NTB: Disable interrupts and poll under high load
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96
97 int sysctl_tcp_thin_dupack __read_mostly;
98
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
101
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
115
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124 /* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
126 */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
132
133 icsk->icsk_ack.last_seg_size = 0;
134
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
137 */
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
144 *
145 * "len" is invariant segment length, including TCP header.
146 */
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
153 */
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
159 */
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
165 }
166 }
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 }
171 }
172
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
197 {
198 const struct inet_connection_sock *icsk = inet_csk(sk);
199
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
224
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
230 */
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock *)tp);
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 }
240 /* fallinto */
241 default:
242 tp->ecn_flags |= TCP_ECN_SEEN;
243 }
244 }
245
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 return true;
262 return false;
263 }
264
265 /* Buffer size and advertised window tuning.
266 *
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268 */
269
270 static void tcp_fixup_sndbuf(struct sock *sk)
271 {
272 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
273
274 sndmem *= TCP_INIT_CWND;
275 if (sk->sk_sndbuf < sndmem)
276 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
277 }
278
279 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
280 *
281 * All tcp_full_space() is split to two parts: "network" buffer, allocated
282 * forward and advertised in receiver window (tp->rcv_wnd) and
283 * "application buffer", required to isolate scheduling/application
284 * latencies from network.
285 * window_clamp is maximal advertised window. It can be less than
286 * tcp_full_space(), in this case tcp_full_space() - window_clamp
287 * is reserved for "application" buffer. The less window_clamp is
288 * the smoother our behaviour from viewpoint of network, but the lower
289 * throughput and the higher sensitivity of the connection to losses. 8)
290 *
291 * rcv_ssthresh is more strict window_clamp used at "slow start"
292 * phase to predict further behaviour of this connection.
293 * It is used for two goals:
294 * - to enforce header prediction at sender, even when application
295 * requires some significant "application buffer". It is check #1.
296 * - to prevent pruning of receive queue because of misprediction
297 * of receiver window. Check #2.
298 *
299 * The scheme does not work when sender sends good segments opening
300 * window and then starts to feed us spaghetti. But it should work
301 * in common situations. Otherwise, we have to rely on queue collapsing.
302 */
303
304 /* Slow part of check#2. */
305 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
306 {
307 struct tcp_sock *tp = tcp_sk(sk);
308 /* Optimize this! */
309 int truesize = tcp_win_from_space(skb->truesize) >> 1;
310 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
311
312 while (tp->rcv_ssthresh <= window) {
313 if (truesize <= skb->len)
314 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
315
316 truesize >>= 1;
317 window >>= 1;
318 }
319 return 0;
320 }
321
322 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
323 {
324 struct tcp_sock *tp = tcp_sk(sk);
325
326 /* Check #1 */
327 if (tp->rcv_ssthresh < tp->window_clamp &&
328 (int)tp->rcv_ssthresh < tcp_space(sk) &&
329 !sk_under_memory_pressure(sk)) {
330 int incr;
331
332 /* Check #2. Increase window, if skb with such overhead
333 * will fit to rcvbuf in future.
334 */
335 if (tcp_win_from_space(skb->truesize) <= skb->len)
336 incr = 2 * tp->advmss;
337 else
338 incr = __tcp_grow_window(sk, skb);
339
340 if (incr) {
341 incr = max_t(int, incr, 2 * skb->len);
342 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
343 tp->window_clamp);
344 inet_csk(sk)->icsk_ack.quick |= 1;
345 }
346 }
347 }
348
349 /* 3. Tuning rcvbuf, when connection enters established state. */
350 static void tcp_fixup_rcvbuf(struct sock *sk)
351 {
352 u32 mss = tcp_sk(sk)->advmss;
353 int rcvmem;
354
355 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
356 tcp_default_init_rwnd(mss);
357
358 if (sk->sk_rcvbuf < rcvmem)
359 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
360 }
361
362 /* 4. Try to fixup all. It is made immediately after connection enters
363 * established state.
364 */
365 void tcp_init_buffer_space(struct sock *sk)
366 {
367 struct tcp_sock *tp = tcp_sk(sk);
368 int maxwin;
369
370 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
371 tcp_fixup_rcvbuf(sk);
372 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
373 tcp_fixup_sndbuf(sk);
374
375 tp->rcvq_space.space = tp->rcv_wnd;
376
377 maxwin = tcp_full_space(sk);
378
379 if (tp->window_clamp >= maxwin) {
380 tp->window_clamp = maxwin;
381
382 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
383 tp->window_clamp = max(maxwin -
384 (maxwin >> sysctl_tcp_app_win),
385 4 * tp->advmss);
386 }
387
388 /* Force reservation of one segment. */
389 if (sysctl_tcp_app_win &&
390 tp->window_clamp > 2 * tp->advmss &&
391 tp->window_clamp + tp->advmss > maxwin)
392 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
393
394 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
395 tp->snd_cwnd_stamp = tcp_time_stamp;
396 }
397
398 /* 5. Recalculate window clamp after socket hit its memory bounds. */
399 static void tcp_clamp_window(struct sock *sk)
400 {
401 struct tcp_sock *tp = tcp_sk(sk);
402 struct inet_connection_sock *icsk = inet_csk(sk);
403
404 icsk->icsk_ack.quick = 0;
405
406 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
407 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
408 !sk_under_memory_pressure(sk) &&
409 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
410 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
411 sysctl_tcp_rmem[2]);
412 }
413 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
414 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
415 }
416
417 /* Initialize RCV_MSS value.
418 * RCV_MSS is an our guess about MSS used by the peer.
419 * We haven't any direct information about the MSS.
420 * It's better to underestimate the RCV_MSS rather than overestimate.
421 * Overestimations make us ACKing less frequently than needed.
422 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
423 */
424 void tcp_initialize_rcv_mss(struct sock *sk)
425 {
426 const struct tcp_sock *tp = tcp_sk(sk);
427 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
428
429 hint = min(hint, tp->rcv_wnd / 2);
430 hint = min(hint, TCP_MSS_DEFAULT);
431 hint = max(hint, TCP_MIN_MSS);
432
433 inet_csk(sk)->icsk_ack.rcv_mss = hint;
434 }
435 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
436
437 /* Receiver "autotuning" code.
438 *
439 * The algorithm for RTT estimation w/o timestamps is based on
440 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
441 * <http://public.lanl.gov/radiant/pubs.html#DRS>
442 *
443 * More detail on this code can be found at
444 * <http://staff.psc.edu/jheffner/>,
445 * though this reference is out of date. A new paper
446 * is pending.
447 */
448 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
449 {
450 u32 new_sample = tp->rcv_rtt_est.rtt;
451 long m = sample;
452
453 if (m == 0)
454 m = 1;
455
456 if (new_sample != 0) {
457 /* If we sample in larger samples in the non-timestamp
458 * case, we could grossly overestimate the RTT especially
459 * with chatty applications or bulk transfer apps which
460 * are stalled on filesystem I/O.
461 *
462 * Also, since we are only going for a minimum in the
463 * non-timestamp case, we do not smooth things out
464 * else with timestamps disabled convergence takes too
465 * long.
466 */
467 if (!win_dep) {
468 m -= (new_sample >> 3);
469 new_sample += m;
470 } else {
471 m <<= 3;
472 if (m < new_sample)
473 new_sample = m;
474 }
475 } else {
476 /* No previous measure. */
477 new_sample = m << 3;
478 }
479
480 if (tp->rcv_rtt_est.rtt != new_sample)
481 tp->rcv_rtt_est.rtt = new_sample;
482 }
483
484 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
485 {
486 if (tp->rcv_rtt_est.time == 0)
487 goto new_measure;
488 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
489 return;
490 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
491
492 new_measure:
493 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
494 tp->rcv_rtt_est.time = tcp_time_stamp;
495 }
496
497 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
498 const struct sk_buff *skb)
499 {
500 struct tcp_sock *tp = tcp_sk(sk);
501 if (tp->rx_opt.rcv_tsecr &&
502 (TCP_SKB_CB(skb)->end_seq -
503 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
504 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
505 }
506
507 /*
508 * This function should be called every time data is copied to user space.
509 * It calculates the appropriate TCP receive buffer space.
510 */
511 void tcp_rcv_space_adjust(struct sock *sk)
512 {
513 struct tcp_sock *tp = tcp_sk(sk);
514 int time;
515 int space;
516
517 if (tp->rcvq_space.time == 0)
518 goto new_measure;
519
520 time = tcp_time_stamp - tp->rcvq_space.time;
521 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
522 return;
523
524 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
525
526 space = max(tp->rcvq_space.space, space);
527
528 if (tp->rcvq_space.space != space) {
529 int rcvmem;
530
531 tp->rcvq_space.space = space;
532
533 if (sysctl_tcp_moderate_rcvbuf &&
534 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
535 int new_clamp = space;
536
537 /* Receive space grows, normalize in order to
538 * take into account packet headers and sk_buff
539 * structure overhead.
540 */
541 space /= tp->advmss;
542 if (!space)
543 space = 1;
544 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
545 while (tcp_win_from_space(rcvmem) < tp->advmss)
546 rcvmem += 128;
547 space *= rcvmem;
548 space = min(space, sysctl_tcp_rmem[2]);
549 if (space > sk->sk_rcvbuf) {
550 sk->sk_rcvbuf = space;
551
552 /* Make the window clamp follow along. */
553 tp->window_clamp = new_clamp;
554 }
555 }
556 }
557
558 new_measure:
559 tp->rcvq_space.seq = tp->copied_seq;
560 tp->rcvq_space.time = tcp_time_stamp;
561 }
562
563 /* There is something which you must keep in mind when you analyze the
564 * behavior of the tp->ato delayed ack timeout interval. When a
565 * connection starts up, we want to ack as quickly as possible. The
566 * problem is that "good" TCP's do slow start at the beginning of data
567 * transmission. The means that until we send the first few ACK's the
568 * sender will sit on his end and only queue most of his data, because
569 * he can only send snd_cwnd unacked packets at any given time. For
570 * each ACK we send, he increments snd_cwnd and transmits more of his
571 * queue. -DaveM
572 */
573 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
574 {
575 struct tcp_sock *tp = tcp_sk(sk);
576 struct inet_connection_sock *icsk = inet_csk(sk);
577 u32 now;
578
579 inet_csk_schedule_ack(sk);
580
581 tcp_measure_rcv_mss(sk, skb);
582
583 tcp_rcv_rtt_measure(tp);
584
585 now = tcp_time_stamp;
586
587 if (!icsk->icsk_ack.ato) {
588 /* The _first_ data packet received, initialize
589 * delayed ACK engine.
590 */
591 tcp_incr_quickack(sk);
592 icsk->icsk_ack.ato = TCP_ATO_MIN;
593 } else {
594 int m = now - icsk->icsk_ack.lrcvtime;
595
596 if (m <= TCP_ATO_MIN / 2) {
597 /* The fastest case is the first. */
598 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
599 } else if (m < icsk->icsk_ack.ato) {
600 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
601 if (icsk->icsk_ack.ato > icsk->icsk_rto)
602 icsk->icsk_ack.ato = icsk->icsk_rto;
603 } else if (m > icsk->icsk_rto) {
604 /* Too long gap. Apparently sender failed to
605 * restart window, so that we send ACKs quickly.
606 */
607 tcp_incr_quickack(sk);
608 sk_mem_reclaim(sk);
609 }
610 }
611 icsk->icsk_ack.lrcvtime = now;
612
613 TCP_ECN_check_ce(tp, skb);
614
615 if (skb->len >= 128)
616 tcp_grow_window(sk, skb);
617 }
618
619 /* Called to compute a smoothed rtt estimate. The data fed to this
620 * routine either comes from timestamps, or from segments that were
621 * known _not_ to have been retransmitted [see Karn/Partridge
622 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
623 * piece by Van Jacobson.
624 * NOTE: the next three routines used to be one big routine.
625 * To save cycles in the RFC 1323 implementation it was better to break
626 * it up into three procedures. -- erics
627 */
628 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
629 {
630 struct tcp_sock *tp = tcp_sk(sk);
631 long m = mrtt; /* RTT */
632
633 /* The following amusing code comes from Jacobson's
634 * article in SIGCOMM '88. Note that rtt and mdev
635 * are scaled versions of rtt and mean deviation.
636 * This is designed to be as fast as possible
637 * m stands for "measurement".
638 *
639 * On a 1990 paper the rto value is changed to:
640 * RTO = rtt + 4 * mdev
641 *
642 * Funny. This algorithm seems to be very broken.
643 * These formulae increase RTO, when it should be decreased, increase
644 * too slowly, when it should be increased quickly, decrease too quickly
645 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
646 * does not matter how to _calculate_ it. Seems, it was trap
647 * that VJ failed to avoid. 8)
648 */
649 if (m == 0)
650 m = 1;
651 if (tp->srtt != 0) {
652 m -= (tp->srtt >> 3); /* m is now error in rtt est */
653 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
654 if (m < 0) {
655 m = -m; /* m is now abs(error) */
656 m -= (tp->mdev >> 2); /* similar update on mdev */
657 /* This is similar to one of Eifel findings.
658 * Eifel blocks mdev updates when rtt decreases.
659 * This solution is a bit different: we use finer gain
660 * for mdev in this case (alpha*beta).
661 * Like Eifel it also prevents growth of rto,
662 * but also it limits too fast rto decreases,
663 * happening in pure Eifel.
664 */
665 if (m > 0)
666 m >>= 3;
667 } else {
668 m -= (tp->mdev >> 2); /* similar update on mdev */
669 }
670 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
671 if (tp->mdev > tp->mdev_max) {
672 tp->mdev_max = tp->mdev;
673 if (tp->mdev_max > tp->rttvar)
674 tp->rttvar = tp->mdev_max;
675 }
676 if (after(tp->snd_una, tp->rtt_seq)) {
677 if (tp->mdev_max < tp->rttvar)
678 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
679 tp->rtt_seq = tp->snd_nxt;
680 tp->mdev_max = tcp_rto_min(sk);
681 }
682 } else {
683 /* no previous measure. */
684 tp->srtt = m << 3; /* take the measured time to be rtt */
685 tp->mdev = m << 1; /* make sure rto = 3*rtt */
686 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
687 tp->rtt_seq = tp->snd_nxt;
688 }
689 }
690
691 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
692 * Note: TCP stack does not yet implement pacing.
693 * FQ packet scheduler can be used to implement cheap but effective
694 * TCP pacing, to smooth the burst on large writes when packets
695 * in flight is significantly lower than cwnd (or rwin)
696 */
697 static void tcp_update_pacing_rate(struct sock *sk)
698 {
699 const struct tcp_sock *tp = tcp_sk(sk);
700 u64 rate;
701
702 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
703 rate = (u64)tp->mss_cache * 2 * (HZ << 3);
704
705 rate *= max(tp->snd_cwnd, tp->packets_out);
706
707 /* Correction for small srtt : minimum srtt being 8 (1 jiffy << 3),
708 * be conservative and assume srtt = 1 (125 us instead of 1.25 ms)
709 * We probably need usec resolution in the future.
710 * Note: This also takes care of possible srtt=0 case,
711 * when tcp_rtt_estimator() was not yet called.
712 */
713 if (tp->srtt > 8 + 2)
714 do_div(rate, tp->srtt);
715
716 sk->sk_pacing_rate = min_t(u64, rate, ~0U);
717 }
718
719 /* Calculate rto without backoff. This is the second half of Van Jacobson's
720 * routine referred to above.
721 */
722 void tcp_set_rto(struct sock *sk)
723 {
724 const struct tcp_sock *tp = tcp_sk(sk);
725 /* Old crap is replaced with new one. 8)
726 *
727 * More seriously:
728 * 1. If rtt variance happened to be less 50msec, it is hallucination.
729 * It cannot be less due to utterly erratic ACK generation made
730 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
731 * to do with delayed acks, because at cwnd>2 true delack timeout
732 * is invisible. Actually, Linux-2.4 also generates erratic
733 * ACKs in some circumstances.
734 */
735 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
736
737 /* 2. Fixups made earlier cannot be right.
738 * If we do not estimate RTO correctly without them,
739 * all the algo is pure shit and should be replaced
740 * with correct one. It is exactly, which we pretend to do.
741 */
742
743 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
744 * guarantees that rto is higher.
745 */
746 tcp_bound_rto(sk);
747 }
748
749 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
750 {
751 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
752
753 if (!cwnd)
754 cwnd = TCP_INIT_CWND;
755 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
756 }
757
758 /*
759 * Packet counting of FACK is based on in-order assumptions, therefore TCP
760 * disables it when reordering is detected
761 */
762 void tcp_disable_fack(struct tcp_sock *tp)
763 {
764 /* RFC3517 uses different metric in lost marker => reset on change */
765 if (tcp_is_fack(tp))
766 tp->lost_skb_hint = NULL;
767 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
768 }
769
770 /* Take a notice that peer is sending D-SACKs */
771 static void tcp_dsack_seen(struct tcp_sock *tp)
772 {
773 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
774 }
775
776 static void tcp_update_reordering(struct sock *sk, const int metric,
777 const int ts)
778 {
779 struct tcp_sock *tp = tcp_sk(sk);
780 if (metric > tp->reordering) {
781 int mib_idx;
782
783 tp->reordering = min(TCP_MAX_REORDERING, metric);
784
785 /* This exciting event is worth to be remembered. 8) */
786 if (ts)
787 mib_idx = LINUX_MIB_TCPTSREORDER;
788 else if (tcp_is_reno(tp))
789 mib_idx = LINUX_MIB_TCPRENOREORDER;
790 else if (tcp_is_fack(tp))
791 mib_idx = LINUX_MIB_TCPFACKREORDER;
792 else
793 mib_idx = LINUX_MIB_TCPSACKREORDER;
794
795 NET_INC_STATS_BH(sock_net(sk), mib_idx);
796 #if FASTRETRANS_DEBUG > 1
797 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
798 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
799 tp->reordering,
800 tp->fackets_out,
801 tp->sacked_out,
802 tp->undo_marker ? tp->undo_retrans : 0);
803 #endif
804 tcp_disable_fack(tp);
805 }
806
807 if (metric > 0)
808 tcp_disable_early_retrans(tp);
809 }
810
811 /* This must be called before lost_out is incremented */
812 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
813 {
814 if ((tp->retransmit_skb_hint == NULL) ||
815 before(TCP_SKB_CB(skb)->seq,
816 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
817 tp->retransmit_skb_hint = skb;
818
819 if (!tp->lost_out ||
820 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
821 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
822 }
823
824 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
825 {
826 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
827 tcp_verify_retransmit_hint(tp, skb);
828
829 tp->lost_out += tcp_skb_pcount(skb);
830 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
831 }
832 }
833
834 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
835 struct sk_buff *skb)
836 {
837 tcp_verify_retransmit_hint(tp, skb);
838
839 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
840 tp->lost_out += tcp_skb_pcount(skb);
841 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
842 }
843 }
844
845 /* This procedure tags the retransmission queue when SACKs arrive.
846 *
847 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
848 * Packets in queue with these bits set are counted in variables
849 * sacked_out, retrans_out and lost_out, correspondingly.
850 *
851 * Valid combinations are:
852 * Tag InFlight Description
853 * 0 1 - orig segment is in flight.
854 * S 0 - nothing flies, orig reached receiver.
855 * L 0 - nothing flies, orig lost by net.
856 * R 2 - both orig and retransmit are in flight.
857 * L|R 1 - orig is lost, retransmit is in flight.
858 * S|R 1 - orig reached receiver, retrans is still in flight.
859 * (L|S|R is logically valid, it could occur when L|R is sacked,
860 * but it is equivalent to plain S and code short-curcuits it to S.
861 * L|S is logically invalid, it would mean -1 packet in flight 8))
862 *
863 * These 6 states form finite state machine, controlled by the following events:
864 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
865 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
866 * 3. Loss detection event of two flavors:
867 * A. Scoreboard estimator decided the packet is lost.
868 * A'. Reno "three dupacks" marks head of queue lost.
869 * A''. Its FACK modification, head until snd.fack is lost.
870 * B. SACK arrives sacking SND.NXT at the moment, when the
871 * segment was retransmitted.
872 * 4. D-SACK added new rule: D-SACK changes any tag to S.
873 *
874 * It is pleasant to note, that state diagram turns out to be commutative,
875 * so that we are allowed not to be bothered by order of our actions,
876 * when multiple events arrive simultaneously. (see the function below).
877 *
878 * Reordering detection.
879 * --------------------
880 * Reordering metric is maximal distance, which a packet can be displaced
881 * in packet stream. With SACKs we can estimate it:
882 *
883 * 1. SACK fills old hole and the corresponding segment was not
884 * ever retransmitted -> reordering. Alas, we cannot use it
885 * when segment was retransmitted.
886 * 2. The last flaw is solved with D-SACK. D-SACK arrives
887 * for retransmitted and already SACKed segment -> reordering..
888 * Both of these heuristics are not used in Loss state, when we cannot
889 * account for retransmits accurately.
890 *
891 * SACK block validation.
892 * ----------------------
893 *
894 * SACK block range validation checks that the received SACK block fits to
895 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
896 * Note that SND.UNA is not included to the range though being valid because
897 * it means that the receiver is rather inconsistent with itself reporting
898 * SACK reneging when it should advance SND.UNA. Such SACK block this is
899 * perfectly valid, however, in light of RFC2018 which explicitly states
900 * that "SACK block MUST reflect the newest segment. Even if the newest
901 * segment is going to be discarded ...", not that it looks very clever
902 * in case of head skb. Due to potentional receiver driven attacks, we
903 * choose to avoid immediate execution of a walk in write queue due to
904 * reneging and defer head skb's loss recovery to standard loss recovery
905 * procedure that will eventually trigger (nothing forbids us doing this).
