net: Fix use after free by removing length arg from sk_data_ready callbacks.
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
30 *
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
62 */
63
64 #define pr_fmt(fmt) "TCP: " fmt
65
66 #include <linux/mm.h>
67 #include <linux/slab.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <linux/kernel.h>
71 #include <net/dst.h>
72 #include <net/tcp.h>
73 #include <net/inet_common.h>
74 #include <linux/ipsec.h>
75 #include <asm/unaligned.h>
76 #include <net/netdma.h>
77
78 int sysctl_tcp_timestamps __read_mostly = 1;
79 int sysctl_tcp_window_scaling __read_mostly = 1;
80 int sysctl_tcp_sack __read_mostly = 1;
81 int sysctl_tcp_fack __read_mostly = 1;
82 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
83 EXPORT_SYMBOL(sysctl_tcp_reordering);
84 int sysctl_tcp_dsack __read_mostly = 1;
85 int sysctl_tcp_app_win __read_mostly = 31;
86 int sysctl_tcp_adv_win_scale __read_mostly = 1;
87 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
88
89 /* rfc5961 challenge ack rate limiting */
90 int sysctl_tcp_challenge_ack_limit = 100;
91
92 int sysctl_tcp_stdurg __read_mostly;
93 int sysctl_tcp_rfc1337 __read_mostly;
94 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
95 int sysctl_tcp_frto __read_mostly = 2;
96
97 int sysctl_tcp_thin_dupack __read_mostly;
98
99 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
100 int sysctl_tcp_early_retrans __read_mostly = 3;
101
102 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
103 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
104 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
105 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
106 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
107 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
108 #define FLAG_ECE 0x40 /* ECE in this ACK */
109 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
110 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
111 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
112 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
113 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
114 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
115
116 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
117 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
118 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
119 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
120
121 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
122 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
123
124 /* Adapt the MSS value used to make delayed ack decision to the
125 * real world.
126 */
127 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
128 {
129 struct inet_connection_sock *icsk = inet_csk(sk);
130 const unsigned int lss = icsk->icsk_ack.last_seg_size;
131 unsigned int len;
132
133 icsk->icsk_ack.last_seg_size = 0;
134
135 /* skb->len may jitter because of SACKs, even if peer
136 * sends good full-sized frames.
137 */
138 len = skb_shinfo(skb)->gso_size ? : skb->len;
139 if (len >= icsk->icsk_ack.rcv_mss) {
140 icsk->icsk_ack.rcv_mss = len;
141 } else {
142 /* Otherwise, we make more careful check taking into account,
143 * that SACKs block is variable.
144 *
145 * "len" is invariant segment length, including TCP header.
146 */
147 len += skb->data - skb_transport_header(skb);
148 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
149 /* If PSH is not set, packet should be
150 * full sized, provided peer TCP is not badly broken.
151 * This observation (if it is correct 8)) allows
152 * to handle super-low mtu links fairly.
153 */
154 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
155 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
156 /* Subtract also invariant (if peer is RFC compliant),
157 * tcp header plus fixed timestamp option length.
158 * Resulting "len" is MSS free of SACK jitter.
159 */
160 len -= tcp_sk(sk)->tcp_header_len;
161 icsk->icsk_ack.last_seg_size = len;
162 if (len == lss) {
163 icsk->icsk_ack.rcv_mss = len;
164 return;
165 }
166 }
167 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
168 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
169 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
170 }
171 }
172
173 static void tcp_incr_quickack(struct sock *sk)
174 {
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
177
178 if (quickacks == 0)
179 quickacks = 2;
180 if (quickacks > icsk->icsk_ack.quick)
181 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
182 }
183
184 static void tcp_enter_quickack_mode(struct sock *sk)
185 {
186 struct inet_connection_sock *icsk = inet_csk(sk);
187 tcp_incr_quickack(sk);
188 icsk->icsk_ack.pingpong = 0;
189 icsk->icsk_ack.ato = TCP_ATO_MIN;
190 }
191
192 /* Send ACKs quickly, if "quick" count is not exhausted
193 * and the session is not interactive.
194 */
195
196 static inline bool tcp_in_quickack_mode(const struct sock *sk)
197 {
198 const struct inet_connection_sock *icsk = inet_csk(sk);
199
200 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
201 }
202
203 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
204 {
205 if (tp->ecn_flags & TCP_ECN_OK)
206 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
207 }
208
209 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
210 {
211 if (tcp_hdr(skb)->cwr)
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213 }
214
215 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
216 {
217 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
218 }
219
220 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
221 {
222 if (!(tp->ecn_flags & TCP_ECN_OK))
223 return;
224
225 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
226 case INET_ECN_NOT_ECT:
227 /* Funny extension: if ECT is not set on a segment,
228 * and we already seen ECT on a previous segment,
229 * it is probably a retransmit.
230 */
231 if (tp->ecn_flags & TCP_ECN_SEEN)
232 tcp_enter_quickack_mode((struct sock *)tp);
233 break;
234 case INET_ECN_CE:
235 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
236 /* Better not delay acks, sender can have a very low cwnd */
237 tcp_enter_quickack_mode((struct sock *)tp);
238 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
239 }
240 /* fallinto */
241 default:
242 tp->ecn_flags |= TCP_ECN_SEEN;
243 }
244 }
245
246 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
247 {
248 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
249 tp->ecn_flags &= ~TCP_ECN_OK;
250 }
251
252 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
253 {
254 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
255 tp->ecn_flags &= ~TCP_ECN_OK;
256 }
257
258 static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
259 {
260 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
261 return true;
262 return false;
263 }
264
265 /* Buffer size and advertised window tuning.
266 *
267 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
268 */
269
270 static void tcp_sndbuf_expand(struct sock *sk)
271 {
272 const struct tcp_sock *tp = tcp_sk(sk);
273 int sndmem, per_mss;
274 u32 nr_segs;
275
276 /* Worst case is non GSO/TSO : each frame consumes one skb
277 * and skb->head is kmalloced using power of two area of memory
278 */
279 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
280 MAX_TCP_HEADER +
281 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
282
283 per_mss = roundup_pow_of_two(per_mss) +
284 SKB_DATA_ALIGN(sizeof(struct sk_buff));
285
286 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
287 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
288
289 /* Fast Recovery (RFC 5681 3.2) :
290 * Cubic needs 1.7 factor, rounded to 2 to include
291 * extra cushion (application might react slowly to POLLOUT)
292 */
293 sndmem = 2 * nr_segs * per_mss;
294
295 if (sk->sk_sndbuf < sndmem)
296 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
297 }
298
299 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
300 *
301 * All tcp_full_space() is split to two parts: "network" buffer, allocated
302 * forward and advertised in receiver window (tp->rcv_wnd) and
303 * "application buffer", required to isolate scheduling/application
304 * latencies from network.
305 * window_clamp is maximal advertised window. It can be less than
306 * tcp_full_space(), in this case tcp_full_space() - window_clamp
307 * is reserved for "application" buffer. The less window_clamp is
308 * the smoother our behaviour from viewpoint of network, but the lower
309 * throughput and the higher sensitivity of the connection to losses. 8)
310 *
311 * rcv_ssthresh is more strict window_clamp used at "slow start"
312 * phase to predict further behaviour of this connection.
313 * It is used for two goals:
314 * - to enforce header prediction at sender, even when application
315 * requires some significant "application buffer". It is check #1.
316 * - to prevent pruning of receive queue because of misprediction
317 * of receiver window. Check #2.
318 *
319 * The scheme does not work when sender sends good segments opening
320 * window and then starts to feed us spaghetti. But it should work
321 * in common situations. Otherwise, we have to rely on queue collapsing.
322 */
323
324 /* Slow part of check#2. */
325 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
326 {
327 struct tcp_sock *tp = tcp_sk(sk);
328 /* Optimize this! */
329 int truesize = tcp_win_from_space(skb->truesize) >> 1;
330 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
331
332 while (tp->rcv_ssthresh <= window) {
333 if (truesize <= skb->len)
334 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
335
336 truesize >>= 1;
337 window >>= 1;
338 }
339 return 0;
340 }
341
342 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
343 {
344 struct tcp_sock *tp = tcp_sk(sk);
345
346 /* Check #1 */
347 if (tp->rcv_ssthresh < tp->window_clamp &&
348 (int)tp->rcv_ssthresh < tcp_space(sk) &&
349 !sk_under_memory_pressure(sk)) {
350 int incr;
351
352 /* Check #2. Increase window, if skb with such overhead
353 * will fit to rcvbuf in future.
354 */
355 if (tcp_win_from_space(skb->truesize) <= skb->len)
356 incr = 2 * tp->advmss;
357 else
358 incr = __tcp_grow_window(sk, skb);
359
360 if (incr) {
361 incr = max_t(int, incr, 2 * skb->len);
362 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
363 tp->window_clamp);
364 inet_csk(sk)->icsk_ack.quick |= 1;
365 }
366 }
367 }
368
369 /* 3. Tuning rcvbuf, when connection enters established state. */
370 static void tcp_fixup_rcvbuf(struct sock *sk)
371 {
372 u32 mss = tcp_sk(sk)->advmss;
373 int rcvmem;
374
375 rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
376 tcp_default_init_rwnd(mss);
377
378 /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
379 * Allow enough cushion so that sender is not limited by our window
380 */
381 if (sysctl_tcp_moderate_rcvbuf)
382 rcvmem <<= 2;
383
384 if (sk->sk_rcvbuf < rcvmem)
385 sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
386 }
387
388 /* 4. Try to fixup all. It is made immediately after connection enters
389 * established state.
390 */
391 void tcp_init_buffer_space(struct sock *sk)
392 {
393 struct tcp_sock *tp = tcp_sk(sk);
394 int maxwin;
395
396 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
397 tcp_fixup_rcvbuf(sk);
398 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
399 tcp_sndbuf_expand(sk);
400
401 tp->rcvq_space.space = tp->rcv_wnd;
402 tp->rcvq_space.time = tcp_time_stamp;
403 tp->rcvq_space.seq = tp->copied_seq;
404
405 maxwin = tcp_full_space(sk);
406
407 if (tp->window_clamp >= maxwin) {
408 tp->window_clamp = maxwin;
409
410 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
411 tp->window_clamp = max(maxwin -
412 (maxwin >> sysctl_tcp_app_win),
413 4 * tp->advmss);
414 }
415
416 /* Force reservation of one segment. */
417 if (sysctl_tcp_app_win &&
418 tp->window_clamp > 2 * tp->advmss &&
419 tp->window_clamp + tp->advmss > maxwin)
420 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
421
422 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
423 tp->snd_cwnd_stamp = tcp_time_stamp;
424 }
425
426 /* 5. Recalculate window clamp after socket hit its memory bounds. */
427 static void tcp_clamp_window(struct sock *sk)
428 {
429 struct tcp_sock *tp = tcp_sk(sk);
430 struct inet_connection_sock *icsk = inet_csk(sk);
431
432 icsk->icsk_ack.quick = 0;
433
434 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
435 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
436 !sk_under_memory_pressure(sk) &&
437 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
438 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
439 sysctl_tcp_rmem[2]);
440 }
441 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
442 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
443 }
444
445 /* Initialize RCV_MSS value.
446 * RCV_MSS is an our guess about MSS used by the peer.
447 * We haven't any direct information about the MSS.
448 * It's better to underestimate the RCV_MSS rather than overestimate.
449 * Overestimations make us ACKing less frequently than needed.
450 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
451 */
452 void tcp_initialize_rcv_mss(struct sock *sk)
453 {
454 const struct tcp_sock *tp = tcp_sk(sk);
455 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
456
457 hint = min(hint, tp->rcv_wnd / 2);
458 hint = min(hint, TCP_MSS_DEFAULT);
459 hint = max(hint, TCP_MIN_MSS);
460
461 inet_csk(sk)->icsk_ack.rcv_mss = hint;
462 }
463 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
464
465 /* Receiver "autotuning" code.
466 *
467 * The algorithm for RTT estimation w/o timestamps is based on
468 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
469 * <http://public.lanl.gov/radiant/pubs.html#DRS>
470 *
471 * More detail on this code can be found at
472 * <http://staff.psc.edu/jheffner/>,
473 * though this reference is out of date. A new paper
474 * is pending.
475 */
476 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
477 {
478 u32 new_sample = tp->rcv_rtt_est.rtt;
479 long m = sample;
480
481 if (m == 0)
482 m = 1;
483
484 if (new_sample != 0) {
485 /* If we sample in larger samples in the non-timestamp
486 * case, we could grossly overestimate the RTT especially
487 * with chatty applications or bulk transfer apps which
488 * are stalled on filesystem I/O.
489 *
490 * Also, since we are only going for a minimum in the
491 * non-timestamp case, we do not smooth things out
492 * else with timestamps disabled convergence takes too
493 * long.
494 */
495 if (!win_dep) {
496 m -= (new_sample >> 3);
497 new_sample += m;
498 } else {
499 m <<= 3;
500 if (m < new_sample)
501 new_sample = m;
502 }
503 } else {
504 /* No previous measure. */
505 new_sample = m << 3;
506 }
507
508 if (tp->rcv_rtt_est.rtt != new_sample)
509 tp->rcv_rtt_est.rtt = new_sample;
510 }
511
512 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
513 {
514 if (tp->rcv_rtt_est.time == 0)
515 goto new_measure;
516 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
517 return;
518 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
519
520 new_measure:
521 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
522 tp->rcv_rtt_est.time = tcp_time_stamp;
523 }
524
525 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
526 const struct sk_buff *skb)
527 {
528 struct tcp_sock *tp = tcp_sk(sk);
529 if (tp->rx_opt.rcv_tsecr &&
530 (TCP_SKB_CB(skb)->end_seq -
531 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
532 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
533 }
534
535 /*
536 * This function should be called every time data is copied to user space.
537 * It calculates the appropriate TCP receive buffer space.
538 */
539 void tcp_rcv_space_adjust(struct sock *sk)
540 {
541 struct tcp_sock *tp = tcp_sk(sk);
542 int time;
543 int copied;
544
545 time = tcp_time_stamp - tp->rcvq_space.time;
546 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
547 return;
548
549 /* Number of bytes copied to user in last RTT */
550 copied = tp->copied_seq - tp->rcvq_space.seq;
551 if (copied <= tp->rcvq_space.space)
552 goto new_measure;
553
554 /* A bit of theory :
555 * copied = bytes received in previous RTT, our base window
556 * To cope with packet losses, we need a 2x factor
557 * To cope with slow start, and sender growing its cwin by 100 %
558 * every RTT, we need a 4x factor, because the ACK we are sending
559 * now is for the next RTT, not the current one :
560 * <prev RTT . ><current RTT .. ><next RTT .... >
561 */
562
563 if (sysctl_tcp_moderate_rcvbuf &&
564 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
565 int rcvwin, rcvmem, rcvbuf;
566
567 /* minimal window to cope with packet losses, assuming
568 * steady state. Add some cushion because of small variations.
569 */
570 rcvwin = (copied << 1) + 16 * tp->advmss;
571
572 /* If rate increased by 25%,
573 * assume slow start, rcvwin = 3 * copied
574 * If rate increased by 50%,
575 * assume sender can use 2x growth, rcvwin = 4 * copied
576 */
577 if (copied >=
578 tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
579 if (copied >=
580 tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
581 rcvwin <<= 1;
582 else
583 rcvwin += (rcvwin >> 1);
584 }
585
586 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
587 while (tcp_win_from_space(rcvmem) < tp->advmss)
588 rcvmem += 128;
589
590 rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
591 if (rcvbuf > sk->sk_rcvbuf) {
592 sk->sk_rcvbuf = rcvbuf;
593
594 /* Make the window clamp follow along. */
595 tp->window_clamp = rcvwin;
596 }
597 }
598 tp->rcvq_space.space = copied;
599
600 new_measure:
601 tp->rcvq_space.seq = tp->copied_seq;
602 tp->rcvq_space.time = tcp_time_stamp;
603 }
604
605 /* There is something which you must keep in mind when you analyze the
606 * behavior of the tp->ato delayed ack timeout interval. When a
607 * connection starts up, we want to ack as quickly as possible. The
608 * problem is that "good" TCP's do slow start at the beginning of data
609 * transmission. The means that until we send the first few ACK's the
610 * sender will sit on his end and only queue most of his data, because
611 * he can only send snd_cwnd unacked packets at any given time. For
612 * each ACK we send, he increments snd_cwnd and transmits more of his
613 * queue. -DaveM
614 */
615 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
616 {
617 struct tcp_sock *tp = tcp_sk(sk);
618 struct inet_connection_sock *icsk = inet_csk(sk);
619 u32 now;
620
621 inet_csk_schedule_ack(sk);
622
623 tcp_measure_rcv_mss(sk, skb);
624
625 tcp_rcv_rtt_measure(tp);
626
627 now = tcp_time_stamp;
628
629 if (!icsk->icsk_ack.ato) {
630 /* The _first_ data packet received, initialize
631 * delayed ACK engine.
632 */
633 tcp_incr_quickack(sk);
634 icsk->icsk_ack.ato = TCP_ATO_MIN;
635 } else {
636 int m = now - icsk->icsk_ack.lrcvtime;
637
638 if (m <= TCP_ATO_MIN / 2) {
639 /* The fastest case is the first. */
640 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
641 } else if (m < icsk->icsk_ack.ato) {
642 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
643 if (icsk->icsk_ack.ato > icsk->icsk_rto)
644 icsk->icsk_ack.ato = icsk->icsk_rto;
645 } else if (m > icsk->icsk_rto) {
646 /* Too long gap. Apparently sender failed to
647 * restart window, so that we send ACKs quickly.
648 */
649 tcp_incr_quickack(sk);
650 sk_mem_reclaim(sk);
651 }
652 }
653 icsk->icsk_ack.lrcvtime = now;
654
655 TCP_ECN_check_ce(tp, skb);
656
657 if (skb->len >= 128)
658 tcp_grow_window(sk, skb);
659 }
660
661 /* Called to compute a smoothed rtt estimate. The data fed to this
662 * routine either comes from timestamps, or from segments that were
663 * known _not_ to have been retransmitted [see Karn/Partridge
664 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
665 * piece by Van Jacobson.
666 * NOTE: the next three routines used to be one big routine.
667 * To save cycles in the RFC 1323 implementation it was better to break
668 * it up into three procedures. -- erics
669 */
670 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
671 {
672 struct tcp_sock *tp = tcp_sk(sk);
673 long m = mrtt_us; /* RTT */
674 u32 srtt = tp->srtt_us;
675
676 /* The following amusing code comes from Jacobson's
677 * article in SIGCOMM '88. Note that rtt and mdev
678 * are scaled versions of rtt and mean deviation.
679 * This is designed to be as fast as possible
680 * m stands for "measurement".
681 *
682 * On a 1990 paper the rto value is changed to:
683 * RTO = rtt + 4 * mdev
684 *
685 * Funny. This algorithm seems to be very broken.
686 * These formulae increase RTO, when it should be decreased, increase
687 * too slowly, when it should be increased quickly, decrease too quickly
688 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
689 * does not matter how to _calculate_ it. Seems, it was trap
690 * that VJ failed to avoid. 8)
691 */
692 if (srtt != 0) {
693 m -= (srtt >> 3); /* m is now error in rtt est */
694 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
695 if (m < 0) {
696 m = -m; /* m is now abs(error) */
697 m -= (tp->mdev_us >> 2); /* similar update on mdev */
698 /* This is similar to one of Eifel findings.
699 * Eifel blocks mdev updates when rtt decreases.
700 * This solution is a bit different: we use finer gain
701 * for mdev in this case (alpha*beta).
702 * Like Eifel it also prevents growth of rto,
703 * but also it limits too fast rto decreases,
704 * happening in pure Eifel.
705 */
706 if (m > 0)
707 m >>= 3;
708 } else {
709 m -= (tp->mdev_us >> 2); /* similar update on mdev */
710 }
711 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
712 if (tp->mdev_us > tp->mdev_max_us) {
713 tp->mdev_max_us = tp->mdev_us;
714 if (tp->mdev_max_us > tp->rttvar_us)
715 tp->rttvar_us = tp->mdev_max_us;
716 }
717 if (after(tp->snd_una, tp->rtt_seq)) {
718 if (tp->mdev_max_us < tp->rttvar_us)
719 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
720 tp->rtt_seq = tp->snd_nxt;
721 tp->mdev_max_us = tcp_rto_min_us(sk);
722 }
723 } else {
724 /* no previous measure. */
725 srtt = m << 3; /* take the measured time to be rtt */
726 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
727 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
728 tp->mdev_max_us = tp->rttvar_us;
729 tp->rtt_seq = tp->snd_nxt;
730 }
731 tp->srtt_us = max(1U, srtt);
732 }
733
734 /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
735 * Note: TCP stack does not yet implement pacing.
736 * FQ packet scheduler can be used to implement cheap but effective
737 * TCP pacing, to smooth the burst on large writes when packets
738 * in flight is significantly lower than cwnd (or rwin)
739 */
740 static void tcp_update_pacing_rate(struct sock *sk)
741 {
742 const struct tcp_sock *tp = tcp_sk(sk);
743 u64 rate;
744
745 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
746 rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
747
748 rate *= max(tp->snd_cwnd, tp->packets_out);
749
750 if (likely(tp->srtt_us))
751 do_div(rate, tp->srtt_us);
752
753 /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
754 * without any lock. We want to make sure compiler wont store
755 * intermediate values in this location.
756 */
757 ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
758 sk->sk_max_pacing_rate);
759 }
760
761 /* Calculate rto without backoff. This is the second half of Van Jacobson's
762 * routine referred to above.
763 */
764 static void tcp_set_rto(struct sock *sk)
765 {
766 const struct tcp_sock *tp = tcp_sk(sk);
767 /* Old crap is replaced with new one. 8)
768 *
769 * More seriously:
770 * 1. If rtt variance happened to be less 50msec, it is hallucination.
771 * It cannot be less due to utterly erratic ACK generation made
772 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
773 * to do with delayed acks, because at cwnd>2 true delack timeout
774 * is invisible. Actually, Linux-2.4 also generates erratic
775 * ACKs in some circumstances.
776 */
777 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
778
779 /* 2. Fixups made earlier cannot be right.
780 * If we do not estimate RTO correctly without them,
781 * all the algo is pure shit and should be replaced
782 * with correct one. It is exactly, which we pretend to do.
783 */
784
785 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
786 * guarantees that rto is higher.
