[NET]: cleanup extra semicolons
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105
106 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
109 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
110
111 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
112 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
113 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118
119 /* Adapt the MSS value used to make delayed ack decision to the
120 * real world.
121 */
122 static void tcp_measure_rcv_mss(struct sock *sk,
123 const struct sk_buff *skb)
124 {
125 struct inet_connection_sock *icsk = inet_csk(sk);
126 const unsigned int lss = icsk->icsk_ack.last_seg_size;
127 unsigned int len;
128
129 icsk->icsk_ack.last_seg_size = 0;
130
131 /* skb->len may jitter because of SACKs, even if peer
132 * sends good full-sized frames.
133 */
134 len = skb_shinfo(skb)->gso_size ?: skb->len;
135 if (len >= icsk->icsk_ack.rcv_mss) {
136 icsk->icsk_ack.rcv_mss = len;
137 } else {
138 /* Otherwise, we make more careful check taking into account,
139 * that SACKs block is variable.
140 *
141 * "len" is invariant segment length, including TCP header.
142 */
143 len += skb->data - skb_transport_header(skb);
144 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145 /* If PSH is not set, packet should be
146 * full sized, provided peer TCP is not badly broken.
147 * This observation (if it is correct 8)) allows
148 * to handle super-low mtu links fairly.
149 */
150 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
151 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
152 /* Subtract also invariant (if peer is RFC compliant),
153 * tcp header plus fixed timestamp option length.
154 * Resulting "len" is MSS free of SACK jitter.
155 */
156 len -= tcp_sk(sk)->tcp_header_len;
157 icsk->icsk_ack.last_seg_size = len;
158 if (len == lss) {
159 icsk->icsk_ack.rcv_mss = len;
160 return;
161 }
162 }
163 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
166 }
167 }
168
169 static void tcp_incr_quickack(struct sock *sk)
170 {
171 struct inet_connection_sock *icsk = inet_csk(sk);
172 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
173
174 if (quickacks==0)
175 quickacks=2;
176 if (quickacks > icsk->icsk_ack.quick)
177 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
178 }
179
180 void tcp_enter_quickack_mode(struct sock *sk)
181 {
182 struct inet_connection_sock *icsk = inet_csk(sk);
183 tcp_incr_quickack(sk);
184 icsk->icsk_ack.pingpong = 0;
185 icsk->icsk_ack.ato = TCP_ATO_MIN;
186 }
187
188 /* Send ACKs quickly, if "quick" count is not exhausted
189 * and the session is not interactive.
190 */
191
192 static inline int tcp_in_quickack_mode(const struct sock *sk)
193 {
194 const struct inet_connection_sock *icsk = inet_csk(sk);
195 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
196 }
197
198 /* Buffer size and advertised window tuning.
199 *
200 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
201 */
202
203 static void tcp_fixup_sndbuf(struct sock *sk)
204 {
205 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
206 sizeof(struct sk_buff);
207
208 if (sk->sk_sndbuf < 3 * sndmem)
209 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
210 }
211
212 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
213 *
214 * All tcp_full_space() is split to two parts: "network" buffer, allocated
215 * forward and advertised in receiver window (tp->rcv_wnd) and
216 * "application buffer", required to isolate scheduling/application
217 * latencies from network.
218 * window_clamp is maximal advertised window. It can be less than
219 * tcp_full_space(), in this case tcp_full_space() - window_clamp
220 * is reserved for "application" buffer. The less window_clamp is
221 * the smoother our behaviour from viewpoint of network, but the lower
222 * throughput and the higher sensitivity of the connection to losses. 8)
223 *
224 * rcv_ssthresh is more strict window_clamp used at "slow start"
225 * phase to predict further behaviour of this connection.
226 * It is used for two goals:
227 * - to enforce header prediction at sender, even when application
228 * requires some significant "application buffer". It is check #1.
229 * - to prevent pruning of receive queue because of misprediction
230 * of receiver window. Check #2.
231 *
232 * The scheme does not work when sender sends good segments opening
233 * window and then starts to feed us spaghetti. But it should work
234 * in common situations. Otherwise, we have to rely on queue collapsing.
235 */
236
237 /* Slow part of check#2. */
238 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
239 const struct sk_buff *skb)
240 {
241 /* Optimize this! */
242 int truesize = tcp_win_from_space(skb->truesize)/2;
243 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
244
245 while (tp->rcv_ssthresh <= window) {
246 if (truesize <= skb->len)
247 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
248
249 truesize >>= 1;
250 window >>= 1;
251 }
252 return 0;
253 }
254
255 static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
256 struct sk_buff *skb)
257 {
258 /* Check #1 */
259 if (tp->rcv_ssthresh < tp->window_clamp &&
260 (int)tp->rcv_ssthresh < tcp_space(sk) &&
261 !tcp_memory_pressure) {
262 int incr;
263
264 /* Check #2. Increase window, if skb with such overhead
265 * will fit to rcvbuf in future.
266 */
267 if (tcp_win_from_space(skb->truesize) <= skb->len)
268 incr = 2*tp->advmss;
269 else
270 incr = __tcp_grow_window(sk, tp, skb);
271
272 if (incr) {
273 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
274 inet_csk(sk)->icsk_ack.quick |= 1;
275 }
276 }
277 }
278
279 /* 3. Tuning rcvbuf, when connection enters established state. */
280
281 static void tcp_fixup_rcvbuf(struct sock *sk)
282 {
283 struct tcp_sock *tp = tcp_sk(sk);
284 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
285
286 /* Try to select rcvbuf so that 4 mss-sized segments
287 * will fit to window and corresponding skbs will fit to our rcvbuf.
288 * (was 3; 4 is minimum to allow fast retransmit to work.)
289 */
290 while (tcp_win_from_space(rcvmem) < tp->advmss)
291 rcvmem += 128;
292 if (sk->sk_rcvbuf < 4 * rcvmem)
293 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
294 }
295
296 /* 4. Try to fixup all. It is made immediately after connection enters
297 * established state.
298 */
299 static void tcp_init_buffer_space(struct sock *sk)
300 {
301 struct tcp_sock *tp = tcp_sk(sk);
302 int maxwin;
303
304 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
305 tcp_fixup_rcvbuf(sk);
306 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
307 tcp_fixup_sndbuf(sk);
308
309 tp->rcvq_space.space = tp->rcv_wnd;
310
311 maxwin = tcp_full_space(sk);
312
313 if (tp->window_clamp >= maxwin) {
314 tp->window_clamp = maxwin;
315
316 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
317 tp->window_clamp = max(maxwin -
318 (maxwin >> sysctl_tcp_app_win),
319 4 * tp->advmss);
320 }
321
322 /* Force reservation of one segment. */
323 if (sysctl_tcp_app_win &&
324 tp->window_clamp > 2 * tp->advmss &&
325 tp->window_clamp + tp->advmss > maxwin)
326 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
327
328 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
329 tp->snd_cwnd_stamp = tcp_time_stamp;
330 }
331
332 /* 5. Recalculate window clamp after socket hit its memory bounds. */
333 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
334 {
335 struct inet_connection_sock *icsk = inet_csk(sk);
336
337 icsk->icsk_ack.quick = 0;
338
339 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
340 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
341 !tcp_memory_pressure &&
342 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
343 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
344 sysctl_tcp_rmem[2]);
345 }
346 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
347 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
348 }
349
350
351 /* Initialize RCV_MSS value.
352 * RCV_MSS is an our guess about MSS used by the peer.
353 * We haven't any direct information about the MSS.
354 * It's better to underestimate the RCV_MSS rather than overestimate.
355 * Overestimations make us ACKing less frequently than needed.
356 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
357 */
358 void tcp_initialize_rcv_mss(struct sock *sk)
359 {
360 struct tcp_sock *tp = tcp_sk(sk);
361 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
362
363 hint = min(hint, tp->rcv_wnd/2);
364 hint = min(hint, TCP_MIN_RCVMSS);
365 hint = max(hint, TCP_MIN_MSS);
366
367 inet_csk(sk)->icsk_ack.rcv_mss = hint;
368 }
369
370 /* Receiver "autotuning" code.
371 *
372 * The algorithm for RTT estimation w/o timestamps is based on
373 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
374 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
375 *
376 * More detail on this code can be found at
377 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
378 * though this reference is out of date. A new paper
379 * is pending.
380 */
381 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
382 {
383 u32 new_sample = tp->rcv_rtt_est.rtt;
384 long m = sample;
385
386 if (m == 0)
387 m = 1;
388
389 if (new_sample != 0) {
390 /* If we sample in larger samples in the non-timestamp
391 * case, we could grossly overestimate the RTT especially
392 * with chatty applications or bulk transfer apps which
393 * are stalled on filesystem I/O.
394 *
395 * Also, since we are only going for a minimum in the
396 * non-timestamp case, we do not smooth things out
397 * else with timestamps disabled convergence takes too
398 * long.
399 */
400 if (!win_dep) {
401 m -= (new_sample >> 3);
402 new_sample += m;
403 } else if (m < new_sample)
404 new_sample = m << 3;
405 } else {
406 /* No previous measure. */
407 new_sample = m << 3;
408 }
409
410 if (tp->rcv_rtt_est.rtt != new_sample)
411 tp->rcv_rtt_est.rtt = new_sample;
412 }
413
414 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
415 {
416 if (tp->rcv_rtt_est.time == 0)
417 goto new_measure;
418 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
419 return;
420 tcp_rcv_rtt_update(tp,
421 jiffies - tp->rcv_rtt_est.time,
422 1);
423
424 new_measure:
425 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
426 tp->rcv_rtt_est.time = tcp_time_stamp;
427 }
428
429 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
430 {
431 struct tcp_sock *tp = tcp_sk(sk);
432 if (tp->rx_opt.rcv_tsecr &&
433 (TCP_SKB_CB(skb)->end_seq -
434 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
435 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
436 }
437
438 /*
439 * This function should be called every time data is copied to user space.
440 * It calculates the appropriate TCP receive buffer space.
441 */
442 void tcp_rcv_space_adjust(struct sock *sk)
443 {
444 struct tcp_sock *tp = tcp_sk(sk);
445 int time;
446 int space;
447
448 if (tp->rcvq_space.time == 0)
449 goto new_measure;
450
451 time = tcp_time_stamp - tp->rcvq_space.time;
452 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
453 tp->rcv_rtt_est.rtt == 0)
454 return;
455
456 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
457
458 space = max(tp->rcvq_space.space, space);
459
460 if (tp->rcvq_space.space != space) {
461 int rcvmem;
462
463 tp->rcvq_space.space = space;
464
465 if (sysctl_tcp_moderate_rcvbuf &&
466 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
467 int new_clamp = space;
468
469 /* Receive space grows, normalize in order to
470 * take into account packet headers and sk_buff
471 * structure overhead.
472 */
473 space /= tp->advmss;
474 if (!space)
475 space = 1;
476 rcvmem = (tp->advmss + MAX_TCP_HEADER +
477 16 + sizeof(struct sk_buff));
478 while (tcp_win_from_space(rcvmem) < tp->advmss)
479 rcvmem += 128;
480 space *= rcvmem;
481 space = min(space, sysctl_tcp_rmem[2]);
482 if (space > sk->sk_rcvbuf) {
483 sk->sk_rcvbuf = space;
484
485 /* Make the window clamp follow along. */
486 tp->window_clamp = new_clamp;
487 }
488 }
489 }
490
491 new_measure:
492 tp->rcvq_space.seq = tp->copied_seq;
493 tp->rcvq_space.time = tcp_time_stamp;
494 }
495
496 /* There is something which you must keep in mind when you analyze the
497 * behavior of the tp->ato delayed ack timeout interval. When a
498 * connection starts up, we want to ack as quickly as possible. The
499 * problem is that "good" TCP's do slow start at the beginning of data
500 * transmission. The means that until we send the first few ACK's the
501 * sender will sit on his end and only queue most of his data, because
502 * he can only send snd_cwnd unacked packets at any given time. For
503 * each ACK we send, he increments snd_cwnd and transmits more of his
504 * queue. -DaveM
505 */
506 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
507 {
508 struct inet_connection_sock *icsk = inet_csk(sk);
509 u32 now;
510
511 inet_csk_schedule_ack(sk);
512
513 tcp_measure_rcv_mss(sk, skb);
514
515 tcp_rcv_rtt_measure(tp);
516
517 now = tcp_time_stamp;
518
519 if (!icsk->icsk_ack.ato) {
520 /* The _first_ data packet received, initialize
521 * delayed ACK engine.
522 */
523 tcp_incr_quickack(sk);
524 icsk->icsk_ack.ato = TCP_ATO_MIN;
525 } else {
526 int m = now - icsk->icsk_ack.lrcvtime;
527
528 if (m <= TCP_ATO_MIN/2) {
529 /* The fastest case is the first. */
530 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
531 } else if (m < icsk->icsk_ack.ato) {
532 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
533 if (icsk->icsk_ack.ato > icsk->icsk_rto)
534 icsk->icsk_ack.ato = icsk->icsk_rto;
535 } else if (m > icsk->icsk_rto) {
536 /* Too long gap. Apparently sender failed to
537 * restart window, so that we send ACKs quickly.
538 */
539 tcp_incr_quickack(sk);
540 sk_stream_mem_reclaim(sk);
541 }
542 }
543 icsk->icsk_ack.lrcvtime = now;
544
545 TCP_ECN_check_ce(tp, skb);
546
547 if (skb->len >= 128)
548 tcp_grow_window(sk, tp, skb);
549 }
550
551 /* Called to compute a smoothed rtt estimate. The data fed to this
552 * routine either comes from timestamps, or from segments that were
553 * known _not_ to have been retransmitted [see Karn/Partridge
554 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
555 * piece by Van Jacobson.
556 * NOTE: the next three routines used to be one big routine.
557 * To save cycles in the RFC 1323 implementation it was better to break
558 * it up into three procedures. -- erics
559 */
560 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
561 {
562 struct tcp_sock *tp = tcp_sk(sk);
563 long m = mrtt; /* RTT */
564
565 /* The following amusing code comes from Jacobson's
566 * article in SIGCOMM '88. Note that rtt and mdev
567 * are scaled versions of rtt and mean deviation.
568 * This is designed to be as fast as possible
569 * m stands for "measurement".
570 *
571 * On a 1990 paper the rto value is changed to:
572 * RTO = rtt + 4 * mdev
573 *
574 * Funny. This algorithm seems to be very broken.
575 * These formulae increase RTO, when it should be decreased, increase
576 * too slowly, when it should be increased quickly, decrease too quickly
577 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
578 * does not matter how to _calculate_ it. Seems, it was trap
579 * that VJ failed to avoid. 8)
580 */
581 if (m == 0)
582 m = 1;
583 if (tp->srtt != 0) {
584 m -= (tp->srtt >> 3); /* m is now error in rtt est */
585 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
586 if (m < 0) {
587 m = -m; /* m is now abs(error) */
588 m -= (tp->mdev >> 2); /* similar update on mdev */
589 /* This is similar to one of Eifel findings.
590 * Eifel blocks mdev updates when rtt decreases.
591 * This solution is a bit different: we use finer gain
592 * for mdev in this case (alpha*beta).
593 * Like Eifel it also prevents growth of rto,
594 * but also it limits too fast rto decreases,
595 * happening in pure Eifel.
596 */
597 if (m > 0)
598 m >>= 3;
599 } else {
600 m -= (tp->mdev >> 2); /* similar update on mdev */
601 }
602 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
603 if (tp->mdev > tp->mdev_max) {
604 tp->mdev_max = tp->mdev;
605 if (tp->mdev_max > tp->rttvar)
606 tp->rttvar = tp->mdev_max;
607 }
608 if (after(tp->snd_una, tp->rtt_seq)) {
609 if (tp->mdev_max < tp->rttvar)
610 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
611 tp->rtt_seq = tp->snd_nxt;
612 tp->mdev_max = TCP_RTO_MIN;
613 }
614 } else {
615 /* no previous measure. */
616 tp->srtt = m<<3; /* take the measured time to be rtt */
617 tp->mdev = m<<1; /* make sure rto = 3*rtt */
618 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
619 tp->rtt_seq = tp->snd_nxt;
620 }
621 }
622
623 /* Calculate rto without backoff. This is the second half of Van Jacobson's
624 * routine referred to above.
625 */
626 static inline void tcp_set_rto(struct sock *sk)
627 {
628 const struct tcp_sock *tp = tcp_sk(sk);
629 /* Old crap is replaced with new one. 8)
630 *
631 * More seriously:
632 * 1. If rtt variance happened to be less 50msec, it is hallucination.
633 * It cannot be less due to utterly erratic ACK generation made
634 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
635 * to do with delayed acks, because at cwnd>2 true delack timeout
636 * is invisible. Actually, Linux-2.4 also generates erratic
637 * ACKs in some circumstances.
638 */
639 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
640
641 /* 2. Fixups made earlier cannot be right.
642 * If we do not estimate RTO correctly without them,
643 * all the algo is pure shit and should be replaced
644 * with correct one. It is exactly, which we pretend to do.
645 */
646 }
647
648 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
649 * guarantees that rto is higher.
650 */
651 static inline void tcp_bound_rto(struct sock *sk)
652 {
653 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
654 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
655 }
656
657 /* Save metrics learned by this TCP session.
658 This function is called only, when TCP finishes successfully
659 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
660 */
661 void tcp_update_metrics(struct sock *sk)
662 {
663 struct tcp_sock *tp = tcp_sk(sk);
664 struct dst_entry *dst = __sk_dst_get(sk);
665
666 if (sysctl_tcp_nometrics_save)
667 return;
668
669 dst_confirm(dst);
670
671 if (dst && (dst->flags&DST_HOST)) {
672 const struct inet_connection_sock *icsk = inet_csk(sk);
673 int m;
674
675 if (icsk->icsk_backoff || !tp->srtt) {
676 /* This session failed to estimate rtt. Why?
677 * Probably, no packets returned in time.
678 * Reset our results.
679 */
680 if (!(dst_metric_locked(dst, RTAX_RTT)))
681 dst->metrics[RTAX_RTT-1] = 0;
682 return;
683 }
684
685 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
686
687 /* If newly calculated rtt larger than stored one,
688 * store new one. Otherwise, use EWMA. Remember,
689 * rtt overestimation is always better than underestimation.