906 *
907 * Implements also blockage to start_seq wrap-around. Problem lies in the
908 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
909 * there's no guarantee that it will be before snd_nxt (n). The problem
910 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
911 * wrap (s_w):
912 *
913 * <- outs wnd -> <- wrapzone ->
914 * u e n u_w e_w s n_w
915 * | | | | | | |
916 * |<------------+------+----- TCP seqno space --------------+---------->|
917 * ...-- <2^31 ->| |<--------...
918 * ...---- >2^31 ------>| |<--------...
919 *
920 * Current code wouldn't be vulnerable but it's better still to discard such
921 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
922 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
923 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
924 * equal to the ideal case (infinite seqno space without wrap caused issues).
925 *
926 * With D-SACK the lower bound is extended to cover sequence space below
927 * SND.UNA down to undo_marker, which is the last point of interest. Yet
928 * again, D-SACK block must not to go across snd_una (for the same reason as
929 * for the normal SACK blocks, explained above). But there all simplicity
930 * ends, TCP might receive valid D-SACKs below that. As long as they reside
931 * fully below undo_marker they do not affect behavior in anyway and can
932 * therefore be safely ignored. In rare cases (which are more or less
933 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
934 * fragmentation and packet reordering past skb's retransmission. To consider
935 * them correctly, the acceptable range must be extended even more though
936 * the exact amount is rather hard to quantify. However, tp->max_window can
937 * be used as an exaggerated estimate.
938 */
939 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
940 u32 start_seq, u32 end_seq)
941 {
942 /* Too far in future, or reversed (interpretation is ambiguous) */
943 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
944 return false;
945
946 /* Nasty start_seq wrap-around check (see comments above) */
947 if (!before(start_seq, tp->snd_nxt))
948 return false;
949
950 /* In outstanding window? ...This is valid exit for D-SACKs too.
951 * start_seq == snd_una is non-sensical (see comments above)
952 */
953 if (after(start_seq, tp->snd_una))
954 return true;
955
956 if (!is_dsack || !tp->undo_marker)
957 return false;
958
959 /* ...Then it's D-SACK, and must reside below snd_una completely */
960 if (after(end_seq, tp->snd_una))
961 return false;
962
963 if (!before(start_seq, tp->undo_marker))
964 return true;
965
966 /* Too old */
967 if (!after(end_seq, tp->undo_marker))
968 return false;
969
970 /* Undo_marker boundary crossing (overestimates a lot). Known already:
971 * start_seq < undo_marker and end_seq >= undo_marker.
972 */
973 return !before(start_seq, end_seq - tp->max_window);
974 }
975
976 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
977 * Event "B". Later note: FACK people cheated me again 8), we have to account
978 * for reordering! Ugly, but should help.
979 *
980 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
981 * less than what is now known to be received by the other end (derived from
982 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
983 * retransmitted skbs to avoid some costly processing per ACKs.
984 */
985 static void tcp_mark_lost_retrans(struct sock *sk)
986 {
987 const struct inet_connection_sock *icsk = inet_csk(sk);
988 struct tcp_sock *tp = tcp_sk(sk);
989 struct sk_buff *skb;
990 int cnt = 0;
991 u32 new_low_seq = tp->snd_nxt;
992 u32 received_upto = tcp_highest_sack_seq(tp);
993
994 if (!tcp_is_fack(tp) || !tp->retrans_out ||
995 !after(received_upto, tp->lost_retrans_low) ||
996 icsk->icsk_ca_state != TCP_CA_Recovery)
997 return;
998
999 tcp_for_write_queue(skb, sk) {
1000 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1001
1002 if (skb == tcp_send_head(sk))
1003 break;
1004 if (cnt == tp->retrans_out)
1005 break;
1006 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1007 continue;
1008
1009 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1010 continue;
1011
1012 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1013 * constraint here (see above) but figuring out that at
1014 * least tp->reordering SACK blocks reside between ack_seq
1015 * and received_upto is not easy task to do cheaply with
1016 * the available datastructures.
1017 *
1018 * Whether FACK should check here for tp->reordering segs
1019 * in-between one could argue for either way (it would be
1020 * rather simple to implement as we could count fack_count
1021 * during the walk and do tp->fackets_out - fack_count).
1022 */
1023 if (after(received_upto, ack_seq)) {
1024 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1025 tp->retrans_out -= tcp_skb_pcount(skb);
1026
1027 tcp_skb_mark_lost_uncond_verify(tp, skb);
1028 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1029 } else {
1030 if (before(ack_seq, new_low_seq))
1031 new_low_seq = ack_seq;
1032 cnt += tcp_skb_pcount(skb);
1033 }
1034 }
1035
1036 if (tp->retrans_out)
1037 tp->lost_retrans_low = new_low_seq;
1038 }
1039
1040 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1041 struct tcp_sack_block_wire *sp, int num_sacks,
1042 u32 prior_snd_una)
1043 {
1044 struct tcp_sock *tp = tcp_sk(sk);
1045 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1046 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1047 bool dup_sack = false;
1048
1049 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1050 dup_sack = true;
1051 tcp_dsack_seen(tp);
1052 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1053 } else if (num_sacks > 1) {
1054 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1055 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1056
1057 if (!after(end_seq_0, end_seq_1) &&
1058 !before(start_seq_0, start_seq_1)) {
1059 dup_sack = true;
1060 tcp_dsack_seen(tp);
1061 NET_INC_STATS_BH(sock_net(sk),
1062 LINUX_MIB_TCPDSACKOFORECV);
1063 }
1064 }
1065
1066 /* D-SACK for already forgotten data... Do dumb counting. */
1067 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1068 !after(end_seq_0, prior_snd_una) &&
1069 after(end_seq_0, tp->undo_marker))
1070 tp->undo_retrans--;
1071
1072 return dup_sack;
1073 }
1074
1075 struct tcp_sacktag_state {
1076 int reord;
1077 int fack_count;
1078 int flag;
1079 s32 rtt; /* RTT measured by SACKing never-retransmitted data */
1080 };
1081
1082 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1083 * the incoming SACK may not exactly match but we can find smaller MSS
1084 * aligned portion of it that matches. Therefore we might need to fragment
1085 * which may fail and creates some hassle (caller must handle error case
1086 * returns).
1087 *
1088 * FIXME: this could be merged to shift decision code
1089 */
1090 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1091 u32 start_seq, u32 end_seq)
1092 {
1093 int err;
1094 bool in_sack;
1095 unsigned int pkt_len;
1096 unsigned int mss;
1097
1098 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1099 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1100
1101 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1102 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1103 mss = tcp_skb_mss(skb);
1104 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1105
1106 if (!in_sack) {
1107 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1108 if (pkt_len < mss)
1109 pkt_len = mss;
1110 } else {
1111 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1112 if (pkt_len < mss)
1113 return -EINVAL;
1114 }
1115
1116 /* Round if necessary so that SACKs cover only full MSSes
1117 * and/or the remaining small portion (if present)
1118 */
1119 if (pkt_len > mss) {
1120 unsigned int new_len = (pkt_len / mss) * mss;
1121 if (!in_sack && new_len < pkt_len) {
1122 new_len += mss;
1123 if (new_len > skb->len)
1124 return 0;
1125 }
1126 pkt_len = new_len;
1127 }
1128 err = tcp_fragment(sk, skb, pkt_len, mss);
1129 if (err < 0)
1130 return err;
1131 }
1132
1133 return in_sack;
1134 }
1135
1136 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1137 static u8 tcp_sacktag_one(struct sock *sk,
1138 struct tcp_sacktag_state *state, u8 sacked,
1139 u32 start_seq, u32 end_seq,
1140 int dup_sack, int pcount, u32 xmit_time)
1141 {
1142 struct tcp_sock *tp = tcp_sk(sk);
1143 int fack_count = state->fack_count;
1144
1145 /* Account D-SACK for retransmitted packet. */
1146 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1147 if (tp->undo_marker && tp->undo_retrans &&
1148 after(end_seq, tp->undo_marker))
1149 tp->undo_retrans--;
1150 if (sacked & TCPCB_SACKED_ACKED)
1151 state->reord = min(fack_count, state->reord);
1152 }
1153
1154 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1155 if (!after(end_seq, tp->snd_una))
1156 return sacked;
1157
1158 if (!(sacked & TCPCB_SACKED_ACKED)) {
1159 if (sacked & TCPCB_SACKED_RETRANS) {
1160 /* If the segment is not tagged as lost,
1161 * we do not clear RETRANS, believing
1162 * that retransmission is still in flight.
1163 */
1164 if (sacked & TCPCB_LOST) {
1165 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1166 tp->lost_out -= pcount;
1167 tp->retrans_out -= pcount;
1168 }
1169 } else {
1170 if (!(sacked & TCPCB_RETRANS)) {
1171 /* New sack for not retransmitted frame,
1172 * which was in hole. It is reordering.
1173 */
1174 if (before(start_seq,
1175 tcp_highest_sack_seq(tp)))
1176 state->reord = min(fack_count,
1177 state->reord);
1178 if (!after(end_seq, tp->high_seq))
1179 state->flag |= FLAG_ORIG_SACK_ACKED;
1180 /* Pick the earliest sequence sacked for RTT */
1181 if (state->rtt < 0)
1182 state->rtt = tcp_time_stamp - xmit_time;
1183 }
1184
1185 if (sacked & TCPCB_LOST) {
1186 sacked &= ~TCPCB_LOST;
1187 tp->lost_out -= pcount;
1188 }
1189 }
1190
1191 sacked |= TCPCB_SACKED_ACKED;
1192 state->flag |= FLAG_DATA_SACKED;
1193 tp->sacked_out += pcount;
1194
1195 fack_count += pcount;
1196
1197 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1198 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1199 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1200 tp->lost_cnt_hint += pcount;
1201
1202 if (fack_count > tp->fackets_out)
1203 tp->fackets_out = fack_count;
1204 }
1205
1206 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1207 * frames and clear it. undo_retrans is decreased above, L|R frames
1208 * are accounted above as well.
1209 */
1210 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1211 sacked &= ~TCPCB_SACKED_RETRANS;
1212 tp->retrans_out -= pcount;
1213 }
1214
1215 return sacked;
1216 }
1217
1218 /* Shift newly-SACKed bytes from this skb to the immediately previous
1219 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1220 */
1221 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1222 struct tcp_sacktag_state *state,
1223 unsigned int pcount, int shifted, int mss,
1224 bool dup_sack)
1225 {
1226 struct tcp_sock *tp = tcp_sk(sk);
1227 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1228 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1229 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1230
1231 BUG_ON(!pcount);
1232
1233 /* Adjust counters and hints for the newly sacked sequence
1234 * range but discard the return value since prev is already
1235 * marked. We must tag the range first because the seq
1236 * advancement below implicitly advances
1237 * tcp_highest_sack_seq() when skb is highest_sack.
1238 */
1239 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1240 start_seq, end_seq, dup_sack, pcount,
1241 TCP_SKB_CB(skb)->when);
1242
1243 if (skb == tp->lost_skb_hint)
1244 tp->lost_cnt_hint += pcount;
1245
1246 TCP_SKB_CB(prev)->end_seq += shifted;
1247 TCP_SKB_CB(skb)->seq += shifted;
1248
1249 skb_shinfo(prev)->gso_segs += pcount;
1250 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1251 skb_shinfo(skb)->gso_segs -= pcount;
1252
1253 /* When we're adding to gso_segs == 1, gso_size will be zero,
1254 * in theory this shouldn't be necessary but as long as DSACK
1255 * code can come after this skb later on it's better to keep
1256 * setting gso_size to something.
1257 */
1258 if (!skb_shinfo(prev)->gso_size) {
1259 skb_shinfo(prev)->gso_size = mss;
1260 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1261 }
1262
1263 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1264 if (skb_shinfo(skb)->gso_segs <= 1) {
1265 skb_shinfo(skb)->gso_size = 0;
1266 skb_shinfo(skb)->gso_type = 0;
1267 }
1268
1269 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1270 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1271
1272 if (skb->len > 0) {
1273 BUG_ON(!tcp_skb_pcount(skb));
1274 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1275 return false;
1276 }
1277
1278 /* Whole SKB was eaten :-) */
1279
1280 if (skb == tp->retransmit_skb_hint)
1281 tp->retransmit_skb_hint = prev;
1282 if (skb == tp->lost_skb_hint) {
1283 tp->lost_skb_hint = prev;
1284 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1285 }
1286
1287 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1288 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1289 TCP_SKB_CB(prev)->end_seq++;
1290
1291 if (skb == tcp_highest_sack(sk))
1292 tcp_advance_highest_sack(sk, skb);
1293
1294 tcp_unlink_write_queue(skb, sk);
1295 sk_wmem_free_skb(sk, skb);
1296
1297 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1298
1299 return true;
1300 }
1301
1302 /* I wish gso_size would have a bit more sane initialization than
1303 * something-or-zero which complicates things
1304 */
1305 static int tcp_skb_seglen(const struct sk_buff *skb)
1306 {
1307 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1308 }
1309
1310 /* Shifting pages past head area doesn't work */
1311 static int skb_can_shift(const struct sk_buff *skb)
1312 {
1313 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1314 }
1315
1316 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1317 * skb.
1318 */
1319 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1320 struct tcp_sacktag_state *state,
1321 u32 start_seq, u32 end_seq,
1322 bool dup_sack)
1323 {
1324 struct tcp_sock *tp = tcp_sk(sk);
1325 struct sk_buff *prev;
1326 int mss;
1327 int pcount = 0;
1328 int len;
1329 int in_sack;
1330
1331 if (!sk_can_gso(sk))
1332 goto fallback;
1333
1334 /* Normally R but no L won't result in plain S */
1335 if (!dup_sack &&
1336 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1337 goto fallback;
1338 if (!skb_can_shift(skb))
1339 goto fallback;
1340 /* This frame is about to be dropped (was ACKed). */
1341 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1342 goto fallback;
1343
1344 /* Can only happen with delayed DSACK + discard craziness */
1345 if (unlikely(skb == tcp_write_queue_head(sk)))
1346 goto fallback;
1347 prev = tcp_write_queue_prev(sk, skb);
1348
1349 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1350 goto fallback;
1351
1352 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1353 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1354
1355 if (in_sack) {
1356 len = skb->len;
1357 pcount = tcp_skb_pcount(skb);
1358 mss = tcp_skb_seglen(skb);
1359
1360 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1361 * drop this restriction as unnecessary
1362 */
1363 if (mss != tcp_skb_seglen(prev))
1364 goto fallback;
1365 } else {
1366 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1367 goto noop;
1368 /* CHECKME: This is non-MSS split case only?, this will
1369 * cause skipped skbs due to advancing loop btw, original
1370 * has that feature too
1371 */
1372 if (tcp_skb_pcount(skb) <= 1)
1373 goto noop;
1374
1375 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1376 if (!in_sack) {
1377 /* TODO: head merge to next could be attempted here
1378 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1379 * though it might not be worth of the additional hassle
1380 *
1381 * ...we can probably just fallback to what was done
1382 * previously. We could try merging non-SACKed ones
1383 * as well but it probably isn't going to buy off
1384 * because later SACKs might again split them, and
1385 * it would make skb timestamp tracking considerably
1386 * harder problem.
1387 */
1388 goto fallback;
1389 }
1390
1391 len = end_seq - TCP_SKB_CB(skb)->seq;
1392 BUG_ON(len < 0);
1393 BUG_ON(len > skb->len);
1394
1395 /* MSS boundaries should be honoured or else pcount will
1396 * severely break even though it makes things bit trickier.
1397 * Optimize common case to avoid most of the divides
1398 */
1399 mss = tcp_skb_mss(skb);
1400
1401 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1402 * drop this restriction as unnecessary
1403 */
1404 if (mss != tcp_skb_seglen(prev))
1405 goto fallback;
1406
1407 if (len == mss) {
1408 pcount = 1;
1409 } else if (len < mss) {
1410 goto noop;
1411 } else {
1412 pcount = len / mss;
1413 len = pcount * mss;
1414 }
1415 }
1416
1417 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1418 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1419 goto fallback;
1420
1421 if (!skb_shift(prev, skb, len))
1422 goto fallback;
1423 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1424 goto out;
1425
1426 /* Hole filled allows collapsing with the next as well, this is very
1427 * useful when hole on every nth skb pattern happens
1428 */
1429 if (prev == tcp_write_queue_tail(sk))
1430 goto out;
1431 skb = tcp_write_queue_next(sk, prev);
1432
1433 if (!skb_can_shift(skb) ||
1434 (skb == tcp_send_head(sk)) ||
1435 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1436 (mss != tcp_skb_seglen(skb)))
1437 goto out;
1438
1439 len = skb->len;
1440 if (skb_shift(prev, skb, len)) {
1441 pcount += tcp_skb_pcount(skb);
1442 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1443 }
1444
1445 out:
1446 state->fack_count += pcount;
1447 return prev;
1448
1449 noop:
1450 return skb;
1451
1452 fallback:
1453 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1454 return NULL;
1455 }
1456
1457 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1458 struct tcp_sack_block *next_dup,
1459 struct tcp_sacktag_state *state,
1460 u32 start_seq, u32 end_seq,
1461 bool dup_sack_in)
1462 {
1463 struct tcp_sock *tp = tcp_sk(sk);
1464 struct sk_buff *tmp;
1465
1466 tcp_for_write_queue_from(skb, sk) {
1467 int in_sack = 0;
1468 bool dup_sack = dup_sack_in;
1469
1470 if (skb == tcp_send_head(sk))
1471 break;
1472
1473 /* queue is in-order => we can short-circuit the walk early */
1474 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1475 break;
1476
1477 if ((next_dup != NULL) &&
1478 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1479 in_sack = tcp_match_skb_to_sack(sk, skb,
1480 next_dup->start_seq,
1481 next_dup->end_seq);
1482 if (in_sack > 0)
1483 dup_sack = true;
1484 }
1485
1486 /* skb reference here is a bit tricky to get right, since
1487 * shifting can eat and free both this skb and the next,
1488 * so not even _safe variant of the loop is enough.
1489 */
1490 if (in_sack <= 0) {
1491 tmp = tcp_shift_skb_data(sk, skb, state,
1492 start_seq, end_seq, dup_sack);
1493 if (tmp != NULL) {
1494 if (tmp != skb) {
1495 skb = tmp;
1496 continue;
1497 }
1498
1499 in_sack = 0;
1500 } else {
1501 in_sack = tcp_match_skb_to_sack(sk, skb,
1502 start_seq,
1503 end_seq);
1504 }
1505 }
1506
1507 if (unlikely(in_sack < 0))
1508 break;
1509
1510 if (in_sack) {
1511 TCP_SKB_CB(skb)->sacked =
1512 tcp_sacktag_one(sk,
1513 state,
1514 TCP_SKB_CB(skb)->sacked,
1515 TCP_SKB_CB(skb)->seq,
1516 TCP_SKB_CB(skb)->end_seq,
1517 dup_sack,
1518 tcp_skb_pcount(skb),
1519 TCP_SKB_CB(skb)->when);
1520
1521 if (!before(TCP_SKB_CB(skb)->seq,
1522 tcp_highest_sack_seq(tp)))
1523 tcp_advance_highest_sack(sk, skb);
1524 }
1525
1526 state->fack_count += tcp_skb_pcount(skb);
1527 }
1528 return skb;
1529 }
1530
1531 /* Avoid all extra work that is being done by sacktag while walking in
1532 * a normal way
1533 */
1534 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1535 struct tcp_sacktag_state *state,
1536 u32 skip_to_seq)
1537 {
1538 tcp_for_write_queue_from(skb, sk) {
1539 if (skb == tcp_send_head(sk))
1540 break;
1541
1542 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1543 break;
1544
1545 state->fack_count += tcp_skb_pcount(skb);
1546 }
1547 return skb;
1548 }
1549
1550 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1551 struct sock *sk,
1552 struct tcp_sack_block *next_dup,
1553 struct tcp_sacktag_state *state,
1554 u32 skip_to_seq)
1555 {
1556 if (next_dup == NULL)
1557 return skb;
1558
1559 if (before(next_dup->start_seq, skip_to_seq)) {
1560 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1561 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1562 next_dup->start_seq, next_dup->end_seq,
1563 1);
1564 }
1565
1566 return skb;
1567 }
1568
1569 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1570 {
1571 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1572 }
1573
1574 static int
1575 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1576 u32 prior_snd_una, s32 *sack_rtt)
1577 {
1578 struct tcp_sock *tp = tcp_sk(sk);
1579 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1580 TCP_SKB_CB(ack_skb)->sacked);
1581 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1582 struct tcp_sack_block sp[TCP_NUM_SACKS];
1583 struct tcp_sack_block *cache;
1584 struct tcp_sacktag_state state;
1585 struct sk_buff *skb;
1586 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1587 int used_sacks;
1588 bool found_dup_sack = false;
1589 int i, j;
1590 int first_sack_index;
1591
1592 state.flag = 0;
1593 state.reord = tp->packets_out;
1594 state.rtt = -1;
1595
1596 if (!tp->sacked_out) {
1597 if (WARN_ON(tp->fackets_out))
1598 tp->fackets_out = 0;
1599 tcp_highest_sack_reset(sk);
1600 }
1601
1602 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1603 num_sacks, prior_snd_una);
1604 if (found_dup_sack)
1605 state.flag |= FLAG_DSACKING_ACK;
1606
1607 /* Eliminate too old ACKs, but take into
1608 * account more or less fresh ones, they can
1609 * contain valid SACK info.