787 */
788 tcp_bound_rto(sk);
789 }
790
791 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
792 {
793 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
794
795 if (!cwnd)
796 cwnd = TCP_INIT_CWND;
797 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
798 }
799
800 /*
801 * Packet counting of FACK is based on in-order assumptions, therefore TCP
802 * disables it when reordering is detected
803 */
804 void tcp_disable_fack(struct tcp_sock *tp)
805 {
806 /* RFC3517 uses different metric in lost marker => reset on change */
807 if (tcp_is_fack(tp))
808 tp->lost_skb_hint = NULL;
809 tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
810 }
811
812 /* Take a notice that peer is sending D-SACKs */
813 static void tcp_dsack_seen(struct tcp_sock *tp)
814 {
815 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
816 }
817
818 static void tcp_update_reordering(struct sock *sk, const int metric,
819 const int ts)
820 {
821 struct tcp_sock *tp = tcp_sk(sk);
822 if (metric > tp->reordering) {
823 int mib_idx;
824
825 tp->reordering = min(TCP_MAX_REORDERING, metric);
826
827 /* This exciting event is worth to be remembered. 8) */
828 if (ts)
829 mib_idx = LINUX_MIB_TCPTSREORDER;
830 else if (tcp_is_reno(tp))
831 mib_idx = LINUX_MIB_TCPRENOREORDER;
832 else if (tcp_is_fack(tp))
833 mib_idx = LINUX_MIB_TCPFACKREORDER;
834 else
835 mib_idx = LINUX_MIB_TCPSACKREORDER;
836
837 NET_INC_STATS_BH(sock_net(sk), mib_idx);
838 #if FASTRETRANS_DEBUG > 1
839 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
840 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
841 tp->reordering,
842 tp->fackets_out,
843 tp->sacked_out,
844 tp->undo_marker ? tp->undo_retrans : 0);
845 #endif
846 tcp_disable_fack(tp);
847 }
848
849 if (metric > 0)
850 tcp_disable_early_retrans(tp);
851 }
852
853 /* This must be called before lost_out is incremented */
854 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
855 {
856 if ((tp->retransmit_skb_hint == NULL) ||
857 before(TCP_SKB_CB(skb)->seq,
858 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
859 tp->retransmit_skb_hint = skb;
860
861 if (!tp->lost_out ||
862 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
863 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
864 }
865
866 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
867 {
868 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
869 tcp_verify_retransmit_hint(tp, skb);
870
871 tp->lost_out += tcp_skb_pcount(skb);
872 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
873 }
874 }
875
876 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
877 struct sk_buff *skb)
878 {
879 tcp_verify_retransmit_hint(tp, skb);
880
881 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
882 tp->lost_out += tcp_skb_pcount(skb);
883 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
884 }
885 }
886
887 /* This procedure tags the retransmission queue when SACKs arrive.
888 *
889 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
890 * Packets in queue with these bits set are counted in variables
891 * sacked_out, retrans_out and lost_out, correspondingly.
892 *
893 * Valid combinations are:
894 * Tag InFlight Description
895 * 0 1 - orig segment is in flight.
896 * S 0 - nothing flies, orig reached receiver.
897 * L 0 - nothing flies, orig lost by net.
898 * R 2 - both orig and retransmit are in flight.
899 * L|R 1 - orig is lost, retransmit is in flight.
900 * S|R 1 - orig reached receiver, retrans is still in flight.
901 * (L|S|R is logically valid, it could occur when L|R is sacked,
902 * but it is equivalent to plain S and code short-curcuits it to S.
903 * L|S is logically invalid, it would mean -1 packet in flight 8))
904 *
905 * These 6 states form finite state machine, controlled by the following events:
906 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
907 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
908 * 3. Loss detection event of two flavors:
909 * A. Scoreboard estimator decided the packet is lost.
910 * A'. Reno "three dupacks" marks head of queue lost.
911 * A''. Its FACK modification, head until snd.fack is lost.
912 * B. SACK arrives sacking SND.NXT at the moment, when the
913 * segment was retransmitted.
914 * 4. D-SACK added new rule: D-SACK changes any tag to S.
915 *
916 * It is pleasant to note, that state diagram turns out to be commutative,
917 * so that we are allowed not to be bothered by order of our actions,
918 * when multiple events arrive simultaneously. (see the function below).
919 *
920 * Reordering detection.
921 * --------------------
922 * Reordering metric is maximal distance, which a packet can be displaced
923 * in packet stream. With SACKs we can estimate it:
924 *
925 * 1. SACK fills old hole and the corresponding segment was not
926 * ever retransmitted -> reordering. Alas, we cannot use it
927 * when segment was retransmitted.
928 * 2. The last flaw is solved with D-SACK. D-SACK arrives
929 * for retransmitted and already SACKed segment -> reordering..
930 * Both of these heuristics are not used in Loss state, when we cannot
931 * account for retransmits accurately.
932 *
933 * SACK block validation.
934 * ----------------------
935 *
936 * SACK block range validation checks that the received SACK block fits to
937 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
938 * Note that SND.UNA is not included to the range though being valid because
939 * it means that the receiver is rather inconsistent with itself reporting
940 * SACK reneging when it should advance SND.UNA. Such SACK block this is
941 * perfectly valid, however, in light of RFC2018 which explicitly states
942 * that "SACK block MUST reflect the newest segment. Even if the newest
943 * segment is going to be discarded ...", not that it looks very clever
944 * in case of head skb. Due to potentional receiver driven attacks, we
945 * choose to avoid immediate execution of a walk in write queue due to
946 * reneging and defer head skb's loss recovery to standard loss recovery
947 * procedure that will eventually trigger (nothing forbids us doing this).
948 *
949 * Implements also blockage to start_seq wrap-around. Problem lies in the
950 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
951 * there's no guarantee that it will be before snd_nxt (n). The problem
952 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
953 * wrap (s_w):
954 *
955 * <- outs wnd -> <- wrapzone ->
956 * u e n u_w e_w s n_w
957 * | | | | | | |
958 * |<------------+------+----- TCP seqno space --------------+---------->|
959 * ...-- <2^31 ->| |<--------...
960 * ...---- >2^31 ------>| |<--------...
961 *
962 * Current code wouldn't be vulnerable but it's better still to discard such
963 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
964 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
965 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
966 * equal to the ideal case (infinite seqno space without wrap caused issues).
967 *
968 * With D-SACK the lower bound is extended to cover sequence space below
969 * SND.UNA down to undo_marker, which is the last point of interest. Yet
970 * again, D-SACK block must not to go across snd_una (for the same reason as
971 * for the normal SACK blocks, explained above). But there all simplicity
972 * ends, TCP might receive valid D-SACKs below that. As long as they reside
973 * fully below undo_marker they do not affect behavior in anyway and can
974 * therefore be safely ignored. In rare cases (which are more or less
975 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
976 * fragmentation and packet reordering past skb's retransmission. To consider
977 * them correctly, the acceptable range must be extended even more though
978 * the exact amount is rather hard to quantify. However, tp->max_window can
979 * be used as an exaggerated estimate.
980 */
981 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
982 u32 start_seq, u32 end_seq)
983 {
984 /* Too far in future, or reversed (interpretation is ambiguous) */
985 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
986 return false;
987
988 /* Nasty start_seq wrap-around check (see comments above) */
989 if (!before(start_seq, tp->snd_nxt))
990 return false;
991
992 /* In outstanding window? ...This is valid exit for D-SACKs too.
993 * start_seq == snd_una is non-sensical (see comments above)
994 */
995 if (after(start_seq, tp->snd_una))
996 return true;
997
998 if (!is_dsack || !tp->undo_marker)
999 return false;
1000
1001 /* ...Then it's D-SACK, and must reside below snd_una completely */
1002 if (after(end_seq, tp->snd_una))
1003 return false;
1004
1005 if (!before(start_seq, tp->undo_marker))
1006 return true;
1007
1008 /* Too old */
1009 if (!after(end_seq, tp->undo_marker))
1010 return false;
1011
1012 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1013 * start_seq < undo_marker and end_seq >= undo_marker.
1014 */
1015 return !before(start_seq, end_seq - tp->max_window);
1016 }
1017
1018 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1019 * Event "B". Later note: FACK people cheated me again 8), we have to account
1020 * for reordering! Ugly, but should help.
1021 *
1022 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1023 * less than what is now known to be received by the other end (derived from
1024 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1025 * retransmitted skbs to avoid some costly processing per ACKs.
1026 */
1027 static void tcp_mark_lost_retrans(struct sock *sk)
1028 {
1029 const struct inet_connection_sock *icsk = inet_csk(sk);
1030 struct tcp_sock *tp = tcp_sk(sk);
1031 struct sk_buff *skb;
1032 int cnt = 0;
1033 u32 new_low_seq = tp->snd_nxt;
1034 u32 received_upto = tcp_highest_sack_seq(tp);
1035
1036 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1037 !after(received_upto, tp->lost_retrans_low) ||
1038 icsk->icsk_ca_state != TCP_CA_Recovery)
1039 return;
1040
1041 tcp_for_write_queue(skb, sk) {
1042 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1043
1044 if (skb == tcp_send_head(sk))
1045 break;
1046 if (cnt == tp->retrans_out)
1047 break;
1048 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1049 continue;
1050
1051 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1052 continue;
1053
1054 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1055 * constraint here (see above) but figuring out that at
1056 * least tp->reordering SACK blocks reside between ack_seq
1057 * and received_upto is not easy task to do cheaply with
1058 * the available datastructures.
1059 *
1060 * Whether FACK should check here for tp->reordering segs
1061 * in-between one could argue for either way (it would be
1062 * rather simple to implement as we could count fack_count
1063 * during the walk and do tp->fackets_out - fack_count).
1064 */
1065 if (after(received_upto, ack_seq)) {
1066 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1067 tp->retrans_out -= tcp_skb_pcount(skb);
1068
1069 tcp_skb_mark_lost_uncond_verify(tp, skb);
1070 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1071 } else {
1072 if (before(ack_seq, new_low_seq))
1073 new_low_seq = ack_seq;
1074 cnt += tcp_skb_pcount(skb);
1075 }
1076 }
1077
1078 if (tp->retrans_out)
1079 tp->lost_retrans_low = new_low_seq;
1080 }
1081
1082 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1083 struct tcp_sack_block_wire *sp, int num_sacks,
1084 u32 prior_snd_una)
1085 {
1086 struct tcp_sock *tp = tcp_sk(sk);
1087 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1088 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1089 bool dup_sack = false;
1090
1091 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1092 dup_sack = true;
1093 tcp_dsack_seen(tp);
1094 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1095 } else if (num_sacks > 1) {
1096 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1097 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1098
1099 if (!after(end_seq_0, end_seq_1) &&
1100 !before(start_seq_0, start_seq_1)) {
1101 dup_sack = true;
1102 tcp_dsack_seen(tp);
1103 NET_INC_STATS_BH(sock_net(sk),
1104 LINUX_MIB_TCPDSACKOFORECV);
1105 }
1106 }
1107
1108 /* D-SACK for already forgotten data... Do dumb counting. */
1109 if (dup_sack && tp->undo_marker && tp->undo_retrans &&
1110 !after(end_seq_0, prior_snd_una) &&
1111 after(end_seq_0, tp->undo_marker))
1112 tp->undo_retrans--;
1113
1114 return dup_sack;
1115 }
1116
1117 struct tcp_sacktag_state {
1118 int reord;
1119 int fack_count;
1120 long rtt_us; /* RTT measured by SACKing never-retransmitted data */
1121 int flag;
1122 };
1123
1124 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1125 * the incoming SACK may not exactly match but we can find smaller MSS
1126 * aligned portion of it that matches. Therefore we might need to fragment
1127 * which may fail and creates some hassle (caller must handle error case
1128 * returns).
1129 *
1130 * FIXME: this could be merged to shift decision code
1131 */
1132 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1133 u32 start_seq, u32 end_seq)
1134 {
1135 int err;
1136 bool in_sack;
1137 unsigned int pkt_len;
1138 unsigned int mss;
1139
1140 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1141 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1142
1143 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1144 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1145 mss = tcp_skb_mss(skb);
1146 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1147
1148 if (!in_sack) {
1149 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1150 if (pkt_len < mss)
1151 pkt_len = mss;
1152 } else {
1153 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1154 if (pkt_len < mss)
1155 return -EINVAL;
1156 }
1157
1158 /* Round if necessary so that SACKs cover only full MSSes
1159 * and/or the remaining small portion (if present)
1160 */
1161 if (pkt_len > mss) {
1162 unsigned int new_len = (pkt_len / mss) * mss;
1163 if (!in_sack && new_len < pkt_len) {
1164 new_len += mss;
1165 if (new_len > skb->len)
1166 return 0;
1167 }
1168 pkt_len = new_len;
1169 }
1170 err = tcp_fragment(sk, skb, pkt_len, mss);
1171 if (err < 0)
1172 return err;
1173 }
1174
1175 return in_sack;
1176 }
1177
1178 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1179 static u8 tcp_sacktag_one(struct sock *sk,
1180 struct tcp_sacktag_state *state, u8 sacked,
1181 u32 start_seq, u32 end_seq,
1182 int dup_sack, int pcount,
1183 const struct skb_mstamp *xmit_time)
1184 {
1185 struct tcp_sock *tp = tcp_sk(sk);
1186 int fack_count = state->fack_count;
1187
1188 /* Account D-SACK for retransmitted packet. */
1189 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1190 if (tp->undo_marker && tp->undo_retrans &&
1191 after(end_seq, tp->undo_marker))
1192 tp->undo_retrans--;
1193 if (sacked & TCPCB_SACKED_ACKED)
1194 state->reord = min(fack_count, state->reord);
1195 }
1196
1197 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1198 if (!after(end_seq, tp->snd_una))
1199 return sacked;
1200
1201 if (!(sacked & TCPCB_SACKED_ACKED)) {
1202 if (sacked & TCPCB_SACKED_RETRANS) {
1203 /* If the segment is not tagged as lost,
1204 * we do not clear RETRANS, believing
1205 * that retransmission is still in flight.
1206 */
1207 if (sacked & TCPCB_LOST) {
1208 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1209 tp->lost_out -= pcount;
1210 tp->retrans_out -= pcount;
1211 }
1212 } else {
1213 if (!(sacked & TCPCB_RETRANS)) {
1214 /* New sack for not retransmitted frame,
1215 * which was in hole. It is reordering.
1216 */
1217 if (before(start_seq,
1218 tcp_highest_sack_seq(tp)))
1219 state->reord = min(fack_count,
1220 state->reord);
1221 if (!after(end_seq, tp->high_seq))
1222 state->flag |= FLAG_ORIG_SACK_ACKED;
1223 /* Pick the earliest sequence sacked for RTT */
1224 if (state->rtt_us < 0) {
1225 struct skb_mstamp now;
1226
1227 skb_mstamp_get(&now);
1228 state->rtt_us = skb_mstamp_us_delta(&now,
1229 xmit_time);
1230 }
1231 }
1232
1233 if (sacked & TCPCB_LOST) {
1234 sacked &= ~TCPCB_LOST;
1235 tp->lost_out -= pcount;
1236 }
1237 }
1238
1239 sacked |= TCPCB_SACKED_ACKED;
1240 state->flag |= FLAG_DATA_SACKED;
1241 tp->sacked_out += pcount;
1242
1243 fack_count += pcount;
1244
1245 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1246 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1247 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1248 tp->lost_cnt_hint += pcount;
1249
1250 if (fack_count > tp->fackets_out)
1251 tp->fackets_out = fack_count;
1252 }
1253
1254 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1255 * frames and clear it. undo_retrans is decreased above, L|R frames
1256 * are accounted above as well.
1257 */
1258 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1259 sacked &= ~TCPCB_SACKED_RETRANS;
1260 tp->retrans_out -= pcount;
1261 }
1262
1263 return sacked;
1264 }
1265
1266 /* Shift newly-SACKed bytes from this skb to the immediately previous
1267 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1268 */
1269 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1270 struct tcp_sacktag_state *state,
1271 unsigned int pcount, int shifted, int mss,
1272 bool dup_sack)
1273 {
1274 struct tcp_sock *tp = tcp_sk(sk);
1275 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1276 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1277 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1278
1279 BUG_ON(!pcount);
1280
1281 /* Adjust counters and hints for the newly sacked sequence
1282 * range but discard the return value since prev is already
1283 * marked. We must tag the range first because the seq
1284 * advancement below implicitly advances
1285 * tcp_highest_sack_seq() when skb is highest_sack.
1286 */
1287 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1288 start_seq, end_seq, dup_sack, pcount,
1289 &skb->skb_mstamp);
1290
1291 if (skb == tp->lost_skb_hint)
1292 tp->lost_cnt_hint += pcount;
1293
1294 TCP_SKB_CB(prev)->end_seq += shifted;
1295 TCP_SKB_CB(skb)->seq += shifted;
1296
1297 skb_shinfo(prev)->gso_segs += pcount;
1298 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1299 skb_shinfo(skb)->gso_segs -= pcount;
1300
1301 /* When we're adding to gso_segs == 1, gso_size will be zero,
1302 * in theory this shouldn't be necessary but as long as DSACK
1303 * code can come after this skb later on it's better to keep
1304 * setting gso_size to something.
1305 */
1306 if (!skb_shinfo(prev)->gso_size) {
1307 skb_shinfo(prev)->gso_size = mss;
1308 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1309 }
1310
1311 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1312 if (skb_shinfo(skb)->gso_segs <= 1) {
1313 skb_shinfo(skb)->gso_size = 0;
1314 skb_shinfo(skb)->gso_type = 0;
1315 }
1316
1317 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1318 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1319
1320 if (skb->len > 0) {
1321 BUG_ON(!tcp_skb_pcount(skb));
1322 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1323 return false;
1324 }
1325
1326 /* Whole SKB was eaten :-) */
1327
1328 if (skb == tp->retransmit_skb_hint)
1329 tp->retransmit_skb_hint = prev;
1330 if (skb == tp->lost_skb_hint) {
1331 tp->lost_skb_hint = prev;
1332 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1333 }
1334
1335 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1336 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1337 TCP_SKB_CB(prev)->end_seq++;
1338
1339 if (skb == tcp_highest_sack(sk))
1340 tcp_advance_highest_sack(sk, skb);
1341
1342 tcp_unlink_write_queue(skb, sk);
1343 sk_wmem_free_skb(sk, skb);
1344
1345 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1346
1347 return true;
1348 }
1349
1350 /* I wish gso_size would have a bit more sane initialization than
1351 * something-or-zero which complicates things
1352 */
1353 static int tcp_skb_seglen(const struct sk_buff *skb)
1354 {
1355 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1356 }
1357
1358 /* Shifting pages past head area doesn't work */
1359 static int skb_can_shift(const struct sk_buff *skb)
1360 {
1361 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1362 }
1363
1364 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1365 * skb.
1366 */
1367 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1368 struct tcp_sacktag_state *state,
1369 u32 start_seq, u32 end_seq,
1370 bool dup_sack)
1371 {
1372 struct tcp_sock *tp = tcp_sk(sk);
1373 struct sk_buff *prev;
1374 int mss;
1375 int pcount = 0;
1376 int len;
1377 int in_sack;
1378
1379 if (!sk_can_gso(sk))
1380 goto fallback;
1381
1382 /* Normally R but no L won't result in plain S */
1383 if (!dup_sack &&
1384 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1385 goto fallback;
1386 if (!skb_can_shift(skb))
1387 goto fallback;
1388 /* This frame is about to be dropped (was ACKed). */
1389 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1390 goto fallback;
1391
1392 /* Can only happen with delayed DSACK + discard craziness */
1393 if (unlikely(skb == tcp_write_queue_head(sk)))
1394 goto fallback;
1395 prev = tcp_write_queue_prev(sk, skb);
1396
1397 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1398 goto fallback;
1399
1400 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1401 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1402
1403 if (in_sack) {
1404 len = skb->len;
1405 pcount = tcp_skb_pcount(skb);
1406 mss = tcp_skb_seglen(skb);
1407
1408 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1409 * drop this restriction as unnecessary
1410 */
1411 if (mss != tcp_skb_seglen(prev))
1412 goto fallback;
1413 } else {
1414 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1415 goto noop;
1416 /* CHECKME: This is non-MSS split case only?, this will
1417 * cause skipped skbs due to advancing loop btw, original
1418 * has that feature too
1419 */
1420 if (tcp_skb_pcount(skb) <= 1)
1421 goto noop;
1422
1423 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1424 if (!in_sack) {
1425 /* TODO: head merge to next could be attempted here
1426 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1427 * though it might not be worth of the additional hassle
1428 *
1429 * ...we can probably just fallback to what was done
1430 * previously. We could try merging non-SACKed ones
1431 * as well but it probably isn't going to buy off
1432 * because later SACKs might again split them, and
1433 * it would make skb timestamp tracking considerably
1434 * harder problem.
1435 */
1436 goto fallback;
1437 }
1438
1439 len = end_seq - TCP_SKB_CB(skb)->seq;
1440 BUG_ON(len < 0);
1441 BUG_ON(len > skb->len);
1442
1443 /* MSS boundaries should be honoured or else pcount will
1444 * severely break even though it makes things bit trickier.
1445 * Optimize common case to avoid most of the divides
1446 */
1447 mss = tcp_skb_mss(skb);
1448
1449 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1450 * drop this restriction as unnecessary
1451 */
1452 if (mss != tcp_skb_seglen(prev))
1453 goto fallback;
1454
1455 if (len == mss) {
1456 pcount = 1;
1457 } else if (len < mss) {
1458 goto noop;
1459 } else {
1460 pcount = len / mss;
1461 len = pcount * mss;
1462 }
1463 }
1464
1465 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1466 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1467 goto fallback;
1468
1469 if (!skb_shift(prev, skb, len))
1470 goto fallback;
1471 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1472 goto out;
1473
1474 /* Hole filled allows collapsing with the next as well, this is very
1475 * useful when hole on every nth skb pattern happens
1476 */
1477 if (prev == tcp_write_queue_tail(sk))
1478 goto out;
1479 skb = tcp_write_queue_next(sk, prev);
1480
1481 if (!skb_can_shift(skb) ||
1482 (skb == tcp_send_head(sk)) ||
1483 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1484 (mss != tcp_skb_seglen(skb)))
1485 goto out;
1486
1487 len = skb->len;
1488 if (skb_shift(prev, skb, len)) {
1489 pcount += tcp_skb_pcount(skb);
1490 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1491 }
1492
1493 out:
1494 state->fack_count += pcount;
1495 return prev;
1496
1497 noop:
1498 return skb;
1499
1500 fallback:
1501 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1502 return NULL;
1503 }
1504
1505 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1506 struct tcp_sack_block *next_dup,
1507 struct tcp_sacktag_state *state,
1508 u32 start_seq, u32 end_seq,
1509 bool dup_sack_in)
1510 {
1511 struct tcp_sock *tp = tcp_sk(sk);
1512 struct sk_buff *tmp;
1513
1514 tcp_for_write_queue_from(skb, sk) {
1515 int in_sack = 0;
1516 bool dup_sack = dup_sack_in;
1517
1518 if (skb == tcp_send_head(sk))
1519 break;
1520
1521 /* queue is in-order => we can short-circuit the walk early */
1522 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1523 break;
1524
1525 if ((next_dup != NULL) &&
1526 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1527 in_sack = tcp_match_skb_to_sack(sk, skb,
1528 next_dup->start_seq,
1529 next_dup->end_seq);
1530 if (in_sack > 0)
1531 dup_sack = true;
1532 }
1533
1534 /* skb reference here is a bit tricky to get right, since
1535 * shifting can eat and free both this skb and the next,
1536 * so not even _safe variant of the loop is enough.