690 */
691 if (!(dst_metric_locked(dst, RTAX_RTT))) {
692 if (m <= 0)
693 dst->metrics[RTAX_RTT-1] = tp->srtt;
694 else
695 dst->metrics[RTAX_RTT-1] -= (m>>3);
696 }
697
698 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
699 if (m < 0)
700 m = -m;
701
702 /* Scale deviation to rttvar fixed point */
703 m >>= 1;
704 if (m < tp->mdev)
705 m = tp->mdev;
706
707 if (m >= dst_metric(dst, RTAX_RTTVAR))
708 dst->metrics[RTAX_RTTVAR-1] = m;
709 else
710 dst->metrics[RTAX_RTTVAR-1] -=
711 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
712 }
713
714 if (tp->snd_ssthresh >= 0xFFFF) {
715 /* Slow start still did not finish. */
716 if (dst_metric(dst, RTAX_SSTHRESH) &&
717 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
718 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
719 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
720 if (!dst_metric_locked(dst, RTAX_CWND) &&
721 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
722 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
723 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
724 icsk->icsk_ca_state == TCP_CA_Open) {
725 /* Cong. avoidance phase, cwnd is reliable. */
726 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
727 dst->metrics[RTAX_SSTHRESH-1] =
728 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
729 if (!dst_metric_locked(dst, RTAX_CWND))
730 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
731 } else {
732 /* Else slow start did not finish, cwnd is non-sense,
733 ssthresh may be also invalid.
734 */
735 if (!dst_metric_locked(dst, RTAX_CWND))
736 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
737 if (dst->metrics[RTAX_SSTHRESH-1] &&
738 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
739 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
740 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
741 }
742
743 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
744 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
745 tp->reordering != sysctl_tcp_reordering)
746 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
747 }
748 }
749 }
750
751 /* Numbers are taken from RFC2414. */
752 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
753 {
754 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
755
756 if (!cwnd) {
757 if (tp->mss_cache > 1460)
758 cwnd = 2;
759 else
760 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
761 }
762 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
763 }
764
765 /* Set slow start threshold and cwnd not falling to slow start */
766 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
767 {
768 struct tcp_sock *tp = tcp_sk(sk);
769 const struct inet_connection_sock *icsk = inet_csk(sk);
770
771 tp->prior_ssthresh = 0;
772 tp->bytes_acked = 0;
773 if (icsk->icsk_ca_state < TCP_CA_CWR) {
774 tp->undo_marker = 0;
775 if (set_ssthresh)
776 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
777 tp->snd_cwnd = min(tp->snd_cwnd,
778 tcp_packets_in_flight(tp) + 1U);
779 tp->snd_cwnd_cnt = 0;
780 tp->high_seq = tp->snd_nxt;
781 tp->snd_cwnd_stamp = tcp_time_stamp;
782 TCP_ECN_queue_cwr(tp);
783
784 tcp_set_ca_state(sk, TCP_CA_CWR);
785 }
786 }
787
788 /* Initialize metrics on socket. */
789
790 static void tcp_init_metrics(struct sock *sk)
791 {
792 struct tcp_sock *tp = tcp_sk(sk);
793 struct dst_entry *dst = __sk_dst_get(sk);
794
795 if (dst == NULL)
796 goto reset;
797
798 dst_confirm(dst);
799
800 if (dst_metric_locked(dst, RTAX_CWND))
801 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
802 if (dst_metric(dst, RTAX_SSTHRESH)) {
803 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
804 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
805 tp->snd_ssthresh = tp->snd_cwnd_clamp;
806 }
807 if (dst_metric(dst, RTAX_REORDERING) &&
808 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
809 tp->rx_opt.sack_ok &= ~2;
810 tp->reordering = dst_metric(dst, RTAX_REORDERING);
811 }
812
813 if (dst_metric(dst, RTAX_RTT) == 0)
814 goto reset;
815
816 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
817 goto reset;
818
819 /* Initial rtt is determined from SYN,SYN-ACK.
820 * The segment is small and rtt may appear much
821 * less than real one. Use per-dst memory
822 * to make it more realistic.
823 *
824 * A bit of theory. RTT is time passed after "normal" sized packet
825 * is sent until it is ACKed. In normal circumstances sending small
826 * packets force peer to delay ACKs and calculation is correct too.
827 * The algorithm is adaptive and, provided we follow specs, it
828 * NEVER underestimate RTT. BUT! If peer tries to make some clever
829 * tricks sort of "quick acks" for time long enough to decrease RTT
830 * to low value, and then abruptly stops to do it and starts to delay
831 * ACKs, wait for troubles.
832 */
833 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
834 tp->srtt = dst_metric(dst, RTAX_RTT);
835 tp->rtt_seq = tp->snd_nxt;
836 }
837 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
838 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
839 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
840 }
841 tcp_set_rto(sk);
842 tcp_bound_rto(sk);
843 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
844 goto reset;
845 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
846 tp->snd_cwnd_stamp = tcp_time_stamp;
847 return;
848
849 reset:
850 /* Play conservative. If timestamps are not
851 * supported, TCP will fail to recalculate correct
852 * rtt, if initial rto is too small. FORGET ALL AND RESET!
853 */
854 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
855 tp->srtt = 0;
856 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
857 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
858 }
859 }
860
861 static void tcp_update_reordering(struct sock *sk, const int metric,
862 const int ts)
863 {
864 struct tcp_sock *tp = tcp_sk(sk);
865 if (metric > tp->reordering) {
866 tp->reordering = min(TCP_MAX_REORDERING, metric);
867
868 /* This exciting event is worth to be remembered. 8) */
869 if (ts)
870 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
871 else if (IsReno(tp))
872 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
873 else if (IsFack(tp))
874 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
875 else
876 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
877 #if FASTRETRANS_DEBUG > 1
878 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
879 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
880 tp->reordering,
881 tp->fackets_out,
882 tp->sacked_out,
883 tp->undo_marker ? tp->undo_retrans : 0);
884 #endif
885 /* Disable FACK yet. */
886 tp->rx_opt.sack_ok &= ~2;
887 }
888 }
889
890 /* This procedure tags the retransmission queue when SACKs arrive.
891 *
892 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
893 * Packets in queue with these bits set are counted in variables
894 * sacked_out, retrans_out and lost_out, correspondingly.
895 *
896 * Valid combinations are:
897 * Tag InFlight Description
898 * 0 1 - orig segment is in flight.
899 * S 0 - nothing flies, orig reached receiver.
900 * L 0 - nothing flies, orig lost by net.
901 * R 2 - both orig and retransmit are in flight.
902 * L|R 1 - orig is lost, retransmit is in flight.
903 * S|R 1 - orig reached receiver, retrans is still in flight.
904 * (L|S|R is logically valid, it could occur when L|R is sacked,
905 * but it is equivalent to plain S and code short-curcuits it to S.
906 * L|S is logically invalid, it would mean -1 packet in flight 8))
907 *
908 * These 6 states form finite state machine, controlled by the following events:
909 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
910 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
911 * 3. Loss detection event of one of three flavors:
912 * A. Scoreboard estimator decided the packet is lost.
913 * A'. Reno "three dupacks" marks head of queue lost.
914 * A''. Its FACK modfication, head until snd.fack is lost.
915 * B. SACK arrives sacking data transmitted after never retransmitted
916 * hole was sent out.
917 * C. SACK arrives sacking SND.NXT at the moment, when the
918 * segment was retransmitted.
919 * 4. D-SACK added new rule: D-SACK changes any tag to S.
920 *
921 * It is pleasant to note, that state diagram turns out to be commutative,
922 * so that we are allowed not to be bothered by order of our actions,
923 * when multiple events arrive simultaneously. (see the function below).
924 *
925 * Reordering detection.
926 * --------------------
927 * Reordering metric is maximal distance, which a packet can be displaced
928 * in packet stream. With SACKs we can estimate it:
929 *
930 * 1. SACK fills old hole and the corresponding segment was not
931 * ever retransmitted -> reordering. Alas, we cannot use it
932 * when segment was retransmitted.
933 * 2. The last flaw is solved with D-SACK. D-SACK arrives
934 * for retransmitted and already SACKed segment -> reordering..
935 * Both of these heuristics are not used in Loss state, when we cannot
936 * account for retransmits accurately.
937 */
938 static int
939 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
940 {
941 const struct inet_connection_sock *icsk = inet_csk(sk);
942 struct tcp_sock *tp = tcp_sk(sk);
943 unsigned char *ptr = (skb_transport_header(ack_skb) +
944 TCP_SKB_CB(ack_skb)->sacked);
945 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
946 struct sk_buff *cached_skb;
947 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
948 int reord = tp->packets_out;
949 int prior_fackets;
950 u32 lost_retrans = 0;
951 int flag = 0;
952 int dup_sack = 0;
953 int cached_fack_count;
954 int i;
955 int first_sack_index;
956
957 if (!tp->sacked_out)
958 tp->fackets_out = 0;
959 prior_fackets = tp->fackets_out;
960
961 /* Check for D-SACK. */
962 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
963 dup_sack = 1;
964 tp->rx_opt.sack_ok |= 4;
965 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
966 } else if (num_sacks > 1 &&
967 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
968 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
969 dup_sack = 1;
970 tp->rx_opt.sack_ok |= 4;
971 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
972 }
973
974 /* D-SACK for already forgotten data...
975 * Do dumb counting. */
976 if (dup_sack &&
977 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
978 after(ntohl(sp[0].end_seq), tp->undo_marker))
979 tp->undo_retrans--;
980
981 /* Eliminate too old ACKs, but take into
982 * account more or less fresh ones, they can
983 * contain valid SACK info.
984 */
985 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
986 return 0;
987
988 /* SACK fastpath:
989 * if the only SACK change is the increase of the end_seq of
990 * the first block then only apply that SACK block
991 * and use retrans queue hinting otherwise slowpath */
992 flag = 1;
993 for (i = 0; i < num_sacks; i++) {
994 __be32 start_seq = sp[i].start_seq;
995 __be32 end_seq = sp[i].end_seq;
996
997 if (i == 0) {
998 if (tp->recv_sack_cache[i].start_seq != start_seq)
999 flag = 0;
1000 } else {
1001 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1002 (tp->recv_sack_cache[i].end_seq != end_seq))
1003 flag = 0;
1004 }
1005 tp->recv_sack_cache[i].start_seq = start_seq;
1006 tp->recv_sack_cache[i].end_seq = end_seq;
1007 }
1008 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1009 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1010 tp->recv_sack_cache[i].start_seq = 0;
1011 tp->recv_sack_cache[i].end_seq = 0;
1012 }
1013
1014 first_sack_index = 0;
1015 if (flag)
1016 num_sacks = 1;
1017 else {
1018 int j;
1019 tp->fastpath_skb_hint = NULL;
1020
1021 /* order SACK blocks to allow in order walk of the retrans queue */
1022 for (i = num_sacks-1; i > 0; i--) {
1023 for (j = 0; j < i; j++){
1024 if (after(ntohl(sp[j].start_seq),
1025 ntohl(sp[j+1].start_seq))){
1026 struct tcp_sack_block_wire tmp;
1027
1028 tmp = sp[j];
1029 sp[j] = sp[j+1];
1030 sp[j+1] = tmp;
1031
1032 /* Track where the first SACK block goes to */
1033 if (j == first_sack_index)
1034 first_sack_index = j+1;
1035 }
1036
1037 }
1038 }
1039 }
1040
1041 /* clear flag as used for different purpose in following code */
1042 flag = 0;
1043
1044 /* Use SACK fastpath hint if valid */
1045 cached_skb = tp->fastpath_skb_hint;
1046 cached_fack_count = tp->fastpath_cnt_hint;
1047 if (!cached_skb) {
1048 cached_skb = tcp_write_queue_head(sk);
1049 cached_fack_count = 0;
1050 }
1051
1052 for (i=0; i<num_sacks; i++, sp++) {
1053 struct sk_buff *skb;
1054 __u32 start_seq = ntohl(sp->start_seq);
1055 __u32 end_seq = ntohl(sp->end_seq);
1056 int fack_count;
1057
1058 skb = cached_skb;
1059 fack_count = cached_fack_count;
1060
1061 /* Event "B" in the comment above. */
1062 if (after(end_seq, tp->high_seq))
1063 flag |= FLAG_DATA_LOST;
1064
1065 tcp_for_write_queue_from(skb, sk) {
1066 int in_sack, pcount;
1067 u8 sacked;
1068
1069 if (skb == tcp_send_head(sk))
1070 break;
1071
1072 cached_skb = skb;
1073 cached_fack_count = fack_count;
1074 if (i == first_sack_index) {
1075 tp->fastpath_skb_hint = skb;
1076 tp->fastpath_cnt_hint = fack_count;
1077 }
1078
1079 /* The retransmission queue is always in order, so
1080 * we can short-circuit the walk early.
1081 */
1082 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1083 break;
1084
1085 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1086 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1087
1088 pcount = tcp_skb_pcount(skb);
1089
1090 if (pcount > 1 && !in_sack &&
1091 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1092 unsigned int pkt_len;
1093
1094 in_sack = !after(start_seq,
1095 TCP_SKB_CB(skb)->seq);
1096
1097 if (!in_sack)
1098 pkt_len = (start_seq -
1099 TCP_SKB_CB(skb)->seq);
1100 else
1101 pkt_len = (end_seq -
1102 TCP_SKB_CB(skb)->seq);
1103 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1104 break;
1105 pcount = tcp_skb_pcount(skb);
1106 }
1107
1108 fack_count += pcount;
1109
1110 sacked = TCP_SKB_CB(skb)->sacked;
1111
1112 /* Account D-SACK for retransmitted packet. */
1113 if ((dup_sack && in_sack) &&
1114 (sacked & TCPCB_RETRANS) &&
1115 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1116 tp->undo_retrans--;
1117
1118 /* The frame is ACKed. */
1119 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1120 if (sacked&TCPCB_RETRANS) {
1121 if ((dup_sack && in_sack) &&
1122 (sacked&TCPCB_SACKED_ACKED))
1123 reord = min(fack_count, reord);
1124 } else {
1125 /* If it was in a hole, we detected reordering. */
1126 if (fack_count < prior_fackets &&
1127 !(sacked&TCPCB_SACKED_ACKED))
1128 reord = min(fack_count, reord);
1129 }
1130
1131 /* Nothing to do; acked frame is about to be dropped. */
1132 continue;
1133 }
1134
1135 if ((sacked&TCPCB_SACKED_RETRANS) &&
1136 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1137 (!lost_retrans || after(end_seq, lost_retrans)))
1138 lost_retrans = end_seq;
1139
1140 if (!in_sack)
1141 continue;
1142
1143 if (!(sacked&TCPCB_SACKED_ACKED)) {
1144 if (sacked & TCPCB_SACKED_RETRANS) {
1145 /* If the segment is not tagged as lost,
1146 * we do not clear RETRANS, believing
1147 * that retransmission is still in flight.
1148 */
1149 if (sacked & TCPCB_LOST) {
1150 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1151 tp->lost_out -= tcp_skb_pcount(skb);
1152 tp->retrans_out -= tcp_skb_pcount(skb);
1153
1154 /* clear lost hint */
1155 tp->retransmit_skb_hint = NULL;
1156 }
1157 } else {
1158 /* New sack for not retransmitted frame,
1159 * which was in hole. It is reordering.
1160 */
1161 if (!(sacked & TCPCB_RETRANS) &&
1162 fack_count < prior_fackets)
1163 reord = min(fack_count, reord);
1164
1165 if (sacked & TCPCB_LOST) {
1166 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1167 tp->lost_out -= tcp_skb_pcount(skb);
1168
1169 /* clear lost hint */
1170 tp->retransmit_skb_hint = NULL;
1171 }
1172 /* SACK enhanced F-RTO detection.
1173 * Set flag if and only if non-rexmitted
1174 * segments below frto_highmark are
1175 * SACKed (RFC4138; Appendix B).
1176 * Clearing correct due to in-order walk
1177 */
1178 if (after(end_seq, tp->frto_highmark)) {
1179 flag &= ~FLAG_ONLY_ORIG_SACKED;
1180 } else {
1181 if (!(sacked & TCPCB_RETRANS))
1182 flag |= FLAG_ONLY_ORIG_SACKED;
1183 }
1184 }
1185
1186 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1187 flag |= FLAG_DATA_SACKED;
1188 tp->sacked_out += tcp_skb_pcount(skb);
1189
1190 if (fack_count > tp->fackets_out)
1191 tp->fackets_out = fack_count;
1192 } else {
1193 if (dup_sack && (sacked&TCPCB_RETRANS))
1194 reord = min(fack_count, reord);
1195 }
1196
1197 /* D-SACK. We can detect redundant retransmission
1198 * in S|R and plain R frames and clear it.
1199 * undo_retrans is decreased above, L|R frames
1200 * are accounted above as well.
1201 */
1202 if (dup_sack &&
1203 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1204 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1205 tp->retrans_out -= tcp_skb_pcount(skb);
1206 tp->retransmit_skb_hint = NULL;
1207 }
1208 }
1209 }
1210
1211 /* Check for lost retransmit. This superb idea is
1212 * borrowed from "ratehalving". Event "C".
1213 * Later note: FACK people cheated me again 8),
1214 * we have to account for reordering! Ugly,
1215 * but should help.
1216 */
1217 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1218 struct sk_buff *skb;
1219
1220 tcp_for_write_queue(skb, sk) {
1221 if (skb == tcp_send_head(sk))
1222 break;
1223 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1224 break;
1225 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1226 continue;
1227 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1228 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1229 (IsFack(tp) ||
1230 !before(lost_retrans,
1231 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1232 tp->mss_cache))) {
1233 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1234 tp->retrans_out -= tcp_skb_pcount(skb);
1235
1236 /* clear lost hint */
1237 tp->retransmit_skb_hint = NULL;
1238
1239 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1240 tp->lost_out += tcp_skb_pcount(skb);
1241 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1242 flag |= FLAG_DATA_SACKED;
1243 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1244 }
1245 }
1246 }
1247 }
1248
1249 tp->left_out = tp->sacked_out + tp->lost_out;
1250
1251 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1252 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1253 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1254
1255 #if FASTRETRANS_DEBUG > 0
1256 BUG_TRAP((int)tp->sacked_out >= 0);
1257 BUG_TRAP((int)tp->lost_out >= 0);
1258 BUG_TRAP((int)tp->retrans_out >= 0);
1259 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1260 #endif
1261 return flag;
1262 }
1263
1264 /* F-RTO can only be used if these conditions are satisfied:
1265 * - there must be some unsent new data
1266 * - the advertised window should allow sending it
1267 * - TCP has never retransmitted anything other than head (SACK enhanced
1268 * variant from Appendix B of RFC4138 is more robust here)
1269 */
1270 int tcp_use_frto(struct sock *sk)
1271 {
1272 const struct tcp_sock *tp = tcp_sk(sk);
1273 struct sk_buff *skb;
1274
1275 if (!sysctl_tcp_frto || !tcp_send_head(sk) ||
1276 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
1277 tp->snd_una + tp->snd_wnd))
1278 return 0;
1279
1280 if (IsSackFrto())
1281 return 1;
1282
1283 /* Avoid expensive walking of rexmit queue if possible */
1284 if (tp->retrans_out > 1)
1285 return 0;
1286
1287 skb = tcp_write_queue_head(sk);
1288 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1289 tcp_for_write_queue_from(skb, sk) {
1290 if (skb == tcp_send_head(sk))
1291 break;
1292 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1293 return 0;
1294 /* Short-circuit when first non-SACKed skb has been checked */
1295 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1296 break;
1297 }
1298 return 1;
1299 }
1300
1301 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1302 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1303 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1304 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1305 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1306 * bits are handled if the Loss state is really to be entered (in
1307 * tcp_enter_frto_loss).
