 tcp_try_to_open(sk, flag, prior_unsacked);
2809 return;
2810 }
2811
2812 /* MTU probe failure: don't reduce cwnd */
2813 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2814 icsk->icsk_mtup.probe_size &&
2815 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2816 tcp_mtup_probe_failed(sk);
2817 /* Restores the reduction we did in tcp_mtup_probe() */
2818 tp->snd_cwnd++;
2819 tcp_simple_retransmit(sk);
2820 return;
2821 }
2822
2823 /* Otherwise enter Recovery state */
2824 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2825 fast_rexmit = 1;
2826 }
2827
2828 if (do_lost)
2829 tcp_update_scoreboard(sk, fast_rexmit);
2830 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2831 tcp_xmit_retransmit_queue(sk);
2832 }
2833
2834 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2835 s32 seq_rtt, s32 sack_rtt)
2836 {
2837 const struct tcp_sock *tp = tcp_sk(sk);
2838
2839 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2840 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2841 * Karn's algorithm forbids taking RTT if some retransmitted data
2842 * is acked (RFC6298).
2843 */
2844 if (flag & FLAG_RETRANS_DATA_ACKED)
2845 seq_rtt = -1;
2846
2847 if (seq_rtt < 0)
2848 seq_rtt = sack_rtt;
2849
2850 /* RTTM Rule: A TSecr value received in a segment is used to
2851 * update the averaged RTT measurement only if the segment
2852 * acknowledges some new data, i.e., only if it advances the
2853 * left edge of the send window.
2854 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2855 */
2856 if (seq_rtt < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2857 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2858
2859 if (seq_rtt < 0)
2860 return false;
2861
2862 tcp_rtt_estimator(sk, seq_rtt);
2863 tcp_set_rto(sk);
2864
2865 /* RFC6298: only reset backoff on valid RTT measurement. */
2866 inet_csk(sk)->icsk_backoff = 0;
2867 return true;
2868 }
2869
2870 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2871 static void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2872 {
2873 struct tcp_sock *tp = tcp_sk(sk);
2874 s32 seq_rtt = -1;
2875
2876 if (tp->lsndtime && !tp->total_retrans)
2877 seq_rtt = tcp_time_stamp - tp->lsndtime;
2878 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt, -1);
2879 }
2880
2881 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2882 {
2883 const struct inet_connection_sock *icsk = inet_csk(sk);
2884 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2885 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2886 }
2887
2888 /* Restart timer after forward progress on connection.
2889 * RFC2988 recommends to restart timer to now+rto.
2890 */
2891 void tcp_rearm_rto(struct sock *sk)
2892 {
2893 const struct inet_connection_sock *icsk = inet_csk(sk);
2894 struct tcp_sock *tp = tcp_sk(sk);
2895
2896 /* If the retrans timer is currently being used by Fast Open
2897 * for SYN-ACK retrans purpose, stay put.
2898 */
2899 if (tp->fastopen_rsk)
2900 return;
2901
2902 if (!tp->packets_out) {
2903 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2904 } else {
2905 u32 rto = inet_csk(sk)->icsk_rto;
2906 /* Offset the time elapsed after installing regular RTO */
2907 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2908 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2909 struct sk_buff *skb = tcp_write_queue_head(sk);
2910 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2911 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2912 /* delta may not be positive if the socket is locked
2913 * when the retrans timer fires and is rescheduled.
2914 */
2915 if (delta > 0)
2916 rto = delta;
2917 }
2918 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2919 TCP_RTO_MAX);
2920 }
2921 }
2922
2923 /* This function is called when the delayed ER timer fires. TCP enters
2924 * fast recovery and performs fast-retransmit.
2925 */
2926 void tcp_resume_early_retransmit(struct sock *sk)
2927 {
2928 struct tcp_sock *tp = tcp_sk(sk);
2929
2930 tcp_rearm_rto(sk);
2931
2932 /* Stop if ER is disabled after the delayed ER timer is scheduled */
2933 if (!tp->do_early_retrans)
2934 return;
2935
2936 tcp_enter_recovery(sk, false);
2937 tcp_update_scoreboard(sk, 1);
2938 tcp_xmit_retransmit_queue(sk);
2939 }
2940
2941 /* If we get here, the whole TSO packet has not been acked. */
2942 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2943 {
2944 struct tcp_sock *tp = tcp_sk(sk);
2945 u32 packets_acked;
2946
2947 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2948
2949 packets_acked = tcp_skb_pcount(skb);
2950 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2951 return 0;
2952 packets_acked -= tcp_skb_pcount(skb);
2953
2954 if (packets_acked) {
2955 BUG_ON(tcp_skb_pcount(skb) == 0);
2956 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2957 }
2958
2959 return packets_acked;
2960 }
2961
2962 /* Remove acknowledged frames from the retransmission queue. If our packet
2963 * is before the ack sequence we can discard it as it's confirmed to have
2964 * arrived at the other end.
2965 */
2966 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
2967 u32 prior_snd_una, s32 sack_rtt)
2968 {
2969 struct tcp_sock *tp = tcp_sk(sk);
2970 const struct inet_connection_sock *icsk = inet_csk(sk);
2971 struct sk_buff *skb;
2972 u32 now = tcp_time_stamp;
2973 int fully_acked = true;
2974 int flag = 0;
2975 u32 pkts_acked = 0;
2976 u32 reord = tp->packets_out;
2977 u32 prior_sacked = tp->sacked_out;
2978 s32 seq_rtt = -1;
2979 s32 ca_seq_rtt = -1;
2980 ktime_t last_ackt = net_invalid_timestamp();
2981
2982 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2983 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2984 u32 acked_pcount;
2985 u8 sacked = scb->sacked;
2986
2987 /* Determine how many packets and what bytes were acked, tso and else */
2988 if (after(scb->end_seq, tp->snd_una)) {
2989 if (tcp_skb_pcount(skb) == 1 ||
2990 !after(tp->snd_una, scb->seq))
2991 break;
2992
2993 acked_pcount = tcp_tso_acked(sk, skb);
2994 if (!acked_pcount)
2995 break;
2996
2997 fully_acked = false;
2998 } else {
2999 acked_pcount = tcp_skb_pcount(skb);
3000 }
3001
3002 if (sacked & TCPCB_RETRANS) {
3003 if (sacked & TCPCB_SACKED_RETRANS)
3004 tp->retrans_out -= acked_pcount;
3005 flag |= FLAG_RETRANS_DATA_ACKED;
3006 } else {
3007 ca_seq_rtt = now - scb->when;
3008 last_ackt = skb->tstamp;
3009 if (seq_rtt < 0) {
3010 seq_rtt = ca_seq_rtt;
3011 }
3012 if (!(sacked & TCPCB_SACKED_ACKED))
3013 reord = min(pkts_acked, reord);
3014 if (!after(scb->end_seq, tp->high_seq))
3015 flag |= FLAG_ORIG_SACK_ACKED;
3016 }
3017
3018 if (sacked & TCPCB_SACKED_ACKED)
3019 tp->sacked_out -= acked_pcount;
3020 if (sacked & TCPCB_LOST)
3021 tp->lost_out -= acked_pcount;
3022
3023 tp->packets_out -= acked_pcount;
3024 pkts_acked += acked_pcount;
3025
3026 /* Initial outgoing SYN's get put onto the write_queue
3027 * just like anything else we transmit. It is not
3028 * true data, and if we misinform our callers that
3029 * this ACK acks real data, we will erroneously exit
3030 * connection startup slow start one packet too
3031 * quickly. This is severely frowned upon behavior.
3032 */
3033 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3034 flag |= FLAG_DATA_ACKED;
3035 } else {
3036 flag |= FLAG_SYN_ACKED;
3037 tp->retrans_stamp = 0;
3038 }
3039
3040 if (!fully_acked)
3041 break;
3042
3043 tcp_unlink_write_queue(skb, sk);
3044 sk_wmem_free_skb(sk, skb);
3045 if (skb == tp->retransmit_skb_hint)
3046 tp->retransmit_skb_hint = NULL;
3047 if (skb == tp->lost_skb_hint)
3048 tp->lost_skb_hint = NULL;
3049 }
3050
3051 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3052 tp->snd_up = tp->snd_una;
3053
3054 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3055 flag |= FLAG_SACK_RENEGING;
3056
3057 if (tcp_ack_update_rtt(sk, flag, seq_rtt, sack_rtt) ||
3058 (flag & FLAG_ACKED))
3059 tcp_rearm_rto(sk);
3060
3061 if (flag & FLAG_ACKED) {
3062 const struct tcp_congestion_ops *ca_ops
3063 = inet_csk(sk)->icsk_ca_ops;
3064
3065 if (unlikely(icsk->icsk_mtup.probe_size &&
3066 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3067 tcp_mtup_probe_success(sk);
3068 }
3069
3070 if (tcp_is_reno(tp)) {
3071 tcp_remove_reno_sacks(sk, pkts_acked);
3072 } else {
3073 int delta;
3074
3075 /* Non-retransmitted hole got filled? That's reordering */
3076 if (reord < prior_fackets)
3077 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3078
3079 delta = tcp_is_fack(tp) ? pkts_acked :
3080 prior_sacked - tp->sacked_out;
3081 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3082 }
3083
3084 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3085
3086 if (ca_ops->pkts_acked) {
3087 s32 rtt_us = -1;
3088
3089 /* Is the ACK triggering packet unambiguous? */
3090 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3091 /* High resolution needed and available? */
3092 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3093 !ktime_equal(last_ackt,
3094 net_invalid_timestamp()))
3095 rtt_us = ktime_us_delta(ktime_get_real(),
3096 last_ackt);
3097 else if (ca_seq_rtt >= 0)
3098 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3099 }
3100
3101 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3102 }
3103 }
3104
3105 #if FASTRETRANS_DEBUG > 0
3106 WARN_ON((int)tp->sacked_out < 0);
3107 WARN_ON((int)tp->lost_out < 0);
3108 WARN_ON((int)tp->retrans_out < 0);
3109 if (!tp->packets_out && tcp_is_sack(tp)) {
3110 icsk = inet_csk(sk);
3111 if (tp->lost_out) {
3112 pr_debug("Leak l=%u %d\n",
3113 tp->lost_out, icsk->icsk_ca_state);
3114 tp->lost_out = 0;
3115 }
3116 if (tp->sacked_out) {
3117 pr_debug("Leak s=%u %d\n",
3118 tp->sacked_out, icsk->icsk_ca_state);
3119 tp->sacked_out = 0;
3120 }
3121 if (tp->retrans_out) {
3122 pr_debug("Leak r=%u %d\n",
3123 tp->retrans_out, icsk->icsk_ca_state);
3124 tp->retrans_out = 0;
3125 }
3126 }
3127 #endif
3128 return flag;
3129 }
3130
3131 static void tcp_ack_probe(struct sock *sk)
3132 {
3133 const struct tcp_sock *tp = tcp_sk(sk);
3134 struct inet_connection_sock *icsk = inet_csk(sk);
3135
3136 /* Was it a usable window open? */
3137
3138 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3139 icsk->icsk_backoff = 0;
3140 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3141 /* Socket must be waked up by subsequent tcp_data_snd_check().
3142 * This function is not for random using!