1537 */
1538 if (in_sack <= 0) {
1539 tmp = tcp_shift_skb_data(sk, skb, state,
1540 start_seq, end_seq, dup_sack);
1541 if (tmp != NULL) {
1542 if (tmp != skb) {
1543 skb = tmp;
1544 continue;
1545 }
1546
1547 in_sack = 0;
1548 } else {
1549 in_sack = tcp_match_skb_to_sack(sk, skb,
1550 start_seq,
1551 end_seq);
1552 }
1553 }
1554
1555 if (unlikely(in_sack < 0))
1556 break;
1557
1558 if (in_sack) {
1559 TCP_SKB_CB(skb)->sacked =
1560 tcp_sacktag_one(sk,
1561 state,
1562 TCP_SKB_CB(skb)->sacked,
1563 TCP_SKB_CB(skb)->seq,
1564 TCP_SKB_CB(skb)->end_seq,
1565 dup_sack,
1566 tcp_skb_pcount(skb),
1567 &skb->skb_mstamp);
1568
1569 if (!before(TCP_SKB_CB(skb)->seq,
1570 tcp_highest_sack_seq(tp)))
1571 tcp_advance_highest_sack(sk, skb);
1572 }
1573
1574 state->fack_count += tcp_skb_pcount(skb);
1575 }
1576 return skb;
1577 }
1578
1579 /* Avoid all extra work that is being done by sacktag while walking in
1580 * a normal way
1581 */
1582 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1583 struct tcp_sacktag_state *state,
1584 u32 skip_to_seq)
1585 {
1586 tcp_for_write_queue_from(skb, sk) {
1587 if (skb == tcp_send_head(sk))
1588 break;
1589
1590 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1591 break;
1592
1593 state->fack_count += tcp_skb_pcount(skb);
1594 }
1595 return skb;
1596 }
1597
1598 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1599 struct sock *sk,
1600 struct tcp_sack_block *next_dup,
1601 struct tcp_sacktag_state *state,
1602 u32 skip_to_seq)
1603 {
1604 if (next_dup == NULL)
1605 return skb;
1606
1607 if (before(next_dup->start_seq, skip_to_seq)) {
1608 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1609 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1610 next_dup->start_seq, next_dup->end_seq,
1611 1);
1612 }
1613
1614 return skb;
1615 }
1616
1617 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1618 {
1619 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1620 }
1621
1622 static int
1623 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1624 u32 prior_snd_una, long *sack_rtt_us)
1625 {
1626 struct tcp_sock *tp = tcp_sk(sk);
1627 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1628 TCP_SKB_CB(ack_skb)->sacked);
1629 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1630 struct tcp_sack_block sp[TCP_NUM_SACKS];
1631 struct tcp_sack_block *cache;
1632 struct tcp_sacktag_state state;
1633 struct sk_buff *skb;
1634 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1635 int used_sacks;
1636 bool found_dup_sack = false;
1637 int i, j;
1638 int first_sack_index;
1639
1640 state.flag = 0;
1641 state.reord = tp->packets_out;
1642 state.rtt_us = -1L;
1643
1644 if (!tp->sacked_out) {
1645 if (WARN_ON(tp->fackets_out))
1646 tp->fackets_out = 0;
1647 tcp_highest_sack_reset(sk);
1648 }
1649
1650 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1651 num_sacks, prior_snd_una);
1652 if (found_dup_sack)
1653 state.flag |= FLAG_DSACKING_ACK;
1654
1655 /* Eliminate too old ACKs, but take into
1656 * account more or less fresh ones, they can
1657 * contain valid SACK info.
1658 */
1659 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1660 return 0;
1661
1662 if (!tp->packets_out)
1663 goto out;
1664
1665 used_sacks = 0;
1666 first_sack_index = 0;
1667 for (i = 0; i < num_sacks; i++) {
1668 bool dup_sack = !i && found_dup_sack;
1669
1670 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1671 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1672
1673 if (!tcp_is_sackblock_valid(tp, dup_sack,
1674 sp[used_sacks].start_seq,
1675 sp[used_sacks].end_seq)) {
1676 int mib_idx;
1677
1678 if (dup_sack) {
1679 if (!tp->undo_marker)
1680 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1681 else
1682 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1683 } else {
1684 /* Don't count olds caused by ACK reordering */
1685 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1686 !after(sp[used_sacks].end_seq, tp->snd_una))
1687 continue;
1688 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1689 }
1690
1691 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1692 if (i == 0)
1693 first_sack_index = -1;
1694 continue;
1695 }
1696
1697 /* Ignore very old stuff early */
1698 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1699 continue;
1700
1701 used_sacks++;
1702 }
1703
1704 /* order SACK blocks to allow in order walk of the retrans queue */
1705 for (i = used_sacks - 1; i > 0; i--) {
1706 for (j = 0; j < i; j++) {
1707 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1708 swap(sp[j], sp[j + 1]);
1709
1710 /* Track where the first SACK block goes to */
1711 if (j == first_sack_index)
1712 first_sack_index = j + 1;
1713 }
1714 }
1715 }
1716
1717 skb = tcp_write_queue_head(sk);
1718 state.fack_count = 0;
1719 i = 0;
1720
1721 if (!tp->sacked_out) {
1722 /* It's already past, so skip checking against it */
1723 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1724 } else {
1725 cache = tp->recv_sack_cache;
1726 /* Skip empty blocks in at head of the cache */
1727 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1728 !cache->end_seq)
1729 cache++;
1730 }
1731
1732 while (i < used_sacks) {
1733 u32 start_seq = sp[i].start_seq;
1734 u32 end_seq = sp[i].end_seq;
1735 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1736 struct tcp_sack_block *next_dup = NULL;
1737
1738 if (found_dup_sack && ((i + 1) == first_sack_index))
1739 next_dup = &sp[i + 1];
1740
1741 /* Skip too early cached blocks */
1742 while (tcp_sack_cache_ok(tp, cache) &&
1743 !before(start_seq, cache->end_seq))
1744 cache++;
1745
1746 /* Can skip some work by looking recv_sack_cache? */
1747 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1748 after(end_seq, cache->start_seq)) {
1749
1750 /* Head todo? */
1751 if (before(start_seq, cache->start_seq)) {
1752 skb = tcp_sacktag_skip(skb, sk, &state,
1753 start_seq);
1754 skb = tcp_sacktag_walk(skb, sk, next_dup,
1755 &state,
1756 start_seq,
1757 cache->start_seq,
1758 dup_sack);
1759 }
1760
1761 /* Rest of the block already fully processed? */
1762 if (!after(end_seq, cache->end_seq))
1763 goto advance_sp;
1764
1765 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1766 &state,
1767 cache->end_seq);
1768
1769 /* ...tail remains todo... */
1770 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1771 /* ...but better entrypoint exists! */
1772 skb = tcp_highest_sack(sk);
1773 if (skb == NULL)
1774 break;
1775 state.fack_count = tp->fackets_out;
1776 cache++;
1777 goto walk;
1778 }
1779
1780 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1781 /* Check overlap against next cached too (past this one already) */
1782 cache++;
1783 continue;
1784 }
1785
1786 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1787 skb = tcp_highest_sack(sk);
1788 if (skb == NULL)
1789 break;
1790 state.fack_count = tp->fackets_out;
1791 }
1792 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1793
1794 walk:
1795 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1796 start_seq, end_seq, dup_sack);
1797
1798 advance_sp:
1799 i++;
1800 }
1801
1802 /* Clear the head of the cache sack blocks so we can skip it next time */
1803 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1804 tp->recv_sack_cache[i].start_seq = 0;
1805 tp->recv_sack_cache[i].end_seq = 0;
1806 }
1807 for (j = 0; j < used_sacks; j++)
1808 tp->recv_sack_cache[i++] = sp[j];
1809
1810 tcp_mark_lost_retrans(sk);
1811
1812 tcp_verify_left_out(tp);
1813
1814 if ((state.reord < tp->fackets_out) &&
1815 ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1816 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1817
1818 out:
1819
1820 #if FASTRETRANS_DEBUG > 0
1821 WARN_ON((int)tp->sacked_out < 0);
1822 WARN_ON((int)tp->lost_out < 0);
1823 WARN_ON((int)tp->retrans_out < 0);
1824 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1825 #endif
1826 *sack_rtt_us = state.rtt_us;
1827 return state.flag;
1828 }
1829
1830 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1831 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1832 */
1833 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1834 {
1835 u32 holes;
1836
1837 holes = max(tp->lost_out, 1U);
1838 holes = min(holes, tp->packets_out);
1839
1840 if ((tp->sacked_out + holes) > tp->packets_out) {
1841 tp->sacked_out = tp->packets_out - holes;
1842 return true;
1843 }
1844 return false;
1845 }
1846
1847 /* If we receive more dupacks than we expected counting segments
1848 * in assumption of absent reordering, interpret this as reordering.
1849 * The only another reason could be bug in receiver TCP.
1850 */
1851 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1852 {
1853 struct tcp_sock *tp = tcp_sk(sk);
1854 if (tcp_limit_reno_sacked(tp))
1855 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1856 }
1857
1858 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1859
1860 static void tcp_add_reno_sack(struct sock *sk)
1861 {
1862 struct tcp_sock *tp = tcp_sk(sk);
1863 tp->sacked_out++;
1864 tcp_check_reno_reordering(sk, 0);
1865 tcp_verify_left_out(tp);
1866 }
1867
1868 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1869
1870 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1871 {
1872 struct tcp_sock *tp = tcp_sk(sk);
1873
1874 if (acked > 0) {
1875 /* One ACK acked hole. The rest eat duplicate ACKs. */
1876 if (acked - 1 >= tp->sacked_out)
1877 tp->sacked_out = 0;
1878 else
1879 tp->sacked_out -= acked - 1;
1880 }
1881 tcp_check_reno_reordering(sk, acked);
1882 tcp_verify_left_out(tp);
1883 }
1884
1885 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1886 {
1887 tp->sacked_out = 0;
1888 }
1889
1890 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1891 {
1892 tp->retrans_out = 0;
1893 tp->lost_out = 0;
1894
1895 tp->undo_marker = 0;
1896 tp->undo_retrans = 0;
1897 }
1898
1899 void tcp_clear_retrans(struct tcp_sock *tp)
1900 {
1901 tcp_clear_retrans_partial(tp);
1902
1903 tp->fackets_out = 0;
1904 tp->sacked_out = 0;
1905 }
1906
1907 /* Enter Loss state. If "how" is not zero, forget all SACK information
1908 * and reset tags completely, otherwise preserve SACKs. If receiver
1909 * dropped its ofo queue, we will know this due to reneging detection.
1910 */
1911 void tcp_enter_loss(struct sock *sk, int how)
1912 {
1913 const struct inet_connection_sock *icsk = inet_csk(sk);
1914 struct tcp_sock *tp = tcp_sk(sk);
1915 struct sk_buff *skb;
1916 bool new_recovery = false;
1917
1918 /* Reduce ssthresh if it has not yet been made inside this window. */
1919 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1920 !after(tp->high_seq, tp->snd_una) ||
1921 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1922 new_recovery = true;
1923 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1924 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1925 tcp_ca_event(sk, CA_EVENT_LOSS);
1926 }
1927 tp->snd_cwnd = 1;
1928 tp->snd_cwnd_cnt = 0;
1929 tp->snd_cwnd_stamp = tcp_time_stamp;
1930
1931 tcp_clear_retrans_partial(tp);
1932
1933 if (tcp_is_reno(tp))
1934 tcp_reset_reno_sack(tp);
1935
1936 tp->undo_marker = tp->snd_una;
1937 if (how) {
1938 tp->sacked_out = 0;
1939 tp->fackets_out = 0;
1940 }
1941 tcp_clear_all_retrans_hints(tp);
1942
1943 tcp_for_write_queue(skb, sk) {
1944 if (skb == tcp_send_head(sk))
1945 break;
1946
1947 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1948 tp->undo_marker = 0;
1949
1950 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1951 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1952 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1953 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1954 tp->lost_out += tcp_skb_pcount(skb);
1955 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1956 }
1957 }
1958 tcp_verify_left_out(tp);
1959
1960 /* Timeout in disordered state after receiving substantial DUPACKs
1961 * suggests that the degree of reordering is over-estimated.
1962 */
1963 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1964 tp->sacked_out >= sysctl_tcp_reordering)
1965 tp->reordering = min_t(unsigned int, tp->reordering,
1966 sysctl_tcp_reordering);
1967 tcp_set_ca_state(sk, TCP_CA_Loss);
1968 tp->high_seq = tp->snd_nxt;
1969 TCP_ECN_queue_cwr(tp);
1970
1971 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1972 * loss recovery is underway except recurring timeout(s) on
1973 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1974 */
1975 tp->frto = sysctl_tcp_frto &&
1976 (new_recovery || icsk->icsk_retransmits) &&
1977 !inet_csk(sk)->icsk_mtup.probe_size;
1978 }
1979
1980 /* If ACK arrived pointing to a remembered SACK, it means that our
1981 * remembered SACKs do not reflect real state of receiver i.e.
1982 * receiver _host_ is heavily congested (or buggy).
1983 *
1984 * Do processing similar to RTO timeout.
1985 */
1986 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1987 {
1988 if (flag & FLAG_SACK_RENEGING) {
1989 struct inet_connection_sock *icsk = inet_csk(sk);
1990 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1991
1992 tcp_enter_loss(sk, 1);
1993 icsk->icsk_retransmits++;
1994 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1995 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1996 icsk->icsk_rto, TCP_RTO_MAX);
1997 return true;
1998 }
1999 return false;
2000 }
2001
2002 static inline int tcp_fackets_out(const struct tcp_sock *tp)
2003 {
2004 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2005 }
2006
2007 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2008 * counter when SACK is enabled (without SACK, sacked_out is used for
2009 * that purpose).
2010 *
2011 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2012 * segments up to the highest received SACK block so far and holes in
2013 * between them.
2014 *
2015 * With reordering, holes may still be in flight, so RFC3517 recovery
2016 * uses pure sacked_out (total number of SACKed segments) even though
2017 * it violates the RFC that uses duplicate ACKs, often these are equal
2018 * but when e.g. out-of-window ACKs or packet duplication occurs,
2019 * they differ. Since neither occurs due to loss, TCP should really
2020 * ignore them.
2021 */
2022 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2023 {
2024 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2025 }
2026
2027 static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2028 {
2029 struct tcp_sock *tp = tcp_sk(sk);
2030 unsigned long delay;
2031
2032 /* Delay early retransmit and entering fast recovery for
2033 * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2034 * available, or RTO is scheduled to fire first.
2035 */
2036 if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2037 (flag & FLAG_ECE) || !tp->srtt_us)
2038 return false;
2039
2040 delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2041 msecs_to_jiffies(2));
2042
2043 if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2044 return false;
2045
2046 inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2047 TCP_RTO_MAX);
2048 return true;
2049 }
2050
2051 /* Linux NewReno/SACK/FACK/ECN state machine.
2052 * --------------------------------------
2053 *
2054 * "Open" Normal state, no dubious events, fast path.
2055 * "Disorder" In all the respects it is "Open",
2056 * but requires a bit more attention. It is entered when
2057 * we see some SACKs or dupacks. It is split of "Open"
2058 * mainly to move some processing from fast path to slow one.
2059 * "CWR" CWND was reduced due to some Congestion Notification event.
2060 * It can be ECN, ICMP source quench, local device congestion.
2061 * "Recovery" CWND was reduced, we are fast-retransmitting.
2062 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2063 *
2064 * tcp_fastretrans_alert() is entered:
2065 * - each incoming ACK, if state is not "Open"
2066 * - when arrived ACK is unusual, namely:
2067 * * SACK
2068 * * Duplicate ACK.
2069 * * ECN ECE.
2070 *
2071 * Counting packets in flight is pretty simple.
2072 *
2073 * in_flight = packets_out - left_out + retrans_out
2074 *
2075 * packets_out is SND.NXT-SND.UNA counted in packets.
2076 *
2077 * retrans_out is number of retransmitted segments.
2078 *
2079 * left_out is number of segments left network, but not ACKed yet.
2080 *
2081 * left_out = sacked_out + lost_out
2082 *
2083 * sacked_out: Packets, which arrived to receiver out of order
2084 * and hence not ACKed. With SACKs this number is simply
2085 * amount of SACKed data. Even without SACKs
2086 * it is easy to give pretty reliable estimate of this number,
2087 * counting duplicate ACKs.
2088 *
2089 * lost_out: Packets lost by network. TCP has no explicit
2090 * "loss notification" feedback from network (for now).
2091 * It means that this number can be only _guessed_.
2092 * Actually, it is the heuristics to predict lossage that
2093 * distinguishes different algorithms.
2094 *
2095 * F.e. after RTO, when all the queue is considered as lost,
2096 * lost_out = packets_out and in_flight = retrans_out.
2097 *
2098 * Essentially, we have now two algorithms counting
2099 * lost packets.
2100 *
2101 * FACK: It is the simplest heuristics. As soon as we decided
2102 * that something is lost, we decide that _all_ not SACKed
2103 * packets until the most forward SACK are lost. I.e.
2104 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2105 * It is absolutely correct estimate, if network does not reorder
2106 * packets. And it loses any connection to reality when reordering
2107 * takes place. We use FACK by default until reordering
2108 * is suspected on the path to this destination.
2109 *
2110 * NewReno: when Recovery is entered, we assume that one segment
2111 * is lost (classic Reno). While we are in Recovery and
2112 * a partial ACK arrives, we assume that one more packet
2113 * is lost (NewReno). This heuristics are the same in NewReno
2114 * and SACK.
2115 *
2116 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2117 * deflation etc. CWND is real congestion window, never inflated, changes
2118 * only according to classic VJ rules.
2119 *
2120 * Really tricky (and requiring careful tuning) part of algorithm
2121 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2122 * The first determines the moment _when_ we should reduce CWND and,
2123 * hence, slow down forward transmission. In fact, it determines the moment
2124 * when we decide that hole is caused by loss, rather than by a reorder.
2125 *
2126 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2127 * holes, caused by lost packets.
2128 *
2129 * And the most logically complicated part of algorithm is undo
2130 * heuristics. We detect false retransmits due to both too early
2131 * fast retransmit (reordering) and underestimated RTO, analyzing
2132 * timestamps and D-SACKs. When we detect that some segments were
2133 * retransmitted by mistake and CWND reduction was wrong, we undo
2134 * window reduction and abort recovery phase. This logic is hidden
2135 * inside several functions named tcp_try_undo_<something>.
2136 */
2137
2138 /* This function decides, when we should leave Disordered state
2139 * and enter Recovery phase, reducing congestion window.
2140 *
2141 * Main question: may we further continue forward transmission
2142 * with the same cwnd?
2143 */
2144 static bool tcp_time_to_recover(struct sock *sk, int flag)
2145 {
2146 struct tcp_sock *tp = tcp_sk(sk);
2147 __u32 packets_out;
2148
2149 /* Trick#1: The loss is proven. */
2150 if (tp->lost_out)
2151 return true;
2152
2153 /* Not-A-Trick#2 : Classic rule... */
2154 if (tcp_dupack_heuristics(tp) > tp->reordering)
2155 return true;
2156
2157 /* Trick#4: It is still not OK... But will it be useful to delay
2158 * recovery more?
2159 */
2160 packets_out = tp->packets_out;
2161 if (packets_out <= tp->reordering &&
2162 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2163 !tcp_may_send_now(sk)) {
2164 /* We have nothing to send. This connection is limited
2165 * either by receiver window or by application.
2166 */
2167 return true;
2168 }
2169
2170 /* If a thin stream is detected, retransmit after first
2171 * received dupack. Employ only if SACK is supported in order
2172 * to avoid possible corner-case series of spurious retransmissions
2173 * Use only if there are no unsent data.
2174 */
2175 if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2176 tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2177 tcp_is_sack(tp) && !tcp_send_head(sk))
2178 return true;
2179
2180 /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
2181 * retransmissions due to small network reorderings, we implement
2182 * Mitigation A.3 in the RFC and delay the retransmission for a short
2183 * interval if appropriate.
2184 */
2185 if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2186 (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2187 !tcp_may_send_now(sk))
2188 return !tcp_pause_early_retransmit(sk, flag);
2189
2190 return false;
2191 }
2192
2193 /* Detect loss in event "A" above by marking head of queue up as lost.
2194 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2195 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2196 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2197 * the maximum SACKed segments to pass before reaching this limit.