1308 *
1309 * Do like tcp_enter_loss() would; when RTO expires the second time it
1310 * does:
1311 * "Reduce ssthresh if it has not yet been made inside this window."
1312 */
1313 void tcp_enter_frto(struct sock *sk)
1314 {
1315 const struct inet_connection_sock *icsk = inet_csk(sk);
1316 struct tcp_sock *tp = tcp_sk(sk);
1317 struct sk_buff *skb;
1318
1319 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1320 tp->snd_una == tp->high_seq ||
1321 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1322 !icsk->icsk_retransmits)) {
1323 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1324 /* Our state is too optimistic in ssthresh() call because cwnd
1325 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1326 * recovery has not yet completed. Pattern would be this: RTO,
1327 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1328 * up here twice).
1329 * RFC4138 should be more specific on what to do, even though
1330 * RTO is quite unlikely to occur after the first Cumulative ACK
1331 * due to back-off and complexity of triggering events ...
1332 */
1333 if (tp->frto_counter) {
1334 u32 stored_cwnd;
1335 stored_cwnd = tp->snd_cwnd;
1336 tp->snd_cwnd = 2;
1337 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1338 tp->snd_cwnd = stored_cwnd;
1339 } else {
1340 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1341 }
1342 /* ... in theory, cong.control module could do "any tricks" in
1343 * ssthresh(), which means that ca_state, lost bits and lost_out
1344 * counter would have to be faked before the call occurs. We
1345 * consider that too expensive, unlikely and hacky, so modules
1346 * using these in ssthresh() must deal these incompatibility
1347 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1348 */
1349 tcp_ca_event(sk, CA_EVENT_FRTO);
1350 }
1351
1352 tp->undo_marker = tp->snd_una;
1353 tp->undo_retrans = 0;
1354
1355 skb = tcp_write_queue_head(sk);
1356 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1357 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1358 tp->retrans_out -= tcp_skb_pcount(skb);
1359 }
1360 tcp_sync_left_out(tp);
1361
1362 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1363 * The last condition is necessary at least in tp->frto_counter case.
1364 */
1365 if (IsSackFrto() && (tp->frto_counter ||
1366 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1367 after(tp->high_seq, tp->snd_una)) {
1368 tp->frto_highmark = tp->high_seq;
1369 } else {
1370 tp->frto_highmark = tp->snd_nxt;
1371 }
1372 tcp_set_ca_state(sk, TCP_CA_Disorder);
1373 tp->high_seq = tp->snd_nxt;
1374 tp->frto_counter = 1;
1375 }
1376
1377 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1378 * which indicates that we should follow the traditional RTO recovery,
1379 * i.e. mark everything lost and do go-back-N retransmission.
1380 */
1381 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1382 {
1383 struct tcp_sock *tp = tcp_sk(sk);
1384 struct sk_buff *skb;
1385 int cnt = 0;
1386
1387 tp->sacked_out = 0;
1388 tp->lost_out = 0;
1389 tp->fackets_out = 0;
1390 tp->retrans_out = 0;
1391
1392 tcp_for_write_queue(skb, sk) {
1393 if (skb == tcp_send_head(sk))
1394 break;
1395 cnt += tcp_skb_pcount(skb);
1396 /*
1397 * Count the retransmission made on RTO correctly (only when
1398 * waiting for the first ACK and did not get it)...
1399 */
1400 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1401 tp->retrans_out += tcp_skb_pcount(skb);
1402 /* ...enter this if branch just for the first segment */
1403 flag |= FLAG_DATA_ACKED;
1404 } else {
1405 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1406 }
1407 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1408
1409 /* Do not mark those segments lost that were
1410 * forward transmitted after RTO
1411 */
1412 if (!after(TCP_SKB_CB(skb)->end_seq,
1413 tp->frto_highmark)) {
1414 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1415 tp->lost_out += tcp_skb_pcount(skb);
1416 }
1417 } else {
1418 tp->sacked_out += tcp_skb_pcount(skb);
1419 tp->fackets_out = cnt;
1420 }
1421 }
1422 tcp_sync_left_out(tp);
1423
1424 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1425 tp->snd_cwnd_cnt = 0;
1426 tp->snd_cwnd_stamp = tcp_time_stamp;
1427 tp->undo_marker = 0;
1428 tp->frto_counter = 0;
1429
1430 tp->reordering = min_t(unsigned int, tp->reordering,
1431 sysctl_tcp_reordering);
1432 tcp_set_ca_state(sk, TCP_CA_Loss);
1433 tp->high_seq = tp->frto_highmark;
1434 TCP_ECN_queue_cwr(tp);
1435
1436 clear_all_retrans_hints(tp);
1437 }
1438
1439 void tcp_clear_retrans(struct tcp_sock *tp)
1440 {
1441 tp->left_out = 0;
1442 tp->retrans_out = 0;
1443
1444 tp->fackets_out = 0;
1445 tp->sacked_out = 0;
1446 tp->lost_out = 0;
1447
1448 tp->undo_marker = 0;
1449 tp->undo_retrans = 0;
1450 }
1451
1452 /* Enter Loss state. If "how" is not zero, forget all SACK information
1453 * and reset tags completely, otherwise preserve SACKs. If receiver
1454 * dropped its ofo queue, we will know this due to reneging detection.
1455 */
1456 void tcp_enter_loss(struct sock *sk, int how)
1457 {
1458 const struct inet_connection_sock *icsk = inet_csk(sk);
1459 struct tcp_sock *tp = tcp_sk(sk);
1460 struct sk_buff *skb;
1461 int cnt = 0;
1462
1463 /* Reduce ssthresh if it has not yet been made inside this window. */
1464 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1465 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1466 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1467 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1468 tcp_ca_event(sk, CA_EVENT_LOSS);
1469 }
1470 tp->snd_cwnd = 1;
1471 tp->snd_cwnd_cnt = 0;
1472 tp->snd_cwnd_stamp = tcp_time_stamp;
1473
1474 tp->bytes_acked = 0;
1475 tcp_clear_retrans(tp);
1476
1477 /* Push undo marker, if it was plain RTO and nothing
1478 * was retransmitted. */
1479 if (!how)
1480 tp->undo_marker = tp->snd_una;
1481
1482 tcp_for_write_queue(skb, sk) {
1483 if (skb == tcp_send_head(sk))
1484 break;
1485 cnt += tcp_skb_pcount(skb);
1486 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1487 tp->undo_marker = 0;
1488 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1489 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1490 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1491 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1492 tp->lost_out += tcp_skb_pcount(skb);
1493 } else {
1494 tp->sacked_out += tcp_skb_pcount(skb);
1495 tp->fackets_out = cnt;
1496 }
1497 }
1498 tcp_sync_left_out(tp);
1499
1500 tp->reordering = min_t(unsigned int, tp->reordering,
1501 sysctl_tcp_reordering);
1502 tcp_set_ca_state(sk, TCP_CA_Loss);
1503 tp->high_seq = tp->snd_nxt;
1504 TCP_ECN_queue_cwr(tp);
1505
1506 clear_all_retrans_hints(tp);
1507 }
1508
1509 static int tcp_check_sack_reneging(struct sock *sk)
1510 {
1511 struct sk_buff *skb;
1512
1513 /* If ACK arrived pointing to a remembered SACK,
1514 * it means that our remembered SACKs do not reflect
1515 * real state of receiver i.e.
1516 * receiver _host_ is heavily congested (or buggy).
1517 * Do processing similar to RTO timeout.
1518 */
1519 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1520 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1521 struct inet_connection_sock *icsk = inet_csk(sk);
1522 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1523
1524 tcp_enter_loss(sk, 1);
1525 icsk->icsk_retransmits++;
1526 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1527 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1528 icsk->icsk_rto, TCP_RTO_MAX);
1529 return 1;
1530 }
1531 return 0;
1532 }
1533
1534 static inline int tcp_fackets_out(struct tcp_sock *tp)
1535 {
1536 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1537 }
1538
1539 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1540 {
1541 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1542 }
1543
1544 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1545 {
1546 return tp->packets_out &&
1547 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1548 }
1549
1550 /* Linux NewReno/SACK/FACK/ECN state machine.
1551 * --------------------------------------
1552 *
1553 * "Open" Normal state, no dubious events, fast path.
1554 * "Disorder" In all the respects it is "Open",
1555 * but requires a bit more attention. It is entered when
1556 * we see some SACKs or dupacks. It is split of "Open"
1557 * mainly to move some processing from fast path to slow one.
1558 * "CWR" CWND was reduced due to some Congestion Notification event.
1559 * It can be ECN, ICMP source quench, local device congestion.
1560 * "Recovery" CWND was reduced, we are fast-retransmitting.
1561 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1562 *
1563 * tcp_fastretrans_alert() is entered:
1564 * - each incoming ACK, if state is not "Open"
1565 * - when arrived ACK is unusual, namely:
1566 * * SACK
1567 * * Duplicate ACK.
1568 * * ECN ECE.
1569 *
1570 * Counting packets in flight is pretty simple.
1571 *
1572 * in_flight = packets_out - left_out + retrans_out
1573 *
1574 * packets_out is SND.NXT-SND.UNA counted in packets.
1575 *
1576 * retrans_out is number of retransmitted segments.
1577 *
1578 * left_out is number of segments left network, but not ACKed yet.
1579 *
1580 * left_out = sacked_out + lost_out
1581 *
1582 * sacked_out: Packets, which arrived to receiver out of order
1583 * and hence not ACKed. With SACKs this number is simply
1584 * amount of SACKed data. Even without SACKs
1585 * it is easy to give pretty reliable estimate of this number,
1586 * counting duplicate ACKs.
1587 *
1588 * lost_out: Packets lost by network. TCP has no explicit
1589 * "loss notification" feedback from network (for now).
1590 * It means that this number can be only _guessed_.
1591 * Actually, it is the heuristics to predict lossage that
1592 * distinguishes different algorithms.
1593 *
1594 * F.e. after RTO, when all the queue is considered as lost,
1595 * lost_out = packets_out and in_flight = retrans_out.
1596 *
1597 * Essentially, we have now two algorithms counting
1598 * lost packets.
1599 *
1600 * FACK: It is the simplest heuristics. As soon as we decided
1601 * that something is lost, we decide that _all_ not SACKed
1602 * packets until the most forward SACK are lost. I.e.
1603 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1604 * It is absolutely correct estimate, if network does not reorder
1605 * packets. And it loses any connection to reality when reordering
1606 * takes place. We use FACK by default until reordering
1607 * is suspected on the path to this destination.
1608 *
1609 * NewReno: when Recovery is entered, we assume that one segment
1610 * is lost (classic Reno). While we are in Recovery and
1611 * a partial ACK arrives, we assume that one more packet
1612 * is lost (NewReno). This heuristics are the same in NewReno
1613 * and SACK.
1614 *
1615 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1616 * deflation etc. CWND is real congestion window, never inflated, changes
1617 * only according to classic VJ rules.
1618 *
1619 * Really tricky (and requiring careful tuning) part of algorithm
1620 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1621 * The first determines the moment _when_ we should reduce CWND and,
1622 * hence, slow down forward transmission. In fact, it determines the moment
1623 * when we decide that hole is caused by loss, rather than by a reorder.
1624 *
1625 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1626 * holes, caused by lost packets.
1627 *
1628 * And the most logically complicated part of algorithm is undo
1629 * heuristics. We detect false retransmits due to both too early
1630 * fast retransmit (reordering) and underestimated RTO, analyzing
1631 * timestamps and D-SACKs. When we detect that some segments were
1632 * retransmitted by mistake and CWND reduction was wrong, we undo
1633 * window reduction and abort recovery phase. This logic is hidden
1634 * inside several functions named tcp_try_undo_<something>.
1635 */
1636
1637 /* This function decides, when we should leave Disordered state
1638 * and enter Recovery phase, reducing congestion window.
1639 *
1640 * Main question: may we further continue forward transmission
1641 * with the same cwnd?
1642 */
1643 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1644 {
1645 __u32 packets_out;
1646
1647 /* Do not perform any recovery during FRTO algorithm */
1648 if (tp->frto_counter)
1649 return 0;
1650
1651 /* Trick#1: The loss is proven. */
1652 if (tp->lost_out)
1653 return 1;
1654
1655 /* Not-A-Trick#2 : Classic rule... */
1656 if (tcp_fackets_out(tp) > tp->reordering)
1657 return 1;
1658
1659 /* Trick#3 : when we use RFC2988 timer restart, fast
1660 * retransmit can be triggered by timeout of queue head.
1661 */
1662 if (tcp_head_timedout(sk, tp))
1663 return 1;
1664
1665 /* Trick#4: It is still not OK... But will it be useful to delay
1666 * recovery more?
1667 */
1668 packets_out = tp->packets_out;
1669 if (packets_out <= tp->reordering &&
1670 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1671 !tcp_may_send_now(sk, tp)) {
1672 /* We have nothing to send. This connection is limited
1673 * either by receiver window or by application.
1674 */
1675 return 1;
1676 }
1677
1678 return 0;
1679 }
1680
1681 /* If we receive more dupacks than we expected counting segments
1682 * in assumption of absent reordering, interpret this as reordering.
1683 * The only another reason could be bug in receiver TCP.
1684 */
1685 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1686 {
1687 struct tcp_sock *tp = tcp_sk(sk);
1688 u32 holes;
1689
1690 holes = max(tp->lost_out, 1U);
1691 holes = min(holes, tp->packets_out);
1692
1693 if ((tp->sacked_out + holes) > tp->packets_out) {
1694 tp->sacked_out = tp->packets_out - holes;
1695 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1696 }
1697 }
1698
1699 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1700
1701 static void tcp_add_reno_sack(struct sock *sk)
1702 {
1703 struct tcp_sock *tp = tcp_sk(sk);
1704 tp->sacked_out++;
1705 tcp_check_reno_reordering(sk, 0);
1706 tcp_sync_left_out(tp);
1707 }
1708
1709 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1710
1711 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1712 {
1713 if (acked > 0) {
1714 /* One ACK acked hole. The rest eat duplicate ACKs. */
1715 if (acked-1 >= tp->sacked_out)
1716 tp->sacked_out = 0;
1717 else
1718 tp->sacked_out -= acked-1;
1719 }
1720 tcp_check_reno_reordering(sk, acked);
1721 tcp_sync_left_out(tp);
1722 }
1723
1724 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1725 {
1726 tp->sacked_out = 0;
1727 tp->left_out = tp->lost_out;
1728 }
1729
1730 /* Mark head of queue up as lost. */
1731 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1732 int packets, u32 high_seq)
1733 {
1734 struct sk_buff *skb;
1735 int cnt;
1736
1737 BUG_TRAP(packets <= tp->packets_out);
1738 if (tp->lost_skb_hint) {
1739 skb = tp->lost_skb_hint;
1740 cnt = tp->lost_cnt_hint;
1741 } else {
1742 skb = tcp_write_queue_head(sk);
1743 cnt = 0;
1744 }
1745
1746 tcp_for_write_queue_from(skb, sk) {
1747 if (skb == tcp_send_head(sk))
1748 break;
1749 /* TODO: do this better */
1750 /* this is not the most efficient way to do this... */
1751 tp->lost_skb_hint = skb;
1752 tp->lost_cnt_hint = cnt;
1753 cnt += tcp_skb_pcount(skb);
1754 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1755 break;
1756 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1757 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1758 tp->lost_out += tcp_skb_pcount(skb);
1759
1760 /* clear xmit_retransmit_queue hints
1761 * if this is beyond hint */
1762 if (tp->retransmit_skb_hint != NULL &&
1763 before(TCP_SKB_CB(skb)->seq,
1764 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1765 tp->retransmit_skb_hint = NULL;
1766
1767 }
1768 }
1769 tcp_sync_left_out(tp);
1770 }
1771
1772 /* Account newly detected lost packet(s) */
1773
1774 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1775 {
1776 if (IsFack(tp)) {
1777 int lost = tp->fackets_out - tp->reordering;
1778 if (lost <= 0)
1779 lost = 1;
1780 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1781 } else {
1782 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1783 }
1784
1785 /* New heuristics: it is possible only after we switched
1786 * to restart timer each time when something is ACKed.
1787 * Hence, we can detect timed out packets during fast
1788 * retransmit without falling to slow start.
1789 */
1790 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1791 struct sk_buff *skb;
1792
1793 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1794 : tcp_write_queue_head(sk);
1795
1796 tcp_for_write_queue_from(skb, sk) {
1797 if (skb == tcp_send_head(sk))
1798 break;
1799 if (!tcp_skb_timedout(sk, skb))
1800 break;
1801
1802 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1803 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1804 tp->lost_out += tcp_skb_pcount(skb);
1805
1806 /* clear xmit_retrans hint */
1807 if (tp->retransmit_skb_hint &&
1808 before(TCP_SKB_CB(skb)->seq,
1809 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1810
1811 tp->retransmit_skb_hint = NULL;
1812 }
1813 }
1814
1815 tp->scoreboard_skb_hint = skb;
1816
1817 tcp_sync_left_out(tp);
1818 }
1819 }
1820
1821 /* CWND moderation, preventing bursts due to too big ACKs
1822 * in dubious situations.
1823 */
1824 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1825 {
1826 tp->snd_cwnd = min(tp->snd_cwnd,
1827 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1828 tp->snd_cwnd_stamp = tcp_time_stamp;
1829 }
1830
1831 /* Lower bound on congestion window is slow start threshold
1832 * unless congestion avoidance choice decides to overide it.