3143 */
3144 } else {
3145 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3146 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3147 TCP_RTO_MAX);
3148 }
3149 }
3150
3151 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3152 {
3153 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3154 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3155 }
3156
3157 /* Decide wheather to run the increase function of congestion control. */
3158 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3159 {
3160 if (tcp_in_cwnd_reduction(sk))
3161 return false;
3162
3163 /* If reordering is high then always grow cwnd whenever data is
3164 * delivered regardless of its ordering. Otherwise stay conservative
3165 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3166 * new SACK or ECE mark may first advance cwnd here and later reduce
3167 * cwnd in tcp_fastretrans_alert() based on more states.
3168 */
3169 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3170 return flag & FLAG_FORWARD_PROGRESS;
3171
3172 return flag & FLAG_DATA_ACKED;
3173 }
3174
3175 /* Check that window update is acceptable.
3176 * The function assumes that snd_una<=ack<=snd_next.
3177 */
3178 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3179 const u32 ack, const u32 ack_seq,
3180 const u32 nwin)
3181 {
3182 return after(ack, tp->snd_una) ||
3183 after(ack_seq, tp->snd_wl1) ||
3184 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3185 }
3186
3187 /* Update our send window.
3188 *
3189 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3190 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3191 */
3192 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3193 u32 ack_seq)
3194 {
3195 struct tcp_sock *tp = tcp_sk(sk);
3196 int flag = 0;
3197 u32 nwin = ntohs(tcp_hdr(skb)->window);
3198
3199 if (likely(!tcp_hdr(skb)->syn))
3200 nwin <<= tp->rx_opt.snd_wscale;
3201
3202 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3203 flag |= FLAG_WIN_UPDATE;
3204 tcp_update_wl(tp, ack_seq);
3205
3206 if (tp->snd_wnd != nwin) {
3207 tp->snd_wnd = nwin;
3208
3209 /* Note, it is the only place, where
3210 * fast path is recovered for sending TCP.
3211 */
3212 tp->pred_flags = 0;
3213 tcp_fast_path_check(sk);
3214
3215 if (nwin > tp->max_window) {
3216 tp->max_window = nwin;
3217 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3218 }
3219 }
3220 }
3221
3222 tp->snd_una = ack;
3223
3224 return flag;
3225 }
3226
3227 /* RFC 5961 7 [ACK Throttling] */
3228 static void tcp_send_challenge_ack(struct sock *sk)
3229 {
3230 /* unprotected vars, we dont care of overwrites */
3231 static u32 challenge_timestamp;
3232 static unsigned int challenge_count;
3233 u32 now = jiffies / HZ;
3234
3235 if (now != challenge_timestamp) {
3236 challenge_timestamp = now;
3237 challenge_count = 0;
3238 }
3239 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3240 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3241 tcp_send_ack(sk);
3242 }
3243 }
3244
3245 static void tcp_store_ts_recent(struct tcp_sock *tp)
3246 {
3247 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3248 tp->rx_opt.ts_recent_stamp = get_seconds();
3249 }
3250
3251 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3252 {
3253 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3254 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3255 * extra check below makes sure this can only happen
3256 * for pure ACK frames. -DaveM
3257 *
3258 * Not only, also it occurs for expired timestamps.
3259 */
3260
3261 if (tcp_paws_check(&tp->rx_opt, 0))
3262 tcp_store_ts_recent(tp);
3263 }
3264 }
3265
3266 /* This routine deals with acks during a TLP episode.
3267 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3268 */
3269 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3270 {
3271 struct tcp_sock *tp = tcp_sk(sk);
3272 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3273 !(flag & (FLAG_SND_UNA_ADVANCED |
3274 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3275
3276 /* Mark the end of TLP episode on receiving TLP dupack or when
3277 * ack is after tlp_high_seq.
3278 */
3279 if (is_tlp_dupack) {
3280 tp->tlp_high_seq = 0;
3281 return;
3282 }
3283
3284 if (after(ack, tp->tlp_high_seq)) {
3285 tp->tlp_high_seq = 0;
3286 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3287 if (!(flag & FLAG_DSACKING_ACK)) {
3288 tcp_init_cwnd_reduction(sk, true);
3289 tcp_set_ca_state(sk, TCP_CA_CWR);
3290 tcp_end_cwnd_reduction(sk);
3291 tcp_set_ca_state(sk, TCP_CA_Open);
3292 NET_INC_STATS_BH(sock_net(sk),
3293 LINUX_MIB_TCPLOSSPROBERECOVERY);
3294 }
3295 }
3296 }
3297
3298 /* This routine deals with incoming acks, but not outgoing ones. */
3299 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3300 {
3301 struct inet_connection_sock *icsk = inet_csk(sk);
3302 struct tcp_sock *tp = tcp_sk(sk);
3303 u32 prior_snd_una = tp->snd_una;
3304 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3305 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3306 bool is_dupack = false;
3307 u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt;
3308 u32 prior_fackets;
3309 int prior_packets = tp->packets_out;
3310 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3311 int acked = 0; /* Number of packets newly acked */
3312 s32 sack_rtt = -1;
3313
3314 /* If the ack is older than previous acks
3315 * then we can probably ignore it.
3316 */
3317 if (before(ack, prior_snd_una)) {
3318 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3319 if (before(ack, prior_snd_una - tp->max_window)) {
3320 tcp_send_challenge_ack(sk);
3321 return -1;
3322 }
3323 goto old_ack;
3324 }
3325
3326 /* If the ack includes data we haven't sent yet, discard
3327 * this segment (RFC793 Section 3.9).
3328 */
3329 if (after(ack, tp->snd_nxt))
3330 goto invalid_ack;
3331
3332 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3333 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3334 tcp_rearm_rto(sk);
3335
3336 if (after(ack, prior_snd_una))
3337 flag |= FLAG_SND_UNA_ADVANCED;
3338
3339 prior_fackets = tp->fackets_out;
3340 prior_in_flight = tcp_packets_in_flight(tp);
3341
3342 /* ts_recent update must be made after we are sure that the packet
3343 * is in window.
3344 */
3345 if (flag & FLAG_UPDATE_TS_RECENT)
3346 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3347
3348 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3349 /* Window is constant, pure forward advance.
3350 * No more checks are required.
3351 * Note, we use the fact that SND.UNA>=SND.WL2.
3352 */
3353 tcp_update_wl(tp, ack_seq);
3354 tp->snd_una = ack;
3355 flag |= FLAG_WIN_UPDATE;
3356
3357 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3358
3359 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3360 } else {
3361 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3362 flag |= FLAG_DATA;
3363 else
3364 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3365
3366 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3367
3368 if (TCP_SKB_CB(skb)->sacked)
3369 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3370 &sack_rtt);
3371
3372 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3373 flag |= FLAG_ECE;
3374
3375 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3376 }
3377
3378 /* We passed data and got it acked, remove any soft error
3379 * log. Something worked...
3380 */
3381 sk->sk_err_soft = 0;
3382 icsk->icsk_probes_out = 0;
3383 tp->rcv_tstamp = tcp_time_stamp;
3384 if (!prior_packets)
3385 goto no_queue;
3386
3387 /* See if we can take anything off of the retransmit queue. */
3388 acked = tp->packets_out;
3389 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, sack_rtt);
3390 acked -= tp->packets_out;
3391
3392 /* Advance cwnd if state allows */
3393 if (tcp_may_raise_cwnd(sk, flag))
3394 tcp_cong_avoid(sk, ack, prior_in_flight);
3395
3396 if (tcp_ack_is_dubious(sk, flag)) {
3397 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3398 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3399 is_dupack, flag);
3400 }
3401 if (tp->tlp_high_seq)
3402 tcp_process_tlp_ack(sk, ack, flag);
3403
3404 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3405 struct dst_entry *dst = __sk_dst_get(sk);
3406 if (dst)
3407 dst_confirm(dst);
3408 }
3409
3410 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3411 tcp_schedule_loss_probe(sk);
3412 if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd)
3413 tcp_update_pacing_rate(sk);
3414 return 1;
3415
3416 no_queue:
3417 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3418 if (flag & FLAG_DSACKING_ACK)
3419 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3420 is_dupack, flag);
3421 /* If this ack opens up a zero window, clear backoff. It was
3422 * being used to time the probes, and is probably far higher than
3423 * it needs to be for normal retransmission.
3424 */
3425 if (tcp_send_head(sk))
3426 tcp_ack_probe(sk);
3427
3428 if (tp->tlp_high_seq)
3429 tcp_process_tlp_ack(sk, ack, flag);
3430 return 1;
3431
3432 invalid_ack:
3433 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3434 return -1;
3435
3436 old_ack:
3437 /* If data was SACKed, tag it and see if we should send more data.
3438 * If data was DSACKed, see if we can undo a cwnd reduction.
3439 */
3440 if (TCP_SKB_CB(skb)->sacked) {
3441 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3442 &sack_rtt);
3443 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3444 is_dupack, flag);
3445 }
3446
3447 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3448 return 0;
3449 }
3450
3451 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3452 * But, this can also be called on packets in the established flow when
3453 * the fast version below fails.
3454 */
3455 void tcp_parse_options(const struct sk_buff *skb,
3456 struct tcp_options_received *opt_rx, int estab,
3457 struct tcp_fastopen_cookie *foc)
3458 {
3459 const unsigned char *ptr;
3460 const struct tcphdr *th = tcp_hdr(skb);
3461 int length = (th->doff * 4) - sizeof(struct tcphdr);
3462
3463 ptr = (const unsigned char *)(th + 1);
3464 opt_rx->saw_tstamp = 0;
3465
3466 while (length > 0) {
3467 int opcode = *ptr++;
3468 int opsize;
3469
3470 switch (opcode) {
3471 case TCPOPT_EOL:
3472 return;
3473 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3474 length--;
3475 continue;
3476 default:
3477 opsize = *ptr++;
3478 if (opsize < 2) /* "silly options" */
3479 return;
3480 if (opsize > length)
3481 return; /* don't parse partial options */
3482 switch (opcode) {
3483 case TCPOPT_MSS:
3484 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3485 u16 in_mss = get_unaligned_be16(ptr);
3486 if (in_mss) {
3487 if (opt_rx->user_mss &&
3488 opt_rx->user_mss < in_mss)
3489 in_mss = opt_rx->user_mss;
3490 opt_rx->mss_clamp = in_mss;
3491 }
3492 }
3493 break;
3494 case TCPOPT_WINDOW:
3495 if (opsize == TCPOLEN_WINDOW && th->syn &&
3496 !estab && sysctl_tcp_window_scaling) {
3497 __u8 snd_wscale = *(__u8 *)ptr;
3498 opt_rx->wscale_ok = 1;
3499 if (snd_wscale > 14) {
3500 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3501 __func__,
3502 snd_wscale);
3503 snd_wscale = 14;
3504 }
3505 opt_rx->snd_wscale = snd_wscale;
3506 }
3507 break;
3508 case TCPOPT_TIMESTAMP:
3509 if ((opsize == TCPOLEN_TIMESTAMP) &&
3510 ((estab && opt_rx->tstamp_ok) ||
3511 (!estab && sysctl_tcp_timestamps))) {
3512 opt_rx->saw_tstamp = 1;
3513 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3514 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3515 }
3516 break;
3517 case TCPOPT_SACK_PERM:
3518 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3519 !estab && sysctl_tcp_sack) {
3520 opt_rx->sack_ok = TCP_SACK_SEEN;
3521 tcp_sack_reset(opt_rx);
3522 }
3523 break;
3524
3525 case TCPOPT_SACK:
3526 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3527 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3528 opt_rx->sack_ok) {
3529 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3530 }
3531 break;
3532 #ifdef CONFIG_TCP_MD5SIG
3533 case TCPOPT_MD5SIG:
3534 /*
3535 * The MD5 Hash has already been
3536 * checked (see tcp_v{4,6}_do_rcv()).
