ipv4: fix TCP early demux
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_ecn __read_mostly = 2;
85 EXPORT_SYMBOL(sysctl_tcp_ecn);
86 int sysctl_tcp_dsack __read_mostly = 1;
87 int sysctl_tcp_app_win __read_mostly = 31;
88 int sysctl_tcp_adv_win_scale __read_mostly = 1;
89 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
90
91 /* rfc5961 challenge ack rate limiting */
92 int sysctl_tcp_challenge_ack_limit = 100;
93
94 int sysctl_tcp_stdurg __read_mostly;
95 int sysctl_tcp_rfc1337 __read_mostly;
96 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
97 int sysctl_tcp_frto __read_mostly = 2;
98 int sysctl_tcp_frto_response __read_mostly;
99
100 int sysctl_tcp_thin_dupack __read_mostly;
101
102 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
103 int sysctl_tcp_abc __read_mostly;
104 int sysctl_tcp_early_retrans __read_mostly = 2;
105
106 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
107 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
108 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
109 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
110 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
111 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
112 #define FLAG_ECE 0x40 /* ECE in this ACK */
113 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
114 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
115 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
116 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
117 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
118 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
119
120 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
121 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
122 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
123 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
124 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
125
126 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
127 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
128
129 /* Adapt the MSS value used to make delayed ack decision to the
130 * real world.
131 */
132 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
133 {
134 struct inet_connection_sock *icsk = inet_csk(sk);
135 const unsigned int lss = icsk->icsk_ack.last_seg_size;
136 unsigned int len;
137
138 icsk->icsk_ack.last_seg_size = 0;
139
140 /* skb->len may jitter because of SACKs, even if peer
141 * sends good full-sized frames.
142 */
143 len = skb_shinfo(skb)->gso_size ? : skb->len;
144 if (len >= icsk->icsk_ack.rcv_mss) {
145 icsk->icsk_ack.rcv_mss = len;
146 } else {
147 /* Otherwise, we make more careful check taking into account,
148 * that SACKs block is variable.
149 *
150 * "len" is invariant segment length, including TCP header.
151 */
152 len += skb->data - skb_transport_header(skb);
153 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
154 /* If PSH is not set, packet should be
155 * full sized, provided peer TCP is not badly broken.
156 * This observation (if it is correct 8)) allows
157 * to handle super-low mtu links fairly.
158 */
159 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
160 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
161 /* Subtract also invariant (if peer is RFC compliant),
162 * tcp header plus fixed timestamp option length.
163 * Resulting "len" is MSS free of SACK jitter.
164 */
165 len -= tcp_sk(sk)->tcp_header_len;
166 icsk->icsk_ack.last_seg_size = len;
167 if (len == lss) {
168 icsk->icsk_ack.rcv_mss = len;
169 return;
170 }
171 }
172 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
173 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
174 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
175 }
176 }
177
178 static void tcp_incr_quickack(struct sock *sk)
179 {
180 struct inet_connection_sock *icsk = inet_csk(sk);
181 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
182
183 if (quickacks == 0)
184 quickacks = 2;
185 if (quickacks > icsk->icsk_ack.quick)
186 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
187 }
188
189 static void tcp_enter_quickack_mode(struct sock *sk)
190 {
191 struct inet_connection_sock *icsk = inet_csk(sk);
192 tcp_incr_quickack(sk);
193 icsk->icsk_ack.pingpong = 0;
194 icsk->icsk_ack.ato = TCP_ATO_MIN;
195 }
196
197 /* Send ACKs quickly, if "quick" count is not exhausted
198 * and the session is not interactive.
199 */
200
201 static inline bool tcp_in_quickack_mode(const struct sock *sk)
202 {
203 const struct inet_connection_sock *icsk = inet_csk(sk);
204
205 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
206 }
207
208 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
209 {
210 if (tp->ecn_flags & TCP_ECN_OK)
211 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
212 }
213
214 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
215 {
216 if (tcp_hdr(skb)->cwr)
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
221 {
222 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
223 }
224
225 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
226 {
227 if (!(tp->ecn_flags & TCP_ECN_OK))
228 return;
229
230 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
231 case INET_ECN_NOT_ECT:
232 /* Funny extension: if ECT is not set on a segment,
233 * and we already seen ECT on a previous segment,
234 * it is probably a retransmit.
235 */
236 if (tp->ecn_flags & TCP_ECN_SEEN)
237 tcp_enter_quickack_mode((struct sock *)tp);
238 break;
239 case INET_ECN_CE:
240 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
241 /* fallinto */
242 default:
243 tp->ecn_flags |= TCP_ECN_SEEN;
244 }
245 }
246
247 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
248 {
249 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
250 tp->ecn_flags &= ~TCP_ECN_OK;
251 }
252
253 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
254 {
255 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
256 tp->ecn_flags &= ~TCP_ECN_OK;
257 }
258
259 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
260 {
261 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
262 return true;
263 return false;
264 }
265
266 /* Buffer size and advertised window tuning.
267 *
268 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
269 */
270
271 static void tcp_fixup_sndbuf(struct sock *sk)
272 {
273 int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
274
275 sndmem *= TCP_INIT_CWND;
276 if (sk->sk_sndbuf < sndmem)
277 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
278 }
279
280 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
281 *
282 * All tcp_full_space() is split to two parts: "network" buffer, allocated
283 * forward and advertised in receiver window (tp->rcv_wnd) and
284 * "application buffer", required to isolate scheduling/application
285 * latencies from network.
286 * window_clamp is maximal advertised window. It can be less than
287 * tcp_full_space(), in this case tcp_full_space() - window_clamp
288 * is reserved for "application" buffer. The less window_clamp is
289 * the smoother our behaviour from viewpoint of network, but the lower
290 * throughput and the higher sensitivity of the connection to losses. 8)
291 *
292 * rcv_ssthresh is more strict window_clamp used at "slow start"
293 * phase to predict further behaviour of this connection.
294 * It is used for two goals:
295 * - to enforce header prediction at sender, even when application
296 * requires some significant "application buffer". It is check #1.
297 * - to prevent pruning of receive queue because of misprediction
298 * of receiver window. Check #2.
299 *
300 * The scheme does not work when sender sends good segments opening
301 * window and then starts to feed us spaghetti. But it should work
302 * in common situations. Otherwise, we have to rely on queue collapsing.
303 */
304
305 /* Slow part of check#2. */
306 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
307 {
308 struct tcp_sock *tp = tcp_sk(sk);
309 /* Optimize this! */
310 int truesize = tcp_win_from_space(skb->truesize) >> 1;
311 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
312
313 while (tp->rcv_ssthresh <= window) {
314 if (truesize <= skb->len)
315 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
316
317 truesize >>= 1;
318 window >>= 1;
319 }
320 return 0;
321 }
322
323 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
324 {
325 struct tcp_sock *tp = tcp_sk(sk);
326
327 /* Check #1 */
328 if (tp->rcv_ssthresh < tp->window_clamp &&
329 (int)tp->rcv_ssthresh < tcp_space(sk) &&
330 !sk_under_memory_pressure(sk)) {
331 int incr;
332
333 /* Check #2. Increase window, if skb with such overhead
334 * will fit to rcvbuf in future.
335 */
336 if (tcp_win_from_space(skb->truesize) <= skb->len)
337 incr = 2 * tp->advmss;
338 else
339 incr = __tcp_grow_window(sk, skb);
340
341 if (incr) {
342 incr = max_t(int, incr, 2 * skb->len);
343 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
344 tp->window_clamp);
345 inet_csk(sk)->icsk_ack.quick |= 1;
346 }
347 }
348 }
349
350 /* 3. Tuning rcvbuf, when connection enters established state. */
351
352 static void tcp_fixup_rcvbuf(struct sock *sk)
353 {
354 u32 mss = tcp_sk(sk)->advmss;
355 u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
356 int rcvmem;
357
358 /* Limit to 10 segments if mss <= 1460,
359 * or 14600/mss segments, with a minimum of two segments.
360 */
361 if (mss > 1460)
362 icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
363
364 rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
365 while (tcp_win_from_space(rcvmem) < mss)
366 rcvmem += 128;
367
368 rcvmem *= icwnd;
369
370 if (sk->sk_rcvbuf < rcvmem)
371 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
372 }
373
374 /* 4. Try to fixup all. It is made immediately after connection enters
375 * established state.
376 */
377 static void tcp_init_buffer_space(struct sock *sk)
378 {
379 struct tcp_sock *tp = tcp_sk(sk);
380 int maxwin;
381
382 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
383 tcp_fixup_rcvbuf(sk);
384 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
385 tcp_fixup_sndbuf(sk);
386
387 tp->rcvq_space.space = tp->rcv_wnd;
388
389 maxwin = tcp_full_space(sk);
390
391 if (tp->window_clamp >= maxwin) {
392 tp->window_clamp = maxwin;
393
394 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
395 tp->window_clamp = max(maxwin -
396 (maxwin >> sysctl_tcp_app_win),
397 4 * tp->advmss);
398 }
399
400 /* Force reservation of one segment. */
401 if (sysctl_tcp_app_win &&
402 tp->window_clamp > 2 * tp->advmss &&
403 tp->window_clamp + tp->advmss > maxwin)
404 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
405
406 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
407 tp->snd_cwnd_stamp = tcp_time_stamp;
408 }
409
410 /* 5. Recalculate window clamp after socket hit its memory bounds. */
411 static void tcp_clamp_window(struct sock *sk)
412 {
413 struct tcp_sock *tp = tcp_sk(sk);
414 struct inet_connection_sock *icsk = inet_csk(sk);
415
416 icsk->icsk_ack.quick = 0;
417
418 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
419 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
420 !sk_under_memory_pressure(sk) &&
421 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
422 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
423 sysctl_tcp_rmem[2]);
424 }
425 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
426 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
427 }
428
429 /* Initialize RCV_MSS value.
430 * RCV_MSS is an our guess about MSS used by the peer.
431 * We haven't any direct information about the MSS.
432 * It's better to underestimate the RCV_MSS rather than overestimate.
433 * Overestimations make us ACKing less frequently than needed.
434 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
435 */
436 void tcp_initialize_rcv_mss(struct sock *sk)
437 {
438 const struct tcp_sock *tp = tcp_sk(sk);
439 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
440
441 hint = min(hint, tp->rcv_wnd / 2);
442 hint = min(hint, TCP_MSS_DEFAULT);
443 hint = max(hint, TCP_MIN_MSS);
444
445 inet_csk(sk)->icsk_ack.rcv_mss = hint;
446 }
447 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
448
449 /* Receiver "autotuning" code.
450 *
451 * The algorithm for RTT estimation w/o timestamps is based on
452 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
453 * <http://public.lanl.gov/radiant/pubs.html#DRS>
454 *
455 * More detail on this code can be found at
456 * <http://staff.psc.edu/jheffner/>,
457 * though this reference is out of date. A new paper
458 * is pending.
459 */
460 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
461 {
462 u32 new_sample = tp->rcv_rtt_est.rtt;
463 long m = sample;
464
465 if (m == 0)
466 m = 1;
467
468 if (new_sample != 0) {
469 /* If we sample in larger samples in the non-timestamp
470 * case, we could grossly overestimate the RTT especially
471 * with chatty applications or bulk transfer apps which
472 * are stalled on filesystem I/O.
473 *
474 * Also, since we are only going for a minimum in the
475 * non-timestamp case, we do not smooth things out
476 * else with timestamps disabled convergence takes too
477 * long.
478 */
479 if (!win_dep) {
480 m -= (new_sample >> 3);
481 new_sample += m;
482 } else {
483 m <<= 3;
484 if (m < new_sample)
485 new_sample = m;
486 }
487 } else {
488 /* No previous measure. */
489 new_sample = m << 3;
490 }
491
492 if (tp->rcv_rtt_est.rtt != new_sample)
493 tp->rcv_rtt_est.rtt = new_sample;
494 }
495
496 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
497 {
498 if (tp->rcv_rtt_est.time == 0)
499 goto new_measure;
500 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
501 return;
502 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
503
504 new_measure:
505 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
506 tp->rcv_rtt_est.time = tcp_time_stamp;
507 }
508
509 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
510 const struct sk_buff *skb)
511 {
512 struct tcp_sock *tp = tcp_sk(sk);
513 if (tp->rx_opt.rcv_tsecr &&
514 (TCP_SKB_CB(skb)->end_seq -
515 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
516 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
517 }
518
519 /*
520 * This function should be called every time data is copied to user space.
521 * It calculates the appropriate TCP receive buffer space.
522 */
523 void tcp_rcv_space_adjust(struct sock *sk)
524 {
525 struct tcp_sock *tp = tcp_sk(sk);
526 int time;
527 int space;
528
529 if (tp->rcvq_space.time == 0)
530 goto new_measure;
531
532 time = tcp_time_stamp - tp->rcvq_space.time;
533 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
534 return;
535
536 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
537
538 space = max(tp->rcvq_space.space, space);
539
540 if (tp->rcvq_space.space != space) {
541 int rcvmem;
542
543 tp->rcvq_space.space = space;
544
545 if (sysctl_tcp_moderate_rcvbuf &&
546 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
547 int new_clamp = space;
548
549 /* Receive space grows, normalize in order to
550 * take into account packet headers and sk_buff
551 * structure overhead.
552 */
553 space /= tp->advmss;
554 if (!space)
555 space = 1;
556 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
557 while (tcp_win_from_space(rcvmem) < tp->advmss)
558 rcvmem += 128;
559 space *= rcvmem;
560 space = min(space, sysctl_tcp_rmem[2]);
561 if (space > sk->sk_rcvbuf) {
562 sk->sk_rcvbuf = space;
563
564 /* Make the window clamp follow along. */
565 tp->window_clamp = new_clamp;
566 }
567 }
568 }
569
570 new_measure:
571 tp->rcvq_space.seq = tp->copied_seq;
572 tp->rcvq_space.time = tcp_time_stamp;
573 }
574
575 /* There is something which you must keep in mind when you analyze the
576 * behavior of the tp->ato delayed ack timeout interval. When a
577 * connection starts up, we want to ack as quickly as possible. The
578 * problem is that "good" TCP's do slow start at the beginning of data
579 * transmission. The means that until we send the first few ACK's the
580 * sender will sit on his end and only queue most of his data, because
581 * he can only send snd_cwnd unacked packets at any given time. For
582 * each ACK we send, he increments snd_cwnd and transmits more of his
583 * queue. -DaveM
584 */
585 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
586 {
587 struct tcp_sock *tp = tcp_sk(sk);
588 struct inet_connection_sock *icsk = inet_csk(sk);
589 u32 now;
590
591 inet_csk_schedule_ack(sk);
592
593 tcp_measure_rcv_mss(sk, skb);
594
595 tcp_rcv_rtt_measure(tp);
596
597 now = tcp_time_stamp;
598
599 if (!icsk->icsk_ack.ato) {
600 /* The _first_ data packet received, initialize
601 * delayed ACK engine.
602 */
603 tcp_incr_quickack(sk);
604 icsk->icsk_ack.ato = TCP_ATO_MIN;
605 } else {
606 int m = now - icsk->icsk_ack.lrcvtime;
607
608 if (m <= TCP_ATO_MIN / 2) {
609 /* The fastest case is the first. */
610 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
611 } else if (m < icsk->icsk_ack.ato) {
612 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
613 if (icsk->icsk_ack.ato > icsk->icsk_rto)
614 icsk->icsk_ack.ato = icsk->icsk_rto;
615 } else if (m > icsk->icsk_rto) {
616 /* Too long gap. Apparently sender failed to
617 * restart window, so that we send ACKs quickly.
618 */
619 tcp_incr_quickack(sk);
620 sk_mem_reclaim(sk);
621 }
622 }
623 icsk->icsk_ack.lrcvtime = now;
624
625 TCP_ECN_check_ce(tp, skb);
626
627 if (skb->len >= 128)
628 tcp_grow_window(sk, skb);
629 }
630
631 /* Called to compute a smoothed rtt estimate. The data fed to this
632 * routine either comes from timestamps, or from segments that were
633 * known _not_ to have been retransmitted [see Karn/Partridge
634 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
635 * piece by Van Jacobson.
636 * NOTE: the next three routines used to be one big routine.
637 * To save cycles in the RFC 1323 implementation it was better to break
638 * it up into three procedures. -- erics
639 */
640 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
641 {
642 struct tcp_sock *tp = tcp_sk(sk);
643 long m = mrtt; /* RTT */
644
645 /* The following amusing code comes from Jacobson's
646 * article in SIGCOMM '88. Note that rtt and mdev
647 * are scaled versions of rtt and mean deviation.
648 * This is designed to be as fast as possible
649 * m stands for "measurement".
650 *
651 * On a 1990 paper the rto value is changed to:
652 * RTO = rtt + 4 * mdev
653 *
654 * Funny. This algorithm seems to be very broken.
655 * These formulae increase RTO, when it should be decreased, increase
656 * too slowly, when it should be increased quickly, decrease too quickly
657 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
658 * does not matter how to _calculate_ it. Seems, it was trap
659 * that VJ failed to avoid. 8)
660 */
661 if (m == 0)
662 m = 1;
663 if (tp->srtt != 0) {
664 m -= (tp->srtt >> 3); /* m is now error in rtt est */
665 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
666 if (m < 0) {
667 m = -m; /* m is now abs(error) */
668 m -= (tp->mdev >> 2); /* similar update on mdev */
669 /* This is similar to one of Eifel findings.
670 * Eifel blocks mdev updates when rtt decreases.
671 * This solution is a bit different: we use finer gain
672 * for mdev in this case (alpha*beta).
673 * Like Eifel it also prevents growth of rto,
674 * but also it limits too fast rto decreases,
675 * happening in pure Eifel.
676 */
677 if (m > 0)
678 m >>= 3;
679 } else {
680 m -= (tp->mdev >> 2); /* similar update on mdev */
681 }
682 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
683 if (tp->mdev > tp->mdev_max) {
684 tp->mdev_max = tp->mdev;
685 if (tp->mdev_max > tp->rttvar)
686 tp->rttvar = tp->mdev_max;
687 }
688 if (after(tp->snd_una, tp->rtt_seq)) {
689 if (tp->mdev_max < tp->rttvar)
690 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
691 tp->rtt_seq = tp->snd_nxt;
692 tp->mdev_max = tcp_rto_min(sk);
693 }
694 } else {
695 /* no previous measure. */
696 tp->srtt = m << 3; /* take the measured time to be rtt */
697 tp->mdev = m << 1; /* make sure rto = 3*rtt */
698 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
699 tp->rtt_seq = tp->snd_nxt;
700 }
701 }
702
703 /* Calculate rto without backoff. This is the second half of Van Jacobson's
704 * routine referred to above.
705 */
706 void tcp_set_rto(struct sock *sk)
707 {
708 const struct tcp_sock *tp = tcp_sk(sk);
709 /* Old crap is replaced with new one. 8)
710 *
711 * More seriously:
712 * 1. If rtt variance happened to be less 50msec, it is hallucination.
713 * It cannot be less due to utterly erratic ACK generation made
714 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
715 * to do with delayed acks, because at cwnd>2 true delack timeout
716 * is invisible. Actually, Linux-2.4 also generates erratic
717 * ACKs in some circumstances.
718 */
719 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
720
721 /* 2. Fixups made earlier cannot be right.
722 * If we do not estimate RTO correctly without them,
723 * all the algo is pure shit and should be replaced
724 * with correct one. It is exactly, which we pretend to do.
725 */
726
727 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
728 * guarantees that rto is higher.
729 */
730 tcp_bound_rto(sk);
731 }
732
733 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
734 {
735 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
736
737 if (!cwnd)
738 cwnd = TCP_INIT_CWND;
739 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
740 }
741
742 /* Set slow start threshold and cwnd not falling to slow start */
743 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
744 {
745 struct tcp_sock *tp = tcp_sk(sk);
746 const struct inet_connection_sock *icsk = inet_csk(sk);
747
748 tp->prior_ssthresh = 0;
749 tp->bytes_acked = 0;
750 if (icsk->icsk_ca_state < TCP_CA_CWR) {
751 tp->undo_marker = 0;
752 if (set_ssthresh)
753 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
754 tp->snd_cwnd = min(tp->snd_cwnd,
755 tcp_packets_in_flight(tp) + 1U);
756 tp->snd_cwnd_cnt = 0;
757 tp->high_seq = tp->snd_nxt;
758 tp->snd_cwnd_stamp = tcp_time_stamp;
759 TCP_ECN_queue_cwr(tp);
760
761 tcp_set_ca_state(sk, TCP_CA_CWR);
762 }
763 }
764
765 /*
766 * Packet counting of FACK is based on in-order assumptions, therefore TCP
767 * disables it when reordering is detected
768 */
769 void tcp_disable_fack(struct tcp_sock *tp)
770 {
771 /* RFC3517 uses different metric in lost marker => reset on change */
772 if (tcp_is_fack(tp))
773 tp->lost_skb_hint = NULL;
774 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
775 }
776
777 /* Take a notice that peer is sending D-SACKs */
778 static void tcp_dsack_seen(struct tcp_sock *tp)
779 {
780 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
781 }
782
783 static void tcp_update_reordering(struct sock *sk, const int metric,
784 const int ts)
785 {
786 struct tcp_sock *tp = tcp_sk(sk);
787 if (metric > tp->reordering) {
788 int mib_idx;
789
790 tp->reordering = min(TCP_MAX_REORDERING, metric);
791
792 /* This exciting event is worth to be remembered. 8) */
793 if (ts)
794 mib_idx = LINUX_MIB_TCPTSREORDER;
795 else if (tcp_is_reno(tp))
796 mib_idx = LINUX_MIB_TCPRENOREORDER;
797 else if (tcp_is_fack(tp))
798 mib_idx = LINUX_MIB_TCPFACKREORDER;
799 else
800 mib_idx = LINUX_MIB_TCPSACKREORDER;
801
802 NET_INC_STATS_BH(sock_net(sk), mib_idx);
803 #if FASTRETRANS_DEBUG > 1
804 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
805 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
806 tp->reordering,
807 tp->fackets_out,
808 tp->sacked_out,
809 tp->undo_marker ? tp->undo_retrans : 0);
810 #endif
811 tcp_disable_fack(tp);
812 }
813
814 if (metric > 0)
815 tcp_disable_early_retrans(tp);
816 }
817
818 /* This must be called before lost_out is incremented */
819 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
820 {
821 if ((tp->retransmit_skb_hint == NULL) ||
822 before(TCP_SKB_CB(skb)->seq,
823 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
824 tp->retransmit_skb_hint = skb;
825
826 if (!tp->lost_out ||
827 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
828 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
829 }
830
831 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
832 {
833 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
834 tcp_verify_retransmit_hint(tp, skb);
835
836 tp->lost_out += tcp_skb_pcount(skb);
837 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
838 }
839 }
840
841 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
842 struct sk_buff *skb)
843 {
844 tcp_verify_retransmit_hint(tp, skb);
845
846 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
847 tp->lost_out += tcp_skb_pcount(skb);
848 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
849 }
850 }
851
852 /* This procedure tags the retransmission queue when SACKs arrive.
853 *
854 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
855 * Packets in queue with these bits set are counted in variables
856 * sacked_out, retrans_out and lost_out, correspondingly.