1833 */
1834 static inline u32 tcp_cwnd_min(const struct sock *sk)
1835 {
1836 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1837
1838 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1839 }
1840
1841 /* Decrease cwnd each second ack. */
1842 static void tcp_cwnd_down(struct sock *sk)
1843 {
1844 struct tcp_sock *tp = tcp_sk(sk);
1845 int decr = tp->snd_cwnd_cnt + 1;
1846
1847 tp->snd_cwnd_cnt = decr&1;
1848 decr >>= 1;
1849
1850 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1851 tp->snd_cwnd -= decr;
1852
1853 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1854 tp->snd_cwnd_stamp = tcp_time_stamp;
1855 }
1856
1857 /* Nothing was retransmitted or returned timestamp is less
1858 * than timestamp of the first retransmission.
1859 */
1860 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1861 {
1862 return !tp->retrans_stamp ||
1863 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1864 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1865 }
1866
1867 /* Undo procedures. */
1868
1869 #if FASTRETRANS_DEBUG > 1
1870 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1871 {
1872 struct inet_sock *inet = inet_sk(sk);
1873 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1874 msg,
1875 NIPQUAD(inet->daddr), ntohs(inet->dport),
1876 tp->snd_cwnd, tp->left_out,
1877 tp->snd_ssthresh, tp->prior_ssthresh,
1878 tp->packets_out);
1879 }
1880 #else
1881 #define DBGUNDO(x...) do { } while (0)
1882 #endif
1883
1884 static void tcp_undo_cwr(struct sock *sk, const int undo)
1885 {
1886 struct tcp_sock *tp = tcp_sk(sk);
1887
1888 if (tp->prior_ssthresh) {
1889 const struct inet_connection_sock *icsk = inet_csk(sk);
1890
1891 if (icsk->icsk_ca_ops->undo_cwnd)
1892 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1893 else
1894 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1895
1896 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1897 tp->snd_ssthresh = tp->prior_ssthresh;
1898 TCP_ECN_withdraw_cwr(tp);
1899 }
1900 } else {
1901 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1902 }
1903 tcp_moderate_cwnd(tp);
1904 tp->snd_cwnd_stamp = tcp_time_stamp;
1905
1906 /* There is something screwy going on with the retrans hints after
1907 an undo */
1908 clear_all_retrans_hints(tp);
1909 }
1910
1911 static inline int tcp_may_undo(struct tcp_sock *tp)
1912 {
1913 return tp->undo_marker &&
1914 (!tp->undo_retrans || tcp_packet_delayed(tp));
1915 }
1916
1917 /* People celebrate: "We love our President!" */
1918 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1919 {
1920 if (tcp_may_undo(tp)) {
1921 /* Happy end! We did not retransmit anything
1922 * or our original transmission succeeded.
1923 */
1924 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1925 tcp_undo_cwr(sk, 1);
1926 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1927 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1928 else
1929 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1930 tp->undo_marker = 0;
1931 }
1932 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1933 /* Hold old state until something *above* high_seq
1934 * is ACKed. For Reno it is MUST to prevent false
1935 * fast retransmits (RFC2582). SACK TCP is safe. */
1936 tcp_moderate_cwnd(tp);
1937 return 1;
1938 }
1939 tcp_set_ca_state(sk, TCP_CA_Open);
1940 return 0;
1941 }
1942
1943 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1944 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1945 {
1946 if (tp->undo_marker && !tp->undo_retrans) {
1947 DBGUNDO(sk, tp, "D-SACK");
1948 tcp_undo_cwr(sk, 1);
1949 tp->undo_marker = 0;
1950 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1951 }
1952 }
1953
1954 /* Undo during fast recovery after partial ACK. */
1955
1956 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1957 int acked)
1958 {
1959 /* Partial ACK arrived. Force Hoe's retransmit. */
1960 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1961
1962 if (tcp_may_undo(tp)) {
1963 /* Plain luck! Hole if filled with delayed
1964 * packet, rather than with a retransmit.
1965 */
1966 if (tp->retrans_out == 0)
1967 tp->retrans_stamp = 0;
1968
1969 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1970
1971 DBGUNDO(sk, tp, "Hoe");
1972 tcp_undo_cwr(sk, 0);
1973 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1974
1975 /* So... Do not make Hoe's retransmit yet.
1976 * If the first packet was delayed, the rest
1977 * ones are most probably delayed as well.
1978 */
1979 failed = 0;
1980 }
1981 return failed;
1982 }
1983
1984 /* Undo during loss recovery after partial ACK. */
1985 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1986 {
1987 if (tcp_may_undo(tp)) {
1988 struct sk_buff *skb;
1989 tcp_for_write_queue(skb, sk) {
1990 if (skb == tcp_send_head(sk))
1991 break;
1992 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1993 }
1994
1995 clear_all_retrans_hints(tp);
1996
1997 DBGUNDO(sk, tp, "partial loss");
1998 tp->lost_out = 0;
1999 tp->left_out = tp->sacked_out;
2000 tcp_undo_cwr(sk, 1);
2001 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2002 inet_csk(sk)->icsk_retransmits = 0;
2003 tp->undo_marker = 0;
2004 if (!IsReno(tp))
2005 tcp_set_ca_state(sk, TCP_CA_Open);
2006 return 1;
2007 }
2008 return 0;
2009 }
2010
2011 static inline void tcp_complete_cwr(struct sock *sk)
2012 {
2013 struct tcp_sock *tp = tcp_sk(sk);
2014 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2015 tp->snd_cwnd_stamp = tcp_time_stamp;
2016 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2017 }
2018
2019 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
2020 {
2021 tp->left_out = tp->sacked_out;
2022
2023 if (tp->retrans_out == 0)
2024 tp->retrans_stamp = 0;
2025
2026 if (flag&FLAG_ECE)
2027 tcp_enter_cwr(sk, 1);
2028
2029 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2030 int state = TCP_CA_Open;
2031
2032 if (tp->left_out || tp->retrans_out || tp->undo_marker)
2033 state = TCP_CA_Disorder;
2034
2035 if (inet_csk(sk)->icsk_ca_state != state) {
2036 tcp_set_ca_state(sk, state);
2037 tp->high_seq = tp->snd_nxt;
2038 }
2039 tcp_moderate_cwnd(tp);
2040 } else {
2041 tcp_cwnd_down(sk);
2042 }
2043 }
2044
2045 static void tcp_mtup_probe_failed(struct sock *sk)
2046 {
2047 struct inet_connection_sock *icsk = inet_csk(sk);
2048
2049 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2050 icsk->icsk_mtup.probe_size = 0;
2051 }
2052
2053 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2054 {
2055 struct tcp_sock *tp = tcp_sk(sk);
2056 struct inet_connection_sock *icsk = inet_csk(sk);
2057
2058 /* FIXME: breaks with very large cwnd */
2059 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2060 tp->snd_cwnd = tp->snd_cwnd *
2061 tcp_mss_to_mtu(sk, tp->mss_cache) /
2062 icsk->icsk_mtup.probe_size;
2063 tp->snd_cwnd_cnt = 0;
2064 tp->snd_cwnd_stamp = tcp_time_stamp;
2065 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2066
2067 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2068 icsk->icsk_mtup.probe_size = 0;
2069 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2070 }
2071
2072
2073 /* Process an event, which can update packets-in-flight not trivially.
2074 * Main goal of this function is to calculate new estimate for left_out,
2075 * taking into account both packets sitting in receiver's buffer and
2076 * packets lost by network.
2077 *
2078 * Besides that it does CWND reduction, when packet loss is detected
2079 * and changes state of machine.
2080 *
2081 * It does _not_ decide what to send, it is made in function
2082 * tcp_xmit_retransmit_queue().
2083 */
2084 static void
2085 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
2086 int prior_packets, int flag)
2087 {
2088 struct inet_connection_sock *icsk = inet_csk(sk);
2089 struct tcp_sock *tp = tcp_sk(sk);
2090 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
2091
2092 /* Some technical things:
2093 * 1. Reno does not count dupacks (sacked_out) automatically. */
2094 if (!tp->packets_out)
2095 tp->sacked_out = 0;
2096 /* 2. SACK counts snd_fack in packets inaccurately. */
2097 if (tp->sacked_out == 0)
2098 tp->fackets_out = 0;
2099
2100 /* Now state machine starts.
2101 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2102 if (flag&FLAG_ECE)
2103 tp->prior_ssthresh = 0;
2104
2105 /* B. In all the states check for reneging SACKs. */
2106 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2107 return;
2108
2109 /* C. Process data loss notification, provided it is valid. */
2110 if ((flag&FLAG_DATA_LOST) &&
2111 before(tp->snd_una, tp->high_seq) &&
2112 icsk->icsk_ca_state != TCP_CA_Open &&
2113 tp->fackets_out > tp->reordering) {
2114 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
2115 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2116 }
2117
2118 /* D. Synchronize left_out to current state. */
2119 tcp_sync_left_out(tp);
2120
2121 /* E. Check state exit conditions. State can be terminated
2122 * when high_seq is ACKed. */
2123 if (icsk->icsk_ca_state == TCP_CA_Open) {
2124 BUG_TRAP(tp->retrans_out == 0);
2125 tp->retrans_stamp = 0;
2126 } else if (!before(tp->snd_una, tp->high_seq)) {
2127 switch (icsk->icsk_ca_state) {
2128 case TCP_CA_Loss:
2129 icsk->icsk_retransmits = 0;
2130 if (tcp_try_undo_recovery(sk, tp))
2131 return;
2132 break;
2133
2134 case TCP_CA_CWR:
2135 /* CWR is to be held something *above* high_seq
2136 * is ACKed for CWR bit to reach receiver. */
2137 if (tp->snd_una != tp->high_seq) {
2138 tcp_complete_cwr(sk);
2139 tcp_set_ca_state(sk, TCP_CA_Open);
2140 }
2141 break;
2142
2143 case TCP_CA_Disorder:
2144 tcp_try_undo_dsack(sk, tp);
2145 if (!tp->undo_marker ||
2146 /* For SACK case do not Open to allow to undo
2147 * catching for all duplicate ACKs. */
2148 IsReno(tp) || tp->snd_una != tp->high_seq) {
2149 tp->undo_marker = 0;
2150 tcp_set_ca_state(sk, TCP_CA_Open);
2151 }
2152 break;
2153
2154 case TCP_CA_Recovery:
2155 if (IsReno(tp))
2156 tcp_reset_reno_sack(tp);
2157 if (tcp_try_undo_recovery(sk, tp))
2158 return;
2159 tcp_complete_cwr(sk);
2160 break;
2161 }
2162 }
2163
2164 /* F. Process state. */
2165 switch (icsk->icsk_ca_state) {
2166 case TCP_CA_Recovery:
2167 if (prior_snd_una == tp->snd_una) {
2168 if (IsReno(tp) && is_dupack)
2169 tcp_add_reno_sack(sk);
2170 } else {
2171 int acked = prior_packets - tp->packets_out;
2172 if (IsReno(tp))
2173 tcp_remove_reno_sacks(sk, tp, acked);
2174 is_dupack = tcp_try_undo_partial(sk, tp, acked);
2175 }
2176 break;
2177 case TCP_CA_Loss:
2178 if (flag&FLAG_DATA_ACKED)
2179 icsk->icsk_retransmits = 0;
2180 if (!tcp_try_undo_loss(sk, tp)) {
2181 tcp_moderate_cwnd(tp);
2182 tcp_xmit_retransmit_queue(sk);
2183 return;
2184 }
2185 if (icsk->icsk_ca_state != TCP_CA_Open)
2186 return;
2187 /* Loss is undone; fall through to processing in Open state. */
2188 default:
2189 if (IsReno(tp)) {
2190 if (tp->snd_una != prior_snd_una)
2191 tcp_reset_reno_sack(tp);
2192 if (is_dupack)
2193 tcp_add_reno_sack(sk);
2194 }
2195
2196 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2197 tcp_try_undo_dsack(sk, tp);
2198
2199 if (!tcp_time_to_recover(sk, tp)) {
2200 tcp_try_to_open(sk, tp, flag);
2201 return;
2202 }
2203
2204 /* MTU probe failure: don't reduce cwnd */
2205 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2206 icsk->icsk_mtup.probe_size &&
2207 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2208 tcp_mtup_probe_failed(sk);
2209 /* Restores the reduction we did in tcp_mtup_probe() */
2210 tp->snd_cwnd++;
2211 tcp_simple_retransmit(sk);
2212 return;
2213 }
2214
2215 /* Otherwise enter Recovery state */
2216
2217 if (IsReno(tp))
2218 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2219 else
2220 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2221
2222 tp->high_seq = tp->snd_nxt;
2223 tp->prior_ssthresh = 0;
2224 tp->undo_marker = tp->snd_una;
2225 tp->undo_retrans = tp->retrans_out;
2226
2227 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2228 if (!(flag&FLAG_ECE))
2229 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2230 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2231 TCP_ECN_queue_cwr(tp);
2232 }
2233
2234 tp->bytes_acked = 0;
2235 tp->snd_cwnd_cnt = 0;
2236 tcp_set_ca_state(sk, TCP_CA_Recovery);
2237 }
2238
2239 if (is_dupack || tcp_head_timedout(sk, tp))
2240 tcp_update_scoreboard(sk, tp);
2241 tcp_cwnd_down(sk);
2242 tcp_xmit_retransmit_queue(sk);
2243 }
2244
2245 /* Read draft-ietf-tcplw-high-performance before mucking
2246 * with this code. (Supersedes RFC1323)
2247 */
2248 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2249 {
2250 /* RTTM Rule: A TSecr value received in a segment is used to
2251 * update the averaged RTT measurement only if the segment
2252 * acknowledges some new data, i.e., only if it advances the
2253 * left edge of the send window.
2254 *
2255 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2256 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2257 *
2258 * Changed: reset backoff as soon as we see the first valid sample.
2259 * If we do not, we get strongly overestimated rto. With timestamps
2260 * samples are accepted even from very old segments: f.e., when rtt=1
2261 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2262 * answer arrives rto becomes 120 seconds! If at least one of segments
2263 * in window is lost... Voila. --ANK (010210)
2264 */
2265 struct tcp_sock *tp = tcp_sk(sk);
2266 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2267 tcp_rtt_estimator(sk, seq_rtt);
2268 tcp_set_rto(sk);
2269 inet_csk(sk)->icsk_backoff = 0;
2270 tcp_bound_rto(sk);
2271 }
2272
2273 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2274 {
2275 /* We don't have a timestamp. Can only use
2276 * packets that are not retransmitted to determine
2277 * rtt estimates. Also, we must not reset the
2278 * backoff for rto until we get a non-retransmitted
2279 * packet. This allows us to deal with a situation
2280 * where the network delay has increased suddenly.
2281 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2282 */
2283
2284 if (flag & FLAG_RETRANS_DATA_ACKED)
2285 return;
2286
2287 tcp_rtt_estimator(sk, seq_rtt);
2288 tcp_set_rto(sk);
2289 inet_csk(sk)->icsk_backoff = 0;
2290 tcp_bound_rto(sk);
2291 }
2292
2293 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2294 const s32 seq_rtt)
2295 {
2296 const struct tcp_sock *tp = tcp_sk(sk);
2297 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2298 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2299 tcp_ack_saw_tstamp(sk, flag);
2300 else if (seq_rtt >= 0)
2301 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2302 }
2303
2304 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2305 u32 in_flight, int good)
2306 {
2307 const struct inet_connection_sock *icsk = inet_csk(sk);
2308 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2309 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2310 }
2311
2312 /* Restart timer after forward progress on connection.
2313 * RFC2988 recommends to restart timer to now+rto.
2314 */
2315
2316 static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
2317 {
2318 if (!tp->packets_out) {
2319 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2320 } else {
2321 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2322 }
2323 }
2324
2325 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2326 __u32 now, __s32 *seq_rtt)
2327 {
2328 struct tcp_sock *tp = tcp_sk(sk);
2329 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2330 __u32 seq = tp->snd_una;
2331 __u32 packets_acked;
2332 int acked = 0;
2333
2334 /* If we get here, the whole TSO packet has not been
2335 * acked.
2336 */
2337 BUG_ON(!after(scb->end_seq, seq));
2338
2339 packets_acked = tcp_skb_pcount(skb);
2340 if (tcp_trim_head(sk, skb, seq - scb->seq))
2341 return 0;
2342 packets_acked -= tcp_skb_pcount(skb);
2343
2344 if (packets_acked) {
2345 __u8 sacked = scb->sacked;
2346
2347 acked |= FLAG_DATA_ACKED;
2348 if (sacked) {
2349 if (sacked & TCPCB_RETRANS) {
2350 if (sacked & TCPCB_SACKED_RETRANS)
2351 tp->retrans_out -= packets_acked;
2352 acked |= FLAG_RETRANS_DATA_ACKED;
2353 *seq_rtt = -1;
2354 } else if (*seq_rtt < 0)
2355 *seq_rtt = now - scb->when;
2356 if (sacked & TCPCB_SACKED_ACKED)
2357 tp->sacked_out -= packets_acked;
2358 if (sacked & TCPCB_LOST)
2359 tp->lost_out -= packets_acked;
2360 if (sacked & TCPCB_URG) {
2361 if (tp->urg_mode &&
2362 !before(seq, tp->snd_up))
2363 tp->urg_mode = 0;
2364 }
2365 } else if (*seq_rtt < 0)
2366 *seq_rtt = now - scb->when;
2367
2368 if (tp->fackets_out) {
2369 __u32 dval = min(tp->fackets_out, packets_acked);
2370 tp->fackets_out -= dval;
2371 }
2372 tp->packets_out -= packets_acked;
2373
2374 BUG_ON(tcp_skb_pcount(skb) == 0);
2375 BUG_ON(!before(scb->seq, scb->end_seq));
2376 }
2377
2378 return acked;
2379 }
2380
2381 static u32 tcp_usrtt(struct timeval *tv)
2382 {
2383 struct timeval now;
2384
2385 do_gettimeofday(&now);
2386 return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2387 }
2388
2389 /* Remove acknowledged frames from the retransmission queue. */
2390 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2391 {
2392 struct tcp_sock *tp = tcp_sk(sk);
2393 const struct inet_connection_sock *icsk = inet_csk(sk);
2394 struct sk_buff *skb;
2395 __u32 now = tcp_time_stamp;
2396 int acked = 0;
2397 __s32 seq_rtt = -1;
2398 u32 pkts_acked = 0;
2399 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2400 = icsk->icsk_ca_ops->rtt_sample;
2401 struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
2402
2403 while ((skb = tcp_write_queue_head(sk)) &&
2404 skb != tcp_send_head(sk)) {
2405 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2406 __u8 sacked = scb->sacked;
2407
2408 /* If our packet is before the ack sequence we can
2409 * discard it as it's confirmed to have arrived at
2410 * the other end.