3537 */
3538 break;
3539 #endif
3540 case TCPOPT_EXP:
3541 /* Fast Open option shares code 254 using a
3542 * 16 bits magic number. It's valid only in
3543 * SYN or SYN-ACK with an even size.
3544 */
3545 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3546 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3547 foc == NULL || !th->syn || (opsize & 1))
3548 break;
3549 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3550 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3551 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3552 memcpy(foc->val, ptr + 2, foc->len);
3553 else if (foc->len != 0)
3554 foc->len = -1;
3555 break;
3556
3557 }
3558 ptr += opsize-2;
3559 length -= opsize;
3560 }
3561 }
3562 }
3563 EXPORT_SYMBOL(tcp_parse_options);
3564
3565 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3566 {
3567 const __be32 *ptr = (const __be32 *)(th + 1);
3568
3569 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3570 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3571 tp->rx_opt.saw_tstamp = 1;
3572 ++ptr;
3573 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3574 ++ptr;
3575 if (*ptr)
3576 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3577 else
3578 tp->rx_opt.rcv_tsecr = 0;
3579 return true;
3580 }
3581 return false;
3582 }
3583
3584 /* Fast parse options. This hopes to only see timestamps.
3585 * If it is wrong it falls back on tcp_parse_options().
3586 */
3587 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3588 const struct tcphdr *th, struct tcp_sock *tp)
3589 {
3590 /* In the spirit of fast parsing, compare doff directly to constant
3591 * values. Because equality is used, short doff can be ignored here.
3592 */
3593 if (th->doff == (sizeof(*th) / 4)) {
3594 tp->rx_opt.saw_tstamp = 0;
3595 return false;
3596 } else if (tp->rx_opt.tstamp_ok &&
3597 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3598 if (tcp_parse_aligned_timestamp(tp, th))
3599 return true;
3600 }
3601
3602 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3603 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3604 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3605
3606 return true;
3607 }
3608
3609 #ifdef CONFIG_TCP_MD5SIG
3610 /*
3611 * Parse MD5 Signature option
3612 */
3613 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3614 {
3615 int length = (th->doff << 2) - sizeof(*th);
3616 const u8 *ptr = (const u8 *)(th + 1);
3617
3618 /* If the TCP option is too short, we can short cut */
3619 if (length < TCPOLEN_MD5SIG)
3620 return NULL;
3621
3622 while (length > 0) {
3623 int opcode = *ptr++;
3624 int opsize;
3625
3626 switch(opcode) {
3627 case TCPOPT_EOL:
3628 return NULL;
3629 case TCPOPT_NOP:
3630 length--;
3631 continue;
3632 default:
3633 opsize = *ptr++;
3634 if (opsize < 2 || opsize > length)
3635 return NULL;
3636 if (opcode == TCPOPT_MD5SIG)
3637 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3638 }
3639 ptr += opsize - 2;
3640 length -= opsize;
3641 }
3642 return NULL;
3643 }
3644 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3645 #endif
3646
3647 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3648 *
3649 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3650 * it can pass through stack. So, the following predicate verifies that
3651 * this segment is not used for anything but congestion avoidance or
3652 * fast retransmit. Moreover, we even are able to eliminate most of such
3653 * second order effects, if we apply some small "replay" window (~RTO)
3654 * to timestamp space.
3655 *
3656 * All these measures still do not guarantee that we reject wrapped ACKs
3657 * on networks with high bandwidth, when sequence space is recycled fastly,
3658 * but it guarantees that such events will be very rare and do not affect
3659 * connection seriously. This doesn't look nice, but alas, PAWS is really
3660 * buggy extension.
3661 *
3662 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3663 * states that events when retransmit arrives after original data are rare.
3664 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3665 * the biggest problem on large power networks even with minor reordering.
3666 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3667 * up to bandwidth of 18Gigabit/sec. 8) ]
3668 */
3669
3670 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3671 {
3672 const struct tcp_sock *tp = tcp_sk(sk);
3673 const struct tcphdr *th = tcp_hdr(skb);
3674 u32 seq = TCP_SKB_CB(skb)->seq;
3675 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3676
3677 return (/* 1. Pure ACK with correct sequence number. */
3678 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3679
3680 /* 2. ... and duplicate ACK. */
3681 ack == tp->snd_una &&
3682
3683 /* 3. ... and does not update window. */
3684 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3685
3686 /* 4. ... and sits in replay window. */
3687 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3688 }
3689
3690 static inline bool tcp_paws_discard(const struct sock *sk,
3691 const struct sk_buff *skb)
3692 {
3693 const struct tcp_sock *tp = tcp_sk(sk);
3694
3695 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3696 !tcp_disordered_ack(sk, skb);
3697 }
3698
3699 /* Check segment sequence number for validity.
3700 *
3701 * Segment controls are considered valid, if the segment
3702 * fits to the window after truncation to the window. Acceptability
3703 * of data (and SYN, FIN, of course) is checked separately.
3704 * See tcp_data_queue(), for example.
3705 *
3706 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3707 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3708 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3709 * (borrowed from freebsd)
3710 */
3711
3712 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3713 {
3714 return !before(end_seq, tp->rcv_wup) &&
3715 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3716 }
3717
3718 /* When we get a reset we do this. */
3719 void tcp_reset(struct sock *sk)
3720 {
3721 /* We want the right error as BSD sees it (and indeed as we do). */
3722 switch (sk->sk_state) {
3723 case TCP_SYN_SENT:
3724 sk->sk_err = ECONNREFUSED;
3725 break;
3726 case TCP_CLOSE_WAIT:
3727 sk->sk_err = EPIPE;
3728 break;
3729 case TCP_CLOSE:
3730 return;
3731 default:
3732 sk->sk_err = ECONNRESET;
3733 }
3734 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3735 smp_wmb();
3736
3737 if (!sock_flag(sk, SOCK_DEAD))
3738 sk->sk_error_report(sk);
3739
3740 tcp_done(sk);
3741 }
3742
3743 /*
3744 * Process the FIN bit. This now behaves as it is supposed to work
3745 * and the FIN takes effect when it is validly part of sequence
3746 * space. Not before when we get holes.
3747 *
3748 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3749 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3750 * TIME-WAIT)
3751 *
3752 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3753 * close and we go into CLOSING (and later onto TIME-WAIT)
3754 *
3755 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3756 */
3757 static void tcp_fin(struct sock *sk)
3758 {
3759 struct tcp_sock *tp = tcp_sk(sk);
3760 const struct dst_entry *dst;
3761
3762 inet_csk_schedule_ack(sk);
3763
3764 sk->sk_shutdown |= RCV_SHUTDOWN;
3765 sock_set_flag(sk, SOCK_DONE);
3766
3767 switch (sk->sk_state) {
3768 case TCP_SYN_RECV:
3769 case TCP_ESTABLISHED:
3770 /* Move to CLOSE_WAIT */
3771 tcp_set_state(sk, TCP_CLOSE_WAIT);
3772 dst = __sk_dst_get(sk);
3773 if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3774 inet_csk(sk)->icsk_ack.pingpong = 1;
3775 break;
3776
3777 case TCP_CLOSE_WAIT:
3778 case TCP_CLOSING:
3779 /* Received a retransmission of the FIN, do
3780 * nothing.
3781 */
3782 break;
3783 case TCP_LAST_ACK:
3784 /* RFC793: Remain in the LAST-ACK state. */
3785 break;
3786
3787 case TCP_FIN_WAIT1:
3788 /* This case occurs when a simultaneous close
3789 * happens, we must ack the received FIN and
3790 * enter the CLOSING state.
3791 */
3792 tcp_send_ack(sk);
3793 tcp_set_state(sk, TCP_CLOSING);
3794 break;
3795 case TCP_FIN_WAIT2:
3796 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3797 tcp_send_ack(sk);
3798 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3799 break;
3800 default:
3801 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3802 * cases we should never reach this piece of code.
3803 */
3804 pr_err("%s: Impossible, sk->sk_state=%d\n",
3805 __func__, sk->sk_state);
3806 break;
3807 }
3808
3809 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3810 * Probably, we should reset in this case. For now drop them.
3811 */
3812 __skb_queue_purge(&tp->out_of_order_queue);
3813 if (tcp_is_sack(tp))
3814 tcp_sack_reset(&tp->rx_opt);
3815 sk_mem_reclaim(sk);
3816
3817 if (!sock_flag(sk, SOCK_DEAD)) {
3818 sk->sk_state_change(sk);
3819
3820 /* Do not send POLL_HUP for half duplex close. */
3821 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3822 sk->sk_state == TCP_CLOSE)
3823 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3824 else
3825 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3826 }
3827 }
3828
3829 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3830 u32 end_seq)
3831 {
3832 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3833 if (before(seq, sp->start_seq))
3834 sp->start_seq = seq;
3835 if (after(end_seq, sp->end_seq))
3836 sp->end_seq = end_seq;
3837 return true;
3838 }
3839 return false;
3840 }
3841
3842 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3843 {
3844 struct tcp_sock *tp = tcp_sk(sk);
3845
3846 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3847 int mib_idx;
3848
3849 if (before(seq, tp->rcv_nxt))
3850 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3851 else
3852 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3853
3854 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3855
3856 tp->rx_opt.dsack = 1;
3857 tp->duplicate_sack[0].start_seq = seq;
3858 tp->duplicate_sack[0].end_seq = end_seq;
3859 }
3860 }
3861
3862 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3863 {
3864 struct tcp_sock *tp = tcp_sk(sk);
3865
3866 if (!tp->rx_opt.dsack)
3867 tcp_dsack_set(sk, seq, end_seq);
3868 else
3869 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3870 }
3871
3872 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3873 {
3874 struct tcp_sock *tp = tcp_sk(sk);
3875
3876 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3877 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3878 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3879 tcp_enter_quickack_mode(sk);
3880
3881 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3882 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3883
3884 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3885 end_seq = tp->rcv_nxt;
3886 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3887 }
3888 }
3889
3890 tcp_send_ack(sk);
3891 }
3892
3893 /* These routines update the SACK block as out-of-order packets arrive or
3894 * in-order packets close up the sequence space.
3895 */
3896 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3897 {
3898 int this_sack;
3899 struct tcp_sack_block *sp = &tp->selective_acks[0];
3900 struct tcp_sack_block *swalk = sp + 1;
3901
3902 /* See if the recent change to the first SACK eats into
3903 * or hits the sequence space of other SACK blocks, if so coalesce.
3904 */
3905 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3906 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3907 int i;
3908
3909 /* Zap SWALK, by moving every further SACK up by one slot.
3910 * Decrease num_sacks.
3911 */
3912 tp->rx_opt.num_sacks--;
3913 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3914 sp[i] = sp[i + 1];
3915 continue;
3916 }
3917 this_sack++, swalk++;
3918 }
3919 }
3920
3921 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3922 {
3923 struct tcp_sock *tp = tcp_sk(sk);
3924 struct tcp_sack_block *sp = &tp->selective_acks[0];
3925 int cur_sacks = tp->rx_opt.num_sacks;
3926 int this_sack;
3927
3928 if (!cur_sacks)
3929 goto new_sack;
3930
3931 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3932 if (tcp_sack_extend(sp, seq, end_seq)) {
3933 /* Rotate this_sack to the first one. */
3934 for (; this_sack > 0; this_sack--, sp--)
3935 swap(*sp, *(sp - 1));
3936 if (cur_sacks > 1)
3937 tcp_sack_maybe_coalesce(tp);
3938 return;
3939 }
3940 }
3941
3942 /* Could not find an adjacent existing SACK, build a new one,
3943 * put it at the front, and shift everyone else down. We
3944 * always know there is at least one SACK present already here.
