[TCP]: simplify microsecond rtt sampling
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presnce of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
84
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
90
91 int sysctl_tcp_moderate_rcvbuf = 1;
92
93 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
94 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
95 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
96 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
97 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
98 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
99 #define FLAG_ECE 0x40 /* ECE in this ACK */
100 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
101 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
102
103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
107
108 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
109 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
110 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
111
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
113
114 /* Adapt the MSS value used to make delayed ack decision to the
115 * real world.
116 */
117 static inline void tcp_measure_rcv_mss(struct sock *sk,
118 const struct sk_buff *skb)
119 {
120 struct inet_connection_sock *icsk = inet_csk(sk);
121 const unsigned int lss = icsk->icsk_ack.last_seg_size;
122 unsigned int len;
123
124 icsk->icsk_ack.last_seg_size = 0;
125
126 /* skb->len may jitter because of SACKs, even if peer
127 * sends good full-sized frames.
128 */
129 len = skb->len;
130 if (len >= icsk->icsk_ack.rcv_mss) {
131 icsk->icsk_ack.rcv_mss = len;
132 } else {
133 /* Otherwise, we make more careful check taking into account,
134 * that SACKs block is variable.
135 *
136 * "len" is invariant segment length, including TCP header.
137 */
138 len += skb->data - skb->h.raw;
139 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
140 /* If PSH is not set, packet should be
141 * full sized, provided peer TCP is not badly broken.
142 * This observation (if it is correct 8)) allows
143 * to handle super-low mtu links fairly.
144 */
145 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
146 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
147 /* Subtract also invariant (if peer is RFC compliant),
148 * tcp header plus fixed timestamp option length.
149 * Resulting "len" is MSS free of SACK jitter.
150 */
151 len -= tcp_sk(sk)->tcp_header_len;
152 icsk->icsk_ack.last_seg_size = len;
153 if (len == lss) {
154 icsk->icsk_ack.rcv_mss = len;
155 return;
156 }
157 }
158 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
159 }
160 }
161
162 static void tcp_incr_quickack(struct sock *sk)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
166
167 if (quickacks==0)
168 quickacks=2;
169 if (quickacks > icsk->icsk_ack.quick)
170 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
171 }
172
173 void tcp_enter_quickack_mode(struct sock *sk)
174 {
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 tcp_incr_quickack(sk);
177 icsk->icsk_ack.pingpong = 0;
178 icsk->icsk_ack.ato = TCP_ATO_MIN;
179 }
180
181 /* Send ACKs quickly, if "quick" count is not exhausted
182 * and the session is not interactive.
183 */
184
185 static inline int tcp_in_quickack_mode(const struct sock *sk)
186 {
187 const struct inet_connection_sock *icsk = inet_csk(sk);
188 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
189 }
190
191 /* Buffer size and advertised window tuning.
192 *
193 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
194 */
195
196 static void tcp_fixup_sndbuf(struct sock *sk)
197 {
198 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
199 sizeof(struct sk_buff);
200
201 if (sk->sk_sndbuf < 3 * sndmem)
202 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
203 }
204
205 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
206 *
207 * All tcp_full_space() is split to two parts: "network" buffer, allocated
208 * forward and advertised in receiver window (tp->rcv_wnd) and
209 * "application buffer", required to isolate scheduling/application
210 * latencies from network.
211 * window_clamp is maximal advertised window. It can be less than
212 * tcp_full_space(), in this case tcp_full_space() - window_clamp
213 * is reserved for "application" buffer. The less window_clamp is
214 * the smoother our behaviour from viewpoint of network, but the lower
215 * throughput and the higher sensitivity of the connection to losses. 8)
216 *
217 * rcv_ssthresh is more strict window_clamp used at "slow start"
218 * phase to predict further behaviour of this connection.
219 * It is used for two goals:
220 * - to enforce header prediction at sender, even when application
221 * requires some significant "application buffer". It is check #1.
222 * - to prevent pruning of receive queue because of misprediction
223 * of receiver window. Check #2.
224 *
225 * The scheme does not work when sender sends good segments opening
226 * window and then starts to feed us spagetti. But it should work
227 * in common situations. Otherwise, we have to rely on queue collapsing.