2411 */
2412 if (after(scb->end_seq, tp->snd_una)) {
2413 if (tcp_skb_pcount(skb) > 1 &&
2414 after(tp->snd_una, scb->seq))
2415 acked |= tcp_tso_acked(sk, skb,
2416 now, &seq_rtt);
2417 break;
2418 }
2419
2420 /* Initial outgoing SYN's get put onto the write_queue
2421 * just like anything else we transmit. It is not
2422 * true data, and if we misinform our callers that
2423 * this ACK acks real data, we will erroneously exit
2424 * connection startup slow start one packet too
2425 * quickly. This is severely frowned upon behavior.
2426 */
2427 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2428 acked |= FLAG_DATA_ACKED;
2429 ++pkts_acked;
2430 } else {
2431 acked |= FLAG_SYN_ACKED;
2432 tp->retrans_stamp = 0;
2433 }
2434
2435 /* MTU probing checks */
2436 if (icsk->icsk_mtup.probe_size) {
2437 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
2438 tcp_mtup_probe_success(sk, skb);
2439 }
2440 }
2441
2442 if (sacked) {
2443 if (sacked & TCPCB_RETRANS) {
2444 if (sacked & TCPCB_SACKED_RETRANS)
2445 tp->retrans_out -= tcp_skb_pcount(skb);
2446 acked |= FLAG_RETRANS_DATA_ACKED;
2447 seq_rtt = -1;
2448 } else if (seq_rtt < 0) {
2449 seq_rtt = now - scb->when;
2450 skb_get_timestamp(skb, &tv);
2451 }
2452 if (sacked & TCPCB_SACKED_ACKED)
2453 tp->sacked_out -= tcp_skb_pcount(skb);
2454 if (sacked & TCPCB_LOST)
2455 tp->lost_out -= tcp_skb_pcount(skb);
2456 if (sacked & TCPCB_URG) {
2457 if (tp->urg_mode &&
2458 !before(scb->end_seq, tp->snd_up))
2459 tp->urg_mode = 0;
2460 }
2461 } else if (seq_rtt < 0) {
2462 seq_rtt = now - scb->when;
2463 skb_get_timestamp(skb, &tv);
2464 }
2465 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2466 tcp_packets_out_dec(tp, skb);
2467 tcp_unlink_write_queue(skb, sk);
2468 sk_stream_free_skb(sk, skb);
2469 clear_all_retrans_hints(tp);
2470 }
2471
2472 if (acked&FLAG_ACKED) {
2473 tcp_ack_update_rtt(sk, acked, seq_rtt);
2474 tcp_ack_packets_out(sk, tp);
2475 if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2476 (*rtt_sample)(sk, tcp_usrtt(&tv));
2477
2478 if (icsk->icsk_ca_ops->pkts_acked)
2479 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2480 }
2481
2482 #if FASTRETRANS_DEBUG > 0
2483 BUG_TRAP((int)tp->sacked_out >= 0);
2484 BUG_TRAP((int)tp->lost_out >= 0);
2485 BUG_TRAP((int)tp->retrans_out >= 0);
2486 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2487 const struct inet_connection_sock *icsk = inet_csk(sk);
2488 if (tp->lost_out) {
2489 printk(KERN_DEBUG "Leak l=%u %d\n",
2490 tp->lost_out, icsk->icsk_ca_state);
2491 tp->lost_out = 0;
2492 }
2493 if (tp->sacked_out) {
2494 printk(KERN_DEBUG "Leak s=%u %d\n",
2495 tp->sacked_out, icsk->icsk_ca_state);
2496 tp->sacked_out = 0;
2497 }
2498 if (tp->retrans_out) {
2499 printk(KERN_DEBUG "Leak r=%u %d\n",
2500 tp->retrans_out, icsk->icsk_ca_state);
2501 tp->retrans_out = 0;
2502 }
2503 }
2504 #endif
2505 *seq_rtt_p = seq_rtt;
2506 return acked;
2507 }
2508
2509 static void tcp_ack_probe(struct sock *sk)
2510 {
2511 const struct tcp_sock *tp = tcp_sk(sk);
2512 struct inet_connection_sock *icsk = inet_csk(sk);
2513
2514 /* Was it a usable window open? */
2515
2516 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2517 tp->snd_una + tp->snd_wnd)) {
2518 icsk->icsk_backoff = 0;
2519 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2520 /* Socket must be waked up by subsequent tcp_data_snd_check().
2521 * This function is not for random using!
2522 */
2523 } else {
2524 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2525 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2526 TCP_RTO_MAX);
2527 }
2528 }
2529
2530 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2531 {
2532 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2533 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2534 }
2535
2536 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2537 {
2538 const struct tcp_sock *tp = tcp_sk(sk);
2539 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2540 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2541 }
2542
2543 /* Check that window update is acceptable.
2544 * The function assumes that snd_una<=ack<=snd_next.
2545 */
2546 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2547 const u32 ack_seq, const u32 nwin)
2548 {
2549 return (after(ack, tp->snd_una) ||
2550 after(ack_seq, tp->snd_wl1) ||
2551 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2552 }
2553
2554 /* Update our send window.
2555 *
2556 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2557 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2558 */
2559 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2560 struct sk_buff *skb, u32 ack, u32 ack_seq)
2561 {
2562 int flag = 0;
2563 u32 nwin = ntohs(tcp_hdr(skb)->window);
2564
2565 if (likely(!tcp_hdr(skb)->syn))
2566 nwin <<= tp->rx_opt.snd_wscale;
2567
2568 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2569 flag |= FLAG_WIN_UPDATE;
2570 tcp_update_wl(tp, ack, ack_seq);
2571
2572 if (tp->snd_wnd != nwin) {
2573 tp->snd_wnd = nwin;
2574
2575 /* Note, it is the only place, where
2576 * fast path is recovered for sending TCP.
2577 */
2578 tp->pred_flags = 0;
2579 tcp_fast_path_check(sk, tp);
2580
2581 if (nwin > tp->max_window) {
2582 tp->max_window = nwin;
2583 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2584 }
2585 }
2586 }
2587
2588 tp->snd_una = ack;
2589
2590 return flag;
2591 }
2592
2593 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2594 * continue in congestion avoidance.
2595 */
2596 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2597 {
2598 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2599 tp->snd_cwnd_cnt = 0;
2600 tcp_moderate_cwnd(tp);
2601 }
2602
2603 /* A conservative spurious RTO response algorithm: reduce cwnd using
2604 * rate halving and continue in congestion avoidance.
2605 */
2606 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2607 {
2608 tcp_enter_cwr(sk, 0);
2609 }
2610
2611 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2612 {
2613 if (flag&FLAG_ECE)
2614 tcp_ratehalving_spur_to_response(sk);
2615 else
2616 tcp_undo_cwr(sk, 1);
2617 }
2618
2619 /* F-RTO spurious RTO detection algorithm (RFC4138)
2620 *
2621 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2622 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2623 * window (but not to or beyond highest sequence sent before RTO):
2624 * On First ACK, send two new segments out.
2625 * On Second ACK, RTO was likely spurious. Do spurious response (response
2626 * algorithm is not part of the F-RTO detection algorithm
2627 * given in RFC4138 but can be selected separately).
2628 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2629 * and TCP falls back to conventional RTO recovery.
2630 *
2631 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2632 * original window even after we transmit two new data segments.
2633 *
2634 * SACK version:
2635 * on first step, wait until first cumulative ACK arrives, then move to
2636 * the second step. In second step, the next ACK decides.
2637 *
2638 * F-RTO is implemented (mainly) in four functions:
2639 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2640 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2641 * called when tcp_use_frto() showed green light
2642 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2643 * - tcp_enter_frto_loss() is called if there is not enough evidence
2644 * to prove that the RTO is indeed spurious. It transfers the control
2645 * from F-RTO to the conventional RTO recovery
2646 */
2647 static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
2648 {
2649 struct tcp_sock *tp = tcp_sk(sk);
2650
2651 tcp_sync_left_out(tp);
2652
2653 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2654 if (flag&FLAG_DATA_ACKED)
2655 inet_csk(sk)->icsk_retransmits = 0;
2656
2657 if (!before(tp->snd_una, tp->frto_highmark)) {
2658 tcp_enter_frto_loss(sk, tp->frto_counter + 1, flag);
2659 return 1;
2660 }
2661
2662 if (!IsSackFrto() || IsReno(tp)) {
2663 /* RFC4138 shortcoming in step 2; should also have case c):
2664 * ACK isn't duplicate nor advances window, e.g., opposite dir
2665 * data, winupdate
2666 */
2667 if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2668 !(flag&FLAG_FORWARD_PROGRESS))
2669 return 1;
2670
2671 if (!(flag&FLAG_DATA_ACKED)) {
2672 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2673 flag);
2674 return 1;
2675 }
2676 } else {
2677 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2678 /* Prevent sending of new data. */
2679 tp->snd_cwnd = min(tp->snd_cwnd,
2680 tcp_packets_in_flight(tp));
2681 return 1;
2682 }
2683
2684 if ((tp->frto_counter == 2) &&
2685 (!(flag&FLAG_FORWARD_PROGRESS) ||
2686 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2687 /* RFC4138 shortcoming (see comment above) */
2688 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2689 return 1;
2690
2691 tcp_enter_frto_loss(sk, 3, flag);
2692 return 1;
2693 }
2694 }
2695
2696 if (tp->frto_counter == 1) {
2697 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2698 tp->frto_counter = 2;
2699 return 1;
2700 } else /* frto_counter == 2 */ {
2701 switch (sysctl_tcp_frto_response) {
2702 case 2:
2703 tcp_undo_spur_to_response(sk, flag);
2704 break;
2705 case 1:
2706 tcp_conservative_spur_to_response(tp);
2707 break;
2708 default:
2709 tcp_ratehalving_spur_to_response(sk);
2710 break;
2711 }
2712 tp->frto_counter = 0;
2713 }
2714 return 0;
2715 }
2716
2717 /* This routine deals with incoming acks, but not outgoing ones. */
2718 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2719 {
2720 struct inet_connection_sock *icsk = inet_csk(sk);
2721 struct tcp_sock *tp = tcp_sk(sk);
2722 u32 prior_snd_una = tp->snd_una;
2723 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2724 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2725 u32 prior_in_flight;
2726 s32 seq_rtt;
2727 int prior_packets;
2728 int frto_cwnd = 0;
2729
2730 /* If the ack is newer than sent or older than previous acks
2731 * then we can probably ignore it.
2732 */
2733 if (after(ack, tp->snd_nxt))
2734 goto uninteresting_ack;
2735
2736 if (before(ack, prior_snd_una))
2737 goto old_ack;
2738
2739 if (sysctl_tcp_abc) {
2740 if (icsk->icsk_ca_state < TCP_CA_CWR)
2741 tp->bytes_acked += ack - prior_snd_una;
2742 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2743 /* we assume just one segment left network */
2744 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2745 }
2746
2747 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2748 /* Window is constant, pure forward advance.
2749 * No more checks are required.
2750 * Note, we use the fact that SND.UNA>=SND.WL2.
2751 */
2752 tcp_update_wl(tp, ack, ack_seq);
2753 tp->snd_una = ack;
2754 flag |= FLAG_WIN_UPDATE;
2755
2756 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2757
2758 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2759 } else {
2760 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2761 flag |= FLAG_DATA;
2762 else
2763 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2764
2765 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2766
2767 if (TCP_SKB_CB(skb)->sacked)
2768 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2769
2770 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
2771 flag |= FLAG_ECE;
2772
2773 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2774 }
2775
2776 /* We passed data and got it acked, remove any soft error
2777 * log. Something worked...
2778 */
2779 sk->sk_err_soft = 0;
2780 tp->rcv_tstamp = tcp_time_stamp;
2781 prior_packets = tp->packets_out;
2782 if (!prior_packets)
2783 goto no_queue;
2784
2785 prior_in_flight = tcp_packets_in_flight(tp);
2786
2787 /* See if we can take anything off of the retransmit queue. */
2788 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2789
2790 if (tp->frto_counter)
2791 frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag);
2792
2793 if (tcp_ack_is_dubious(sk, flag)) {
2794 /* Advance CWND, if state allows this. */
2795 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2796 tcp_may_raise_cwnd(sk, flag))
2797 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2798 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2799 } else {
2800 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
2801 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2802 }
2803
2804 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2805 dst_confirm(sk->sk_dst_cache);
2806
2807 return 1;
2808
2809 no_queue:
2810 icsk->icsk_probes_out = 0;
2811
2812 /* If this ack opens up a zero window, clear backoff. It was
2813 * being used to time the probes, and is probably far higher than
2814 * it needs to be for normal retransmission.
2815 */
2816 if (tcp_send_head(sk))
2817 tcp_ack_probe(sk);
2818 return 1;
2819
2820 old_ack:
2821 if (TCP_SKB_CB(skb)->sacked)
2822 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2823
2824 uninteresting_ack:
2825 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2826 return 0;
2827 }
2828
2829
2830 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2831 * But, this can also be called on packets in the established flow when
2832 * the fast version below fails.
2833 */
2834 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2835 {
2836 unsigned char *ptr;
2837 struct tcphdr *th = tcp_hdr(skb);
2838 int length=(th->doff*4)-sizeof(struct tcphdr);
2839
2840 ptr = (unsigned char *)(th + 1);
2841 opt_rx->saw_tstamp = 0;
2842
2843 while (length > 0) {
2844 int opcode=*ptr++;
2845 int opsize;
2846
2847 switch (opcode) {
2848 case TCPOPT_EOL:
2849 return;
2850 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2851 length--;
2852 continue;
2853 default:
2854 opsize=*ptr++;
2855 if (opsize < 2) /* "silly options" */
2856 return;
2857 if (opsize > length)
2858 return; /* don't parse partial options */
2859 switch (opcode) {
2860 case TCPOPT_MSS:
2861 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
2862 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
2863 if (in_mss) {
2864 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2865 in_mss = opt_rx->user_mss;
2866 opt_rx->mss_clamp = in_mss;
2867 }
2868 }
2869 break;
2870 case TCPOPT_WINDOW:
2871 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
2872 if (sysctl_tcp_window_scaling) {
2873 __u8 snd_wscale = *(__u8 *) ptr;
2874 opt_rx->wscale_ok = 1;
2875 if (snd_wscale > 14) {
2876 if (net_ratelimit())
2877 printk(KERN_INFO "tcp_parse_options: Illegal window "
2878 "scaling value %d >14 received.\n",
2879 snd_wscale);
2880 snd_wscale = 14;
2881 }
2882 opt_rx->snd_wscale = snd_wscale;
2883 }
2884 break;
2885 case TCPOPT_TIMESTAMP:
2886 if (opsize==TCPOLEN_TIMESTAMP) {
2887 if ((estab && opt_rx->tstamp_ok) ||
2888 (!estab && sysctl_tcp_timestamps)) {
2889 opt_rx->saw_tstamp = 1;
2890 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2891 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
2892 }
2893 }
2894 break;
2895 case TCPOPT_SACK_PERM:
2896 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2897 if (sysctl_tcp_sack) {
2898 opt_rx->sack_ok = 1;
2899 tcp_sack_reset(opt_rx);
2900 }
2901 }
2902 break;
2903
2904 case TCPOPT_SACK:
2905 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2906 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2907 opt_rx->sack_ok) {
2908 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2909 }
2910 #ifdef CONFIG_TCP_MD5SIG
2911 case TCPOPT_MD5SIG:
2912 /*
2913 * The MD5 Hash has already been
2914 * checked (see tcp_v{4,6}_do_rcv()).
2915 */
2916 break;
2917 #endif
2918 }
2919
2920 ptr+=opsize-2;
2921 length-=opsize;
2922 }
2923 }
2924 }
2925
2926 /* Fast parse options. This hopes to only see timestamps.
2927 * If it is wrong it falls back on tcp_parse_options().
2928 */
2929 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2930 struct tcp_sock *tp)
2931 {
2932 if (th->doff == sizeof(struct tcphdr)>>2) {
2933 tp->rx_opt.saw_tstamp = 0;
2934 return 0;
2935 } else if (tp->rx_opt.tstamp_ok &&
2936 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2937 __be32 *ptr = (__be32 *)(th + 1);
2938 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2939 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2940 tp->rx_opt.saw_tstamp = 1;
2941 ++ptr;
2942 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2943 ++ptr;
2944 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2945 return 1;
2946 }
2947 }
2948 tcp_parse_options(skb, &tp->rx_opt, 1);
2949 return 1;
2950 }
2951
2952 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2953 {
2954 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2955 tp->rx_opt.ts_recent_stamp = get_seconds();
2956 }
2957
2958 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2959 {
2960 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2961 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2962 * extra check below makes sure this can only happen
2963 * for pure ACK frames. -DaveM
2964 *
2965 * Not only, also it occurs for expired timestamps.
2966 */
2967
2968 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2969 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2970 tcp_store_ts_recent(tp);
2971 }
2972 }
2973
2974 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2975 *
2976 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2977 * it can pass through stack. So, the following predicate verifies that
2978 * this segment is not used for anything but congestion avoidance or
2979 * fast retransmit. Moreover, we even are able to eliminate most of such
2980 * second order effects, if we apply some small "replay" window (~RTO)
2981 * to timestamp space.
2982 *
2983 * All these measures still do not guarantee that we reject wrapped ACKs
2984 * on networks with high bandwidth, when sequence space is recycled fastly,
2985 * but it guarantees that such events will be very rare and do not affect
2986 * connection seriously. This doesn't look nice, but alas, PAWS is really
2987 * buggy extension.
2988 *
2989 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2990 * states that events when retransmit arrives after original data are rare.
2991 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2992 * the biggest problem on large power networks even with minor reordering.
2993 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2994 * up to bandwidth of 18Gigabit/sec. 8) ]
2995 */
2996
2997 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2998 {
2999 struct tcp_sock *tp = tcp_sk(sk);
3000 struct tcphdr *th = tcp_hdr(skb);
3001 u32 seq = TCP_SKB_CB(skb)->seq;
3002 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3003
3004 return (/* 1. Pure ACK with correct sequence number. */
3005 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3006
3007 /* 2. ... and duplicate ACK. */
3008 ack == tp->snd_una &&
3009
3010 /* 3. ... and does not update window. */
3011 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3012
3013 /* 4. ... and sits in replay window. */
3014 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3015 }
3016
3017 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3018 {
3019 const struct tcp_sock *tp = tcp_sk(sk);
3020 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3021 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3022 !tcp_disordered_ack(sk, skb));
3023 }
3024
3025 /* Check segment sequence number for validity.
3026 *
3027 * Segment controls are considered valid, if the segment
3028 * fits to the window after truncation to the window. Acceptability
3029 * of data (and SYN, FIN, of course) is checked separately.
3030 * See tcp_data_queue(), for example.