857 *
858 * Valid combinations are:
859 * Tag InFlight Description
860 * 0 1 - orig segment is in flight.
861 * S 0 - nothing flies, orig reached receiver.
862 * L 0 - nothing flies, orig lost by net.
863 * R 2 - both orig and retransmit are in flight.
864 * L|R 1 - orig is lost, retransmit is in flight.
865 * S|R 1 - orig reached receiver, retrans is still in flight.
866 * (L|S|R is logically valid, it could occur when L|R is sacked,
867 * but it is equivalent to plain S and code short-curcuits it to S.
868 * L|S is logically invalid, it would mean -1 packet in flight 8))
869 *
870 * These 6 states form finite state machine, controlled by the following events:
871 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
872 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
873 * 3. Loss detection event of two flavors:
874 * A. Scoreboard estimator decided the packet is lost.
875 * A'. Reno "three dupacks" marks head of queue lost.
876 * A''. Its FACK modification, head until snd.fack is lost.
877 * B. SACK arrives sacking SND.NXT at the moment, when the
878 * segment was retransmitted.
879 * 4. D-SACK added new rule: D-SACK changes any tag to S.
880 *
881 * It is pleasant to note, that state diagram turns out to be commutative,
882 * so that we are allowed not to be bothered by order of our actions,
883 * when multiple events arrive simultaneously. (see the function below).
884 *
885 * Reordering detection.
886 * --------------------
887 * Reordering metric is maximal distance, which a packet can be displaced
888 * in packet stream. With SACKs we can estimate it:
889 *
890 * 1. SACK fills old hole and the corresponding segment was not
891 * ever retransmitted -> reordering. Alas, we cannot use it
892 * when segment was retransmitted.
893 * 2. The last flaw is solved with D-SACK. D-SACK arrives
894 * for retransmitted and already SACKed segment -> reordering..
895 * Both of these heuristics are not used in Loss state, when we cannot
896 * account for retransmits accurately.
897 *
898 * SACK block validation.
899 * ----------------------
900 *
901 * SACK block range validation checks that the received SACK block fits to
902 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
903 * Note that SND.UNA is not included to the range though being valid because
904 * it means that the receiver is rather inconsistent with itself reporting
905 * SACK reneging when it should advance SND.UNA. Such SACK block this is
906 * perfectly valid, however, in light of RFC2018 which explicitly states
907 * that "SACK block MUST reflect the newest segment. Even if the newest
908 * segment is going to be discarded ...", not that it looks very clever
909 * in case of head skb. Due to potentional receiver driven attacks, we
910 * choose to avoid immediate execution of a walk in write queue due to
911 * reneging and defer head skb's loss recovery to standard loss recovery
912 * procedure that will eventually trigger (nothing forbids us doing this).
913 *
914 * Implements also blockage to start_seq wrap-around. Problem lies in the
915 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
916 * there's no guarantee that it will be before snd_nxt (n). The problem
917 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
918 * wrap (s_w):
919 *
920 * <- outs wnd -> <- wrapzone ->
921 * u e n u_w e_w s n_w
922 * | | | | | | |
923 * |<------------+------+----- TCP seqno space --------------+---------->|
924 * ...-- <2^31 ->| |<--------...
925 * ...---- >2^31 ------>| |<--------...
926 *
927 * Current code wouldn't be vulnerable but it's better still to discard such
928 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
929 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
930 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
931 * equal to the ideal case (infinite seqno space without wrap caused issues).
932 *
933 * With D-SACK the lower bound is extended to cover sequence space below
934 * SND.UNA down to undo_marker, which is the last point of interest. Yet
935 * again, D-SACK block must not to go across snd_una (for the same reason as
936 * for the normal SACK blocks, explained above). But there all simplicity
937 * ends, TCP might receive valid D-SACKs below that. As long as they reside
938 * fully below undo_marker they do not affect behavior in anyway and can
939 * therefore be safely ignored. In rare cases (which are more or less
940 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
941 * fragmentation and packet reordering past skb's retransmission. To consider
942 * them correctly, the acceptable range must be extended even more though
943 * the exact amount is rather hard to quantify. However, tp->max_window can
944 * be used as an exaggerated estimate.
945 */
946 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
947 u32 start_seq, u32 end_seq)
948 {
949 /* Too far in future, or reversed (interpretation is ambiguous) */
950 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
951 return false;
952
953 /* Nasty start_seq wrap-around check (see comments above) */
954 if (!before(start_seq, tp->snd_nxt))
955 return false;
956
957 /* In outstanding window? ...This is valid exit for D-SACKs too.
958 * start_seq == snd_una is non-sensical (see comments above)
959 */
960 if (after(start_seq, tp->snd_una))
961 return true;
962
963 if (!is_dsack || !tp->undo_marker)
964 return false;
965
966 /* ...Then it's D-SACK, and must reside below snd_una completely */
967 if (after(end_seq, tp->snd_una))
968 return false;
969
970 if (!before(start_seq, tp->undo_marker))
971 return true;
972
973 /* Too old */
974 if (!after(end_seq, tp->undo_marker))
975 return false;
976
977 /* Undo_marker boundary crossing (overestimates a lot). Known already:
978 * start_seq < undo_marker and end_seq >= undo_marker.
979 */
980 return !before(start_seq, end_seq - tp->max_window);
981 }
982
983 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
984 * Event "B". Later note: FACK people cheated me again 8), we have to account
985 * for reordering! Ugly, but should help.
986 *
987 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
988 * less than what is now known to be received by the other end (derived from
989 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
990 * retransmitted skbs to avoid some costly processing per ACKs.
991 */
992 static void tcp_mark_lost_retrans(struct sock *sk)
993 {
994 const struct inet_connection_sock *icsk = inet_csk(sk);
995 struct tcp_sock *tp = tcp_sk(sk);
996 struct sk_buff *skb;
997 int cnt = 0;
998 u32 new_low_seq = tp->snd_nxt;
999 u32 received_upto = tcp_highest_sack_seq(tp);
1000
1001 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1002 !after(received_upto, tp->lost_retrans_low) ||
1003 icsk->icsk_ca_state != TCP_CA_Recovery)
1004 return;
1005
1006 tcp_for_write_queue(skb, sk) {
1007 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1008
1009 if (skb == tcp_send_head(sk))
1010 break;
1011 if (cnt == tp->retrans_out)
1012 break;
1013 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1014 continue;
1015
1016 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1017 continue;
1018
1019 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1020 * constraint here (see above) but figuring out that at
1021 * least tp->reordering SACK blocks reside between ack_seq
1022 * and received_upto is not easy task to do cheaply with
1023 * the available datastructures.
1024 *
1025 * Whether FACK should check here for tp->reordering segs
1026 * in-between one could argue for either way (it would be
1027 * rather simple to implement as we could count fack_count
1028 * during the walk and do tp->fackets_out - fack_count).
1029 */
1030 if (after(received_upto, ack_seq)) {
1031 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1032 tp->retrans_out -= tcp_skb_pcount(skb);
1033
1034 tcp_skb_mark_lost_uncond_verify(tp, skb);
1035 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1036 } else {
1037 if (before(ack_seq, new_low_seq))
1038 new_low_seq = ack_seq;
1039 cnt += tcp_skb_pcount(skb);
1040 }
1041 }
1042
1043 if (tp->retrans_out)
1044 tp->lost_retrans_low = new_low_seq;
1045 }
1046
1047 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1048 struct tcp_sack_block_wire *sp, int num_sacks,
1049 u32 prior_snd_una)
1050 {
1051 struct tcp_sock *tp = tcp_sk(sk);
1052 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1053 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1054 bool dup_sack = false;
1055
1056 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1057 dup_sack = true;
1058 tcp_dsack_seen(tp);
1059 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1060 } else if (num_sacks > 1) {
1061 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1062 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1063
1064 if (!after(end_seq_0, end_seq_1) &&
1065 !before(start_seq_0, start_seq_1)) {
1066 dup_sack = true;
1067 tcp_dsack_seen(tp);
1068 NET_INC_STATS_BH(sock_net(sk),
1069 LINUX_MIB_TCPDSACKOFORECV);
1070 }
1071 }
1072
1073 /* D-SACK for already forgotten data... Do dumb counting. */
1074 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1075 !after(end_seq_0, prior_snd_una) &&
1076 after(end_seq_0, tp->undo_marker))
1077 tp->undo_retrans--;
1078
1079 return dup_sack;
1080 }
1081
1082 struct tcp_sacktag_state {
1083 int reord;
1084 int fack_count;
1085 int flag;
1086 };
1087
1088 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1089 * the incoming SACK may not exactly match but we can find smaller MSS
1090 * aligned portion of it that matches. Therefore we might need to fragment
1091 * which may fail and creates some hassle (caller must handle error case
1092 * returns).
1093 *
1094 * FIXME: this could be merged to shift decision code
1095 */
1096 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1097 u32 start_seq, u32 end_seq)
1098 {
1099 int err;
1100 bool in_sack;
1101 unsigned int pkt_len;
1102 unsigned int mss;
1103
1104 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1105 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1106
1107 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1108 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1109 mss = tcp_skb_mss(skb);
1110 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1111
1112 if (!in_sack) {
1113 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1114 if (pkt_len < mss)
1115 pkt_len = mss;
1116 } else {
1117 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1118 if (pkt_len < mss)
1119 return -EINVAL;
1120 }
1121
1122 /* Round if necessary so that SACKs cover only full MSSes
1123 * and/or the remaining small portion (if present)
1124 */
1125 if (pkt_len > mss) {
1126 unsigned int new_len = (pkt_len / mss) * mss;
1127 if (!in_sack && new_len < pkt_len) {
1128 new_len += mss;
1129 if (new_len > skb->len)
1130 return 0;
1131 }
1132 pkt_len = new_len;
1133 }
1134 err = tcp_fragment(sk, skb, pkt_len, mss);
1135 if (err < 0)
1136 return err;
1137 }
1138
1139 return in_sack;
1140 }
1141
1142 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1143 static u8 tcp_sacktag_one(struct sock *sk,
1144 struct tcp_sacktag_state *state, u8 sacked,
1145 u32 start_seq, u32 end_seq,
1146 bool dup_sack, int pcount)
1147 {
1148 struct tcp_sock *tp = tcp_sk(sk);
1149 int fack_count = state->fack_count;
1150
1151 /* Account D-SACK for retransmitted packet. */
1152 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1153 if (tp->undo_marker && tp->undo_retrans &&
1154 after(end_seq, tp->undo_marker))
1155 tp->undo_retrans--;
1156 if (sacked & TCPCB_SACKED_ACKED)
1157 state->reord = min(fack_count, state->reord);
1158 }
1159
1160 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1161 if (!after(end_seq, tp->snd_una))
1162 return sacked;
1163
1164 if (!(sacked & TCPCB_SACKED_ACKED)) {
1165 if (sacked & TCPCB_SACKED_RETRANS) {
1166 /* If the segment is not tagged as lost,
1167 * we do not clear RETRANS, believing
1168 * that retransmission is still in flight.
1169 */
1170 if (sacked & TCPCB_LOST) {
1171 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1172 tp->lost_out -= pcount;
1173 tp->retrans_out -= pcount;
1174 }
1175 } else {
1176 if (!(sacked & TCPCB_RETRANS)) {
1177 /* New sack for not retransmitted frame,
1178 * which was in hole. It is reordering.
1179 */
1180 if (before(start_seq,
1181 tcp_highest_sack_seq(tp)))
1182 state->reord = min(fack_count,
1183 state->reord);
1184
1185 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1186 if (!after(end_seq, tp->frto_highmark))
1187 state->flag |= FLAG_ONLY_ORIG_SACKED;
1188 }
1189
1190 if (sacked & TCPCB_LOST) {
1191 sacked &= ~TCPCB_LOST;
1192 tp->lost_out -= pcount;
1193 }
1194 }
1195
1196 sacked |= TCPCB_SACKED_ACKED;
1197 state->flag |= FLAG_DATA_SACKED;
1198 tp->sacked_out += pcount;
1199
1200 fack_count += pcount;
1201
1202 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1203 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1204 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1205 tp->lost_cnt_hint += pcount;
1206
1207 if (fack_count > tp->fackets_out)
1208 tp->fackets_out = fack_count;
1209 }
1210
1211 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1212 * frames and clear it. undo_retrans is decreased above, L|R frames
1213 * are accounted above as well.
1214 */
1215 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1216 sacked &= ~TCPCB_SACKED_RETRANS;
1217 tp->retrans_out -= pcount;
1218 }
1219
1220 return sacked;
1221 }
1222
1223 /* Shift newly-SACKed bytes from this skb to the immediately previous
1224 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1225 */
1226 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1227 struct tcp_sacktag_state *state,
1228 unsigned int pcount, int shifted, int mss,
1229 bool dup_sack)
1230 {
1231 struct tcp_sock *tp = tcp_sk(sk);
1232 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1233 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1234 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1235
1236 BUG_ON(!pcount);
1237
1238 /* Adjust counters and hints for the newly sacked sequence
1239 * range but discard the return value since prev is already
1240 * marked. We must tag the range first because the seq
1241 * advancement below implicitly advances
1242 * tcp_highest_sack_seq() when skb is highest_sack.
1243 */
1244 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1245 start_seq, end_seq, dup_sack, pcount);
1246
1247 if (skb == tp->lost_skb_hint)
1248 tp->lost_cnt_hint += pcount;
1249
1250 TCP_SKB_CB(prev)->end_seq += shifted;
1251 TCP_SKB_CB(skb)->seq += shifted;
1252
1253 skb_shinfo(prev)->gso_segs += pcount;
1254 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1255 skb_shinfo(skb)->gso_segs -= pcount;
1256
1257 /* When we're adding to gso_segs == 1, gso_size will be zero,
1258 * in theory this shouldn't be necessary but as long as DSACK
1259 * code can come after this skb later on it's better to keep
1260 * setting gso_size to something.
1261 */
1262 if (!skb_shinfo(prev)->gso_size) {
1263 skb_shinfo(prev)->gso_size = mss;
1264 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1265 }
1266
1267 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1268 if (skb_shinfo(skb)->gso_segs <= 1) {
1269 skb_shinfo(skb)->gso_size = 0;
1270 skb_shinfo(skb)->gso_type = 0;
1271 }
1272
1273 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1274 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1275
1276 if (skb->len > 0) {
1277 BUG_ON(!tcp_skb_pcount(skb));
1278 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1279 return false;
1280 }
1281
1282 /* Whole SKB was eaten :-) */
1283
1284 if (skb == tp->retransmit_skb_hint)
1285 tp->retransmit_skb_hint = prev;
1286 if (skb == tp->scoreboard_skb_hint)
1287 tp->scoreboard_skb_hint = prev;
1288 if (skb == tp->lost_skb_hint) {
1289 tp->lost_skb_hint = prev;
1290 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1291 }
1292
1293 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
1294 if (skb == tcp_highest_sack(sk))
1295 tcp_advance_highest_sack(sk, skb);
1296
1297 tcp_unlink_write_queue(skb, sk);
1298 sk_wmem_free_skb(sk, skb);
1299
1300 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1301
1302 return true;
1303 }
1304
1305 /* I wish gso_size would have a bit more sane initialization than
1306 * something-or-zero which complicates things
1307 */
1308 static int tcp_skb_seglen(const struct sk_buff *skb)
1309 {
1310 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1311 }
1312
1313 /* Shifting pages past head area doesn't work */
1314 static int skb_can_shift(const struct sk_buff *skb)
1315 {
1316 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1317 }
1318
1319 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1320 * skb.
1321 */
1322 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1323 struct tcp_sacktag_state *state,
1324 u32 start_seq, u32 end_seq,
1325 bool dup_sack)
1326 {
1327 struct tcp_sock *tp = tcp_sk(sk);
1328 struct sk_buff *prev;
1329 int mss;
1330 int pcount = 0;
1331 int len;
1332 int in_sack;
1333
1334 if (!sk_can_gso(sk))
1335 goto fallback;
1336
1337 /* Normally R but no L won't result in plain S */
1338 if (!dup_sack &&
1339 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1340 goto fallback;
1341 if (!skb_can_shift(skb))
1342 goto fallback;
1343 /* This frame is about to be dropped (was ACKed). */
1344 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1345 goto fallback;
1346
1347 /* Can only happen with delayed DSACK + discard craziness */
1348 if (unlikely(skb == tcp_write_queue_head(sk)))
1349 goto fallback;
1350 prev = tcp_write_queue_prev(sk, skb);
1351
1352 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1353 goto fallback;
1354
1355 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1356 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1357
1358 if (in_sack) {
1359 len = skb->len;
1360 pcount = tcp_skb_pcount(skb);
1361 mss = tcp_skb_seglen(skb);
1362
1363 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1364 * drop this restriction as unnecessary
1365 */
1366 if (mss != tcp_skb_seglen(prev))
1367 goto fallback;
1368 } else {
1369 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1370 goto noop;
1371 /* CHECKME: This is non-MSS split case only?, this will
1372 * cause skipped skbs due to advancing loop btw, original
1373 * has that feature too
1374 */
1375 if (tcp_skb_pcount(skb) <= 1)
1376 goto noop;
1377
1378 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1379 if (!in_sack) {
1380 /* TODO: head merge to next could be attempted here
1381 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1382 * though it might not be worth of the additional hassle
1383 *
1384 * ...we can probably just fallback to what was done
1385 * previously. We could try merging non-SACKed ones
1386 * as well but it probably isn't going to buy off
1387 * because later SACKs might again split them, and
1388 * it would make skb timestamp tracking considerably
1389 * harder problem.
1390 */
1391 goto fallback;
1392 }
1393
1394 len = end_seq - TCP_SKB_CB(skb)->seq;
1395 BUG_ON(len < 0);
1396 BUG_ON(len > skb->len);
1397
1398 /* MSS boundaries should be honoured or else pcount will
1399 * severely break even though it makes things bit trickier.
1400 * Optimize common case to avoid most of the divides
1401 */
1402 mss = tcp_skb_mss(skb);
1403
1404 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1405 * drop this restriction as unnecessary
1406 */
1407 if (mss != tcp_skb_seglen(prev))
1408 goto fallback;
1409
1410 if (len == mss) {
1411 pcount = 1;
1412 } else if (len < mss) {
1413 goto noop;
1414 } else {
1415 pcount = len / mss;
1416 len = pcount * mss;
1417 }
1418 }
1419
1420 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1421 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1422 goto fallback;
1423
1424 if (!skb_shift(prev, skb, len))
1425 goto fallback;
1426 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1427 goto out;
1428
1429 /* Hole filled allows collapsing with the next as well, this is very
1430 * useful when hole on every nth skb pattern happens
1431 */
1432 if (prev == tcp_write_queue_tail(sk))
1433 goto out;
1434 skb = tcp_write_queue_next(sk, prev);
1435
1436 if (!skb_can_shift(skb) ||
1437 (skb == tcp_send_head(sk)) ||
1438 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1439 (mss != tcp_skb_seglen(skb)))
1440 goto out;
1441
1442 len = skb->len;
1443 if (skb_shift(prev, skb, len)) {
1444 pcount += tcp_skb_pcount(skb);
1445 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1446 }
1447
1448 out:
1449 state->fack_count += pcount;
1450 return prev;
1451
1452 noop:
1453 return skb;
1454
1455 fallback:
1456 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1457 return NULL;
1458 }
1459
1460 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1461 struct tcp_sack_block *next_dup,
1462 struct tcp_sacktag_state *state,
1463 u32 start_seq, u32 end_seq,
1464 bool dup_sack_in)
1465 {
1466 struct tcp_sock *tp = tcp_sk(sk);
1467 struct sk_buff *tmp;
1468
1469 tcp_for_write_queue_from(skb, sk) {
1470 int in_sack = 0;
1471 bool dup_sack = dup_sack_in;
1472
1473 if (skb == tcp_send_head(sk))
1474 break;
1475
1476 /* queue is in-order => we can short-circuit the walk early */
1477 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1478 break;
1479
1480 if ((next_dup != NULL) &&
1481 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1482 in_sack = tcp_match_skb_to_sack(sk, skb,
1483 next_dup->start_seq,
1484 next_dup->end_seq);
1485 if (in_sack > 0)
1486 dup_sack = true;
1487 }
1488
1489 /* skb reference here is a bit tricky to get right, since
1490 * shifting can eat and free both this skb and the next,
1491 * so not even _safe variant of the loop is enough.
1492 */
1493 if (in_sack <= 0) {
1494 tmp = tcp_shift_skb_data(sk, skb, state,
1495 start_seq, end_seq, dup_sack);
1496 if (tmp != NULL) {
1497 if (tmp != skb) {
1498 skb = tmp;
1499 continue;
1500 }
1501
1502 in_sack = 0;
1503 } else {
1504 in_sack = tcp_match_skb_to_sack(sk, skb,
1505 start_seq,
1506 end_seq);
1507 }
1508 }
1509
1510 if (unlikely(in_sack < 0))
1511 break;
1512
1513 if (in_sack) {
1514 TCP_SKB_CB(skb)->sacked =
1515 tcp_sacktag_one(sk,
1516 state,
1517 TCP_SKB_CB(skb)->sacked,
1518 TCP_SKB_CB(skb)->seq,
1519 TCP_SKB_CB(skb)->end_seq,
1520 dup_sack,
1521 tcp_skb_pcount(skb));
1522
1523 if (!before(TCP_SKB_CB(skb)->seq,
1524 tcp_highest_sack_seq(tp)))
1525 tcp_advance_highest_sack(sk, skb);
1526 }
1527
1528 state->fack_count += tcp_skb_pcount(skb);
1529 }
1530 return skb;
1531 }
1532
1533 /* Avoid all extra work that is being done by sacktag while walking in
1534 * a normal way
1535 */
1536 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1537 struct tcp_sacktag_state *state,
1538 u32 skip_to_seq)
1539 {
1540 tcp_for_write_queue_from(skb, sk) {
1541 if (skb == tcp_send_head(sk))
1542 break;
1543
1544 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1545 break;
1546
1547 state->fack_count += tcp_skb_pcount(skb);
1548 }
1549 return skb;
1550 }
1551
1552 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1553 struct sock *sk,
1554 struct tcp_sack_block *next_dup,
1555 struct tcp_sacktag_state *state,
1556 u32 skip_to_seq)
1557 {
1558 if (next_dup == NULL)
1559 return skb;
1560
1561 if (before(next_dup->start_seq, skip_to_seq)) {
1562 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1563 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1564 next_dup->start_seq, next_dup->end_seq,
1565 1);
1566 }
1567
1568 return skb;
1569 }
1570
1571 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1572 {
1573 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1574 }
1575
1576 static int
1577 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1578 u32 prior_snd_una)
1579 {
1580 const struct inet_connection_sock *icsk = inet_csk(sk);
1581 struct tcp_sock *tp = tcp_sk(sk);
1582 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1583 TCP_SKB_CB(ack_skb)->sacked);
1584 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1585 struct tcp_sack_block sp[TCP_NUM_SACKS];
1586 struct tcp_sack_block *cache;
1587 struct tcp_sacktag_state state;
1588 struct sk_buff *skb;
1589 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1590 int used_sacks;
1591 bool found_dup_sack = false;
1592 int i, j;
1593 int first_sack_index;
1594
1595 state.flag = 0;
1596 state.reord = tp->packets_out;
1597
1598 if (!tp->sacked_out) {
1599 if (WARN_ON(tp->fackets_out))
1600 tp->fackets_out = 0;
1601 tcp_highest_sack_reset(sk);
1602 }
1603
1604 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1605 num_sacks, prior_snd_una);
1606 if (found_dup_sack)
1607 state.flag |= FLAG_DSACKING_ACK;
1608
1609 /* Eliminate too old ACKs, but take into
1610 * account more or less fresh ones, they can
1611 * contain valid SACK info.