2198 */
2199 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2200 {
2201 struct tcp_sock *tp = tcp_sk(sk);
2202 struct sk_buff *skb;
2203 int cnt, oldcnt;
2204 int err;
2205 unsigned int mss;
2206 /* Use SACK to deduce losses of new sequences sent during recovery */
2207 const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
2208
2209 WARN_ON(packets > tp->packets_out);
2210 if (tp->lost_skb_hint) {
2211 skb = tp->lost_skb_hint;
2212 cnt = tp->lost_cnt_hint;
2213 /* Head already handled? */
2214 if (mark_head && skb != tcp_write_queue_head(sk))
2215 return;
2216 } else {
2217 skb = tcp_write_queue_head(sk);
2218 cnt = 0;
2219 }
2220
2221 tcp_for_write_queue_from(skb, sk) {
2222 if (skb == tcp_send_head(sk))
2223 break;
2224 /* TODO: do this better */
2225 /* this is not the most efficient way to do this... */
2226 tp->lost_skb_hint = skb;
2227 tp->lost_cnt_hint = cnt;
2228
2229 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2230 break;
2231
2232 oldcnt = cnt;
2233 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2234 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2235 cnt += tcp_skb_pcount(skb);
2236
2237 if (cnt > packets) {
2238 if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2239 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2240 (oldcnt >= packets))
2241 break;
2242
2243 mss = skb_shinfo(skb)->gso_size;
2244 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2245 if (err < 0)
2246 break;
2247 cnt = packets;
2248 }
2249
2250 tcp_skb_mark_lost(tp, skb);
2251
2252 if (mark_head)
2253 break;
2254 }
2255 tcp_verify_left_out(tp);
2256 }
2257
2258 /* Account newly detected lost packet(s) */
2259
2260 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2261 {
2262 struct tcp_sock *tp = tcp_sk(sk);
2263
2264 if (tcp_is_reno(tp)) {
2265 tcp_mark_head_lost(sk, 1, 1);
2266 } else if (tcp_is_fack(tp)) {
2267 int lost = tp->fackets_out - tp->reordering;
2268 if (lost <= 0)
2269 lost = 1;
2270 tcp_mark_head_lost(sk, lost, 0);
2271 } else {
2272 int sacked_upto = tp->sacked_out - tp->reordering;
2273 if (sacked_upto >= 0)
2274 tcp_mark_head_lost(sk, sacked_upto, 0);
2275 else if (fast_rexmit)
2276 tcp_mark_head_lost(sk, 1, 1);
2277 }
2278 }
2279
2280 /* CWND moderation, preventing bursts due to too big ACKs
2281 * in dubious situations.
2282 */
2283 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2284 {
2285 tp->snd_cwnd = min(tp->snd_cwnd,
2286 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2287 tp->snd_cwnd_stamp = tcp_time_stamp;
2288 }
2289
2290 /* Nothing was retransmitted or returned timestamp is less
2291 * than timestamp of the first retransmission.
2292 */
2293 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2294 {
2295 return !tp->retrans_stamp ||
2296 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2297 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2298 }
2299
2300 /* Undo procedures. */
2301
2302 #if FASTRETRANS_DEBUG > 1
2303 static void DBGUNDO(struct sock *sk, const char *msg)
2304 {
2305 struct tcp_sock *tp = tcp_sk(sk);
2306 struct inet_sock *inet = inet_sk(sk);
2307
2308 if (sk->sk_family == AF_INET) {
2309 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2310 msg,
2311 &inet->inet_daddr, ntohs(inet->inet_dport),
2312 tp->snd_cwnd, tcp_left_out(tp),
2313 tp->snd_ssthresh, tp->prior_ssthresh,
2314 tp->packets_out);
2315 }
2316 #if IS_ENABLED(CONFIG_IPV6)
2317 else if (sk->sk_family == AF_INET6) {
2318 struct ipv6_pinfo *np = inet6_sk(sk);
2319 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2320 msg,
2321 &np->daddr, ntohs(inet->inet_dport),
2322 tp->snd_cwnd, tcp_left_out(tp),
2323 tp->snd_ssthresh, tp->prior_ssthresh,
2324 tp->packets_out);
2325 }
2326 #endif
2327 }
2328 #else
2329 #define DBGUNDO(x...) do { } while (0)
2330 #endif
2331
2332 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2333 {
2334 struct tcp_sock *tp = tcp_sk(sk);
2335
2336 if (unmark_loss) {
2337 struct sk_buff *skb;
2338
2339 tcp_for_write_queue(skb, sk) {
2340 if (skb == tcp_send_head(sk))
2341 break;
2342 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2343 }
2344 tp->lost_out = 0;
2345 tcp_clear_all_retrans_hints(tp);
2346 }
2347
2348 if (tp->prior_ssthresh) {
2349 const struct inet_connection_sock *icsk = inet_csk(sk);
2350
2351 if (icsk->icsk_ca_ops->undo_cwnd)
2352 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2353 else
2354 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2355
2356 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2357 tp->snd_ssthresh = tp->prior_ssthresh;
2358 TCP_ECN_withdraw_cwr(tp);
2359 }
2360 } else {
2361 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2362 }
2363 tp->snd_cwnd_stamp = tcp_time_stamp;
2364 tp->undo_marker = 0;
2365 }
2366
2367 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2368 {
2369 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2370 }
2371
2372 /* People celebrate: "We love our President!" */
2373 static bool tcp_try_undo_recovery(struct sock *sk)
2374 {
2375 struct tcp_sock *tp = tcp_sk(sk);
2376
2377 if (tcp_may_undo(tp)) {
2378 int mib_idx;
2379
2380 /* Happy end! We did not retransmit anything
2381 * or our original transmission succeeded.
2382 */
2383 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2384 tcp_undo_cwnd_reduction(sk, false);
2385 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2386 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2387 else
2388 mib_idx = LINUX_MIB_TCPFULLUNDO;
2389
2390 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2391 }
2392 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2393 /* Hold old state until something *above* high_seq
2394 * is ACKed. For Reno it is MUST to prevent false
2395 * fast retransmits (RFC2582). SACK TCP is safe. */
2396 tcp_moderate_cwnd(tp);
2397 return true;
2398 }
2399 tcp_set_ca_state(sk, TCP_CA_Open);
2400 return false;
2401 }
2402
2403 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2404 static bool tcp_try_undo_dsack(struct sock *sk)
2405 {
2406 struct tcp_sock *tp = tcp_sk(sk);
2407
2408 if (tp->undo_marker && !tp->undo_retrans) {
2409 DBGUNDO(sk, "D-SACK");
2410 tcp_undo_cwnd_reduction(sk, false);
2411 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2412 return true;
2413 }
2414 return false;
2415 }
2416
2417 /* We can clear retrans_stamp when there are no retransmissions in the
2418 * window. It would seem that it is trivially available for us in
2419 * tp->retrans_out, however, that kind of assumptions doesn't consider
2420 * what will happen if errors occur when sending retransmission for the
2421 * second time. ...It could the that such segment has only
2422 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2423 * the head skb is enough except for some reneging corner cases that
2424 * are not worth the effort.
2425 *
2426 * Main reason for all this complexity is the fact that connection dying
2427 * time now depends on the validity of the retrans_stamp, in particular,
2428 * that successive retransmissions of a segment must not advance
2429 * retrans_stamp under any conditions.
2430 */
2431 static bool tcp_any_retrans_done(const struct sock *sk)
2432 {
2433 const struct tcp_sock *tp = tcp_sk(sk);
2434 struct sk_buff *skb;
2435
2436 if (tp->retrans_out)
2437 return true;
2438
2439 skb = tcp_write_queue_head(sk);
2440 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2441 return true;
2442
2443 return false;
2444 }
2445
2446 /* Undo during loss recovery after partial ACK or using F-RTO. */
2447 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2448 {
2449 struct tcp_sock *tp = tcp_sk(sk);
2450
2451 if (frto_undo || tcp_may_undo(tp)) {
2452 tcp_undo_cwnd_reduction(sk, true);
2453
2454 DBGUNDO(sk, "partial loss");
2455 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2456 if (frto_undo)
2457 NET_INC_STATS_BH(sock_net(sk),
2458 LINUX_MIB_TCPSPURIOUSRTOS);
2459 inet_csk(sk)->icsk_retransmits = 0;
2460 if (frto_undo || tcp_is_sack(tp))
2461 tcp_set_ca_state(sk, TCP_CA_Open);
2462 return true;
2463 }
2464 return false;
2465 }
2466
2467 /* The cwnd reduction in CWR and Recovery use the PRR algorithm
2468 * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
2469 * It computes the number of packets to send (sndcnt) based on packets newly
2470 * delivered:
2471 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2472 * cwnd reductions across a full RTT.
2473 * 2) If packets in flight is lower than ssthresh (such as due to excess
2474 * losses and/or application stalls), do not perform any further cwnd
2475 * reductions, but instead slow start up to ssthresh.
2476 */
2477 static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
2478 {
2479 struct tcp_sock *tp = tcp_sk(sk);
2480
2481 tp->high_seq = tp->snd_nxt;
2482 tp->tlp_high_seq = 0;
2483 tp->snd_cwnd_cnt = 0;
2484 tp->prior_cwnd = tp->snd_cwnd;
2485 tp->prr_delivered = 0;
2486 tp->prr_out = 0;
2487 if (set_ssthresh)
2488 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2489 TCP_ECN_queue_cwr(tp);
2490 }
2491
2492 static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
2493 int fast_rexmit)
2494 {
2495 struct tcp_sock *tp = tcp_sk(sk);
2496 int sndcnt = 0;
2497 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2498 int newly_acked_sacked = prior_unsacked -
2499 (tp->packets_out - tp->sacked_out);
2500
2501 tp->prr_delivered += newly_acked_sacked;
2502 if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
2503 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2504 tp->prior_cwnd - 1;
2505 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2506 } else {
2507 sndcnt = min_t(int, delta,
2508 max_t(int, tp->prr_delivered - tp->prr_out,
2509 newly_acked_sacked) + 1);
2510 }
2511
2512 sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
2513 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2514 }
2515
2516 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2517 {
2518 struct tcp_sock *tp = tcp_sk(sk);
2519
2520 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2521 if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2522 (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2523 tp->snd_cwnd = tp->snd_ssthresh;
2524 tp->snd_cwnd_stamp = tcp_time_stamp;
2525 }
2526 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2527 }
2528
2529 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2530 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
2531 {
2532 struct tcp_sock *tp = tcp_sk(sk);
2533
2534 tp->prior_ssthresh = 0;
2535 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2536 tp->undo_marker = 0;
2537 tcp_init_cwnd_reduction(sk, set_ssthresh);
2538 tcp_set_ca_state(sk, TCP_CA_CWR);
2539 }
2540 }
2541
2542 static void tcp_try_keep_open(struct sock *sk)
2543 {
2544 struct tcp_sock *tp = tcp_sk(sk);
2545 int state = TCP_CA_Open;
2546
2547 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2548 state = TCP_CA_Disorder;
2549
2550 if (inet_csk(sk)->icsk_ca_state != state) {
2551 tcp_set_ca_state(sk, state);
2552 tp->high_seq = tp->snd_nxt;
2553 }
2554 }
2555
2556 static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
2557 {
2558 struct tcp_sock *tp = tcp_sk(sk);
2559
2560 tcp_verify_left_out(tp);
2561
2562 if (!tcp_any_retrans_done(sk))
2563 tp->retrans_stamp = 0;
2564
2565 if (flag & FLAG_ECE)
2566 tcp_enter_cwr(sk, 1);
2567
2568 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2569 tcp_try_keep_open(sk);
2570 } else {
2571 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2572 }
2573 }
2574
2575 static void tcp_mtup_probe_failed(struct sock *sk)
2576 {
2577 struct inet_connection_sock *icsk = inet_csk(sk);
2578
2579 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2580 icsk->icsk_mtup.probe_size = 0;
2581 }
2582
2583 static void tcp_mtup_probe_success(struct sock *sk)
2584 {
2585 struct tcp_sock *tp = tcp_sk(sk);
2586 struct inet_connection_sock *icsk = inet_csk(sk);
2587
2588 /* FIXME: breaks with very large cwnd */
2589 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2590 tp->snd_cwnd = tp->snd_cwnd *
2591 tcp_mss_to_mtu(sk, tp->mss_cache) /
2592 icsk->icsk_mtup.probe_size;
2593 tp->snd_cwnd_cnt = 0;
2594 tp->snd_cwnd_stamp = tcp_time_stamp;
2595 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2596
2597 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2598 icsk->icsk_mtup.probe_size = 0;
2599 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2600 }
2601
2602 /* Do a simple retransmit without using the backoff mechanisms in
2603 * tcp_timer. This is used for path mtu discovery.
2604 * The socket is already locked here.
2605 */
2606 void tcp_simple_retransmit(struct sock *sk)
2607 {
2608 const struct inet_connection_sock *icsk = inet_csk(sk);
2609 struct tcp_sock *tp = tcp_sk(sk);
2610 struct sk_buff *skb;
2611 unsigned int mss = tcp_current_mss(sk);
2612 u32 prior_lost = tp->lost_out;
2613
2614 tcp_for_write_queue(skb, sk) {
2615 if (skb == tcp_send_head(sk))
2616 break;
2617 if (tcp_skb_seglen(skb) > mss &&
2618 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2619 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2620 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2621 tp->retrans_out -= tcp_skb_pcount(skb);
2622 }
2623 tcp_skb_mark_lost_uncond_verify(tp, skb);
2624 }
2625 }
2626
2627 tcp_clear_retrans_hints_partial(tp);
2628
2629 if (prior_lost == tp->lost_out)
2630 return;
2631
2632 if (tcp_is_reno(tp))
2633 tcp_limit_reno_sacked(tp);
2634
2635 tcp_verify_left_out(tp);
2636
2637 /* Don't muck with the congestion window here.
2638 * Reason is that we do not increase amount of _data_
2639 * in network, but units changed and effective
2640 * cwnd/ssthresh really reduced now.
2641 */
2642 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2643 tp->high_seq = tp->snd_nxt;
2644 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2645 tp->prior_ssthresh = 0;
2646 tp->undo_marker = 0;
2647 tcp_set_ca_state(sk, TCP_CA_Loss);
2648 }
2649 tcp_xmit_retransmit_queue(sk);
2650 }
2651 EXPORT_SYMBOL(tcp_simple_retransmit);
2652
2653 static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2654 {
2655 struct tcp_sock *tp = tcp_sk(sk);
2656 int mib_idx;
2657
2658 if (tcp_is_reno(tp))
2659 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2660 else
2661 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2662
2663 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2664
2665 tp->prior_ssthresh = 0;
2666 tp->undo_marker = tp->snd_una;
2667 tp->undo_retrans = tp->retrans_out;
2668
2669 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2670 if (!ece_ack)
2671 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2672 tcp_init_cwnd_reduction(sk, true);
2673 }
2674 tcp_set_ca_state(sk, TCP_CA_Recovery);
2675 }
2676
2677 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2678 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2679 */
2680 static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
2681 {
2682 struct inet_connection_sock *icsk = inet_csk(sk);
2683 struct tcp_sock *tp = tcp_sk(sk);
2684 bool recovered = !before(tp->snd_una, tp->high_seq);
2685
2686 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2687 if (flag & FLAG_ORIG_SACK_ACKED) {
2688 /* Step 3.b. A timeout is spurious if not all data are
2689 * lost, i.e., never-retransmitted data are (s)acked.
2690 */
2691 tcp_try_undo_loss(sk, true);
2692 return;
2693 }
2694 if (after(tp->snd_nxt, tp->high_seq) &&
2695 (flag & FLAG_DATA_SACKED || is_dupack)) {
2696 tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
2697 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2698 tp->high_seq = tp->snd_nxt;
2699 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
2700 TCP_NAGLE_OFF);
2701 if (after(tp->snd_nxt, tp->high_seq))
2702 return; /* Step 2.b */
2703 tp->frto = 0;
2704 }
2705 }
2706
2707 if (recovered) {
2708 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2709 icsk->icsk_retransmits = 0;
2710 tcp_try_undo_recovery(sk);
2711 return;
2712 }
2713 if (flag & FLAG_DATA_ACKED)
2714 icsk->icsk_retransmits = 0;
2715 if (tcp_is_reno(tp)) {
2716 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2717 * delivered. Lower inflight to clock out (re)tranmissions.
2718 */
2719 if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2720 tcp_add_reno_sack(sk);
2721 else if (flag & FLAG_SND_UNA_ADVANCED)
2722 tcp_reset_reno_sack(tp);
2723 }
2724 if (tcp_try_undo_loss(sk, false))
2725 return;
2726 tcp_xmit_retransmit_queue(sk);
2727 }
2728
2729 /* Undo during fast recovery after partial ACK. */
2730 static bool tcp_try_undo_partial(struct sock *sk, const int acked,
2731 const int prior_unsacked)
2732 {
2733 struct tcp_sock *tp = tcp_sk(sk);
2734
2735 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2736 /* Plain luck! Hole if filled with delayed
2737 * packet, rather than with a retransmit.
2738 */
2739 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2740
2741 /* We are getting evidence that the reordering degree is higher
2742 * than we realized. If there are no retransmits out then we
2743 * can undo. Otherwise we clock out new packets but do not
2744 * mark more packets lost or retransmit more.
2745 */
2746 if (tp->retrans_out) {
2747 tcp_cwnd_reduction(sk, prior_unsacked, 0);
2748 return true;
2749 }
2750
2751 if (!tcp_any_retrans_done(sk))
2752 tp->retrans_stamp = 0;
2753
2754 DBGUNDO(sk, "partial recovery");
2755 tcp_undo_cwnd_reduction(sk, true);
2756 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2757 tcp_try_keep_open(sk);
2758 return true;
2759 }
2760 return false;
2761 }
2762
2763 /* Process an event, which can update packets-in-flight not trivially.
2764 * Main goal of this function is to calculate new estimate for left_out,
2765 * taking into account both packets sitting in receiver's buffer and
2766 * packets lost by network.
2767 *
2768 * Besides that it does CWND reduction, when packet loss is detected
2769 * and changes state of machine.
2770 *
2771 * It does _not_ decide what to send, it is made in function
2772 * tcp_xmit_retransmit_queue().
2773 */
2774 static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2775 const int prior_unsacked,
2776 bool is_dupack, int flag)
2777 {
2778 struct inet_connection_sock *icsk = inet_csk(sk);
2779 struct tcp_sock *tp = tcp_sk(sk);
2780 bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2781 (tcp_fackets_out(tp) > tp->reordering));
2782 int fast_rexmit = 0;
2783
2784 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2785 tp->sacked_out = 0;
2786 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2787 tp->fackets_out = 0;
2788
2789 /* Now state machine starts.
2790 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2791 if (flag & FLAG_ECE)
2792 tp->prior_ssthresh = 0;
2793
2794 /* B. In all the states check for reneging SACKs. */
2795 if (tcp_check_sack_reneging(sk, flag))
2796 return;
2797
2798 /* C. Check consistency of the current state. */
2799 tcp_verify_left_out(tp);
2800
2801 /* D. Check state exit conditions. State can be terminated
2802 * when high_seq is ACKed. */
2803 if (icsk->icsk_ca_state == TCP_CA_Open) {
2804 WARN_ON(tp->retrans_out != 0);
2805 tp->retrans_stamp = 0;
2806 } else if (!before(tp->snd_una, tp->high_seq)) {
2807 switch (icsk->icsk_ca_state) {
2808 case TCP_CA_CWR:
2809 /* CWR is to be held something *above* high_seq
2810 * is ACKed for CWR bit to reach receiver. */
2811 if (tp->snd_una != tp->high_seq) {
2812 tcp_end_cwnd_reduction(sk);
2813 tcp_set_ca_state(sk, TCP_CA_Open);
2814 }
2815 break;
2816
2817 case TCP_CA_Recovery:
2818 if (tcp_is_reno(tp))
2819 tcp_reset_reno_sack(tp);
2820 if (tcp_try_undo_recovery(sk))
2821 return;
2822 tcp_end_cwnd_reduction(sk);
2823 break;
2824 }
2825 }
2826
2827 /* E. Process state. */
2828 switch (icsk->icsk_ca_state) {
2829 case TCP_CA_Recovery:
2830 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2831 if (tcp_is_reno(tp) && is_dupack)
2832 tcp_add_reno_sack(sk);
2833 } else {
2834 if (tcp_try_undo_partial(sk, acked, prior_unsacked))
2835 return;
2836 /* Partial ACK arrived. Force fast retransmit. */
2837 do_lost = tcp_is_reno(tp) ||
2838 tcp_fackets_out(tp) > tp->reordering;
2839 }
2840 if (tcp_try_undo_dsack(sk)) {
2841 tcp_try_keep_open(sk);
2842 return;
2843 }
2844 break;
2845 case TCP_CA_Loss:
2846 tcp_process_loss(sk, flag, is_dupack);
2847 if (icsk->icsk_ca_state != TCP_CA_Open)
2848 return;
2849 /* Fall through to processing in Open state. */
2850 default:
2851 if (tcp_is_reno(tp)) {
2852 if (flag & FLAG_SND_UNA_ADVANCED)
2853 tcp_reset_reno_sack(tp);
2854 if (is_dupack)
2855 tcp_add_reno_sack(sk);
2856 }
2857
2858 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2859 tcp_try_undo_dsack(sk);
2860
2861 if (!tcp_time_to_recover(sk, flag)) {
2862 tcp_try_to_open(sk, flag, prior_unsacked);
2863 return;
2864 }
2865
2866 /* MTU probe failure: don't reduce cwnd */
2867 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2868 icsk->icsk_mtup.probe_size &&
2869 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2870 tcp_mtup_probe_failed(sk);
2871 /* Restores the reduction we did in tcp_mtup_probe() */
2872 tp->snd_cwnd++;
2873 tcp_simple_retransmit(sk);
2874 return;
2875 }
2876
2877 /* Otherwise enter Recovery state */
2878 tcp_enter_recovery(sk, (flag & FLAG_ECE));
2879 fast_rexmit = 1;
2880 }
2881
2882 if (do_lost)
2883 tcp_update_scoreboard(sk, fast_rexmit);
2884 tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
2885 tcp_xmit_retransmit_queue(sk);
2886 }
2887
2888 static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2889 long seq_rtt_us, long sack_rtt_us)
2890 {
2891 const struct tcp_sock *tp = tcp_sk(sk);
2892
2893 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2894 * broken middle-boxes or peers may corrupt TS-ECR fields. But
2895 * Karn's algorithm forbids taking RTT if some retransmitted data
2896 * is acked (RFC6298).
2897 */
2898 if (flag & FLAG_RETRANS_DATA_ACKED)
2899 seq_rtt_us = -1L;
2900
2901 if (seq_rtt_us < 0)
2902 seq_rtt_us = sack_rtt_us;
2903
2904 /* RTTM Rule: A TSecr value received in a segment is used to
2905 * update the averaged RTT measurement only if the segment
2906 * acknowledges some new data, i.e., only if it advances the
2907 * left edge of the send window.