3945 *
3946 * If the sack array is full, forget about the last one.
3947 */
3948 if (this_sack >= TCP_NUM_SACKS) {
3949 this_sack--;
3950 tp->rx_opt.num_sacks--;
3951 sp--;
3952 }
3953 for (; this_sack > 0; this_sack--, sp--)
3954 *sp = *(sp - 1);
3955
3956 new_sack:
3957 /* Build the new head SACK, and we're done. */
3958 sp->start_seq = seq;
3959 sp->end_seq = end_seq;
3960 tp->rx_opt.num_sacks++;
3961 }
3962
3963 /* RCV.NXT advances, some SACKs should be eaten. */
3964
3965 static void tcp_sack_remove(struct tcp_sock *tp)
3966 {
3967 struct tcp_sack_block *sp = &tp->selective_acks[0];
3968 int num_sacks = tp->rx_opt.num_sacks;
3969 int this_sack;
3970
3971 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3972 if (skb_queue_empty(&tp->out_of_order_queue)) {
3973 tp->rx_opt.num_sacks = 0;
3974 return;
3975 }
3976
3977 for (this_sack = 0; this_sack < num_sacks;) {
3978 /* Check if the start of the sack is covered by RCV.NXT. */
3979 if (!before(tp->rcv_nxt, sp->start_seq)) {
3980 int i;
3981
3982 /* RCV.NXT must cover all the block! */
3983 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3984
3985 /* Zap this SACK, by moving forward any other SACKS. */
3986 for (i=this_sack+1; i < num_sacks; i++)
3987 tp->selective_acks[i-1] = tp->selective_acks[i];
3988 num_sacks--;
3989 continue;
3990 }
3991 this_sack++;
3992 sp++;
3993 }
3994 tp->rx_opt.num_sacks = num_sacks;
3995 }
3996
3997 /* This one checks to see if we can put data from the
3998 * out_of_order queue into the receive_queue.
3999 */
4000 static void tcp_ofo_queue(struct sock *sk)
4001 {
4002 struct tcp_sock *tp = tcp_sk(sk);
4003 __u32 dsack_high = tp->rcv_nxt;
4004 struct sk_buff *skb;
4005
4006 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4007 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4008 break;
4009
4010 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4011 __u32 dsack = dsack_high;
4012 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4013 dsack_high = TCP_SKB_CB(skb)->end_seq;
4014 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4015 }
4016
4017 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4018 SOCK_DEBUG(sk, "ofo packet was already received\n");
4019 __skb_unlink(skb, &tp->out_of_order_queue);
4020 __kfree_skb(skb);
4021 continue;
4022 }
4023 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4024 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4025 TCP_SKB_CB(skb)->end_seq);
4026
4027 __skb_unlink(skb, &tp->out_of_order_queue);
4028 __skb_queue_tail(&sk->sk_receive_queue, skb);
4029 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4030 if (tcp_hdr(skb)->fin)
4031 tcp_fin(sk);
4032 }
4033 }
4034
4035 static bool tcp_prune_ofo_queue(struct sock *sk);
4036 static int tcp_prune_queue(struct sock *sk);
4037
4038 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4039 unsigned int size)
4040 {
4041 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4042 !sk_rmem_schedule(sk, skb, size)) {
4043
4044 if (tcp_prune_queue(sk) < 0)
4045 return -1;
4046
4047 if (!sk_rmem_schedule(sk, skb, size)) {
4048 if (!tcp_prune_ofo_queue(sk))
4049 return -1;
4050
4051 if (!sk_rmem_schedule(sk, skb, size))
4052 return -1;
4053 }
4054 }
4055 return 0;
4056 }
4057
4058 /**
4059 * tcp_try_coalesce - try to merge skb to prior one
4060 * @sk: socket
4061 * @to: prior buffer
4062 * @from: buffer to add in queue
4063 * @fragstolen: pointer to boolean
4064 *
4065 * Before queueing skb @from after @to, try to merge them
4066 * to reduce overall memory use and queue lengths, if cost is small.
4067 * Packets in ofo or receive queues can stay a long time.
4068 * Better try to coalesce them right now to avoid future collapses.
4069 * Returns true if caller should free @from instead of queueing it
4070 */
4071 static bool tcp_try_coalesce(struct sock *sk,
4072 struct sk_buff *to,
4073 struct sk_buff *from,
4074 bool *fragstolen)
4075 {
4076 int delta;
4077
4078 *fragstolen = false;
4079
4080 if (tcp_hdr(from)->fin)
4081 return false;
4082
4083 /* Its possible this segment overlaps with prior segment in queue */
4084 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4085 return false;
4086
4087 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4088 return false;
4089
4090 atomic_add(delta, &sk->sk_rmem_alloc);
4091 sk_mem_charge(sk, delta);
4092 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4093 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4094 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4095 return true;
4096 }
4097
4098 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4099 {
4100 struct tcp_sock *tp = tcp_sk(sk);
4101 struct sk_buff *skb1;
4102 u32 seq, end_seq;
4103
4104 TCP_ECN_check_ce(tp, skb);
4105
4106 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4107 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4108 __kfree_skb(skb);
4109 return;
4110 }
4111
4112 /* Disable header prediction. */
4113 tp->pred_flags = 0;
4114 inet_csk_schedule_ack(sk);
4115
4116 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4117 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4118 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4119
4120 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4121 if (!skb1) {
4122 /* Initial out of order segment, build 1 SACK. */
4123 if (tcp_is_sack(tp)) {
4124 tp->rx_opt.num_sacks = 1;
4125 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4126 tp->selective_acks[0].end_seq =
4127 TCP_SKB_CB(skb)->end_seq;
4128 }
4129 __skb_queue_head(&tp->out_of_order_queue, skb);
4130 goto end;
4131 }
4132
4133 seq = TCP_SKB_CB(skb)->seq;
4134 end_seq = TCP_SKB_CB(skb)->end_seq;
4135
4136 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4137 bool fragstolen;
4138
4139 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4140 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4141 } else {
4142 tcp_grow_window(sk, skb);
4143 kfree_skb_partial(skb, fragstolen);
4144 skb = NULL;
4145 }
4146
4147 if (!tp->rx_opt.num_sacks ||
4148 tp->selective_acks[0].end_seq != seq)
4149 goto add_sack;
4150
4151 /* Common case: data arrive in order after hole. */
4152 tp->selective_acks[0].end_seq = end_seq;
4153 goto end;
4154 }
4155
4156 /* Find place to insert this segment. */
4157 while (1) {
4158 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4159 break;
4160 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4161 skb1 = NULL;
4162 break;
4163 }
4164 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4165 }
4166
4167 /* Do skb overlap to previous one? */
4168 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4169 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4170 /* All the bits are present. Drop. */
4171 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4172 __kfree_skb(skb);
4173 skb = NULL;
4174 tcp_dsack_set(sk, seq, end_seq);
4175 goto add_sack;
4176 }
4177 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4178 /* Partial overlap. */
4179 tcp_dsack_set(sk, seq,
4180 TCP_SKB_CB(skb1)->end_seq);
4181 } else {
4182 if (skb_queue_is_first(&tp->out_of_order_queue,
4183 skb1))
4184 skb1 = NULL;
4185 else
4186 skb1 = skb_queue_prev(
4187 &tp->out_of_order_queue,
4188 skb1);
4189 }
4190 }
4191 if (!skb1)
4192 __skb_queue_head(&tp->out_of_order_queue, skb);
4193 else
4194 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4195
4196 /* And clean segments covered by new one as whole. */
4197 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4198 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4199
4200 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4201 break;
4202 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4203 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4204 end_seq);
4205 break;
4206 }
4207 __skb_unlink(skb1, &tp->out_of_order_queue);
4208 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4209 TCP_SKB_CB(skb1)->end_seq);
4210 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4211 __kfree_skb(skb1);
4212 }
4213
4214 add_sack:
4215 if (tcp_is_sack(tp))
4216 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4217 end:
4218 if (skb) {
4219 tcp_grow_window(sk, skb);
4220 skb_set_owner_r(skb, sk);
4221 }
4222 }
4223
4224 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4225 bool *fragstolen)
4226 {
4227 int eaten;
4228 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4229
4230 __skb_pull(skb, hdrlen);
4231 eaten = (tail &&
4232 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4233 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4234 if (!eaten) {
4235 __skb_queue_tail(&sk->sk_receive_queue, skb);
4236 skb_set_owner_r(skb, sk);
4237 }
4238 return eaten;
4239 }
4240
4241 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4242 {
4243 struct sk_buff *skb = NULL;
4244 struct tcphdr *th;
4245 bool fragstolen;
4246
4247 if (size == 0)
4248 return 0;
4249
4250 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4251 if (!skb)
4252 goto err;
4253
4254 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4255 goto err_free;
4256
4257 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4258 skb_reset_transport_header(skb);
4259 memset(th, 0, sizeof(*th));
4260
4261 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4262 goto err_free;
4263
4264 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4265 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4266 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4267
4268 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4269 WARN_ON_ONCE(fragstolen); /* should not happen */
4270 __kfree_skb(skb);
4271 }
4272 return size;
4273
4274 err_free:
4275 kfree_skb(skb);
4276 err:
4277 return -ENOMEM;
4278 }
4279
4280 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4281 {
4282 const struct tcphdr *th = tcp_hdr(skb);
4283 struct tcp_sock *tp = tcp_sk(sk);
4284 int eaten = -1;
4285 bool fragstolen = false;
4286
4287 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4288 goto drop;
4289
4290 skb_dst_drop(skb);
4291 __skb_pull(skb, th->doff * 4);
4292
4293 TCP_ECN_accept_cwr(tp, skb);
4294
4295 tp->rx_opt.dsack = 0;
4296
4297 /* Queue data for delivery to the user.
4298 * Packets in sequence go to the receive queue.
4299 * Out of sequence packets to the out_of_order_queue.
4300 */
4301 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4302 if (tcp_receive_window(tp) == 0)
4303 goto out_of_window;
4304
4305 /* Ok. In sequence. In window. */
4306 if (tp->ucopy.task == current &&
4307 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4308 sock_owned_by_user(sk) && !tp->urg_data) {
4309 int chunk = min_t(unsigned int, skb->len,
4310 tp->ucopy.len);
4311
4312 __set_current_state(TASK_RUNNING);
4313
4314 local_bh_enable();
4315 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4316 tp->ucopy.len -= chunk;
4317 tp->copied_seq += chunk;
4318 eaten = (chunk == skb->len);
4319 tcp_rcv_space_adjust(sk);
4320 }
4321 local_bh_disable();
4322 }
4323
4324 if (eaten <= 0) {
4325 queue_and_out:
4326 if (eaten < 0 &&
4327 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4328 goto drop;
4329
4330 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4331 }
4332 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4333 if (skb->len)
4334 tcp_event_data_recv(sk, skb);
4335 if (th->fin)
4336 tcp_fin(sk);
4337
4338 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4339 tcp_ofo_queue(sk);
4340
4341 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4342 * gap in queue is filled.