1610 */
1611 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1612 return 0;
1613
1614 if (!tp->packets_out)
1615 goto out;
1616
1617 used_sacks = 0;
1618 first_sack_index = 0;
1619 for (i = 0; i < num_sacks; i++) {
1620 bool dup_sack = !i && found_dup_sack;
1621
1622 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1623 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1624
1625 if (!tcp_is_sackblock_valid(tp, dup_sack,
1626 sp[used_sacks].start_seq,
1627 sp[used_sacks].end_seq)) {
1628 int mib_idx;
1629
1630 if (dup_sack) {
1631 if (!tp->undo_marker)
1632 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1633 else
1634 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1635 } else {
1636 /* Don't count olds caused by ACK reordering */
1637 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1638 !after(sp[used_sacks].end_seq, tp->snd_una))
1639 continue;
1640 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1641 }
1642
1643 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1644 if (i == 0)
1645 first_sack_index = -1;
1646 continue;
1647 }
1648
1649 /* Ignore very old stuff early */
1650 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1651 continue;
1652
1653 used_sacks++;
1654 }
1655
1656 /* order SACK blocks to allow in order walk of the retrans queue */
1657 for (i = used_sacks - 1; i > 0; i--) {
1658 for (j = 0; j < i; j++) {
1659 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1660 swap(sp[j], sp[j + 1]);
1661
1662 /* Track where the first SACK block goes to */
1663 if (j == first_sack_index)
1664 first_sack_index = j + 1;
1665 }
1666 }
1667 }
1668
1669 skb = tcp_write_queue_head(sk);
1670 state.fack_count = 0;
1671 i = 0;
1672
1673 if (!tp->sacked_out) {
1674 /* It's already past, so skip checking against it */
1675 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1676 } else {
1677 cache = tp->recv_sack_cache;
1678 /* Skip empty blocks in at head of the cache */
1679 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1680 !cache->end_seq)
1681 cache++;
1682 }
1683
1684 while (i < used_sacks) {
1685 u32 start_seq = sp[i].start_seq;
1686 u32 end_seq = sp[i].end_seq;
1687 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1688 struct tcp_sack_block *next_dup = NULL;
1689
1690 if (found_dup_sack && ((i + 1) == first_sack_index))
1691 next_dup = &sp[i + 1];
1692
1693 /* Skip too early cached blocks */
1694 while (tcp_sack_cache_ok(tp, cache) &&
1695 !before(start_seq, cache->end_seq))
1696 cache++;
1697
1698 /* Can skip some work by looking recv_sack_cache? */
1699 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1700 after(end_seq, cache->start_seq)) {
1701
1702 /* Head todo? */
1703 if (before(start_seq, cache->start_seq)) {
1704 skb = tcp_sacktag_skip(skb, sk, &state,
1705 start_seq);
1706 skb = tcp_sacktag_walk(skb, sk, next_dup,
1707 &state,
1708 start_seq,
1709 cache->start_seq,
1710 dup_sack);
1711 }
1712
1713 /* Rest of the block already fully processed? */
1714 if (!after(end_seq, cache->end_seq))
1715 goto advance_sp;
1716
1717 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1718 &state,
1719 cache->end_seq);
1720
1721 /* ...tail remains todo... */
1722 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1723 /* ...but better entrypoint exists! */
1724 skb = tcp_highest_sack(sk);
1725 if (skb == NULL)
1726 break;
1727 state.fack_count = tp->fackets_out;
1728 cache++;
1729 goto walk;
1730 }
1731
1732 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1733 /* Check overlap against next cached too (past this one already) */
1734 cache++;
1735 continue;
1736 }
1737
1738 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1739 skb = tcp_highest_sack(sk);
1740 if (skb == NULL)
1741 break;
1742 state.fack_count = tp->fackets_out;
1743 }
1744 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1745
1746 walk:
1747 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1748 start_seq, end_seq, dup_sack);
1749
1750 advance_sp:
1751 i++;
1752 }
1753
1754 /* Clear the head of the cache sack blocks so we can skip it next time */
1755 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1756 tp->recv_sack_cache[i].start_seq = 0;
1757 tp->recv_sack_cache[i].end_seq = 0;
1758 }
1759 for (j = 0; j < used_sacks; j++)
1760 tp->recv_sack_cache[i++] = sp[j];
1761
1762 tcp_mark_lost_retrans(sk);
1763
1764 tcp_verify_left_out(tp);
1765
1766 if ((state.reord < tp->fackets_out) &&
1767 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1768 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1769
1770 out:
1771
1772 #if FASTRETRANS_DEBUG > 0
1773 WARN_ON((int)tp->sacked_out < 0);
1774 WARN_ON((int)tp->lost_out < 0);
1775 WARN_ON((int)tp->retrans_out < 0);
1776 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1777 #endif
1778 *sack_rtt = state.rtt;
1779 return state.flag;
1780 }
1781
1782 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1783 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1784 */
1785 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1786 {
1787 u32 holes;
1788
1789 holes = max(tp->lost_out, 1U);
1790 holes = min(holes, tp->packets_out);
1791
1792 if ((tp->sacked_out + holes) > tp->packets_out) {
1793 tp->sacked_out = tp->packets_out - holes;
1794 return true;
1795 }
1796 return false;
1797 }
1798
1799 /* If we receive more dupacks than we expected counting segments
1800 * in assumption of absent reordering, interpret this as reordering.
1801 * The only another reason could be bug in receiver TCP.
1802 */
1803 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1804 {
1805 struct tcp_sock *tp = tcp_sk(sk);
1806 if (tcp_limit_reno_sacked(tp))
1807 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1808 }
1809
1810 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1811
1812 static void tcp_add_reno_sack(struct sock *sk)
1813 {
1814 struct tcp_sock *tp = tcp_sk(sk);
1815 tp->sacked_out++;
1816 tcp_check_reno_reordering(sk, 0);
1817 tcp_verify_left_out(tp);
1818 }
1819
1820 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1821
1822 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1823 {
1824 struct tcp_sock *tp = tcp_sk(sk);
1825
1826 if (acked > 0) {
1827 /* One ACK acked hole. The rest eat duplicate ACKs. */
1828 if (acked - 1 >= tp->sacked_out)
1829 tp->sacked_out = 0;
1830 else
1831 tp->sacked_out -= acked - 1;
1832 }
1833 tcp_check_reno_reordering(sk, acked);
1834 tcp_verify_left_out(tp);
1835 }
1836
1837 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1838 {
1839 tp->sacked_out = 0;
1840 }
1841
1842 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1843 {
1844 tp->retrans_out = 0;
1845 tp->lost_out = 0;
1846
1847 tp->undo_marker = 0;
1848 tp->undo_retrans = 0;
1849 }
1850
1851 void tcp_clear_retrans(struct tcp_sock *tp)
1852 {
1853 tcp_clear_retrans_partial(tp);
1854
1855 tp->fackets_out = 0;
1856 tp->sacked_out = 0;
1857 }
1858
1859 /* Enter Loss state. If "how" is not zero, forget all SACK information
1860 * and reset tags completely, otherwise preserve SACKs. If receiver
1861 * dropped its ofo queue, we will know this due to reneging detection.
1862 */
1863 void tcp_enter_loss(struct sock *sk, int how)
1864 {
1865 const struct inet_connection_sock *icsk = inet_csk(sk);
1866 struct tcp_sock *tp = tcp_sk(sk);
1867 struct sk_buff *skb;
1868 bool new_recovery = false;
1869
1870 /* Reduce ssthresh if it has not yet been made inside this window. */
1871 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1872 !after(tp->high_seq, tp->snd_una) ||
1873 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1874 new_recovery = true;
1875 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1876 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1877 tcp_ca_event(sk, CA_EVENT_LOSS);
1878 }
1879 tp->snd_cwnd = 1;
1880 tp->snd_cwnd_cnt = 0;
1881 tp->snd_cwnd_stamp = tcp_time_stamp;
1882
1883 tcp_clear_retrans_partial(tp);
1884
1885 if (tcp_is_reno(tp))
1886 tcp_reset_reno_sack(tp);
1887
1888 tp->undo_marker = tp->snd_una;
1889 if (how) {
1890 tp->sacked_out = 0;
1891 tp->fackets_out = 0;
1892 }
1893 tcp_clear_all_retrans_hints(tp);
1894
1895 tcp_for_write_queue(skb, sk) {
1896 if (skb == tcp_send_head(sk))
1897 break;
1898
1899 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1900 tp->undo_marker = 0;
1901 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1902 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1903 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1904 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1905 tp->lost_out += tcp_skb_pcount(skb);
1906 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1907 }
1908 }
1909 tcp_verify_left_out(tp);
1910
1911 /* Timeout in disordered state after receiving substantial DUPACKs
1912 * suggests that the degree of reordering is over-estimated.
1913 */
1914 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1915 tp->sacked_out >= sysctl_tcp_reordering)
1916 tp->reordering = min_t(unsigned int, tp->reordering,
1917 sysctl_tcp_reordering);
1918 tcp_set_ca_state(sk, TCP_CA_Loss);
1919 tp->high_seq = tp->snd_nxt;
1920 TCP_ECN_queue_cwr(tp);
1921
1922 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1923 * loss recovery is underway except recurring timeout(s) on
1924 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1925 */
1926 tp->frto = sysctl_tcp_frto &&
1927 (new_recovery || icsk->icsk_retransmits) &&
1928 !inet_csk(sk)->icsk_mtup.probe_size;
1929 }
1930
1931 /* If ACK arrived pointing to a remembered SACK, it means that our
1932 * remembered SACKs do not reflect real state of receiver i.e.
1933 * receiver _host_ is heavily congested (or buggy).
1934 *
1935 * Do processing similar to RTO timeout.
1936 */
1937 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1938 {
1939 if (flag & FLAG_SACK_RENEGING) {
1940 struct inet_connection_sock *icsk = inet_csk(sk);
1941 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1942
1943 tcp_enter_loss(sk, 1);
1944 icsk->icsk_retransmits++;
1945 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1946 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1947 icsk->icsk_rto, TCP_RTO_MAX);
1948 return true;
1949 }
1950 return false;
1951 }
1952
1953 static inline int tcp_fackets_out(const struct tcp_sock *tp)
1954 {
1955 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1956 }
1957
1958 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1959 * counter when SACK is enabled (without SACK, sacked_out is used for
1960 * that purpose).
1961 *
1962 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1963 * segments up to the highest received SACK block so far and holes in
1964 * between them.
1965 *
1966 * With reordering, holes may still be in flight, so RFC3517 recovery
1967 * uses pure sacked_out (total number of SACKed segments) even though
1968 * it violates the RFC that uses duplicate ACKs, often these are equal
1969 * but when e.g. out-of-window ACKs or packet duplication occurs,
1970 * they differ. Since neither occurs due to loss, TCP should really
1971 * ignore them.
1972 */
1973 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
1974 {
1975 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1976 }
1977
1978 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
1979 {
1980 struct tcp_sock *tp = tcp_sk(sk);
1981 unsigned long delay;
1982
1983 /* Delay early retransmit and entering fast recovery for
1984 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
1985 * available, or RTO is scheduled to fire first.
1986 */
1987 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
1988 (flag & FLAG_ECE) || !tp->srtt)
1989 return false;
1990
1991 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
1992 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
1993 return false;
1994
1995 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
1996 TCP_RTO_MAX);
1997 return true;
1998 }
1999
2000 /* Linux NewReno/SACK/FACK/ECN state machine.
2001 * --------------------------------------
2002 *
2003 * "Open" Normal state, no dubious events, fast path.
2004 * "Disorder" In all the respects it is "Open",
2005 * but requires a bit more attention. It is entered when
2006 * we see some SACKs or dupacks. It is split of "Open"
2007 * mainly to move some processing from fast path to slow one.
2008 * "CWR" CWND was reduced due to some Congestion Notification event.
2009 * It can be ECN, ICMP source quench, local device congestion.
2010 * "Recovery" CWND was reduced, we are fast-retransmitting.
2011 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2012 *
2013 * tcp_fastretrans_alert() is entered:
2014 * - each incoming ACK, if state is not "Open"
2015 * - when arrived ACK is unusual, namely:
2016 * * SACK
2017 * * Duplicate ACK.
2018 * * ECN ECE.
2019 *
2020 * Counting packets in flight is pretty simple.
2021 *
2022 * in_flight = packets_out - left_out + retrans_out
2023 *
2024 * packets_out is SND.NXT-SND.UNA counted in packets.
2025 *
2026 * retrans_out is number of retransmitted segments.
2027 *
2028 * left_out is number of segments left network, but not ACKed yet.
2029 *
2030 * left_out = sacked_out + lost_out
2031 *
2032 * sacked_out: Packets, which arrived to receiver out of order
2033 * and hence not ACKed. With SACKs this number is simply
2034 * amount of SACKed data. Even without SACKs
2035 * it is easy to give pretty reliable estimate of this number,
2036 * counting duplicate ACKs.
2037 *
2038 * lost_out: Packets lost by network. TCP has no explicit
2039 * "loss notification" feedback from network (for now).
2040 * It means that this number can be only _guessed_.
2041 * Actually, it is the heuristics to predict lossage that
2042 * distinguishes different algorithms.
2043 *
2044 * F.e. after RTO, when all the queue is considered as lost,
2045 * lost_out = packets_out and in_flight = retrans_out.
2046 *
2047 * Essentially, we have now two algorithms counting
2048 * lost packets.
2049 *
2050 * FACK: It is the simplest heuristics. As soon as we decided
2051 * that something is lost, we decide that _all_ not SACKed
2052 * packets until the most forward SACK are lost. I.e.
2053 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2054 * It is absolutely correct estimate, if network does not reorder
2055 * packets. And it loses any connection to reality when reordering
2056 * takes place. We use FACK by default until reordering
2057 * is suspected on the path to this destination.
2058 *
2059 * NewReno: when Recovery is entered, we assume that one segment
2060 * is lost (classic Reno). While we are in Recovery and
2061 * a partial ACK arrives, we assume that one more packet
2062 * is lost (NewReno). This heuristics are the same in NewReno
2063 * and SACK.
2064 *
2065 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2066 * deflation etc. CWND is real congestion window, never inflated, changes
2067 * only according to classic VJ rules.
2068 *
2069 * Really tricky (and requiring careful tuning) part of algorithm
2070 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2071 * The first determines the moment _when_ we should reduce CWND and,
2072 * hence, slow down forward transmission. In fact, it determines the moment
2073 * when we decide that hole is caused by loss, rather than by a reorder.
2074 *
2075 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2076 * holes, caused by lost packets.
2077 *
2078 * And the most logically complicated part of algorithm is undo
2079 * heuristics. We detect false retransmits due to both too early
2080 * fast retransmit (reordering) and underestimated RTO, analyzing
2081 * timestamps and D-SACKs. When we detect that some segments were
2082 * retransmitted by mistake and CWND reduction was wrong, we undo
2083 * window reduction and abort recovery phase. This logic is hidden
2084 * inside several functions named tcp_try_undo_<something>.
2085 */
2086
2087 /* This function decides, when we should leave Disordered state
2088 * and enter Recovery phase, reducing congestion window.
2089 *
2090 * Main question: may we further continue forward transmission
2091 * with the same cwnd?
2092 */
2093 static bool tcp_time_to_recover(struct sock *sk, int flag)
2094 {
2095 struct tcp_sock *tp = tcp_sk(sk);
2096 __u32 packets_out;
2097
2098 /* Trick#1: The loss is proven. */
2099 if (tp->lost_out)
2100 return true;
2101
2102 /* Not-A-Trick#2 : Classic rule... */
2103 if (tcp_dupack_heuristics(tp) > tp->reordering)
2104 return true;
2105
2106 /* Trick#4: It is still not OK... But will it be useful to delay
2107 * recovery more?
2108 */
2109 packets_out = tp->packets_out;
2110 if (packets_out <= tp->reordering &&
2111 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2112 !tcp_may_send_now(sk)) {
2113 /* We have nothing to send. This connection is limited
2114 * either by receiver window or by application.
2115 */
2116 return true;
2117 }
2118
2119 /* If a thin stream is detected, retransmit after first
2120 * received dupack. Employ only if SACK is supported in order
2121 * to avoid possible corner-case series of spurious retransmissions
2122 * Use only if there are no unsent data.
2123 */
2124 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2125 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2126 tcp_is_sack(tp) && !tcp_send_head(sk))
2127 return true;
2128
2129 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2130 * retransmissions due to small network reorderings, we implement
2131 * Mitigation A.3 in the RFC and delay the retransmission for a short
2132 * interval if appropriate.
2133 */
2134 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2135 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2136 !tcp_may_send_now(sk))
2137 return !tcp_pause_early_retransmit(sk, flag);
2138
2139 return false;
2140 }
2141
2142 /* Detect loss in event "A" above by marking head of queue up as lost.
2143 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2144 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2145 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2146 * the maximum SACKed segments to pass before reaching this limit.
2147 */
2148 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2149 {
2150 struct tcp_sock *tp = tcp_sk(sk);
2151 struct sk_buff *skb;
2152 int cnt, oldcnt;
2153 int err;
2154 unsigned int mss;
2155 /* Use SACK to deduce losses of new sequences sent during recovery */
2156 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2157
2158 WARN_ON(packets > tp->packets_out);
2159 if (tp->lost_skb_hint) {
2160 skb = tp->lost_skb_hint;
2161 cnt = tp->lost_cnt_hint;
2162 /* Head already handled? */
2163 if (mark_head && skb != tcp_write_queue_head(sk))
2164 return;
2165 } else {
2166 skb = tcp_write_queue_head(sk);
2167 cnt = 0;
2168 }
2169
2170 tcp_for_write_queue_from(skb, sk) {
2171 if (skb == tcp_send_head(sk))
2172 break;
2173 /* TODO: do this better */
2174 /* this is not the most efficient way to do this... */
2175 tp->lost_skb_hint = skb;
2176 tp->lost_cnt_hint = cnt;
2177
2178 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2179 break;
2180
2181 oldcnt = cnt;
2182 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2183 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2184 cnt += tcp_skb_pcount(skb);
2185
2186 if (cnt > packets) {
2187 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2188 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2189 (oldcnt >= packets))
2190 break;
2191
2192 mss = skb_shinfo(skb)->gso_size;
2193 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2194 if (err < 0)
2195 break;
2196 cnt = packets;
2197 }
2198
2199 tcp_skb_mark_lost(tp, skb);
2200
2201 if (mark_head)
2202 break;
2203 }
2204 tcp_verify_left_out(tp);
2205 }
2206
2207 /* Account newly detected lost packet(s) */
2208
2209 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2210 {
2211 struct tcp_sock *tp = tcp_sk(sk);
2212
2213 if (tcp_is_reno(tp)) {
2214 tcp_mark_head_lost(sk, 1, 1);
2215 } else if (tcp_is_fack(tp)) {
2216 int lost = tp->fackets_out - tp->reordering;
2217 if (lost <= 0)
2218 lost = 1;
2219 tcp_mark_head_lost(sk, lost, 0);
2220 } else {
2221 int sacked_upto = tp->sacked_out - tp->reordering;
2222 if (sacked_upto >= 0)
2223 tcp_mark_head_lost(sk, sacked_upto, 0);
2224 else if (fast_rexmit)
2225 tcp_mark_head_lost(sk, 1, 1);
2226 }
2227 }
2228
2229 /* CWND moderation, preventing bursts due to too big ACKs
2230 * in dubious situations.
2231 */
2232 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2233 {
2234 tp->snd_cwnd = min(tp->snd_cwnd,
2235 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2236 tp->snd_cwnd_stamp = tcp_time_stamp;
2237 }
2238
2239 /* Nothing was retransmitted or returned timestamp is less
2240 * than timestamp of the first retransmission.
2241 */
2242 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2243 {
2244 return !tp->retrans_stamp ||
2245 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2246 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2247 }
2248
2249 /* Undo procedures. */
2250
2251 #if FASTRETRANS_DEBUG > 1
2252 static void DBGUNDO(struct sock *sk, const char *msg)
2253 {
2254 struct tcp_sock *tp = tcp_sk(sk);
2255 struct inet_sock *inet = inet_sk(sk);
2256
2257 if (sk->sk_family == AF_INET) {
2258 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2259 msg,
2260 &inet->inet_daddr, ntohs(inet->inet_dport),
2261 tp->snd_cwnd, tcp_left_out(tp),
2262 tp->snd_ssthresh, tp->prior_ssthresh,
2263 tp->packets_out);
2264 }
2265 #if IS_ENABLED(CONFIG_IPV6)
2266 else if (sk->sk_family == AF_INET6) {
2267 struct ipv6_pinfo *np = inet6_sk(sk);
2268 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2269 msg,
2270 &np->daddr, ntohs(inet->inet_dport),
2271 tp->snd_cwnd, tcp_left_out(tp),
2272 tp->snd_ssthresh, tp->prior_ssthresh,
2273 tp->packets_out);
2274 }
2275 #endif
2276 }
2277 #else
2278 #define DBGUNDO(x...) do { } while (0)
2279 #endif
2280
2281 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2282 {
2283 struct tcp_sock *tp = tcp_sk(sk);
2284
2285 if (unmark_loss) {
2286 struct sk_buff *skb;
2287
2288 tcp_for_write_queue(skb, sk) {
2289 if (skb == tcp_send_head(sk))
2290 break;
2291 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2292 }
2293 tp->lost_out = 0;
2294 tcp_clear_all_retrans_hints(tp);
2295 }
2296
2297 if (tp->prior_ssthresh) {
2298 const struct inet_connection_sock *icsk = inet_csk(sk);
2299
2300 if (icsk->icsk_ca_ops->undo_cwnd)
2301 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2302 else
2303 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2304
2305 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2306 tp->snd_ssthresh = tp->prior_ssthresh;
2307 TCP_ECN_withdraw_cwr(tp);
2308 }
2309 } else {
2310 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2311 }
2312 tp->snd_cwnd_stamp = tcp_time_stamp;
2313 tp->undo_marker = 0;
2314 }
2315
2316 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2317 {
2318 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2319 }
2320
2321 /* People celebrate: "We love our President!" */
2322 static bool tcp_try_undo_recovery(struct sock *sk)
2323 {
2324 struct tcp_sock *tp = tcp_sk(sk);
2325
2326 if (tcp_may_undo(tp)) {
2327 int mib_idx;
2328
2329 /* Happy end! We did not retransmit anything
2330 * or our original transmission succeeded.