228 */
229
230 /* Slow part of check#2. */
231 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
232 const struct sk_buff *skb)
233 {
234 /* Optimize this! */
235 int truesize = tcp_win_from_space(skb->truesize)/2;
236 int window = tcp_full_space(sk)/2;
237
238 while (tp->rcv_ssthresh <= window) {
239 if (truesize <= skb->len)
240 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
241
242 truesize >>= 1;
243 window >>= 1;
244 }
245 return 0;
246 }
247
248 static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
249 struct sk_buff *skb)
250 {
251 /* Check #1 */
252 if (tp->rcv_ssthresh < tp->window_clamp &&
253 (int)tp->rcv_ssthresh < tcp_space(sk) &&
254 !tcp_memory_pressure) {
255 int incr;
256
257 /* Check #2. Increase window, if skb with such overhead
258 * will fit to rcvbuf in future.
259 */
260 if (tcp_win_from_space(skb->truesize) <= skb->len)
261 incr = 2*tp->advmss;
262 else
263 incr = __tcp_grow_window(sk, tp, skb);
264
265 if (incr) {
266 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
267 inet_csk(sk)->icsk_ack.quick |= 1;
268 }
269 }
270 }
271
272 /* 3. Tuning rcvbuf, when connection enters established state. */
273
274 static void tcp_fixup_rcvbuf(struct sock *sk)
275 {
276 struct tcp_sock *tp = tcp_sk(sk);
277 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
278
279 /* Try to select rcvbuf so that 4 mss-sized segments
280 * will fit to window and correspoding skbs will fit to our rcvbuf.
281 * (was 3; 4 is minimum to allow fast retransmit to work.)
282 */
283 while (tcp_win_from_space(rcvmem) < tp->advmss)
284 rcvmem += 128;
285 if (sk->sk_rcvbuf < 4 * rcvmem)
286 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
287 }
288
289 /* 4. Try to fixup all. It is made iimediately after connection enters
290 * established state.
291 */
292 static void tcp_init_buffer_space(struct sock *sk)
293 {
294 struct tcp_sock *tp = tcp_sk(sk);
295 int maxwin;
296
297 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
298 tcp_fixup_rcvbuf(sk);
299 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
300 tcp_fixup_sndbuf(sk);
301
302 tp->rcvq_space.space = tp->rcv_wnd;
303
304 maxwin = tcp_full_space(sk);
305
306 if (tp->window_clamp >= maxwin) {
307 tp->window_clamp = maxwin;
308
309 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
310 tp->window_clamp = max(maxwin -
311 (maxwin >> sysctl_tcp_app_win),
312 4 * tp->advmss);
313 }
314
315 /* Force reservation of one segment. */
316 if (sysctl_tcp_app_win &&
317 tp->window_clamp > 2 * tp->advmss &&
318 tp->window_clamp + tp->advmss > maxwin)
319 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
320
321 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
322 tp->snd_cwnd_stamp = tcp_time_stamp;
323 }
324
325 /* 5. Recalculate window clamp after socket hit its memory bounds. */
326 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
327 {
328 struct inet_connection_sock *icsk = inet_csk(sk);
329 struct sk_buff *skb;
330 unsigned int app_win = tp->rcv_nxt - tp->copied_seq;
331 int ofo_win = 0;
332
333 icsk->icsk_ack.quick = 0;
334
335 skb_queue_walk(&tp->out_of_order_queue, skb) {
336 ofo_win += skb->len;
337 }
338
339 /* If overcommit is due to out of order segments,
340 * do not clamp window. Try to expand rcvbuf instead.
341 */
342 if (ofo_win) {
343 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
344 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
345 !tcp_memory_pressure &&
346 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
347 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
348 sysctl_tcp_rmem[2]);
349 }
350 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
351 app_win += ofo_win;
352 if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf)
353 app_win >>= 1;
354 if (app_win > icsk->icsk_ack.rcv_mss)
355 app_win -= icsk->icsk_ack.rcv_mss;
356 app_win = max(app_win, 2U*tp->advmss);
357
358 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
359 }
360 }
361
362 /* Receiver "autotuning" code.
363 *
364 * The algorithm for RTT estimation w/o timestamps is based on
365 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
366 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
367 *
368 * More detail on this code can be found at
369 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
370 * though this reference is out of date. A new paper
371 * is pending.