4343 */
4344 if (skb_queue_empty(&tp->out_of_order_queue))
4345 inet_csk(sk)->icsk_ack.pingpong = 0;
4346 }
4347
4348 if (tp->rx_opt.num_sacks)
4349 tcp_sack_remove(tp);
4350
4351 tcp_fast_path_check(sk);
4352
4353 if (eaten > 0)
4354 kfree_skb_partial(skb, fragstolen);
4355 if (!sock_flag(sk, SOCK_DEAD))
4356 sk->sk_data_ready(sk, 0);
4357 return;
4358 }
4359
4360 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4361 /* A retransmit, 2nd most common case. Force an immediate ack. */
4362 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4363 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4364
4365 out_of_window:
4366 tcp_enter_quickack_mode(sk);
4367 inet_csk_schedule_ack(sk);
4368 drop:
4369 __kfree_skb(skb);
4370 return;
4371 }
4372
4373 /* Out of window. F.e. zero window probe. */
4374 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4375 goto out_of_window;
4376
4377 tcp_enter_quickack_mode(sk);
4378
4379 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4380 /* Partial packet, seq < rcv_next < end_seq */
4381 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4382 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4383 TCP_SKB_CB(skb)->end_seq);
4384
4385 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4386
4387 /* If window is closed, drop tail of packet. But after
4388 * remembering D-SACK for its head made in previous line.
4389 */
4390 if (!tcp_receive_window(tp))
4391 goto out_of_window;
4392 goto queue_and_out;
4393 }
4394
4395 tcp_data_queue_ofo(sk, skb);
4396 }
4397
4398 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4399 struct sk_buff_head *list)
4400 {
4401 struct sk_buff *next = NULL;
4402
4403 if (!skb_queue_is_last(list, skb))
4404 next = skb_queue_next(list, skb);
4405
4406 __skb_unlink(skb, list);
4407 __kfree_skb(skb);
4408 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4409
4410 return next;
4411 }
4412
4413 /* Collapse contiguous sequence of skbs head..tail with
4414 * sequence numbers start..end.
4415 *
4416 * If tail is NULL, this means until the end of the list.
4417 *
4418 * Segments with FIN/SYN are not collapsed (only because this
4419 * simplifies code)
4420 */
4421 static void
4422 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4423 struct sk_buff *head, struct sk_buff *tail,
4424 u32 start, u32 end)
4425 {
4426 struct sk_buff *skb, *n;
4427 bool end_of_skbs;
4428
4429 /* First, check that queue is collapsible and find
4430 * the point where collapsing can be useful. */
4431 skb = head;
4432 restart:
4433 end_of_skbs = true;
4434 skb_queue_walk_from_safe(list, skb, n) {
4435 if (skb == tail)
4436 break;
4437 /* No new bits? It is possible on ofo queue. */
4438 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4439 skb = tcp_collapse_one(sk, skb, list);
4440 if (!skb)
4441 break;
4442 goto restart;
4443 }
4444
4445 /* The first skb to collapse is:
4446 * - not SYN/FIN and
4447 * - bloated or contains data before "start" or
4448 * overlaps to the next one.
4449 */
4450 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4451 (tcp_win_from_space(skb->truesize) > skb->len ||
4452 before(TCP_SKB_CB(skb)->seq, start))) {
4453 end_of_skbs = false;
4454 break;
4455 }
4456
4457 if (!skb_queue_is_last(list, skb)) {
4458 struct sk_buff *next = skb_queue_next(list, skb);
4459 if (next != tail &&
4460 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4461 end_of_skbs = false;
4462 break;
4463 }
4464 }
4465
4466 /* Decided to skip this, advance start seq. */
4467 start = TCP_SKB_CB(skb)->end_seq;
4468 }
4469 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4470 return;
4471
4472 while (before(start, end)) {
4473 struct sk_buff *nskb;
4474 unsigned int header = skb_headroom(skb);
4475 int copy = SKB_MAX_ORDER(header, 0);
4476
4477 /* Too big header? This can happen with IPv6. */
4478 if (copy < 0)
4479 return;
4480 if (end - start < copy)
4481 copy = end - start;
4482 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4483 if (!nskb)
4484 return;
4485
4486 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4487 skb_set_network_header(nskb, (skb_network_header(skb) -
4488 skb->head));
4489 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4490 skb->head));
4491 skb_reserve(nskb, header);
4492 memcpy(nskb->head, skb->head, header);
4493 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4494 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4495 __skb_queue_before(list, skb, nskb);
4496 skb_set_owner_r(nskb, sk);
4497
4498 /* Copy data, releasing collapsed skbs. */
4499 while (copy > 0) {
4500 int offset = start - TCP_SKB_CB(skb)->seq;
4501 int size = TCP_SKB_CB(skb)->end_seq - start;
4502
4503 BUG_ON(offset < 0);
4504 if (size > 0) {
4505 size = min(copy, size);
4506 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4507 BUG();
4508 TCP_SKB_CB(nskb)->end_seq += size;
4509 copy -= size;
4510 start += size;
4511 }
4512 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4513 skb = tcp_collapse_one(sk, skb, list);
4514 if (!skb ||
4515 skb == tail ||
4516 tcp_hdr(skb)->syn ||
4517 tcp_hdr(skb)->fin)
4518 return;
4519 }
4520 }
4521 }
4522 }
4523
4524 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4525 * and tcp_collapse() them until all the queue is collapsed.
4526 */
4527 static void tcp_collapse_ofo_queue(struct sock *sk)
4528 {
4529 struct tcp_sock *tp = tcp_sk(sk);
4530 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4531 struct sk_buff *head;
4532 u32 start, end;
4533
4534 if (skb == NULL)
4535 return;
4536
4537 start = TCP_SKB_CB(skb)->seq;
4538 end = TCP_SKB_CB(skb)->end_seq;
4539 head = skb;
4540
4541 for (;;) {
4542 struct sk_buff *next = NULL;
4543
4544 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4545 next = skb_queue_next(&tp->out_of_order_queue, skb);
4546 skb = next;
4547
4548 /* Segment is terminated when we see gap or when
4549 * we are at the end of all the queue. */
4550 if (!skb ||
4551 after(TCP_SKB_CB(skb)->seq, end) ||
4552 before(TCP_SKB_CB(skb)->end_seq, start)) {
4553 tcp_collapse(sk, &tp->out_of_order_queue,
4554 head, skb, start, end);
4555 head = skb;
4556 if (!skb)
4557 break;
4558 /* Start new segment */
4559 start = TCP_SKB_CB(skb)->seq;
4560 end = TCP_SKB_CB(skb)->end_seq;
4561 } else {
4562 if (before(TCP_SKB_CB(skb)->seq, start))
4563 start = TCP_SKB_CB(skb)->seq;
4564 if (after(TCP_SKB_CB(skb)->end_seq, end))
4565 end = TCP_SKB_CB(skb)->end_seq;
4566 }
4567 }
4568 }
4569
4570 /*
4571 * Purge the out-of-order queue.
4572 * Return true if queue was pruned.
4573 */
4574 static bool tcp_prune_ofo_queue(struct sock *sk)
4575 {
4576 struct tcp_sock *tp = tcp_sk(sk);
4577 bool res = false;
4578
4579 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4580 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4581 __skb_queue_purge(&tp->out_of_order_queue);
4582
4583 /* Reset SACK state. A conforming SACK implementation will
4584 * do the same at a timeout based retransmit. When a connection
4585 * is in a sad state like this, we care only about integrity
4586 * of the connection not performance.
4587 */
4588 if (tp->rx_opt.sack_ok)
4589 tcp_sack_reset(&tp->rx_opt);
4590 sk_mem_reclaim(sk);
4591 res = true;
4592 }
4593 return res;
4594 }
4595
4596 /* Reduce allocated memory if we can, trying to get
4597 * the socket within its memory limits again.
4598 *
4599 * Return less than zero if we should start dropping frames
4600 * until the socket owning process reads some of the data
4601 * to stabilize the situation.
4602 */
4603 static int tcp_prune_queue(struct sock *sk)
4604 {
4605 struct tcp_sock *tp = tcp_sk(sk);
4606
4607 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4608
4609 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4610
4611 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4612 tcp_clamp_window(sk);
4613 else if (sk_under_memory_pressure(sk))
4614 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4615
4616 tcp_collapse_ofo_queue(sk);
4617 if (!skb_queue_empty(&sk->sk_receive_queue))
4618 tcp_collapse(sk, &sk->sk_receive_queue,
4619 skb_peek(&sk->sk_receive_queue),
4620 NULL,
4621 tp->copied_seq, tp->rcv_nxt);
4622 sk_mem_reclaim(sk);
4623
4624 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4625 return 0;
4626
4627 /* Collapsing did not help, destructive actions follow.
4628 * This must not ever occur. */
4629
4630 tcp_prune_ofo_queue(sk);
4631
4632 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4633 return 0;
4634
4635 /* If we are really being abused, tell the caller to silently
4636 * drop receive data on the floor. It will get retransmitted
4637 * and hopefully then we'll have sufficient space.
4638 */
4639 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4640
4641 /* Massive buffer overcommit. */
4642 tp->pred_flags = 0;
4643 return -1;
4644 }
4645
4646 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4647 * As additional protections, we do not touch cwnd in retransmission phases,
4648 * and if application hit its sndbuf limit recently.
4649 */
4650 void tcp_cwnd_application_limited(struct sock *sk)
4651 {
4652 struct tcp_sock *tp = tcp_sk(sk);
4653
4654 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4655 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4656 /* Limited by application or receiver window. */
4657 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4658 u32 win_used = max(tp->snd_cwnd_used, init_win);
4659 if (win_used < tp->snd_cwnd) {
4660 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4661 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4662 }
4663 tp->snd_cwnd_used = 0;
4664 }
4665 tp->snd_cwnd_stamp = tcp_time_stamp;
4666 }
4667
4668 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4669 {
4670 const struct tcp_sock *tp = tcp_sk(sk);
4671
4672 /* If the user specified a specific send buffer setting, do
4673 * not modify it.
4674 */
4675 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4676 return false;
4677
4678 /* If we are under global TCP memory pressure, do not expand. */
4679 if (sk_under_memory_pressure(sk))
4680 return false;
4681
4682 /* If we are under soft global TCP memory pressure, do not expand. */
4683 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4684 return false;
4685
4686 /* If we filled the congestion window, do not expand. */
4687 if (tp->packets_out >= tp->snd_cwnd)
4688 return false;
4689
4690 return true;
4691 }
4692
4693 /* When incoming ACK allowed to free some skb from write_queue,
4694 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4695 * on the exit from tcp input handler.
4696 *
4697 * PROBLEM: sndbuf expansion does not work well with largesend.
4698 */
4699 static void tcp_new_space(struct sock *sk)
4700 {
4701 struct tcp_sock *tp = tcp_sk(sk);
4702
4703 if (tcp_should_expand_sndbuf(sk)) {
4704 int sndmem = SKB_TRUESIZE(max_t(u32,
4705 tp->rx_opt.mss_clamp,
4706 tp->mss_cache) +
4707 MAX_TCP_HEADER);
4708 int demanded = max_t(unsigned int, tp->snd_cwnd,
4709 tp->reordering + 1);
4710 sndmem *= 2 * demanded;
4711 if (sndmem > sk->sk_sndbuf)
4712 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4713 tp->snd_cwnd_stamp = tcp_time_stamp;
4714 }
4715
4716 sk->sk_write_space(sk);
4717 }
4718
4719 static void tcp_check_space(struct sock *sk)
4720 {
4721 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4722 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4723 if (sk->sk_socket &&
4724 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4725 tcp_new_space(sk);
4726 }
4727 }
4728
4729 static inline void tcp_data_snd_check(struct sock *sk)
4730 {
4731 tcp_push_pending_frames(sk);
4732 tcp_check_space(sk);
4733 }
4734
4735 /*
4736 * Check if sending an ack is needed.