2908 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2909 */
2910 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2911 flag & FLAG_ACKED)
2912 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
2913
2914 if (seq_rtt_us < 0)
2915 return false;
2916
2917 tcp_rtt_estimator(sk, seq_rtt_us);
2918 tcp_set_rto(sk);
2919
2920 /* RFC6298: only reset backoff on valid RTT measurement. */
2921 inet_csk(sk)->icsk_backoff = 0;
2922 return true;
2923 }
2924
2925 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2926 static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
2927 {
2928 struct tcp_sock *tp = tcp_sk(sk);
2929 long seq_rtt_us = -1L;
2930
2931 if (synack_stamp && !tp->total_retrans)
2932 seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
2933
2934 /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
2935 * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
2936 */
2937 if (!tp->srtt_us)
2938 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
2939 }
2940
2941 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked, u32 in_flight)
2942 {
2943 const struct inet_connection_sock *icsk = inet_csk(sk);
2944 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked, in_flight);
2945 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2946 }
2947
2948 /* Restart timer after forward progress on connection.
2949 * RFC2988 recommends to restart timer to now+rto.
2950 */
2951 void tcp_rearm_rto(struct sock *sk)
2952 {
2953 const struct inet_connection_sock *icsk = inet_csk(sk);
2954 struct tcp_sock *tp = tcp_sk(sk);
2955
2956 /* If the retrans timer is currently being used by Fast Open
2957 * for SYN-ACK retrans purpose, stay put.
2958 */
2959 if (tp->fastopen_rsk)
2960 return;
2961
2962 if (!tp->packets_out) {
2963 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2964 } else {
2965 u32 rto = inet_csk(sk)->icsk_rto;
2966 /* Offset the time elapsed after installing regular RTO */
2967 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2968 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2969 struct sk_buff *skb = tcp_write_queue_head(sk);
2970 const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
2971 s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
2972 /* delta may not be positive if the socket is locked
2973 * when the retrans timer fires and is rescheduled.
2974 */
2975 if (delta > 0)
2976 rto = delta;
2977 }
2978 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
2979 TCP_RTO_MAX);
2980 }
2981 }
2982
2983 /* This function is called when the delayed ER timer fires. TCP enters
2984 * fast recovery and performs fast-retransmit.
2985 */
2986 void tcp_resume_early_retransmit(struct sock *sk)
2987 {
2988 struct tcp_sock *tp = tcp_sk(sk);
2989
2990 tcp_rearm_rto(sk);
2991
2992 /* Stop if ER is disabled after the delayed ER timer is scheduled */
2993 if (!tp->do_early_retrans)
2994 return;
2995
2996 tcp_enter_recovery(sk, false);
2997 tcp_update_scoreboard(sk, 1);
2998 tcp_xmit_retransmit_queue(sk);
2999 }
3000
3001 /* If we get here, the whole TSO packet has not been acked. */
3002 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3003 {
3004 struct tcp_sock *tp = tcp_sk(sk);
3005 u32 packets_acked;
3006
3007 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3008
3009 packets_acked = tcp_skb_pcount(skb);
3010 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3011 return 0;
3012 packets_acked -= tcp_skb_pcount(skb);
3013
3014 if (packets_acked) {
3015 BUG_ON(tcp_skb_pcount(skb) == 0);
3016 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3017 }
3018
3019 return packets_acked;
3020 }
3021
3022 /* Remove acknowledged frames from the retransmission queue. If our packet
3023 * is before the ack sequence we can discard it as it's confirmed to have
3024 * arrived at the other end.
3025 */
3026 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3027 u32 prior_snd_una, long sack_rtt_us)
3028 {
3029 const struct inet_connection_sock *icsk = inet_csk(sk);
3030 struct skb_mstamp first_ackt, last_ackt, now;
3031 struct tcp_sock *tp = tcp_sk(sk);
3032 u32 prior_sacked = tp->sacked_out;
3033 u32 reord = tp->packets_out;
3034 bool fully_acked = true;
3035 long ca_seq_rtt_us = -1L;
3036 long seq_rtt_us = -1L;
3037 struct sk_buff *skb;
3038 u32 pkts_acked = 0;
3039 bool rtt_update;
3040 int flag = 0;
3041
3042 first_ackt.v64 = 0;
3043
3044 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3045 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3046 u8 sacked = scb->sacked;
3047 u32 acked_pcount;
3048
3049 /* Determine how many packets and what bytes were acked, tso and else */
3050 if (after(scb->end_seq, tp->snd_una)) {
3051 if (tcp_skb_pcount(skb) == 1 ||
3052 !after(tp->snd_una, scb->seq))
3053 break;
3054
3055 acked_pcount = tcp_tso_acked(sk, skb);
3056 if (!acked_pcount)
3057 break;
3058
3059 fully_acked = false;
3060 } else {
3061 acked_pcount = tcp_skb_pcount(skb);
3062 }
3063
3064 if (sacked & TCPCB_RETRANS) {
3065 if (sacked & TCPCB_SACKED_RETRANS)
3066 tp->retrans_out -= acked_pcount;
3067 flag |= FLAG_RETRANS_DATA_ACKED;
3068 } else {
3069 last_ackt = skb->skb_mstamp;
3070 WARN_ON_ONCE(last_ackt.v64 == 0);
3071 if (!first_ackt.v64)
3072 first_ackt = last_ackt;
3073
3074 if (!(sacked & TCPCB_SACKED_ACKED))
3075 reord = min(pkts_acked, reord);
3076 if (!after(scb->end_seq, tp->high_seq))
3077 flag |= FLAG_ORIG_SACK_ACKED;
3078 }
3079
3080 if (sacked & TCPCB_SACKED_ACKED)
3081 tp->sacked_out -= acked_pcount;
3082 if (sacked & TCPCB_LOST)
3083 tp->lost_out -= acked_pcount;
3084
3085 tp->packets_out -= acked_pcount;
3086 pkts_acked += acked_pcount;
3087
3088 /* Initial outgoing SYN's get put onto the write_queue
3089 * just like anything else we transmit. It is not
3090 * true data, and if we misinform our callers that
3091 * this ACK acks real data, we will erroneously exit
3092 * connection startup slow start one packet too
3093 * quickly. This is severely frowned upon behavior.
3094 */
3095 if (!(scb->tcp_flags & TCPHDR_SYN)) {
3096 flag |= FLAG_DATA_ACKED;
3097 } else {
3098 flag |= FLAG_SYN_ACKED;
3099 tp->retrans_stamp = 0;
3100 }
3101
3102 if (!fully_acked)
3103 break;
3104
3105 tcp_unlink_write_queue(skb, sk);
3106 sk_wmem_free_skb(sk, skb);
3107 if (skb == tp->retransmit_skb_hint)
3108 tp->retransmit_skb_hint = NULL;
3109 if (skb == tp->lost_skb_hint)
3110 tp->lost_skb_hint = NULL;
3111 }
3112
3113 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3114 tp->snd_up = tp->snd_una;
3115
3116 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3117 flag |= FLAG_SACK_RENEGING;
3118
3119 skb_mstamp_get(&now);
3120 if (first_ackt.v64) {
3121 seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3122 ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3123 }
3124
3125 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
3126
3127 if (flag & FLAG_ACKED) {
3128 const struct tcp_congestion_ops *ca_ops
3129 = inet_csk(sk)->icsk_ca_ops;
3130
3131 tcp_rearm_rto(sk);
3132 if (unlikely(icsk->icsk_mtup.probe_size &&
3133 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3134 tcp_mtup_probe_success(sk);
3135 }
3136
3137 if (tcp_is_reno(tp)) {
3138 tcp_remove_reno_sacks(sk, pkts_acked);
3139 } else {
3140 int delta;
3141
3142 /* Non-retransmitted hole got filled? That's reordering */
3143 if (reord < prior_fackets)
3144 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3145
3146 delta = tcp_is_fack(tp) ? pkts_acked :
3147 prior_sacked - tp->sacked_out;
3148 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3149 }
3150
3151 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3152
3153 if (ca_ops->pkts_acked)
3154 ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
3155
3156 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3157 sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3158 /* Do not re-arm RTO if the sack RTT is measured from data sent
3159 * after when the head was last (re)transmitted. Otherwise the
3160 * timeout may continue to extend in loss recovery.
3161 */
3162 tcp_rearm_rto(sk);
3163 }
3164
3165 #if FASTRETRANS_DEBUG > 0
3166 WARN_ON((int)tp->sacked_out < 0);
3167 WARN_ON((int)tp->lost_out < 0);
3168 WARN_ON((int)tp->retrans_out < 0);
3169 if (!tp->packets_out && tcp_is_sack(tp)) {
3170 icsk = inet_csk(sk);
3171 if (tp->lost_out) {
3172 pr_debug("Leak l=%u %d\n",
3173 tp->lost_out, icsk->icsk_ca_state);
3174 tp->lost_out = 0;
3175 }
3176 if (tp->sacked_out) {
3177 pr_debug("Leak s=%u %d\n",
3178 tp->sacked_out, icsk->icsk_ca_state);
3179 tp->sacked_out = 0;
3180 }
3181 if (tp->retrans_out) {
3182 pr_debug("Leak r=%u %d\n",
3183 tp->retrans_out, icsk->icsk_ca_state);
3184 tp->retrans_out = 0;
3185 }
3186 }
3187 #endif
3188 return flag;
3189 }
3190
3191 static void tcp_ack_probe(struct sock *sk)
3192 {
3193 const struct tcp_sock *tp = tcp_sk(sk);
3194 struct inet_connection_sock *icsk = inet_csk(sk);
3195
3196 /* Was it a usable window open? */
3197
3198 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3199 icsk->icsk_backoff = 0;
3200 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3201 /* Socket must be waked up by subsequent tcp_data_snd_check().
3202 * This function is not for random using!
3203 */
3204 } else {
3205 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3206 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3207 TCP_RTO_MAX);
3208 }
3209 }
3210
3211 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3212 {
3213 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3214 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3215 }
3216
3217 /* Decide wheather to run the increase function of congestion control. */
3218 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3219 {
3220 if (tcp_in_cwnd_reduction(sk))
3221 return false;
3222
3223 /* If reordering is high then always grow cwnd whenever data is
3224 * delivered regardless of its ordering. Otherwise stay conservative
3225 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3226 * new SACK or ECE mark may first advance cwnd here and later reduce
3227 * cwnd in tcp_fastretrans_alert() based on more states.
3228 */
3229 if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
3230 return flag & FLAG_FORWARD_PROGRESS;
3231
3232 return flag & FLAG_DATA_ACKED;
3233 }
3234
3235 /* Check that window update is acceptable.
3236 * The function assumes that snd_una<=ack<=snd_next.
3237 */
3238 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3239 const u32 ack, const u32 ack_seq,
3240 const u32 nwin)
3241 {
3242 return after(ack, tp->snd_una) ||
3243 after(ack_seq, tp->snd_wl1) ||
3244 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3245 }
3246
3247 /* Update our send window.
3248 *
3249 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3250 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3251 */
3252 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3253 u32 ack_seq)
3254 {
3255 struct tcp_sock *tp = tcp_sk(sk);
3256 int flag = 0;
3257 u32 nwin = ntohs(tcp_hdr(skb)->window);
3258
3259 if (likely(!tcp_hdr(skb)->syn))
3260 nwin <<= tp->rx_opt.snd_wscale;
3261
3262 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3263 flag |= FLAG_WIN_UPDATE;
3264 tcp_update_wl(tp, ack_seq);
3265
3266 if (tp->snd_wnd != nwin) {
3267 tp->snd_wnd = nwin;
3268
3269 /* Note, it is the only place, where
3270 * fast path is recovered for sending TCP.
3271 */
3272 tp->pred_flags = 0;
3273 tcp_fast_path_check(sk);
3274
3275 if (nwin > tp->max_window) {
3276 tp->max_window = nwin;
3277 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3278 }
3279 }
3280 }
3281
3282 tp->snd_una = ack;
3283
3284 return flag;
3285 }
3286
3287 /* RFC 5961 7 [ACK Throttling] */
3288 static void tcp_send_challenge_ack(struct sock *sk)
3289 {
3290 /* unprotected vars, we dont care of overwrites */
3291 static u32 challenge_timestamp;
3292 static unsigned int challenge_count;
3293 u32 now = jiffies / HZ;
3294
3295 if (now != challenge_timestamp) {
3296 challenge_timestamp = now;
3297 challenge_count = 0;
3298 }
3299 if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
3300 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3301 tcp_send_ack(sk);
3302 }
3303 }
3304
3305 static void tcp_store_ts_recent(struct tcp_sock *tp)
3306 {
3307 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3308 tp->rx_opt.ts_recent_stamp = get_seconds();
3309 }
3310
3311 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3312 {
3313 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3314 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3315 * extra check below makes sure this can only happen
3316 * for pure ACK frames. -DaveM
3317 *
3318 * Not only, also it occurs for expired timestamps.
3319 */
3320
3321 if (tcp_paws_check(&tp->rx_opt, 0))
3322 tcp_store_ts_recent(tp);
3323 }
3324 }
3325
3326 /* This routine deals with acks during a TLP episode.
3327 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3328 */
3329 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3330 {
3331 struct tcp_sock *tp = tcp_sk(sk);
3332 bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
3333 !(flag & (FLAG_SND_UNA_ADVANCED |
3334 FLAG_NOT_DUP | FLAG_DATA_SACKED));
3335
3336 /* Mark the end of TLP episode on receiving TLP dupack or when
3337 * ack is after tlp_high_seq.
3338 */
3339 if (is_tlp_dupack) {
3340 tp->tlp_high_seq = 0;
3341 return;
3342 }
3343
3344 if (after(ack, tp->tlp_high_seq)) {
3345 tp->tlp_high_seq = 0;
3346 /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
3347 if (!(flag & FLAG_DSACKING_ACK)) {
3348 tcp_init_cwnd_reduction(sk, true);
3349 tcp_set_ca_state(sk, TCP_CA_CWR);
3350 tcp_end_cwnd_reduction(sk);
3351 tcp_try_keep_open(sk);
3352 NET_INC_STATS_BH(sock_net(sk),
3353 LINUX_MIB_TCPLOSSPROBERECOVERY);
3354 }
3355 }
3356 }
3357
3358 /* This routine deals with incoming acks, but not outgoing ones. */
3359 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3360 {
3361 struct inet_connection_sock *icsk = inet_csk(sk);
3362 struct tcp_sock *tp = tcp_sk(sk);
3363 u32 prior_snd_una = tp->snd_una;
3364 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3365 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3366 bool is_dupack = false;
3367 u32 prior_in_flight;
3368 u32 prior_fackets;
3369 int prior_packets = tp->packets_out;
3370 const int prior_unsacked = tp->packets_out - tp->sacked_out;
3371 int acked = 0; /* Number of packets newly acked */
3372 long sack_rtt_us = -1L;
3373
3374 /* If the ack is older than previous acks
3375 * then we can probably ignore it.
3376 */
3377 if (before(ack, prior_snd_una)) {
3378 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3379 if (before(ack, prior_snd_una - tp->max_window)) {
3380 tcp_send_challenge_ack(sk);
3381 return -1;
3382 }
3383 goto old_ack;
3384 }
3385
3386 /* If the ack includes data we haven't sent yet, discard
3387 * this segment (RFC793 Section 3.9).
3388 */
3389 if (after(ack, tp->snd_nxt))
3390 goto invalid_ack;
3391
3392 if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3393 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3394 tcp_rearm_rto(sk);
3395
3396 if (after(ack, prior_snd_una))
3397 flag |= FLAG_SND_UNA_ADVANCED;
3398
3399 prior_fackets = tp->fackets_out;
3400 prior_in_flight = tcp_packets_in_flight(tp);
3401
3402 /* ts_recent update must be made after we are sure that the packet
3403 * is in window.
3404 */
3405 if (flag & FLAG_UPDATE_TS_RECENT)
3406 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3407
3408 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3409 /* Window is constant, pure forward advance.
3410 * No more checks are required.
3411 * Note, we use the fact that SND.UNA>=SND.WL2.
3412 */
3413 tcp_update_wl(tp, ack_seq);
3414 tp->snd_una = ack;
3415 flag |= FLAG_WIN_UPDATE;
3416
3417 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3418
3419 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3420 } else {
3421 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3422 flag |= FLAG_DATA;
3423 else
3424 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3425
3426 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3427
3428 if (TCP_SKB_CB(skb)->sacked)
3429 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3430 &sack_rtt_us);
3431
3432 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3433 flag |= FLAG_ECE;
3434
3435 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3436 }
3437
3438 /* We passed data and got it acked, remove any soft error
3439 * log. Something worked...
3440 */
3441 sk->sk_err_soft = 0;
3442 icsk->icsk_probes_out = 0;
3443 tp->rcv_tstamp = tcp_time_stamp;
3444 if (!prior_packets)
3445 goto no_queue;
3446
3447 /* See if we can take anything off of the retransmit queue. */
3448 acked = tp->packets_out;
3449 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
3450 sack_rtt_us);
3451 acked -= tp->packets_out;
3452
3453 /* Advance cwnd if state allows */
3454 if (tcp_may_raise_cwnd(sk, flag))
3455 tcp_cong_avoid(sk, ack, acked, prior_in_flight);
3456
3457 if (tcp_ack_is_dubious(sk, flag)) {
3458 is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3459 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3460 is_dupack, flag);
3461 }
3462 if (tp->tlp_high_seq)
3463 tcp_process_tlp_ack(sk, ack, flag);
3464
3465 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3466 struct dst_entry *dst = __sk_dst_get(sk);
3467 if (dst)
3468 dst_confirm(dst);
3469 }
3470
3471 if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3472 tcp_schedule_loss_probe(sk);
3473 tcp_update_pacing_rate(sk);
3474 return 1;
3475
3476 no_queue:
3477 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3478 if (flag & FLAG_DSACKING_ACK)
3479 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3480 is_dupack, flag);
3481 /* If this ack opens up a zero window, clear backoff. It was
3482 * being used to time the probes, and is probably far higher than
3483 * it needs to be for normal retransmission.
3484 */
3485 if (tcp_send_head(sk))
3486 tcp_ack_probe(sk);
3487
3488 if (tp->tlp_high_seq)
3489 tcp_process_tlp_ack(sk, ack, flag);
3490 return 1;
3491
3492 invalid_ack:
3493 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3494 return -1;
3495
3496 old_ack:
3497 /* If data was SACKed, tag it and see if we should send more data.
3498 * If data was DSACKed, see if we can undo a cwnd reduction.
3499 */
3500 if (TCP_SKB_CB(skb)->sacked) {
3501 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3502 &sack_rtt_us);
3503 tcp_fastretrans_alert(sk, acked, prior_unsacked,
3504 is_dupack, flag);
3505 }
3506
3507 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3508 return 0;
3509 }
3510
3511 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3512 * But, this can also be called on packets in the established flow when
3513 * the fast version below fails.
3514 */
3515 void tcp_parse_options(const struct sk_buff *skb,
3516 struct tcp_options_received *opt_rx, int estab,
3517 struct tcp_fastopen_cookie *foc)
3518 {
3519 const unsigned char *ptr;
3520 const struct tcphdr *th = tcp_hdr(skb);
3521 int length = (th->doff * 4) - sizeof(struct tcphdr);
3522
3523 ptr = (const unsigned char *)(th + 1);
3524 opt_rx->saw_tstamp = 0;
3525
3526 while (length > 0) {
3527 int opcode = *ptr++;
3528 int opsize;
3529
3530 switch (opcode) {
3531 case TCPOPT_EOL:
3532 return;
3533 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3534 length--;
3535 continue;
3536 default:
3537 opsize = *ptr++;
3538 if (opsize < 2) /* "silly options" */
3539 return;
3540 if (opsize > length)
3541 return; /* don't parse partial options */
3542 switch (opcode) {
3543 case TCPOPT_MSS:
3544 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3545 u16 in_mss = get_unaligned_be16(ptr);
3546 if (in_mss) {
3547 if (opt_rx->user_mss &&
3548 opt_rx->user_mss < in_mss)
3549 in_mss = opt_rx->user_mss;
3550 opt_rx->mss_clamp = in_mss;
3551 }
3552 }
3553 break;
3554 case TCPOPT_WINDOW:
3555 if (opsize == TCPOLEN_WINDOW && th->syn &&
3556 !estab && sysctl_tcp_window_scaling) {
3557 __u8 snd_wscale = *(__u8 *)ptr;
3558 opt_rx->wscale_ok = 1;
3559 if (snd_wscale > 14) {
3560 net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3561 __func__,
3562 snd_wscale);
3563 snd_wscale = 14;
3564 }
3565 opt_rx->snd_wscale = snd_wscale;
3566 }
3567 break;
3568 case TCPOPT_TIMESTAMP:
3569 if ((opsize == TCPOLEN_TIMESTAMP) &&
3570 ((estab && opt_rx->tstamp_ok) ||
3571 (!estab && sysctl_tcp_timestamps))) {
3572 opt_rx->saw_tstamp = 1;
3573 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3574 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3575 }
3576 break;
3577 case TCPOPT_SACK_PERM:
3578 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3579 !estab && sysctl_tcp_sack) {
3580 opt_rx->sack_ok = TCP_SACK_SEEN;
3581 tcp_sack_reset(opt_rx);
3582 }
3583 break;
3584
3585 case TCPOPT_SACK:
3586 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3587 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3588 opt_rx->sack_ok) {
3589 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3590 }
3591 break;
3592 #ifdef CONFIG_TCP_MD5SIG
3593 case TCPOPT_MD5SIG:
3594 /*
3595 * The MD5 Hash has already been
3596 * checked (see tcp_v{4,6}_do_rcv()).
3597 */
3598 break;
3599 #endif
3600 case TCPOPT_EXP:
3601 /* Fast Open option shares code 254 using a
3602 * 16 bits magic number. It's valid only in
3603 * SYN or SYN-ACK with an even size.
3604 */
3605 if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
3606 get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
3607 foc == NULL || !th->syn || (opsize & 1))
3608 break;
3609 foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
3610 if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
3611 foc->len <= TCP_FASTOPEN_COOKIE_MAX)
3612 memcpy(foc->val, ptr + 2, foc->len);
3613 else if (foc->len != 0)
3614 foc->len = -1;
3615 break;
3616
3617 }
3618 ptr += opsize-2;
3619 length -= opsize;
3620 }
3621 }
3622 }
3623 EXPORT_SYMBOL(tcp_parse_options);
3624
3625 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3626 {
3627 const __be32 *ptr = (const __be32 *)(th + 1);
3628
3629 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3630 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3631 tp->rx_opt.saw_tstamp = 1;
3632 ++ptr;
3633 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3634 ++ptr;
3635 if (*ptr)
3636 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3637 else
3638 tp->rx_opt.rcv_tsecr = 0;
3639 return true;
3640 }
3641 return false;
3642 }
3643
3644 /* Fast parse options. This hopes to only see timestamps.