372 */
373 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
374 {
375 u32 new_sample = tp->rcv_rtt_est.rtt;
376 long m = sample;
377
378 if (m == 0)
379 m = 1;
380
381 if (new_sample != 0) {
382 /* If we sample in larger samples in the non-timestamp
383 * case, we could grossly overestimate the RTT especially
384 * with chatty applications or bulk transfer apps which
385 * are stalled on filesystem I/O.
386 *
387 * Also, since we are only going for a minimum in the
388 * non-timestamp case, we do not smoothe things out
389 * else with timestamps disabled convergance takes too
390 * long.
391 */
392 if (!win_dep) {
393 m -= (new_sample >> 3);
394 new_sample += m;
395 } else if (m < new_sample)
396 new_sample = m << 3;
397 } else {
398 /* No previous mesaure. */
399 new_sample = m << 3;
400 }
401
402 if (tp->rcv_rtt_est.rtt != new_sample)
403 tp->rcv_rtt_est.rtt = new_sample;
404 }
405
406 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
407 {
408 if (tp->rcv_rtt_est.time == 0)
409 goto new_measure;
410 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
411 return;
412 tcp_rcv_rtt_update(tp,
413 jiffies - tp->rcv_rtt_est.time,
414 1);
415
416 new_measure:
417 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
418 tp->rcv_rtt_est.time = tcp_time_stamp;
419 }
420
421 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
422 {
423 struct tcp_sock *tp = tcp_sk(sk);
424 if (tp->rx_opt.rcv_tsecr &&
425 (TCP_SKB_CB(skb)->end_seq -
426 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
427 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
428 }
429
430 /*
431 * This function should be called every time data is copied to user space.
432 * It calculates the appropriate TCP receive buffer space.
433 */
434 void tcp_rcv_space_adjust(struct sock *sk)
435 {
436 struct tcp_sock *tp = tcp_sk(sk);
437 int time;
438 int space;
439
440 if (tp->rcvq_space.time == 0)
441 goto new_measure;
442
443 time = tcp_time_stamp - tp->rcvq_space.time;
444 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
445 tp->rcv_rtt_est.rtt == 0)
446 return;
447
448 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
449
450 space = max(tp->rcvq_space.space, space);
451
452 if (tp->rcvq_space.space != space) {
453 int rcvmem;
454
455 tp->rcvq_space.space = space;
456
457 if (sysctl_tcp_moderate_rcvbuf) {
458 int new_clamp = space;
459
460 /* Receive space grows, normalize in order to
461 * take into account packet headers and sk_buff
462 * structure overhead.
463 */
464 space /= tp->advmss;
465 if (!space)
466 space = 1;
467 rcvmem = (tp->advmss + MAX_TCP_HEADER +
468 16 + sizeof(struct sk_buff));
469 while (tcp_win_from_space(rcvmem) < tp->advmss)
470 rcvmem += 128;
471 space *= rcvmem;
472 space = min(space, sysctl_tcp_rmem[2]);
473 if (space > sk->sk_rcvbuf) {
474 sk->sk_rcvbuf = space;
475
476 /* Make the window clamp follow along. */
477 tp->window_clamp = new_clamp;
478 }
479 }
480 }
481
482 new_measure:
483 tp->rcvq_space.seq = tp->copied_seq;
484 tp->rcvq_space.time = tcp_time_stamp;
485 }
486
487 /* There is something which you must keep in mind when you analyze the
488 * behavior of the tp->ato delayed ack timeout interval. When a
489 * connection starts up, we want to ack as quickly as possible. The
490 * problem is that "good" TCP's do slow start at the beginning of data
491 * transmission. The means that until we send the first few ACK's the
492 * sender will sit on his end and only queue most of his data, because
493 * he can only send snd_cwnd unacked packets at any given time. For
494 * each ACK we send, he increments snd_cwnd and transmits more of his
495 * queue. -DaveM
496 */
497 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
498 {
499 struct inet_connection_sock *icsk = inet_csk(sk);
500 u32 now;
501
502 inet_csk_schedule_ack(sk);
503
504 tcp_measure_rcv_mss(sk, skb);
505
506 tcp_rcv_rtt_measure(tp);
507
508 now = tcp_time_stamp;
509
510 if (!icsk->icsk_ack.ato) {
511 /* The _first_ data packet received, initialize
512 * delayed ACK engine.