1612 */
1613 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1614 return 0;
1615
1616 if (!tp->packets_out)
1617 goto out;
1618
1619 used_sacks = 0;
1620 first_sack_index = 0;
1621 for (i = 0; i < num_sacks; i++) {
1622 bool dup_sack = !i && found_dup_sack;
1623
1624 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1625 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1626
1627 if (!tcp_is_sackblock_valid(tp, dup_sack,
1628 sp[used_sacks].start_seq,
1629 sp[used_sacks].end_seq)) {
1630 int mib_idx;
1631
1632 if (dup_sack) {
1633 if (!tp->undo_marker)
1634 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1635 else
1636 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1637 } else {
1638 /* Don't count olds caused by ACK reordering */
1639 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1640 !after(sp[used_sacks].end_seq, tp->snd_una))
1641 continue;
1642 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1643 }
1644
1645 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1646 if (i == 0)
1647 first_sack_index = -1;
1648 continue;
1649 }
1650
1651 /* Ignore very old stuff early */
1652 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1653 continue;
1654
1655 used_sacks++;
1656 }
1657
1658 /* order SACK blocks to allow in order walk of the retrans queue */
1659 for (i = used_sacks - 1; i > 0; i--) {
1660 for (j = 0; j < i; j++) {
1661 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1662 swap(sp[j], sp[j + 1]);
1663
1664 /* Track where the first SACK block goes to */
1665 if (j == first_sack_index)
1666 first_sack_index = j + 1;
1667 }
1668 }
1669 }
1670
1671 skb = tcp_write_queue_head(sk);
1672 state.fack_count = 0;
1673 i = 0;
1674
1675 if (!tp->sacked_out) {
1676 /* It's already past, so skip checking against it */
1677 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1678 } else {
1679 cache = tp->recv_sack_cache;
1680 /* Skip empty blocks in at head of the cache */
1681 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1682 !cache->end_seq)
1683 cache++;
1684 }
1685
1686 while (i < used_sacks) {
1687 u32 start_seq = sp[i].start_seq;
1688 u32 end_seq = sp[i].end_seq;
1689 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1690 struct tcp_sack_block *next_dup = NULL;
1691
1692 if (found_dup_sack && ((i + 1) == first_sack_index))
1693 next_dup = &sp[i + 1];
1694
1695 /* Skip too early cached blocks */
1696 while (tcp_sack_cache_ok(tp, cache) &&
1697 !before(start_seq, cache->end_seq))
1698 cache++;
1699
1700 /* Can skip some work by looking recv_sack_cache? */
1701 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1702 after(end_seq, cache->start_seq)) {
1703
1704 /* Head todo? */
1705 if (before(start_seq, cache->start_seq)) {
1706 skb = tcp_sacktag_skip(skb, sk, &state,
1707 start_seq);
1708 skb = tcp_sacktag_walk(skb, sk, next_dup,
1709 &state,
1710 start_seq,
1711 cache->start_seq,
1712 dup_sack);
1713 }
1714
1715 /* Rest of the block already fully processed? */
1716 if (!after(end_seq, cache->end_seq))
1717 goto advance_sp;
1718
1719 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1720 &state,
1721 cache->end_seq);
1722
1723 /* ...tail remains todo... */
1724 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1725 /* ...but better entrypoint exists! */
1726 skb = tcp_highest_sack(sk);
1727 if (skb == NULL)
1728 break;
1729 state.fack_count = tp->fackets_out;
1730 cache++;
1731 goto walk;
1732 }
1733
1734 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1735 /* Check overlap against next cached too (past this one already) */
1736 cache++;
1737 continue;
1738 }
1739
1740 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1741 skb = tcp_highest_sack(sk);
1742 if (skb == NULL)
1743 break;
1744 state.fack_count = tp->fackets_out;
1745 }
1746 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1747
1748 walk:
1749 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1750 start_seq, end_seq, dup_sack);
1751
1752 advance_sp:
1753 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1754 * due to in-order walk
1755 */
1756 if (after(end_seq, tp->frto_highmark))
1757 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1758
1759 i++;
1760 }
1761
1762 /* Clear the head of the cache sack blocks so we can skip it next time */
1763 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1764 tp->recv_sack_cache[i].start_seq = 0;
1765 tp->recv_sack_cache[i].end_seq = 0;
1766 }
1767 for (j = 0; j < used_sacks; j++)
1768 tp->recv_sack_cache[i++] = sp[j];
1769
1770 tcp_mark_lost_retrans(sk);
1771
1772 tcp_verify_left_out(tp);
1773
1774 if ((state.reord < tp->fackets_out) &&
1775 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1776 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1777 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1778
1779 out:
1780
1781 #if FASTRETRANS_DEBUG > 0
1782 WARN_ON((int)tp->sacked_out < 0);
1783 WARN_ON((int)tp->lost_out < 0);
1784 WARN_ON((int)tp->retrans_out < 0);
1785 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1786 #endif
1787 return state.flag;
1788 }
1789
1790 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1791 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1792 */
1793 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1794 {
1795 u32 holes;
1796
1797 holes = max(tp->lost_out, 1U);
1798 holes = min(holes, tp->packets_out);
1799
1800 if ((tp->sacked_out + holes) > tp->packets_out) {
1801 tp->sacked_out = tp->packets_out - holes;
1802 return true;
1803 }
1804 return false;
1805 }
1806
1807 /* If we receive more dupacks than we expected counting segments
1808 * in assumption of absent reordering, interpret this as reordering.
1809 * The only another reason could be bug in receiver TCP.
1810 */
1811 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1812 {
1813 struct tcp_sock *tp = tcp_sk(sk);
1814 if (tcp_limit_reno_sacked(tp))
1815 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1816 }
1817
1818 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1819
1820 static void tcp_add_reno_sack(struct sock *sk)
1821 {
1822 struct tcp_sock *tp = tcp_sk(sk);
1823 tp->sacked_out++;
1824 tcp_check_reno_reordering(sk, 0);
1825 tcp_verify_left_out(tp);
1826 }
1827
1828 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1829
1830 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1831 {
1832 struct tcp_sock *tp = tcp_sk(sk);
1833
1834 if (acked > 0) {
1835 /* One ACK acked hole. The rest eat duplicate ACKs. */
1836 if (acked - 1 >= tp->sacked_out)
1837 tp->sacked_out = 0;
1838 else
1839 tp->sacked_out -= acked - 1;
1840 }
1841 tcp_check_reno_reordering(sk, acked);
1842 tcp_verify_left_out(tp);
1843 }
1844
1845 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1846 {
1847 tp->sacked_out = 0;
1848 }
1849
1850 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1851 {
1852 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1853 }
1854
1855 /* F-RTO can only be used if TCP has never retransmitted anything other than
1856 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1857 */
1858 bool tcp_use_frto(struct sock *sk)
1859 {
1860 const struct tcp_sock *tp = tcp_sk(sk);
1861 const struct inet_connection_sock *icsk = inet_csk(sk);
1862 struct sk_buff *skb;
1863
1864 if (!sysctl_tcp_frto)
1865 return false;
1866
1867 /* MTU probe and F-RTO won't really play nicely along currently */
1868 if (icsk->icsk_mtup.probe_size)
1869 return false;
1870
1871 if (tcp_is_sackfrto(tp))
1872 return true;
1873
1874 /* Avoid expensive walking of rexmit queue if possible */
1875 if (tp->retrans_out > 1)
1876 return false;
1877
1878 skb = tcp_write_queue_head(sk);
1879 if (tcp_skb_is_last(sk, skb))
1880 return true;
1881 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1882 tcp_for_write_queue_from(skb, sk) {
1883 if (skb == tcp_send_head(sk))
1884 break;
1885 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1886 return false;
1887 /* Short-circuit when first non-SACKed skb has been checked */
1888 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1889 break;
1890 }
1891 return true;
1892 }
1893
1894 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1895 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1896 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1897 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1898 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1899 * bits are handled if the Loss state is really to be entered (in
1900 * tcp_enter_frto_loss).
1901 *
1902 * Do like tcp_enter_loss() would; when RTO expires the second time it
1903 * does:
1904 * "Reduce ssthresh if it has not yet been made inside this window."
1905 */
1906 void tcp_enter_frto(struct sock *sk)
1907 {
1908 const struct inet_connection_sock *icsk = inet_csk(sk);
1909 struct tcp_sock *tp = tcp_sk(sk);
1910 struct sk_buff *skb;
1911
1912 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1913 tp->snd_una == tp->high_seq ||
1914 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1915 !icsk->icsk_retransmits)) {
1916 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1917 /* Our state is too optimistic in ssthresh() call because cwnd
1918 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1919 * recovery has not yet completed. Pattern would be this: RTO,
1920 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1921 * up here twice).
1922 * RFC4138 should be more specific on what to do, even though
1923 * RTO is quite unlikely to occur after the first Cumulative ACK
1924 * due to back-off and complexity of triggering events ...
1925 */
1926 if (tp->frto_counter) {
1927 u32 stored_cwnd;
1928 stored_cwnd = tp->snd_cwnd;
1929 tp->snd_cwnd = 2;
1930 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1931 tp->snd_cwnd = stored_cwnd;
1932 } else {
1933 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1934 }
1935 /* ... in theory, cong.control module could do "any tricks" in
1936 * ssthresh(), which means that ca_state, lost bits and lost_out
1937 * counter would have to be faked before the call occurs. We
1938 * consider that too expensive, unlikely and hacky, so modules
1939 * using these in ssthresh() must deal these incompatibility
1940 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1941 */
1942 tcp_ca_event(sk, CA_EVENT_FRTO);
1943 }
1944
1945 tp->undo_marker = tp->snd_una;
1946 tp->undo_retrans = 0;
1947
1948 skb = tcp_write_queue_head(sk);
1949 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1950 tp->undo_marker = 0;
1951 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1952 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1953 tp->retrans_out -= tcp_skb_pcount(skb);
1954 }
1955 tcp_verify_left_out(tp);
1956
1957 /* Too bad if TCP was application limited */
1958 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1959
1960 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1961 * The last condition is necessary at least in tp->frto_counter case.
1962 */
1963 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
1964 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1965 after(tp->high_seq, tp->snd_una)) {
1966 tp->frto_highmark = tp->high_seq;
1967 } else {
1968 tp->frto_highmark = tp->snd_nxt;
1969 }
1970 tcp_set_ca_state(sk, TCP_CA_Disorder);
1971 tp->high_seq = tp->snd_nxt;
1972 tp->frto_counter = 1;
1973 }
1974
1975 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1976 * which indicates that we should follow the traditional RTO recovery,
1977 * i.e. mark everything lost and do go-back-N retransmission.
1978 */
1979 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1980 {
1981 struct tcp_sock *tp = tcp_sk(sk);
1982 struct sk_buff *skb;
1983
1984 tp->lost_out = 0;
1985 tp->retrans_out = 0;
1986 if (tcp_is_reno(tp))
1987 tcp_reset_reno_sack(tp);
1988
1989 tcp_for_write_queue(skb, sk) {
1990 if (skb == tcp_send_head(sk))
1991 break;
1992
1993 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1994 /*
1995 * Count the retransmission made on RTO correctly (only when
1996 * waiting for the first ACK and did not get it)...
1997 */
1998 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1999 /* For some reason this R-bit might get cleared? */
2000 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2001 tp->retrans_out += tcp_skb_pcount(skb);
2002 /* ...enter this if branch just for the first segment */
2003 flag |= FLAG_DATA_ACKED;
2004 } else {
2005 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2006 tp->undo_marker = 0;
2007 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2008 }
2009
2010 /* Marking forward transmissions that were made after RTO lost
2011 * can cause unnecessary retransmissions in some scenarios,
2012 * SACK blocks will mitigate that in some but not in all cases.
2013 * We used to not mark them but it was causing break-ups with
2014 * receivers that do only in-order receival.
2015 *
2016 * TODO: we could detect presence of such receiver and select
2017 * different behavior per flow.
2018 */
2019 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2020 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2021 tp->lost_out += tcp_skb_pcount(skb);
2022 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2023 }
2024 }
2025 tcp_verify_left_out(tp);
2026
2027 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2028 tp->snd_cwnd_cnt = 0;
2029 tp->snd_cwnd_stamp = tcp_time_stamp;
2030 tp->frto_counter = 0;
2031 tp->bytes_acked = 0;
2032
2033 tp->reordering = min_t(unsigned int, tp->reordering,
2034 sysctl_tcp_reordering);
2035 tcp_set_ca_state(sk, TCP_CA_Loss);
2036 tp->high_seq = tp->snd_nxt;
2037 TCP_ECN_queue_cwr(tp);
2038
2039 tcp_clear_all_retrans_hints(tp);
2040 }
2041
2042 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2043 {
2044 tp->retrans_out = 0;
2045 tp->lost_out = 0;
2046
2047 tp->undo_marker = 0;
2048 tp->undo_retrans = 0;
2049 }
2050
2051 void tcp_clear_retrans(struct tcp_sock *tp)
2052 {
2053 tcp_clear_retrans_partial(tp);
2054
2055 tp->fackets_out = 0;
2056 tp->sacked_out = 0;
2057 }
2058
2059 /* Enter Loss state. If "how" is not zero, forget all SACK information
2060 * and reset tags completely, otherwise preserve SACKs. If receiver
2061 * dropped its ofo queue, we will know this due to reneging detection.
2062 */
2063 void tcp_enter_loss(struct sock *sk, int how)
2064 {
2065 const struct inet_connection_sock *icsk = inet_csk(sk);
2066 struct tcp_sock *tp = tcp_sk(sk);
2067 struct sk_buff *skb;
2068
2069 /* Reduce ssthresh if it has not yet been made inside this window. */
2070 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2071 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2072 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2073 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2074 tcp_ca_event(sk, CA_EVENT_LOSS);
2075 }
2076 tp->snd_cwnd = 1;
2077 tp->snd_cwnd_cnt = 0;
2078 tp->snd_cwnd_stamp = tcp_time_stamp;
2079
2080 tp->bytes_acked = 0;
2081 tcp_clear_retrans_partial(tp);
2082
2083 if (tcp_is_reno(tp))
2084 tcp_reset_reno_sack(tp);
2085
2086 if (!how) {
2087 /* Push undo marker, if it was plain RTO and nothing
2088 * was retransmitted. */
2089 tp->undo_marker = tp->snd_una;
2090 } else {
2091 tp->sacked_out = 0;
2092 tp->fackets_out = 0;
2093 }
2094 tcp_clear_all_retrans_hints(tp);
2095
2096 tcp_for_write_queue(skb, sk) {
2097 if (skb == tcp_send_head(sk))
2098 break;
2099
2100 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2101 tp->undo_marker = 0;
2102 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2103 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2104 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2105 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2106 tp->lost_out += tcp_skb_pcount(skb);
2107 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2108 }
2109 }
2110 tcp_verify_left_out(tp);
2111
2112 tp->reordering = min_t(unsigned int, tp->reordering,
2113 sysctl_tcp_reordering);
2114 tcp_set_ca_state(sk, TCP_CA_Loss);
2115 tp->high_seq = tp->snd_nxt;
2116 TCP_ECN_queue_cwr(tp);
2117 /* Abort F-RTO algorithm if one is in progress */
2118 tp->frto_counter = 0;
2119 }
2120
2121 /* If ACK arrived pointing to a remembered SACK, it means that our
2122 * remembered SACKs do not reflect real state of receiver i.e.
2123 * receiver _host_ is heavily congested (or buggy).
2124 *
2125 * Do processing similar to RTO timeout.
2126 */
2127 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2128 {
2129 if (flag & FLAG_SACK_RENEGING) {
2130 struct inet_connection_sock *icsk = inet_csk(sk);
2131 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2132
2133 tcp_enter_loss(sk, 1);
2134 icsk->icsk_retransmits++;
2135 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2136 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2137 icsk->icsk_rto, TCP_RTO_MAX);
2138 return true;
2139 }
2140 return false;
2141 }
2142
2143 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2144 {
2145 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2146 }
2147
2148 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2149 * counter when SACK is enabled (without SACK, sacked_out is used for
2150 * that purpose).
2151 *
2152 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2153 * segments up to the highest received SACK block so far and holes in
2154 * between them.
2155 *
2156 * With reordering, holes may still be in flight, so RFC3517 recovery
2157 * uses pure sacked_out (total number of SACKed segments) even though
2158 * it violates the RFC that uses duplicate ACKs, often these are equal
2159 * but when e.g. out-of-window ACKs or packet duplication occurs,
2160 * they differ. Since neither occurs due to loss, TCP should really
2161 * ignore them.
2162 */
2163 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2164 {
2165 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2166 }
2167
2168 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2169 {
2170 struct tcp_sock *tp = tcp_sk(sk);
2171 unsigned long delay;
2172
2173 /* Delay early retransmit and entering fast recovery for
2174 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2175 * available, or RTO is scheduled to fire first.
2176 */
2177 if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
2178 return false;
2179
2180 delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
2181 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2182 return false;
2183
2184 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
2185 tp->early_retrans_delayed = 1;
2186 return true;
2187 }
2188
2189 static inline int tcp_skb_timedout(const struct sock *sk,
2190 const struct sk_buff *skb)
2191 {
2192 return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
2193 }
2194
2195 static inline int tcp_head_timedout(const struct sock *sk)
2196 {
2197 const struct tcp_sock *tp = tcp_sk(sk);
2198
2199 return tp->packets_out &&
2200 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2201 }
2202
2203 /* Linux NewReno/SACK/FACK/ECN state machine.
2204 * --------------------------------------
2205 *
2206 * "Open" Normal state, no dubious events, fast path.
2207 * "Disorder" In all the respects it is "Open",
2208 * but requires a bit more attention. It is entered when
2209 * we see some SACKs or dupacks. It is split of "Open"
2210 * mainly to move some processing from fast path to slow one.
2211 * "CWR" CWND was reduced due to some Congestion Notification event.
2212 * It can be ECN, ICMP source quench, local device congestion.
2213 * "Recovery" CWND was reduced, we are fast-retransmitting.
2214 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2215 *
2216 * tcp_fastretrans_alert() is entered:
2217 * - each incoming ACK, if state is not "Open"
2218 * - when arrived ACK is unusual, namely:
2219 * * SACK
2220 * * Duplicate ACK.
2221 * * ECN ECE.
2222 *
2223 * Counting packets in flight is pretty simple.
2224 *
2225 * in_flight = packets_out - left_out + retrans_out
2226 *
2227 * packets_out is SND.NXT-SND.UNA counted in packets.
2228 *
2229 * retrans_out is number of retransmitted segments.
2230 *
2231 * left_out is number of segments left network, but not ACKed yet.
2232 *
2233 * left_out = sacked_out + lost_out
2234 *
2235 * sacked_out: Packets, which arrived to receiver out of order
2236 * and hence not ACKed. With SACKs this number is simply
2237 * amount of SACKed data. Even without SACKs
2238 * it is easy to give pretty reliable estimate of this number,
2239 * counting duplicate ACKs.
2240 *
2241 * lost_out: Packets lost by network. TCP has no explicit
2242 * "loss notification" feedback from network (for now).
2243 * It means that this number can be only _guessed_.
2244 * Actually, it is the heuristics to predict lossage that
2245 * distinguishes different algorithms.
2246 *
2247 * F.e. after RTO, when all the queue is considered as lost,
2248 * lost_out = packets_out and in_flight = retrans_out.
2249 *
2250 * Essentially, we have now two algorithms counting
2251 * lost packets.
2252 *
2253 * FACK: It is the simplest heuristics. As soon as we decided
2254 * that something is lost, we decide that _all_ not SACKed
2255 * packets until the most forward SACK are lost. I.e.
2256 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2257 * It is absolutely correct estimate, if network does not reorder
2258 * packets. And it loses any connection to reality when reordering
2259 * takes place. We use FACK by default until reordering
2260 * is suspected on the path to this destination.
2261 *
2262 * NewReno: when Recovery is entered, we assume that one segment
2263 * is lost (classic Reno). While we are in Recovery and
2264 * a partial ACK arrives, we assume that one more packet
2265 * is lost (NewReno). This heuristics are the same in NewReno
2266 * and SACK.
2267 *
2268 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2269 * deflation etc. CWND is real congestion window, never inflated, changes
2270 * only according to classic VJ rules.
2271 *
2272 * Really tricky (and requiring careful tuning) part of algorithm
2273 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2274 * The first determines the moment _when_ we should reduce CWND and,
2275 * hence, slow down forward transmission. In fact, it determines the moment
2276 * when we decide that hole is caused by loss, rather than by a reorder.
2277 *
2278 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2279 * holes, caused by lost packets.
2280 *
2281 * And the most logically complicated part of algorithm is undo
2282 * heuristics. We detect false retransmits due to both too early
2283 * fast retransmit (reordering) and underestimated RTO, analyzing
2284 * timestamps and D-SACKs. When we detect that some segments were
2285 * retransmitted by mistake and CWND reduction was wrong, we undo
2286 * window reduction and abort recovery phase. This logic is hidden
2287 * inside several functions named tcp_try_undo_<something>.
2288 */
2289
2290 /* This function decides, when we should leave Disordered state
2291 * and enter Recovery phase, reducing congestion window.
2292 *
2293 * Main question: may we further continue forward transmission
2294 * with the same cwnd?
2295 */
2296 static bool tcp_time_to_recover(struct sock *sk, int flag)
2297 {
2298 struct tcp_sock *tp = tcp_sk(sk);
2299 __u32 packets_out;
2300
2301 /* Do not perform any recovery during F-RTO algorithm */
2302 if (tp->frto_counter)
2303 return false;
2304
2305 /* Trick#1: The loss is proven. */
2306 if (tp->lost_out)
2307 return true;
2308
2309 /* Not-A-Trick#2 : Classic rule... */
2310 if (tcp_dupack_heuristics(tp) > tp->reordering)
2311 return true;
2312
2313 /* Trick#3 : when we use RFC2988 timer restart, fast
2314 * retransmit can be triggered by timeout of queue head.
2315 */
2316 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2317 return true;
2318
2319 /* Trick#4: It is still not OK... But will it be useful to delay
2320 * recovery more?
2321 */
2322 packets_out = tp->packets_out;
2323 if (packets_out <= tp->reordering &&
2324 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2325 !tcp_may_send_now(sk)) {
2326 /* We have nothing to send. This connection is limited
2327 * either by receiver window or by application.
2328 */
2329 return true;
2330 }
2331
2332 /* If a thin stream is detected, retransmit after first
2333 * received dupack. Employ only if SACK is supported in order
2334 * to avoid possible corner-case series of spurious retransmissions
2335 * Use only if there are no unsent data.