3645 * If it is wrong it falls back on tcp_parse_options().
3646 */
3647 static bool tcp_fast_parse_options(const struct sk_buff *skb,
3648 const struct tcphdr *th, struct tcp_sock *tp)
3649 {
3650 /* In the spirit of fast parsing, compare doff directly to constant
3651 * values. Because equality is used, short doff can be ignored here.
3652 */
3653 if (th->doff == (sizeof(*th) / 4)) {
3654 tp->rx_opt.saw_tstamp = 0;
3655 return false;
3656 } else if (tp->rx_opt.tstamp_ok &&
3657 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3658 if (tcp_parse_aligned_timestamp(tp, th))
3659 return true;
3660 }
3661
3662 tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3663 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3664 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3665
3666 return true;
3667 }
3668
3669 #ifdef CONFIG_TCP_MD5SIG
3670 /*
3671 * Parse MD5 Signature option
3672 */
3673 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3674 {
3675 int length = (th->doff << 2) - sizeof(*th);
3676 const u8 *ptr = (const u8 *)(th + 1);
3677
3678 /* If the TCP option is too short, we can short cut */
3679 if (length < TCPOLEN_MD5SIG)
3680 return NULL;
3681
3682 while (length > 0) {
3683 int opcode = *ptr++;
3684 int opsize;
3685
3686 switch (opcode) {
3687 case TCPOPT_EOL:
3688 return NULL;
3689 case TCPOPT_NOP:
3690 length--;
3691 continue;
3692 default:
3693 opsize = *ptr++;
3694 if (opsize < 2 || opsize > length)
3695 return NULL;
3696 if (opcode == TCPOPT_MD5SIG)
3697 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3698 }
3699 ptr += opsize - 2;
3700 length -= opsize;
3701 }
3702 return NULL;
3703 }
3704 EXPORT_SYMBOL(tcp_parse_md5sig_option);
3705 #endif
3706
3707 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3708 *
3709 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3710 * it can pass through stack. So, the following predicate verifies that
3711 * this segment is not used for anything but congestion avoidance or
3712 * fast retransmit. Moreover, we even are able to eliminate most of such
3713 * second order effects, if we apply some small "replay" window (~RTO)
3714 * to timestamp space.
3715 *
3716 * All these measures still do not guarantee that we reject wrapped ACKs
3717 * on networks with high bandwidth, when sequence space is recycled fastly,
3718 * but it guarantees that such events will be very rare and do not affect
3719 * connection seriously. This doesn't look nice, but alas, PAWS is really
3720 * buggy extension.
3721 *
3722 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3723 * states that events when retransmit arrives after original data are rare.
3724 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3725 * the biggest problem on large power networks even with minor reordering.
3726 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3727 * up to bandwidth of 18Gigabit/sec. 8) ]
3728 */
3729
3730 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3731 {
3732 const struct tcp_sock *tp = tcp_sk(sk);
3733 const struct tcphdr *th = tcp_hdr(skb);
3734 u32 seq = TCP_SKB_CB(skb)->seq;
3735 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3736
3737 return (/* 1. Pure ACK with correct sequence number. */
3738 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3739
3740 /* 2. ... and duplicate ACK. */
3741 ack == tp->snd_una &&
3742
3743 /* 3. ... and does not update window. */
3744 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3745
3746 /* 4. ... and sits in replay window. */
3747 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3748 }
3749
3750 static inline bool tcp_paws_discard(const struct sock *sk,
3751 const struct sk_buff *skb)
3752 {
3753 const struct tcp_sock *tp = tcp_sk(sk);
3754
3755 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3756 !tcp_disordered_ack(sk, skb);
3757 }
3758
3759 /* Check segment sequence number for validity.
3760 *
3761 * Segment controls are considered valid, if the segment
3762 * fits to the window after truncation to the window. Acceptability
3763 * of data (and SYN, FIN, of course) is checked separately.
3764 * See tcp_data_queue(), for example.
3765 *
3766 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3767 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3768 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3769 * (borrowed from freebsd)
3770 */
3771
3772 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
3773 {
3774 return !before(end_seq, tp->rcv_wup) &&
3775 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3776 }
3777
3778 /* When we get a reset we do this. */
3779 void tcp_reset(struct sock *sk)
3780 {
3781 /* We want the right error as BSD sees it (and indeed as we do). */
3782 switch (sk->sk_state) {
3783 case TCP_SYN_SENT:
3784 sk->sk_err = ECONNREFUSED;
3785 break;
3786 case TCP_CLOSE_WAIT:
3787 sk->sk_err = EPIPE;
3788 break;
3789 case TCP_CLOSE:
3790 return;
3791 default:
3792 sk->sk_err = ECONNRESET;
3793 }
3794 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3795 smp_wmb();
3796
3797 if (!sock_flag(sk, SOCK_DEAD))
3798 sk->sk_error_report(sk);
3799
3800 tcp_done(sk);
3801 }
3802
3803 /*
3804 * Process the FIN bit. This now behaves as it is supposed to work
3805 * and the FIN takes effect when it is validly part of sequence
3806 * space. Not before when we get holes.
3807 *
3808 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3809 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3810 * TIME-WAIT)
3811 *
3812 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3813 * close and we go into CLOSING (and later onto TIME-WAIT)
3814 *
3815 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3816 */
3817 static void tcp_fin(struct sock *sk)
3818 {
3819 struct tcp_sock *tp = tcp_sk(sk);
3820 const struct dst_entry *dst;
3821
3822 inet_csk_schedule_ack(sk);
3823
3824 sk->sk_shutdown |= RCV_SHUTDOWN;
3825 sock_set_flag(sk, SOCK_DONE);
3826
3827 switch (sk->sk_state) {
3828 case TCP_SYN_RECV:
3829 case TCP_ESTABLISHED:
3830 /* Move to CLOSE_WAIT */
3831 tcp_set_state(sk, TCP_CLOSE_WAIT);
3832 dst = __sk_dst_get(sk);
3833 if (!dst || !dst_metric(dst, RTAX_QUICKACK))
3834 inet_csk(sk)->icsk_ack.pingpong = 1;
3835 break;
3836
3837 case TCP_CLOSE_WAIT:
3838 case TCP_CLOSING:
3839 /* Received a retransmission of the FIN, do
3840 * nothing.
3841 */
3842 break;
3843 case TCP_LAST_ACK:
3844 /* RFC793: Remain in the LAST-ACK state. */
3845 break;
3846
3847 case TCP_FIN_WAIT1:
3848 /* This case occurs when a simultaneous close
3849 * happens, we must ack the received FIN and
3850 * enter the CLOSING state.
3851 */
3852 tcp_send_ack(sk);
3853 tcp_set_state(sk, TCP_CLOSING);
3854 break;
3855 case TCP_FIN_WAIT2:
3856 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3857 tcp_send_ack(sk);
3858 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3859 break;
3860 default:
3861 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3862 * cases we should never reach this piece of code.
3863 */
3864 pr_err("%s: Impossible, sk->sk_state=%d\n",
3865 __func__, sk->sk_state);
3866 break;
3867 }
3868
3869 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3870 * Probably, we should reset in this case. For now drop them.
3871 */
3872 __skb_queue_purge(&tp->out_of_order_queue);
3873 if (tcp_is_sack(tp))
3874 tcp_sack_reset(&tp->rx_opt);
3875 sk_mem_reclaim(sk);
3876
3877 if (!sock_flag(sk, SOCK_DEAD)) {
3878 sk->sk_state_change(sk);
3879
3880 /* Do not send POLL_HUP for half duplex close. */
3881 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3882 sk->sk_state == TCP_CLOSE)
3883 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
3884 else
3885 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
3886 }
3887 }
3888
3889 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
3890 u32 end_seq)
3891 {
3892 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3893 if (before(seq, sp->start_seq))
3894 sp->start_seq = seq;
3895 if (after(end_seq, sp->end_seq))
3896 sp->end_seq = end_seq;
3897 return true;
3898 }
3899 return false;
3900 }
3901
3902 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
3903 {
3904 struct tcp_sock *tp = tcp_sk(sk);
3905
3906 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3907 int mib_idx;
3908
3909 if (before(seq, tp->rcv_nxt))
3910 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
3911 else
3912 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
3913
3914 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3915
3916 tp->rx_opt.dsack = 1;
3917 tp->duplicate_sack[0].start_seq = seq;
3918 tp->duplicate_sack[0].end_seq = end_seq;
3919 }
3920 }
3921
3922 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
3923 {
3924 struct tcp_sock *tp = tcp_sk(sk);
3925
3926 if (!tp->rx_opt.dsack)
3927 tcp_dsack_set(sk, seq, end_seq);
3928 else
3929 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3930 }
3931
3932 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
3933 {
3934 struct tcp_sock *tp = tcp_sk(sk);
3935
3936 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3937 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3938 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
3939 tcp_enter_quickack_mode(sk);
3940
3941 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3942 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3943
3944 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3945 end_seq = tp->rcv_nxt;
3946 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
3947 }
3948 }
3949
3950 tcp_send_ack(sk);
3951 }
3952
3953 /* These routines update the SACK block as out-of-order packets arrive or
3954 * in-order packets close up the sequence space.
3955 */
3956 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3957 {
3958 int this_sack;
3959 struct tcp_sack_block *sp = &tp->selective_acks[0];
3960 struct tcp_sack_block *swalk = sp + 1;
3961
3962 /* See if the recent change to the first SACK eats into
3963 * or hits the sequence space of other SACK blocks, if so coalesce.
3964 */
3965 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
3966 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3967 int i;
3968
3969 /* Zap SWALK, by moving every further SACK up by one slot.
3970 * Decrease num_sacks.
3971 */
3972 tp->rx_opt.num_sacks--;
3973 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
3974 sp[i] = sp[i + 1];
3975 continue;
3976 }
3977 this_sack++, swalk++;
3978 }
3979 }
3980
3981 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3982 {
3983 struct tcp_sock *tp = tcp_sk(sk);
3984 struct tcp_sack_block *sp = &tp->selective_acks[0];
3985 int cur_sacks = tp->rx_opt.num_sacks;
3986 int this_sack;
3987
3988 if (!cur_sacks)
3989 goto new_sack;
3990
3991 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
3992 if (tcp_sack_extend(sp, seq, end_seq)) {
3993 /* Rotate this_sack to the first one. */
3994 for (; this_sack > 0; this_sack--, sp--)
3995 swap(*sp, *(sp - 1));
3996 if (cur_sacks > 1)
3997 tcp_sack_maybe_coalesce(tp);
3998 return;
3999 }
4000 }
4001
4002 /* Could not find an adjacent existing SACK, build a new one,
4003 * put it at the front, and shift everyone else down. We
4004 * always know there is at least one SACK present already here.
4005 *
4006 * If the sack array is full, forget about the last one.
4007 */
4008 if (this_sack >= TCP_NUM_SACKS) {
4009 this_sack--;
4010 tp->rx_opt.num_sacks--;
4011 sp--;
4012 }
4013 for (; this_sack > 0; this_sack--, sp--)
4014 *sp = *(sp - 1);
4015
4016 new_sack:
4017 /* Build the new head SACK, and we're done. */
4018 sp->start_seq = seq;
4019 sp->end_seq = end_seq;
4020 tp->rx_opt.num_sacks++;
4021 }
4022
4023 /* RCV.NXT advances, some SACKs should be eaten. */
4024
4025 static void tcp_sack_remove(struct tcp_sock *tp)
4026 {
4027 struct tcp_sack_block *sp = &tp->selective_acks[0];
4028 int num_sacks = tp->rx_opt.num_sacks;
4029 int this_sack;
4030
4031 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4032 if (skb_queue_empty(&tp->out_of_order_queue)) {
4033 tp->rx_opt.num_sacks = 0;
4034 return;
4035 }
4036
4037 for (this_sack = 0; this_sack < num_sacks;) {
4038 /* Check if the start of the sack is covered by RCV.NXT. */
4039 if (!before(tp->rcv_nxt, sp->start_seq)) {
4040 int i;
4041
4042 /* RCV.NXT must cover all the block! */
4043 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4044
4045 /* Zap this SACK, by moving forward any other SACKS. */
4046 for (i = this_sack+1; i < num_sacks; i++)
4047 tp->selective_acks[i-1] = tp->selective_acks[i];
4048 num_sacks--;
4049 continue;
4050 }
4051 this_sack++;
4052 sp++;
4053 }
4054 tp->rx_opt.num_sacks = num_sacks;
4055 }
4056
4057 /* This one checks to see if we can put data from the
4058 * out_of_order queue into the receive_queue.
4059 */
4060 static void tcp_ofo_queue(struct sock *sk)
4061 {
4062 struct tcp_sock *tp = tcp_sk(sk);
4063 __u32 dsack_high = tp->rcv_nxt;
4064 struct sk_buff *skb;
4065
4066 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4067 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4068 break;
4069
4070 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4071 __u32 dsack = dsack_high;
4072 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4073 dsack_high = TCP_SKB_CB(skb)->end_seq;
4074 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4075 }
4076
4077 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4078 SOCK_DEBUG(sk, "ofo packet was already received\n");
4079 __skb_unlink(skb, &tp->out_of_order_queue);
4080 __kfree_skb(skb);
4081 continue;
4082 }
4083 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4084 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4085 TCP_SKB_CB(skb)->end_seq);
4086
4087 __skb_unlink(skb, &tp->out_of_order_queue);
4088 __skb_queue_tail(&sk->sk_receive_queue, skb);
4089 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4090 if (tcp_hdr(skb)->fin)
4091 tcp_fin(sk);
4092 }
4093 }
4094
4095 static bool tcp_prune_ofo_queue(struct sock *sk);
4096 static int tcp_prune_queue(struct sock *sk);
4097
4098 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4099 unsigned int size)
4100 {
4101 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4102 !sk_rmem_schedule(sk, skb, size)) {
4103
4104 if (tcp_prune_queue(sk) < 0)
4105 return -1;
4106
4107 if (!sk_rmem_schedule(sk, skb, size)) {
4108 if (!tcp_prune_ofo_queue(sk))
4109 return -1;
4110
4111 if (!sk_rmem_schedule(sk, skb, size))
4112 return -1;
4113 }
4114 }
4115 return 0;
4116 }
4117
4118 /**
4119 * tcp_try_coalesce - try to merge skb to prior one
4120 * @sk: socket
4121 * @to: prior buffer
4122 * @from: buffer to add in queue
4123 * @fragstolen: pointer to boolean
4124 *
4125 * Before queueing skb @from after @to, try to merge them
4126 * to reduce overall memory use and queue lengths, if cost is small.
4127 * Packets in ofo or receive queues can stay a long time.
4128 * Better try to coalesce them right now to avoid future collapses.
4129 * Returns true if caller should free @from instead of queueing it
4130 */
4131 static bool tcp_try_coalesce(struct sock *sk,
4132 struct sk_buff *to,
4133 struct sk_buff *from,
4134 bool *fragstolen)
4135 {
4136 int delta;
4137
4138 *fragstolen = false;
4139
4140 if (tcp_hdr(from)->fin)
4141 return false;
4142
4143 /* Its possible this segment overlaps with prior segment in queue */
4144 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4145 return false;
4146
4147 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4148 return false;
4149
4150 atomic_add(delta, &sk->sk_rmem_alloc);
4151 sk_mem_charge(sk, delta);
4152 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4153 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4154 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4155 return true;
4156 }
4157
4158 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4159 {
4160 struct tcp_sock *tp = tcp_sk(sk);
4161 struct sk_buff *skb1;
4162 u32 seq, end_seq;
4163
4164 TCP_ECN_check_ce(tp, skb);
4165
4166 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4167 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
4168 __kfree_skb(skb);
4169 return;
4170 }
4171
4172 /* Disable header prediction. */
4173 tp->pred_flags = 0;
4174 inet_csk_schedule_ack(sk);
4175
4176 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4177 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4178 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4179
4180 skb1 = skb_peek_tail(&tp->out_of_order_queue);
4181 if (!skb1) {
4182 /* Initial out of order segment, build 1 SACK. */
4183 if (tcp_is_sack(tp)) {
4184 tp->rx_opt.num_sacks = 1;
4185 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4186 tp->selective_acks[0].end_seq =
4187 TCP_SKB_CB(skb)->end_seq;
4188 }
4189 __skb_queue_head(&tp->out_of_order_queue, skb);
4190 goto end;
4191 }
4192
4193 seq = TCP_SKB_CB(skb)->seq;
4194 end_seq = TCP_SKB_CB(skb)->end_seq;
4195
4196 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4197 bool fragstolen;
4198
4199 if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4200 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4201 } else {
4202 tcp_grow_window(sk, skb);
4203 kfree_skb_partial(skb, fragstolen);
4204 skb = NULL;
4205 }
4206
4207 if (!tp->rx_opt.num_sacks ||
4208 tp->selective_acks[0].end_seq != seq)
4209 goto add_sack;
4210
4211 /* Common case: data arrive in order after hole. */
4212 tp->selective_acks[0].end_seq = end_seq;
4213 goto end;
4214 }
4215
4216 /* Find place to insert this segment. */
4217 while (1) {
4218 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4219 break;
4220 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4221 skb1 = NULL;
4222 break;
4223 }
4224 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4225 }
4226
4227 /* Do skb overlap to previous one? */
4228 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4229 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4230 /* All the bits are present. Drop. */
4231 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4232 __kfree_skb(skb);
4233 skb = NULL;
4234 tcp_dsack_set(sk, seq, end_seq);
4235 goto add_sack;
4236 }
4237 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4238 /* Partial overlap. */
4239 tcp_dsack_set(sk, seq,
4240 TCP_SKB_CB(skb1)->end_seq);
4241 } else {
4242 if (skb_queue_is_first(&tp->out_of_order_queue,
4243 skb1))
4244 skb1 = NULL;
4245 else
4246 skb1 = skb_queue_prev(
4247 &tp->out_of_order_queue,
4248 skb1);
4249 }
4250 }
4251 if (!skb1)
4252 __skb_queue_head(&tp->out_of_order_queue, skb);
4253 else
4254 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4255
4256 /* And clean segments covered by new one as whole. */
4257 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4258 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4259
4260 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4261 break;
4262 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4263 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4264 end_seq);
4265 break;
4266 }
4267 __skb_unlink(skb1, &tp->out_of_order_queue);
4268 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4269 TCP_SKB_CB(skb1)->end_seq);
4270 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4271 __kfree_skb(skb1);
4272 }
4273
4274 add_sack:
4275 if (tcp_is_sack(tp))
4276 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4277 end:
4278 if (skb) {
4279 tcp_grow_window(sk, skb);
4280 skb_set_owner_r(skb, sk);
4281 }
4282 }
4283
4284 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4285 bool *fragstolen)
4286 {
4287 int eaten;
4288 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4289
4290 __skb_pull(skb, hdrlen);
4291 eaten = (tail &&
4292 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4293 tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4294 if (!eaten) {
4295 __skb_queue_tail(&sk->sk_receive_queue, skb);
4296 skb_set_owner_r(skb, sk);
4297 }
4298 return eaten;
4299 }
4300
4301 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4302 {
4303 struct sk_buff *skb = NULL;
4304 struct tcphdr *th;
4305 bool fragstolen;
4306
4307 if (size == 0)
4308 return 0;
4309
4310 skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
4311 if (!skb)
4312 goto err;
4313
4314 if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
4315 goto err_free;
4316
4317 th = (struct tcphdr *)skb_put(skb, sizeof(*th));
4318 skb_reset_transport_header(skb);
4319 memset(th, 0, sizeof(*th));
4320
4321 if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
4322 goto err_free;
4323
4324 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4325 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4326 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4327
4328 if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
4329 WARN_ON_ONCE(fragstolen); /* should not happen */
4330 __kfree_skb(skb);
4331 }
4332 return size;
4333
4334 err_free:
4335 kfree_skb(skb);
4336 err:
4337 return -ENOMEM;
4338 }
4339
4340 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4341 {
4342 const struct tcphdr *th = tcp_hdr(skb);
4343 struct tcp_sock *tp = tcp_sk(sk);
4344 int eaten = -1;
4345 bool fragstolen = false;
4346
4347 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4348 goto drop;
4349
4350 skb_dst_drop(skb);
4351 __skb_pull(skb, th->doff * 4);
4352
4353 TCP_ECN_accept_cwr(tp, skb);
4354
4355 tp->rx_opt.dsack = 0;
4356
4357 /* Queue data for delivery to the user.
4358 * Packets in sequence go to the receive queue.
4359 * Out of sequence packets to the out_of_order_queue.
4360 */
4361 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4362 if (tcp_receive_window(tp) == 0)
4363 goto out_of_window;
4364
4365 /* Ok. In sequence. In window. */
4366 if (tp->ucopy.task == current &&
4367 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4368 sock_owned_by_user(sk) && !tp->urg_data) {
4369 int chunk = min_t(unsigned int, skb->len,
4370 tp->ucopy.len);
4371
4372 __set_current_state(TASK_RUNNING);
4373
4374 local_bh_enable();
4375 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4376 tp->ucopy.len -= chunk;
4377 tp->copied_seq += chunk;
4378 eaten = (chunk == skb->len);
4379 tcp_rcv_space_adjust(sk);
4380 }
4381 local_bh_disable();
4382 }
4383
4384 if (eaten <= 0) {
4385 queue_and_out:
4386 if (eaten < 0 &&
4387 tcp_try_rmem_schedule(sk, skb, skb->truesize))
4388 goto drop;
4389
4390 eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4391 }
4392 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4393 if (skb->len)
4394 tcp_event_data_recv(sk, skb);
4395 if (th->fin)
4396 tcp_fin(sk);
4397
4398 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4399 tcp_ofo_queue(sk);
4400
4401 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4402 * gap in queue is filled.
4403 */
4404 if (skb_queue_empty(&tp->out_of_order_queue))
4405 inet_csk(sk)->icsk_ack.pingpong = 0;
4406 }
4407
4408 if (tp->rx_opt.num_sacks)
4409 tcp_sack_remove(tp);
4410
4411 tcp_fast_path_check(sk);
4412
4413 if (eaten > 0)
4414 kfree_skb_partial(skb, fragstolen);
4415 if (!sock_flag(sk, SOCK_DEAD))
4416 sk->sk_data_ready(sk);
4417 return;
4418 }
4419
4420 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4421 /* A retransmit, 2nd most common case. Force an immediate ack. */
4422 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4423 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4424
4425 out_of_window:
4426 tcp_enter_quickack_mode(sk);
4427 inet_csk_schedule_ack(sk);
4428 drop:
4429 __kfree_skb(skb);
4430 return;
4431 }
4432
4433 /* Out of window. F.e. zero window probe. */
4434 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4435 goto out_of_window;
4436
4437 tcp_enter_quickack_mode(sk);
4438
4439 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4440 /* Partial packet, seq < rcv_next < end_seq */
4441 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4442 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4443 TCP_SKB_CB(skb)->end_seq);
4444
4445 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4446
4447 /* If window is closed, drop tail of packet. But after
4448 * remembering D-SACK for its head made in previous line.