513 */
514 tcp_incr_quickack(sk);
515 icsk->icsk_ack.ato = TCP_ATO_MIN;
516 } else {
517 int m = now - icsk->icsk_ack.lrcvtime;
518
519 if (m <= TCP_ATO_MIN/2) {
520 /* The fastest case is the first. */
521 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
522 } else if (m < icsk->icsk_ack.ato) {
523 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
524 if (icsk->icsk_ack.ato > icsk->icsk_rto)
525 icsk->icsk_ack.ato = icsk->icsk_rto;
526 } else if (m > icsk->icsk_rto) {
527 /* Too long gap. Apparently sender falled to
528 * restart window, so that we send ACKs quickly.
529 */
530 tcp_incr_quickack(sk);
531 sk_stream_mem_reclaim(sk);
532 }
533 }
534 icsk->icsk_ack.lrcvtime = now;
535
536 TCP_ECN_check_ce(tp, skb);
537
538 if (skb->len >= 128)
539 tcp_grow_window(sk, tp, skb);
540 }
541
542 /* Called to compute a smoothed rtt estimate. The data fed to this
543 * routine either comes from timestamps, or from segments that were
544 * known _not_ to have been retransmitted [see Karn/Partridge
545 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
546 * piece by Van Jacobson.
547 * NOTE: the next three routines used to be one big routine.
548 * To save cycles in the RFC 1323 implementation it was better to break
549 * it up into three procedures. -- erics
550 */
551 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
552 {
553 struct tcp_sock *tp = tcp_sk(sk);
554 long m = mrtt; /* RTT */
555
556 /* The following amusing code comes from Jacobson's
557 * article in SIGCOMM '88. Note that rtt and mdev
558 * are scaled versions of rtt and mean deviation.
559 * This is designed to be as fast as possible
560 * m stands for "measurement".
561 *
562 * On a 1990 paper the rto value is changed to:
563 * RTO = rtt + 4 * mdev
564 *
565 * Funny. This algorithm seems to be very broken.
566 * These formulae increase RTO, when it should be decreased, increase
567 * too slowly, when it should be incresed fastly, decrease too fastly
568 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
569 * does not matter how to _calculate_ it. Seems, it was trap
570 * that VJ failed to avoid. 8)
571 */
572 if(m == 0)
573 m = 1;
574 if (tp->srtt != 0) {
575 m -= (tp->srtt >> 3); /* m is now error in rtt est */
576 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
577 if (m < 0) {
578 m = -m; /* m is now abs(error) */
579 m -= (tp->mdev >> 2); /* similar update on mdev */
580 /* This is similar to one of Eifel findings.
581 * Eifel blocks mdev updates when rtt decreases.
582 * This solution is a bit different: we use finer gain
583 * for mdev in this case (alpha*beta).
584 * Like Eifel it also prevents growth of rto,
585 * but also it limits too fast rto decreases,
586 * happening in pure Eifel.
587 */
588 if (m > 0)
589 m >>= 3;
590 } else {
591 m -= (tp->mdev >> 2); /* similar update on mdev */
592 }
593 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
594 if (tp->mdev > tp->mdev_max) {
595 tp->mdev_max = tp->mdev;
596 if (tp->mdev_max > tp->rttvar)
597 tp->rttvar = tp->mdev_max;
598 }
599 if (after(tp->snd_una, tp->rtt_seq)) {
600 if (tp->mdev_max < tp->rttvar)
601 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
602 tp->rtt_seq = tp->snd_nxt;
603 tp->mdev_max = TCP_RTO_MIN;
604 }
605 } else {
606 /* no previous measure. */
607 tp->srtt = m<<3; /* take the measured time to be rtt */
608 tp->mdev = m<<1; /* make sure rto = 3*rtt */
609 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
610 tp->rtt_seq = tp->snd_nxt;
611 }
612 }
613
614 /* Calculate rto without backoff. This is the second half of Van Jacobson's
615 * routine referred to above.
616 */
617 static inline void tcp_set_rto(struct sock *sk)
618 {
619 const struct tcp_sock *tp = tcp_sk(sk);
620 /* Old crap is replaced with new one. 8)
621 *
622 * More seriously:
623 * 1. If rtt variance happened to be less 50msec, it is hallucination.