2336 */
2337 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2338 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2339 tcp_is_sack(tp) && !tcp_send_head(sk))
2340 return true;
2341
2342 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2343 * retransmissions due to small network reorderings, we implement
2344 * Mitigation A.3 in the RFC and delay the retransmission for a short
2345 * interval if appropriate.
2346 */
2347 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2348 (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
2349 !tcp_may_send_now(sk))
2350 return !tcp_pause_early_retransmit(sk, flag);
2351
2352 return false;
2353 }
2354
2355 /* New heuristics: it is possible only after we switched to restart timer
2356 * each time when something is ACKed. Hence, we can detect timed out packets
2357 * during fast retransmit without falling to slow start.
2358 *
2359 * Usefulness of this as is very questionable, since we should know which of
2360 * the segments is the next to timeout which is relatively expensive to find
2361 * in general case unless we add some data structure just for that. The
2362 * current approach certainly won't find the right one too often and when it
2363 * finally does find _something_ it usually marks large part of the window
2364 * right away (because a retransmission with a larger timestamp blocks the
2365 * loop from advancing). -ij
2366 */
2367 static void tcp_timeout_skbs(struct sock *sk)
2368 {
2369 struct tcp_sock *tp = tcp_sk(sk);
2370 struct sk_buff *skb;
2371
2372 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2373 return;
2374
2375 skb = tp->scoreboard_skb_hint;
2376 if (tp->scoreboard_skb_hint == NULL)
2377 skb = tcp_write_queue_head(sk);
2378
2379 tcp_for_write_queue_from(skb, sk) {
2380 if (skb == tcp_send_head(sk))
2381 break;
2382 if (!tcp_skb_timedout(sk, skb))
2383 break;
2384
2385 tcp_skb_mark_lost(tp, skb);
2386 }
2387
2388 tp->scoreboard_skb_hint = skb;
2389
2390 tcp_verify_left_out(tp);
2391 }
2392
2393 /* Detect loss in event "A" above by marking head of queue up as lost.
2394 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2395 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2396 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2397 * the maximum SACKed segments to pass before reaching this limit.
2398 */
2399 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2400 {
2401 struct tcp_sock *tp = tcp_sk(sk);
2402 struct sk_buff *skb;
2403 int cnt, oldcnt;
2404 int err;
2405 unsigned int mss;
2406 /* Use SACK to deduce losses of new sequences sent during recovery */
2407 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2408
2409 WARN_ON(packets > tp->packets_out);
2410 if (tp->lost_skb_hint) {
2411 skb = tp->lost_skb_hint;
2412 cnt = tp->lost_cnt_hint;
2413 /* Head already handled? */
2414 if (mark_head && skb != tcp_write_queue_head(sk))
2415 return;
2416 } else {
2417 skb = tcp_write_queue_head(sk);
2418 cnt = 0;
2419 }
2420
2421 tcp_for_write_queue_from(skb, sk) {
2422 if (skb == tcp_send_head(sk))
2423 break;
2424 /* TODO: do this better */
2425 /* this is not the most efficient way to do this... */
2426 tp->lost_skb_hint = skb;
2427 tp->lost_cnt_hint = cnt;
2428
2429 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2430 break;
2431
2432 oldcnt = cnt;
2433 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2434 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2435 cnt += tcp_skb_pcount(skb);
2436
2437 if (cnt > packets) {
2438 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2439 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2440 (oldcnt >= packets))
2441 break;
2442
2443 mss = skb_shinfo(skb)->gso_size;
2444 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2445 if (err < 0)
2446 break;
2447 cnt = packets;
2448 }
2449
2450 tcp_skb_mark_lost(tp, skb);
2451
2452 if (mark_head)
2453 break;
2454 }
2455 tcp_verify_left_out(tp);
2456 }
2457
2458 /* Account newly detected lost packet(s) */
2459
2460 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2461 {
2462 struct tcp_sock *tp = tcp_sk(sk);
2463
2464 if (tcp_is_reno(tp)) {
2465 tcp_mark_head_lost(sk, 1, 1);
2466 } else if (tcp_is_fack(tp)) {
2467 int lost = tp->fackets_out - tp->reordering;
2468 if (lost <= 0)
2469 lost = 1;
2470 tcp_mark_head_lost(sk, lost, 0);
2471 } else {
2472 int sacked_upto = tp->sacked_out - tp->reordering;
2473 if (sacked_upto >= 0)
2474 tcp_mark_head_lost(sk, sacked_upto, 0);
2475 else if (fast_rexmit)
2476 tcp_mark_head_lost(sk, 1, 1);
2477 }
2478
2479 tcp_timeout_skbs(sk);
2480 }
2481
2482 /* CWND moderation, preventing bursts due to too big ACKs
2483 * in dubious situations.
2484 */
2485 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2486 {
2487 tp->snd_cwnd = min(tp->snd_cwnd,
2488 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2489 tp->snd_cwnd_stamp = tcp_time_stamp;
2490 }
2491
2492 /* Lower bound on congestion window is slow start threshold
2493 * unless congestion avoidance choice decides to overide it.
2494 */
2495 static inline u32 tcp_cwnd_min(const struct sock *sk)
2496 {
2497 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2498
2499 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2500 }
2501
2502 /* Decrease cwnd each second ack. */
2503 static void tcp_cwnd_down(struct sock *sk, int flag)
2504 {
2505 struct tcp_sock *tp = tcp_sk(sk);
2506 int decr = tp->snd_cwnd_cnt + 1;
2507
2508 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2509 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2510 tp->snd_cwnd_cnt = decr & 1;
2511 decr >>= 1;
2512
2513 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2514 tp->snd_cwnd -= decr;
2515
2516 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2517 tp->snd_cwnd_stamp = tcp_time_stamp;
2518 }
2519 }
2520
2521 /* Nothing was retransmitted or returned timestamp is less
2522 * than timestamp of the first retransmission.
2523 */
2524 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2525 {
2526 return !tp->retrans_stamp ||
2527 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2528 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2529 }
2530
2531 /* Undo procedures. */
2532
2533 #if FASTRETRANS_DEBUG > 1
2534 static void DBGUNDO(struct sock *sk, const char *msg)
2535 {
2536 struct tcp_sock *tp = tcp_sk(sk);
2537 struct inet_sock *inet = inet_sk(sk);
2538
2539 if (sk->sk_family == AF_INET) {
2540 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2541 msg,
2542 &inet->inet_daddr, ntohs(inet->inet_dport),
2543 tp->snd_cwnd, tcp_left_out(tp),
2544 tp->snd_ssthresh, tp->prior_ssthresh,
2545 tp->packets_out);
2546 }
2547 #if IS_ENABLED(CONFIG_IPV6)
2548 else if (sk->sk_family == AF_INET6) {
2549 struct ipv6_pinfo *np = inet6_sk(sk);
2550 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2551 msg,
2552 &np->daddr, ntohs(inet->inet_dport),
2553 tp->snd_cwnd, tcp_left_out(tp),
2554 tp->snd_ssthresh, tp->prior_ssthresh,
2555 tp->packets_out);
2556 }
2557 #endif
2558 }
2559 #else
2560 #define DBGUNDO(x...) do { } while (0)
2561 #endif
2562
2563 static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
2564 {
2565 struct tcp_sock *tp = tcp_sk(sk);
2566
2567 if (tp->prior_ssthresh) {
2568 const struct inet_connection_sock *icsk = inet_csk(sk);
2569
2570 if (icsk->icsk_ca_ops->undo_cwnd)
2571 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2572 else
2573 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2574
2575 if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
2576 tp->snd_ssthresh = tp->prior_ssthresh;
2577 TCP_ECN_withdraw_cwr(tp);
2578 }
2579 } else {
2580 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2581 }
2582 tp->snd_cwnd_stamp = tcp_time_stamp;
2583 }
2584
2585 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2586 {
2587 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2588 }
2589
2590 /* People celebrate: "We love our President!" */
2591 static bool tcp_try_undo_recovery(struct sock *sk)
2592 {
2593 struct tcp_sock *tp = tcp_sk(sk);
2594
2595 if (tcp_may_undo(tp)) {
2596 int mib_idx;
2597
2598 /* Happy end! We did not retransmit anything
2599 * or our original transmission succeeded.
2600 */
2601 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2602 tcp_undo_cwr(sk, true);
2603 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2604 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2605 else
2606 mib_idx = LINUX_MIB_TCPFULLUNDO;
2607
2608 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2609 tp->undo_marker = 0;
2610 }
2611 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2612 /* Hold old state until something *above* high_seq
2613 * is ACKed. For Reno it is MUST to prevent false
2614 * fast retransmits (RFC2582). SACK TCP is safe. */
2615 tcp_moderate_cwnd(tp);
2616 return true;
2617 }
2618 tcp_set_ca_state(sk, TCP_CA_Open);
2619 return false;
2620 }
2621
2622 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2623 static void tcp_try_undo_dsack(struct sock *sk)
2624 {
2625 struct tcp_sock *tp = tcp_sk(sk);
2626
2627 if (tp->undo_marker && !tp->undo_retrans) {
2628 DBGUNDO(sk, "D-SACK");
2629 tcp_undo_cwr(sk, true);
2630 tp->undo_marker = 0;
2631 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2632 }
2633 }
2634
2635 /* We can clear retrans_stamp when there are no retransmissions in the
2636 * window. It would seem that it is trivially available for us in
2637 * tp->retrans_out, however, that kind of assumptions doesn't consider
2638 * what will happen if errors occur when sending retransmission for the
2639 * second time. ...It could the that such segment has only
2640 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2641 * the head skb is enough except for some reneging corner cases that
2642 * are not worth the effort.
2643 *
2644 * Main reason for all this complexity is the fact that connection dying
2645 * time now depends on the validity of the retrans_stamp, in particular,
2646 * that successive retransmissions of a segment must not advance
2647 * retrans_stamp under any conditions.
2648 */
2649 static bool tcp_any_retrans_done(const struct sock *sk)
2650 {
2651 const struct tcp_sock *tp = tcp_sk(sk);
2652 struct sk_buff *skb;
2653
2654 if (tp->retrans_out)
2655 return true;
2656
2657 skb = tcp_write_queue_head(sk);
2658 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2659 return true;
2660
2661 return false;
2662 }
2663
2664 /* Undo during fast recovery after partial ACK. */
2665
2666 static int tcp_try_undo_partial(struct sock *sk, int acked)
2667 {
2668 struct tcp_sock *tp = tcp_sk(sk);
2669 /* Partial ACK arrived. Force Hoe's retransmit. */
2670 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2671
2672 if (tcp_may_undo(tp)) {
2673 /* Plain luck! Hole if filled with delayed
2674 * packet, rather than with a retransmit.
2675 */
2676 if (!tcp_any_retrans_done(sk))
2677 tp->retrans_stamp = 0;
2678
2679 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2680
2681 DBGUNDO(sk, "Hoe");
2682 tcp_undo_cwr(sk, false);
2683 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2684
2685 /* So... Do not make Hoe's retransmit yet.
2686 * If the first packet was delayed, the rest
2687 * ones are most probably delayed as well.
2688 */
2689 failed = 0;
2690 }
2691 return failed;
2692 }
2693
2694 /* Undo during loss recovery after partial ACK. */
2695 static bool tcp_try_undo_loss(struct sock *sk)
2696 {
2697 struct tcp_sock *tp = tcp_sk(sk);
2698
2699 if (tcp_may_undo(tp)) {
2700 struct sk_buff *skb;
2701 tcp_for_write_queue(skb, sk) {
2702 if (skb == tcp_send_head(sk))
2703 break;
2704 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2705 }
2706
2707 tcp_clear_all_retrans_hints(tp);
2708
2709 DBGUNDO(sk, "partial loss");
2710 tp->lost_out = 0;
2711 tcp_undo_cwr(sk, true);
2712 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2713 inet_csk(sk)->icsk_retransmits = 0;
2714 tp->undo_marker = 0;
2715 if (tcp_is_sack(tp))
2716 tcp_set_ca_state(sk, TCP_CA_Open);
2717 return true;
2718 }
2719 return false;
2720 }
2721
2722 static inline void tcp_complete_cwr(struct sock *sk)
2723 {
2724 struct tcp_sock *tp = tcp_sk(sk);
2725
2726 /* Do not moderate cwnd if it's already undone in cwr or recovery. */
2727 if (tp->undo_marker) {
2728 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
2729 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2730 tp->snd_cwnd_stamp = tcp_time_stamp;
2731 } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
2732 /* PRR algorithm. */
2733 tp->snd_cwnd = tp->snd_ssthresh;
2734 tp->snd_cwnd_stamp = tcp_time_stamp;
2735 }
2736 }
2737 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2738 }
2739
2740 static void tcp_try_keep_open(struct sock *sk)
2741 {
2742 struct tcp_sock *tp = tcp_sk(sk);
2743 int state = TCP_CA_Open;
2744
2745 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2746 state = TCP_CA_Disorder;
2747
2748 if (inet_csk(sk)->icsk_ca_state != state) {
2749 tcp_set_ca_state(sk, state);
2750 tp->high_seq = tp->snd_nxt;
2751 }
2752 }
2753
2754 static void tcp_try_to_open(struct sock *sk, int flag)
2755 {
2756 struct tcp_sock *tp = tcp_sk(sk);
2757
2758 tcp_verify_left_out(tp);
2759
2760 if (!tp->frto_counter && !tcp_any_retrans_done(sk))
2761 tp->retrans_stamp = 0;
2762
2763 if (flag & FLAG_ECE)
2764 tcp_enter_cwr(sk, 1);
2765
2766 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2767 tcp_try_keep_open(sk);
2768 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2769 tcp_moderate_cwnd(tp);
2770 } else {
2771 tcp_cwnd_down(sk, flag);
2772 }
2773 }
2774
2775 static void tcp_mtup_probe_failed(struct sock *sk)
2776 {
2777 struct inet_connection_sock *icsk = inet_csk(sk);
2778
2779 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2780 icsk->icsk_mtup.probe_size = 0;
2781 }
2782
2783 static void tcp_mtup_probe_success(struct sock *sk)
2784 {
2785 struct tcp_sock *tp = tcp_sk(sk);
2786 struct inet_connection_sock *icsk = inet_csk(sk);
2787
2788 /* FIXME: breaks with very large cwnd */
2789 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2790 tp->snd_cwnd = tp->snd_cwnd *
2791 tcp_mss_to_mtu(sk, tp->mss_cache) /
2792 icsk->icsk_mtup.probe_size;
2793 tp->snd_cwnd_cnt = 0;
2794 tp->snd_cwnd_stamp = tcp_time_stamp;
2795 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2796
2797 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2798 icsk->icsk_mtup.probe_size = 0;
2799 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2800 }
2801
2802 /* Do a simple retransmit without using the backoff mechanisms in
2803 * tcp_timer. This is used for path mtu discovery.
2804 * The socket is already locked here.
2805 */
2806 void tcp_simple_retransmit(struct sock *sk)
2807 {
2808 const struct inet_connection_sock *icsk = inet_csk(sk);
2809 struct tcp_sock *tp = tcp_sk(sk);
2810 struct sk_buff *skb;
2811 unsigned int mss = tcp_current_mss(sk);
2812 u32 prior_lost = tp->lost_out;
2813
2814 tcp_for_write_queue(skb, sk) {
2815 if (skb == tcp_send_head(sk))
2816 break;
2817 if (tcp_skb_seglen(skb) > mss &&
2818 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2819 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2820 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2821 tp->retrans_out -= tcp_skb_pcount(skb);
2822 }
2823 tcp_skb_mark_lost_uncond_verify(tp, skb);
2824 }
2825 }
2826
2827 tcp_clear_retrans_hints_partial(tp);
2828
2829 if (prior_lost == tp->lost_out)
2830 return;
2831
2832 if (tcp_is_reno(tp))
2833 tcp_limit_reno_sacked(tp);
2834
2835 tcp_verify_left_out(tp);
2836
2837 /* Don't muck with the congestion window here.
2838 * Reason is that we do not increase amount of _data_
2839 * in network, but units changed and effective
2840 * cwnd/ssthresh really reduced now.
2841 */
2842 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2843 tp->high_seq = tp->snd_nxt;
2844 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2845 tp->prior_ssthresh = 0;
2846 tp->undo_marker = 0;
2847 tcp_set_ca_state(sk, TCP_CA_Loss);
2848 }
2849 tcp_xmit_retransmit_queue(sk);
2850 }
2851 EXPORT_SYMBOL(tcp_simple_retransmit);
2852
2853 /* This function implements the PRR algorithm, specifcally the PRR-SSRB
2854 * (proportional rate reduction with slow start reduction bound) as described in
2855 * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
2856 * It computes the number of packets to send (sndcnt) based on packets newly
2857 * delivered:
2858 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2859 * cwnd reductions across a full RTT.
2860 * 2) If packets in flight is lower than ssthresh (such as due to excess
2861 * losses and/or application stalls), do not perform any further cwnd
2862 * reductions, but instead slow start up to ssthresh.
2863 */
2864 static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
2865 int fast_rexmit, int flag)
2866 {
2867 struct tcp_sock *tp = tcp_sk(sk);
2868 int sndcnt = 0;
2869 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2870
2871 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2872 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2873 tp->prior_cwnd - 1;
2874 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2875 } else {
2876 sndcnt = min_t(int, delta,
2877 max_t(int, tp->prr_delivered - tp->prr_out,
2878 newly_acked_sacked) + 1);
2879 }
2880
2881 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2882 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2883 }
2884
2885 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2886 {
2887 struct tcp_sock *tp = tcp_sk(sk);
2888 int mib_idx;
2889
2890 if (tcp_is_reno(tp))
2891 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2892 else
2893 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2894
2895 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2896
2897 tp->high_seq = tp->snd_nxt;
2898 tp->prior_ssthresh = 0;
2899 tp->undo_marker = tp->snd_una;
2900 tp->undo_retrans = tp->retrans_out;
2901
2902 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2903 if (!ece_ack)
2904 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2905 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2906 TCP_ECN_queue_cwr(tp);
2907 }
2908
2909 tp->bytes_acked = 0;
2910 tp->snd_cwnd_cnt = 0;
2911 tp->prior_cwnd = tp->snd_cwnd;
2912 tp->prr_delivered = 0;
2913 tp->prr_out = 0;
2914 tcp_set_ca_state(sk, TCP_CA_Recovery);
2915 }
2916
2917 /* Process an event, which can update packets-in-flight not trivially.
2918 * Main goal of this function is to calculate new estimate for left_out,
2919 * taking into account both packets sitting in receiver's buffer and
2920 * packets lost by network.
2921 *
2922 * Besides that it does CWND reduction, when packet loss is detected
2923 * and changes state of machine.
2924 *
2925 * It does _not_ decide what to send, it is made in function
2926 * tcp_xmit_retransmit_queue().
2927 */
2928 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
2929 int newly_acked_sacked, bool is_dupack,
2930 int flag)
2931 {
2932 struct inet_connection_sock *icsk = inet_csk(sk);
2933 struct tcp_sock *tp = tcp_sk(sk);
2934 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2935 (tcp_fackets_out(tp) > tp->reordering));
2936 int fast_rexmit = 0;
2937
2938 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2939 tp->sacked_out = 0;
2940 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2941 tp->fackets_out = 0;
2942
2943 /* Now state machine starts.
2944 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2945 if (flag & FLAG_ECE)
2946 tp->prior_ssthresh = 0;
2947
2948 /* B. In all the states check for reneging SACKs. */
2949 if (tcp_check_sack_reneging(sk, flag))
2950 return;
2951
2952 /* C. Check consistency of the current state. */
2953 tcp_verify_left_out(tp);
2954
2955 /* D. Check state exit conditions. State can be terminated
2956 * when high_seq is ACKed. */
2957 if (icsk->icsk_ca_state == TCP_CA_Open) {
2958 WARN_ON(tp->retrans_out != 0);
2959 tp->retrans_stamp = 0;
2960 } else if (!before(tp->snd_una, tp->high_seq)) {
2961 switch (icsk->icsk_ca_state) {
2962 case TCP_CA_Loss:
2963 icsk->icsk_retransmits = 0;
2964 if (tcp_try_undo_recovery(sk))
2965 return;
2966 break;
2967
2968 case TCP_CA_CWR:
2969 /* CWR is to be held something *above* high_seq
2970 * is ACKed for CWR bit to reach receiver. */
2971 if (tp->snd_una != tp->high_seq) {
2972 tcp_complete_cwr(sk);
2973 tcp_set_ca_state(sk, TCP_CA_Open);
2974 }
2975 break;
2976
2977 case TCP_CA_Recovery:
2978 if (tcp_is_reno(tp))
2979 tcp_reset_reno_sack(tp);
2980 if (tcp_try_undo_recovery(sk))
2981 return;
2982 tcp_complete_cwr(sk);
2983 break;
2984 }
2985 }
2986
2987 /* E. Process state. */
2988 switch (icsk->icsk_ca_state) {
2989 case TCP_CA_Recovery:
2990 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2991 if (tcp_is_reno(tp) && is_dupack)
2992 tcp_add_reno_sack(sk);
2993 } else
2994 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2995 break;
2996 case TCP_CA_Loss:
2997 if (flag & FLAG_DATA_ACKED)
2998 icsk->icsk_retransmits = 0;
2999 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3000 tcp_reset_reno_sack(tp);
3001 if (!tcp_try_undo_loss(sk)) {
3002 tcp_moderate_cwnd(tp);
3003 tcp_xmit_retransmit_queue(sk);
3004 return;
3005 }
3006 if (icsk->icsk_ca_state != TCP_CA_Open)
3007 return;
3008 /* Loss is undone; fall through to processing in Open state. */
3009 default:
3010 if (tcp_is_reno(tp)) {
3011 if (flag & FLAG_SND_UNA_ADVANCED)
3012 tcp_reset_reno_sack(tp);
3013 if (is_dupack)
3014 tcp_add_reno_sack(sk);
3015 }
3016
3017 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3018 tcp_try_undo_dsack(sk);
3019
3020 if (!tcp_time_to_recover(sk, flag)) {
3021 tcp_try_to_open(sk, flag);
3022 return;
3023 }
3024
3025 /* MTU probe failure: don't reduce cwnd */
3026 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3027 icsk->icsk_mtup.probe_size &&
3028 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3029 tcp_mtup_probe_failed(sk);
3030 /* Restores the reduction we did in tcp_mtup_probe() */
3031 tp->snd_cwnd++;
3032 tcp_simple_retransmit(sk);
3033 return;
3034 }
3035
3036 /* Otherwise enter Recovery state */
3037 tcp_enter_recovery(sk, (flag & FLAG_ECE));
3038 fast_rexmit = 1;
3039 }
3040
3041 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3042 tcp_update_scoreboard(sk, fast_rexmit);
3043 tp->prr_delivered += newly_acked_sacked;
3044 tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
3045 tcp_xmit_retransmit_queue(sk);
3046 }
3047
3048 void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3049 {
3050 tcp_rtt_estimator(sk, seq_rtt);
3051 tcp_set_rto(sk);
3052 inet_csk(sk)->icsk_backoff = 0;
3053 }
3054 EXPORT_SYMBOL(tcp_valid_rtt_meas);
3055
3056 /* Read draft-ietf-tcplw-high-performance before mucking
3057 * with this code. (Supersedes RFC1323)
3058 */
3059 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3060 {
3061 /* RTTM Rule: A TSecr value received in a segment is used to
3062 * update the averaged RTT measurement only if the segment
3063 * acknowledges some new data, i.e., only if it advances the
3064 * left edge of the send window.