3031 *
3032 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3033 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3034 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3035 * (borrowed from freebsd)
3036 */
3037
3038 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3039 {
3040 return !before(end_seq, tp->rcv_wup) &&
3041 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3042 }
3043
3044 /* When we get a reset we do this. */
3045 static void tcp_reset(struct sock *sk)
3046 {
3047 /* We want the right error as BSD sees it (and indeed as we do). */
3048 switch (sk->sk_state) {
3049 case TCP_SYN_SENT:
3050 sk->sk_err = ECONNREFUSED;
3051 break;
3052 case TCP_CLOSE_WAIT:
3053 sk->sk_err = EPIPE;
3054 break;
3055 case TCP_CLOSE:
3056 return;
3057 default:
3058 sk->sk_err = ECONNRESET;
3059 }
3060
3061 if (!sock_flag(sk, SOCK_DEAD))
3062 sk->sk_error_report(sk);
3063
3064 tcp_done(sk);
3065 }
3066
3067 /*
3068 * Process the FIN bit. This now behaves as it is supposed to work
3069 * and the FIN takes effect when it is validly part of sequence
3070 * space. Not before when we get holes.
3071 *
3072 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3073 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3074 * TIME-WAIT)
3075 *
3076 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3077 * close and we go into CLOSING (and later onto TIME-WAIT)
3078 *
3079 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3080 */
3081 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3082 {
3083 struct tcp_sock *tp = tcp_sk(sk);
3084
3085 inet_csk_schedule_ack(sk);
3086
3087 sk->sk_shutdown |= RCV_SHUTDOWN;
3088 sock_set_flag(sk, SOCK_DONE);
3089
3090 switch (sk->sk_state) {
3091 case TCP_SYN_RECV:
3092 case TCP_ESTABLISHED:
3093 /* Move to CLOSE_WAIT */
3094 tcp_set_state(sk, TCP_CLOSE_WAIT);
3095 inet_csk(sk)->icsk_ack.pingpong = 1;
3096 break;
3097
3098 case TCP_CLOSE_WAIT:
3099 case TCP_CLOSING:
3100 /* Received a retransmission of the FIN, do
3101 * nothing.
3102 */
3103 break;
3104 case TCP_LAST_ACK:
3105 /* RFC793: Remain in the LAST-ACK state. */
3106 break;
3107
3108 case TCP_FIN_WAIT1:
3109 /* This case occurs when a simultaneous close
3110 * happens, we must ack the received FIN and
3111 * enter the CLOSING state.
3112 */
3113 tcp_send_ack(sk);
3114 tcp_set_state(sk, TCP_CLOSING);
3115 break;
3116 case TCP_FIN_WAIT2:
3117 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3118 tcp_send_ack(sk);
3119 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3120 break;
3121 default:
3122 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3123 * cases we should never reach this piece of code.
3124 */
3125 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3126 __FUNCTION__, sk->sk_state);
3127 break;
3128 }
3129
3130 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3131 * Probably, we should reset in this case. For now drop them.
3132 */
3133 __skb_queue_purge(&tp->out_of_order_queue);
3134 if (tp->rx_opt.sack_ok)
3135 tcp_sack_reset(&tp->rx_opt);
3136 sk_stream_mem_reclaim(sk);
3137
3138 if (!sock_flag(sk, SOCK_DEAD)) {
3139 sk->sk_state_change(sk);
3140
3141 /* Do not send POLL_HUP for half duplex close. */
3142 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3143 sk->sk_state == TCP_CLOSE)
3144 sk_wake_async(sk, 1, POLL_HUP);
3145 else
3146 sk_wake_async(sk, 1, POLL_IN);
3147 }
3148 }
3149
3150 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3151 {
3152 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3153 if (before(seq, sp->start_seq))
3154 sp->start_seq = seq;
3155 if (after(end_seq, sp->end_seq))
3156 sp->end_seq = end_seq;
3157 return 1;
3158 }
3159 return 0;
3160 }
3161
3162 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3163 {
3164 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3165 if (before(seq, tp->rcv_nxt))
3166 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3167 else
3168 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3169
3170 tp->rx_opt.dsack = 1;
3171 tp->duplicate_sack[0].start_seq = seq;
3172 tp->duplicate_sack[0].end_seq = end_seq;
3173 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3174 }
3175 }
3176
3177 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3178 {
3179 if (!tp->rx_opt.dsack)
3180 tcp_dsack_set(tp, seq, end_seq);
3181 else
3182 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3183 }
3184
3185 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3186 {
3187 struct tcp_sock *tp = tcp_sk(sk);
3188
3189 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3190 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3191 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3192 tcp_enter_quickack_mode(sk);
3193
3194 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3195 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3196
3197 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3198 end_seq = tp->rcv_nxt;
3199 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3200 }
3201 }
3202
3203 tcp_send_ack(sk);
3204 }
3205
3206 /* These routines update the SACK block as out-of-order packets arrive or
3207 * in-order packets close up the sequence space.
3208 */
3209 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3210 {
3211 int this_sack;
3212 struct tcp_sack_block *sp = &tp->selective_acks[0];
3213 struct tcp_sack_block *swalk = sp+1;
3214
3215 /* See if the recent change to the first SACK eats into
3216 * or hits the sequence space of other SACK blocks, if so coalesce.
3217 */
3218 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3219 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3220 int i;
3221
3222 /* Zap SWALK, by moving every further SACK up by one slot.
3223 * Decrease num_sacks.
3224 */
3225 tp->rx_opt.num_sacks--;
3226 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3227 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3228 sp[i] = sp[i+1];
3229 continue;
3230 }
3231 this_sack++, swalk++;
3232 }
3233 }
3234
3235 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3236 {
3237 __u32 tmp;
3238
3239 tmp = sack1->start_seq;
3240 sack1->start_seq = sack2->start_seq;
3241 sack2->start_seq = tmp;
3242
3243 tmp = sack1->end_seq;
3244 sack1->end_seq = sack2->end_seq;
3245 sack2->end_seq = tmp;
3246 }
3247
3248 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3249 {
3250 struct tcp_sock *tp = tcp_sk(sk);
3251 struct tcp_sack_block *sp = &tp->selective_acks[0];
3252 int cur_sacks = tp->rx_opt.num_sacks;
3253 int this_sack;
3254
3255 if (!cur_sacks)
3256 goto new_sack;
3257
3258 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3259 if (tcp_sack_extend(sp, seq, end_seq)) {
3260 /* Rotate this_sack to the first one. */
3261 for (; this_sack>0; this_sack--, sp--)
3262 tcp_sack_swap(sp, sp-1);
3263 if (cur_sacks > 1)
3264 tcp_sack_maybe_coalesce(tp);
3265 return;
3266 }
3267 }
3268
3269 /* Could not find an adjacent existing SACK, build a new one,
3270 * put it at the front, and shift everyone else down. We
3271 * always know there is at least one SACK present already here.
3272 *
3273 * If the sack array is full, forget about the last one.
3274 */
3275 if (this_sack >= 4) {
3276 this_sack--;
3277 tp->rx_opt.num_sacks--;
3278 sp--;
3279 }
3280 for (; this_sack > 0; this_sack--, sp--)
3281 *sp = *(sp-1);
3282
3283 new_sack:
3284 /* Build the new head SACK, and we're done. */
3285 sp->start_seq = seq;
3286 sp->end_seq = end_seq;
3287 tp->rx_opt.num_sacks++;
3288 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3289 }
3290
3291 /* RCV.NXT advances, some SACKs should be eaten. */
3292
3293 static void tcp_sack_remove(struct tcp_sock *tp)
3294 {
3295 struct tcp_sack_block *sp = &tp->selective_acks[0];
3296 int num_sacks = tp->rx_opt.num_sacks;
3297 int this_sack;
3298
3299 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3300 if (skb_queue_empty(&tp->out_of_order_queue)) {
3301 tp->rx_opt.num_sacks = 0;
3302 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3303 return;
3304 }
3305
3306 for (this_sack = 0; this_sack < num_sacks; ) {
3307 /* Check if the start of the sack is covered by RCV.NXT. */
3308 if (!before(tp->rcv_nxt, sp->start_seq)) {
3309 int i;
3310
3311 /* RCV.NXT must cover all the block! */
3312 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3313
3314 /* Zap this SACK, by moving forward any other SACKS. */
3315 for (i=this_sack+1; i < num_sacks; i++)
3316 tp->selective_acks[i-1] = tp->selective_acks[i];
3317 num_sacks--;
3318 continue;
3319 }
3320 this_sack++;
3321 sp++;
3322 }
3323 if (num_sacks != tp->rx_opt.num_sacks) {
3324 tp->rx_opt.num_sacks = num_sacks;
3325 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3326 }
3327 }
3328
3329 /* This one checks to see if we can put data from the
3330 * out_of_order queue into the receive_queue.
3331 */
3332 static void tcp_ofo_queue(struct sock *sk)
3333 {
3334 struct tcp_sock *tp = tcp_sk(sk);
3335 __u32 dsack_high = tp->rcv_nxt;
3336 struct sk_buff *skb;
3337
3338 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3339 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3340 break;
3341
3342 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3343 __u32 dsack = dsack_high;
3344 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3345 dsack_high = TCP_SKB_CB(skb)->end_seq;
3346 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3347 }
3348
3349 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3350 SOCK_DEBUG(sk, "ofo packet was already received \n");
3351 __skb_unlink(skb, &tp->out_of_order_queue);
3352 __kfree_skb(skb);
3353 continue;
3354 }
3355 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3356 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3357 TCP_SKB_CB(skb)->end_seq);
3358
3359 __skb_unlink(skb, &tp->out_of_order_queue);
3360 __skb_queue_tail(&sk->sk_receive_queue, skb);
3361 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3362 if (tcp_hdr(skb)->fin)
3363 tcp_fin(skb, sk, tcp_hdr(skb));
3364 }
3365 }
3366
3367 static int tcp_prune_queue(struct sock *sk);
3368
3369 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3370 {
3371 struct tcphdr *th = tcp_hdr(skb);
3372 struct tcp_sock *tp = tcp_sk(sk);
3373 int eaten = -1;
3374
3375 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3376 goto drop;
3377
3378 __skb_pull(skb, th->doff*4);
3379
3380 TCP_ECN_accept_cwr(tp, skb);
3381
3382 if (tp->rx_opt.dsack) {
3383 tp->rx_opt.dsack = 0;
3384 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3385 4 - tp->rx_opt.tstamp_ok);
3386 }
3387
3388 /* Queue data for delivery to the user.
3389 * Packets in sequence go to the receive queue.
3390 * Out of sequence packets to the out_of_order_queue.
3391 */
3392 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3393 if (tcp_receive_window(tp) == 0)
3394 goto out_of_window;
3395
3396 /* Ok. In sequence. In window. */
3397 if (tp->ucopy.task == current &&
3398 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3399 sock_owned_by_user(sk) && !tp->urg_data) {
3400 int chunk = min_t(unsigned int, skb->len,
3401 tp->ucopy.len);
3402
3403 __set_current_state(TASK_RUNNING);
3404
3405 local_bh_enable();
3406 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3407 tp->ucopy.len -= chunk;
3408 tp->copied_seq += chunk;
3409 eaten = (chunk == skb->len && !th->fin);
3410 tcp_rcv_space_adjust(sk);
3411 }
3412 local_bh_disable();
3413 }
3414
3415 if (eaten <= 0) {
3416 queue_and_out:
3417 if (eaten < 0 &&
3418 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3419 !sk_stream_rmem_schedule(sk, skb))) {
3420 if (tcp_prune_queue(sk) < 0 ||
3421 !sk_stream_rmem_schedule(sk, skb))
3422 goto drop;
3423 }
3424 sk_stream_set_owner_r(skb, sk);
3425 __skb_queue_tail(&sk->sk_receive_queue, skb);
3426 }
3427 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3428 if (skb->len)
3429 tcp_event_data_recv(sk, tp, skb);
3430 if (th->fin)
3431 tcp_fin(skb, sk, th);
3432
3433 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3434 tcp_ofo_queue(sk);
3435
3436 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3437 * gap in queue is filled.
3438 */
3439 if (skb_queue_empty(&tp->out_of_order_queue))
3440 inet_csk(sk)->icsk_ack.pingpong = 0;
3441 }
3442
3443 if (tp->rx_opt.num_sacks)
3444 tcp_sack_remove(tp);
3445
3446 tcp_fast_path_check(sk, tp);
3447
3448 if (eaten > 0)
3449 __kfree_skb(skb);
3450 else if (!sock_flag(sk, SOCK_DEAD))
3451 sk->sk_data_ready(sk, 0);
3452 return;
3453 }
3454
3455 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3456 /* A retransmit, 2nd most common case. Force an immediate ack. */
3457 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3458 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3459
3460 out_of_window:
3461 tcp_enter_quickack_mode(sk);
3462 inet_csk_schedule_ack(sk);
3463 drop:
3464 __kfree_skb(skb);
3465 return;
3466 }
3467
3468 /* Out of window. F.e. zero window probe. */
3469 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3470 goto out_of_window;
3471
3472 tcp_enter_quickack_mode(sk);
3473
3474 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3475 /* Partial packet, seq < rcv_next < end_seq */
3476 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3477 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3478 TCP_SKB_CB(skb)->end_seq);
3479
3480 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3481
3482 /* If window is closed, drop tail of packet. But after
3483 * remembering D-SACK for its head made in previous line.
3484 */
3485 if (!tcp_receive_window(tp))
3486 goto out_of_window;
3487 goto queue_and_out;
3488 }
3489
3490 TCP_ECN_check_ce(tp, skb);
3491
3492 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3493 !sk_stream_rmem_schedule(sk, skb)) {
3494 if (tcp_prune_queue(sk) < 0 ||
3495 !sk_stream_rmem_schedule(sk, skb))
3496 goto drop;
3497 }
3498
3499 /* Disable header prediction. */
3500 tp->pred_flags = 0;
3501 inet_csk_schedule_ack(sk);
3502
3503 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3504 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3505
3506 sk_stream_set_owner_r(skb, sk);
3507
3508 if (!skb_peek(&tp->out_of_order_queue)) {
3509 /* Initial out of order segment, build 1 SACK. */
3510 if (tp->rx_opt.sack_ok) {
3511 tp->rx_opt.num_sacks = 1;
3512 tp->rx_opt.dsack = 0;
3513 tp->rx_opt.eff_sacks = 1;
3514 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3515 tp->selective_acks[0].end_seq =
3516 TCP_SKB_CB(skb)->end_seq;
3517 }
3518 __skb_queue_head(&tp->out_of_order_queue,skb);
3519 } else {
3520 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3521 u32 seq = TCP_SKB_CB(skb)->seq;
3522 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3523
3524 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3525 __skb_append(skb1, skb, &tp->out_of_order_queue);
3526
3527 if (!tp->rx_opt.num_sacks ||
3528 tp->selective_acks[0].end_seq != seq)
3529 goto add_sack;
3530
3531 /* Common case: data arrive in order after hole. */
3532 tp->selective_acks[0].end_seq = end_seq;
3533 return;
3534 }
3535
3536 /* Find place to insert this segment. */
3537 do {
3538 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3539 break;
3540 } while ((skb1 = skb1->prev) !=
3541 (struct sk_buff*)&tp->out_of_order_queue);
3542
3543 /* Do skb overlap to previous one? */
3544 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3545 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3546 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3547 /* All the bits are present. Drop. */
3548 __kfree_skb(skb);
3549 tcp_dsack_set(tp, seq, end_seq);
3550 goto add_sack;
3551 }
3552 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3553 /* Partial overlap. */
3554 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3555 } else {
3556 skb1 = skb1->prev;
3557 }
3558 }
3559 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3560
3561 /* And clean segments covered by new one as whole. */
3562 while ((skb1 = skb->next) !=
3563 (struct sk_buff*)&tp->out_of_order_queue &&
3564 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3565 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3566 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3567 break;
3568 }
3569 __skb_unlink(skb1, &tp->out_of_order_queue);
3570 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3571 __kfree_skb(skb1);
3572 }
3573
3574 add_sack:
3575 if (tp->rx_opt.sack_ok)
3576 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3577 }
3578 }
3579
3580 /* Collapse contiguous sequence of skbs head..tail with
3581 * sequence numbers start..end.
3582 * Segments with FIN/SYN are not collapsed (only because this
3583 * simplifies code)
3584 */
3585 static void
3586 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3587 struct sk_buff *head, struct sk_buff *tail,
3588 u32 start, u32 end)
3589 {
3590 struct sk_buff *skb;
3591
3592 /* First, check that queue is collapsible and find
3593 * the point where collapsing can be useful. */
3594 for (skb = head; skb != tail; ) {
3595 /* No new bits? It is possible on ofo queue. */
3596 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3597 struct sk_buff *next = skb->next;
3598 __skb_unlink(skb, list);
3599 __kfree_skb(skb);
3600 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3601 skb = next;
3602 continue;
3603 }
3604
3605 /* The first skb to collapse is:
3606 * - not SYN/FIN and
3607 * - bloated or contains data before "start" or
3608 * overlaps to the next one.
3609 */
3610 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3611 (tcp_win_from_space(skb->truesize) > skb->len ||
3612 before(TCP_SKB_CB(skb)->seq, start) ||
3613 (skb->next != tail &&
3614 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3615 break;
3616
3617 /* Decided to skip this, advance start seq. */
3618 start = TCP_SKB_CB(skb)->end_seq;
3619 skb = skb->next;
3620 }
3621 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3622 return;
3623
3624 while (before(start, end)) {
3625 struct sk_buff *nskb;
3626 int header = skb_headroom(skb);
3627 int copy = SKB_MAX_ORDER(header, 0);
3628
3629 /* Too big header? This can happen with IPv6. */
3630 if (copy < 0)
3631 return;
3632 if (end-start < copy)
3633 copy = end-start;
3634 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3635 if (!nskb)
3636 return;
3637
3638 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3639 skb_set_network_header(nskb, (skb_network_header(skb) -
3640 skb->head));
3641 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3642 skb->head));
3643 skb_reserve(nskb, header);
3644 memcpy(nskb->head, skb->head, header);
3645 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3646 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3647 __skb_insert(nskb, skb->prev, skb, list);
3648 sk_stream_set_owner_r(nskb, sk);
3649
3650 /* Copy data, releasing collapsed skbs. */
3651 while (copy > 0) {
3652 int offset = start - TCP_SKB_CB(skb)->seq;
3653 int size = TCP_SKB_CB(skb)->end_seq - start;
3654
3655 BUG_ON(offset < 0);
3656 if (size > 0) {
3657 size = min(copy, size);
3658 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3659 BUG();
3660 TCP_SKB_CB(nskb)->end_seq += size;
3661 copy -= size;
3662 start += size;
3663 }
3664 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3665 struct sk_buff *next = skb->next;
3666 __skb_unlink(skb, list);
3667 __kfree_skb(skb);
3668 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3669 skb = next;
3670 if (skb == tail ||
3671 tcp_hdr(skb)->syn ||
3672 tcp_hdr(skb)->fin)
3673 return;
3674 }
3675 }
3676 }
3677 }
3678
3679 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3680 * and tcp_collapse() them until all the queue is collapsed.