4737 */
4738 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4739 {
4740 struct tcp_sock *tp = tcp_sk(sk);
4741
4742 /* More than one full frame received... */
4743 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4744 /* ... and right edge of window advances far enough.
4745 * (tcp_recvmsg() will send ACK otherwise). Or...
4746 */
4747 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4748 /* We ACK each frame or... */
4749 tcp_in_quickack_mode(sk) ||
4750 /* We have out of order data. */
4751 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4752 /* Then ack it now */
4753 tcp_send_ack(sk);
4754 } else {
4755 /* Else, send delayed ack. */
4756 tcp_send_delayed_ack(sk);
4757 }
4758 }
4759
4760 static inline void tcp_ack_snd_check(struct sock *sk)
4761 {
4762 if (!inet_csk_ack_scheduled(sk)) {
4763 /* We sent a data segment already. */
4764 return;
4765 }
4766 __tcp_ack_snd_check(sk, 1);
4767 }
4768
4769 /*
4770 * This routine is only called when we have urgent data
4771 * signaled. Its the 'slow' part of tcp_urg. It could be
4772 * moved inline now as tcp_urg is only called from one
4773 * place. We handle URGent data wrong. We have to - as
4774 * BSD still doesn't use the correction from RFC961.
4775 * For 1003.1g we should support a new option TCP_STDURG to permit
4776 * either form (or just set the sysctl tcp_stdurg).
4777 */
4778
4779 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4780 {
4781 struct tcp_sock *tp = tcp_sk(sk);
4782 u32 ptr = ntohs(th->urg_ptr);
4783
4784 if (ptr && !sysctl_tcp_stdurg)
4785 ptr--;
4786 ptr += ntohl(th->seq);
4787
4788 /* Ignore urgent data that we've already seen and read. */
4789 if (after(tp->copied_seq, ptr))
4790 return;
4791
4792 /* Do not replay urg ptr.
4793 *
4794 * NOTE: interesting situation not covered by specs.
4795 * Misbehaving sender may send urg ptr, pointing to segment,
4796 * which we already have in ofo queue. We are not able to fetch
4797 * such data and will stay in TCP_URG_NOTYET until will be eaten
4798 * by recvmsg(). Seems, we are not obliged to handle such wicked
4799 * situations. But it is worth to think about possibility of some
4800 * DoSes using some hypothetical application level deadlock.
4801 */
4802 if (before(ptr, tp->rcv_nxt))
4803 return;
4804
4805 /* Do we already have a newer (or duplicate) urgent pointer? */
4806 if (tp->urg_data && !after(ptr, tp->urg_seq))
4807 return;
4808
4809 /* Tell the world about our new urgent pointer. */
4810 sk_send_sigurg(sk);
4811
4812 /* We may be adding urgent data when the last byte read was
4813 * urgent. To do this requires some care. We cannot just ignore
4814 * tp->copied_seq since we would read the last urgent byte again
4815 * as data, nor can we alter copied_seq until this data arrives
4816 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4817 *
4818 * NOTE. Double Dutch. Rendering to plain English: author of comment
4819 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4820 * and expect that both A and B disappear from stream. This is _wrong_.
4821 * Though this happens in BSD with high probability, this is occasional.
4822 * Any application relying on this is buggy. Note also, that fix "works"
4823 * only in this artificial test. Insert some normal data between A and B and we will
4824 * decline of BSD again. Verdict: it is better to remove to trap
4825 * buggy users.
4826 */
4827 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4828 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4829 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4830 tp->copied_seq++;
4831 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4832 __skb_unlink(skb, &sk->sk_receive_queue);
4833 __kfree_skb(skb);
4834 }
4835 }
4836
4837 tp->urg_data = TCP_URG_NOTYET;
4838 tp->urg_seq = ptr;
4839
4840 /* Disable header prediction. */
4841 tp->pred_flags = 0;
4842 }
4843
4844 /* This is the 'fast' part of urgent handling. */
4845 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4846 {
4847 struct tcp_sock *tp = tcp_sk(sk);
4848
4849 /* Check if we get a new urgent pointer - normally not. */
4850 if (th->urg)
4851 tcp_check_urg(sk, th);
4852
4853 /* Do we wait for any urgent data? - normally not... */
4854 if (tp->urg_data == TCP_URG_NOTYET) {
4855 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4856 th->syn;
4857
4858 /* Is the urgent pointer pointing into this packet? */
4859 if (ptr < skb->len) {
4860 u8 tmp;
4861 if (skb_copy_bits(skb, ptr, &tmp, 1))
4862 BUG();
4863 tp->urg_data = TCP_URG_VALID | tmp;
4864 if (!sock_flag(sk, SOCK_DEAD))
4865 sk->sk_data_ready(sk, 0);
4866 }
4867 }
4868 }
4869
4870 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4871 {
4872 struct tcp_sock *tp = tcp_sk(sk);
4873 int chunk = skb->len - hlen;
4874 int err;
4875
4876 local_bh_enable();
4877 if (skb_csum_unnecessary(skb))
4878 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4879 else
4880 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4881 tp->ucopy.iov);
4882
4883 if (!err) {
4884 tp->ucopy.len -= chunk;
4885 tp->copied_seq += chunk;
4886 tcp_rcv_space_adjust(sk);
4887 }
4888
4889 local_bh_disable();
4890 return err;
4891 }
4892
4893 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4894 struct sk_buff *skb)
4895 {
4896 __sum16 result;
4897
4898 if (sock_owned_by_user(sk)) {
4899 local_bh_enable();
4900 result = __tcp_checksum_complete(skb);
4901 local_bh_disable();
4902 } else {
4903 result = __tcp_checksum_complete(skb);
4904 }
4905 return result;
4906 }
4907
4908 static inline bool tcp_checksum_complete_user(struct sock *sk,
4909 struct sk_buff *skb)
4910 {
4911 return !skb_csum_unnecessary(skb) &&
4912 __tcp_checksum_complete_user(sk, skb);
4913 }
4914
4915 #ifdef CONFIG_NET_DMA
4916 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4917 int hlen)
4918 {
4919 struct tcp_sock *tp = tcp_sk(sk);
4920 int chunk = skb->len - hlen;
4921 int dma_cookie;
4922 bool copied_early = false;
4923
4924 if (tp->ucopy.wakeup)
4925 return false;
4926
4927 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4928 tp->ucopy.dma_chan = net_dma_find_channel();
4929
4930 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4931
4932 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4933 skb, hlen,
4934 tp->ucopy.iov, chunk,
4935 tp->ucopy.pinned_list);
4936
4937 if (dma_cookie < 0)
4938 goto out;
4939
4940 tp->ucopy.dma_cookie = dma_cookie;
4941 copied_early = true;
4942
4943 tp->ucopy.len -= chunk;
4944 tp->copied_seq += chunk;
4945 tcp_rcv_space_adjust(sk);
4946
4947 if ((tp->ucopy.len == 0) ||
4948 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4949 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4950 tp->ucopy.wakeup = 1;
4951 sk->sk_data_ready(sk, 0);
4952 }
4953 } else if (chunk > 0) {
4954 tp->ucopy.wakeup = 1;
4955 sk->sk_data_ready(sk, 0);
4956 }
4957 out:
4958 return copied_early;
4959 }
4960 #endif /* CONFIG_NET_DMA */
4961
4962 /* Does PAWS and seqno based validation of an incoming segment, flags will
4963 * play significant role here.
4964 */
4965 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4966 const struct tcphdr *th, int syn_inerr)
4967 {
4968 struct tcp_sock *tp = tcp_sk(sk);
4969
4970 /* RFC1323: H1. Apply PAWS check first. */
4971 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4972 tcp_paws_discard(sk, skb)) {
4973 if (!th->rst) {
4974 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4975 tcp_send_dupack(sk, skb);
4976 goto discard;
4977 }
4978 /* Reset is accepted even if it did not pass PAWS. */
4979 }
4980
4981 /* Step 1: check sequence number */
4982 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4983 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4984 * (RST) segments are validated by checking their SEQ-fields."
4985 * And page 69: "If an incoming segment is not acceptable,
4986 * an acknowledgment should be sent in reply (unless the RST
4987 * bit is set, if so drop the segment and return)".
4988 */
4989 if (!th->rst) {
4990 if (th->syn)
4991 goto syn_challenge;
4992 tcp_send_dupack(sk, skb);
4993 }
4994 goto discard;
4995 }
4996
4997 /* Step 2: check RST bit */
4998 if (th->rst) {
4999 /* RFC 5961 3.2 :
5000 * If sequence number exactly matches RCV.NXT, then
5001 * RESET the connection
5002 * else
5003 * Send a challenge ACK
5004 */
5005 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5006 tcp_reset(sk);
5007 else
5008 tcp_send_challenge_ack(sk);
5009 goto discard;
5010 }
5011
5012 /* step 3: check security and precedence [ignored] */
5013
5014 /* step 4: Check for a SYN
5015 * RFC 5691 4.2 : Send a challenge ack
5016 */
5017 if (th->syn) {
5018 syn_challenge:
5019 if (syn_inerr)
5020 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5021 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5022 tcp_send_challenge_ack(sk);
5023 goto discard;
5024 }
5025
5026 return true;
5027
5028 discard:
5029 __kfree_skb(skb);
5030 return false;
5031 }
5032
5033 /*
5034 * TCP receive function for the ESTABLISHED state.
5035 *
5036 * It is split into a fast path and a slow path. The fast path is
5037 * disabled when:
5038 * - A zero window was announced from us - zero window probing
5039 * is only handled properly in the slow path.
5040 * - Out of order segments arrived.
5041 * - Urgent data is expected.
5042 * - There is no buffer space left
5043 * - Unexpected TCP flags/window values/header lengths are received
5044 * (detected by checking the TCP header against pred_flags)
5045 * - Data is sent in both directions. Fast path only supports pure senders
5046 * or pure receivers (this means either the sequence number or the ack
5047 * value must stay constant)
5048 * - Unexpected TCP option.
5049 *
5050 * When these conditions are not satisfied it drops into a standard
5051 * receive procedure patterned after RFC793 to handle all cases.
5052 * The first three cases are guaranteed by proper pred_flags setting,
5053 * the rest is checked inline. Fast processing is turned on in
5054 * tcp_data_queue when everything is OK.
5055 */
5056 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5057 const struct tcphdr *th, unsigned int len)
5058 {
5059 struct tcp_sock *tp = tcp_sk(sk);
5060
5061 if (unlikely(sk->sk_rx_dst == NULL))
5062 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5063 /*
5064 * Header prediction.
5065 * The code loosely follows the one in the famous
5066 * "30 instruction TCP receive" Van Jacobson mail.
5067 *
5068 * Van's trick is to deposit buffers into socket queue
5069 * on a device interrupt, to call tcp_recv function
5070 * on the receive process context and checksum and copy
5071 * the buffer to user space. smart...
5072 *
5073 * Our current scheme is not silly either but we take the
5074 * extra cost of the net_bh soft interrupt processing...
5075 * We do checksum and copy also but from device to kernel.