4449 */
4450 if (!tcp_receive_window(tp))
4451 goto out_of_window;
4452 goto queue_and_out;
4453 }
4454
4455 tcp_data_queue_ofo(sk, skb);
4456 }
4457
4458 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4459 struct sk_buff_head *list)
4460 {
4461 struct sk_buff *next = NULL;
4462
4463 if (!skb_queue_is_last(list, skb))
4464 next = skb_queue_next(list, skb);
4465
4466 __skb_unlink(skb, list);
4467 __kfree_skb(skb);
4468 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4469
4470 return next;
4471 }
4472
4473 /* Collapse contiguous sequence of skbs head..tail with
4474 * sequence numbers start..end.
4475 *
4476 * If tail is NULL, this means until the end of the list.
4477 *
4478 * Segments with FIN/SYN are not collapsed (only because this
4479 * simplifies code)
4480 */
4481 static void
4482 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4483 struct sk_buff *head, struct sk_buff *tail,
4484 u32 start, u32 end)
4485 {
4486 struct sk_buff *skb, *n;
4487 bool end_of_skbs;
4488
4489 /* First, check that queue is collapsible and find
4490 * the point where collapsing can be useful. */
4491 skb = head;
4492 restart:
4493 end_of_skbs = true;
4494 skb_queue_walk_from_safe(list, skb, n) {
4495 if (skb == tail)
4496 break;
4497 /* No new bits? It is possible on ofo queue. */
4498 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4499 skb = tcp_collapse_one(sk, skb, list);
4500 if (!skb)
4501 break;
4502 goto restart;
4503 }
4504
4505 /* The first skb to collapse is:
4506 * - not SYN/FIN and
4507 * - bloated or contains data before "start" or
4508 * overlaps to the next one.
4509 */
4510 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4511 (tcp_win_from_space(skb->truesize) > skb->len ||
4512 before(TCP_SKB_CB(skb)->seq, start))) {
4513 end_of_skbs = false;
4514 break;
4515 }
4516
4517 if (!skb_queue_is_last(list, skb)) {
4518 struct sk_buff *next = skb_queue_next(list, skb);
4519 if (next != tail &&
4520 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4521 end_of_skbs = false;
4522 break;
4523 }
4524 }
4525
4526 /* Decided to skip this, advance start seq. */
4527 start = TCP_SKB_CB(skb)->end_seq;
4528 }
4529 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4530 return;
4531
4532 while (before(start, end)) {
4533 struct sk_buff *nskb;
4534 unsigned int header = skb_headroom(skb);
4535 int copy = SKB_MAX_ORDER(header, 0);
4536
4537 /* Too big header? This can happen with IPv6. */
4538 if (copy < 0)
4539 return;
4540 if (end - start < copy)
4541 copy = end - start;
4542 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4543 if (!nskb)
4544 return;
4545
4546 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4547 skb_set_network_header(nskb, (skb_network_header(skb) -
4548 skb->head));
4549 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4550 skb->head));
4551 skb_reserve(nskb, header);
4552 memcpy(nskb->head, skb->head, header);
4553 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4554 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4555 __skb_queue_before(list, skb, nskb);
4556 skb_set_owner_r(nskb, sk);
4557
4558 /* Copy data, releasing collapsed skbs. */
4559 while (copy > 0) {
4560 int offset = start - TCP_SKB_CB(skb)->seq;
4561 int size = TCP_SKB_CB(skb)->end_seq - start;
4562
4563 BUG_ON(offset < 0);
4564 if (size > 0) {
4565 size = min(copy, size);
4566 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4567 BUG();
4568 TCP_SKB_CB(nskb)->end_seq += size;
4569 copy -= size;
4570 start += size;
4571 }
4572 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4573 skb = tcp_collapse_one(sk, skb, list);
4574 if (!skb ||
4575 skb == tail ||
4576 tcp_hdr(skb)->syn ||
4577 tcp_hdr(skb)->fin)
4578 return;
4579 }
4580 }
4581 }
4582 }
4583
4584 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4585 * and tcp_collapse() them until all the queue is collapsed.
4586 */
4587 static void tcp_collapse_ofo_queue(struct sock *sk)
4588 {
4589 struct tcp_sock *tp = tcp_sk(sk);
4590 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4591 struct sk_buff *head;
4592 u32 start, end;
4593
4594 if (skb == NULL)
4595 return;
4596
4597 start = TCP_SKB_CB(skb)->seq;
4598 end = TCP_SKB_CB(skb)->end_seq;
4599 head = skb;
4600
4601 for (;;) {
4602 struct sk_buff *next = NULL;
4603
4604 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4605 next = skb_queue_next(&tp->out_of_order_queue, skb);
4606 skb = next;
4607
4608 /* Segment is terminated when we see gap or when
4609 * we are at the end of all the queue. */
4610 if (!skb ||
4611 after(TCP_SKB_CB(skb)->seq, end) ||
4612 before(TCP_SKB_CB(skb)->end_seq, start)) {
4613 tcp_collapse(sk, &tp->out_of_order_queue,
4614 head, skb, start, end);
4615 head = skb;
4616 if (!skb)
4617 break;
4618 /* Start new segment */
4619 start = TCP_SKB_CB(skb)->seq;
4620 end = TCP_SKB_CB(skb)->end_seq;
4621 } else {
4622 if (before(TCP_SKB_CB(skb)->seq, start))
4623 start = TCP_SKB_CB(skb)->seq;
4624 if (after(TCP_SKB_CB(skb)->end_seq, end))
4625 end = TCP_SKB_CB(skb)->end_seq;
4626 }
4627 }
4628 }
4629
4630 /*
4631 * Purge the out-of-order queue.
4632 * Return true if queue was pruned.
4633 */
4634 static bool tcp_prune_ofo_queue(struct sock *sk)
4635 {
4636 struct tcp_sock *tp = tcp_sk(sk);
4637 bool res = false;
4638
4639 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4640 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4641 __skb_queue_purge(&tp->out_of_order_queue);
4642
4643 /* Reset SACK state. A conforming SACK implementation will
4644 * do the same at a timeout based retransmit. When a connection
4645 * is in a sad state like this, we care only about integrity
4646 * of the connection not performance.
4647 */
4648 if (tp->rx_opt.sack_ok)
4649 tcp_sack_reset(&tp->rx_opt);
4650 sk_mem_reclaim(sk);
4651 res = true;
4652 }
4653 return res;
4654 }
4655
4656 /* Reduce allocated memory if we can, trying to get
4657 * the socket within its memory limits again.
4658 *
4659 * Return less than zero if we should start dropping frames
4660 * until the socket owning process reads some of the data
4661 * to stabilize the situation.
4662 */
4663 static int tcp_prune_queue(struct sock *sk)
4664 {
4665 struct tcp_sock *tp = tcp_sk(sk);
4666
4667 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4668
4669 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4670
4671 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4672 tcp_clamp_window(sk);
4673 else if (sk_under_memory_pressure(sk))
4674 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4675
4676 tcp_collapse_ofo_queue(sk);
4677 if (!skb_queue_empty(&sk->sk_receive_queue))
4678 tcp_collapse(sk, &sk->sk_receive_queue,
4679 skb_peek(&sk->sk_receive_queue),
4680 NULL,
4681 tp->copied_seq, tp->rcv_nxt);
4682 sk_mem_reclaim(sk);
4683
4684 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4685 return 0;
4686
4687 /* Collapsing did not help, destructive actions follow.
4688 * This must not ever occur. */
4689
4690 tcp_prune_ofo_queue(sk);
4691
4692 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4693 return 0;
4694
4695 /* If we are really being abused, tell the caller to silently
4696 * drop receive data on the floor. It will get retransmitted
4697 * and hopefully then we'll have sufficient space.
4698 */
4699 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4700
4701 /* Massive buffer overcommit. */
4702 tp->pred_flags = 0;
4703 return -1;
4704 }
4705
4706 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4707 * As additional protections, we do not touch cwnd in retransmission phases,
4708 * and if application hit its sndbuf limit recently.
4709 */
4710 void tcp_cwnd_application_limited(struct sock *sk)
4711 {
4712 struct tcp_sock *tp = tcp_sk(sk);
4713
4714 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4715 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4716 /* Limited by application or receiver window. */
4717 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4718 u32 win_used = max(tp->snd_cwnd_used, init_win);
4719 if (win_used < tp->snd_cwnd) {
4720 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4721 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4722 }
4723 tp->snd_cwnd_used = 0;
4724 }
4725 tp->snd_cwnd_stamp = tcp_time_stamp;
4726 }
4727
4728 static bool tcp_should_expand_sndbuf(const struct sock *sk)
4729 {
4730 const struct tcp_sock *tp = tcp_sk(sk);
4731
4732 /* If the user specified a specific send buffer setting, do
4733 * not modify it.
4734 */
4735 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4736 return false;
4737
4738 /* If we are under global TCP memory pressure, do not expand. */
4739 if (sk_under_memory_pressure(sk))
4740 return false;
4741
4742 /* If we are under soft global TCP memory pressure, do not expand. */
4743 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4744 return false;
4745
4746 /* If we filled the congestion window, do not expand. */
4747 if (tp->packets_out >= tp->snd_cwnd)
4748 return false;
4749
4750 return true;
4751 }
4752
4753 /* When incoming ACK allowed to free some skb from write_queue,
4754 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4755 * on the exit from tcp input handler.
4756 *
4757 * PROBLEM: sndbuf expansion does not work well with largesend.
4758 */
4759 static void tcp_new_space(struct sock *sk)
4760 {
4761 struct tcp_sock *tp = tcp_sk(sk);
4762
4763 if (tcp_should_expand_sndbuf(sk)) {
4764 tcp_sndbuf_expand(sk);
4765 tp->snd_cwnd_stamp = tcp_time_stamp;
4766 }
4767
4768 sk->sk_write_space(sk);
4769 }
4770
4771 static void tcp_check_space(struct sock *sk)
4772 {
4773 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4774 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4775 if (sk->sk_socket &&
4776 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4777 tcp_new_space(sk);
4778 }
4779 }
4780
4781 static inline void tcp_data_snd_check(struct sock *sk)
4782 {
4783 tcp_push_pending_frames(sk);
4784 tcp_check_space(sk);
4785 }
4786
4787 /*
4788 * Check if sending an ack is needed.
4789 */
4790 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4791 {
4792 struct tcp_sock *tp = tcp_sk(sk);
4793
4794 /* More than one full frame received... */
4795 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
4796 /* ... and right edge of window advances far enough.
4797 * (tcp_recvmsg() will send ACK otherwise). Or...
4798 */
4799 __tcp_select_window(sk) >= tp->rcv_wnd) ||
4800 /* We ACK each frame or... */
4801 tcp_in_quickack_mode(sk) ||
4802 /* We have out of order data. */
4803 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4804 /* Then ack it now */
4805 tcp_send_ack(sk);
4806 } else {
4807 /* Else, send delayed ack. */
4808 tcp_send_delayed_ack(sk);
4809 }
4810 }
4811
4812 static inline void tcp_ack_snd_check(struct sock *sk)
4813 {
4814 if (!inet_csk_ack_scheduled(sk)) {
4815 /* We sent a data segment already. */
4816 return;
4817 }
4818 __tcp_ack_snd_check(sk, 1);
4819 }
4820
4821 /*
4822 * This routine is only called when we have urgent data
4823 * signaled. Its the 'slow' part of tcp_urg. It could be
4824 * moved inline now as tcp_urg is only called from one
4825 * place. We handle URGent data wrong. We have to - as
4826 * BSD still doesn't use the correction from RFC961.
4827 * For 1003.1g we should support a new option TCP_STDURG to permit
4828 * either form (or just set the sysctl tcp_stdurg).
4829 */
4830
4831 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
4832 {
4833 struct tcp_sock *tp = tcp_sk(sk);
4834 u32 ptr = ntohs(th->urg_ptr);
4835
4836 if (ptr && !sysctl_tcp_stdurg)
4837 ptr--;
4838 ptr += ntohl(th->seq);
4839
4840 /* Ignore urgent data that we've already seen and read. */
4841 if (after(tp->copied_seq, ptr))
4842 return;
4843
4844 /* Do not replay urg ptr.
4845 *
4846 * NOTE: interesting situation not covered by specs.
4847 * Misbehaving sender may send urg ptr, pointing to segment,
4848 * which we already have in ofo queue. We are not able to fetch
4849 * such data and will stay in TCP_URG_NOTYET until will be eaten
4850 * by recvmsg(). Seems, we are not obliged to handle such wicked
4851 * situations. But it is worth to think about possibility of some
4852 * DoSes using some hypothetical application level deadlock.
4853 */
4854 if (before(ptr, tp->rcv_nxt))
4855 return;
4856
4857 /* Do we already have a newer (or duplicate) urgent pointer? */
4858 if (tp->urg_data && !after(ptr, tp->urg_seq))
4859 return;
4860
4861 /* Tell the world about our new urgent pointer. */
4862 sk_send_sigurg(sk);
4863
4864 /* We may be adding urgent data when the last byte read was
4865 * urgent. To do this requires some care. We cannot just ignore
4866 * tp->copied_seq since we would read the last urgent byte again
4867 * as data, nor can we alter copied_seq until this data arrives
4868 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4869 *
4870 * NOTE. Double Dutch. Rendering to plain English: author of comment
4871 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4872 * and expect that both A and B disappear from stream. This is _wrong_.
4873 * Though this happens in BSD with high probability, this is occasional.
4874 * Any application relying on this is buggy. Note also, that fix "works"
4875 * only in this artificial test. Insert some normal data between A and B and we will
4876 * decline of BSD again. Verdict: it is better to remove to trap
4877 * buggy users.
4878 */
4879 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4880 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4881 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4882 tp->copied_seq++;
4883 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4884 __skb_unlink(skb, &sk->sk_receive_queue);
4885 __kfree_skb(skb);
4886 }
4887 }
4888
4889 tp->urg_data = TCP_URG_NOTYET;
4890 tp->urg_seq = ptr;
4891
4892 /* Disable header prediction. */
4893 tp->pred_flags = 0;
4894 }
4895
4896 /* This is the 'fast' part of urgent handling. */
4897 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
4898 {
4899 struct tcp_sock *tp = tcp_sk(sk);
4900
4901 /* Check if we get a new urgent pointer - normally not. */
4902 if (th->urg)
4903 tcp_check_urg(sk, th);
4904
4905 /* Do we wait for any urgent data? - normally not... */
4906 if (tp->urg_data == TCP_URG_NOTYET) {
4907 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4908 th->syn;
4909
4910 /* Is the urgent pointer pointing into this packet? */
4911 if (ptr < skb->len) {
4912 u8 tmp;
4913 if (skb_copy_bits(skb, ptr, &tmp, 1))
4914 BUG();
4915 tp->urg_data = TCP_URG_VALID | tmp;
4916 if (!sock_flag(sk, SOCK_DEAD))
4917 sk->sk_data_ready(sk);
4918 }
4919 }
4920 }
4921
4922 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4923 {
4924 struct tcp_sock *tp = tcp_sk(sk);
4925 int chunk = skb->len - hlen;
4926 int err;
4927
4928 local_bh_enable();
4929 if (skb_csum_unnecessary(skb))
4930 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4931 else
4932 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4933 tp->ucopy.iov);
4934
4935 if (!err) {
4936 tp->ucopy.len -= chunk;
4937 tp->copied_seq += chunk;
4938 tcp_rcv_space_adjust(sk);
4939 }
4940
4941 local_bh_disable();
4942 return err;
4943 }
4944
4945 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
4946 struct sk_buff *skb)
4947 {
4948 __sum16 result;
4949
4950 if (sock_owned_by_user(sk)) {
4951 local_bh_enable();
4952 result = __tcp_checksum_complete(skb);
4953 local_bh_disable();
4954 } else {
4955 result = __tcp_checksum_complete(skb);
4956 }
4957 return result;
4958 }
4959
4960 static inline bool tcp_checksum_complete_user(struct sock *sk,
4961 struct sk_buff *skb)
4962 {
4963 return !skb_csum_unnecessary(skb) &&
4964 __tcp_checksum_complete_user(sk, skb);
4965 }
4966
4967 #ifdef CONFIG_NET_DMA
4968 static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
4969 int hlen)
4970 {
4971 struct tcp_sock *tp = tcp_sk(sk);
4972 int chunk = skb->len - hlen;
4973 int dma_cookie;
4974 bool copied_early = false;
4975
4976 if (tp->ucopy.wakeup)
4977 return false;
4978
4979 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4980 tp->ucopy.dma_chan = net_dma_find_channel();
4981
4982 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4983
4984 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4985 skb, hlen,
4986 tp->ucopy.iov, chunk,
4987 tp->ucopy.pinned_list);
4988
4989 if (dma_cookie < 0)
4990 goto out;
4991
4992 tp->ucopy.dma_cookie = dma_cookie;
4993 copied_early = true;
4994
4995 tp->ucopy.len -= chunk;
4996 tp->copied_seq += chunk;
4997 tcp_rcv_space_adjust(sk);
4998
4999 if ((tp->ucopy.len == 0) ||
5000 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5001 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5002 tp->ucopy.wakeup = 1;
5003 sk->sk_data_ready(sk);
5004 }
5005 } else if (chunk > 0) {
5006 tp->ucopy.wakeup = 1;
5007 sk->sk_data_ready(sk);
5008 }
5009 out:
5010 return copied_early;
5011 }
5012 #endif /* CONFIG_NET_DMA */
5013
5014 /* Does PAWS and seqno based validation of an incoming segment, flags will
5015 * play significant role here.
5016 */
5017 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5018 const struct tcphdr *th, int syn_inerr)
5019 {
5020 struct tcp_sock *tp = tcp_sk(sk);
5021
5022 /* RFC1323: H1. Apply PAWS check first. */
5023 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5024 tcp_paws_discard(sk, skb)) {
5025 if (!th->rst) {
5026 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5027 tcp_send_dupack(sk, skb);
5028 goto discard;
5029 }
5030 /* Reset is accepted even if it did not pass PAWS. */
5031 }
5032
5033 /* Step 1: check sequence number */
5034 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5035 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5036 * (RST) segments are validated by checking their SEQ-fields."
5037 * And page 69: "If an incoming segment is not acceptable,
5038 * an acknowledgment should be sent in reply (unless the RST
5039 * bit is set, if so drop the segment and return)".
5040 */
5041 if (!th->rst) {
5042 if (th->syn)
5043 goto syn_challenge;
5044 tcp_send_dupack(sk, skb);
5045 }
5046 goto discard;
5047 }
5048
5049 /* Step 2: check RST bit */
5050 if (th->rst) {
5051 /* RFC 5961 3.2 :
5052 * If sequence number exactly matches RCV.NXT, then
5053 * RESET the connection
5054 * else
5055 * Send a challenge ACK
5056 */
5057 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5058 tcp_reset(sk);
5059 else
5060 tcp_send_challenge_ack(sk);
5061 goto discard;
5062 }
5063
5064 /* step 3: check security and precedence [ignored] */
5065
5066 /* step 4: Check for a SYN
5067 * RFC 5691 4.2 : Send a challenge ack
5068 */
5069 if (th->syn) {
5070 syn_challenge:
5071 if (syn_inerr)
5072 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5073 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5074 tcp_send_challenge_ack(sk);
5075 goto discard;
5076 }
5077
5078 return true;
5079
5080 discard:
5081 __kfree_skb(skb);
5082 return false;
5083 }
5084
5085 /*
5086 * TCP receive function for the ESTABLISHED state.
5087 *
5088 * It is split into a fast path and a slow path. The fast path is
5089 * disabled when:
5090 * - A zero window was announced from us - zero window probing
5091 * is only handled properly in the slow path.
5092 * - Out of order segments arrived.
5093 * - Urgent data is expected.
5094 * - There is no buffer space left
5095 * - Unexpected TCP flags/window values/header lengths are received
5096 * (detected by checking the TCP header against pred_flags)
5097 * - Data is sent in both directions. Fast path only supports pure senders
5098 * or pure receivers (this means either the sequence number or the ack
5099 * value must stay constant)
5100 * - Unexpected TCP option.
5101 *
5102 * When these conditions are not satisfied it drops into a standard
5103 * receive procedure patterned after RFC793 to handle all cases.
5104 * The first three cases are guaranteed by proper pred_flags setting,
5105 * the rest is checked inline. Fast processing is turned on in
5106 * tcp_data_queue when everything is OK.
5107 */
5108 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5109 const struct tcphdr *th, unsigned int len)
5110 {
5111 struct tcp_sock *tp = tcp_sk(sk);
5112
5113 if (unlikely(sk->sk_rx_dst == NULL))
5114 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5115 /*
5116 * Header prediction.
5117 * The code loosely follows the one in the famous
5118 * "30 instruction TCP receive" Van Jacobson mail.
5119 *
5120 * Van's trick is to deposit buffers into socket queue
5121 * on a device interrupt, to call tcp_recv function
5122 * on the receive process context and checksum and copy
5123 * the buffer to user space. smart...
5124 *
5125 * Our current scheme is not silly either but we take the
5126 * extra cost of the net_bh soft interrupt processing...
5127 * We do checksum and copy also but from device to kernel.
5128 */
5129
5130 tp->rx_opt.saw_tstamp = 0;
5131
5132 /* pred_flags is 0xS?10 << 16 + snd_wnd
5133 * if header_prediction is to be made
5134 * 'S' will always be tp->tcp_header_len >> 2
5135 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5136 * turn it off (when there are holes in the receive
5137 * space for instance)
5138 * PSH flag is ignored.
5139 */
5140
5141 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5142 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5143 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5144 int tcp_header_len = tp->tcp_header_len;
5145
5146 /* Timestamp header prediction: tcp_header_len
5147 * is automatically equal to th->doff*4 due to pred_flags
5148 * match.