3681 */
3682 static void tcp_collapse_ofo_queue(struct sock *sk)
3683 {
3684 struct tcp_sock *tp = tcp_sk(sk);
3685 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3686 struct sk_buff *head;
3687 u32 start, end;
3688
3689 if (skb == NULL)
3690 return;
3691
3692 start = TCP_SKB_CB(skb)->seq;
3693 end = TCP_SKB_CB(skb)->end_seq;
3694 head = skb;
3695
3696 for (;;) {
3697 skb = skb->next;
3698
3699 /* Segment is terminated when we see gap or when
3700 * we are at the end of all the queue. */
3701 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3702 after(TCP_SKB_CB(skb)->seq, end) ||
3703 before(TCP_SKB_CB(skb)->end_seq, start)) {
3704 tcp_collapse(sk, &tp->out_of_order_queue,
3705 head, skb, start, end);
3706 head = skb;
3707 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3708 break;
3709 /* Start new segment */
3710 start = TCP_SKB_CB(skb)->seq;
3711 end = TCP_SKB_CB(skb)->end_seq;
3712 } else {
3713 if (before(TCP_SKB_CB(skb)->seq, start))
3714 start = TCP_SKB_CB(skb)->seq;
3715 if (after(TCP_SKB_CB(skb)->end_seq, end))
3716 end = TCP_SKB_CB(skb)->end_seq;
3717 }
3718 }
3719 }
3720
3721 /* Reduce allocated memory if we can, trying to get
3722 * the socket within its memory limits again.
3723 *
3724 * Return less than zero if we should start dropping frames
3725 * until the socket owning process reads some of the data
3726 * to stabilize the situation.
3727 */
3728 static int tcp_prune_queue(struct sock *sk)
3729 {
3730 struct tcp_sock *tp = tcp_sk(sk);
3731
3732 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3733
3734 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3735
3736 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3737 tcp_clamp_window(sk, tp);
3738 else if (tcp_memory_pressure)
3739 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3740
3741 tcp_collapse_ofo_queue(sk);
3742 tcp_collapse(sk, &sk->sk_receive_queue,
3743 sk->sk_receive_queue.next,
3744 (struct sk_buff*)&sk->sk_receive_queue,
3745 tp->copied_seq, tp->rcv_nxt);
3746 sk_stream_mem_reclaim(sk);
3747
3748 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3749 return 0;
3750
3751 /* Collapsing did not help, destructive actions follow.
3752 * This must not ever occur. */
3753
3754 /* First, purge the out_of_order queue. */
3755 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3756 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3757 __skb_queue_purge(&tp->out_of_order_queue);
3758
3759 /* Reset SACK state. A conforming SACK implementation will
3760 * do the same at a timeout based retransmit. When a connection
3761 * is in a sad state like this, we care only about integrity
3762 * of the connection not performance.
3763 */
3764 if (tp->rx_opt.sack_ok)
3765 tcp_sack_reset(&tp->rx_opt);
3766 sk_stream_mem_reclaim(sk);
3767 }
3768
3769 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3770 return 0;
3771
3772 /* If we are really being abused, tell the caller to silently
3773 * drop receive data on the floor. It will get retransmitted
3774 * and hopefully then we'll have sufficient space.
3775 */
3776 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3777
3778 /* Massive buffer overcommit. */
3779 tp->pred_flags = 0;
3780 return -1;
3781 }
3782
3783
3784 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3785 * As additional protections, we do not touch cwnd in retransmission phases,
3786 * and if application hit its sndbuf limit recently.
3787 */
3788 void tcp_cwnd_application_limited(struct sock *sk)
3789 {
3790 struct tcp_sock *tp = tcp_sk(sk);
3791
3792 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3793 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3794 /* Limited by application or receiver window. */
3795 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3796 u32 win_used = max(tp->snd_cwnd_used, init_win);
3797 if (win_used < tp->snd_cwnd) {
3798 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3799 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3800 }
3801 tp->snd_cwnd_used = 0;
3802 }
3803 tp->snd_cwnd_stamp = tcp_time_stamp;
3804 }
3805
3806 static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3807 {
3808 /* If the user specified a specific send buffer setting, do
3809 * not modify it.
3810 */
3811 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3812 return 0;
3813
3814 /* If we are under global TCP memory pressure, do not expand. */
3815 if (tcp_memory_pressure)
3816 return 0;
3817
3818 /* If we are under soft global TCP memory pressure, do not expand. */
3819 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3820 return 0;
3821
3822 /* If we filled the congestion window, do not expand. */
3823 if (tp->packets_out >= tp->snd_cwnd)
3824 return 0;
3825
3826 return 1;
3827 }
3828
3829 /* When incoming ACK allowed to free some skb from write_queue,
3830 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3831 * on the exit from tcp input handler.
3832 *
3833 * PROBLEM: sndbuf expansion does not work well with largesend.
3834 */
3835 static void tcp_new_space(struct sock *sk)
3836 {
3837 struct tcp_sock *tp = tcp_sk(sk);
3838
3839 if (tcp_should_expand_sndbuf(sk, tp)) {
3840 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3841 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3842 demanded = max_t(unsigned int, tp->snd_cwnd,
3843 tp->reordering + 1);
3844 sndmem *= 2*demanded;
3845 if (sndmem > sk->sk_sndbuf)
3846 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3847 tp->snd_cwnd_stamp = tcp_time_stamp;
3848 }
3849
3850 sk->sk_write_space(sk);
3851 }
3852
3853 static void tcp_check_space(struct sock *sk)
3854 {
3855 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3856 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3857 if (sk->sk_socket &&
3858 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3859 tcp_new_space(sk);
3860 }
3861 }
3862
3863 static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3864 {
3865 tcp_push_pending_frames(sk, tp);
3866 tcp_check_space(sk);
3867 }
3868
3869 /*
3870 * Check if sending an ack is needed.
3871 */
3872 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3873 {
3874 struct tcp_sock *tp = tcp_sk(sk);
3875
3876 /* More than one full frame received... */
3877 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3878 /* ... and right edge of window advances far enough.
3879 * (tcp_recvmsg() will send ACK otherwise). Or...
3880 */
3881 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3882 /* We ACK each frame or... */
3883 tcp_in_quickack_mode(sk) ||
3884 /* We have out of order data. */
3885 (ofo_possible &&
3886 skb_peek(&tp->out_of_order_queue))) {
3887 /* Then ack it now */
3888 tcp_send_ack(sk);
3889 } else {
3890 /* Else, send delayed ack. */
3891 tcp_send_delayed_ack(sk);
3892 }
3893 }
3894
3895 static inline void tcp_ack_snd_check(struct sock *sk)
3896 {
3897 if (!inet_csk_ack_scheduled(sk)) {
3898 /* We sent a data segment already. */
3899 return;
3900 }
3901 __tcp_ack_snd_check(sk, 1);
3902 }
3903
3904 /*
3905 * This routine is only called when we have urgent data
3906 * signaled. Its the 'slow' part of tcp_urg. It could be
3907 * moved inline now as tcp_urg is only called from one
3908 * place. We handle URGent data wrong. We have to - as
3909 * BSD still doesn't use the correction from RFC961.
3910 * For 1003.1g we should support a new option TCP_STDURG to permit
3911 * either form (or just set the sysctl tcp_stdurg).
3912 */
3913
3914 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3915 {
3916 struct tcp_sock *tp = tcp_sk(sk);
3917 u32 ptr = ntohs(th->urg_ptr);
3918
3919 if (ptr && !sysctl_tcp_stdurg)
3920 ptr--;
3921 ptr += ntohl(th->seq);
3922
3923 /* Ignore urgent data that we've already seen and read. */
3924 if (after(tp->copied_seq, ptr))
3925 return;
3926
3927 /* Do not replay urg ptr.
3928 *
3929 * NOTE: interesting situation not covered by specs.
3930 * Misbehaving sender may send urg ptr, pointing to segment,
3931 * which we already have in ofo queue. We are not able to fetch
3932 * such data and will stay in TCP_URG_NOTYET until will be eaten
3933 * by recvmsg(). Seems, we are not obliged to handle such wicked
3934 * situations. But it is worth to think about possibility of some
3935 * DoSes using some hypothetical application level deadlock.
3936 */
3937 if (before(ptr, tp->rcv_nxt))
3938 return;
3939
3940 /* Do we already have a newer (or duplicate) urgent pointer? */
3941 if (tp->urg_data && !after(ptr, tp->urg_seq))
3942 return;
3943
3944 /* Tell the world about our new urgent pointer. */
3945 sk_send_sigurg(sk);
3946
3947 /* We may be adding urgent data when the last byte read was
3948 * urgent. To do this requires some care. We cannot just ignore
3949 * tp->copied_seq since we would read the last urgent byte again
3950 * as data, nor can we alter copied_seq until this data arrives
3951 * or we break the semantics of SIOCATMARK (and thus sockatmark())
3952 *
3953 * NOTE. Double Dutch. Rendering to plain English: author of comment
3954 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3955 * and expect that both A and B disappear from stream. This is _wrong_.
3956 * Though this happens in BSD with high probability, this is occasional.
3957 * Any application relying on this is buggy. Note also, that fix "works"
3958 * only in this artificial test. Insert some normal data between A and B and we will
3959 * decline of BSD again. Verdict: it is better to remove to trap
3960 * buggy users.
3961 */
3962 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3963 !sock_flag(sk, SOCK_URGINLINE) &&
3964 tp->copied_seq != tp->rcv_nxt) {
3965 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3966 tp->copied_seq++;
3967 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3968 __skb_unlink(skb, &sk->sk_receive_queue);
3969 __kfree_skb(skb);
3970 }
3971 }
3972
3973 tp->urg_data = TCP_URG_NOTYET;
3974 tp->urg_seq = ptr;
3975
3976 /* Disable header prediction. */
3977 tp->pred_flags = 0;
3978 }
3979
3980 /* This is the 'fast' part of urgent handling. */
3981 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3982 {
3983 struct tcp_sock *tp = tcp_sk(sk);
3984
3985 /* Check if we get a new urgent pointer - normally not. */
3986 if (th->urg)
3987 tcp_check_urg(sk,th);
3988
3989 /* Do we wait for any urgent data? - normally not... */
3990 if (tp->urg_data == TCP_URG_NOTYET) {
3991 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3992 th->syn;
3993
3994 /* Is the urgent pointer pointing into this packet? */
3995 if (ptr < skb->len) {
3996 u8 tmp;
3997 if (skb_copy_bits(skb, ptr, &tmp, 1))
3998 BUG();
3999 tp->urg_data = TCP_URG_VALID | tmp;
4000 if (!sock_flag(sk, SOCK_DEAD))
4001 sk->sk_data_ready(sk, 0);
4002 }
4003 }
4004 }
4005
4006 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4007 {
4008 struct tcp_sock *tp = tcp_sk(sk);
4009 int chunk = skb->len - hlen;
4010 int err;
4011
4012 local_bh_enable();
4013 if (skb_csum_unnecessary(skb))
4014 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4015 else
4016 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4017 tp->ucopy.iov);
4018
4019 if (!err) {
4020 tp->ucopy.len -= chunk;
4021 tp->copied_seq += chunk;
4022 tcp_rcv_space_adjust(sk);
4023 }
4024
4025 local_bh_disable();
4026 return err;
4027 }
4028
4029 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4030 {
4031 __sum16 result;
4032
4033 if (sock_owned_by_user(sk)) {
4034 local_bh_enable();
4035 result = __tcp_checksum_complete(skb);
4036 local_bh_disable();
4037 } else {
4038 result = __tcp_checksum_complete(skb);
4039 }
4040 return result;
4041 }
4042
4043 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4044 {
4045 return !skb_csum_unnecessary(skb) &&
4046 __tcp_checksum_complete_user(sk, skb);
4047 }
4048
4049 #ifdef CONFIG_NET_DMA
4050 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4051 {
4052 struct tcp_sock *tp = tcp_sk(sk);
4053 int chunk = skb->len - hlen;
4054 int dma_cookie;
4055 int copied_early = 0;
4056
4057 if (tp->ucopy.wakeup)
4058 return 0;
4059
4060 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4061 tp->ucopy.dma_chan = get_softnet_dma();
4062
4063 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4064
4065 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4066 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4067
4068 if (dma_cookie < 0)
4069 goto out;
4070
4071 tp->ucopy.dma_cookie = dma_cookie;
4072 copied_early = 1;
4073
4074 tp->ucopy.len -= chunk;
4075 tp->copied_seq += chunk;
4076 tcp_rcv_space_adjust(sk);
4077
4078 if ((tp->ucopy.len == 0) ||
4079 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4080 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4081 tp->ucopy.wakeup = 1;
4082 sk->sk_data_ready(sk, 0);
4083 }
4084 } else if (chunk > 0) {
4085 tp->ucopy.wakeup = 1;
4086 sk->sk_data_ready(sk, 0);
4087 }
4088 out:
4089 return copied_early;
4090 }
4091 #endif /* CONFIG_NET_DMA */
4092
4093 /*
4094 * TCP receive function for the ESTABLISHED state.
4095 *
4096 * It is split into a fast path and a slow path. The fast path is
4097 * disabled when:
4098 * - A zero window was announced from us - zero window probing
4099 * is only handled properly in the slow path.
4100 * - Out of order segments arrived.
4101 * - Urgent data is expected.
4102 * - There is no buffer space left
4103 * - Unexpected TCP flags/window values/header lengths are received
4104 * (detected by checking the TCP header against pred_flags)
4105 * - Data is sent in both directions. Fast path only supports pure senders
4106 * or pure receivers (this means either the sequence number or the ack
4107 * value must stay constant)
4108 * - Unexpected TCP option.
4109 *
4110 * When these conditions are not satisfied it drops into a standard
4111 * receive procedure patterned after RFC793 to handle all cases.
4112 * The first three cases are guaranteed by proper pred_flags setting,
4113 * the rest is checked inline. Fast processing is turned on in
4114 * tcp_data_queue when everything is OK.
4115 */
4116 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4117 struct tcphdr *th, unsigned len)
4118 {
4119 struct tcp_sock *tp = tcp_sk(sk);
4120
4121 /*
4122 * Header prediction.
4123 * The code loosely follows the one in the famous
4124 * "30 instruction TCP receive" Van Jacobson mail.
4125 *
4126 * Van's trick is to deposit buffers into socket queue
4127 * on a device interrupt, to call tcp_recv function
4128 * on the receive process context and checksum and copy
4129 * the buffer to user space. smart...
4130 *
4131 * Our current scheme is not silly either but we take the
4132 * extra cost of the net_bh soft interrupt processing...
4133 * We do checksum and copy also but from device to kernel.
4134 */
4135
4136 tp->rx_opt.saw_tstamp = 0;
4137
4138 /* pred_flags is 0xS?10 << 16 + snd_wnd
4139 * if header_prediction is to be made
4140 * 'S' will always be tp->tcp_header_len >> 2
4141 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4142 * turn it off (when there are holes in the receive
4143 * space for instance)
4144 * PSH flag is ignored.
4145 */
4146
4147 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4148 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4149 int tcp_header_len = tp->tcp_header_len;
4150
4151 /* Timestamp header prediction: tcp_header_len
4152 * is automatically equal to th->doff*4 due to pred_flags
4153 * match.
4154 */
4155
4156 /* Check timestamp */
4157 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4158 __be32 *ptr = (__be32 *)(th + 1);
4159
4160 /* No? Slow path! */
4161 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4162 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4163 goto slow_path;
4164
4165 tp->rx_opt.saw_tstamp = 1;
4166 ++ptr;
4167 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4168 ++ptr;
4169 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4170
4171 /* If PAWS failed, check it more carefully in slow path */
4172 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4173 goto slow_path;
4174
4175 /* DO NOT update ts_recent here, if checksum fails
4176 * and timestamp was corrupted part, it will result
4177 * in a hung connection since we will drop all
4178 * future packets due to the PAWS test.
4179 */
4180 }
4181
4182 if (len <= tcp_header_len) {
4183 /* Bulk data transfer: sender */
4184 if (len == tcp_header_len) {
4185 /* Predicted packet is in window by definition.
4186 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4187 * Hence, check seq<=rcv_wup reduces to:
4188 */
4189 if (tcp_header_len ==
4190 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4191 tp->rcv_nxt == tp->rcv_wup)
4192 tcp_store_ts_recent(tp);
4193
4194 /* We know that such packets are checksummed
4195 * on entry.
4196 */
4197 tcp_ack(sk, skb, 0);
4198 __kfree_skb(skb);
4199 tcp_data_snd_check(sk, tp);
4200 return 0;
4201 } else { /* Header too small */
4202 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4203 goto discard;
4204 }
4205 } else {
4206 int eaten = 0;
4207 int copied_early = 0;
4208
4209 if (tp->copied_seq == tp->rcv_nxt &&
4210 len - tcp_header_len <= tp->ucopy.len) {
4211 #ifdef CONFIG_NET_DMA
4212 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4213 copied_early = 1;
4214 eaten = 1;
4215 }
4216 #endif
4217 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4218 __set_current_state(TASK_RUNNING);
4219
4220 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4221 eaten = 1;
4222 }
4223 if (eaten) {
4224 /* Predicted packet is in window by definition.
4225 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4226 * Hence, check seq<=rcv_wup reduces to:
4227 */
4228 if (tcp_header_len ==
4229 (sizeof(struct tcphdr) +
4230 TCPOLEN_TSTAMP_ALIGNED) &&
4231 tp->rcv_nxt == tp->rcv_wup)
4232 tcp_store_ts_recent(tp);
4233
4234 tcp_rcv_rtt_measure_ts(sk, skb);
4235
4236 __skb_pull(skb, tcp_header_len);
4237 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4238 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4239 }
4240 if (copied_early)
4241 tcp_cleanup_rbuf(sk, skb->len);
4242 }
4243 if (!eaten) {
4244 if (tcp_checksum_complete_user(sk, skb))
4245 goto csum_error;
4246
4247 /* Predicted packet is in window by definition.