5076 */
5077
5078 tp->rx_opt.saw_tstamp = 0;
5079
5080 /* pred_flags is 0xS?10 << 16 + snd_wnd
5081 * if header_prediction is to be made
5082 * 'S' will always be tp->tcp_header_len >> 2
5083 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5084 * turn it off (when there are holes in the receive
5085 * space for instance)
5086 * PSH flag is ignored.
5087 */
5088
5089 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5090 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5091 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5092 int tcp_header_len = tp->tcp_header_len;
5093
5094 /* Timestamp header prediction: tcp_header_len
5095 * is automatically equal to th->doff*4 due to pred_flags
5096 * match.
5097 */
5098
5099 /* Check timestamp */
5100 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5101 /* No? Slow path! */
5102 if (!tcp_parse_aligned_timestamp(tp, th))
5103 goto slow_path;
5104
5105 /* If PAWS failed, check it more carefully in slow path */
5106 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5107 goto slow_path;
5108
5109 /* DO NOT update ts_recent here, if checksum fails
5110 * and timestamp was corrupted part, it will result
5111 * in a hung connection since we will drop all
5112 * future packets due to the PAWS test.
5113 */
5114 }
5115
5116 if (len <= tcp_header_len) {
5117 /* Bulk data transfer: sender */
5118 if (len == tcp_header_len) {
5119 /* Predicted packet is in window by definition.
5120 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5121 * Hence, check seq<=rcv_wup reduces to:
5122 */
5123 if (tcp_header_len ==
5124 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5125 tp->rcv_nxt == tp->rcv_wup)
5126 tcp_store_ts_recent(tp);
5127
5128 /* We know that such packets are checksummed
5129 * on entry.
5130 */
5131 tcp_ack(sk, skb, 0);
5132 __kfree_skb(skb);
5133 tcp_data_snd_check(sk);
5134 return;
5135 } else { /* Header too small */
5136 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5137 goto discard;
5138 }
5139 } else {
5140 int eaten = 0;
5141 int copied_early = 0;
5142 bool fragstolen = false;
5143
5144 if (tp->copied_seq == tp->rcv_nxt &&
5145 len - tcp_header_len <= tp->ucopy.len) {
5146 #ifdef CONFIG_NET_DMA
5147 if (tp->ucopy.task == current &&
5148 sock_owned_by_user(sk) &&
5149 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5150 copied_early = 1;
5151 eaten = 1;
5152 }
5153 #endif
5154 if (tp->ucopy.task == current &&
5155 sock_owned_by_user(sk) && !copied_early) {
5156 __set_current_state(TASK_RUNNING);
5157
5158 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5159 eaten = 1;
5160 }
5161 if (eaten) {
5162 /* Predicted packet is in window by definition.
5163 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5164 * Hence, check seq<=rcv_wup reduces to:
5165 */
5166 if (tcp_header_len ==
5167 (sizeof(struct tcphdr) +
5168 TCPOLEN_TSTAMP_ALIGNED) &&
5169 tp->rcv_nxt == tp->rcv_wup)
5170 tcp_store_ts_recent(tp);
5171
5172 tcp_rcv_rtt_measure_ts(sk, skb);
5173
5174 __skb_pull(skb, tcp_header_len);
5175 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5176 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5177 }
5178 if (copied_early)
5179 tcp_cleanup_rbuf(sk, skb->len);
5180 }
5181 if (!eaten) {
5182 if (tcp_checksum_complete_user(sk, skb))
5183 goto csum_error;
5184
5185 if ((int)skb->truesize > sk->sk_forward_alloc)
5186 goto step5;
5187
5188 /* Predicted packet is in window by definition.
5189 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5190 * Hence, check seq<=rcv_wup reduces to:
5191 */
5192 if (tcp_header_len ==
5193 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5194 tp->rcv_nxt == tp->rcv_wup)
5195 tcp_store_ts_recent(tp);
5196
5197 tcp_rcv_rtt_measure_ts(sk, skb);
5198
5199 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5200
5201 /* Bulk data transfer: receiver */
5202 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5203 &fragstolen);
5204 }
5205
5206 tcp_event_data_recv(sk, skb);
5207
5208 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5209 /* Well, only one small jumplet in fast path... */
5210 tcp_ack(sk, skb, FLAG_DATA);
5211 tcp_data_snd_check(sk);
5212 if (!inet_csk_ack_scheduled(sk))
5213 goto no_ack;
5214 }
5215
5216 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5217 __tcp_ack_snd_check(sk, 0);
5218 no_ack:
5219 #ifdef CONFIG_NET_DMA
5220 if (copied_early)
5221 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5222 else
5223 #endif
5224 if (eaten)
5225 kfree_skb_partial(skb, fragstolen);
5226 sk->sk_data_ready(sk, 0);
5227 return;
5228 }
5229 }
5230
5231 slow_path:
5232 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5233 goto csum_error;
5234
5235 if (!th->ack && !th->rst)
5236 goto discard;
5237
5238 /*
5239 * Standard slow path.
5240 */
5241
5242 if (!tcp_validate_incoming(sk, skb, th, 1))
5243 return;
5244
5245 step5:
5246 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5247 goto discard;
5248
5249 tcp_rcv_rtt_measure_ts(sk, skb);
5250
5251 /* Process urgent data. */
5252 tcp_urg(sk, skb, th);
5253
5254 /* step 7: process the segment text */
5255 tcp_data_queue(sk, skb);
5256
5257 tcp_data_snd_check(sk);
5258 tcp_ack_snd_check(sk);
5259 return;
5260
5261 csum_error:
5262 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5263 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5264
5265 discard:
5266 __kfree_skb(skb);
5267 }
5268 EXPORT_SYMBOL(tcp_rcv_established);
5269
5270 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5271 {
5272 struct tcp_sock *tp = tcp_sk(sk);
5273 struct inet_connection_sock *icsk = inet_csk(sk);
5274
5275 tcp_set_state(sk, TCP_ESTABLISHED);
5276
5277 if (skb != NULL) {
5278 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5279 security_inet_conn_established(sk, skb);
5280 }
5281
5282 /* Make sure socket is routed, for correct metrics. */
5283 icsk->icsk_af_ops->rebuild_header(sk);
5284
5285 tcp_init_metrics(sk);
5286
5287 tcp_init_congestion_control(sk);
5288
5289 /* Prevent spurious tcp_cwnd_restart() on first data
5290 * packet.
5291 */
5292 tp->lsndtime = tcp_time_stamp;
5293
5294 tcp_init_buffer_space(sk);
5295
5296 if (sock_flag(sk, SOCK_KEEPOPEN))
5297 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5298
5299 if (!tp->rx_opt.snd_wscale)
5300 __tcp_fast_path_on(tp, tp->snd_wnd);
5301 else
5302 tp->pred_flags = 0;
5303
5304 if (!sock_flag(sk, SOCK_DEAD)) {
5305 sk->sk_state_change(sk);
5306 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5307 }
5308 }
5309
5310 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5311 struct tcp_fastopen_cookie *cookie)
5312 {
5313 struct tcp_sock *tp = tcp_sk(sk);
5314 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5315 u16 mss = tp->rx_opt.mss_clamp;
5316 bool syn_drop;
5317
5318 if (mss == tp->rx_opt.user_mss) {
5319 struct tcp_options_received opt;
5320
5321 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5322 tcp_clear_options(&opt);
5323 opt.user_mss = opt.mss_clamp = 0;
5324 tcp_parse_options(synack, &opt, 0, NULL);
5325 mss = opt.mss_clamp;
5326 }
5327
5328 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5329 cookie->len = -1;
5330
5331 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5332 * the remote receives only the retransmitted (regular) SYNs: either
5333 * the original SYN-data or the corresponding SYN-ACK is lost.
5334 */
5335 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5336
5337 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5338
5339 if (data) { /* Retransmit unacked data in SYN */
5340 tcp_for_write_queue_from(data, sk) {
5341 if (data == tcp_send_head(sk) ||
5342 __tcp_retransmit_skb(sk, data))
5343 break;
5344 }
5345 tcp_rearm_rto(sk);
5346 return true;
5347 }
5348 tp->syn_data_acked = tp->syn_data;
5349 return false;
5350 }
5351
5352 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5353 const struct tcphdr *th, unsigned int len)
5354 {
5355 struct inet_connection_sock *icsk = inet_csk(sk);
5356 struct tcp_sock *tp = tcp_sk(sk);
5357 struct tcp_fastopen_cookie foc = { .len = -1 };
5358 int saved_clamp = tp->rx_opt.mss_clamp;
5359
5360 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5361 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5362 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5363
5364 if (th->ack) {
5365 /* rfc793:
5366 * "If the state is SYN-SENT then
5367 * first check the ACK bit
5368 * If the ACK bit is set
5369 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5370 * a reset (unless the RST bit is set, if so drop
5371 * the segment and return)"
5372 */
5373 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5374 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5375 goto reset_and_undo;
5376
5377 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5378 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5379 tcp_time_stamp)) {
5380 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5381 goto reset_and_undo;
5382 }
5383
5384 /* Now ACK is acceptable.
5385 *
5386 * "If the RST bit is set
5387 * If the ACK was acceptable then signal the user "error:
5388 * connection reset", drop the segment, enter CLOSED state,
5389 * delete TCB, and return."
5390 */
5391
5392 if (th->rst) {
5393 tcp_reset(sk);
5394 goto discard;
5395 }
5396
5397 /* rfc793:
5398 * "fifth, if neither of the SYN or RST bits is set then
5399 * drop the segment and return."
5400 *
5401 * See note below!
5402 * --ANK(990513)
5403 */
5404 if (!th->syn)
5405 goto discard_and_undo;
5406
5407 /* rfc793:
5408 * "If the SYN bit is on ...
5409 * are acceptable then ...
5410 * (our SYN has been ACKed), change the connection
5411 * state to ESTABLISHED..."
5412 */
5413
5414 TCP_ECN_rcv_synack(tp, th);
5415
5416 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5417 tcp_ack(sk, skb, FLAG_SLOWPATH);
5418
5419 /* Ok.. it's good. Set up sequence numbers and
5420 * move to established.
5421 */
5422 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5423 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5424
5425 /* RFC1323: The window in SYN & SYN/ACK segments is
5426 * never scaled.
5427 */
5428 tp->snd_wnd = ntohs(th->window);
5429
5430 if (!tp->rx_opt.wscale_ok) {
5431 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5432 tp->window_clamp = min(tp->window_clamp, 65535U);
5433 }
5434
5435 if (tp->rx_opt.saw_tstamp) {
5436 tp->rx_opt.tstamp_ok = 1;
5437 tp->tcp_header_len =
5438 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5439 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5440 tcp_store_ts_recent(tp);
5441 } else {
5442 tp->tcp_header_len = sizeof(struct tcphdr);
5443 }
5444
5445 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5446 tcp_enable_fack(tp);
5447
5448 tcp_mtup_init(sk);
5449 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5450 tcp_initialize_rcv_mss(sk);
5451
5452 /* Remember, tcp_poll() does not lock socket!
5453 * Change state from SYN-SENT only after copied_seq
5454 * is initialized. */
5455 tp->copied_seq = tp->rcv_nxt;
5456
5457 smp_mb();
5458
5459 tcp_finish_connect(sk, skb);
5460
5461 if ((tp->syn_fastopen || tp->syn_data) &&
5462 tcp_rcv_fastopen_synack(sk, skb, &foc))
5463 return -1;
5464
5465 if (sk->sk_write_pending ||
5466 icsk->icsk_accept_queue.rskq_defer_accept ||
5467 icsk->icsk_ack.pingpong) {
5468 /* Save one ACK. Data will be ready after
5469 * several ticks, if write_pending is set.