2331 */
2332 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2333 tcp_undo_cwnd_reduction(sk, false);
2334 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2335 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2336 else
2337 mib_idx = LINUX_MIB_TCPFULLUNDO;
2338
2339 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2340 }
2341 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2342 /* Hold old state until something *above* high_seq
2343 * is ACKed. For Reno it is MUST to prevent false
2344 * fast retransmits (RFC2582). SACK TCP is safe. */
2345 tcp_moderate_cwnd(tp);
2346 return true;
2347 }
2348 tcp_set_ca_state(sk, TCP_CA_Open);
2349 return false;
2350 }
2351
2352 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2353 static bool tcp_try_undo_dsack(struct sock *sk)
2354 {
2355 struct tcp_sock *tp = tcp_sk(sk);
2356
2357 if (tp->undo_marker && !tp->undo_retrans) {
2358 DBGUNDO(sk, "D-SACK");
2359 tcp_undo_cwnd_reduction(sk, false);
2360 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2361 return true;
2362 }
2363 return false;
2364 }
2365
2366 /* We can clear retrans_stamp when there are no retransmissions in the
2367 * window. It would seem that it is trivially available for us in
2368 * tp->retrans_out, however, that kind of assumptions doesn't consider
2369 * what will happen if errors occur when sending retransmission for the
2370 * second time. ...It could the that such segment has only
2371 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2372 * the head skb is enough except for some reneging corner cases that
2373 * are not worth the effort.
2374 *
2375 * Main reason for all this complexity is the fact that connection dying
2376 * time now depends on the validity of the retrans_stamp, in particular,
2377 * that successive retransmissions of a segment must not advance
2378 * retrans_stamp under any conditions.
2379 */
2380 static bool tcp_any_retrans_done(const struct sock *sk)
2381 {
2382 const struct tcp_sock *tp = tcp_sk(sk);
2383 struct sk_buff *skb;
2384
2385 if (tp->retrans_out)
2386 return true;
2387
2388 skb = tcp_write_queue_head(sk);
2389 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2390 return true;
2391
2392 return false;
2393 }
2394
2395 /* Undo during loss recovery after partial ACK or using F-RTO. */
2396 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2397 {
2398 struct tcp_sock *tp = tcp_sk(sk);
2399
2400 if (frto_undo || tcp_may_undo(tp)) {
2401 tcp_undo_cwnd_reduction(sk, true);
2402
2403 DBGUNDO(sk, "partial loss");
2404 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2405 if (frto_undo)
2406 NET_INC_STATS_BH(sock_net(sk),
2407 LINUX_MIB_TCPSPURIOUSRTOS);
2408 inet_csk(sk)->icsk_retransmits = 0;
2409 if (frto_undo || tcp_is_sack(tp))
2410 tcp_set_ca_state(sk, TCP_CA_Open);
2411 return true;
2412 }
2413 return false;
2414 }
2415
2416 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2417 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2418 * It computes the number of packets to send (sndcnt) based on packets newly
2419 * delivered:
2420 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2421 * cwnd reductions across a full RTT.
2422 * 2) If packets in flight is lower than ssthresh (such as due to excess
2423 * losses and/or application stalls), do not perform any further cwnd
2424 * reductions, but instead slow start up to ssthresh.
2425 */
2426 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2427 {
2428 struct tcp_sock *tp = tcp_sk(sk);
2429
2430 tp->high_seq = tp->snd_nxt;
2431 tp->tlp_high_seq = 0;
2432 tp->snd_cwnd_cnt = 0;
2433 tp->prior_cwnd = tp->snd_cwnd;
2434 tp->prr_delivered = 0;
2435 tp->prr_out = 0;
2436 if (set_ssthresh)
2437 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2438 TCP_ECN_queue_cwr(tp);
2439 }
2440
2441 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2442 int fast_rexmit)
2443 {
2444 struct tcp_sock *tp = tcp_sk(sk);
2445 int sndcnt = 0;
2446 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2447 int newly_acked_sacked = prior_unsacked -
2448 (tp->packets_out - tp->sacked_out);
2449
2450 tp->prr_delivered += newly_acked_sacked;
2451 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2452 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2453 tp->prior_cwnd - 1;
2454 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2455 } else {
2456 sndcnt = min_t(int, delta,
2457 max_t(int, tp->prr_delivered - tp->prr_out,
2458 newly_acked_sacked) + 1);
2459 }
2460
2461 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2462 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2463 }
2464
2465 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2466 {
2467 struct tcp_sock *tp = tcp_sk(sk);
2468
2469 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2470 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2471 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2472 tp->snd_cwnd = tp->snd_ssthresh;
2473 tp->snd_cwnd_stamp = tcp_time_stamp;
2474 }
2475 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2476 }
2477
2478 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2479 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2480 {
2481 struct tcp_sock *tp = tcp_sk(sk);
2482
2483 tp->prior_ssthresh = 0;
2484 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2485 tp->undo_marker = 0;
2486 tcp_init_cwnd_reduction(sk, set_ssthresh);
2487 tcp_set_ca_state(sk, TCP_CA_CWR);
2488 }
2489 }
2490
2491 static void tcp_try_keep_open(struct sock *sk)
2492 {
2493 struct tcp_sock *tp = tcp_sk(sk);
2494 int state = TCP_CA_Open;
2495
2496 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2497 state = TCP_CA_Disorder;
2498
2499 if (inet_csk(sk)->icsk_ca_state != state) {
2500 tcp_set_ca_state(sk, state);
2501 tp->high_seq = tp->snd_nxt;
2502 }
2503 }
2504
2505 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2506 {
2507 struct tcp_sock *tp = tcp_sk(sk);
2508
2509 tcp_verify_left_out(tp);
2510
2511 if (!tcp_any_retrans_done(sk))
2512 tp->retrans_stamp = 0;
2513
2514 if (flag & FLAG_ECE)
2515 tcp_enter_cwr(sk, 1);
2516
2517 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2518 tcp_try_keep_open(sk);
2519 } else {
2520 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2521 }
2522 }
2523
2524 static void tcp_mtup_probe_failed(struct sock *sk)
2525 {
2526 struct inet_connection_sock *icsk = inet_csk(sk);
2527
2528 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2529 icsk->icsk_mtup.probe_size = 0;
2530 }
2531
2532 static void tcp_mtup_probe_success(struct sock *sk)
2533 {
2534 struct tcp_sock *tp = tcp_sk(sk);
2535 struct inet_connection_sock *icsk = inet_csk(sk);
2536
2537 /* FIXME: breaks with very large cwnd */
2538 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2539 tp->snd_cwnd = tp->snd_cwnd *
2540 tcp_mss_to_mtu(sk, tp->mss_cache) /
2541 icsk->icsk_mtup.probe_size;
2542 tp->snd_cwnd_cnt = 0;
2543 tp->snd_cwnd_stamp = tcp_time_stamp;
2544 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2545
2546 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2547 icsk->icsk_mtup.probe_size = 0;
2548 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2549 }
2550
2551 /* Do a simple retransmit without using the backoff mechanisms in
2552 * tcp_timer. This is used for path mtu discovery.
2553 * The socket is already locked here.
2554 */
2555 void tcp_simple_retransmit(struct sock *sk)
2556 {
2557 const struct inet_connection_sock *icsk = inet_csk(sk);
2558 struct tcp_sock *tp = tcp_sk(sk);
2559 struct sk_buff *skb;
2560 unsigned int mss = tcp_current_mss(sk);
2561 u32 prior_lost = tp->lost_out;
2562
2563 tcp_for_write_queue(skb, sk) {
2564 if (skb == tcp_send_head(sk))
2565 break;
2566 if (tcp_skb_seglen(skb) > mss &&
2567 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2568 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2569 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2570 tp->retrans_out -= tcp_skb_pcount(skb);
2571 }
2572 tcp_skb_mark_lost_uncond_verify(tp, skb);
2573 }
2574 }
2575
2576 tcp_clear_retrans_hints_partial(tp);
2577
2578 if (prior_lost == tp->lost_out)
2579 return;
2580
2581 if (tcp_is_reno(tp))
2582 tcp_limit_reno_sacked(tp);
2583
2584 tcp_verify_left_out(tp);
2585
2586 /* Don't muck with the congestion window here.
2587 * Reason is that we do not increase amount of _data_
2588 * in network, but units changed and effective
2589 * cwnd/ssthresh really reduced now.
2590 */
2591 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2592 tp->high_seq = tp->snd_nxt;
2593 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2594 tp->prior_ssthresh = 0;
2595 tp->undo_marker = 0;
2596 tcp_set_ca_state(sk, TCP_CA_Loss);
2597 }
2598 tcp_xmit_retransmit_queue(sk);
2599 }
2600 EXPORT_SYMBOL(tcp_simple_retransmit);
2601
2602 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2603 {
2604 struct tcp_sock *tp = tcp_sk(sk);
2605 int mib_idx;
2606
2607 if (tcp_is_reno(tp))
2608 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2609 else
2610 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2611
2612 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2613
2614 tp->prior_ssthresh = 0;
2615 tp->undo_marker = tp->snd_una;
2616 tp->undo_retrans = tp->retrans_out;
2617
2618 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2619 if (!ece_ack)
2620 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2621 tcp_init_cwnd_reduction(sk, true);
2622 }
2623 tcp_set_ca_state(sk, TCP_CA_Recovery);
2624 }
2625
2626 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2627 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2628 */
2629 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2630 {
2631 struct inet_connection_sock *icsk = inet_csk(sk);
2632 struct tcp_sock *tp = tcp_sk(sk);
2633 bool recovered = !before(tp->snd_una, tp->high_seq);
2634
2635 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2636 if (flag & FLAG_ORIG_SACK_ACKED) {
2637 /* Step 3.b. A timeout is spurious if not all data are
2638 * lost, i.e., never-retransmitted data are (s)acked.
2639 */
2640 tcp_try_undo_loss(sk, true);
2641 return;
2642 }
2643 if (after(tp->snd_nxt, tp->high_seq) &&
2644 (flag & FLAG_DATA_SACKED || is_dupack)) {
2645 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2646 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2647 tp->high_seq = tp->snd_nxt;
2648 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2649 TCP_NAGLE_OFF);
2650 if (after(tp->snd_nxt, tp->high_seq))
2651 return; /* Step 2.b */
2652 tp->frto = 0;
2653 }
2654 }
2655
2656 if (recovered) {
2657 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2658 icsk->icsk_retransmits = 0;
2659 tcp_try_undo_recovery(sk);
2660 return;
2661 }
2662 if (flag & FLAG_DATA_ACKED)
2663 icsk->icsk_retransmits = 0;
2664 if (tcp_is_reno(tp)) {
2665 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2666 * delivered. Lower inflight to clock out (re)tranmissions.
2667 */
2668 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2669 tcp_add_reno_sack(sk);
2670 else if (flag & FLAG_SND_UNA_ADVANCED)
2671 tcp_reset_reno_sack(tp);
2672 }
2673 if (tcp_try_undo_loss(sk, false))
2674 return;
2675 tcp_xmit_retransmit_queue(sk);
2676 }
2677
2678 /* Undo during fast recovery after partial ACK. */
2679 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2680 const int prior_unsacked)
2681 {
2682 struct tcp_sock *tp = tcp_sk(sk);
2683
2684 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2685 /* Plain luck! Hole if filled with delayed
2686 * packet, rather than with a retransmit.
2687 */
2688 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2689
2690 /* We are getting evidence that the reordering degree is higher
2691 * than we realized. If there are no retransmits out then we
2692 * can undo. Otherwise we clock out new packets but do not
2693 * mark more packets lost or retransmit more.
2694 */
2695 if (tp->retrans_out) {
2696 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2697 return true;
2698 }
2699
2700 if (!tcp_any_retrans_done(sk))
2701 tp->retrans_stamp = 0;
2702
2703 DBGUNDO(sk, "partial recovery");
2704 tcp_undo_cwnd_reduction(sk, true);
2705 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2706 tcp_try_keep_open(sk);
2707 return true;
2708 }
2709 return false;
2710 }
2711
2712 /* Process an event, which can update packets-in-flight not trivially.
2713 * Main goal of this function is to calculate new estimate for left_out,
2714 * taking into account both packets sitting in receiver's buffer and
2715 * packets lost by network.
2716 *
2717 * Besides that it does CWND reduction, when packet loss is detected
2718 * and changes state of machine.
2719 *
2720 * It does _not_ decide what to send, it is made in function
2721 * tcp_xmit_retransmit_queue().
2722 */
2723 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2724 const int prior_unsacked,
2725 bool is_dupack, int flag)
2726 {
2727 struct inet_connection_sock *icsk = inet_csk(sk);
2728 struct tcp_sock *tp = tcp_sk(sk);
2729 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2730 (tcp_fackets_out(tp) > tp->reordering));
2731 int fast_rexmit = 0;
2732
2733 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2734 tp->sacked_out = 0;
2735 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2736 tp->fackets_out = 0;
2737
2738 /* Now state machine starts.
2739 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2740 if (flag & FLAG_ECE)
2741 tp->prior_ssthresh = 0;
2742
2743 /* B. In all the states check for reneging SACKs. */
2744 if (tcp_check_sack_reneging(sk, flag))
2745 return;
2746
2747 /* C. Check consistency of the current state. */
2748 tcp_verify_left_out(tp);
2749
2750 /* D. Check state exit conditions. State can be terminated
2751 * when high_seq is ACKed. */
2752 if (icsk->icsk_ca_state == TCP_CA_Open) {
2753 WARN_ON(tp->retrans_out != 0);
2754 tp->retrans_stamp = 0;
2755 } else if (!before(tp->snd_una, tp->high_seq)) {
2756 switch (icsk->icsk_ca_state) {
2757 case TCP_CA_CWR:
2758 /* CWR is to be held something *above* high_seq
2759 * is ACKed for CWR bit to reach receiver. */
2760 if (tp->snd_una != tp->high_seq) {
2761 tcp_end_cwnd_reduction(sk);
2762 tcp_set_ca_state(sk, TCP_CA_Open);
2763 }
2764 break;
2765
2766 case TCP_CA_Recovery:
2767 if (tcp_is_reno(tp))
2768 tcp_reset_reno_sack(tp);
2769 if (tcp_try_undo_recovery(sk))
2770 return;
2771 tcp_end_cwnd_reduction(sk);
2772 break;
2773 }
2774 }
2775
2776 /* E. Process state. */
2777 switch (icsk->icsk_ca_state) {
2778 case TCP_CA_Recovery:
2779 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2780 if (tcp_is_reno(tp) && is_dupack)
2781 tcp_add_reno_sack(sk);
2782 } else {
2783 if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2784 return;
2785 /* Partial ACK arrived. Force fast retransmit. */
2786 do_lost = tcp_is_reno(tp) ||
2787 tcp_fackets_out(tp) > tp->reordering;
2788 }
2789 if (tcp_try_undo_dsack(sk)) {
2790 tcp_try_keep_open(sk);
2791 return;
2792 }
2793 break;
2794 case TCP_CA_Loss:
2795 tcp_process_loss(sk, flag, is_dupack);
2796 if (icsk->icsk_ca_state != TCP_CA_Open)
2797 return;
2798 /* Fall through to processing in Open state. */
2799 default:
2800 if (tcp_is_reno(tp)) {
2801 if (flag & FLAG_SND_UNA_ADVANCED)
2802 tcp_reset_reno_sack(tp);
2803 if (is_dupack)
2804 tcp_add_reno_sack(sk);
2805 }
2806
2807 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2808 tcp_try_undo_dsack(sk);
2809
2810 if (!tcp_time_to_recover(sk, flag)) {
2811 tcp_try_to_open(sk, flag, prior_unsacked);
2812 return;
2813 }
2814
2815 /* MTU probe failure: don't reduce cwnd */
2816 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2817 icsk->icsk_mtup.probe_size &&
2818 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2819 tcp_mtup_probe_failed(sk);
2820 /* Restores the reduction we did in tcp_mtup_probe() */
2821 tp->snd_cwnd++;
2822 tcp_simple_retransmit(sk);
2823 return;
2824 }
2825
2826 /* Otherwise enter Recovery state */
2827 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2828 fast_rexmit = 1;
2829 }
2830
2831 if (do_lost)
2832 tcp_update_scoreboard(sk, fast_rexmit);
2833 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2834 tcp_xmit_retransmit_queue(sk);
2835 }
2836
2837 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2838 s32 seq_rtt, s32 sack_rtt)
2839 {
2840 const struct tcp_sock *tp = tcp_sk(sk);
2841
2842 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2843 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2844 * Karn's algorithm forbids taking RTT if some retransmitted data
2845 * is acked (RFC6298).
2846 */
2847 if (flag & FLAG_RETRANS_DATA_ACKED)
2848 seq_rtt = -1;
2849
2850 if (seq_rtt < 0)
2851 seq_rtt = sack_rtt;
2852
2853 /* RTTM Rule: A TSecr value received in a segment is used to
2854 * update the averaged RTT measurement only if the segment
2855 * acknowledges some new data, i.e., only if it advances the
2856 * left edge of the send window.
2857 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2858 */
2859 if (seq_rtt < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2860 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2861
2862 if (seq_rtt < 0)
2863 return false;
2864
2865 tcp_rtt_estimator(sk, seq_rtt);
2866 tcp_set_rto(sk);
2867
2868 /* RFC6298: only reset backoff on valid RTT measurement. */
2869 inet_csk(sk)->icsk_backoff = 0;
2870 return true;
2871 }
2872
2873 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2874 static void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2875 {
2876 struct tcp_sock *tp = tcp_sk(sk);
2877 s32 seq_rtt = -1;
2878
2879 if (tp->lsndtime && !tp->total_retrans)
2880 seq_rtt = tcp_time_stamp - tp->lsndtime;
2881 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt, -1);
2882 }
2883
2884 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2885 {
2886 const struct inet_connection_sock *icsk = inet_csk(sk);
2887 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2888 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2889 }
2890
2891 /* Restart timer after forward progress on connection.
2892 * RFC2988 recommends to restart timer to now+rto.
2893 */
2894 void tcp_rearm_rto(struct sock *sk)
2895 {
2896 const struct inet_connection_sock *icsk = inet_csk(sk);
2897 struct tcp_sock *tp = tcp_sk(sk);
2898
2899 /* If the retrans timer is currently being used by Fast Open
2900 * for SYN-ACK retrans purpose, stay put.
2901 */
2902 if (tp->fastopen_rsk)
2903 return;
2904
2905 if (!tp->packets_out) {
2906 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2907 } else {
2908 u32 rto = inet_csk(sk)->icsk_rto;
2909 /* Offset the time elapsed after installing regular RTO */
2910 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2911 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2912 struct sk_buff *skb = tcp_write_queue_head(sk);
2913 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2914 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2915 /* delta may not be positive if the socket is locked
2916 * when the retrans timer fires and is rescheduled.
2917 */
2918 if (delta > 0)
2919 rto = delta;
2920 }
2921 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2922 TCP_RTO_MAX);
2923 }
2924 }
2925
2926 /* This function is called when the delayed ER timer fires. TCP enters
2927 * fast recovery and performs fast-retransmit.
2928 */
2929 void tcp_resume_early_retransmit(struct sock *sk)
2930 {
2931 struct tcp_sock *tp = tcp_sk(sk);
2932
2933 tcp_rearm_rto(sk);
2934
2935 /* Stop if ER is disabled after the delayed ER timer is scheduled */
2936 if (!tp->do_early_retrans)
2937 return;
2938
2939 tcp_enter_recovery(sk, false);
2940 tcp_update_scoreboard(sk, 1);
2941 tcp_xmit_retransmit_queue(sk);
2942 }
2943
2944 /* If we get here, the whole TSO packet has not been acked. */
2945 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2946 {
2947 struct tcp_sock *tp = tcp_sk(sk);
2948 u32 packets_acked;
2949
2950 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2951
2952 packets_acked = tcp_skb_pcount(skb);
2953 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2954 return 0;
2955 packets_acked -= tcp_skb_pcount(skb);
2956
2957 if (packets_acked) {
2958 BUG_ON(tcp_skb_pcount(skb) == 0);
2959 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2960 }
2961
2962 return packets_acked;
2963 }
2964
2965 /* Remove acknowledged frames from the retransmission queue. If our packet
2966 * is before the ack sequence we can discard it as it's confirmed to have
2967 * arrived at the other end.