4248 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4249 * Hence, check seq<=rcv_wup reduces to:
4250 */
4251 if (tcp_header_len ==
4252 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4253 tp->rcv_nxt == tp->rcv_wup)
4254 tcp_store_ts_recent(tp);
4255
4256 tcp_rcv_rtt_measure_ts(sk, skb);
4257
4258 if ((int)skb->truesize > sk->sk_forward_alloc)
4259 goto step5;
4260
4261 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4262
4263 /* Bulk data transfer: receiver */
4264 __skb_pull(skb,tcp_header_len);
4265 __skb_queue_tail(&sk->sk_receive_queue, skb);
4266 sk_stream_set_owner_r(skb, sk);
4267 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4268 }
4269
4270 tcp_event_data_recv(sk, tp, skb);
4271
4272 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4273 /* Well, only one small jumplet in fast path... */
4274 tcp_ack(sk, skb, FLAG_DATA);
4275 tcp_data_snd_check(sk, tp);
4276 if (!inet_csk_ack_scheduled(sk))
4277 goto no_ack;
4278 }
4279
4280 __tcp_ack_snd_check(sk, 0);
4281 no_ack:
4282 #ifdef CONFIG_NET_DMA
4283 if (copied_early)
4284 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4285 else
4286 #endif
4287 if (eaten)
4288 __kfree_skb(skb);
4289 else
4290 sk->sk_data_ready(sk, 0);
4291 return 0;
4292 }
4293 }
4294
4295 slow_path:
4296 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4297 goto csum_error;
4298
4299 /*
4300 * RFC1323: H1. Apply PAWS check first.
4301 */
4302 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4303 tcp_paws_discard(sk, skb)) {
4304 if (!th->rst) {
4305 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4306 tcp_send_dupack(sk, skb);
4307 goto discard;
4308 }
4309 /* Resets are accepted even if PAWS failed.
4310
4311 ts_recent update must be made after we are sure
4312 that the packet is in window.
4313 */
4314 }
4315
4316 /*
4317 * Standard slow path.
4318 */
4319
4320 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4321 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4322 * (RST) segments are validated by checking their SEQ-fields."
4323 * And page 69: "If an incoming segment is not acceptable,
4324 * an acknowledgment should be sent in reply (unless the RST bit
4325 * is set, if so drop the segment and return)".
4326 */
4327 if (!th->rst)
4328 tcp_send_dupack(sk, skb);
4329 goto discard;
4330 }
4331
4332 if (th->rst) {
4333 tcp_reset(sk);
4334 goto discard;
4335 }
4336
4337 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4338
4339 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4340 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4341 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4342 tcp_reset(sk);
4343 return 1;
4344 }
4345
4346 step5:
4347 if (th->ack)
4348 tcp_ack(sk, skb, FLAG_SLOWPATH);
4349
4350 tcp_rcv_rtt_measure_ts(sk, skb);
4351
4352 /* Process urgent data. */
4353 tcp_urg(sk, skb, th);
4354
4355 /* step 7: process the segment text */
4356 tcp_data_queue(sk, skb);
4357
4358 tcp_data_snd_check(sk, tp);
4359 tcp_ack_snd_check(sk);
4360 return 0;
4361
4362 csum_error:
4363 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4364
4365 discard:
4366 __kfree_skb(skb);
4367 return 0;
4368 }
4369
4370 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4371 struct tcphdr *th, unsigned len)
4372 {
4373 struct tcp_sock *tp = tcp_sk(sk);
4374 struct inet_connection_sock *icsk = inet_csk(sk);
4375 int saved_clamp = tp->rx_opt.mss_clamp;
4376
4377 tcp_parse_options(skb, &tp->rx_opt, 0);
4378
4379 if (th->ack) {
4380 /* rfc793:
4381 * "If the state is SYN-SENT then
4382 * first check the ACK bit
4383 * If the ACK bit is set
4384 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4385 * a reset (unless the RST bit is set, if so drop
4386 * the segment and return)"
4387 *
4388 * We do not send data with SYN, so that RFC-correct
4389 * test reduces to:
4390 */
4391 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4392 goto reset_and_undo;
4393
4394 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4395 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4396 tcp_time_stamp)) {
4397 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4398 goto reset_and_undo;
4399 }
4400
4401 /* Now ACK is acceptable.
4402 *
4403 * "If the RST bit is set
4404 * If the ACK was acceptable then signal the user "error:
4405 * connection reset", drop the segment, enter CLOSED state,
4406 * delete TCB, and return."
4407 */
4408
4409 if (th->rst) {
4410 tcp_reset(sk);
4411 goto discard;
4412 }
4413
4414 /* rfc793:
4415 * "fifth, if neither of the SYN or RST bits is set then
4416 * drop the segment and return."
4417 *
4418 * See note below!
4419 * --ANK(990513)
4420 */
4421 if (!th->syn)
4422 goto discard_and_undo;
4423
4424 /* rfc793:
4425 * "If the SYN bit is on ...
4426 * are acceptable then ...
4427 * (our SYN has been ACKed), change the connection
4428 * state to ESTABLISHED..."
4429 */
4430
4431 TCP_ECN_rcv_synack(tp, th);
4432
4433 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4434 tcp_ack(sk, skb, FLAG_SLOWPATH);
4435
4436 /* Ok.. it's good. Set up sequence numbers and
4437 * move to established.
4438 */
4439 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4440 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4441
4442 /* RFC1323: The window in SYN & SYN/ACK segments is
4443 * never scaled.
4444 */
4445 tp->snd_wnd = ntohs(th->window);
4446 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4447
4448 if (!tp->rx_opt.wscale_ok) {
4449 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4450 tp->window_clamp = min(tp->window_clamp, 65535U);
4451 }
4452
4453 if (tp->rx_opt.saw_tstamp) {
4454 tp->rx_opt.tstamp_ok = 1;
4455 tp->tcp_header_len =
4456 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4457 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4458 tcp_store_ts_recent(tp);
4459 } else {
4460 tp->tcp_header_len = sizeof(struct tcphdr);
4461 }
4462
4463 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4464 tp->rx_opt.sack_ok |= 2;
4465
4466 tcp_mtup_init(sk);
4467 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4468 tcp_initialize_rcv_mss(sk);
4469
4470 /* Remember, tcp_poll() does not lock socket!
4471 * Change state from SYN-SENT only after copied_seq
4472 * is initialized. */
4473 tp->copied_seq = tp->rcv_nxt;
4474 smp_mb();
4475 tcp_set_state(sk, TCP_ESTABLISHED);
4476
4477 security_inet_conn_established(sk, skb);
4478
4479 /* Make sure socket is routed, for correct metrics. */
4480 icsk->icsk_af_ops->rebuild_header(sk);
4481
4482 tcp_init_metrics(sk);
4483
4484 tcp_init_congestion_control(sk);
4485
4486 /* Prevent spurious tcp_cwnd_restart() on first data
4487 * packet.
4488 */
4489 tp->lsndtime = tcp_time_stamp;
4490
4491 tcp_init_buffer_space(sk);
4492
4493 if (sock_flag(sk, SOCK_KEEPOPEN))
4494 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4495
4496 if (!tp->rx_opt.snd_wscale)
4497 __tcp_fast_path_on(tp, tp->snd_wnd);
4498 else
4499 tp->pred_flags = 0;
4500
4501 if (!sock_flag(sk, SOCK_DEAD)) {
4502 sk->sk_state_change(sk);
4503 sk_wake_async(sk, 0, POLL_OUT);
4504 }
4505
4506 if (sk->sk_write_pending ||
4507 icsk->icsk_accept_queue.rskq_defer_accept ||
4508 icsk->icsk_ack.pingpong) {
4509 /* Save one ACK. Data will be ready after
4510 * several ticks, if write_pending is set.
4511 *
4512 * It may be deleted, but with this feature tcpdumps
4513 * look so _wonderfully_ clever, that I was not able
4514 * to stand against the temptation 8) --ANK
4515 */
4516 inet_csk_schedule_ack(sk);
4517 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4518 icsk->icsk_ack.ato = TCP_ATO_MIN;
4519 tcp_incr_quickack(sk);
4520 tcp_enter_quickack_mode(sk);
4521 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4522 TCP_DELACK_MAX, TCP_RTO_MAX);
4523
4524 discard:
4525 __kfree_skb(skb);
4526 return 0;
4527 } else {
4528 tcp_send_ack(sk);
4529 }
4530 return -1;
4531 }
4532
4533 /* No ACK in the segment */
4534
4535 if (th->rst) {
4536 /* rfc793:
4537 * "If the RST bit is set
4538 *
4539 * Otherwise (no ACK) drop the segment and return."
4540 */
4541
4542 goto discard_and_undo;
4543 }
4544
4545 /* PAWS check. */
4546 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4547 goto discard_and_undo;
4548
4549 if (th->syn) {
4550 /* We see SYN without ACK. It is attempt of
4551 * simultaneous connect with crossed SYNs.
4552 * Particularly, it can be connect to self.
4553 */
4554 tcp_set_state(sk, TCP_SYN_RECV);
4555
4556 if (tp->rx_opt.saw_tstamp) {
4557 tp->rx_opt.tstamp_ok = 1;
4558 tcp_store_ts_recent(tp);
4559 tp->tcp_header_len =
4560 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4561 } else {
4562 tp->tcp_header_len = sizeof(struct tcphdr);
4563 }
4564
4565 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4566 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4567
4568 /* RFC1323: The window in SYN & SYN/ACK segments is
4569 * never scaled.
4570 */
4571 tp->snd_wnd = ntohs(th->window);
4572 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4573 tp->max_window = tp->snd_wnd;
4574
4575 TCP_ECN_rcv_syn(tp, th);
4576
4577 tcp_mtup_init(sk);
4578 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4579 tcp_initialize_rcv_mss(sk);
4580
4581
4582 tcp_send_synack(sk);
4583 #if 0
4584 /* Note, we could accept data and URG from this segment.
4585 * There are no obstacles to make this.
4586 *
4587 * However, if we ignore data in ACKless segments sometimes,
4588 * we have no reasons to accept it sometimes.
4589 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4590 * is not flawless. So, discard packet for sanity.
4591 * Uncomment this return to process the data.
4592 */
4593 return -1;
4594 #else
4595 goto discard;
4596 #endif
4597 }
4598 /* "fifth, if neither of the SYN or RST bits is set then
4599 * drop the segment and return."
4600 */
4601
4602 discard_and_undo:
4603 tcp_clear_options(&tp->rx_opt);
4604 tp->rx_opt.mss_clamp = saved_clamp;
4605 goto discard;
4606
4607 reset_and_undo:
4608 tcp_clear_options(&tp->rx_opt);
4609 tp->rx_opt.mss_clamp = saved_clamp;
4610 return 1;
4611 }
4612
4613
4614 /*
4615 * This function implements the receiving procedure of RFC 793 for
4616 * all states except ESTABLISHED and TIME_WAIT.
4617 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4618 * address independent.
4619 */
4620
4621 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4622 struct tcphdr *th, unsigned len)
4623 {
4624 struct tcp_sock *tp = tcp_sk(sk);
4625 struct inet_connection_sock *icsk = inet_csk(sk);
4626 int queued = 0;
4627
4628 tp->rx_opt.saw_tstamp = 0;
4629
4630 switch (sk->sk_state) {
4631 case TCP_CLOSE:
4632 goto discard;
4633
4634 case TCP_LISTEN:
4635 if (th->ack)
4636 return 1;
4637
4638 if (th->rst)
4639 goto discard;
4640
4641 if (th->syn) {
4642 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4643 return 1;
4644
4645 /* Now we have several options: In theory there is
4646 * nothing else in the frame. KA9Q has an option to
4647 * send data with the syn, BSD accepts data with the
4648 * syn up to the [to be] advertised window and
4649 * Solaris 2.1 gives you a protocol error. For now
4650 * we just ignore it, that fits the spec precisely
4651 * and avoids incompatibilities. It would be nice in
4652 * future to drop through and process the data.
4653 *
4654 * Now that TTCP is starting to be used we ought to
4655 * queue this data.
4656 * But, this leaves one open to an easy denial of
4657 * service attack, and SYN cookies can't defend
4658 * against this problem. So, we drop the data
4659 * in the interest of security over speed unless
4660 * it's still in use.
4661 */
4662 kfree_skb(skb);
4663 return 0;
4664 }
4665 goto discard;
4666
4667 case TCP_SYN_SENT:
4668 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4669 if (queued >= 0)
4670 return queued;
4671
4672 /* Do step6 onward by hand. */
4673 tcp_urg(sk, skb, th);
4674 __kfree_skb(skb);
4675 tcp_data_snd_check(sk, tp);
4676 return 0;
4677 }
4678
4679 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4680 tcp_paws_discard(sk, skb)) {
4681 if (!th->rst) {
4682 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4683 tcp_send_dupack(sk, skb);
4684 goto discard;
4685 }
4686 /* Reset is accepted even if it did not pass PAWS. */
4687 }
4688
4689 /* step 1: check sequence number */
4690 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4691 if (!th->rst)
4692 tcp_send_dupack(sk, skb);
4693 goto discard;
4694 }
4695
4696 /* step 2: check RST bit */
4697 if (th->rst) {
4698 tcp_reset(sk);
4699 goto discard;
4700 }
4701
4702 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4703
4704 /* step 3: check security and precedence [ignored] */
4705
4706 /* step 4:
4707 *
4708 * Check for a SYN in window.
4709 */
4710 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4711 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4712 tcp_reset(sk);
4713 return 1;
4714 }
4715
4716 /* step 5: check the ACK field */
4717 if (th->ack) {
4718 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4719
4720 switch (sk->sk_state) {
4721 case TCP_SYN_RECV:
4722 if (acceptable) {
4723 tp->copied_seq = tp->rcv_nxt;
4724 smp_mb();
4725 tcp_set_state(sk, TCP_ESTABLISHED);
4726 sk->sk_state_change(sk);
4727
4728 /* Note, that this wakeup is only for marginal
4729 * crossed SYN case. Passively open sockets
4730 * are not waked up, because sk->sk_sleep ==
4731 * NULL and sk->sk_socket == NULL.
4732 */
4733 if (sk->sk_socket) {
4734 sk_wake_async(sk,0,POLL_OUT);
4735 }
4736
4737 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4738 tp->snd_wnd = ntohs(th->window) <<
4739 tp->rx_opt.snd_wscale;
4740 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4741 TCP_SKB_CB(skb)->seq);
4742
4743 /* tcp_ack considers this ACK as duplicate
4744 * and does not calculate rtt.
4745 * Fix it at least with timestamps.
4746 */
4747 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4748 !tp->srtt)
4749 tcp_ack_saw_tstamp(sk, 0);
4750
4751 if (tp->rx_opt.tstamp_ok)
4752 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4753
4754 /* Make sure socket is routed, for
4755 * correct metrics.
4756 */
4757 icsk->icsk_af_ops->rebuild_header(sk);
4758
4759 tcp_init_metrics(sk);
4760
4761 tcp_init_congestion_control(sk);
4762
4763 /* Prevent spurious tcp_cwnd_restart() on
4764 * first data packet.
4765 */
4766 tp->lsndtime = tcp_time_stamp;
4767
4768 tcp_mtup_init(sk);
4769 tcp_initialize_rcv_mss(sk);
4770 tcp_init_buffer_space(sk);
4771 tcp_fast_path_on(tp);
4772 } else {
4773 return 1;
4774 }
4775 break;
4776
4777 case TCP_FIN_WAIT1:
4778 if (tp->snd_una == tp->write_seq) {
4779 tcp_set_state(sk, TCP_FIN_WAIT2);
4780 sk->sk_shutdown |= SEND_SHUTDOWN;
4781 dst_confirm(sk->sk_dst_cache);
4782
4783 if (!sock_flag(sk, SOCK_DEAD))
4784 /* Wake up lingering close() */
4785 sk->sk_state_change(sk);
4786 else {
4787 int tmo;
4788
4789 if (tp->linger2 < 0 ||
4790 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4791 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4792 tcp_done(sk);
4793 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4794 return 1;
4795 }
4796
4797 tmo = tcp_fin_time(sk);
4798 if (tmo > TCP_TIMEWAIT_LEN) {
4799 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4800 } else if (th->fin || sock_owned_by_user(sk)) {
4801 /* Bad case. We could lose such FIN otherwise.
4802 * It is not a big problem, but it looks confusing
4803 * and not so rare event. We still can lose it now,
4804 * if it spins in bh_lock_sock(), but it is really
4805 * marginal case.
4806 */
4807 inet_csk_reset_keepalive_timer(sk, tmo);
4808 } else {
4809 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4810 goto discard;
4811 }
4812 }
4813 }
4814 break;
4815
4816 case TCP_CLOSING:
4817 if (tp->snd_una == tp->write_seq) {
4818 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4819 goto discard;
4820 }
4821 break;
4822
4823 case TCP_LAST_ACK:
4824 if (tp->snd_una == tp->write_seq) {
4825 tcp_update_metrics(sk);
4826 tcp_done(sk);
4827 goto discard;
4828 }
4829 break;
4830 }
4831 } else
4832 goto discard;
4833
4834 /* step 6: check the URG bit */
4835 tcp_urg(sk, skb, th);
4836
4837 /* step 7: process the segment text */
4838 switch (sk->sk_state) {
4839 case TCP_CLOSE_WAIT:
4840 case TCP_CLOSING:
4841 case TCP_LAST_ACK:
4842 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4843 break;
4844 case TCP_FIN_WAIT1:
4845 case TCP_FIN_WAIT2:
4846 /* RFC 793 says to queue data in these states,
4847 * RFC 1122 says we MUST send a reset.
4848 * BSD 4.4 also does reset.
4849 */
4850 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4851 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4852 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4853 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4854 tcp_reset(sk);
4855 return 1;
4856 }
4857 }
4858 /* Fall through */
4859 case TCP_ESTABLISHED:
4860 tcp_data_queue(sk, skb);
4861 queued = 1;
4862 break;
4863 }
4864
4865 /* tcp_data could move socket to TIME-WAIT */
4866 if (sk->sk_state != TCP_CLOSE) {
4867 tcp_data_snd_check(sk, tp);
4868 tcp_ack_snd_check(sk);
4869 }
4870
4871 if (!queued) {
4872 discard:
4873 __kfree_skb(skb);
4874 }
4875 return 0;
4876 }
4877
4878 EXPORT_SYMBOL(sysctl_tcp_ecn);
4879 EXPORT_SYMBOL(sysctl_tcp_reordering);
4880 EXPORT_SYMBOL(tcp_parse_options);
4881 EXPORT_SYMBOL(tcp_rcv_established);
4882 EXPORT_SYMBOL(tcp_rcv_state_process);
4883 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.133319 seconds and 5 git commands to generate.