624 * It cannot be less due to utterly erratic ACK generation made
625 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
626 * to do with delayed acks, because at cwnd>2 true delack timeout
627 * is invisible. Actually, Linux-2.4 also generates erratic
628 * ACKs in some curcumstances.
629 */
630 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
631
632 /* 2. Fixups made earlier cannot be right.
633 * If we do not estimate RTO correctly without them,
634 * all the algo is pure shit and should be replaced
635 * with correct one. It is exaclty, which we pretend to do.
636 */
637 }
638
639 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
640 * guarantees that rto is higher.
641 */
642 static inline void tcp_bound_rto(struct sock *sk)
643 {
644 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
645 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
646 }
647
648 /* Save metrics learned by this TCP session.
649 This function is called only, when TCP finishes successfully
650 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
651 */
652 void tcp_update_metrics(struct sock *sk)
653 {
654 struct tcp_sock *tp = tcp_sk(sk);
655 struct dst_entry *dst = __sk_dst_get(sk);
656
657 if (sysctl_tcp_nometrics_save)
658 return;
659
660 dst_confirm(dst);
661
662 if (dst && (dst->flags&DST_HOST)) {
663 const struct inet_connection_sock *icsk = inet_csk(sk);
664 int m;
665
666 if (icsk->icsk_backoff || !tp->srtt) {
667 /* This session failed to estimate rtt. Why?
668 * Probably, no packets returned in time.
669 * Reset our results.
670 */
671 if (!(dst_metric_locked(dst, RTAX_RTT)))
672 dst->metrics[RTAX_RTT-1] = 0;
673 return;
674 }
675
676 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
677
678 /* If newly calculated rtt larger than stored one,
679 * store new one. Otherwise, use EWMA. Remember,
680 * rtt overestimation is always better than underestimation.
681 */
682 if (!(dst_metric_locked(dst, RTAX_RTT))) {
683 if (m <= 0)
684 dst->metrics[RTAX_RTT-1] = tp->srtt;
685 else
686 dst->metrics[RTAX_RTT-1] -= (m>>3);
687 }
688
689 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
690 if (m < 0)
691 m = -m;
692
693 /* Scale deviation to rttvar fixed point */
694 m >>= 1;
695 if (m < tp->mdev)
696 m = tp->mdev;
697
698 if (m >= dst_metric(dst, RTAX_RTTVAR))
699 dst->metrics[RTAX_RTTVAR-1] = m;
700 else
701 dst->metrics[RTAX_RTTVAR-1] -=
702 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
703 }
704
705 if (tp->snd_ssthresh >= 0xFFFF) {
706 /* Slow start still did not finish. */
707 if (dst_metric(dst, RTAX_SSTHRESH) &&
708 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
709 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
710 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
711 if (!dst_metric_locked(dst, RTAX_CWND) &&
712 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
713 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
714 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
715 icsk->icsk_ca_state == TCP_CA_Open) {
716 /* Cong. avoidance phase, cwnd is reliable. */
717 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
718 dst->metrics[RTAX_SSTHRESH-1] =
719 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
720 if (!dst_metric_locked(dst, RTAX_CWND))
721 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
722 } else {
723 /* Else slow start did not finish, cwnd is non-sense,
724 ssthresh may be also invalid.
725 */
726 if (!dst_metric_locked(dst, RTAX_CWND))
727 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
728 if (dst->metrics[RTAX_SSTHRESH-1] &&
729 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
730 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
731 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
732 }
733
734 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
735 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
736 tp->reordering != sysctl_tcp_reordering)
737 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
738 }
739 }
740 }
741
742 /* Numbers are taken from RFC2414. */
743 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
744 {
745 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
746
747 if (!cwnd) {
748 if (tp->mss_cache > 1460)
749 cwnd = 2;
750 else
751 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
752 }
753 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
754 }
755
756 /* Initialize metrics on socket. */
757
758 static void tcp_init_metrics(struct sock *sk)
759 {
760 struct tcp_sock *tp = tcp_sk(sk);
761 struct dst_entry *dst = __sk_dst_get(sk);
762
763 if (dst == NULL)
764 goto reset;
765
766 dst_confirm(dst);
767
768 if (dst_metric_locked(dst, RTAX_CWND))
769 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
770 if (dst_metric(dst, RTAX_SSTHRESH)) {
771 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
772 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
773 tp->snd_ssthresh = tp->snd_cwnd_clamp;
774 }
775 if (dst_metric(dst, RTAX_REORDERING) &&
776 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
777 tp->rx_opt.sack_ok &= ~2;
778 tp->reordering = dst_metric(dst, RTAX_REORDERING);
779 }
780
781 if (dst_metric(dst, RTAX_RTT) == 0)
782 goto reset;
783
784 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
785 goto reset;
786
787 /* Initial rtt is determined from SYN,SYN-ACK.