2968 */
2969 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
2970 u32 prior_snd_una, s32 sack_rtt)
2971 {
2972 struct tcp_sock *tp = tcp_sk(sk);
2973 const struct inet_connection_sock *icsk = inet_csk(sk);
2974 struct sk_buff *skb;
2975 u32 now = tcp_time_stamp;
2976 int fully_acked = true;
2977 int flag = 0;
2978 u32 pkts_acked = 0;
2979 u32 reord = tp->packets_out;
2980 u32 prior_sacked = tp->sacked_out;
2981 s32 seq_rtt = -1;
2982 s32 ca_seq_rtt = -1;
2983 ktime_t last_ackt = net_invalid_timestamp();
2984
2985 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2986 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2987 u32 acked_pcount;
2988 u8 sacked = scb->sacked;
2989
2990 /* Determine how many packets and what bytes were acked, tso and else */
2991 if (after(scb->end_seq, tp->snd_una)) {
2992 if (tcp_skb_pcount(skb) == 1 ||
2993 !after(tp->snd_una, scb->seq))
2994 break;
2995
2996 acked_pcount = tcp_tso_acked(sk, skb);
2997 if (!acked_pcount)
2998 break;
2999
3000 fully_acked = false;
3001 } else {
3002 acked_pcount = tcp_skb_pcount(skb);
3003 }
3004
3005 if (sacked & TCPCB_RETRANS) {
3006 if (sacked & TCPCB_SACKED_RETRANS)
3007 tp->retrans_out -= acked_pcount;
3008 flag |= FLAG_RETRANS_DATA_ACKED;
3009 } else {
3010 ca_seq_rtt = now - scb->when;
3011 last_ackt = skb->tstamp;
3012 if (seq_rtt < 0) {
3013 seq_rtt = ca_seq_rtt;
3014 }
3015 if (!(sacked & TCPCB_SACKED_ACKED))
3016 reord = min(pkts_acked, reord);
3017 if (!after(scb->end_seq, tp->high_seq))
3018 flag |= FLAG_ORIG_SACK_ACKED;
3019 }
3020
3021 if (sacked & TCPCB_SACKED_ACKED)
3022 tp->sacked_out -= acked_pcount;
3023 if (sacked & TCPCB_LOST)
3024 tp->lost_out -= acked_pcount;
3025
3026 tp->packets_out -= acked_pcount;
3027 pkts_acked += acked_pcount;
3028
3029 /* Initial outgoing SYN's get put onto the write_queue
3030 * just like anything else we transmit. It is not
3031 * true data, and if we misinform our callers that
3032 * this ACK acks real data, we will erroneously exit
3033 * connection startup slow start one packet too
3034 * quickly. This is severely frowned upon behavior.
3035 */
3036 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3037 flag |= FLAG_DATA_ACKED;
3038 } else {
3039 flag |= FLAG_SYN_ACKED;
3040 tp->retrans_stamp = 0;
3041 }
3042
3043 if (!fully_acked)
3044 break;
3045
3046 tcp_unlink_write_queue(skb, sk);
3047 sk_wmem_free_skb(sk, skb);
3048 if (skb == tp->retransmit_skb_hint)
3049 tp->retransmit_skb_hint = NULL;
3050 if (skb == tp->lost_skb_hint)
3051 tp->lost_skb_hint = NULL;
3052 }
3053
3054 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3055 tp->snd_up = tp->snd_una;
3056
3057 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3058 flag |= FLAG_SACK_RENEGING;
3059
3060 if (tcp_ack_update_rtt(sk, flag, seq_rtt, sack_rtt) ||
3061 (flag & FLAG_ACKED))
3062 tcp_rearm_rto(sk);
3063
3064 if (flag & FLAG_ACKED) {
3065 const struct tcp_congestion_ops *ca_ops
3066 = inet_csk(sk)->icsk_ca_ops;
3067
3068 if (unlikely(icsk->icsk_mtup.probe_size &&
3069 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3070 tcp_mtup_probe_success(sk);
3071 }
3072
3073 if (tcp_is_reno(tp)) {
3074 tcp_remove_reno_sacks(sk, pkts_acked);
3075 } else {
3076 int delta;
3077
3078 /* Non-retransmitted hole got filled? That's reordering */
3079 if (reord < prior_fackets)
3080 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3081
3082 delta = tcp_is_fack(tp) ? pkts_acked :
3083 prior_sacked - tp->sacked_out;
3084 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3085 }
3086
3087 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3088
3089 if (ca_ops->pkts_acked) {
3090 s32 rtt_us = -1;
3091
3092 /* Is the ACK triggering packet unambiguous? */
3093 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3094 /* High resolution needed and available? */
3095 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3096 !ktime_equal(last_ackt,
3097 net_invalid_timestamp()))
3098 rtt_us = ktime_us_delta(ktime_get_real(),
3099 last_ackt);
3100 else if (ca_seq_rtt >= 0)
3101 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3102 }
3103
3104 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3105 }
3106 }
3107
3108 #if FASTRETRANS_DEBUG > 0
3109 WARN_ON((int)tp->sacked_out < 0);
3110 WARN_ON((int)tp->lost_out < 0);
3111 WARN_ON((int)tp->retrans_out < 0);
3112 if (!tp->packets_out && tcp_is_sack(tp)) {
3113 icsk = inet_csk(sk);
3114 if (tp->lost_out) {
3115 pr_debug("Leak l=%u %d\n",
3116 tp->lost_out, icsk->icsk_ca_state);
3117 tp->lost_out = 0;
3118 }
3119 if (tp->sacked_out) {
3120 pr_debug("Leak s=%u %d\n",
3121 tp->sacked_out, icsk->icsk_ca_state);
3122 tp->sacked_out = 0;
3123 }
3124 if (tp->retrans_out) {
3125 pr_debug("Leak r=%u %d\n",
3126 tp->retrans_out, icsk->icsk_ca_state);
3127 tp->retrans_out = 0;
3128 }
3129 }
3130 #endif
3131 return flag;
3132 }
3133
3134 static void tcp_ack_probe(struct sock *sk)
3135 {
3136 const struct tcp_sock *tp = tcp_sk(sk);
3137 struct inet_connection_sock *icsk = inet_csk(sk);
3138
3139 /* Was it a usable window open? */
3140
3141 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3142 icsk->icsk_backoff = 0;
3143 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3144 /* Socket must be waked up by subsequent tcp_data_snd_check().
3145 * This function is not for random using!
3146 */
3147 } else {
3148 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3149 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3150 TCP_RTO_MAX);
3151 }
3152 }
3153
3154 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3155 {
3156 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3157 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3158 }
3159
3160 /* Decide wheather to run the increase function of congestion control. */
3161 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3162 {
3163 if (tcp_in_cwnd_reduction(sk))
3164 return false;
3165
3166 /* If reordering is high then always grow cwnd whenever data is
3167 * delivered regardless of its ordering. Otherwise stay conservative
3168 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3169 * new SACK or ECE mark may first advance cwnd here and later reduce
3170 * cwnd in tcp_fastretrans_alert() based on more states.
3171 */
3172 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3173 return flag & FLAG_FORWARD_PROGRESS;
3174
3175 return flag & FLAG_DATA_ACKED;
3176 }
3177
3178 /* Check that window update is acceptable.
3179 * The function assumes that snd_una<=ack<=snd_next.
3180 */
3181 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3182 const u32 ack, const u32 ack_seq,
3183 const u32 nwin)
3184 {
3185 return after(ack, tp->snd_una) ||
3186 after(ack_seq, tp->snd_wl1) ||
3187 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3188 }
3189
3190 /* Update our send window.
3191 *
3192 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3193 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3194 */
3195 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3196 u32 ack_seq)
3197 {
3198 struct tcp_sock *tp = tcp_sk(sk);
3199 int flag = 0;
3200 u32 nwin = ntohs(tcp_hdr(skb)->window);
3201
3202 if (likely(!tcp_hdr(skb)->syn))
3203 nwin <<= tp->rx_opt.snd_wscale;
3204
3205 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3206 flag |= FLAG_WIN_UPDATE;
3207 tcp_update_wl(tp, ack_seq);
3208
3209 if (tp->snd_wnd != nwin) {
3210 tp->snd_wnd = nwin;
3211
3212 /* Note, it is the only place, where
3213 * fast path is recovered for sending TCP.
3214 */
3215 tp->pred_flags = 0;
3216 tcp_fast_path_check(sk);
3217
3218 if (nwin > tp->max_window) {
3219 tp->max_window = nwin;
3220 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3221 }
3222 }
3223 }
3224
3225 tp->snd_una = ack;
3226
3227 return flag;
3228 }
3229
3230 /* RFC 5961 7 [ACK Throttling] */
3231 static void tcp_send_challenge_ack(struct sock *sk)
3232 {
3233 /* unprotected vars, we dont care of overwrites */
3234 static u32 challenge_timestamp;
3235 static unsigned int challenge_count;
3236 u32 now = jiffies / HZ;
3237
3238 if (now != challenge_timestamp) {
3239 challenge_timestamp = now;
3240 challenge_count = 0;
3241 }
3242 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3243 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3244 tcp_send_ack(sk);
3245 }
3246 }
3247
3248 static void tcp_store_ts_recent(struct tcp_sock *tp)
3249 {
3250 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3251 tp->rx_opt.ts_recent_stamp = get_seconds();
3252 }
3253
3254 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3255 {
3256 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3257 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3258 * extra check below makes sure this can only happen
3259 * for pure ACK frames. -DaveM
3260 *
3261 * Not only, also it occurs for expired timestamps.
3262 */
3263
3264 if (tcp_paws_check(&tp->rx_opt, 0))
3265 tcp_store_ts_recent(tp);
3266 }
3267 }
3268
3269 /* This routine deals with acks during a TLP episode.
3270 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3271 */
3272 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3273 {
3274 struct tcp_sock *tp = tcp_sk(sk);
3275 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3276 !(flag & (FLAG_SND_UNA_ADVANCED |
3277 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3278
3279 /* Mark the end of TLP episode on receiving TLP dupack or when
3280 * ack is after tlp_high_seq.
3281 */
3282 if (is_tlp_dupack) {
3283 tp->tlp_high_seq = 0;
3284 return;
3285 }
3286
3287 if (after(ack, tp->tlp_high_seq)) {
3288 tp->tlp_high_seq = 0;
3289 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3290 if (!(flag & FLAG_DSACKING_ACK)) {
3291 tcp_init_cwnd_reduction(sk, true);
3292 tcp_set_ca_state(sk, TCP_CA_CWR);
3293 tcp_end_cwnd_reduction(sk);
3294 tcp_try_keep_open(sk);
3295 NET_INC_STATS_BH(sock_net(sk),
3296 LINUX_MIB_TCPLOSSPROBERECOVERY);
3297 }
3298 }
3299 }
3300
3301 /* This routine deals with incoming acks, but not outgoing ones. */
3302 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3303 {
3304 struct inet_connection_sock *icsk = inet_csk(sk);
3305 struct tcp_sock *tp = tcp_sk(sk);
3306 u32 prior_snd_una = tp->snd_una;
3307 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3308 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3309 bool is_dupack = false;
3310 u32 prior_in_flight, prior_cwnd = tp->snd_cwnd, prior_rtt = tp->srtt;
3311 u32 prior_fackets;
3312 int prior_packets = tp->packets_out;
3313 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3314 int acked = 0; /* Number of packets newly acked */
3315 s32 sack_rtt = -1;
3316
3317 /* If the ack is older than previous acks
3318 * then we can probably ignore it.
3319 */
3320 if (before(ack, prior_snd_una)) {
3321 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3322 if (before(ack, prior_snd_una - tp->max_window)) {
3323 tcp_send_challenge_ack(sk);
3324 return -1;
3325 }
3326 goto old_ack;
3327 }
3328
3329 /* If the ack includes data we haven't sent yet, discard
3330 * this segment (RFC793 Section 3.9).
3331 */
3332 if (after(ack, tp->snd_nxt))
3333 goto invalid_ack;
3334
3335 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3336 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3337 tcp_rearm_rto(sk);
3338
3339 if (after(ack, prior_snd_una))
3340 flag |= FLAG_SND_UNA_ADVANCED;
3341
3342 prior_fackets = tp->fackets_out;
3343 prior_in_flight = tcp_packets_in_flight(tp);
3344
3345 /* ts_recent update must be made after we are sure that the packet
3346 * is in window.
3347 */
3348 if (flag & FLAG_UPDATE_TS_RECENT)
3349 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3350
3351 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3352 /* Window is constant, pure forward advance.
3353 * No more checks are required.
3354 * Note, we use the fact that SND.UNA>=SND.WL2.
3355 */
3356 tcp_update_wl(tp, ack_seq);
3357 tp->snd_una = ack;
3358 flag |= FLAG_WIN_UPDATE;
3359
3360 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3361
3362 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3363 } else {
3364 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3365 flag |= FLAG_DATA;
3366 else
3367 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3368
3369 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3370
3371 if (TCP_SKB_CB(skb)->sacked)
3372 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3373 &sack_rtt);
3374
3375 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3376 flag |= FLAG_ECE;
3377
3378 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3379 }
3380
3381 /* We passed data and got it acked, remove any soft error
3382 * log. Something worked...
3383 */
3384 sk->sk_err_soft = 0;
3385 icsk->icsk_probes_out = 0;
3386 tp->rcv_tstamp = tcp_time_stamp;
3387 if (!prior_packets)
3388 goto no_queue;
3389
3390 /* See if we can take anything off of the retransmit queue. */
3391 acked = tp->packets_out;
3392 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, sack_rtt);
3393 acked -= tp->packets_out;
3394
3395 /* Advance cwnd if state allows */
3396 if (tcp_may_raise_cwnd(sk, flag))
3397 tcp_cong_avoid(sk, ack, prior_in_flight);
3398
3399 if (tcp_ack_is_dubious(sk, flag)) {
3400 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3401 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3402 is_dupack, flag);
3403 }
3404 if (tp->tlp_high_seq)
3405 tcp_process_tlp_ack(sk, ack, flag);
3406
3407 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3408 struct dst_entry *dst = __sk_dst_get(sk);
3409 if (dst)
3410 dst_confirm(dst);
3411 }
3412
3413 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3414 tcp_schedule_loss_probe(sk);
3415 if (tp->srtt != prior_rtt || tp->snd_cwnd != prior_cwnd)
3416 tcp_update_pacing_rate(sk);
3417 return 1;
3418
3419 no_queue:
3420 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3421 if (flag & FLAG_DSACKING_ACK)
3422 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3423 is_dupack, flag);
3424 /* If this ack opens up a zero window, clear backoff. It was
3425 * being used to time the probes, and is probably far higher than
3426 * it needs to be for normal retransmission.
3427 */
3428 if (tcp_send_head(sk))
3429 tcp_ack_probe(sk);
3430
3431 if (tp->tlp_high_seq)
3432 tcp_process_tlp_ack(sk, ack, flag);
3433 return 1;
3434
3435 invalid_ack:
3436 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3437 return -1;
3438
3439 old_ack:
3440 /* If data was SACKed, tag it and see if we should send more data.
3441 * If data was DSACKed, see if we can undo a cwnd reduction.
3442 */
3443 if (TCP_SKB_CB(skb)->sacked) {
3444 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3445 &sack_rtt);
3446 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3447 is_dupack, flag);
3448 }
3449
3450 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3451 return 0;
3452 }
3453
3454 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3455 * But, this can also be called on packets in the established flow when
3456 * the fast version below fails.
3457 */
3458 void tcp_parse_options(const struct sk_buff *skb,
3459 struct tcp_options_received *opt_rx, int estab,
3460 struct tcp_fastopen_cookie *foc)
3461 {
3462 const unsigned char *ptr;
3463 const struct tcphdr *th = tcp_hdr(skb);
3464 int length = (th->doff * 4) - sizeof(struct tcphdr);
3465
3466 ptr = (const unsigned char *)(th + 1);
3467 opt_rx->saw_tstamp = 0;
3468
3469 while (length > 0) {
3470 int opcode = *ptr++;
3471 int opsize;
3472
3473 switch (opcode) {
3474 case TCPOPT_EOL:
3475 return;
3476 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3477 length--;
3478 continue;
3479 default:
3480 opsize = *ptr++;
3481 if (opsize < 2) /* "silly options" */
3482 return;
3483 if (opsize > length)
3484 return; /* don't parse partial options */
3485 switch (opcode) {
3486 case TCPOPT_MSS:
3487 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3488 u16 in_mss = get_unaligned_be16(ptr);
3489 if (in_mss) {
3490 if (opt_rx->user_mss &&
3491 opt_rx->user_mss < in_mss)
3492 in_mss = opt_rx->user_mss;
3493 opt_rx->mss_clamp = in_mss;
3494 }
3495 }
3496 break;
3497 case TCPOPT_WINDOW:
3498 if (opsize == TCPOLEN_WINDOW && th->syn &&
3499 !estab && sysctl_tcp_window_scaling) {
3500 __u8 snd_wscale = *(__u8 *)ptr;
3501 opt_rx->wscale_ok = 1;
3502 if (snd_wscale > 14) {
3503 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3504 __func__,
3505 snd_wscale);
3506 snd_wscale = 14;
3507 }
3508 opt_rx->snd_wscale = snd_wscale;
3509 }
3510 break;
3511 case TCPOPT_TIMESTAMP:
3512 if ((opsize == TCPOLEN_TIMESTAMP) &&
3513 ((estab && opt_rx->tstamp_ok) ||
3514 (!estab && sysctl_tcp_timestamps))) {
3515 opt_rx->saw_tstamp = 1;
3516 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3517 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3518 }
3519 break;
3520 case TCPOPT_SACK_PERM:
3521 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3522 !estab && sysctl_tcp_sack) {
3523 opt_rx->sack_ok = TCP_SACK_SEEN;
3524 tcp_sack_reset(opt_rx);
3525 }
3526 break;
3527
3528 case TCPOPT_SACK:
3529 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3530 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3531 opt_rx->sack_ok) {
3532 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3533 }
3534 break;
3535 #ifdef CONFIG_TCP_MD5SIG
3536 case TCPOPT_MD5SIG:
3537 /*
3538 * The MD5 Hash has already been
3539 * checked (see tcp_v{4,6}_do_rcv()).
3540 */
3541 break;
3542 #endif
3543 case TCPOPT_EXP:
3544 /* Fast Open option shares code 254 using a
3545 * 16 bits magic number. It's valid only in
3546 * SYN or SYN-ACK with an even size.
3547 */
3548 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3549 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3550 foc == NULL || !th->syn || (opsize & 1))
3551 break;
3552 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3553 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3554 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3555 memcpy(foc->val, ptr + 2, foc->len);
3556 else if (foc->len != 0)
3557 foc->len = -1;
3558 break;
3559
3560 }
3561 ptr += opsize-2;
3562 length -= opsize;
3563 }
3564 }
3565 }
3566 EXPORT_SYMBOL(tcp_parse_options);
3567
3568 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3569 {
3570 const __be32 *ptr = (const __be32 *)(th + 1);
3571
3572 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3573 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3574 tp->rx_opt.saw_tstamp = 1;
3575 ++ptr;
3576 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3577 ++ptr;
3578 if (*ptr)
3579 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3580 else
3581 tp->rx_opt.rcv_tsecr = 0;
3582 return true;
3583 }
3584 return false;
3585 }
3586
3587 /* Fast parse options. This hopes to only see timestamps.
3588 * If it is wrong it falls back on tcp_parse_options().
3589 */
3590 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3591 const struct tcphdr *th, struct tcp_sock *tp)
3592 {
3593 /* In the spirit of fast parsing, compare doff directly to constant
3594 * values. Because equality is used, short doff can be ignored here.
3595 */
3596 if (th->doff == (sizeof(*th) / 4)) {
3597 tp->rx_opt.saw_tstamp = 0;
3598 return false;
3599 } else if (tp->rx_opt.tstamp_ok &&
3600 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3601 if (tcp_parse_aligned_timestamp(tp, th))
3602 return true;
3603 }
3604
3605 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3606 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3607 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3608
3609 return true;
3610 }
3611
3612 #ifdef CONFIG_TCP_MD5SIG
3613 /*
3614 * Parse MD5 Signature option
3615 */
3616 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3617 {
3618 int length = (th->doff << 2) - sizeof(*th);
3619 const u8 *ptr = (const u8 *)(th + 1);
3620
3621 /* If the TCP option is too short, we can short cut */
3622 if (length < TCPOLEN_MD5SIG)
3623 return NULL;
3624
3625 while (length > 0) {
3626 int opcode = *ptr++;
3627 int opsize;
3628
3629 switch(opcode) {
3630 case TCPOPT_EOL:
3631 return NULL;
3632 case TCPOPT_NOP:
3633 length--;
3634 continue;
3635 default:
3636 opsize = *ptr++;
3637 if (opsize < 2 || opsize > length)
3638 return NULL;
3639 if (opcode == TCPOPT_MD5SIG)
3640 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3641 }
3642 ptr += opsize - 2;
3643 length -= opsize;
3644 }
3645 return NULL;
3646 }
3647 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3648 #endif
3649
3650 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3651 *
3652 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3653 * it can pass through stack. So, the following predicate verifies that
3654 * this segment is not used for anything but congestion avoidance or
3655 * fast retransmit. Moreover, we even are able to eliminate most of such
3656 * second order effects, if we apply some small "replay" window (~RTO)
3657 * to timestamp space.
3658 *
3659 * All these measures still do not guarantee that we reject wrapped ACKs
3660 * on networks with high bandwidth, when sequence space is recycled fastly,
3661 * but it guarantees that such events will be very rare and do not affect
3662 * connection seriously. This doesn't look nice, but alas, PAWS is really
3663 * buggy extension.