3065 *
3066 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3067 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3068 *
3069 * Changed: reset backoff as soon as we see the first valid sample.
3070 * If we do not, we get strongly overestimated rto. With timestamps
3071 * samples are accepted even from very old segments: f.e., when rtt=1
3072 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3073 * answer arrives rto becomes 120 seconds! If at least one of segments
3074 * in window is lost... Voila. --ANK (010210)
3075 */
3076 struct tcp_sock *tp = tcp_sk(sk);
3077
3078 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3079 }
3080
3081 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3082 {
3083 /* We don't have a timestamp. Can only use
3084 * packets that are not retransmitted to determine
3085 * rtt estimates. Also, we must not reset the
3086 * backoff for rto until we get a non-retransmitted
3087 * packet. This allows us to deal with a situation
3088 * where the network delay has increased suddenly.
3089 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3090 */
3091
3092 if (flag & FLAG_RETRANS_DATA_ACKED)
3093 return;
3094
3095 tcp_valid_rtt_meas(sk, seq_rtt);
3096 }
3097
3098 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3099 const s32 seq_rtt)
3100 {
3101 const struct tcp_sock *tp = tcp_sk(sk);
3102 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3103 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3104 tcp_ack_saw_tstamp(sk, flag);
3105 else if (seq_rtt >= 0)
3106 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3107 }
3108
3109 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3110 {
3111 const struct inet_connection_sock *icsk = inet_csk(sk);
3112 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3113 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3114 }
3115
3116 /* Restart timer after forward progress on connection.
3117 * RFC2988 recommends to restart timer to now+rto.
3118 */
3119 void tcp_rearm_rto(struct sock *sk)
3120 {
3121 struct tcp_sock *tp = tcp_sk(sk);
3122
3123 if (!tp->packets_out) {
3124 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3125 } else {
3126 u32 rto = inet_csk(sk)->icsk_rto;
3127 /* Offset the time elapsed after installing regular RTO */
3128 if (tp->early_retrans_delayed) {
3129 struct sk_buff *skb = tcp_write_queue_head(sk);
3130 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
3131 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3132 /* delta may not be positive if the socket is locked
3133 * when the delayed ER timer fires and is rescheduled.
3134 */
3135 if (delta > 0)
3136 rto = delta;
3137 }
3138 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3139 TCP_RTO_MAX);
3140 }
3141 tp->early_retrans_delayed = 0;
3142 }
3143
3144 /* This function is called when the delayed ER timer fires. TCP enters
3145 * fast recovery and performs fast-retransmit.
3146 */
3147 void tcp_resume_early_retransmit(struct sock *sk)
3148 {
3149 struct tcp_sock *tp = tcp_sk(sk);
3150
3151 tcp_rearm_rto(sk);
3152
3153 /* Stop if ER is disabled after the delayed ER timer is scheduled */
3154 if (!tp->do_early_retrans)
3155 return;
3156
3157 tcp_enter_recovery(sk, false);
3158 tcp_update_scoreboard(sk, 1);
3159 tcp_xmit_retransmit_queue(sk);
3160 }
3161
3162 /* If we get here, the whole TSO packet has not been acked. */
3163 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3164 {
3165 struct tcp_sock *tp = tcp_sk(sk);
3166 u32 packets_acked;
3167
3168 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3169
3170 packets_acked = tcp_skb_pcount(skb);
3171 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3172 return 0;
3173 packets_acked -= tcp_skb_pcount(skb);
3174
3175 if (packets_acked) {
3176 BUG_ON(tcp_skb_pcount(skb) == 0);
3177 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3178 }
3179
3180 return packets_acked;
3181 }
3182
3183 /* Remove acknowledged frames from the retransmission queue. If our packet
3184 * is before the ack sequence we can discard it as it's confirmed to have
3185 * arrived at the other end.
3186 */
3187 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3188 u32 prior_snd_una)
3189 {
3190 struct tcp_sock *tp = tcp_sk(sk);
3191 const struct inet_connection_sock *icsk = inet_csk(sk);
3192 struct sk_buff *skb;
3193 u32 now = tcp_time_stamp;
3194 int fully_acked = true;
3195 int flag = 0;
3196 u32 pkts_acked = 0;
3197 u32 reord = tp->packets_out;
3198 u32 prior_sacked = tp->sacked_out;
3199 s32 seq_rtt = -1;
3200 s32 ca_seq_rtt = -1;
3201 ktime_t last_ackt = net_invalid_timestamp();
3202
3203 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3204 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3205 u32 acked_pcount;
3206 u8 sacked = scb->sacked;
3207
3208 /* Determine how many packets and what bytes were acked, tso and else */
3209 if (after(scb->end_seq, tp->snd_una)) {
3210 if (tcp_skb_pcount(skb) == 1 ||
3211 !after(tp->snd_una, scb->seq))
3212 break;
3213
3214 acked_pcount = tcp_tso_acked(sk, skb);
3215 if (!acked_pcount)
3216 break;
3217
3218 fully_acked = false;
3219 } else {
3220 acked_pcount = tcp_skb_pcount(skb);
3221 }
3222
3223 if (sacked & TCPCB_RETRANS) {
3224 if (sacked & TCPCB_SACKED_RETRANS)
3225 tp->retrans_out -= acked_pcount;
3226 flag |= FLAG_RETRANS_DATA_ACKED;
3227 ca_seq_rtt = -1;
3228 seq_rtt = -1;
3229 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3230 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3231 } else {
3232 ca_seq_rtt = now - scb->when;
3233 last_ackt = skb->tstamp;
3234 if (seq_rtt < 0) {
3235 seq_rtt = ca_seq_rtt;
3236 }
3237 if (!(sacked & TCPCB_SACKED_ACKED))
3238 reord = min(pkts_acked, reord);
3239 }
3240
3241 if (sacked & TCPCB_SACKED_ACKED)
3242 tp->sacked_out -= acked_pcount;
3243 if (sacked & TCPCB_LOST)
3244 tp->lost_out -= acked_pcount;
3245
3246 tp->packets_out -= acked_pcount;
3247 pkts_acked += acked_pcount;
3248
3249 /* Initial outgoing SYN's get put onto the write_queue
3250 * just like anything else we transmit. It is not
3251 * true data, and if we misinform our callers that
3252 * this ACK acks real data, we will erroneously exit
3253 * connection startup slow start one packet too
3254 * quickly. This is severely frowned upon behavior.
3255 */
3256 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3257 flag |= FLAG_DATA_ACKED;
3258 } else {
3259 flag |= FLAG_SYN_ACKED;
3260 tp->retrans_stamp = 0;
3261 }
3262
3263 if (!fully_acked)
3264 break;
3265
3266 tcp_unlink_write_queue(skb, sk);
3267 sk_wmem_free_skb(sk, skb);
3268 tp->scoreboard_skb_hint = NULL;
3269 if (skb == tp->retransmit_skb_hint)
3270 tp->retransmit_skb_hint = NULL;
3271 if (skb == tp->lost_skb_hint)
3272 tp->lost_skb_hint = NULL;
3273 }
3274
3275 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3276 tp->snd_up = tp->snd_una;
3277
3278 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3279 flag |= FLAG_SACK_RENEGING;
3280
3281 if (flag & FLAG_ACKED) {
3282 const struct tcp_congestion_ops *ca_ops
3283 = inet_csk(sk)->icsk_ca_ops;
3284
3285 if (unlikely(icsk->icsk_mtup.probe_size &&
3286 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3287 tcp_mtup_probe_success(sk);
3288 }
3289
3290 tcp_ack_update_rtt(sk, flag, seq_rtt);
3291 tcp_rearm_rto(sk);
3292
3293 if (tcp_is_reno(tp)) {
3294 tcp_remove_reno_sacks(sk, pkts_acked);
3295 } else {
3296 int delta;
3297
3298 /* Non-retransmitted hole got filled? That's reordering */
3299 if (reord < prior_fackets)
3300 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3301
3302 delta = tcp_is_fack(tp) ? pkts_acked :
3303 prior_sacked - tp->sacked_out;
3304 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3305 }
3306
3307 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3308
3309 if (ca_ops->pkts_acked) {
3310 s32 rtt_us = -1;
3311
3312 /* Is the ACK triggering packet unambiguous? */
3313 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3314 /* High resolution needed and available? */
3315 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3316 !ktime_equal(last_ackt,
3317 net_invalid_timestamp()))
3318 rtt_us = ktime_us_delta(ktime_get_real(),
3319 last_ackt);
3320 else if (ca_seq_rtt >= 0)
3321 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3322 }
3323
3324 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3325 }
3326 }
3327
3328 #if FASTRETRANS_DEBUG > 0
3329 WARN_ON((int)tp->sacked_out < 0);
3330 WARN_ON((int)tp->lost_out < 0);
3331 WARN_ON((int)tp->retrans_out < 0);
3332 if (!tp->packets_out && tcp_is_sack(tp)) {
3333 icsk = inet_csk(sk);
3334 if (tp->lost_out) {
3335 pr_debug("Leak l=%u %d\n",
3336 tp->lost_out, icsk->icsk_ca_state);
3337 tp->lost_out = 0;
3338 }
3339 if (tp->sacked_out) {
3340 pr_debug("Leak s=%u %d\n",
3341 tp->sacked_out, icsk->icsk_ca_state);
3342 tp->sacked_out = 0;
3343 }
3344 if (tp->retrans_out) {
3345 pr_debug("Leak r=%u %d\n",
3346 tp->retrans_out, icsk->icsk_ca_state);
3347 tp->retrans_out = 0;
3348 }
3349 }
3350 #endif
3351 return flag;
3352 }
3353
3354 static void tcp_ack_probe(struct sock *sk)
3355 {
3356 const struct tcp_sock *tp = tcp_sk(sk);
3357 struct inet_connection_sock *icsk = inet_csk(sk);
3358
3359 /* Was it a usable window open? */
3360
3361 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3362 icsk->icsk_backoff = 0;
3363 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3364 /* Socket must be waked up by subsequent tcp_data_snd_check().
3365 * This function is not for random using!
3366 */
3367 } else {
3368 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3369 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3370 TCP_RTO_MAX);
3371 }
3372 }
3373
3374 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3375 {
3376 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3377 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3378 }
3379
3380 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3381 {
3382 const struct tcp_sock *tp = tcp_sk(sk);
3383 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3384 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3385 }
3386
3387 /* Check that window update is acceptable.
3388 * The function assumes that snd_una<=ack<=snd_next.
3389 */
3390 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3391 const u32 ack, const u32 ack_seq,
3392 const u32 nwin)
3393 {
3394 return after(ack, tp->snd_una) ||
3395 after(ack_seq, tp->snd_wl1) ||
3396 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3397 }
3398
3399 /* Update our send window.
3400 *
3401 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3402 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3403 */
3404 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3405 u32 ack_seq)
3406 {
3407 struct tcp_sock *tp = tcp_sk(sk);
3408 int flag = 0;
3409 u32 nwin = ntohs(tcp_hdr(skb)->window);
3410
3411 if (likely(!tcp_hdr(skb)->syn))
3412 nwin <<= tp->rx_opt.snd_wscale;
3413
3414 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3415 flag |= FLAG_WIN_UPDATE;
3416 tcp_update_wl(tp, ack_seq);
3417
3418 if (tp->snd_wnd != nwin) {
3419 tp->snd_wnd = nwin;
3420
3421 /* Note, it is the only place, where
3422 * fast path is recovered for sending TCP.
3423 */
3424 tp->pred_flags = 0;
3425 tcp_fast_path_check(sk);
3426
3427 if (nwin > tp->max_window) {
3428 tp->max_window = nwin;
3429 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3430 }
3431 }
3432 }
3433
3434 tp->snd_una = ack;
3435
3436 return flag;
3437 }
3438
3439 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3440 * continue in congestion avoidance.
3441 */
3442 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3443 {
3444 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3445 tp->snd_cwnd_cnt = 0;
3446 tp->bytes_acked = 0;
3447 TCP_ECN_queue_cwr(tp);
3448 tcp_moderate_cwnd(tp);
3449 }
3450
3451 /* A conservative spurious RTO response algorithm: reduce cwnd using
3452 * rate halving and continue in congestion avoidance.
3453 */
3454 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3455 {
3456 tcp_enter_cwr(sk, 0);
3457 }
3458
3459 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3460 {
3461 if (flag & FLAG_ECE)
3462 tcp_ratehalving_spur_to_response(sk);
3463 else
3464 tcp_undo_cwr(sk, true);
3465 }
3466
3467 /* F-RTO spurious RTO detection algorithm (RFC4138)
3468 *
3469 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3470 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3471 * window (but not to or beyond highest sequence sent before RTO):
3472 * On First ACK, send two new segments out.
3473 * On Second ACK, RTO was likely spurious. Do spurious response (response
3474 * algorithm is not part of the F-RTO detection algorithm
3475 * given in RFC4138 but can be selected separately).
3476 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3477 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3478 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3479 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3480 *
3481 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3482 * original window even after we transmit two new data segments.
3483 *
3484 * SACK version:
3485 * on first step, wait until first cumulative ACK arrives, then move to
3486 * the second step. In second step, the next ACK decides.
3487 *
3488 * F-RTO is implemented (mainly) in four functions:
3489 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3490 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3491 * called when tcp_use_frto() showed green light
3492 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3493 * - tcp_enter_frto_loss() is called if there is not enough evidence
3494 * to prove that the RTO is indeed spurious. It transfers the control
3495 * from F-RTO to the conventional RTO recovery
3496 */
3497 static bool tcp_process_frto(struct sock *sk, int flag)
3498 {
3499 struct tcp_sock *tp = tcp_sk(sk);
3500
3501 tcp_verify_left_out(tp);
3502
3503 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3504 if (flag & FLAG_DATA_ACKED)
3505 inet_csk(sk)->icsk_retransmits = 0;
3506
3507 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3508 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3509 tp->undo_marker = 0;
3510
3511 if (!before(tp->snd_una, tp->frto_highmark)) {
3512 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3513 return true;
3514 }
3515
3516 if (!tcp_is_sackfrto(tp)) {
3517 /* RFC4138 shortcoming in step 2; should also have case c):
3518 * ACK isn't duplicate nor advances window, e.g., opposite dir
3519 * data, winupdate
3520 */
3521 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3522 return true;
3523
3524 if (!(flag & FLAG_DATA_ACKED)) {
3525 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3526 flag);
3527 return true;
3528 }
3529 } else {
3530 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3531 /* Prevent sending of new data. */
3532 tp->snd_cwnd = min(tp->snd_cwnd,
3533 tcp_packets_in_flight(tp));
3534 return true;
3535 }
3536
3537 if ((tp->frto_counter >= 2) &&
3538 (!(flag & FLAG_FORWARD_PROGRESS) ||
3539 ((flag & FLAG_DATA_SACKED) &&
3540 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3541 /* RFC4138 shortcoming (see comment above) */
3542 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3543 (flag & FLAG_NOT_DUP))
3544 return true;
3545
3546 tcp_enter_frto_loss(sk, 3, flag);
3547 return true;
3548 }
3549 }
3550
3551 if (tp->frto_counter == 1) {
3552 /* tcp_may_send_now needs to see updated state */
3553 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3554 tp->frto_counter = 2;
3555
3556 if (!tcp_may_send_now(sk))
3557 tcp_enter_frto_loss(sk, 2, flag);
3558
3559 return true;
3560 } else {
3561 switch (sysctl_tcp_frto_response) {
3562 case 2:
3563 tcp_undo_spur_to_response(sk, flag);
3564 break;
3565 case 1:
3566 tcp_conservative_spur_to_response(tp);
3567 break;
3568 default:
3569 tcp_ratehalving_spur_to_response(sk);
3570 break;
3571 }
3572 tp->frto_counter = 0;
3573 tp->undo_marker = 0;
3574 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3575 }
3576 return false;
3577 }
3578
3579 /* This routine deals with incoming acks, but not outgoing ones. */
3580 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3581 {
3582 struct inet_connection_sock *icsk = inet_csk(sk);
3583 struct tcp_sock *tp = tcp_sk(sk);
3584 u32 prior_snd_una = tp->snd_una;
3585 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3586 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3587 bool is_dupack = false;
3588 u32 prior_in_flight;
3589 u32 prior_fackets;
3590 int prior_packets;
3591 int prior_sacked = tp->sacked_out;
3592 int pkts_acked = 0;
3593 int newly_acked_sacked = 0;
3594 bool frto_cwnd = false;
3595
3596 /* If the ack is older than previous acks
3597 * then we can probably ignore it.
3598 */
3599 if (before(ack, prior_snd_una))
3600 goto old_ack;
3601
3602 /* If the ack includes data we haven't sent yet, discard
3603 * this segment (RFC793 Section 3.9).
3604 */
3605 if (after(ack, tp->snd_nxt))
3606 goto invalid_ack;
3607
3608 if (tp->early_retrans_delayed)
3609 tcp_rearm_rto(sk);
3610
3611 if (after(ack, prior_snd_una))
3612 flag |= FLAG_SND_UNA_ADVANCED;
3613
3614 if (sysctl_tcp_abc) {
3615 if (icsk->icsk_ca_state < TCP_CA_CWR)
3616 tp->bytes_acked += ack - prior_snd_una;
3617 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3618 /* we assume just one segment left network */
3619 tp->bytes_acked += min(ack - prior_snd_una,
3620 tp->mss_cache);
3621 }
3622
3623 prior_fackets = tp->fackets_out;
3624 prior_in_flight = tcp_packets_in_flight(tp);
3625
3626 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3627 /* Window is constant, pure forward advance.
3628 * No more checks are required.
3629 * Note, we use the fact that SND.UNA>=SND.WL2.
3630 */
3631 tcp_update_wl(tp, ack_seq);
3632 tp->snd_una = ack;
3633 flag |= FLAG_WIN_UPDATE;
3634
3635 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3636
3637 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3638 } else {
3639 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3640 flag |= FLAG_DATA;
3641 else
3642 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3643
3644 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3645
3646 if (TCP_SKB_CB(skb)->sacked)
3647 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3648
3649 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3650 flag |= FLAG_ECE;
3651
3652 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3653 }
3654
3655 /* We passed data and got it acked, remove any soft error
3656 * log. Something worked...
3657 */
3658 sk->sk_err_soft = 0;
3659 icsk->icsk_probes_out = 0;
3660 tp->rcv_tstamp = tcp_time_stamp;
3661 prior_packets = tp->packets_out;
3662 if (!prior_packets)
3663 goto no_queue;
3664
3665 /* See if we can take anything off of the retransmit queue. */
3666 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3667
3668 pkts_acked = prior_packets - tp->packets_out;
3669 newly_acked_sacked = (prior_packets - prior_sacked) -
3670 (tp->packets_out - tp->sacked_out);
3671
3672 if (tp->frto_counter)
3673 frto_cwnd = tcp_process_frto(sk, flag);
3674 /* Guarantee sacktag reordering detection against wrap-arounds */
3675 if (before(tp->frto_highmark, tp->snd_una))
3676 tp->frto_highmark = 0;
3677
3678 if (tcp_ack_is_dubious(sk, flag)) {
3679 /* Advance CWND, if state allows this. */
3680 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3681 tcp_may_raise_cwnd(sk, flag))
3682 tcp_cong_avoid(sk, ack, prior_in_flight);
3683 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3684 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3685 is_dupack, flag);
3686 } else {
3687 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3688 tcp_cong_avoid(sk, ack, prior_in_flight);
3689 }
3690
3691 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3692 struct dst_entry *dst = __sk_dst_get(sk);
3693 if (dst)
3694 dst_confirm(dst);
3695 }
3696 return 1;
3697
3698 no_queue:
3699 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3700 if (flag & FLAG_DSACKING_ACK)
3701 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3702 is_dupack, flag);
3703 /* If this ack opens up a zero window, clear backoff. It was
3704 * being used to time the probes, and is probably far higher than
3705 * it needs to be for normal retransmission.
3706 */
3707 if (tcp_send_head(sk))
3708 tcp_ack_probe(sk);
3709 return 1;
3710
3711 invalid_ack:
3712 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3713 return -1;
3714
3715 old_ack:
3716 /* If data was SACKed, tag it and see if we should send more data.
3717 * If data was DSACKed, see if we can undo a cwnd reduction.
3718 */
3719 if (TCP_SKB_CB(skb)->sacked) {
3720 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3721 newly_acked_sacked = tp->sacked_out - prior_sacked;
3722 tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
3723 is_dupack, flag);
3724 }
3725
3726 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3727 return 0;
3728 }
3729
3730 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3731 * But, this can also be called on packets in the established flow when
3732 * the fast version below fails.
3733 */
3734 void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
3735 const u8 **hvpp, int estab,
3736 struct tcp_fastopen_cookie *foc)
3737 {
3738 const unsigned char *ptr;
3739 const struct tcphdr *th = tcp_hdr(skb);
3740 int length = (th->doff * 4) - sizeof(struct tcphdr);
3741
3742 ptr = (const unsigned char *)(th + 1);
3743 opt_rx->saw_tstamp = 0;
3744
3745 while (length > 0) {
3746 int opcode = *ptr++;
3747 int opsize;
3748
3749 switch (opcode) {
3750 case TCPOPT_EOL:
3751 return;
3752 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3753 length--;
3754 continue;
3755 default:
3756 opsize = *ptr++;
3757 if (opsize < 2) /* "silly options" */
3758 return;
3759 if (opsize > length)
3760 return; /* don't parse partial options */
3761 switch (opcode) {
3762 case TCPOPT_MSS:
3763 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3764 u16 in_mss = get_unaligned_be16(ptr);
3765 if (in_mss) {
3766 if (opt_rx->user_mss &&
3767 opt_rx->user_mss < in_mss)
3768 in_mss = opt_rx->user_mss;
3769 opt_rx->mss_clamp = in_mss;
3770 }
3771 }
3772 break;
3773 case TCPOPT_WINDOW:
3774 if (opsize == TCPOLEN_WINDOW && th->syn &&
3775 !estab && sysctl_tcp_window_scaling) {
3776 __u8 snd_wscale = *(__u8 *)ptr;
3777 opt_rx->wscale_ok = 1;
3778 if (snd_wscale > 14) {
3779 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3780 __func__,
3781 snd_wscale);
3782 snd_wscale = 14;
3783 }
3784 opt_rx->snd_wscale = snd_wscale;
3785 }
3786 break;
3787 case TCPOPT_TIMESTAMP:
3788 if ((opsize == TCPOLEN_TIMESTAMP) &&
3789 ((estab && opt_rx->tstamp_ok) ||
3790 (!estab && sysctl_tcp_timestamps))) {
3791 opt_rx->saw_tstamp = 1;
3792 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3793 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3794 }
3795 break;
3796 case TCPOPT_SACK_PERM:
3797 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3798 !estab && sysctl_tcp_sack) {
3799 opt_rx->sack_ok = TCP_SACK_SEEN;
3800 tcp_sack_reset(opt_rx);
3801 }
3802 break;
3803
3804 case TCPOPT_SACK:
3805 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3806 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3807 opt_rx->sack_ok) {
3808 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3809 }
3810 break;
3811 #ifdef CONFIG_TCP_MD5SIG
3812 case TCPOPT_MD5SIG:
3813 /*
3814 * The MD5 Hash has already been
3815 * checked (see tcp_v{4,6}_do_rcv()).