788 * The segment is small and rtt may appear much
789 * less than real one. Use per-dst memory
790 * to make it more realistic.
791 *
792 * A bit of theory. RTT is time passed after "normal" sized packet
793 * is sent until it is ACKed. In normal curcumstances sending small
794 * packets force peer to delay ACKs and calculation is correct too.
795 * The algorithm is adaptive and, provided we follow specs, it
796 * NEVER underestimate RTT. BUT! If peer tries to make some clever
797 * tricks sort of "quick acks" for time long enough to decrease RTT
798 * to low value, and then abruptly stops to do it and starts to delay
799 * ACKs, wait for troubles.
800 */
801 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
802 tp->srtt = dst_metric(dst, RTAX_RTT);
803 tp->rtt_seq = tp->snd_nxt;
804 }
805 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
806 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
807 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
808 }
809 tcp_set_rto(sk);
810 tcp_bound_rto(sk);
811 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
812 goto reset;
813 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
814 tp->snd_cwnd_stamp = tcp_time_stamp;
815 return;
816
817 reset:
818 /* Play conservative. If timestamps are not
819 * supported, TCP will fail to recalculate correct
820 * rtt, if initial rto is too small. FORGET ALL AND RESET!
821 */
822 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
823 tp->srtt = 0;
824 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
825 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
826 }
827 }
828
829 static void tcp_update_reordering(struct sock *sk, const int metric,
830 const int ts)
831 {
832 struct tcp_sock *tp = tcp_sk(sk);
833 if (metric > tp->reordering) {
834 tp->reordering = min(TCP_MAX_REORDERING, metric);
835
836 /* This exciting event is worth to be remembered. 8) */
837 if (ts)
838 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
839 else if (IsReno(tp))
840 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
841 else if (IsFack(tp))
842 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
843 else
844 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
845 #if FASTRETRANS_DEBUG > 1
846 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
847 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
848 tp->reordering,
849 tp->fackets_out,
850 tp->sacked_out,
851 tp->undo_marker ? tp->undo_retrans : 0);
852 #endif
853 /* Disable FACK yet. */
854 tp->rx_opt.sack_ok &= ~2;
855 }
856 }
857
858 /* This procedure tags the retransmission queue when SACKs arrive.
859 *
860 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
861 * Packets in queue with these bits set are counted in variables
862 * sacked_out, retrans_out and lost_out, correspondingly.
863 *
864 * Valid combinations are:
865 * Tag InFlight Description
866 * 0 1 - orig segment is in flight.
867 * S 0 - nothing flies, orig reached receiver.
868 * L 0 - nothing flies, orig lost by net.
869 * R 2 - both orig and retransmit are in flight.
870 * L|R 1 - orig is lost, retransmit is in flight.
871 * S|R 1 - orig reached receiver, retrans is still in flight.
872 * (L|S|R is logically valid, it could occur when L|R is sacked,
873 * but it is equivalent to plain S and code short-curcuits it to S.
874 * L|S is logically invalid, it would mean -1 packet in flight 8))
875 *
876 * These 6 states form finite state machine, controlled by the following events:
877 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
878 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
879 * 3. Loss detection event of one of three flavors:
880 * A. Scoreboard estimator decided the packet is lost.
881 * A'. Reno "three dupacks" marks head of queue lost.
882 * A''. Its FACK modfication, head until snd.fack is lost.
883 * B. SACK arrives sacking data transmitted after never retransmitted
884 * hole was sent out.
885 * C. SACK arrives sacking SND.NXT at the moment, when the
886 * segment was retransmitted.
887 * 4. D-SACK added new rule: D-SACK changes any tag to S.
888 *
889 * It is pleasant to note, that state diagram turns out to be commutative,
890 * so that we are allowed not to be bothered by order of our actions,
891 * when multiple events arrive simultaneously. (see the function below).