3664 *
3665 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3666 * states that events when retransmit arrives after original data are rare.
3667 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3668 * the biggest problem on large power networks even with minor reordering.
3669 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3670 * up to bandwidth of 18Gigabit/sec. 8) ]
3671 */
3672
3673 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3674 {
3675 const struct tcp_sock *tp = tcp_sk(sk);
3676 const struct tcphdr *th = tcp_hdr(skb);
3677 u32 seq = TCP_SKB_CB(skb)->seq;
3678 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3679
3680 return (/* 1. Pure ACK with correct sequence number. */
3681 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3682
3683 /* 2. ... and duplicate ACK. */
3684 ack == tp->snd_una &&
3685
3686 /* 3. ... and does not update window. */
3687 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3688
3689 /* 4. ... and sits in replay window. */
3690 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3691 }
3692
3693 static inline bool tcp_paws_discard(const struct sock *sk,
3694 const struct sk_buff *skb)
3695 {
3696 const struct tcp_sock *tp = tcp_sk(sk);
3697
3698 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3699 !tcp_disordered_ack(sk, skb);
3700 }
3701
3702 /* Check segment sequence number for validity.
3703 *
3704 * Segment controls are considered valid, if the segment
3705 * fits to the window after truncation to the window. Acceptability
3706 * of data (and SYN, FIN, of course) is checked separately.
3707 * See tcp_data_queue(), for example.
3708 *
3709 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3710 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3711 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3712 * (borrowed from freebsd)
3713 */
3714
3715 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3716 {
3717 return !before(end_seq, tp->rcv_wup) &&
3718 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3719 }
3720
3721 /* When we get a reset we do this. */
3722 void tcp_reset(struct sock *sk)
3723 {
3724 /* We want the right error as BSD sees it (and indeed as we do). */
3725 switch (sk->sk_state) {
3726 case TCP_SYN_SENT:
3727 sk->sk_err = ECONNREFUSED;
3728 break;
3729 case TCP_CLOSE_WAIT:
3730 sk->sk_err = EPIPE;
3731 break;
3732 case TCP_CLOSE:
3733 return;
3734 default:
3735 sk->sk_err = ECONNRESET;
3736 }
3737 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3738 smp_wmb();
3739
3740 if (!sock_flag(sk, SOCK_DEAD))
3741 sk->sk_error_report(sk);
3742
3743 tcp_done(sk);
3744 }
3745
3746 /*
3747 * Process the FIN bit. This now behaves as it is supposed to work
3748 * and the FIN takes effect when it is validly part of sequence
3749 * space. Not before when we get holes.
3750 *
3751 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3752 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3753 * TIME-WAIT)
3754 *
3755 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3756 * close and we go into CLOSING (and later onto TIME-WAIT)
3757 *
3758 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3759 */
3760 static void tcp_fin(struct sock *sk)
3761 {
3762 struct tcp_sock *tp = tcp_sk(sk);
3763 const struct dst_entry *dst;
3764
3765 inet_csk_schedule_ack(sk);
3766
3767 sk->sk_shutdown |= RCV_SHUTDOWN;
3768 sock_set_flag(sk, SOCK_DONE);
3769
3770 switch (sk->sk_state) {
3771 case TCP_SYN_RECV:
3772 case TCP_ESTABLISHED:
3773 /* Move to CLOSE_WAIT */
3774 tcp_set_state(sk, TCP_CLOSE_WAIT);
3775 dst = __sk_dst_get(sk);
3776 if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3777 inet_csk(sk)->icsk_ack.pingpong = 1;
3778 break;
3779
3780 case TCP_CLOSE_WAIT:
3781 case TCP_CLOSING:
3782 /* Received a retransmission of the FIN, do
3783 * nothing.
3784 */
3785 break;
3786 case TCP_LAST_ACK:
3787 /* RFC793: Remain in the LAST-ACK state. */
3788 break;
3789
3790 case TCP_FIN_WAIT1:
3791 /* This case occurs when a simultaneous close
3792 * happens, we must ack the received FIN and
3793 * enter the CLOSING state.
3794 */
3795 tcp_send_ack(sk);
3796 tcp_set_state(sk, TCP_CLOSING);
3797 break;
3798 case TCP_FIN_WAIT2:
3799 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3800 tcp_send_ack(sk);
3801 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3802 break;
3803 default:
3804 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3805 * cases we should never reach this piece of code.
3806 */
3807 pr_err("%s: Impossible, sk->sk_state=%d\n",
3808 __func__, sk->sk_state);
3809 break;
3810 }
3811
3812 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3813 * Probably, we should reset in this case. For now drop them.
3814 */
3815 __skb_queue_purge(&tp->out_of_order_queue);
3816 if (tcp_is_sack(tp))
3817 tcp_sack_reset(&tp->rx_opt);
3818 sk_mem_reclaim(sk);
3819
3820 if (!sock_flag(sk, SOCK_DEAD)) {
3821 sk->sk_state_change(sk);
3822
3823 /* Do not send POLL_HUP for half duplex close. */
3824 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3825 sk->sk_state == TCP_CLOSE)
3826 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3827 else
3828 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3829 }
3830 }
3831
3832 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3833 u32 end_seq)
3834 {
3835 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3836 if (before(seq, sp->start_seq))
3837 sp->start_seq = seq;
3838 if (after(end_seq, sp->end_seq))
3839 sp->end_seq = end_seq;
3840 return true;
3841 }
3842 return false;
3843 }
3844
3845 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3846 {
3847 struct tcp_sock *tp = tcp_sk(sk);
3848
3849 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3850 int mib_idx;
3851
3852 if (before(seq, tp->rcv_nxt))
3853 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3854 else
3855 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3856
3857 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3858
3859 tp->rx_opt.dsack = 1;
3860 tp->duplicate_sack[0].start_seq = seq;
3861 tp->duplicate_sack[0].end_seq = end_seq;
3862 }
3863 }
3864
3865 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3866 {
3867 struct tcp_sock *tp = tcp_sk(sk);
3868
3869 if (!tp->rx_opt.dsack)
3870 tcp_dsack_set(sk, seq, end_seq);
3871 else
3872 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3873 }
3874
3875 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3876 {
3877 struct tcp_sock *tp = tcp_sk(sk);
3878
3879 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3880 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3881 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3882 tcp_enter_quickack_mode(sk);
3883
3884 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3885 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3886
3887 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3888 end_seq = tp->rcv_nxt;
3889 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3890 }
3891 }
3892
3893 tcp_send_ack(sk);
3894 }
3895
3896 /* These routines update the SACK block as out-of-order packets arrive or
3897 * in-order packets close up the sequence space.
3898 */
3899 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3900 {
3901 int this_sack;
3902 struct tcp_sack_block *sp = &tp->selective_acks[0];
3903 struct tcp_sack_block *swalk = sp + 1;
3904
3905 /* See if the recent change to the first SACK eats into
3906 * or hits the sequence space of other SACK blocks, if so coalesce.
3907 */
3908 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3909 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3910 int i;
3911
3912 /* Zap SWALK, by moving every further SACK up by one slot.
3913 * Decrease num_sacks.
3914 */
3915 tp->rx_opt.num_sacks--;
3916 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3917 sp[i] = sp[i + 1];
3918 continue;
3919 }
3920 this_sack++, swalk++;
3921 }
3922 }
3923
3924 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3925 {
3926 struct tcp_sock *tp = tcp_sk(sk);
3927 struct tcp_sack_block *sp = &tp->selective_acks[0];
3928 int cur_sacks = tp->rx_opt.num_sacks;
3929 int this_sack;
3930
3931 if (!cur_sacks)
3932 goto new_sack;
3933
3934 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3935 if (tcp_sack_extend(sp, seq, end_seq)) {
3936 /* Rotate this_sack to the first one. */
3937 for (; this_sack > 0; this_sack--, sp--)
3938 swap(*sp, *(sp - 1));
3939 if (cur_sacks > 1)
3940 tcp_sack_maybe_coalesce(tp);
3941 return;
3942 }
3943 }
3944
3945 /* Could not find an adjacent existing SACK, build a new one,
3946 * put it at the front, and shift everyone else down. We
3947 * always know there is at least one SACK present already here.
3948 *
3949 * If the sack array is full, forget about the last one.
3950 */
3951 if (this_sack >= TCP_NUM_SACKS) {
3952 this_sack--;
3953 tp->rx_opt.num_sacks--;
3954 sp--;
3955 }
3956 for (; this_sack > 0; this_sack--, sp--)
3957 *sp = *(sp - 1);
3958
3959 new_sack:
3960 /* Build the new head SACK, and we're done. */
3961 sp->start_seq = seq;
3962 sp->end_seq = end_seq;
3963 tp->rx_opt.num_sacks++;
3964 }
3965
3966 /* RCV.NXT advances, some SACKs should be eaten. */
3967
3968 static void tcp_sack_remove(struct tcp_sock *tp)
3969 {
3970 struct tcp_sack_block *sp = &tp->selective_acks[0];
3971 int num_sacks = tp->rx_opt.num_sacks;
3972 int this_sack;
3973
3974 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3975 if (skb_queue_empty(&tp->out_of_order_queue)) {
3976 tp->rx_opt.num_sacks = 0;
3977 return;
3978 }
3979
3980 for (this_sack = 0; this_sack < num_sacks;) {
3981 /* Check if the start of the sack is covered by RCV.NXT. */
3982 if (!before(tp->rcv_nxt, sp->start_seq)) {
3983 int i;
3984
3985 /* RCV.NXT must cover all the block! */
3986 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
3987
3988 /* Zap this SACK, by moving forward any other SACKS. */
3989 for (i=this_sack+1; i < num_sacks; i++)
3990 tp->selective_acks[i-1] = tp->selective_acks[i];
3991 num_sacks--;
3992 continue;
3993 }
3994 this_sack++;
3995 sp++;
3996 }
3997 tp->rx_opt.num_sacks = num_sacks;
3998 }
3999
4000 /* This one checks to see if we can put data from the
4001 * out_of_order queue into the receive_queue.
4002 */
4003 static void tcp_ofo_queue(struct sock *sk)
4004 {
4005 struct tcp_sock *tp = tcp_sk(sk);
4006 __u32 dsack_high = tp->rcv_nxt;
4007 struct sk_buff *skb;
4008
4009 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4010 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4011 break;
4012
4013 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4014 __u32 dsack = dsack_high;
4015 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4016 dsack_high = TCP_SKB_CB(skb)->end_seq;
4017 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4018 }
4019
4020 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4021 SOCK_DEBUG(sk, "ofo packet was already received\n");
4022 __skb_unlink(skb, &tp->out_of_order_queue);
4023 __kfree_skb(skb);
4024 continue;
4025 }
4026 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4027 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4028 TCP_SKB_CB(skb)->end_seq);
4029
4030 __skb_unlink(skb, &tp->out_of_order_queue);
4031 __skb_queue_tail(&sk->sk_receive_queue, skb);
4032 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4033 if (tcp_hdr(skb)->fin)
4034 tcp_fin(sk);
4035 }
4036 }
4037
4038 static bool tcp_prune_ofo_queue(struct sock *sk);
4039 static int tcp_prune_queue(struct sock *sk);
4040
4041 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4042 unsigned int size)
4043 {
4044 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4045 !sk_rmem_schedule(sk, skb, size)) {
4046
4047 if (tcp_prune_queue(sk) < 0)
4048 return -1;
4049
4050 if (!sk_rmem_schedule(sk, skb, size)) {
4051 if (!tcp_prune_ofo_queue(sk))
4052 return -1;
4053
4054 if (!sk_rmem_schedule(sk, skb, size))
4055 return -1;
4056 }
4057 }
4058 return 0;
4059 }
4060
4061 /**
4062 * tcp_try_coalesce - try to merge skb to prior one
4063 * @sk: socket
4064 * @to: prior buffer
4065 * @from: buffer to add in queue
4066 * @fragstolen: pointer to boolean
4067 *
4068 * Before queueing skb @from after @to, try to merge them
4069 * to reduce overall memory use and queue lengths, if cost is small.
4070 * Packets in ofo or receive queues can stay a long time.
4071 * Better try to coalesce them right now to avoid future collapses.
4072 * Returns true if caller should free @from instead of queueing it
4073 */
4074 static bool tcp_try_coalesce(struct sock *sk,
4075 struct sk_buff *to,
4076 struct sk_buff *from,
4077 bool *fragstolen)
4078 {
4079 int delta;
4080
4081 *fragstolen = false;
4082
4083 if (tcp_hdr(from)->fin)
4084 return false;
4085
4086 /* Its possible this segment overlaps with prior segment in queue */
4087 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4088 return false;
4089
4090 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4091 return false;
4092
4093 atomic_add(delta, &sk->sk_rmem_alloc);
4094 sk_mem_charge(sk, delta);
4095 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4096 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4097 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4098 return true;
4099 }
4100
4101 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4102 {
4103 struct tcp_sock *tp = tcp_sk(sk);
4104 struct sk_buff *skb1;
4105 u32 seq, end_seq;
4106
4107 TCP_ECN_check_ce(tp, skb);
4108
4109 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4110 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4111 __kfree_skb(skb);
4112 return;
4113 }
4114
4115 /* Disable header prediction. */
4116 tp->pred_flags = 0;
4117 inet_csk_schedule_ack(sk);
4118
4119 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4120 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4121 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4122
4123 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4124 if (!skb1) {
4125 /* Initial out of order segment, build 1 SACK. */
4126 if (tcp_is_sack(tp)) {
4127 tp->rx_opt.num_sacks = 1;
4128 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4129 tp->selective_acks[0].end_seq =
4130 TCP_SKB_CB(skb)->end_seq;
4131 }
4132 __skb_queue_head(&tp->out_of_order_queue, skb);
4133 goto end;
4134 }
4135
4136 seq = TCP_SKB_CB(skb)->seq;
4137 end_seq = TCP_SKB_CB(skb)->end_seq;
4138
4139 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4140 bool fragstolen;
4141
4142 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4143 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4144 } else {
4145 tcp_grow_window(sk, skb);
4146 kfree_skb_partial(skb, fragstolen);
4147 skb = NULL;
4148 }
4149
4150 if (!tp->rx_opt.num_sacks ||
4151 tp->selective_acks[0].end_seq != seq)
4152 goto add_sack;
4153
4154 /* Common case: data arrive in order after hole. */
4155 tp->selective_acks[0].end_seq = end_seq;
4156 goto end;
4157 }
4158
4159 /* Find place to insert this segment. */
4160 while (1) {
4161 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4162 break;
4163 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4164 skb1 = NULL;
4165 break;
4166 }
4167 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4168 }
4169
4170 /* Do skb overlap to previous one? */
4171 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4172 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4173 /* All the bits are present. Drop. */
4174 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4175 __kfree_skb(skb);
4176 skb = NULL;
4177 tcp_dsack_set(sk, seq, end_seq);
4178 goto add_sack;
4179 }
4180 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4181 /* Partial overlap. */
4182 tcp_dsack_set(sk, seq,
4183 TCP_SKB_CB(skb1)->end_seq);
4184 } else {
4185 if (skb_queue_is_first(&tp->out_of_order_queue,
4186 skb1))
4187 skb1 = NULL;
4188 else
4189 skb1 = skb_queue_prev(
4190 &tp->out_of_order_queue,
4191 skb1);
4192 }
4193 }
4194 if (!skb1)
4195 __skb_queue_head(&tp->out_of_order_queue, skb);
4196 else
4197 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4198
4199 /* And clean segments covered by new one as whole. */
4200 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4201 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4202
4203 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4204 break;
4205 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4206 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4207 end_seq);
4208 break;
4209 }
4210 __skb_unlink(skb1, &tp->out_of_order_queue);
4211 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4212 TCP_SKB_CB(skb1)->end_seq);
4213 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4214 __kfree_skb(skb1);
4215 }
4216
4217 add_sack:
4218 if (tcp_is_sack(tp))
4219 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4220 end:
4221 if (skb) {
4222 tcp_grow_window(sk, skb);
4223 skb_set_owner_r(skb, sk);
4224 }
4225 }
4226
4227 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4228 bool *fragstolen)
4229 {
4230 int eaten;
4231 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4232
4233 __skb_pull(skb, hdrlen);
4234 eaten = (tail &&
4235 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4236 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4237 if (!eaten) {
4238 __skb_queue_tail(&sk->sk_receive_queue, skb);
4239 skb_set_owner_r(skb, sk);
4240 }
4241 return eaten;
4242 }
4243
4244 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4245 {
4246 struct sk_buff *skb = NULL;
4247 struct tcphdr *th;
4248 bool fragstolen;
4249
4250 if (size == 0)
4251 return 0;
4252
4253 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4254 if (!skb)
4255 goto err;
4256
4257 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4258 goto err_free;
4259
4260 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4261 skb_reset_transport_header(skb);
4262 memset(th, 0, sizeof(*th));
4263
4264 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4265 goto err_free;
4266
4267 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4268 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4269 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4270
4271 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4272 WARN_ON_ONCE(fragstolen); /* should not happen */
4273 __kfree_skb(skb);
4274 }
4275 return size;
4276
4277 err_free:
4278 kfree_skb(skb);
4279 err:
4280 return -ENOMEM;
4281 }
4282
4283 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4284 {
4285 const struct tcphdr *th = tcp_hdr(skb);
4286 struct tcp_sock *tp = tcp_sk(sk);
4287 int eaten = -1;
4288 bool fragstolen = false;
4289
4290 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4291 goto drop;
4292
4293 skb_dst_drop(skb);
4294 __skb_pull(skb, th->doff * 4);
4295
4296 TCP_ECN_accept_cwr(tp, skb);
4297
4298 tp->rx_opt.dsack = 0;
4299
4300 /* Queue data for delivery to the user.
4301 * Packets in sequence go to the receive queue.
4302 * Out of sequence packets to the out_of_order_queue.
4303 */
4304 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4305 if (tcp_receive_window(tp) == 0)
4306 goto out_of_window;
4307
4308 /* Ok. In sequence. In window. */
4309 if (tp->ucopy.task == current &&
4310 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4311 sock_owned_by_user(sk) && !tp->urg_data) {
4312 int chunk = min_t(unsigned int, skb->len,
4313 tp->ucopy.len);
4314
4315 __set_current_state(TASK_RUNNING);
4316
4317 local_bh_enable();
4318 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4319 tp->ucopy.len -= chunk;
4320 tp->copied_seq += chunk;
4321 eaten = (chunk == skb->len);
4322 tcp_rcv_space_adjust(sk);
4323 }
4324 local_bh_disable();
4325 }
4326
4327 if (eaten <= 0) {
4328 queue_and_out:
4329 if (eaten < 0 &&
4330 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4331 goto drop;
4332
4333 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4334 }
4335 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4336 if (skb->len)
4337 tcp_event_data_recv(sk, skb);
4338 if (th->fin)
4339 tcp_fin(sk);
4340
4341 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4342 tcp_ofo_queue(sk);
4343
4344 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4345 * gap in queue is filled.
4346 */
4347 if (skb_queue_empty(&tp->out_of_order_queue))
4348 inet_csk(sk)->icsk_ack.pingpong = 0;
4349 }
4350
4351 if (tp->rx_opt.num_sacks)
4352 tcp_sack_remove(tp);
4353
4354 tcp_fast_path_check(sk);
4355
4356 if (eaten > 0)
4357 kfree_skb_partial(skb, fragstolen);
4358 if (!sock_flag(sk, SOCK_DEAD))
4359 sk->sk_data_ready(sk, 0);
4360 return;
4361 }
4362
4363 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4364 /* A retransmit, 2nd most common case. Force an immediate ack. */
4365 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4366 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4367
4368 out_of_window:
4369 tcp_enter_quickack_mode(sk);
4370 inet_csk_schedule_ack(sk);
4371 drop:
4372 __kfree_skb(skb);
4373 return;
4374 }
4375
4376 /* Out of window. F.e. zero window probe. */
4377 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4378 goto out_of_window;
4379
4380 tcp_enter_quickack_mode(sk);
4381
4382 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4383 /* Partial packet, seq < rcv_next < end_seq */
4384 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4385 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4386 TCP_SKB_CB(skb)->end_seq);
4387
4388 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4389
4390 /* If window is closed, drop tail of packet. But after
4391 * remembering D-SACK for its head made in previous line.
4392 */
4393 if (!tcp_receive_window(tp))
4394 goto out_of_window;
4395 goto queue_and_out;
4396 }
4397
4398 tcp_data_queue_ofo(sk, skb);
4399 }
4400
4401 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4402 struct sk_buff_head *list)
4403 {
4404 struct sk_buff *next = NULL;
4405
4406 if (!skb_queue_is_last(list, skb))
4407 next = skb_queue_next(list, skb);
4408
4409 __skb_unlink(skb, list);
4410 __kfree_skb(skb);
4411 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4412
4413 return next;
4414 }
4415
4416 /* Collapse contiguous sequence of skbs head..tail with
4417 * sequence numbers start..end.
4418 *
4419 * If tail is NULL, this means until the end of the list.
4420 *
4421 * Segments with FIN/SYN are not collapsed (only because this
4422 * simplifies code)
4423 */
4424 static void
4425 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4426 struct sk_buff *head, struct sk_buff *tail,
4427 u32 start, u32 end)
4428 {
4429 struct sk_buff *skb, *n;
4430 bool end_of_skbs;
4431
4432 /* First, check that queue is collapsible and find
4433 * the point where collapsing can be useful. */
4434 skb = head;
4435 restart:
4436 end_of_skbs = true;
4437 skb_queue_walk_from_safe(list, skb, n) {
4438 if (skb == tail)
4439 break;
4440 /* No new bits? It is possible on ofo queue. */
4441 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4442 skb = tcp_collapse_one(sk, skb, list);
4443 if (!skb)
4444 break;
4445 goto restart;
4446 }
4447
4448 /* The first skb to collapse is:
4449 * - not SYN/FIN and
4450 * - bloated or contains data before "start" or
4451 * overlaps to the next one.