5470 *
5471 * It may be deleted, but with this feature tcpdumps
5472 * look so _wonderfully_ clever, that I was not able
5473 * to stand against the temptation 8) --ANK
5474 */
5475 inet_csk_schedule_ack(sk);
5476 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5477 tcp_enter_quickack_mode(sk);
5478 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5479 TCP_DELACK_MAX, TCP_RTO_MAX);
5480
5481 discard:
5482 __kfree_skb(skb);
5483 return 0;
5484 } else {
5485 tcp_send_ack(sk);
5486 }
5487 return -1;
5488 }
5489
5490 /* No ACK in the segment */
5491
5492 if (th->rst) {
5493 /* rfc793:
5494 * "If the RST bit is set
5495 *
5496 * Otherwise (no ACK) drop the segment and return."
5497 */
5498
5499 goto discard_and_undo;
5500 }
5501
5502 /* PAWS check. */
5503 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5504 tcp_paws_reject(&tp->rx_opt, 0))
5505 goto discard_and_undo;
5506
5507 if (th->syn) {
5508 /* We see SYN without ACK. It is attempt of
5509 * simultaneous connect with crossed SYNs.
5510 * Particularly, it can be connect to self.
5511 */
5512 tcp_set_state(sk, TCP_SYN_RECV);
5513
5514 if (tp->rx_opt.saw_tstamp) {
5515 tp->rx_opt.tstamp_ok = 1;
5516 tcp_store_ts_recent(tp);
5517 tp->tcp_header_len =
5518 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5519 } else {
5520 tp->tcp_header_len = sizeof(struct tcphdr);
5521 }
5522
5523 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5524 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5525
5526 /* RFC1323: The window in SYN & SYN/ACK segments is
5527 * never scaled.
5528 */
5529 tp->snd_wnd = ntohs(th->window);
5530 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5531 tp->max_window = tp->snd_wnd;
5532
5533 TCP_ECN_rcv_syn(tp, th);
5534
5535 tcp_mtup_init(sk);
5536 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5537 tcp_initialize_rcv_mss(sk);
5538
5539 tcp_send_synack(sk);
5540 #if 0
5541 /* Note, we could accept data and URG from this segment.
5542 * There are no obstacles to make this (except that we must
5543 * either change tcp_recvmsg() to prevent it from returning data
5544 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5545 *
5546 * However, if we ignore data in ACKless segments sometimes,
5547 * we have no reasons to accept it sometimes.
5548 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5549 * is not flawless. So, discard packet for sanity.
5550 * Uncomment this return to process the data.
5551 */
5552 return -1;
5553 #else
5554 goto discard;
5555 #endif
5556 }
5557 /* "fifth, if neither of the SYN or RST bits is set then
5558 * drop the segment and return."
5559 */
5560
5561 discard_and_undo:
5562 tcp_clear_options(&tp->rx_opt);
5563 tp->rx_opt.mss_clamp = saved_clamp;
5564 goto discard;
5565
5566 reset_and_undo:
5567 tcp_clear_options(&tp->rx_opt);
5568 tp->rx_opt.mss_clamp = saved_clamp;
5569 return 1;
5570 }
5571
5572 /*
5573 * This function implements the receiving procedure of RFC 793 for
5574 * all states except ESTABLISHED and TIME_WAIT.
5575 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5576 * address independent.
5577 */
5578
5579 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5580 const struct tcphdr *th, unsigned int len)
5581 {
5582 struct tcp_sock *tp = tcp_sk(sk);
5583 struct inet_connection_sock *icsk = inet_csk(sk);
5584 struct request_sock *req;
5585 int queued = 0;
5586 bool acceptable;
5587
5588 tp->rx_opt.saw_tstamp = 0;
5589
5590 switch (sk->sk_state) {
5591 case TCP_CLOSE:
5592 goto discard;
5593
5594 case TCP_LISTEN:
5595 if (th->ack)
5596 return 1;
5597
5598 if (th->rst)
5599 goto discard;
5600
5601 if (th->syn) {
5602 if (th->fin)
5603 goto discard;
5604 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5605 return 1;
5606
5607 /* Now we have several options: In theory there is
5608 * nothing else in the frame. KA9Q has an option to
5609 * send data with the syn, BSD accepts data with the
5610 * syn up to the [to be] advertised window and
5611 * Solaris 2.1 gives you a protocol error. For now
5612 * we just ignore it, that fits the spec precisely
5613 * and avoids incompatibilities. It would be nice in
5614 * future to drop through and process the data.
5615 *
5616 * Now that TTCP is starting to be used we ought to
5617 * queue this data.
5618 * But, this leaves one open to an easy denial of
5619 * service attack, and SYN cookies can't defend
5620 * against this problem. So, we drop the data
5621 * in the interest of security over speed unless
5622 * it's still in use.
5623 */
5624 kfree_skb(skb);
5625 return 0;
5626 }
5627 goto discard;
5628
5629 case TCP_SYN_SENT:
5630 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5631 if (queued >= 0)
5632 return queued;
5633
5634 /* Do step6 onward by hand. */
5635 tcp_urg(sk, skb, th);
5636 __kfree_skb(skb);
5637 tcp_data_snd_check(sk);
5638 return 0;
5639 }
5640
5641 req = tp->fastopen_rsk;
5642 if (req != NULL) {
5643 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5644 sk->sk_state != TCP_FIN_WAIT1);
5645
5646 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5647 goto discard;
5648 }
5649
5650 if (!th->ack && !th->rst)
5651 goto discard;
5652
5653 if (!tcp_validate_incoming(sk, skb, th, 0))
5654 return 0;
5655
5656 /* step 5: check the ACK field */
5657 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5658 FLAG_UPDATE_TS_RECENT) > 0;
5659
5660 switch (sk->sk_state) {
5661 case TCP_SYN_RECV:
5662 if (!acceptable)
5663 return 1;
5664
5665 /* Once we leave TCP_SYN_RECV, we no longer need req
5666 * so release it.
5667 */
5668 if (req) {
5669 tp->total_retrans = req->num_retrans;
5670 reqsk_fastopen_remove(sk, req, false);
5671 } else {
5672 /* Make sure socket is routed, for correct metrics. */
5673 icsk->icsk_af_ops->rebuild_header(sk);
5674 tcp_init_congestion_control(sk);
5675
5676 tcp_mtup_init(sk);
5677 tcp_init_buffer_space(sk);
5678 tp->copied_seq = tp->rcv_nxt;
5679 }
5680 smp_mb();
5681 tcp_set_state(sk, TCP_ESTABLISHED);
5682 sk->sk_state_change(sk);
5683
5684 /* Note, that this wakeup is only for marginal crossed SYN case.
5685 * Passively open sockets are not waked up, because
5686 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5687 */
5688 if (sk->sk_socket)
5689 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5690
5691 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5692 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5693 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5694 tcp_synack_rtt_meas(sk, req);
5695
5696 if (tp->rx_opt.tstamp_ok)
5697 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5698
5699 if (req) {
5700 /* Re-arm the timer because data may have been sent out.
5701 * This is similar to the regular data transmission case
5702 * when new data has just been ack'ed.
5703 *
5704 * (TFO) - we could try to be more aggressive and
5705 * retransmitting any data sooner based on when they
5706 * are sent out.
5707 */
5708 tcp_rearm_rto(sk);
5709 } else
5710 tcp_init_metrics(sk);
5711
5712 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5713 tp->lsndtime = tcp_time_stamp;
5714
5715 tcp_initialize_rcv_mss(sk);
5716 tcp_fast_path_on(tp);
5717 break;
5718
5719 case TCP_FIN_WAIT1: {
5720 struct dst_entry *dst;
5721 int tmo;
5722
5723 /* If we enter the TCP_FIN_WAIT1 state and we are a
5724 * Fast Open socket and this is the first acceptable
5725 * ACK we have received, this would have acknowledged
5726 * our SYNACK so stop the SYNACK timer.
5727 */
5728 if (req != NULL) {
5729 /* Return RST if ack_seq is invalid.
5730 * Note that RFC793 only says to generate a
5731 * DUPACK for it but for TCP Fast Open it seems
5732 * better to treat this case like TCP_SYN_RECV
5733 * above.
5734 */
5735 if (!acceptable)
5736 return 1;
5737 /* We no longer need the request sock. */
5738 reqsk_fastopen_remove(sk, req, false);
5739 tcp_rearm_rto(sk);
5740 }
5741 if (tp->snd_una != tp->write_seq)
5742 break;
5743
5744 tcp_set_state(sk, TCP_FIN_WAIT2);
5745 sk->sk_shutdown |= SEND_SHUTDOWN;
5746
5747 dst = __sk_dst_get(sk);
5748 if (dst)
5749 dst_confirm(dst);
5750
5751 if (!sock_flag(sk, SOCK_DEAD)) {
5752 /* Wake up lingering close() */
5753 sk->sk_state_change(sk);
5754 break;
5755 }
5756
5757 if (tp->linger2 < 0 ||
5758 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5759 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5760 tcp_done(sk);
5761 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5762 return 1;
5763 }
5764
5765 tmo = tcp_fin_time(sk);
5766 if (tmo > TCP_TIMEWAIT_LEN) {
5767 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5768 } else if (th->fin || sock_owned_by_user(sk)) {
5769 /* Bad case. We could lose such FIN otherwise.
5770 * It is not a big problem, but it looks confusing
5771 * and not so rare event. We still can lose it now,
5772 * if it spins in bh_lock_sock(), but it is really
5773 * marginal case.
5774 */
5775 inet_csk_reset_keepalive_timer(sk, tmo);
5776 } else {
5777 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5778 goto discard;
5779 }
5780 break;
5781 }
5782
5783 case TCP_CLOSING:
5784 if (tp->snd_una == tp->write_seq) {
5785 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5786 goto discard;
5787 }
5788 break;
5789
5790 case TCP_LAST_ACK:
5791 if (tp->snd_una == tp->write_seq) {
5792 tcp_update_metrics(sk);
5793 tcp_done(sk);
5794 goto discard;
5795 }
5796 break;
5797 }
5798
5799 /* step 6: check the URG bit */
5800 tcp_urg(sk, skb, th);
5801
5802 /* step 7: process the segment text */
5803 switch (sk->sk_state) {
5804 case TCP_CLOSE_WAIT:
5805 case TCP_CLOSING:
5806 case TCP_LAST_ACK:
5807 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5808 break;
5809 case TCP_FIN_WAIT1:
5810 case TCP_FIN_WAIT2:
5811 /* RFC 793 says to queue data in these states,
5812 * RFC 1122 says we MUST send a reset.
5813 * BSD 4.4 also does reset.
5814 */
5815 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5816 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5817 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5818 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5819 tcp_reset(sk);
5820 return 1;
5821 }
5822 }
5823 /* Fall through */
5824 case TCP_ESTABLISHED:
5825 tcp_data_queue(sk, skb);
5826 queued = 1;
5827 break;
5828 }
5829
5830 /* tcp_data could move socket to TIME-WAIT */
5831 if (sk->sk_state != TCP_CLOSE) {
5832 tcp_data_snd_check(sk);
5833 tcp_ack_snd_check(sk);
5834 }
5835
5836 if (!queued) {
5837 discard:
5838 __kfree_skb(skb);
5839 }
5840 return 0;
5841 }
5842 EXPORT_SYMBOL(tcp_rcv_state_process);
This page took 0.256399 seconds and 5 git commands to generate.