3816 */
3817 break;
3818 #endif
3819 case TCPOPT_COOKIE:
3820 /* This option is variable length.
3821 */
3822 switch (opsize) {
3823 case TCPOLEN_COOKIE_BASE:
3824 /* not yet implemented */
3825 break;
3826 case TCPOLEN_COOKIE_PAIR:
3827 /* not yet implemented */
3828 break;
3829 case TCPOLEN_COOKIE_MIN+0:
3830 case TCPOLEN_COOKIE_MIN+2:
3831 case TCPOLEN_COOKIE_MIN+4:
3832 case TCPOLEN_COOKIE_MIN+6:
3833 case TCPOLEN_COOKIE_MAX:
3834 /* 16-bit multiple */
3835 opt_rx->cookie_plus = opsize;
3836 *hvpp = ptr;
3837 break;
3838 default:
3839 /* ignore option */
3840 break;
3841 }
3842 break;
3843
3844 case TCPOPT_EXP:
3845 /* Fast Open option shares code 254 using a
3846 * 16 bits magic number. It's valid only in
3847 * SYN or SYN-ACK with an even size.
3848 */
3849 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3850 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3851 foc == NULL || !th->syn || (opsize & 1))
3852 break;
3853 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3854 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3855 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3856 memcpy(foc->val, ptr + 2, foc->len);
3857 else if (foc->len != 0)
3858 foc->len = -1;
3859 break;
3860
3861 }
3862 ptr += opsize-2;
3863 length -= opsize;
3864 }
3865 }
3866 }
3867 EXPORT_SYMBOL(tcp_parse_options);
3868
3869 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3870 {
3871 const __be32 *ptr = (const __be32 *)(th + 1);
3872
3873 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3874 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3875 tp->rx_opt.saw_tstamp = 1;
3876 ++ptr;
3877 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3878 ++ptr;
3879 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3880 return true;
3881 }
3882 return false;
3883 }
3884
3885 /* Fast parse options. This hopes to only see timestamps.
3886 * If it is wrong it falls back on tcp_parse_options().
3887 */
3888 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3889 const struct tcphdr *th,
3890 struct tcp_sock *tp, const u8 **hvpp)
3891 {
3892 /* In the spirit of fast parsing, compare doff directly to constant
3893 * values. Because equality is used, short doff can be ignored here.
3894 */
3895 if (th->doff == (sizeof(*th) / 4)) {
3896 tp->rx_opt.saw_tstamp = 0;
3897 return false;
3898 } else if (tp->rx_opt.tstamp_ok &&
3899 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3900 if (tcp_parse_aligned_timestamp(tp, th))
3901 return true;
3902 }
3903 tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL);
3904 return true;
3905 }
3906
3907 #ifdef CONFIG_TCP_MD5SIG
3908 /*
3909 * Parse MD5 Signature option
3910 */
3911 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3912 {
3913 int length = (th->doff << 2) - sizeof(*th);
3914 const u8 *ptr = (const u8 *)(th + 1);
3915
3916 /* If the TCP option is too short, we can short cut */
3917 if (length < TCPOLEN_MD5SIG)
3918 return NULL;
3919
3920 while (length > 0) {
3921 int opcode = *ptr++;
3922 int opsize;
3923
3924 switch(opcode) {
3925 case TCPOPT_EOL:
3926 return NULL;
3927 case TCPOPT_NOP:
3928 length--;
3929 continue;
3930 default:
3931 opsize = *ptr++;
3932 if (opsize < 2 || opsize > length)
3933 return NULL;
3934 if (opcode == TCPOPT_MD5SIG)
3935 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3936 }
3937 ptr += opsize - 2;
3938 length -= opsize;
3939 }
3940 return NULL;
3941 }
3942 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3943 #endif
3944
3945 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3946 {
3947 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3948 tp->rx_opt.ts_recent_stamp = get_seconds();
3949 }
3950
3951 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3952 {
3953 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3954 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3955 * extra check below makes sure this can only happen
3956 * for pure ACK frames. -DaveM
3957 *
3958 * Not only, also it occurs for expired timestamps.
3959 */
3960
3961 if (tcp_paws_check(&tp->rx_opt, 0))
3962 tcp_store_ts_recent(tp);
3963 }
3964 }
3965
3966 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3967 *
3968 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3969 * it can pass through stack. So, the following predicate verifies that
3970 * this segment is not used for anything but congestion avoidance or
3971 * fast retransmit. Moreover, we even are able to eliminate most of such
3972 * second order effects, if we apply some small "replay" window (~RTO)
3973 * to timestamp space.
3974 *
3975 * All these measures still do not guarantee that we reject wrapped ACKs
3976 * on networks with high bandwidth, when sequence space is recycled fastly,
3977 * but it guarantees that such events will be very rare and do not affect
3978 * connection seriously. This doesn't look nice, but alas, PAWS is really
3979 * buggy extension.
3980 *
3981 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3982 * states that events when retransmit arrives after original data are rare.
3983 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3984 * the biggest problem on large power networks even with minor reordering.
3985 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3986 * up to bandwidth of 18Gigabit/sec. 8) ]
3987 */
3988
3989 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3990 {
3991 const struct tcp_sock *tp = tcp_sk(sk);
3992 const struct tcphdr *th = tcp_hdr(skb);
3993 u32 seq = TCP_SKB_CB(skb)->seq;
3994 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3995
3996 return (/* 1. Pure ACK with correct sequence number. */
3997 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3998
3999 /* 2. ... and duplicate ACK. */
4000 ack == tp->snd_una &&
4001
4002 /* 3. ... and does not update window. */
4003 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4004
4005 /* 4. ... and sits in replay window. */
4006 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4007 }
4008
4009 static inline bool tcp_paws_discard(const struct sock *sk,
4010 const struct sk_buff *skb)
4011 {
4012 const struct tcp_sock *tp = tcp_sk(sk);
4013
4014 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4015 !tcp_disordered_ack(sk, skb);
4016 }
4017
4018 /* Check segment sequence number for validity.
4019 *
4020 * Segment controls are considered valid, if the segment
4021 * fits to the window after truncation to the window. Acceptability
4022 * of data (and SYN, FIN, of course) is checked separately.
4023 * See tcp_data_queue(), for example.
4024 *
4025 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4026 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4027 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4028 * (borrowed from freebsd)
4029 */
4030
4031 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4032 {
4033 return !before(end_seq, tp->rcv_wup) &&
4034 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4035 }
4036
4037 /* When we get a reset we do this. */
4038 static void tcp_reset(struct sock *sk)
4039 {
4040 /* We want the right error as BSD sees it (and indeed as we do). */
4041 switch (sk->sk_state) {
4042 case TCP_SYN_SENT:
4043 sk->sk_err = ECONNREFUSED;
4044 break;
4045 case TCP_CLOSE_WAIT:
4046 sk->sk_err = EPIPE;
4047 break;
4048 case TCP_CLOSE:
4049 return;
4050 default:
4051 sk->sk_err = ECONNRESET;
4052 }
4053 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4054 smp_wmb();
4055
4056 if (!sock_flag(sk, SOCK_DEAD))
4057 sk->sk_error_report(sk);
4058
4059 tcp_done(sk);
4060 }
4061
4062 /*
4063 * Process the FIN bit. This now behaves as it is supposed to work
4064 * and the FIN takes effect when it is validly part of sequence
4065 * space. Not before when we get holes.
4066 *
4067 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4068 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4069 * TIME-WAIT)
4070 *
4071 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4072 * close and we go into CLOSING (and later onto TIME-WAIT)
4073 *
4074 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4075 */
4076 static void tcp_fin(struct sock *sk)
4077 {
4078 struct tcp_sock *tp = tcp_sk(sk);
4079
4080 inet_csk_schedule_ack(sk);
4081
4082 sk->sk_shutdown |= RCV_SHUTDOWN;
4083 sock_set_flag(sk, SOCK_DONE);
4084
4085 switch (sk->sk_state) {
4086 case TCP_SYN_RECV:
4087 case TCP_ESTABLISHED:
4088 /* Move to CLOSE_WAIT */
4089 tcp_set_state(sk, TCP_CLOSE_WAIT);
4090 inet_csk(sk)->icsk_ack.pingpong = 1;
4091 break;
4092
4093 case TCP_CLOSE_WAIT:
4094 case TCP_CLOSING:
4095 /* Received a retransmission of the FIN, do
4096 * nothing.
4097 */
4098 break;
4099 case TCP_LAST_ACK:
4100 /* RFC793: Remain in the LAST-ACK state. */
4101 break;
4102
4103 case TCP_FIN_WAIT1:
4104 /* This case occurs when a simultaneous close
4105 * happens, we must ack the received FIN and
4106 * enter the CLOSING state.
4107 */
4108 tcp_send_ack(sk);
4109 tcp_set_state(sk, TCP_CLOSING);
4110 break;
4111 case TCP_FIN_WAIT2:
4112 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4113 tcp_send_ack(sk);
4114 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4115 break;
4116 default:
4117 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4118 * cases we should never reach this piece of code.
4119 */
4120 pr_err("%s: Impossible, sk->sk_state=%d\n",
4121 __func__, sk->sk_state);
4122 break;
4123 }
4124
4125 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4126 * Probably, we should reset in this case. For now drop them.
4127 */
4128 __skb_queue_purge(&tp->out_of_order_queue);
4129 if (tcp_is_sack(tp))
4130 tcp_sack_reset(&tp->rx_opt);
4131 sk_mem_reclaim(sk);
4132
4133 if (!sock_flag(sk, SOCK_DEAD)) {
4134 sk->sk_state_change(sk);
4135
4136 /* Do not send POLL_HUP for half duplex close. */
4137 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4138 sk->sk_state == TCP_CLOSE)
4139 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4140 else
4141 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4142 }
4143 }
4144
4145 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4146 u32 end_seq)
4147 {
4148 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4149 if (before(seq, sp->start_seq))
4150 sp->start_seq = seq;
4151 if (after(end_seq, sp->end_seq))
4152 sp->end_seq = end_seq;
4153 return true;
4154 }
4155 return false;
4156 }
4157
4158 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4159 {
4160 struct tcp_sock *tp = tcp_sk(sk);
4161
4162 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4163 int mib_idx;
4164
4165 if (before(seq, tp->rcv_nxt))
4166 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4167 else
4168 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4169
4170 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4171
4172 tp->rx_opt.dsack = 1;
4173 tp->duplicate_sack[0].start_seq = seq;
4174 tp->duplicate_sack[0].end_seq = end_seq;
4175 }
4176 }
4177
4178 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4179 {
4180 struct tcp_sock *tp = tcp_sk(sk);
4181
4182 if (!tp->rx_opt.dsack)
4183 tcp_dsack_set(sk, seq, end_seq);
4184 else
4185 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4186 }
4187
4188 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4189 {
4190 struct tcp_sock *tp = tcp_sk(sk);
4191
4192 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4193 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4194 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4195 tcp_enter_quickack_mode(sk);
4196
4197 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4198 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4199
4200 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4201 end_seq = tp->rcv_nxt;
4202 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4203 }
4204 }
4205
4206 tcp_send_ack(sk);
4207 }
4208
4209 /* These routines update the SACK block as out-of-order packets arrive or
4210 * in-order packets close up the sequence space.
4211 */
4212 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4213 {
4214 int this_sack;
4215 struct tcp_sack_block *sp = &tp->selective_acks[0];
4216 struct tcp_sack_block *swalk = sp + 1;
4217
4218 /* See if the recent change to the first SACK eats into
4219 * or hits the sequence space of other SACK blocks, if so coalesce.
4220 */
4221 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4222 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4223 int i;
4224
4225 /* Zap SWALK, by moving every further SACK up by one slot.
4226 * Decrease num_sacks.
4227 */
4228 tp->rx_opt.num_sacks--;
4229 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4230 sp[i] = sp[i + 1];
4231 continue;
4232 }
4233 this_sack++, swalk++;
4234 }
4235 }
4236
4237 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4238 {
4239 struct tcp_sock *tp = tcp_sk(sk);
4240 struct tcp_sack_block *sp = &tp->selective_acks[0];
4241 int cur_sacks = tp->rx_opt.num_sacks;
4242 int this_sack;
4243
4244 if (!cur_sacks)
4245 goto new_sack;
4246
4247 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4248 if (tcp_sack_extend(sp, seq, end_seq)) {
4249 /* Rotate this_sack to the first one. */
4250 for (; this_sack > 0; this_sack--, sp--)
4251 swap(*sp, *(sp - 1));
4252 if (cur_sacks > 1)
4253 tcp_sack_maybe_coalesce(tp);
4254 return;
4255 }
4256 }
4257
4258 /* Could not find an adjacent existing SACK, build a new one,
4259 * put it at the front, and shift everyone else down. We
4260 * always know there is at least one SACK present already here.
4261 *
4262 * If the sack array is full, forget about the last one.
4263 */
4264 if (this_sack >= TCP_NUM_SACKS) {
4265 this_sack--;
4266 tp->rx_opt.num_sacks--;
4267 sp--;
4268 }
4269 for (; this_sack > 0; this_sack--, sp--)
4270 *sp = *(sp - 1);
4271
4272 new_sack:
4273 /* Build the new head SACK, and we're done. */
4274 sp->start_seq = seq;
4275 sp->end_seq = end_seq;
4276 tp->rx_opt.num_sacks++;
4277 }
4278
4279 /* RCV.NXT advances, some SACKs should be eaten. */
4280
4281 static void tcp_sack_remove(struct tcp_sock *tp)
4282 {
4283 struct tcp_sack_block *sp = &tp->selective_acks[0];
4284 int num_sacks = tp->rx_opt.num_sacks;
4285 int this_sack;
4286
4287 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4288 if (skb_queue_empty(&tp->out_of_order_queue)) {
4289 tp->rx_opt.num_sacks = 0;
4290 return;
4291 }
4292
4293 for (this_sack = 0; this_sack < num_sacks;) {
4294 /* Check if the start of the sack is covered by RCV.NXT. */
4295 if (!before(tp->rcv_nxt, sp->start_seq)) {
4296 int i;
4297
4298 /* RCV.NXT must cover all the block! */
4299 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4300
4301 /* Zap this SACK, by moving forward any other SACKS. */
4302 for (i=this_sack+1; i < num_sacks; i++)
4303 tp->selective_acks[i-1] = tp->selective_acks[i];
4304 num_sacks--;
4305 continue;
4306 }
4307 this_sack++;
4308 sp++;
4309 }
4310 tp->rx_opt.num_sacks = num_sacks;
4311 }
4312
4313 /* This one checks to see if we can put data from the
4314 * out_of_order queue into the receive_queue.
4315 */
4316 static void tcp_ofo_queue(struct sock *sk)
4317 {
4318 struct tcp_sock *tp = tcp_sk(sk);
4319 __u32 dsack_high = tp->rcv_nxt;
4320 struct sk_buff *skb;
4321
4322 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4323 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4324 break;
4325
4326 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4327 __u32 dsack = dsack_high;
4328 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4329 dsack_high = TCP_SKB_CB(skb)->end_seq;
4330 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4331 }
4332
4333 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4334 SOCK_DEBUG(sk, "ofo packet was already received\n");
4335 __skb_unlink(skb, &tp->out_of_order_queue);
4336 __kfree_skb(skb);
4337 continue;
4338 }
4339 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4340 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4341 TCP_SKB_CB(skb)->end_seq);
4342
4343 __skb_unlink(skb, &tp->out_of_order_queue);
4344 __skb_queue_tail(&sk->sk_receive_queue, skb);
4345 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4346 if (tcp_hdr(skb)->fin)
4347 tcp_fin(sk);
4348 }
4349 }
4350
4351 static bool tcp_prune_ofo_queue(struct sock *sk);
4352 static int tcp_prune_queue(struct sock *sk);
4353
4354 static int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4355 {
4356 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4357 !sk_rmem_schedule(sk, size)) {
4358
4359 if (tcp_prune_queue(sk) < 0)
4360 return -1;
4361
4362 if (!sk_rmem_schedule(sk, size)) {
4363 if (!tcp_prune_ofo_queue(sk))
4364 return -1;
4365
4366 if (!sk_rmem_schedule(sk, size))
4367 return -1;
4368 }
4369 }
4370 return 0;
4371 }
4372
4373 /**
4374 * tcp_try_coalesce - try to merge skb to prior one
4375 * @sk: socket
4376 * @to: prior buffer
4377 * @from: buffer to add in queue
4378 * @fragstolen: pointer to boolean
4379 *
4380 * Before queueing skb @from after @to, try to merge them
4381 * to reduce overall memory use and queue lengths, if cost is small.
4382 * Packets in ofo or receive queues can stay a long time.
4383 * Better try to coalesce them right now to avoid future collapses.
4384 * Returns true if caller should free @from instead of queueing it
4385 */
4386 static bool tcp_try_coalesce(struct sock *sk,
4387 struct sk_buff *to,
4388 struct sk_buff *from,
4389 bool *fragstolen)
4390 {
4391 int delta;
4392
4393 *fragstolen = false;
4394
4395 if (tcp_hdr(from)->fin)
4396 return false;
4397
4398 /* Its possible this segment overlaps with prior segment in queue */
4399 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4400 return false;
4401
4402 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4403 return false;
4404
4405 atomic_add(delta, &sk->sk_rmem_alloc);
4406 sk_mem_charge(sk, delta);
4407 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4408 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4409 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4410 return true;
4411 }
4412
4413 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4414 {
4415 struct tcp_sock *tp = tcp_sk(sk);
4416 struct sk_buff *skb1;
4417 u32 seq, end_seq;
4418
4419 TCP_ECN_check_ce(tp, skb);
4420
4421 if (unlikely(tcp_try_rmem_schedule(sk, skb->truesize))) {
4422 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4423 __kfree_skb(skb);
4424 return;
4425 }
4426
4427 /* Disable header prediction. */
4428 tp->pred_flags = 0;
4429 inet_csk_schedule_ack(sk);
4430
4431 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4432 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4433 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4434
4435 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4436 if (!skb1) {
4437 /* Initial out of order segment, build 1 SACK. */
4438 if (tcp_is_sack(tp)) {
4439 tp->rx_opt.num_sacks = 1;
4440 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4441 tp->selective_acks[0].end_seq =
4442 TCP_SKB_CB(skb)->end_seq;
4443 }
4444 __skb_queue_head(&tp->out_of_order_queue, skb);
4445 goto end;
4446 }
4447
4448 seq = TCP_SKB_CB(skb)->seq;
4449 end_seq = TCP_SKB_CB(skb)->end_seq;
4450
4451 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4452 bool fragstolen;
4453
4454 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4455 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4456 } else {
4457 kfree_skb_partial(skb, fragstolen);
4458 skb = NULL;
4459 }
4460
4461 if (!tp->rx_opt.num_sacks ||
4462 tp->selective_acks[0].end_seq != seq)
4463 goto add_sack;
4464
4465 /* Common case: data arrive in order after hole. */
4466 tp->selective_acks[0].end_seq = end_seq;
4467 goto end;
4468 }
4469
4470 /* Find place to insert this segment. */
4471 while (1) {
4472 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4473 break;
4474 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4475 skb1 = NULL;
4476 break;
4477 }
4478 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4479 }
4480
4481 /* Do skb overlap to previous one? */
4482 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4483 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4484 /* All the bits are present. Drop. */
4485 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4486 __kfree_skb(skb);
4487 skb = NULL;
4488 tcp_dsack_set(sk, seq, end_seq);
4489 goto add_sack;
4490 }
4491 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4492 /* Partial overlap. */
4493 tcp_dsack_set(sk, seq,
4494 TCP_SKB_CB(skb1)->end_seq);
4495 } else {
4496 if (skb_queue_is_first(&tp->out_of_order_queue,
4497 skb1))
4498 skb1 = NULL;
4499 else
4500 skb1 = skb_queue_prev(
4501 &tp->out_of_order_queue,
4502 skb1);
4503 }
4504 }
4505 if (!skb1)
4506 __skb_queue_head(&tp->out_of_order_queue, skb);
4507 else
4508 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4509
4510 /* And clean segments covered by new one as whole. */
4511 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4512 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4513
4514 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4515 break;
4516 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4517 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4518 end_seq);
4519 break;
4520 }
4521 __skb_unlink(skb1, &tp->out_of_order_queue);
4522 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4523 TCP_SKB_CB(skb1)->end_seq);
4524 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4525 __kfree_skb(skb1);
4526 }
4527
4528 add_sack:
4529 if (tcp_is_sack(tp))
4530 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4531 end:
4532 if (skb)
4533 skb_set_owner_r(skb, sk);
4534 }
4535
4536 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4537 bool *fragstolen)
4538 {
4539 int eaten;
4540 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4541
4542 __skb_pull(skb, hdrlen);
4543 eaten = (tail &&
4544 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4545 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4546 if (!eaten) {
4547 __skb_queue_tail(&sk->sk_receive_queue, skb);
4548 skb_set_owner_r(skb, sk);
4549 }
4550 return eaten;
4551 }
4552
4553 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4554 {
4555 struct sk_buff *skb;
4556 struct tcphdr *th;
4557 bool fragstolen;
4558
4559 if (tcp_try_rmem_schedule(sk, size + sizeof(*th)))
4560 goto err;
4561
4562 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4563 if (!skb)
4564 goto err;
4565
4566 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4567 skb_reset_transport_header(skb);
4568 memset(th, 0, sizeof(*th));
4569
4570 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4571 goto err_free;
4572
4573 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4574 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4575 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4576
4577 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4578 WARN_ON_ONCE(fragstolen); /* should not happen */
4579 __kfree_skb(skb);
4580 }
4581 return size;
4582
4583 err_free:
4584 kfree_skb(skb);
4585 err:
4586 return -ENOMEM;
4587 }
4588
4589 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4590 {
4591 const struct tcphdr *th = tcp_hdr(skb);
4592 struct tcp_sock *tp = tcp_sk(sk);
4593 int eaten = -1;
4594 bool fragstolen = false;
4595
4596 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4597 goto drop;
4598
4599 skb_dst_drop(skb);
4600 __skb_pull(skb, th->doff * 4);
4601
4602 TCP_ECN_accept_cwr(tp, skb);
4603
4604 tp->rx_opt.dsack = 0;
4605
4606 /* Queue data for delivery to the user.
4607 * Packets in sequence go to the receive queue.
4608 * Out of sequence packets to the out_of_order_queue.