4452 */
4453 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4454 (tcp_win_from_space(skb->truesize) > skb->len ||
4455 before(TCP_SKB_CB(skb)->seq, start))) {
4456 end_of_skbs = false;
4457 break;
4458 }
4459
4460 if (!skb_queue_is_last(list, skb)) {
4461 struct sk_buff *next = skb_queue_next(list, skb);
4462 if (next != tail &&
4463 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4464 end_of_skbs = false;
4465 break;
4466 }
4467 }
4468
4469 /* Decided to skip this, advance start seq. */
4470 start = TCP_SKB_CB(skb)->end_seq;
4471 }
4472 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4473 return;
4474
4475 while (before(start, end)) {
4476 struct sk_buff *nskb;
4477 unsigned int header = skb_headroom(skb);
4478 int copy = SKB_MAX_ORDER(header, 0);
4479
4480 /* Too big header? This can happen with IPv6. */
4481 if (copy < 0)
4482 return;
4483 if (end - start < copy)
4484 copy = end - start;
4485 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4486 if (!nskb)
4487 return;
4488
4489 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4490 skb_set_network_header(nskb, (skb_network_header(skb) -
4491 skb->head));
4492 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4493 skb->head));
4494 skb_reserve(nskb, header);
4495 memcpy(nskb->head, skb->head, header);
4496 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4497 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4498 __skb_queue_before(list, skb, nskb);
4499 skb_set_owner_r(nskb, sk);
4500
4501 /* Copy data, releasing collapsed skbs. */
4502 while (copy > 0) {
4503 int offset = start - TCP_SKB_CB(skb)->seq;
4504 int size = TCP_SKB_CB(skb)->end_seq - start;
4505
4506 BUG_ON(offset < 0);
4507 if (size > 0) {
4508 size = min(copy, size);
4509 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4510 BUG();
4511 TCP_SKB_CB(nskb)->end_seq += size;
4512 copy -= size;
4513 start += size;
4514 }
4515 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4516 skb = tcp_collapse_one(sk, skb, list);
4517 if (!skb ||
4518 skb == tail ||
4519 tcp_hdr(skb)->syn ||
4520 tcp_hdr(skb)->fin)
4521 return;
4522 }
4523 }
4524 }
4525 }
4526
4527 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4528 * and tcp_collapse() them until all the queue is collapsed.
4529 */
4530 static void tcp_collapse_ofo_queue(struct sock *sk)
4531 {
4532 struct tcp_sock *tp = tcp_sk(sk);
4533 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4534 struct sk_buff *head;
4535 u32 start, end;
4536
4537 if (skb == NULL)
4538 return;
4539
4540 start = TCP_SKB_CB(skb)->seq;
4541 end = TCP_SKB_CB(skb)->end_seq;
4542 head = skb;
4543
4544 for (;;) {
4545 struct sk_buff *next = NULL;
4546
4547 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4548 next = skb_queue_next(&tp->out_of_order_queue, skb);
4549 skb = next;
4550
4551 /* Segment is terminated when we see gap or when
4552 * we are at the end of all the queue. */
4553 if (!skb ||
4554 after(TCP_SKB_CB(skb)->seq, end) ||
4555 before(TCP_SKB_CB(skb)->end_seq, start)) {
4556 tcp_collapse(sk, &tp->out_of_order_queue,
4557 head, skb, start, end);
4558 head = skb;
4559 if (!skb)
4560 break;
4561 /* Start new segment */
4562 start = TCP_SKB_CB(skb)->seq;
4563 end = TCP_SKB_CB(skb)->end_seq;
4564 } else {
4565 if (before(TCP_SKB_CB(skb)->seq, start))
4566 start = TCP_SKB_CB(skb)->seq;
4567 if (after(TCP_SKB_CB(skb)->end_seq, end))
4568 end = TCP_SKB_CB(skb)->end_seq;
4569 }
4570 }
4571 }
4572
4573 /*
4574 * Purge the out-of-order queue.
4575 * Return true if queue was pruned.
4576 */
4577 static bool tcp_prune_ofo_queue(struct sock *sk)
4578 {
4579 struct tcp_sock *tp = tcp_sk(sk);
4580 bool res = false;
4581
4582 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4583 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4584 __skb_queue_purge(&tp->out_of_order_queue);
4585
4586 /* Reset SACK state. A conforming SACK implementation will
4587 * do the same at a timeout based retransmit. When a connection
4588 * is in a sad state like this, we care only about integrity
4589 * of the connection not performance.
4590 */
4591 if (tp->rx_opt.sack_ok)
4592 tcp_sack_reset(&tp->rx_opt);
4593 sk_mem_reclaim(sk);
4594 res = true;
4595 }
4596 return res;
4597 }
4598
4599 /* Reduce allocated memory if we can, trying to get
4600 * the socket within its memory limits again.
4601 *
4602 * Return less than zero if we should start dropping frames
4603 * until the socket owning process reads some of the data
4604 * to stabilize the situation.
4605 */
4606 static int tcp_prune_queue(struct sock *sk)
4607 {
4608 struct tcp_sock *tp = tcp_sk(sk);
4609
4610 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4611
4612 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4613
4614 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4615 tcp_clamp_window(sk);
4616 else if (sk_under_memory_pressure(sk))
4617 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4618
4619 tcp_collapse_ofo_queue(sk);
4620 if (!skb_queue_empty(&sk->sk_receive_queue))
4621 tcp_collapse(sk, &sk->sk_receive_queue,
4622 skb_peek(&sk->sk_receive_queue),
4623 NULL,
4624 tp->copied_seq, tp->rcv_nxt);
4625 sk_mem_reclaim(sk);
4626
4627 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4628 return 0;
4629
4630 /* Collapsing did not help, destructive actions follow.
4631 * This must not ever occur. */
4632
4633 tcp_prune_ofo_queue(sk);
4634
4635 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4636 return 0;
4637
4638 /* If we are really being abused, tell the caller to silently
4639 * drop receive data on the floor. It will get retransmitted
4640 * and hopefully then we'll have sufficient space.
4641 */
4642 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4643
4644 /* Massive buffer overcommit. */
4645 tp->pred_flags = 0;
4646 return -1;
4647 }
4648
4649 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4650 * As additional protections, we do not touch cwnd in retransmission phases,
4651 * and if application hit its sndbuf limit recently.
4652 */
4653 void tcp_cwnd_application_limited(struct sock *sk)
4654 {
4655 struct tcp_sock *tp = tcp_sk(sk);
4656
4657 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4658 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4659 /* Limited by application or receiver window. */
4660 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4661 u32 win_used = max(tp->snd_cwnd_used, init_win);
4662 if (win_used < tp->snd_cwnd) {
4663 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4664 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4665 }
4666 tp->snd_cwnd_used = 0;
4667 }
4668 tp->snd_cwnd_stamp = tcp_time_stamp;
4669 }
4670
4671 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4672 {
4673 const struct tcp_sock *tp = tcp_sk(sk);
4674
4675 /* If the user specified a specific send buffer setting, do
4676 * not modify it.
4677 */
4678 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4679 return false;
4680
4681 /* If we are under global TCP memory pressure, do not expand. */
4682 if (sk_under_memory_pressure(sk))
4683 return false;
4684
4685 /* If we are under soft global TCP memory pressure, do not expand. */
4686 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4687 return false;
4688
4689 /* If we filled the congestion window, do not expand. */
4690 if (tp->packets_out >= tp->snd_cwnd)
4691 return false;
4692
4693 return true;
4694 }
4695
4696 /* When incoming ACK allowed to free some skb from write_queue,
4697 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4698 * on the exit from tcp input handler.
4699 *
4700 * PROBLEM: sndbuf expansion does not work well with largesend.
4701 */
4702 static void tcp_new_space(struct sock *sk)
4703 {
4704 struct tcp_sock *tp = tcp_sk(sk);
4705
4706 if (tcp_should_expand_sndbuf(sk)) {
4707 int sndmem = SKB_TRUESIZE(max_t(u32,
4708 tp->rx_opt.mss_clamp,
4709 tp->mss_cache) +
4710 MAX_TCP_HEADER);
4711 int demanded = max_t(unsigned int, tp->snd_cwnd,
4712 tp->reordering + 1);
4713 sndmem *= 2 * demanded;
4714 if (sndmem > sk->sk_sndbuf)
4715 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4716 tp->snd_cwnd_stamp = tcp_time_stamp;
4717 }
4718
4719 sk->sk_write_space(sk);
4720 }
4721
4722 static void tcp_check_space(struct sock *sk)
4723 {
4724 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4725 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4726 if (sk->sk_socket &&
4727 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4728 tcp_new_space(sk);
4729 }
4730 }
4731
4732 static inline void tcp_data_snd_check(struct sock *sk)
4733 {
4734 tcp_push_pending_frames(sk);
4735 tcp_check_space(sk);
4736 }
4737
4738 /*
4739 * Check if sending an ack is needed.
4740 */
4741 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4742 {
4743 struct tcp_sock *tp = tcp_sk(sk);
4744
4745 /* More than one full frame received... */
4746 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4747 /* ... and right edge of window advances far enough.
4748 * (tcp_recvmsg() will send ACK otherwise). Or...
4749 */
4750 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4751 /* We ACK each frame or... */
4752 tcp_in_quickack_mode(sk) ||
4753 /* We have out of order data. */
4754 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4755 /* Then ack it now */
4756 tcp_send_ack(sk);
4757 } else {
4758 /* Else, send delayed ack. */
4759 tcp_send_delayed_ack(sk);
4760 }
4761 }
4762
4763 static inline void tcp_ack_snd_check(struct sock *sk)
4764 {
4765 if (!inet_csk_ack_scheduled(sk)) {
4766 /* We sent a data segment already. */
4767 return;
4768 }
4769 __tcp_ack_snd_check(sk, 1);
4770 }
4771
4772 /*
4773 * This routine is only called when we have urgent data
4774 * signaled. Its the 'slow' part of tcp_urg. It could be
4775 * moved inline now as tcp_urg is only called from one
4776 * place. We handle URGent data wrong. We have to - as
4777 * BSD still doesn't use the correction from RFC961.
4778 * For 1003.1g we should support a new option TCP_STDURG to permit
4779 * either form (or just set the sysctl tcp_stdurg).
4780 */
4781
4782 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4783 {
4784 struct tcp_sock *tp = tcp_sk(sk);
4785 u32 ptr = ntohs(th->urg_ptr);
4786
4787 if (ptr && !sysctl_tcp_stdurg)
4788 ptr--;
4789 ptr += ntohl(th->seq);
4790
4791 /* Ignore urgent data that we've already seen and read. */
4792 if (after(tp->copied_seq, ptr))
4793 return;
4794
4795 /* Do not replay urg ptr.
4796 *
4797 * NOTE: interesting situation not covered by specs.
4798 * Misbehaving sender may send urg ptr, pointing to segment,
4799 * which we already have in ofo queue. We are not able to fetch
4800 * such data and will stay in TCP_URG_NOTYET until will be eaten
4801 * by recvmsg(). Seems, we are not obliged to handle such wicked
4802 * situations. But it is worth to think about possibility of some
4803 * DoSes using some hypothetical application level deadlock.
4804 */
4805 if (before(ptr, tp->rcv_nxt))
4806 return;
4807
4808 /* Do we already have a newer (or duplicate) urgent pointer? */
4809 if (tp->urg_data && !after(ptr, tp->urg_seq))
4810 return;
4811
4812 /* Tell the world about our new urgent pointer. */
4813 sk_send_sigurg(sk);
4814
4815 /* We may be adding urgent data when the last byte read was
4816 * urgent. To do this requires some care. We cannot just ignore
4817 * tp->copied_seq since we would read the last urgent byte again
4818 * as data, nor can we alter copied_seq until this data arrives
4819 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4820 *
4821 * NOTE. Double Dutch. Rendering to plain English: author of comment
4822 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4823 * and expect that both A and B disappear from stream. This is _wrong_.
4824 * Though this happens in BSD with high probability, this is occasional.
4825 * Any application relying on this is buggy. Note also, that fix "works"
4826 * only in this artificial test. Insert some normal data between A and B and we will
4827 * decline of BSD again. Verdict: it is better to remove to trap
4828 * buggy users.
4829 */
4830 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4831 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4832 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4833 tp->copied_seq++;
4834 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4835 __skb_unlink(skb, &sk->sk_receive_queue);
4836 __kfree_skb(skb);
4837 }
4838 }
4839
4840 tp->urg_data = TCP_URG_NOTYET;
4841 tp->urg_seq = ptr;
4842
4843 /* Disable header prediction. */
4844 tp->pred_flags = 0;
4845 }
4846
4847 /* This is the 'fast' part of urgent handling. */
4848 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4849 {
4850 struct tcp_sock *tp = tcp_sk(sk);
4851
4852 /* Check if we get a new urgent pointer - normally not. */
4853 if (th->urg)
4854 tcp_check_urg(sk, th);
4855
4856 /* Do we wait for any urgent data? - normally not... */
4857 if (tp->urg_data == TCP_URG_NOTYET) {
4858 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4859 th->syn;
4860
4861 /* Is the urgent pointer pointing into this packet? */
4862 if (ptr < skb->len) {
4863 u8 tmp;
4864 if (skb_copy_bits(skb, ptr, &tmp, 1))
4865 BUG();
4866 tp->urg_data = TCP_URG_VALID | tmp;
4867 if (!sock_flag(sk, SOCK_DEAD))
4868 sk->sk_data_ready(sk, 0);
4869 }
4870 }
4871 }
4872
4873 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4874 {
4875 struct tcp_sock *tp = tcp_sk(sk);
4876 int chunk = skb->len - hlen;
4877 int err;
4878
4879 local_bh_enable();
4880 if (skb_csum_unnecessary(skb))
4881 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4882 else
4883 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4884 tp->ucopy.iov);
4885
4886 if (!err) {
4887 tp->ucopy.len -= chunk;
4888 tp->copied_seq += chunk;
4889 tcp_rcv_space_adjust(sk);
4890 }
4891
4892 local_bh_disable();
4893 return err;
4894 }
4895
4896 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4897 struct sk_buff *skb)
4898 {
4899 __sum16 result;
4900
4901 if (sock_owned_by_user(sk)) {
4902 local_bh_enable();
4903 result = __tcp_checksum_complete(skb);
4904 local_bh_disable();
4905 } else {
4906 result = __tcp_checksum_complete(skb);
4907 }
4908 return result;
4909 }
4910
4911 static inline bool tcp_checksum_complete_user(struct sock *sk,
4912 struct sk_buff *skb)
4913 {
4914 return !skb_csum_unnecessary(skb) &&
4915 __tcp_checksum_complete_user(sk, skb);
4916 }
4917
4918 #ifdef CONFIG_NET_DMA
4919 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4920 int hlen)
4921 {
4922 struct tcp_sock *tp = tcp_sk(sk);
4923 int chunk = skb->len - hlen;
4924 int dma_cookie;
4925 bool copied_early = false;
4926
4927 if (tp->ucopy.wakeup)
4928 return false;
4929
4930 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4931 tp->ucopy.dma_chan = net_dma_find_channel();
4932
4933 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4934
4935 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4936 skb, hlen,
4937 tp->ucopy.iov, chunk,
4938 tp->ucopy.pinned_list);
4939
4940 if (dma_cookie < 0)
4941 goto out;
4942
4943 tp->ucopy.dma_cookie = dma_cookie;
4944 copied_early = true;
4945
4946 tp->ucopy.len -= chunk;
4947 tp->copied_seq += chunk;
4948 tcp_rcv_space_adjust(sk);
4949
4950 if ((tp->ucopy.len == 0) ||
4951 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4952 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4953 tp->ucopy.wakeup = 1;
4954 sk->sk_data_ready(sk, 0);
4955 }
4956 } else if (chunk > 0) {
4957 tp->ucopy.wakeup = 1;
4958 sk->sk_data_ready(sk, 0);
4959 }
4960 out:
4961 return copied_early;
4962 }
4963 #endif /* CONFIG_NET_DMA */
4964
4965 /* Does PAWS and seqno based validation of an incoming segment, flags will
4966 * play significant role here.
4967 */
4968 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
4969 const struct tcphdr *th, int syn_inerr)
4970 {
4971 struct tcp_sock *tp = tcp_sk(sk);
4972
4973 /* RFC1323: H1. Apply PAWS check first. */
4974 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4975 tcp_paws_discard(sk, skb)) {
4976 if (!th->rst) {
4977 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
4978 tcp_send_dupack(sk, skb);
4979 goto discard;
4980 }
4981 /* Reset is accepted even if it did not pass PAWS. */
4982 }
4983
4984 /* Step 1: check sequence number */
4985 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4986 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4987 * (RST) segments are validated by checking their SEQ-fields."
4988 * And page 69: "If an incoming segment is not acceptable,
4989 * an acknowledgment should be sent in reply (unless the RST
4990 * bit is set, if so drop the segment and return)".
4991 */
4992 if (!th->rst) {
4993 if (th->syn)
4994 goto syn_challenge;
4995 tcp_send_dupack(sk, skb);
4996 }
4997 goto discard;
4998 }
4999
5000 /* Step 2: check RST bit */
5001 if (th->rst) {
5002 /* RFC 5961 3.2 :
5003 * If sequence number exactly matches RCV.NXT, then
5004 * RESET the connection
5005 * else
5006 * Send a challenge ACK
5007 */
5008 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5009 tcp_reset(sk);
5010 else
5011 tcp_send_challenge_ack(sk);
5012 goto discard;
5013 }
5014
5015 /* step 3: check security and precedence [ignored] */
5016
5017 /* step 4: Check for a SYN
5018 * RFC 5691 4.2 : Send a challenge ack
5019 */
5020 if (th->syn) {
5021 syn_challenge:
5022 if (syn_inerr)
5023 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5024 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5025 tcp_send_challenge_ack(sk);
5026 goto discard;
5027 }
5028
5029 return true;
5030
5031 discard:
5032 __kfree_skb(skb);
5033 return false;
5034 }
5035
5036 /*
5037 * TCP receive function for the ESTABLISHED state.
5038 *
5039 * It is split into a fast path and a slow path. The fast path is
5040 * disabled when:
5041 * - A zero window was announced from us - zero window probing
5042 * is only handled properly in the slow path.
5043 * - Out of order segments arrived.
5044 * - Urgent data is expected.
5045 * - There is no buffer space left
5046 * - Unexpected TCP flags/window values/header lengths are received
5047 * (detected by checking the TCP header against pred_flags)
5048 * - Data is sent in both directions. Fast path only supports pure senders
5049 * or pure receivers (this means either the sequence number or the ack
5050 * value must stay constant)
5051 * - Unexpected TCP option.
5052 *
5053 * When these conditions are not satisfied it drops into a standard
5054 * receive procedure patterned after RFC793 to handle all cases.
5055 * The first three cases are guaranteed by proper pred_flags setting,
5056 * the rest is checked inline. Fast processing is turned on in
5057 * tcp_data_queue when everything is OK.
5058 */
5059 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5060 const struct tcphdr *th, unsigned int len)
5061 {
5062 struct tcp_sock *tp = tcp_sk(sk);
5063
5064 if (unlikely(sk->sk_rx_dst == NULL))
5065 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5066 /*
5067 * Header prediction.
5068 * The code loosely follows the one in the famous
5069 * "30 instruction TCP receive" Van Jacobson mail.
5070 *
5071 * Van's trick is to deposit buffers into socket queue
5072 * on a device interrupt, to call tcp_recv function
5073 * on the receive process context and checksum and copy
5074 * the buffer to user space. smart...
5075 *
5076 * Our current scheme is not silly either but we take the
5077 * extra cost of the net_bh soft interrupt processing...
5078 * We do checksum and copy also but from device to kernel.
5079 */
5080
5081 tp->rx_opt.saw_tstamp = 0;
5082
5083 /* pred_flags is 0xS?10 << 16 + snd_wnd
5084 * if header_prediction is to be made
5085 * 'S' will always be tp->tcp_header_len >> 2
5086 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5087 * turn it off (when there are holes in the receive
5088 * space for instance)
5089 * PSH flag is ignored.
5090 */
5091
5092 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5093 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5094 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5095 int tcp_header_len = tp->tcp_header_len;
5096
5097 /* Timestamp header prediction: tcp_header_len
5098 * is automatically equal to th->doff*4 due to pred_flags
5099 * match.
5100 */
5101
5102 /* Check timestamp */
5103 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5104 /* No? Slow path! */
5105 if (!tcp_parse_aligned_timestamp(tp, th))
5106 goto slow_path;
5107
5108 /* If PAWS failed, check it more carefully in slow path */
5109 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5110 goto slow_path;
5111
5112 /* DO NOT update ts_recent here, if checksum fails
5113 * and timestamp was corrupted part, it will result
5114 * in a hung connection since we will drop all
5115 * future packets due to the PAWS test.
5116 */
5117 }
5118
5119 if (len <= tcp_header_len) {
5120 /* Bulk data transfer: sender */
5121 if (len == tcp_header_len) {
5122 /* Predicted packet is in window by definition.