5149 */
5150
5151 /* Check timestamp */
5152 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5153 /* No? Slow path! */
5154 if (!tcp_parse_aligned_timestamp(tp, th))
5155 goto slow_path;
5156
5157 /* If PAWS failed, check it more carefully in slow path */
5158 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5159 goto slow_path;
5160
5161 /* DO NOT update ts_recent here, if checksum fails
5162 * and timestamp was corrupted part, it will result
5163 * in a hung connection since we will drop all
5164 * future packets due to the PAWS test.
5165 */
5166 }
5167
5168 if (len <= tcp_header_len) {
5169 /* Bulk data transfer: sender */
5170 if (len == tcp_header_len) {
5171 /* Predicted packet is in window by definition.
5172 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5173 * Hence, check seq<=rcv_wup reduces to:
5174 */
5175 if (tcp_header_len ==
5176 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5177 tp->rcv_nxt == tp->rcv_wup)
5178 tcp_store_ts_recent(tp);
5179
5180 /* We know that such packets are checksummed
5181 * on entry.
5182 */
5183 tcp_ack(sk, skb, 0);
5184 __kfree_skb(skb);
5185 tcp_data_snd_check(sk);
5186 return;
5187 } else { /* Header too small */
5188 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5189 goto discard;
5190 }
5191 } else {
5192 int eaten = 0;
5193 int copied_early = 0;
5194 bool fragstolen = false;
5195
5196 if (tp->copied_seq == tp->rcv_nxt &&
5197 len - tcp_header_len <= tp->ucopy.len) {
5198 #ifdef CONFIG_NET_DMA
5199 if (tp->ucopy.task == current &&
5200 sock_owned_by_user(sk) &&
5201 tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5202 copied_early = 1;
5203 eaten = 1;
5204 }
5205 #endif
5206 if (tp->ucopy.task == current &&
5207 sock_owned_by_user(sk) && !copied_early) {
5208 __set_current_state(TASK_RUNNING);
5209
5210 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5211 eaten = 1;
5212 }
5213 if (eaten) {
5214 /* Predicted packet is in window by definition.
5215 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5216 * Hence, check seq<=rcv_wup reduces to:
5217 */
5218 if (tcp_header_len ==
5219 (sizeof(struct tcphdr) +
5220 TCPOLEN_TSTAMP_ALIGNED) &&
5221 tp->rcv_nxt == tp->rcv_wup)
5222 tcp_store_ts_recent(tp);
5223
5224 tcp_rcv_rtt_measure_ts(sk, skb);
5225
5226 __skb_pull(skb, tcp_header_len);
5227 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5228 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5229 }
5230 if (copied_early)
5231 tcp_cleanup_rbuf(sk, skb->len);
5232 }
5233 if (!eaten) {
5234 if (tcp_checksum_complete_user(sk, skb))
5235 goto csum_error;
5236
5237 if ((int)skb->truesize > sk->sk_forward_alloc)
5238 goto step5;
5239
5240 /* Predicted packet is in window by definition.
5241 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5242 * Hence, check seq<=rcv_wup reduces to:
5243 */
5244 if (tcp_header_len ==
5245 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5246 tp->rcv_nxt == tp->rcv_wup)
5247 tcp_store_ts_recent(tp);
5248
5249 tcp_rcv_rtt_measure_ts(sk, skb);
5250
5251 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5252
5253 /* Bulk data transfer: receiver */
5254 eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5255 &fragstolen);
5256 }
5257
5258 tcp_event_data_recv(sk, skb);
5259
5260 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5261 /* Well, only one small jumplet in fast path... */
5262 tcp_ack(sk, skb, FLAG_DATA);
5263 tcp_data_snd_check(sk);
5264 if (!inet_csk_ack_scheduled(sk))
5265 goto no_ack;
5266 }
5267
5268 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5269 __tcp_ack_snd_check(sk, 0);
5270 no_ack:
5271 #ifdef CONFIG_NET_DMA
5272 if (copied_early)
5273 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5274 else
5275 #endif
5276 if (eaten)
5277 kfree_skb_partial(skb, fragstolen);
5278 sk->sk_data_ready(sk);
5279 return;
5280 }
5281 }
5282
5283 slow_path:
5284 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5285 goto csum_error;
5286
5287 if (!th->ack && !th->rst)
5288 goto discard;
5289
5290 /*
5291 * Standard slow path.
5292 */
5293
5294 if (!tcp_validate_incoming(sk, skb, th, 1))
5295 return;
5296
5297 step5:
5298 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5299 goto discard;
5300
5301 tcp_rcv_rtt_measure_ts(sk, skb);
5302
5303 /* Process urgent data. */
5304 tcp_urg(sk, skb, th);
5305
5306 /* step 7: process the segment text */
5307 tcp_data_queue(sk, skb);
5308
5309 tcp_data_snd_check(sk);
5310 tcp_ack_snd_check(sk);
5311 return;
5312
5313 csum_error:
5314 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
5315 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5316
5317 discard:
5318 __kfree_skb(skb);
5319 }
5320 EXPORT_SYMBOL(tcp_rcv_established);
5321
5322 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5323 {
5324 struct tcp_sock *tp = tcp_sk(sk);
5325 struct inet_connection_sock *icsk = inet_csk(sk);
5326
5327 tcp_set_state(sk, TCP_ESTABLISHED);
5328
5329 if (skb != NULL) {
5330 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5331 security_inet_conn_established(sk, skb);
5332 }
5333
5334 /* Make sure socket is routed, for correct metrics. */
5335 icsk->icsk_af_ops->rebuild_header(sk);
5336
5337 tcp_init_metrics(sk);
5338
5339 tcp_init_congestion_control(sk);
5340
5341 /* Prevent spurious tcp_cwnd_restart() on first data
5342 * packet.
5343 */
5344 tp->lsndtime = tcp_time_stamp;
5345
5346 tcp_init_buffer_space(sk);
5347
5348 if (sock_flag(sk, SOCK_KEEPOPEN))
5349 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5350
5351 if (!tp->rx_opt.snd_wscale)
5352 __tcp_fast_path_on(tp, tp->snd_wnd);
5353 else
5354 tp->pred_flags = 0;
5355
5356 if (!sock_flag(sk, SOCK_DEAD)) {
5357 sk->sk_state_change(sk);
5358 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5359 }
5360 }
5361
5362 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5363 struct tcp_fastopen_cookie *cookie)
5364 {
5365 struct tcp_sock *tp = tcp_sk(sk);
5366 struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5367 u16 mss = tp->rx_opt.mss_clamp;
5368 bool syn_drop;
5369
5370 if (mss == tp->rx_opt.user_mss) {
5371 struct tcp_options_received opt;
5372
5373 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5374 tcp_clear_options(&opt);
5375 opt.user_mss = opt.mss_clamp = 0;
5376 tcp_parse_options(synack, &opt, 0, NULL);
5377 mss = opt.mss_clamp;
5378 }
5379
5380 if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
5381 cookie->len = -1;
5382
5383 /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
5384 * the remote receives only the retransmitted (regular) SYNs: either
5385 * the original SYN-data or the corresponding SYN-ACK is lost.
5386 */
5387 syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
5388
5389 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
5390
5391 if (data) { /* Retransmit unacked data in SYN */
5392 tcp_for_write_queue_from(data, sk) {
5393 if (data == tcp_send_head(sk) ||
5394 __tcp_retransmit_skb(sk, data))
5395 break;
5396 }
5397 tcp_rearm_rto(sk);
5398 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5399 return true;
5400 }
5401 tp->syn_data_acked = tp->syn_data;
5402 if (tp->syn_data_acked)
5403 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5404 return false;
5405 }
5406
5407 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5408 const struct tcphdr *th, unsigned int len)
5409 {
5410 struct inet_connection_sock *icsk = inet_csk(sk);
5411 struct tcp_sock *tp = tcp_sk(sk);
5412 struct tcp_fastopen_cookie foc = { .len = -1 };
5413 int saved_clamp = tp->rx_opt.mss_clamp;
5414
5415 tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5416 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5417 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5418
5419 if (th->ack) {
5420 /* rfc793:
5421 * "If the state is SYN-SENT then
5422 * first check the ACK bit
5423 * If the ACK bit is set
5424 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5425 * a reset (unless the RST bit is set, if so drop
5426 * the segment and return)"
5427 */
5428 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5429 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5430 goto reset_and_undo;
5431
5432 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5433 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5434 tcp_time_stamp)) {
5435 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5436 goto reset_and_undo;
5437 }
5438
5439 /* Now ACK is acceptable.
5440 *
5441 * "If the RST bit is set
5442 * If the ACK was acceptable then signal the user "error:
5443 * connection reset", drop the segment, enter CLOSED state,
5444 * delete TCB, and return."
5445 */
5446
5447 if (th->rst) {
5448 tcp_reset(sk);
5449 goto discard;
5450 }
5451
5452 /* rfc793:
5453 * "fifth, if neither of the SYN or RST bits is set then
5454 * drop the segment and return."
5455 *
5456 * See note below!
5457 * --ANK(990513)
5458 */
5459 if (!th->syn)
5460 goto discard_and_undo;
5461
5462 /* rfc793:
5463 * "If the SYN bit is on ...
5464 * are acceptable then ...
5465 * (our SYN has been ACKed), change the connection
5466 * state to ESTABLISHED..."
5467 */
5468
5469 TCP_ECN_rcv_synack(tp, th);
5470
5471 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5472 tcp_ack(sk, skb, FLAG_SLOWPATH);
5473
5474 /* Ok.. it's good. Set up sequence numbers and
5475 * move to established.
5476 */
5477 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5478 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5479
5480 /* RFC1323: The window in SYN & SYN/ACK segments is
5481 * never scaled.
5482 */
5483 tp->snd_wnd = ntohs(th->window);
5484
5485 if (!tp->rx_opt.wscale_ok) {
5486 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5487 tp->window_clamp = min(tp->window_clamp, 65535U);
5488 }
5489
5490 if (tp->rx_opt.saw_tstamp) {
5491 tp->rx_opt.tstamp_ok = 1;
5492 tp->tcp_header_len =
5493 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5494 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5495 tcp_store_ts_recent(tp);
5496 } else {
5497 tp->tcp_header_len = sizeof(struct tcphdr);
5498 }
5499
5500 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5501 tcp_enable_fack(tp);
5502
5503 tcp_mtup_init(sk);
5504 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5505 tcp_initialize_rcv_mss(sk);
5506
5507 /* Remember, tcp_poll() does not lock socket!
5508 * Change state from SYN-SENT only after copied_seq
5509 * is initialized. */
5510 tp->copied_seq = tp->rcv_nxt;
5511
5512 smp_mb();
5513
5514 tcp_finish_connect(sk, skb);
5515
5516 if ((tp->syn_fastopen || tp->syn_data) &&
5517 tcp_rcv_fastopen_synack(sk, skb, &foc))
5518 return -1;
5519
5520 if (sk->sk_write_pending ||
5521 icsk->icsk_accept_queue.rskq_defer_accept ||
5522 icsk->icsk_ack.pingpong) {
5523 /* Save one ACK. Data will be ready after
5524 * several ticks, if write_pending is set.
5525 *
5526 * It may be deleted, but with this feature tcpdumps
5527 * look so _wonderfully_ clever, that I was not able
5528 * to stand against the temptation 8) --ANK
5529 */
5530 inet_csk_schedule_ack(sk);
5531 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5532 tcp_enter_quickack_mode(sk);
5533 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5534 TCP_DELACK_MAX, TCP_RTO_MAX);
5535
5536 discard:
5537 __kfree_skb(skb);
5538 return 0;
5539 } else {
5540 tcp_send_ack(sk);
5541 }
5542 return -1;
5543 }
5544
5545 /* No ACK in the segment */
5546
5547 if (th->rst) {
5548 /* rfc793:
5549 * "If the RST bit is set
5550 *
5551 * Otherwise (no ACK) drop the segment and return."
5552 */
5553
5554 goto discard_and_undo;
5555 }
5556
5557 /* PAWS check. */
5558 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5559 tcp_paws_reject(&tp->rx_opt, 0))
5560 goto discard_and_undo;
5561
5562 if (th->syn) {
5563 /* We see SYN without ACK. It is attempt of
5564 * simultaneous connect with crossed SYNs.
5565 * Particularly, it can be connect to self.
5566 */
5567 tcp_set_state(sk, TCP_SYN_RECV);
5568
5569 if (tp->rx_opt.saw_tstamp) {
5570 tp->rx_opt.tstamp_ok = 1;
5571 tcp_store_ts_recent(tp);
5572 tp->tcp_header_len =
5573 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5574 } else {
5575 tp->tcp_header_len = sizeof(struct tcphdr);
5576 }
5577
5578 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5579 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5580
5581 /* RFC1323: The window in SYN & SYN/ACK segments is
5582 * never scaled.
5583 */
5584 tp->snd_wnd = ntohs(th->window);
5585 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5586 tp->max_window = tp->snd_wnd;
5587
5588 TCP_ECN_rcv_syn(tp, th);
5589
5590 tcp_mtup_init(sk);
5591 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5592 tcp_initialize_rcv_mss(sk);
5593
5594 tcp_send_synack(sk);
5595 #if 0
5596 /* Note, we could accept data and URG from this segment.
5597 * There are no obstacles to make this (except that we must
5598 * either change tcp_recvmsg() to prevent it from returning data
5599 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5600 *
5601 * However, if we ignore data in ACKless segments sometimes,
5602 * we have no reasons to accept it sometimes.
5603 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5604 * is not flawless. So, discard packet for sanity.
5605 * Uncomment this return to process the data.
5606 */
5607 return -1;
5608 #else
5609 goto discard;
5610 #endif
5611 }
5612 /* "fifth, if neither of the SYN or RST bits is set then
5613 * drop the segment and return."
5614 */
5615
5616 discard_and_undo:
5617 tcp_clear_options(&tp->rx_opt);
5618 tp->rx_opt.mss_clamp = saved_clamp;
5619 goto discard;
5620
5621 reset_and_undo:
5622 tcp_clear_options(&tp->rx_opt);
5623 tp->rx_opt.mss_clamp = saved_clamp;
5624 return 1;
5625 }
5626
5627 /*
5628 * This function implements the receiving procedure of RFC 793 for
5629 * all states except ESTABLISHED and TIME_WAIT.
5630 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5631 * address independent.
5632 */
5633
5634 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5635 const struct tcphdr *th, unsigned int len)
5636 {
5637 struct tcp_sock *tp = tcp_sk(sk);
5638 struct inet_connection_sock *icsk = inet_csk(sk);
5639 struct request_sock *req;
5640 int queued = 0;
5641 bool acceptable;
5642 u32 synack_stamp;
5643
5644 tp->rx_opt.saw_tstamp = 0;
5645
5646 switch (sk->sk_state) {
5647 case TCP_CLOSE:
5648 goto discard;
5649
5650 case TCP_LISTEN:
5651 if (th->ack)
5652 return 1;
5653
5654 if (th->rst)
5655 goto discard;
5656
5657 if (th->syn) {
5658 if (th->fin)
5659 goto discard;
5660 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5661 return 1;
5662
5663 /* Now we have several options: In theory there is
5664 * nothing else in the frame. KA9Q has an option to
5665 * send data with the syn, BSD accepts data with the
5666 * syn up to the [to be] advertised window and
5667 * Solaris 2.1 gives you a protocol error. For now
5668 * we just ignore it, that fits the spec precisely
5669 * and avoids incompatibilities. It would be nice in
5670 * future to drop through and process the data.
5671 *
5672 * Now that TTCP is starting to be used we ought to
5673 * queue this data.
5674 * But, this leaves one open to an easy denial of
5675 * service attack, and SYN cookies can't defend
5676 * against this problem. So, we drop the data
5677 * in the interest of security over speed unless
5678 * it's still in use.
5679 */
5680 kfree_skb(skb);
5681 return 0;
5682 }
5683 goto discard;
5684
5685 case TCP_SYN_SENT:
5686 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5687 if (queued >= 0)
5688 return queued;
5689
5690 /* Do step6 onward by hand. */
5691 tcp_urg(sk, skb, th);
5692 __kfree_skb(skb);
5693 tcp_data_snd_check(sk);
5694 return 0;
5695 }
5696
5697 req = tp->fastopen_rsk;
5698 if (req != NULL) {
5699 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5700 sk->sk_state != TCP_FIN_WAIT1);
5701
5702 if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
5703 goto discard;
5704 }
5705
5706 if (!th->ack && !th->rst)
5707 goto discard;
5708
5709 if (!tcp_validate_incoming(sk, skb, th, 0))
5710 return 0;
5711
5712 /* step 5: check the ACK field */
5713 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5714 FLAG_UPDATE_TS_RECENT) > 0;
5715
5716 switch (sk->sk_state) {
5717 case TCP_SYN_RECV:
5718 if (!acceptable)
5719 return 1;
5720
5721 /* Once we leave TCP_SYN_RECV, we no longer need req
5722 * so release it.
5723 */
5724 if (req) {
5725 synack_stamp = tcp_rsk(req)->snt_synack;
5726 tp->total_retrans = req->num_retrans;
5727 reqsk_fastopen_remove(sk, req, false);
5728 } else {
5729 synack_stamp = tp->lsndtime;
5730 /* Make sure socket is routed, for correct metrics. */
5731 icsk->icsk_af_ops->rebuild_header(sk);
5732 tcp_init_congestion_control(sk);
5733
5734 tcp_mtup_init(sk);
5735 tp->copied_seq = tp->rcv_nxt;
5736 tcp_init_buffer_space(sk);
5737 }
5738 smp_mb();
5739 tcp_set_state(sk, TCP_ESTABLISHED);
5740 sk->sk_state_change(sk);
5741
5742 /* Note, that this wakeup is only for marginal crossed SYN case.
5743 * Passively open sockets are not waked up, because
5744 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5745 */
5746 if (sk->sk_socket)
5747 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5748
5749 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5750 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5751 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5752 tcp_synack_rtt_meas(sk, synack_stamp);
5753
5754 if (tp->rx_opt.tstamp_ok)
5755 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5756
5757 if (req) {
5758 /* Re-arm the timer because data may have been sent out.
5759 * This is similar to the regular data transmission case
5760 * when new data has just been ack'ed.
5761 *
5762 * (TFO) - we could try to be more aggressive and
5763 * retransmitting any data sooner based on when they
5764 * are sent out.
5765 */
5766 tcp_rearm_rto(sk);
5767 } else
5768 tcp_init_metrics(sk);
5769
5770 tcp_update_pacing_rate(sk);
5771
5772 /* Prevent spurious tcp_cwnd_restart() on first data packet */
5773 tp->lsndtime = tcp_time_stamp;
5774
5775 tcp_initialize_rcv_mss(sk);
5776 tcp_fast_path_on(tp);
5777 break;
5778
5779 case TCP_FIN_WAIT1: {
5780 struct dst_entry *dst;
5781 int tmo;
5782
5783 /* If we enter the TCP_FIN_WAIT1 state and we are a
5784 * Fast Open socket and this is the first acceptable
5785 * ACK we have received, this would have acknowledged
5786 * our SYNACK so stop the SYNACK timer.
5787 */
5788 if (req != NULL) {
5789 /* Return RST if ack_seq is invalid.
5790 * Note that RFC793 only says to generate a
5791 * DUPACK for it but for TCP Fast Open it seems
5792 * better to treat this case like TCP_SYN_RECV
5793 * above.
5794 */
5795 if (!acceptable)
5796 return 1;
5797 /* We no longer need the request sock. */
5798 reqsk_fastopen_remove(sk, req, false);
5799 tcp_rearm_rto(sk);
5800 }
5801 if (tp->snd_una != tp->write_seq)
5802 break;
5803
5804 tcp_set_state(sk, TCP_FIN_WAIT2);
5805 sk->sk_shutdown |= SEND_SHUTDOWN;
5806
5807 dst = __sk_dst_get(sk);
5808 if (dst)
5809 dst_confirm(dst);
5810
5811 if (!sock_flag(sk, SOCK_DEAD)) {
5812 /* Wake up lingering close() */
5813 sk->sk_state_change(sk);
5814 break;
5815 }
5816
5817 if (tp->linger2 < 0 ||
5818 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5819 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5820 tcp_done(sk);
5821 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5822 return 1;
5823 }
5824
5825 tmo = tcp_fin_time(sk);
5826 if (tmo > TCP_TIMEWAIT_LEN) {
5827 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5828 } else if (th->fin || sock_owned_by_user(sk)) {
5829 /* Bad case. We could lose such FIN otherwise.
5830 * It is not a big problem, but it looks confusing
5831 * and not so rare event. We still can lose it now,
5832 * if it spins in bh_lock_sock(), but it is really
5833 * marginal case.
5834 */
5835 inet_csk_reset_keepalive_timer(sk, tmo);
5836 } else {
5837 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5838 goto discard;
5839 }
5840 break;
5841 }
5842
5843 case TCP_CLOSING:
5844 if (tp->snd_una == tp->write_seq) {
5845 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5846 goto discard;
5847 }
5848 break;
5849
5850 case TCP_LAST_ACK:
5851 if (tp->snd_una == tp->write_seq) {
5852 tcp_update_metrics(sk);
5853 tcp_done(sk);
5854 goto discard;
5855 }
5856 break;
5857 }
5858
5859 /* step 6: check the URG bit */
5860 tcp_urg(sk, skb, th);
5861
5862 /* step 7: process the segment text */
5863 switch (sk->sk_state) {
5864 case TCP_CLOSE_WAIT:
5865 case TCP_CLOSING:
5866 case TCP_LAST_ACK:
5867 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5868 break;
5869 case TCP_FIN_WAIT1:
5870 case TCP_FIN_WAIT2:
5871 /* RFC 793 says to queue data in these states,
5872 * RFC 1122 says we MUST send a reset.
5873 * BSD 4.4 also does reset.
5874 */
5875 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5876 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5877 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5878 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5879 tcp_reset(sk);
5880 return 1;
5881 }
5882 }
5883 /* Fall through */
5884 case TCP_ESTABLISHED:
5885 tcp_data_queue(sk, skb);
5886 queued = 1;
5887 break;
5888 }
5889
5890 /* tcp_data could move socket to TIME-WAIT */
5891 if (sk->sk_state != TCP_CLOSE) {
5892 tcp_data_snd_check(sk);
5893 tcp_ack_snd_check(sk);
5894 }
5895
5896 if (!queued) {
5897 discard:
5898 __kfree_skb(skb);
5899 }
5900 return 0;
5901 }
5902 EXPORT_SYMBOL(tcp_rcv_state_process);
This page took 0.244744 seconds and 5 git commands to generate.