4609 */
4610 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4611 if (tcp_receive_window(tp) == 0)
4612 goto out_of_window;
4613
4614 /* Ok. In sequence. In window. */
4615 if (tp->ucopy.task == current &&
4616 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4617 sock_owned_by_user(sk) && !tp->urg_data) {
4618 int chunk = min_t(unsigned int, skb->len,
4619 tp->ucopy.len);
4620
4621 __set_current_state(TASK_RUNNING);
4622
4623 local_bh_enable();
4624 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4625 tp->ucopy.len -= chunk;
4626 tp->copied_seq += chunk;
4627 eaten = (chunk == skb->len);
4628 tcp_rcv_space_adjust(sk);
4629 }
4630 local_bh_disable();
4631 }
4632
4633 if (eaten <= 0) {
4634 queue_and_out:
4635 if (eaten < 0 &&
4636 tcp_try_rmem_schedule(sk, skb->truesize))
4637 goto drop;
4638
4639 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4640 }
4641 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4642 if (skb->len)
4643 tcp_event_data_recv(sk, skb);
4644 if (th->fin)
4645 tcp_fin(sk);
4646
4647 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4648 tcp_ofo_queue(sk);
4649
4650 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4651 * gap in queue is filled.
4652 */
4653 if (skb_queue_empty(&tp->out_of_order_queue))
4654 inet_csk(sk)->icsk_ack.pingpong = 0;
4655 }
4656
4657 if (tp->rx_opt.num_sacks)
4658 tcp_sack_remove(tp);
4659
4660 tcp_fast_path_check(sk);
4661
4662 if (eaten > 0)
4663 kfree_skb_partial(skb, fragstolen);
4664 else if (!sock_flag(sk, SOCK_DEAD))
4665 sk->sk_data_ready(sk, 0);
4666 return;
4667 }
4668
4669 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4670 /* A retransmit, 2nd most common case. Force an immediate ack. */
4671 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4672 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4673
4674 out_of_window:
4675 tcp_enter_quickack_mode(sk);
4676 inet_csk_schedule_ack(sk);
4677 drop:
4678 __kfree_skb(skb);
4679 return;
4680 }
4681
4682 /* Out of window. F.e. zero window probe. */
4683 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4684 goto out_of_window;
4685
4686 tcp_enter_quickack_mode(sk);
4687
4688 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4689 /* Partial packet, seq < rcv_next < end_seq */
4690 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4691 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4692 TCP_SKB_CB(skb)->end_seq);
4693
4694 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4695
4696 /* If window is closed, drop tail of packet. But after
4697 * remembering D-SACK for its head made in previous line.
4698 */
4699 if (!tcp_receive_window(tp))
4700 goto out_of_window;
4701 goto queue_and_out;
4702 }
4703
4704 tcp_data_queue_ofo(sk, skb);
4705 }
4706
4707 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4708 struct sk_buff_head *list)
4709 {
4710 struct sk_buff *next = NULL;
4711
4712 if (!skb_queue_is_last(list, skb))
4713 next = skb_queue_next(list, skb);
4714
4715 __skb_unlink(skb, list);
4716 __kfree_skb(skb);
4717 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4718
4719 return next;
4720 }
4721
4722 /* Collapse contiguous sequence of skbs head..tail with
4723 * sequence numbers start..end.
4724 *
4725 * If tail is NULL, this means until the end of the list.
4726 *
4727 * Segments with FIN/SYN are not collapsed (only because this
4728 * simplifies code)
4729 */
4730 static void
4731 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4732 struct sk_buff *head, struct sk_buff *tail,
4733 u32 start, u32 end)
4734 {
4735 struct sk_buff *skb, *n;
4736 bool end_of_skbs;
4737
4738 /* First, check that queue is collapsible and find
4739 * the point where collapsing can be useful. */
4740 skb = head;
4741 restart:
4742 end_of_skbs = true;
4743 skb_queue_walk_from_safe(list, skb, n) {
4744 if (skb == tail)
4745 break;
4746 /* No new bits? It is possible on ofo queue. */
4747 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4748 skb = tcp_collapse_one(sk, skb, list);
4749 if (!skb)
4750 break;
4751 goto restart;
4752 }
4753
4754 /* The first skb to collapse is:
4755 * - not SYN/FIN and
4756 * - bloated or contains data before "start" or
4757 * overlaps to the next one.
4758 */
4759 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4760 (tcp_win_from_space(skb->truesize) > skb->len ||
4761 before(TCP_SKB_CB(skb)->seq, start))) {
4762 end_of_skbs = false;
4763 break;
4764 }
4765
4766 if (!skb_queue_is_last(list, skb)) {
4767 struct sk_buff *next = skb_queue_next(list, skb);
4768 if (next != tail &&
4769 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4770 end_of_skbs = false;
4771 break;
4772 }
4773 }
4774
4775 /* Decided to skip this, advance start seq. */
4776 start = TCP_SKB_CB(skb)->end_seq;
4777 }
4778 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4779 return;
4780
4781 while (before(start, end)) {
4782 struct sk_buff *nskb;
4783 unsigned int header = skb_headroom(skb);
4784 int copy = SKB_MAX_ORDER(header, 0);
4785
4786 /* Too big header? This can happen with IPv6. */
4787 if (copy < 0)
4788 return;
4789 if (end - start < copy)
4790 copy = end - start;
4791 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4792 if (!nskb)
4793 return;
4794
4795 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4796 skb_set_network_header(nskb, (skb_network_header(skb) -
4797 skb->head));
4798 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4799 skb->head));
4800 skb_reserve(nskb, header);
4801 memcpy(nskb->head, skb->head, header);
4802 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4803 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4804 __skb_queue_before(list, skb, nskb);
4805 skb_set_owner_r(nskb, sk);
4806
4807 /* Copy data, releasing collapsed skbs. */
4808 while (copy > 0) {
4809 int offset = start - TCP_SKB_CB(skb)->seq;
4810 int size = TCP_SKB_CB(skb)->end_seq - start;
4811
4812 BUG_ON(offset < 0);
4813 if (size > 0) {
4814 size = min(copy, size);
4815 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4816 BUG();
4817 TCP_SKB_CB(nskb)->end_seq += size;
4818 copy -= size;
4819 start += size;
4820 }
4821 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4822 skb = tcp_collapse_one(sk, skb, list);
4823 if (!skb ||
4824 skb == tail ||
4825 tcp_hdr(skb)->syn ||
4826 tcp_hdr(skb)->fin)
4827 return;
4828 }
4829 }
4830 }
4831 }
4832
4833 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4834 * and tcp_collapse() them until all the queue is collapsed.
4835 */
4836 static void tcp_collapse_ofo_queue(struct sock *sk)
4837 {
4838 struct tcp_sock *tp = tcp_sk(sk);
4839 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4840 struct sk_buff *head;
4841 u32 start, end;
4842
4843 if (skb == NULL)
4844 return;
4845
4846 start = TCP_SKB_CB(skb)->seq;
4847 end = TCP_SKB_CB(skb)->end_seq;
4848 head = skb;
4849
4850 for (;;) {
4851 struct sk_buff *next = NULL;
4852
4853 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4854 next = skb_queue_next(&tp->out_of_order_queue, skb);
4855 skb = next;
4856
4857 /* Segment is terminated when we see gap or when
4858 * we are at the end of all the queue. */
4859 if (!skb ||
4860 after(TCP_SKB_CB(skb)->seq, end) ||
4861 before(TCP_SKB_CB(skb)->end_seq, start)) {
4862 tcp_collapse(sk, &tp->out_of_order_queue,
4863 head, skb, start, end);
4864 head = skb;
4865 if (!skb)
4866 break;
4867 /* Start new segment */
4868 start = TCP_SKB_CB(skb)->seq;
4869 end = TCP_SKB_CB(skb)->end_seq;
4870 } else {
4871 if (before(TCP_SKB_CB(skb)->seq, start))
4872 start = TCP_SKB_CB(skb)->seq;
4873 if (after(TCP_SKB_CB(skb)->end_seq, end))
4874 end = TCP_SKB_CB(skb)->end_seq;
4875 }
4876 }
4877 }
4878
4879 /*
4880 * Purge the out-of-order queue.
4881 * Return true if queue was pruned.
4882 */
4883 static bool tcp_prune_ofo_queue(struct sock *sk)
4884 {
4885 struct tcp_sock *tp = tcp_sk(sk);
4886 bool res = false;
4887
4888 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4889 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4890 __skb_queue_purge(&tp->out_of_order_queue);
4891
4892 /* Reset SACK state. A conforming SACK implementation will
4893 * do the same at a timeout based retransmit. When a connection
4894 * is in a sad state like this, we care only about integrity
4895 * of the connection not performance.
4896 */
4897 if (tp->rx_opt.sack_ok)
4898 tcp_sack_reset(&tp->rx_opt);
4899 sk_mem_reclaim(sk);
4900 res = true;
4901 }
4902 return res;
4903 }
4904
4905 /* Reduce allocated memory if we can, trying to get
4906 * the socket within its memory limits again.
4907 *
4908 * Return less than zero if we should start dropping frames
4909 * until the socket owning process reads some of the data
4910 * to stabilize the situation.
4911 */
4912 static int tcp_prune_queue(struct sock *sk)
4913 {
4914 struct tcp_sock *tp = tcp_sk(sk);
4915
4916 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4917
4918 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4919
4920 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4921 tcp_clamp_window(sk);
4922 else if (sk_under_memory_pressure(sk))
4923 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4924
4925 tcp_collapse_ofo_queue(sk);
4926 if (!skb_queue_empty(&sk->sk_receive_queue))
4927 tcp_collapse(sk, &sk->sk_receive_queue,
4928 skb_peek(&sk->sk_receive_queue),
4929 NULL,
4930 tp->copied_seq, tp->rcv_nxt);
4931 sk_mem_reclaim(sk);
4932
4933 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4934 return 0;
4935
4936 /* Collapsing did not help, destructive actions follow.
4937 * This must not ever occur. */
4938
4939 tcp_prune_ofo_queue(sk);
4940
4941 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4942 return 0;
4943
4944 /* If we are really being abused, tell the caller to silently
4945 * drop receive data on the floor. It will get retransmitted
4946 * and hopefully then we'll have sufficient space.
4947 */
4948 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4949
4950 /* Massive buffer overcommit. */
4951 tp->pred_flags = 0;
4952 return -1;
4953 }
4954
4955 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4956 * As additional protections, we do not touch cwnd in retransmission phases,
4957 * and if application hit its sndbuf limit recently.
4958 */
4959 void tcp_cwnd_application_limited(struct sock *sk)
4960 {
4961 struct tcp_sock *tp = tcp_sk(sk);
4962
4963 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4964 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4965 /* Limited by application or receiver window. */
4966 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4967 u32 win_used = max(tp->snd_cwnd_used, init_win);
4968 if (win_used < tp->snd_cwnd) {
4969 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4970 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4971 }
4972 tp->snd_cwnd_used = 0;
4973 }
4974 tp->snd_cwnd_stamp = tcp_time_stamp;
4975 }
4976
4977 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4978 {
4979 const struct tcp_sock *tp = tcp_sk(sk);
4980
4981 /* If the user specified a specific send buffer setting, do
4982 * not modify it.
4983 */
4984 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4985 return false;
4986
4987 /* If we are under global TCP memory pressure, do not expand. */
4988 if (sk_under_memory_pressure(sk))
4989 return false;
4990
4991 /* If we are under soft global TCP memory pressure, do not expand. */
4992 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4993 return false;
4994
4995 /* If we filled the congestion window, do not expand. */
4996 if (tp->packets_out >= tp->snd_cwnd)
4997 return false;
4998
4999 return true;
5000 }
5001
5002 /* When incoming ACK allowed to free some skb from write_queue,
5003 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5004 * on the exit from tcp input handler.
5005 *
5006 * PROBLEM: sndbuf expansion does not work well with largesend.
5007 */
5008 static void tcp_new_space(struct sock *sk)
5009 {
5010 struct tcp_sock *tp = tcp_sk(sk);
5011
5012 if (tcp_should_expand_sndbuf(sk)) {
5013 int sndmem = SKB_TRUESIZE(max_t(u32,
5014 tp->rx_opt.mss_clamp,
5015 tp->mss_cache) +
5016 MAX_TCP_HEADER);
5017 int demanded = max_t(unsigned int, tp->snd_cwnd,
5018 tp->reordering + 1);
5019 sndmem *= 2 * demanded;
5020 if (sndmem > sk->sk_sndbuf)
5021 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
5022 tp->snd_cwnd_stamp = tcp_time_stamp;
5023 }
5024
5025 sk->sk_write_space(sk);
5026 }
5027
5028 static void tcp_check_space(struct sock *sk)
5029 {
5030 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5031 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5032 if (sk->sk_socket &&
5033 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5034 tcp_new_space(sk);
5035 }
5036 }
5037
5038 static inline void tcp_data_snd_check(struct sock *sk)
5039 {
5040 tcp_push_pending_frames(sk);
5041 tcp_check_space(sk);
5042 }
5043
5044 /*
5045 * Check if sending an ack is needed.
5046 */
5047 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5048 {
5049 struct tcp_sock *tp = tcp_sk(sk);
5050
5051 /* More than one full frame received... */
5052 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5053 /* ... and right edge of window advances far enough.
5054 * (tcp_recvmsg() will send ACK otherwise). Or...
5055 */
5056 __tcp_select_window(sk) >= tp->rcv_wnd) ||
5057 /* We ACK each frame or... */
5058 tcp_in_quickack_mode(sk) ||
5059 /* We have out of order data. */
5060 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5061 /* Then ack it now */
5062 tcp_send_ack(sk);
5063 } else {
5064 /* Else, send delayed ack. */
5065 tcp_send_delayed_ack(sk);
5066 }
5067 }
5068
5069 static inline void tcp_ack_snd_check(struct sock *sk)
5070 {
5071 if (!inet_csk_ack_scheduled(sk)) {
5072 /* We sent a data segment already. */
5073 return;
5074 }
5075 __tcp_ack_snd_check(sk, 1);
5076 }
5077
5078 /*
5079 * This routine is only called when we have urgent data
5080 * signaled. Its the 'slow' part of tcp_urg. It could be
5081 * moved inline now as tcp_urg is only called from one
5082 * place. We handle URGent data wrong. We have to - as
5083 * BSD still doesn't use the correction from RFC961.
5084 * For 1003.1g we should support a new option TCP_STDURG to permit
5085 * either form (or just set the sysctl tcp_stdurg).
5086 */
5087
5088 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5089 {
5090 struct tcp_sock *tp = tcp_sk(sk);
5091 u32 ptr = ntohs(th->urg_ptr);
5092
5093 if (ptr && !sysctl_tcp_stdurg)
5094 ptr--;
5095 ptr += ntohl(th->seq);
5096
5097 /* Ignore urgent data that we've already seen and read. */
5098 if (after(tp->copied_seq, ptr))
5099 return;
5100
5101 /* Do not replay urg ptr.
5102 *
5103 * NOTE: interesting situation not covered by specs.
5104 * Misbehaving sender may send urg ptr, pointing to segment,
5105 * which we already have in ofo queue. We are not able to fetch
5106 * such data and will stay in TCP_URG_NOTYET until will be eaten
5107 * by recvmsg(). Seems, we are not obliged to handle such wicked
5108 * situations. But it is worth to think about possibility of some
5109 * DoSes using some hypothetical application level deadlock.
5110 */
5111 if (before(ptr, tp->rcv_nxt))
5112 return;
5113
5114 /* Do we already have a newer (or duplicate) urgent pointer? */
5115 if (tp->urg_data && !after(ptr, tp->urg_seq))
5116 return;
5117
5118 /* Tell the world about our new urgent pointer. */
5119 sk_send_sigurg(sk);
5120
5121 /* We may be adding urgent data when the last byte read was
5122 * urgent. To do this requires some care. We cannot just ignore
5123 * tp->copied_seq since we would read the last urgent byte again
5124 * as data, nor can we alter copied_seq until this data arrives
5125 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5126 *
5127 * NOTE. Double Dutch. Rendering to plain English: author of comment
5128 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5129 * and expect that both A and B disappear from stream. This is _wrong_.
5130 * Though this happens in BSD with high probability, this is occasional.
5131 * Any application relying on this is buggy. Note also, that fix "works"
5132 * only in this artificial test. Insert some normal data between A and B and we will
5133 * decline of BSD again. Verdict: it is better to remove to trap
5134 * buggy users.
5135 */
5136 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5137 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5138 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5139 tp->copied_seq++;
5140 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5141 __skb_unlink(skb, &sk->sk_receive_queue);
5142 __kfree_skb(skb);
5143 }
5144 }
5145
5146 tp->urg_data = TCP_URG_NOTYET;
5147 tp->urg_seq = ptr;
5148
5149 /* Disable header prediction. */
5150 tp->pred_flags = 0;
5151 }
5152
5153 /* This is the 'fast' part of urgent handling. */
5154 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5155 {
5156 struct tcp_sock *tp = tcp_sk(sk);
5157
5158 /* Check if we get a new urgent pointer - normally not. */
5159 if (th->urg)
5160 tcp_check_urg(sk, th);
5161
5162 /* Do we wait for any urgent data? - normally not... */
5163 if (tp->urg_data == TCP_URG_NOTYET) {
5164 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5165 th->syn;
5166
5167 /* Is the urgent pointer pointing into this packet? */
5168 if (ptr < skb->len) {
5169 u8 tmp;
5170 if (skb_copy_bits(skb, ptr, &tmp, 1))
5171 BUG();
5172 tp->urg_data = TCP_URG_VALID | tmp;
5173 if (!sock_flag(sk, SOCK_DEAD))
5174 sk->sk_data_ready(sk, 0);
5175 }
5176 }
5177 }
5178
5179 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5180 {
5181 struct tcp_sock *tp = tcp_sk(sk);
5182 int chunk = skb->len - hlen;
5183 int err;
5184
5185 local_bh_enable();
5186 if (skb_csum_unnecessary(skb))
5187 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
5188 else
5189 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
5190 tp->ucopy.iov);
5191
5192 if (!err) {
5193 tp->ucopy.len -= chunk;
5194 tp->copied_seq += chunk;
5195 tcp_rcv_space_adjust(sk);
5196 }
5197
5198 local_bh_disable();
5199 return err;
5200 }
5201
5202 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5203 struct sk_buff *skb)
5204 {
5205 __sum16 result;
5206
5207 if (sock_owned_by_user(sk)) {
5208 local_bh_enable();
5209 result = __tcp_checksum_complete(skb);
5210 local_bh_disable();
5211 } else {
5212 result = __tcp_checksum_complete(skb);
5213 }
5214 return result;
5215 }
5216
5217 static inline bool tcp_checksum_complete_user(struct sock *sk,
5218 struct sk_buff *skb)
5219 {
5220 return !skb_csum_unnecessary(skb) &&
5221 __tcp_checksum_complete_user(sk, skb);
5222 }
5223
5224 #ifdef CONFIG_NET_DMA
5225 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5226 int hlen)
5227 {
5228 struct tcp_sock *tp = tcp_sk(sk);
5229 int chunk = skb->len - hlen;
5230 int dma_cookie;
5231 bool copied_early = false;
5232
5233 if (tp->ucopy.wakeup)
5234 return false;
5235
5236 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5237 tp->ucopy.dma_chan = net_dma_find_channel();
5238
5239 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5240
5241 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5242 skb, hlen,
5243 tp->ucopy.iov, chunk,
5244 tp->ucopy.pinned_list);
5245
5246 if (dma_cookie < 0)
5247 goto out;
5248
5249 tp->ucopy.dma_cookie = dma_cookie;
5250 copied_early = true;
5251
5252 tp->ucopy.len -= chunk;
5253 tp->copied_seq += chunk;
5254 tcp_rcv_space_adjust(sk);
5255
5256 if ((tp->ucopy.len == 0) ||
5257 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5258 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5259 tp->ucopy.wakeup = 1;
5260 sk->sk_data_ready(sk, 0);
5261 }
5262 } else if (chunk > 0) {
5263 tp->ucopy.wakeup = 1;
5264 sk->sk_data_ready(sk, 0);
5265 }
5266 out:
5267 return copied_early;
5268 }
5269 #endif /* CONFIG_NET_DMA */
5270
5271 static void tcp_send_challenge_ack(struct sock *sk)
5272 {
5273 /* unprotected vars, we dont care of overwrites */
5274 static u32 challenge_timestamp;
5275 static unsigned int challenge_count;
5276 u32 now = jiffies / HZ;
5277
5278 if (now != challenge_timestamp) {
5279 challenge_timestamp = now;
5280 challenge_count = 0;
5281 }
5282 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
5283 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
5284 tcp_send_ack(sk);
5285 }
5286 }
5287
5288 /* Does PAWS and seqno based validation of an incoming segment, flags will
5289 * play significant role here.
5290 */
5291 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5292 const struct tcphdr *th, int syn_inerr)
5293 {
5294 const u8 *hash_location;
5295 struct tcp_sock *tp = tcp_sk(sk);
5296
5297 /* RFC1323: H1. Apply PAWS check first. */
5298 if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
5299 tp->rx_opt.saw_tstamp &&
5300 tcp_paws_discard(sk, skb)) {
5301 if (!th->rst) {
5302 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5303 tcp_send_dupack(sk, skb);
5304 goto discard;
5305 }
5306 /* Reset is accepted even if it did not pass PAWS. */
5307 }
5308
5309 /* Step 1: check sequence number */
5310 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5311 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5312 * (RST) segments are validated by checking their SEQ-fields."
5313 * And page 69: "If an incoming segment is not acceptable,
5314 * an acknowledgment should be sent in reply (unless the RST
5315 * bit is set, if so drop the segment and return)".
5316 */
5317 if (!th->rst) {
5318 if (th->syn)
5319 goto syn_challenge;
5320 tcp_send_dupack(sk, skb);
5321 }
5322 goto discard;
5323 }
5324
5325 /* Step 2: check RST bit */
5326 if (th->rst) {
5327 /* RFC 5961 3.2 :
5328 * If sequence number exactly matches RCV.NXT, then
5329 * RESET the connection
5330 * else
5331 * Send a challenge ACK
5332 */
5333 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5334 tcp_reset(sk);
5335 else
5336 tcp_send_challenge_ack(sk);
5337 goto discard;
5338 }
5339
5340 /* ts_recent update must be made after we are sure that the packet
5341 * is in window.
5342 */
5343 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5344
5345 /* step 3: check security and precedence [ignored] */
5346
5347 /* step 4: Check for a SYN
5348 * RFC 5691 4.2 : Send a challenge ack
5349 */
5350 if (th->syn) {
5351 syn_challenge:
5352 if (syn_inerr)
5353 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5354 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5355 tcp_send_challenge_ack(sk);
5356 goto discard;
5357 }
5358
5359 return true;
5360
5361 discard:
5362 __kfree_skb(skb);
5363 return false;
5364 }
5365
5366 /*
5367 * TCP receive function for the ESTABLISHED state.
5368 *
5369 * It is split into a fast path and a slow path. The fast path is
5370 * disabled when:
5371 * - A zero window was announced from us - zero window probing
5372 * is only handled properly in the slow path.
5373 * - Out of order segments arrived.
5374 * - Urgent data is expected.
5375 * - There is no buffer space left
5376 * - Unexpected TCP flags/window values/header lengths are received
5377 * (detected by checking the TCP header against pred_flags)
5378 * - Data is sent in both directions. Fast path only supports pure senders
5379 * or pure receivers (this means either the sequence number or the ack
5380 * value must stay constant)
5381 * - Unexpected TCP option.
5382 *
5383 * When these conditions are not satisfied it drops into a standard
5384 * receive procedure patterned after RFC793 to handle all cases.