892 *
893 * Reordering detection.
894 * --------------------
895 * Reordering metric is maximal distance, which a packet can be displaced
896 * in packet stream. With SACKs we can estimate it:
897 *
898 * 1. SACK fills old hole and the corresponding segment was not
899 * ever retransmitted -> reordering. Alas, we cannot use it
900 * when segment was retransmitted.
901 * 2. The last flaw is solved with D-SACK. D-SACK arrives
902 * for retransmitted and already SACKed segment -> reordering..
903 * Both of these heuristics are not used in Loss state, when we cannot
904 * account for retransmits accurately.
905 */
906 static int
907 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
908 {
909 const struct inet_connection_sock *icsk = inet_csk(sk);
910 struct tcp_sock *tp = tcp_sk(sk);
911 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
912 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
913 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
914 int reord = tp->packets_out;
915 int prior_fackets;
916 u32 lost_retrans = 0;
917 int flag = 0;
918 int i;
919
920 if (!tp->sacked_out)
921 tp->fackets_out = 0;
922 prior_fackets = tp->fackets_out;
923
924 for (i=0; i<num_sacks; i++, sp++) {
925 struct sk_buff *skb;
926 __u32 start_seq = ntohl(sp->start_seq);
927 __u32 end_seq = ntohl(sp->end_seq);
928 int fack_count = 0;
929 int dup_sack = 0;
930
931 /* Check for D-SACK. */
932 if (i == 0) {
933 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
934
935 if (before(start_seq, ack)) {
936 dup_sack = 1;
937 tp->rx_opt.sack_ok |= 4;
938 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
939 } else if (num_sacks > 1 &&
940 !after(end_seq, ntohl(sp[1].end_seq)) &&
941 !before(start_seq, ntohl(sp[1].start_seq))) {
942 dup_sack = 1;
943 tp->rx_opt.sack_ok |= 4;
944 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
945 }
946
947 /* D-SACK for already forgotten data...
948 * Do dumb counting. */
949 if (dup_sack &&
950 !after(end_seq, prior_snd_una) &&
951 after(end_seq, tp->undo_marker))
952 tp->undo_retrans--;
953
954 /* Eliminate too old ACKs, but take into
955 * account more or less fresh ones, they can
956 * contain valid SACK info.
957 */
958 if (before(ack, prior_snd_una - tp->max_window))
959 return 0;
960 }
961
962 /* Event "B" in the comment above. */
963 if (after(end_seq, tp->high_seq))
964 flag |= FLAG_DATA_LOST;
965
966 sk_stream_for_retrans_queue(skb, sk) {
967 int in_sack, pcount;
968 u8 sacked;
969
970 /* The retransmission queue is always in order, so
971 * we can short-circuit the walk early.
972 */
973 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
974 break;
975
976 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
977 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
978
979 pcount = tcp_skb_pcount(skb);
980
981 if (pcount > 1 && !in_sack &&
982 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
983 unsigned int pkt_len;
984
985 in_sack = !after(start_seq,
986 TCP_SKB_CB(skb)->seq);
987
988 if (!in_sack)
989 pkt_len = (start_seq -
990 TCP_SKB_CB(skb)->seq);
991 else
992 pkt_len = (end_seq -
993 TCP_SKB_CB(skb)->seq);
994 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size))
995 break;
996 pcount = tcp_skb_pcount(skb);
997 }
998
999 fack_count += pcount;
1000
1001 sacked = TCP_SKB_CB(skb)->sacked;
1002
1003 /* Account D-SACK for retransmitted packet. */
1004 if ((dup_sack && in_sack) &&
1005 (sacked & TCPCB_RETRANS) &&
1006 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1007 tp->undo_retrans--;
1008
1009 /* The frame is ACKed. */
1010 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1011 if (sacked&TCPCB_RETRANS) {
1012 if ((dup_sack && in_sack) &&
1013 (sacked&TCPCB_SACKED_ACKED))
1014 reord = min(fack_count, reord);
1015 } else {
1016 /* If it was in a hole, we detected reordering. */
1017 if (fack_count < prior_fackets &&
1018 !(sacked&TCPCB_SACKED_ACKED))
1019 reord = min(fack_count, reord);
1020 }
1021
1022 /* Nothing to do; acked frame is about to be dropped. */
1023 continue;
1024 }
1025
1026 if ((sacked&TCPCB_SACKED_RETRANS) &&
1027 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1028 (!lost_retrans || after(end_seq, lost_retrans)))
1029 lost_retrans = end_seq;
1030
1031 if (!in_sack)
1032 continue;
1033
1034 if (!(sacked&TCPCB_SACKED_ACKED)) {
1035 if (sacked & TCPCB_SACKED_RETRANS) {
1036 /* If the segment is not tagged as lost,
1037 * we do not clear RETRANS, believing
1038 * that retransmission is still in flight.