5123 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5124 * Hence, check seq<=rcv_wup reduces to:
5125 */
5126 if (tcp_header_len ==
5127 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5128 tp->rcv_nxt == tp->rcv_wup)
5129 tcp_store_ts_recent(tp);
5130
5131 /* We know that such packets are checksummed
5132 * on entry.
5133 */
5134 tcp_ack(sk, skb, 0);
5135 __kfree_skb(skb);
5136 tcp_data_snd_check(sk);
5137 return;
5138 } else { /* Header too small */
5139 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5140 goto discard;
5141 }
5142 } else {
5143 int eaten = 0;
5144 int copied_early = 0;
5145 bool fragstolen = false;
5146
5147 if (tp->copied_seq == tp->rcv_nxt &&
5148 len - tcp_header_len <= tp->ucopy.len) {
5149 #ifdef CONFIG_NET_DMA
5150 if (tp->ucopy.task == current &&
5151 sock_owned_by_user(sk) &&
5152 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5153 copied_early = 1;
5154 eaten = 1;
5155 }
5156 #endif
5157 if (tp->ucopy.task == current &&
5158 sock_owned_by_user(sk) && !copied_early) {
5159 __set_current_state(TASK_RUNNING);
5160
5161 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5162 eaten = 1;
5163 }
5164 if (eaten) {
5165 /* Predicted packet is in window by definition.
5166 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5167 * Hence, check seq<=rcv_wup reduces to:
5168 */
5169 if (tcp_header_len ==
5170 (sizeof(struct tcphdr) +
5171 TCPOLEN_TSTAMP_ALIGNED) &&
5172 tp->rcv_nxt == tp->rcv_wup)
5173 tcp_store_ts_recent(tp);
5174
5175 tcp_rcv_rtt_measure_ts(sk, skb);
5176
5177 __skb_pull(skb, tcp_header_len);
5178 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5179 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5180 }
5181 if (copied_early)
5182 tcp_cleanup_rbuf(sk, skb->len);
5183 }
5184 if (!eaten) {
5185 if (tcp_checksum_complete_user(sk, skb))
5186 goto csum_error;
5187
5188 if ((int)skb->truesize > sk->sk_forward_alloc)
5189 goto step5;
5190
5191 /* Predicted packet is in window by definition.
5192 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5193 * Hence, check seq<=rcv_wup reduces to:
5194 */
5195 if (tcp_header_len ==
5196 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5197 tp->rcv_nxt == tp->rcv_wup)
5198 tcp_store_ts_recent(tp);
5199
5200 tcp_rcv_rtt_measure_ts(sk, skb);
5201
5202 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5203
5204 /* Bulk data transfer: receiver */
5205 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5206 &fragstolen);
5207 }
5208
5209 tcp_event_data_recv(sk, skb);
5210
5211 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5212 /* Well, only one small jumplet in fast path... */
5213 tcp_ack(sk, skb, FLAG_DATA);
5214 tcp_data_snd_check(sk);
5215 if (!inet_csk_ack_scheduled(sk))
5216 goto no_ack;
5217 }
5218
5219 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5220 __tcp_ack_snd_check(sk, 0);
5221 no_ack:
5222 #ifdef CONFIG_NET_DMA
5223 if (copied_early)
5224 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5225 else
5226 #endif
5227 if (eaten)
5228 kfree_skb_partial(skb, fragstolen);
5229 sk->sk_data_ready(sk, 0);
5230 return;
5231 }
5232 }
5233
5234 slow_path:
5235 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5236 goto csum_error;
5237
5238 if (!th->ack && !th->rst)
5239 goto discard;
5240
5241 /*
5242 * Standard slow path.
5243 */
5244
5245 if (!tcp_validate_incoming(sk, skb, th, 1))
5246 return;
5247
5248 step5:
5249 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5250 goto discard;
5251
5252 tcp_rcv_rtt_measure_ts(sk, skb);
5253
5254 /* Process urgent data. */
5255 tcp_urg(sk, skb, th);
5256
5257 /* step 7: process the segment text */
5258 tcp_data_queue(sk, skb);
5259
5260 tcp_data_snd_check(sk);
5261 tcp_ack_snd_check(sk);
5262 return;
5263
5264 csum_error:
5265 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5266 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5267
5268 discard:
5269 __kfree_skb(skb);
5270 }
5271 EXPORT_SYMBOL(tcp_rcv_established);
5272
5273 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5274 {
5275 struct tcp_sock *tp = tcp_sk(sk);
5276 struct inet_connection_sock *icsk = inet_csk(sk);
5277
5278 tcp_set_state(sk, TCP_ESTABLISHED);
5279
5280 if (skb != NULL) {
5281 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5282 security_inet_conn_established(sk, skb);
5283 }
5284
5285 /* Make sure socket is routed, for correct metrics. */
5286 icsk->icsk_af_ops->rebuild_header(sk);
5287
5288 tcp_init_metrics(sk);
5289
5290 tcp_init_congestion_control(sk);
5291
5292 /* Prevent spurious tcp_cwnd_restart() on first data
5293 * packet.
5294 */
5295 tp->lsndtime = tcp_time_stamp;
5296
5297 tcp_init_buffer_space(sk);
5298
5299 if (sock_flag(sk, SOCK_KEEPOPEN))
5300 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5301
5302 if (!tp->rx_opt.snd_wscale)
5303 __tcp_fast_path_on(tp, tp->snd_wnd);
5304 else
5305 tp->pred_flags = 0;
5306
5307 if (!sock_flag(sk, SOCK_DEAD)) {
5308 sk->sk_state_change(sk);
5309 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5310 }
5311 }
5312
5313 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5314 struct tcp_fastopen_cookie *cookie)
5315 {
5316 struct tcp_sock *tp = tcp_sk(sk);
5317 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5318 u16 mss = tp->rx_opt.mss_clamp;
5319 bool syn_drop;
5320
5321 if (mss == tp->rx_opt.user_mss) {
5322 struct tcp_options_received opt;
5323
5324 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5325 tcp_clear_options(&opt);
5326 opt.user_mss = opt.mss_clamp = 0;
5327 tcp_parse_options(synack, &opt, 0, NULL);
5328 mss = opt.mss_clamp;
5329 }
5330
5331 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5332 cookie->len = -1;
5333
5334 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5335 * the remote receives only the retransmitted (regular) SYNs: either
5336 * the original SYN-data or the corresponding SYN-ACK is lost.
5337 */
5338 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5339
5340 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5341
5342 if (data) { /* Retransmit unacked data in SYN */
5343 tcp_for_write_queue_from(data, sk) {
5344 if (data == tcp_send_head(sk) ||
5345 __tcp_retransmit_skb(sk, data))
5346 break;
5347 }
5348 tcp_rearm_rto(sk);
5349 return true;
5350 }
5351 tp->syn_data_acked = tp->syn_data;
5352 return false;
5353 }
5354
5355 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5356 const struct tcphdr *th, unsigned int len)
5357 {
5358 struct inet_connection_sock *icsk = inet_csk(sk);
5359 struct tcp_sock *tp = tcp_sk(sk);
5360 struct tcp_fastopen_cookie foc = { .len = -1 };
5361 int saved_clamp = tp->rx_opt.mss_clamp;
5362
5363 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5364 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5365 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5366
5367 if (th->ack) {
5368 /* rfc793:
5369 * "If the state is SYN-SENT then
5370 * first check the ACK bit
5371 * If the ACK bit is set
5372 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5373 * a reset (unless the RST bit is set, if so drop
5374 * the segment and return)"
5375 */
5376 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5377 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5378 goto reset_and_undo;
5379
5380 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5381 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5382 tcp_time_stamp)) {
5383 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5384 goto reset_and_undo;
5385 }
5386
5387 /* Now ACK is acceptable.
5388 *
5389 * "If the RST bit is set
5390 * If the ACK was acceptable then signal the user "error:
5391 * connection reset", drop the segment, enter CLOSED state,
5392 * delete TCB, and return."
5393 */
5394
5395 if (th->rst) {
5396 tcp_reset(sk);
5397 goto discard;
5398 }
5399
5400 /* rfc793:
5401 * "fifth, if neither of the SYN or RST bits is set then
5402 * drop the segment and return."
5403 *
5404 * See note below!
5405 * --ANK(990513)
5406 */
5407 if (!th->syn)
5408 goto discard_and_undo;
5409
5410 /* rfc793:
5411 * "If the SYN bit is on ...
5412 * are acceptable then ...
5413 * (our SYN has been ACKed), change the connection
5414 * state to ESTABLISHED..."
5415 */
5416
5417 TCP_ECN_rcv_synack(tp, th);
5418
5419 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5420 tcp_ack(sk, skb, FLAG_SLOWPATH);
5421
5422 /* Ok.. it's good. Set up sequence numbers and
5423 * move to established.
5424 */
5425 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5426 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5427
5428 /* RFC1323: The window in SYN & SYN/ACK segments is
5429 * never scaled.
5430 */
5431 tp->snd_wnd = ntohs(th->window);
5432
5433 if (!tp->rx_opt.wscale_ok) {
5434 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5435 tp->window_clamp = min(tp->window_clamp, 65535U);
5436 }
5437
5438 if (tp->rx_opt.saw_tstamp) {
5439 tp->rx_opt.tstamp_ok = 1;
5440 tp->tcp_header_len =
5441 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5442 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5443 tcp_store_ts_recent(tp);
5444 } else {
5445 tp->tcp_header_len = sizeof(struct tcphdr);
5446 }
5447
5448 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5449 tcp_enable_fack(tp);
5450
5451 tcp_mtup_init(sk);
5452 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5453 tcp_initialize_rcv_mss(sk);
5454
5455 /* Remember, tcp_poll() does not lock socket!
5456 * Change state from SYN-SENT only after copied_seq
5457 * is initialized. */
5458 tp->copied_seq = tp->rcv_nxt;
5459
5460 smp_mb();
5461
5462 tcp_finish_connect(sk, skb);
5463
5464 if ((tp->syn_fastopen || tp->syn_data) &&
5465 tcp_rcv_fastopen_synack(sk, skb, &foc))
5466 return -1;
5467
5468 if (sk->sk_write_pending ||
5469 icsk->icsk_accept_queue.rskq_defer_accept ||
5470 icsk->icsk_ack.pingpong) {
5471 /* Save one ACK. Data will be ready after
5472 * several ticks, if write_pending is set.
5473 *
5474 * It may be deleted, but with this feature tcpdumps
5475 * look so _wonderfully_ clever, that I was not able
5476 * to stand against the temptation 8) --ANK
5477 */
5478 inet_csk_schedule_ack(sk);
5479 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5480 tcp_enter_quickack_mode(sk);
5481 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5482 TCP_DELACK_MAX, TCP_RTO_MAX);
5483
5484 discard:
5485 __kfree_skb(skb);
5486 return 0;
5487 } else {
5488 tcp_send_ack(sk);
5489 }
5490 return -1;
5491 }
5492
5493 /* No ACK in the segment */
5494
5495 if (th->rst) {
5496 /* rfc793:
5497 * "If the RST bit is set
5498 *
5499 * Otherwise (no ACK) drop the segment and return."
5500 */
5501
5502 goto discard_and_undo;
5503 }
5504
5505 /* PAWS check. */
5506 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5507 tcp_paws_reject(&tp->rx_opt, 0))
5508 goto discard_and_undo;
5509
5510 if (th->syn) {
5511 /* We see SYN without ACK. It is attempt of
5512 * simultaneous connect with crossed SYNs.
5513 * Particularly, it can be connect to self.
5514 */
5515 tcp_set_state(sk, TCP_SYN_RECV);
5516
5517 if (tp->rx_opt.saw_tstamp) {
5518 tp->rx_opt.tstamp_ok = 1;
5519 tcp_store_ts_recent(tp);
5520 tp->tcp_header_len =
5521 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5522 } else {
5523 tp->tcp_header_len = sizeof(struct tcphdr);
5524 }
5525
5526 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5527 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5528
5529 /* RFC1323: The window in SYN & SYN/ACK segments is
5530 * never scaled.
5531 */
5532 tp->snd_wnd = ntohs(th->window);
5533 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5534 tp->max_window = tp->snd_wnd;
5535
5536 TCP_ECN_rcv_syn(tp, th);
5537
5538 tcp_mtup_init(sk);
5539 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5540 tcp_initialize_rcv_mss(sk);
5541
5542 tcp_send_synack(sk);
5543 #if 0
5544 /* Note, we could accept data and URG from this segment.
5545 * There are no obstacles to make this (except that we must
5546 * either change tcp_recvmsg() to prevent it from returning data
5547 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5548 *
5549 * However, if we ignore data in ACKless segments sometimes,
5550 * we have no reasons to accept it sometimes.
5551 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5552 * is not flawless. So, discard packet for sanity.
5553 * Uncomment this return to process the data.
5554 */
5555 return -1;
5556 #else
5557 goto discard;
5558 #endif
5559 }
5560 /* "fifth, if neither of the SYN or RST bits is set then
5561 * drop the segment and return."
5562 */
5563
5564 discard_and_undo:
5565 tcp_clear_options(&tp->rx_opt);
5566 tp->rx_opt.mss_clamp = saved_clamp;
5567 goto discard;
5568
5569 reset_and_undo:
5570 tcp_clear_options(&tp->rx_opt);
5571 tp->rx_opt.mss_clamp = saved_clamp;
5572 return 1;
5573 }
5574
5575 /*
5576 * This function implements the receiving procedure of RFC 793 for
5577 * all states except ESTABLISHED and TIME_WAIT.
5578 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5579 * address independent.
5580 */
5581
5582 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5583 const struct tcphdr *th, unsigned int len)
5584 {
5585 struct tcp_sock *tp = tcp_sk(sk);
5586 struct inet_connection_sock *icsk = inet_csk(sk);
5587 struct request_sock *req;
5588 int queued = 0;
5589 bool acceptable;
5590
5591 tp->rx_opt.saw_tstamp = 0;
5592
5593 switch (sk->sk_state) {
5594 case TCP_CLOSE:
5595 goto discard;
5596
5597 case TCP_LISTEN:
5598 if (th->ack)
5599 return 1;
5600
5601 if (th->rst)
5602 goto discard;
5603
5604 if (th->syn) {
5605 if (th->fin)
5606 goto discard;
5607 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5608 return 1;
5609
5610 /* Now we have several options: In theory there is
5611 * nothing else in the frame. KA9Q has an option to
5612 * send data with the syn, BSD accepts data with the
5613 * syn up to the [to be] advertised window and
5614 * Solaris 2.1 gives you a protocol error. For now
5615 * we just ignore it, that fits the spec precisely
5616 * and avoids incompatibilities. It would be nice in
5617 * future to drop through and process the data.
5618 *
5619 * Now that TTCP is starting to be used we ought to
5620 * queue this data.
5621 * But, this leaves one open to an easy denial of
5622 * service attack, and SYN cookies can't defend
5623 * against this problem. So, we drop the data
5624 * in the interest of security over speed unless
5625 * it's still in use.
5626 */
5627 kfree_skb(skb);
5628 return 0;
5629 }
5630 goto discard;
5631
5632 case TCP_SYN_SENT:
5633 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5634 if (queued >= 0)
5635 return queued;
5636
5637 /* Do step6 onward by hand. */
5638 tcp_urg(sk, skb, th);
5639 __kfree_skb(skb);
5640 tcp_data_snd_check(sk);
5641 return 0;
5642 }
5643
5644 req = tp->fastopen_rsk;
5645 if (req != NULL) {
5646 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5647 sk->sk_state != TCP_FIN_WAIT1);
5648
5649 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5650 goto discard;
5651 }
5652
5653 if (!th->ack && !th->rst)
5654 goto discard;
5655
5656 if (!tcp_validate_incoming(sk, skb, th, 0))
5657 return 0;
5658
5659 /* step 5: check the ACK field */
5660 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5661 FLAG_UPDATE_TS_RECENT) > 0;
5662
5663 switch (sk->sk_state) {
5664 case TCP_SYN_RECV:
5665 if (!acceptable)
5666 return 1;
5667
5668 /* Once we leave TCP_SYN_RECV, we no longer need req
5669 * so release it.
5670 */
5671 if (req) {
5672 tp->total_retrans = req->num_retrans;
5673 reqsk_fastopen_remove(sk, req, false);
5674 } else {
5675 /* Make sure socket is routed, for correct metrics. */
5676 icsk->icsk_af_ops->rebuild_header(sk);
5677 tcp_init_congestion_control(sk);
5678
5679 tcp_mtup_init(sk);
5680 tcp_init_buffer_space(sk);
5681 tp->copied_seq = tp->rcv_nxt;
5682 }
5683 smp_mb();
5684 tcp_set_state(sk, TCP_ESTABLISHED);
5685 sk->sk_state_change(sk);
5686
5687 /* Note, that this wakeup is only for marginal crossed SYN case.
5688 * Passively open sockets are not waked up, because
5689 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5690 */
5691 if (sk->sk_socket)
5692 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5693
5694 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5695 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5696 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5697 tcp_synack_rtt_meas(sk, req);
5698
5699 if (tp->rx_opt.tstamp_ok)
5700 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5701
5702 if (req) {
5703 /* Re-arm the timer because data may have been sent out.
5704 * This is similar to the regular data transmission case
5705 * when new data has just been ack'ed.
5706 *
5707 * (TFO) - we could try to be more aggressive and
5708 * retransmitting any data sooner based on when they
5709 * are sent out.
5710 */
5711 tcp_rearm_rto(sk);
5712 } else
5713 tcp_init_metrics(sk);
5714
5715 tcp_update_pacing_rate(sk);
5716
5717 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5718 tp->lsndtime = tcp_time_stamp;
5719
5720 tcp_initialize_rcv_mss(sk);
5721 tcp_fast_path_on(tp);
5722 break;
5723
5724 case TCP_FIN_WAIT1: {
5725 struct dst_entry *dst;
5726 int tmo;
5727
5728 /* If we enter the TCP_FIN_WAIT1 state and we are a
5729 * Fast Open socket and this is the first acceptable
5730 * ACK we have received, this would have acknowledged
5731 * our SYNACK so stop the SYNACK timer.
5732 */
5733 if (req != NULL) {
5734 /* Return RST if ack_seq is invalid.
5735 * Note that RFC793 only says to generate a
5736 * DUPACK for it but for TCP Fast Open it seems
5737 * better to treat this case like TCP_SYN_RECV
5738 * above.
5739 */
5740 if (!acceptable)
5741 return 1;
5742 /* We no longer need the request sock. */
5743 reqsk_fastopen_remove(sk, req, false);
5744 tcp_rearm_rto(sk);
5745 }
5746 if (tp->snd_una != tp->write_seq)
5747 break;
5748
5749 tcp_set_state(sk, TCP_FIN_WAIT2);
5750 sk->sk_shutdown |= SEND_SHUTDOWN;
5751
5752 dst = __sk_dst_get(sk);
5753 if (dst)
5754 dst_confirm(dst);
5755
5756 if (!sock_flag(sk, SOCK_DEAD)) {
5757 /* Wake up lingering close() */
5758 sk->sk_state_change(sk);
5759 break;
5760 }
5761
5762 if (tp->linger2 < 0 ||
5763 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5764 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5765 tcp_done(sk);
5766 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5767 return 1;
5768 }
5769
5770 tmo = tcp_fin_time(sk);
5771 if (tmo > TCP_TIMEWAIT_LEN) {
5772 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5773 } else if (th->fin || sock_owned_by_user(sk)) {
5774 /* Bad case. We could lose such FIN otherwise.
5775 * It is not a big problem, but it looks confusing
5776 * and not so rare event. We still can lose it now,
5777 * if it spins in bh_lock_sock(), but it is really
5778 * marginal case.
5779 */
5780 inet_csk_reset_keepalive_timer(sk, tmo);
5781 } else {
5782 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5783 goto discard;
5784 }
5785 break;
5786 }
5787
5788 case TCP_CLOSING:
5789 if (tp->snd_una == tp->write_seq) {
5790 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5791 goto discard;
5792 }
5793 break;
5794
5795 case TCP_LAST_ACK:
5796 if (tp->snd_una == tp->write_seq) {
5797 tcp_update_metrics(sk);
5798 tcp_done(sk);
5799 goto discard;
5800 }
5801 break;
5802 }
5803
5804 /* step 6: check the URG bit */
5805 tcp_urg(sk, skb, th);
5806
5807 /* step 7: process the segment text */
5808 switch (sk->sk_state) {
5809 case TCP_CLOSE_WAIT:
5810 case TCP_CLOSING:
5811 case TCP_LAST_ACK:
5812 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5813 break;
5814 case TCP_FIN_WAIT1:
5815 case TCP_FIN_WAIT2:
5816 /* RFC 793 says to queue data in these states,
5817 * RFC 1122 says we MUST send a reset.
5818 * BSD 4.4 also does reset.
5819 */
5820 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5821 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5822 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5823 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5824 tcp_reset(sk);
5825 return 1;
5826 }
5827 }
5828 /* Fall through */
5829 case TCP_ESTABLISHED:
5830 tcp_data_queue(sk, skb);
5831 queued = 1;
5832 break;
5833 }
5834
5835 /* tcp_data could move socket to TIME-WAIT */
5836 if (sk->sk_state != TCP_CLOSE) {
5837 tcp_data_snd_check(sk);
5838 tcp_ack_snd_check(sk);
5839 }
5840
5841 if (!queued) {
5842 discard:
5843 __kfree_skb(skb);
5844 }
5845 return 0;
5846 }
5847 EXPORT_SYMBOL(tcp_rcv_state_process);
This page took 0.16014 seconds and 5 git commands to generate.