5385 * The first three cases are guaranteed by proper pred_flags setting,
5386 * the rest is checked inline. Fast processing is turned on in
5387 * tcp_data_queue when everything is OK.
5388 */
5389 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5390 const struct tcphdr *th, unsigned int len)
5391 {
5392 struct tcp_sock *tp = tcp_sk(sk);
5393
5394 /*
5395 * Header prediction.
5396 * The code loosely follows the one in the famous
5397 * "30 instruction TCP receive" Van Jacobson mail.
5398 *
5399 * Van's trick is to deposit buffers into socket queue
5400 * on a device interrupt, to call tcp_recv function
5401 * on the receive process context and checksum and copy
5402 * the buffer to user space. smart...
5403 *
5404 * Our current scheme is not silly either but we take the
5405 * extra cost of the net_bh soft interrupt processing...
5406 * We do checksum and copy also but from device to kernel.
5407 */
5408
5409 tp->rx_opt.saw_tstamp = 0;
5410
5411 /* pred_flags is 0xS?10 << 16 + snd_wnd
5412 * if header_prediction is to be made
5413 * 'S' will always be tp->tcp_header_len >> 2
5414 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5415 * turn it off (when there are holes in the receive
5416 * space for instance)
5417 * PSH flag is ignored.
5418 */
5419
5420 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5421 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5422 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5423 int tcp_header_len = tp->tcp_header_len;
5424
5425 /* Timestamp header prediction: tcp_header_len
5426 * is automatically equal to th->doff*4 due to pred_flags
5427 * match.
5428 */
5429
5430 /* Check timestamp */
5431 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5432 /* No? Slow path! */
5433 if (!tcp_parse_aligned_timestamp(tp, th))
5434 goto slow_path;
5435
5436 /* If PAWS failed, check it more carefully in slow path */
5437 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5438 goto slow_path;
5439
5440 /* DO NOT update ts_recent here, if checksum fails
5441 * and timestamp was corrupted part, it will result
5442 * in a hung connection since we will drop all
5443 * future packets due to the PAWS test.
5444 */
5445 }
5446
5447 if (len <= tcp_header_len) {
5448 /* Bulk data transfer: sender */
5449 if (len == tcp_header_len) {
5450 /* Predicted packet is in window by definition.
5451 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5452 * Hence, check seq<=rcv_wup reduces to:
5453 */
5454 if (tcp_header_len ==
5455 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5456 tp->rcv_nxt == tp->rcv_wup)
5457 tcp_store_ts_recent(tp);
5458
5459 /* We know that such packets are checksummed
5460 * on entry.
5461 */
5462 tcp_ack(sk, skb, 0);
5463 __kfree_skb(skb);
5464 tcp_data_snd_check(sk);
5465 return 0;
5466 } else { /* Header too small */
5467 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5468 goto discard;
5469 }
5470 } else {
5471 int eaten = 0;
5472 int copied_early = 0;
5473 bool fragstolen = false;
5474
5475 if (tp->copied_seq == tp->rcv_nxt &&
5476 len - tcp_header_len <= tp->ucopy.len) {
5477 #ifdef CONFIG_NET_DMA
5478 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5479 copied_early = 1;
5480 eaten = 1;
5481 }
5482 #endif
5483 if (tp->ucopy.task == current &&
5484 sock_owned_by_user(sk) && !copied_early) {
5485 __set_current_state(TASK_RUNNING);
5486
5487 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5488 eaten = 1;
5489 }
5490 if (eaten) {
5491 /* Predicted packet is in window by definition.
5492 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5493 * Hence, check seq<=rcv_wup reduces to:
5494 */
5495 if (tcp_header_len ==
5496 (sizeof(struct tcphdr) +
5497 TCPOLEN_TSTAMP_ALIGNED) &&
5498 tp->rcv_nxt == tp->rcv_wup)
5499 tcp_store_ts_recent(tp);
5500
5501 tcp_rcv_rtt_measure_ts(sk, skb);
5502
5503 __skb_pull(skb, tcp_header_len);
5504 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5505 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5506 }
5507 if (copied_early)
5508 tcp_cleanup_rbuf(sk, skb->len);
5509 }
5510 if (!eaten) {
5511 if (tcp_checksum_complete_user(sk, skb))
5512 goto csum_error;
5513
5514 /* Predicted packet is in window by definition.
5515 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5516 * Hence, check seq<=rcv_wup reduces to:
5517 */
5518 if (tcp_header_len ==
5519 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5520 tp->rcv_nxt == tp->rcv_wup)
5521 tcp_store_ts_recent(tp);
5522
5523 tcp_rcv_rtt_measure_ts(sk, skb);
5524
5525 if ((int)skb->truesize > sk->sk_forward_alloc)
5526 goto step5;
5527
5528 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5529
5530 /* Bulk data transfer: receiver */
5531 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5532 &fragstolen);
5533 }
5534
5535 tcp_event_data_recv(sk, skb);
5536
5537 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5538 /* Well, only one small jumplet in fast path... */
5539 tcp_ack(sk, skb, FLAG_DATA);
5540 tcp_data_snd_check(sk);
5541 if (!inet_csk_ack_scheduled(sk))
5542 goto no_ack;
5543 }
5544
5545 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5546 __tcp_ack_snd_check(sk, 0);
5547 no_ack:
5548 #ifdef CONFIG_NET_DMA
5549 if (copied_early)
5550 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5551 else
5552 #endif
5553 if (eaten)
5554 kfree_skb_partial(skb, fragstolen);
5555 else
5556 sk->sk_data_ready(sk, 0);
5557 return 0;
5558 }
5559 }
5560
5561 slow_path:
5562 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5563 goto csum_error;
5564
5565 /*
5566 * Standard slow path.
5567 */
5568
5569 if (!tcp_validate_incoming(sk, skb, th, 1))
5570 return 0;
5571
5572 step5:
5573 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5574 goto discard;
5575
5576 tcp_rcv_rtt_measure_ts(sk, skb);
5577
5578 /* Process urgent data. */
5579 tcp_urg(sk, skb, th);
5580
5581 /* step 7: process the segment text */
5582 tcp_data_queue(sk, skb);
5583
5584 tcp_data_snd_check(sk);
5585 tcp_ack_snd_check(sk);
5586 return 0;
5587
5588 csum_error:
5589 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5590
5591 discard:
5592 __kfree_skb(skb);
5593 return 0;
5594 }
5595 EXPORT_SYMBOL(tcp_rcv_established);
5596
5597 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5598 {
5599 struct tcp_sock *tp = tcp_sk(sk);
5600 struct inet_connection_sock *icsk = inet_csk(sk);
5601
5602 tcp_set_state(sk, TCP_ESTABLISHED);
5603
5604 if (skb != NULL) {
5605 sk->sk_rx_dst = dst_clone(skb_dst(skb));
5606 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
5607 security_inet_conn_established(sk, skb);
5608 }
5609
5610 /* Make sure socket is routed, for correct metrics. */
5611 icsk->icsk_af_ops->rebuild_header(sk);
5612
5613 tcp_init_metrics(sk);
5614
5615 tcp_init_congestion_control(sk);
5616
5617 /* Prevent spurious tcp_cwnd_restart() on first data
5618 * packet.
5619 */
5620 tp->lsndtime = tcp_time_stamp;
5621
5622 tcp_init_buffer_space(sk);
5623
5624 if (sock_flag(sk, SOCK_KEEPOPEN))
5625 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5626
5627 if (!tp->rx_opt.snd_wscale)
5628 __tcp_fast_path_on(tp, tp->snd_wnd);
5629 else
5630 tp->pred_flags = 0;
5631
5632 if (!sock_flag(sk, SOCK_DEAD)) {
5633 sk->sk_state_change(sk);
5634 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5635 }
5636 }
5637
5638 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5639 struct tcp_fastopen_cookie *cookie)
5640 {
5641 struct tcp_sock *tp = tcp_sk(sk);
5642 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5643 u16 mss = tp->rx_opt.mss_clamp;
5644 bool syn_drop;
5645
5646 if (mss == tp->rx_opt.user_mss) {
5647 struct tcp_options_received opt;
5648 const u8 *hash_location;
5649
5650 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5651 tcp_clear_options(&opt);
5652 opt.user_mss = opt.mss_clamp = 0;
5653 tcp_parse_options(synack, &opt, &hash_location, 0, NULL);
5654 mss = opt.mss_clamp;
5655 }
5656
5657 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5658 cookie->len = -1;
5659
5660 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5661 * the remote receives only the retransmitted (regular) SYNs: either
5662 * the original SYN-data or the corresponding SYN-ACK is lost.
5663 */
5664 syn_drop = (cookie->len <= 0 && data &&
5665 inet_csk(sk)->icsk_retransmits);
5666
5667 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5668
5669 if (data) { /* Retransmit unacked data in SYN */
5670 tcp_retransmit_skb(sk, data);
5671 tcp_rearm_rto(sk);
5672 return true;
5673 }
5674 return false;
5675 }
5676
5677 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5678 const struct tcphdr *th, unsigned int len)
5679 {
5680 const u8 *hash_location;
5681 struct inet_connection_sock *icsk = inet_csk(sk);
5682 struct tcp_sock *tp = tcp_sk(sk);
5683 struct tcp_cookie_values *cvp = tp->cookie_values;
5684 struct tcp_fastopen_cookie foc = { .len = -1 };
5685 int saved_clamp = tp->rx_opt.mss_clamp;
5686
5687 tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc);
5688
5689 if (th->ack) {
5690 /* rfc793:
5691 * "If the state is SYN-SENT then
5692 * first check the ACK bit
5693 * If the ACK bit is set
5694 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5695 * a reset (unless the RST bit is set, if so drop
5696 * the segment and return)"
5697 */
5698 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5699 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5700 goto reset_and_undo;
5701
5702 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5703 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5704 tcp_time_stamp)) {
5705 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5706 goto reset_and_undo;
5707 }
5708
5709 /* Now ACK is acceptable.
5710 *
5711 * "If the RST bit is set
5712 * If the ACK was acceptable then signal the user "error:
5713 * connection reset", drop the segment, enter CLOSED state,
5714 * delete TCB, and return."
5715 */
5716
5717 if (th->rst) {
5718 tcp_reset(sk);
5719 goto discard;
5720 }
5721
5722 /* rfc793:
5723 * "fifth, if neither of the SYN or RST bits is set then
5724 * drop the segment and return."
5725 *
5726 * See note below!
5727 * --ANK(990513)
5728 */
5729 if (!th->syn)
5730 goto discard_and_undo;
5731
5732 /* rfc793:
5733 * "If the SYN bit is on ...
5734 * are acceptable then ...
5735 * (our SYN has been ACKed), change the connection
5736 * state to ESTABLISHED..."
5737 */
5738
5739 TCP_ECN_rcv_synack(tp, th);
5740
5741 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5742 tcp_ack(sk, skb, FLAG_SLOWPATH);
5743
5744 /* Ok.. it's good. Set up sequence numbers and
5745 * move to established.
5746 */
5747 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5748 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5749
5750 /* RFC1323: The window in SYN & SYN/ACK segments is
5751 * never scaled.
5752 */
5753 tp->snd_wnd = ntohs(th->window);
5754 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5755
5756 if (!tp->rx_opt.wscale_ok) {
5757 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5758 tp->window_clamp = min(tp->window_clamp, 65535U);
5759 }
5760
5761 if (tp->rx_opt.saw_tstamp) {
5762 tp->rx_opt.tstamp_ok = 1;
5763 tp->tcp_header_len =
5764 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5765 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5766 tcp_store_ts_recent(tp);
5767 } else {
5768 tp->tcp_header_len = sizeof(struct tcphdr);
5769 }
5770
5771 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5772 tcp_enable_fack(tp);
5773
5774 tcp_mtup_init(sk);
5775 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5776 tcp_initialize_rcv_mss(sk);
5777
5778 /* Remember, tcp_poll() does not lock socket!
5779 * Change state from SYN-SENT only after copied_seq
5780 * is initialized. */
5781 tp->copied_seq = tp->rcv_nxt;
5782
5783 if (cvp != NULL &&
5784 cvp->cookie_pair_size > 0 &&
5785 tp->rx_opt.cookie_plus > 0) {
5786 int cookie_size = tp->rx_opt.cookie_plus
5787 - TCPOLEN_COOKIE_BASE;
5788 int cookie_pair_size = cookie_size
5789 + cvp->cookie_desired;
5790
5791 /* A cookie extension option was sent and returned.
5792 * Note that each incoming SYNACK replaces the
5793 * Responder cookie. The initial exchange is most
5794 * fragile, as protection against spoofing relies
5795 * entirely upon the sequence and timestamp (above).
5796 * This replacement strategy allows the correct pair to
5797 * pass through, while any others will be filtered via
5798 * Responder verification later.
5799 */
5800 if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
5801 memcpy(&cvp->cookie_pair[cvp->cookie_desired],
5802 hash_location, cookie_size);
5803 cvp->cookie_pair_size = cookie_pair_size;
5804 }
5805 }
5806
5807 smp_mb();
5808
5809 tcp_finish_connect(sk, skb);
5810
5811 if ((tp->syn_fastopen || tp->syn_data) &&
5812 tcp_rcv_fastopen_synack(sk, skb, &foc))
5813 return -1;
5814
5815 if (sk->sk_write_pending ||
5816 icsk->icsk_accept_queue.rskq_defer_accept ||
5817 icsk->icsk_ack.pingpong) {
5818 /* Save one ACK. Data will be ready after
5819 * several ticks, if write_pending is set.
5820 *
5821 * It may be deleted, but with this feature tcpdumps
5822 * look so _wonderfully_ clever, that I was not able
5823 * to stand against the temptation 8) --ANK
5824 */
5825 inet_csk_schedule_ack(sk);
5826 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5827 tcp_enter_quickack_mode(sk);
5828 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5829 TCP_DELACK_MAX, TCP_RTO_MAX);
5830
5831 discard:
5832 __kfree_skb(skb);
5833 return 0;
5834 } else {
5835 tcp_send_ack(sk);
5836 }
5837 return -1;
5838 }
5839
5840 /* No ACK in the segment */
5841
5842 if (th->rst) {
5843 /* rfc793:
5844 * "If the RST bit is set
5845 *
5846 * Otherwise (no ACK) drop the segment and return."
5847 */
5848
5849 goto discard_and_undo;
5850 }
5851
5852 /* PAWS check. */
5853 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5854 tcp_paws_reject(&tp->rx_opt, 0))
5855 goto discard_and_undo;
5856
5857 if (th->syn) {
5858 /* We see SYN without ACK. It is attempt of
5859 * simultaneous connect with crossed SYNs.
5860 * Particularly, it can be connect to self.
5861 */
5862 tcp_set_state(sk, TCP_SYN_RECV);
5863
5864 if (tp->rx_opt.saw_tstamp) {
5865 tp->rx_opt.tstamp_ok = 1;
5866 tcp_store_ts_recent(tp);
5867 tp->tcp_header_len =
5868 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5869 } else {
5870 tp->tcp_header_len = sizeof(struct tcphdr);
5871 }
5872
5873 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5874 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5875
5876 /* RFC1323: The window in SYN & SYN/ACK segments is
5877 * never scaled.
5878 */
5879 tp->snd_wnd = ntohs(th->window);
5880 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5881 tp->max_window = tp->snd_wnd;
5882
5883 TCP_ECN_rcv_syn(tp, th);
5884
5885 tcp_mtup_init(sk);
5886 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5887 tcp_initialize_rcv_mss(sk);
5888
5889 tcp_send_synack(sk);
5890 #if 0
5891 /* Note, we could accept data and URG from this segment.
5892 * There are no obstacles to make this.
5893 *
5894 * However, if we ignore data in ACKless segments sometimes,
5895 * we have no reasons to accept it sometimes.
5896 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5897 * is not flawless. So, discard packet for sanity.
5898 * Uncomment this return to process the data.
5899 */
5900 return -1;
5901 #else
5902 goto discard;
5903 #endif
5904 }
5905 /* "fifth, if neither of the SYN or RST bits is set then
5906 * drop the segment and return."
5907 */
5908
5909 discard_and_undo:
5910 tcp_clear_options(&tp->rx_opt);
5911 tp->rx_opt.mss_clamp = saved_clamp;
5912 goto discard;
5913
5914 reset_and_undo:
5915 tcp_clear_options(&tp->rx_opt);
5916 tp->rx_opt.mss_clamp = saved_clamp;
5917 return 1;
5918 }
5919
5920 /*
5921 * This function implements the receiving procedure of RFC 793 for
5922 * all states except ESTABLISHED and TIME_WAIT.
5923 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5924 * address independent.
5925 */
5926
5927 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5928 const struct tcphdr *th, unsigned int len)
5929 {
5930 struct tcp_sock *tp = tcp_sk(sk);
5931 struct inet_connection_sock *icsk = inet_csk(sk);
5932 int queued = 0;
5933
5934 tp->rx_opt.saw_tstamp = 0;
5935
5936 switch (sk->sk_state) {
5937 case TCP_CLOSE:
5938 goto discard;
5939
5940 case TCP_LISTEN:
5941 if (th->ack)
5942 return 1;
5943
5944 if (th->rst)
5945 goto discard;
5946
5947 if (th->syn) {
5948 if (th->fin)
5949 goto discard;
5950 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5951 return 1;
5952
5953 /* Now we have several options: In theory there is
5954 * nothing else in the frame. KA9Q has an option to
5955 * send data with the syn, BSD accepts data with the
5956 * syn up to the [to be] advertised window and
5957 * Solaris 2.1 gives you a protocol error. For now
5958 * we just ignore it, that fits the spec precisely
5959 * and avoids incompatibilities. It would be nice in
5960 * future to drop through and process the data.
5961 *
5962 * Now that TTCP is starting to be used we ought to
5963 * queue this data.
5964 * But, this leaves one open to an easy denial of
5965 * service attack, and SYN cookies can't defend
5966 * against this problem. So, we drop the data
5967 * in the interest of security over speed unless
5968 * it's still in use.
5969 */
5970 kfree_skb(skb);
5971 return 0;
5972 }
5973 goto discard;
5974
5975 case TCP_SYN_SENT:
5976 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5977 if (queued >= 0)
5978 return queued;
5979
5980 /* Do step6 onward by hand. */
5981 tcp_urg(sk, skb, th);
5982 __kfree_skb(skb);
5983 tcp_data_snd_check(sk);
5984 return 0;
5985 }
5986
5987 if (!tcp_validate_incoming(sk, skb, th, 0))
5988 return 0;
5989
5990 /* step 5: check the ACK field */
5991 if (th->ack) {
5992 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5993
5994 switch (sk->sk_state) {
5995 case TCP_SYN_RECV:
5996 if (acceptable) {
5997 tp->copied_seq = tp->rcv_nxt;
5998 smp_mb();
5999 tcp_set_state(sk, TCP_ESTABLISHED);
6000 sk->sk_state_change(sk);
6001
6002 /* Note, that this wakeup is only for marginal
6003 * crossed SYN case. Passively open sockets
6004 * are not waked up, because sk->sk_sleep ==
6005 * NULL and sk->sk_socket == NULL.
6006 */
6007 if (sk->sk_socket)
6008 sk_wake_async(sk,
6009 SOCK_WAKE_IO, POLL_OUT);
6010
6011 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6012 tp->snd_wnd = ntohs(th->window) <<
6013 tp->rx_opt.snd_wscale;
6014 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6015
6016 if (tp->rx_opt.tstamp_ok)
6017 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6018
6019 /* Make sure socket is routed, for
6020 * correct metrics.
6021 */
6022 icsk->icsk_af_ops->rebuild_header(sk);
6023
6024 tcp_init_metrics(sk);
6025
6026 tcp_init_congestion_control(sk);
6027
6028 /* Prevent spurious tcp_cwnd_restart() on
6029 * first data packet.
6030 */
6031 tp->lsndtime = tcp_time_stamp;
6032
6033 tcp_mtup_init(sk);
6034 tcp_initialize_rcv_mss(sk);
6035 tcp_init_buffer_space(sk);
6036 tcp_fast_path_on(tp);
6037 } else {
6038 return 1;
6039 }
6040 break;
6041
6042 case TCP_FIN_WAIT1:
6043 if (tp->snd_una == tp->write_seq) {
6044 struct dst_entry *dst;
6045
6046 tcp_set_state(sk, TCP_FIN_WAIT2);
6047 sk->sk_shutdown |= SEND_SHUTDOWN;
6048
6049 dst = __sk_dst_get(sk);
6050 if (dst)
6051 dst_confirm(dst);
6052
6053 if (!sock_flag(sk, SOCK_DEAD))
6054 /* Wake up lingering close() */
6055 sk->sk_state_change(sk);
6056 else {
6057 int tmo;
6058
6059 if (tp->linger2 < 0 ||
6060 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6061 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
6062 tcp_done(sk);
6063 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6064 return 1;
6065 }
6066
6067 tmo = tcp_fin_time(sk);
6068 if (tmo > TCP_TIMEWAIT_LEN) {
6069 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6070 } else if (th->fin || sock_owned_by_user(sk)) {
6071 /* Bad case. We could lose such FIN otherwise.
6072 * It is not a big problem, but it looks confusing
6073 * and not so rare event. We still can lose it now,
6074 * if it spins in bh_lock_sock(), but it is really
6075 * marginal case.
6076 */
6077 inet_csk_reset_keepalive_timer(sk, tmo);
6078 } else {
6079 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6080 goto discard;
6081 }
6082 }
6083 }
6084 break;
6085
6086 case TCP_CLOSING:
6087 if (tp->snd_una == tp->write_seq) {
6088 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6089 goto discard;
6090 }
6091 break;
6092
6093 case TCP_LAST_ACK:
6094 if (tp->snd_una == tp->write_seq) {
6095 tcp_update_metrics(sk);
6096 tcp_done(sk);
6097 goto discard;
6098 }
6099 break;
6100 }
6101 } else
6102 goto discard;
6103
6104 /* step 6: check the URG bit */
6105 tcp_urg(sk, skb, th);
6106
6107 /* step 7: process the segment text */
6108 switch (sk->sk_state) {
6109 case TCP_CLOSE_WAIT:
6110 case TCP_CLOSING:
6111 case TCP_LAST_ACK:
6112 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6113 break;
6114 case TCP_FIN_WAIT1:
6115 case TCP_FIN_WAIT2:
6116 /* RFC 793 says to queue data in these states,
6117 * RFC 1122 says we MUST send a reset.
6118 * BSD 4.4 also does reset.
6119 */
6120 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6121 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6122 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6123 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6124 tcp_reset(sk);
6125 return 1;
6126 }
6127 }
6128 /* Fall through */
6129 case TCP_ESTABLISHED:
6130 tcp_data_queue(sk, skb);
6131 queued = 1;
6132 break;
6133 }
6134
6135 /* tcp_data could move socket to TIME-WAIT */
6136 if (sk->sk_state != TCP_CLOSE) {
6137 tcp_data_snd_check(sk);
6138 tcp_ack_snd_check(sk);
6139 }
6140
6141 if (!queued) {
6142 discard:
6143 __kfree_skb(skb);
6144 }
6145 return 0;
6146 }
6147 EXPORT_SYMBOL(tcp_rcv_state_process);
This page took 0.209468 seconds and 5 git commands to generate.