1039 */
1040 if (sacked & TCPCB_LOST) {
1041 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1042 tp->lost_out -= tcp_skb_pcount(skb);
1043 tp->retrans_out -= tcp_skb_pcount(skb);
1044 }
1045 } else {
1046 /* New sack for not retransmitted frame,
1047 * which was in hole. It is reordering.
1048 */
1049 if (!(sacked & TCPCB_RETRANS) &&
1050 fack_count < prior_fackets)
1051 reord = min(fack_count, reord);
1052
1053 if (sacked & TCPCB_LOST) {
1054 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1055 tp->lost_out -= tcp_skb_pcount(skb);
1056 }
1057 }
1058
1059 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1060 flag |= FLAG_DATA_SACKED;
1061 tp->sacked_out += tcp_skb_pcount(skb);
1062
1063 if (fack_count > tp->fackets_out)
1064 tp->fackets_out = fack_count;
1065 } else {
1066 if (dup_sack && (sacked&TCPCB_RETRANS))
1067 reord = min(fack_count, reord);
1068 }
1069
1070 /* D-SACK. We can detect redundant retransmission
1071 * in S|R and plain R frames and clear it.
1072 * undo_retrans is decreased above, L|R frames
1073 * are accounted above as well.
1074 */
1075 if (dup_sack &&
1076 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1077 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1078 tp->retrans_out -= tcp_skb_pcount(skb);
1079 }
1080 }
1081 }
1082
1083 /* Check for lost retransmit. This superb idea is
1084 * borrowed from "ratehalving". Event "C".
1085 * Later note: FACK people cheated me again 8),
1086 * we have to account for reordering! Ugly,
1087 * but should help.
1088 */
1089 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1090 struct sk_buff *skb;
1091
1092 sk_stream_for_retrans_queue(skb, sk) {
1093 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1094 break;
1095 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1096 continue;
1097 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1098 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1099 (IsFack(tp) ||
1100 !before(lost_retrans,
1101 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1102 tp->mss_cache))) {
1103 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1104 tp->retrans_out -= tcp_skb_pcount(skb);
1105
1106 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1107 tp->lost_out += tcp_skb_pcount(skb);
1108 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1109 flag |= FLAG_DATA_SACKED;
1110 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1111 }
1112 }
1113 }
1114 }
1115
1116 tp->left_out = tp->sacked_out + tp->lost_out;
1117
1118 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1119 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1120
1121 #if FASTRETRANS_DEBUG > 0
1122 BUG_TRAP((int)tp->sacked_out >= 0);
1123 BUG_TRAP((int)tp->lost_out >= 0);
1124 BUG_TRAP((int)tp->retrans_out >= 0);
1125 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1126 #endif
1127 return flag;
1128 }
1129
1130 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1131 * segments to see from the next ACKs whether any data was really missing.
1132 * If the RTO was spurious, new ACKs should arrive.
1133 */
1134 void tcp_enter_frto(struct sock *sk)
1135 {
1136 const struct inet_connection_sock *icsk = inet_csk(sk);
1137 struct tcp_sock *tp = tcp_sk(sk);
1138 struct sk_buff *skb;
1139
1140 tp->frto_counter = 1;
1141
1142 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1143 tp->snd_una == tp->high_seq ||
1144 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1145 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1146 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1147 tcp_ca_event(sk, CA_EVENT_FRTO);
1148 }
1149
1150 /* Have to clear retransmission markers here to keep the bookkeeping
1151 * in shape, even though we are not yet in Loss state.
1152 * If something was really lost, it is eventually caught up
1153 * in tcp_enter_frto_loss.
1154 */
1155 tp->retrans_out = 0;
1156 tp->undo_marker = tp->snd_una;
1157 tp->undo_retrans = 0;
1158
1159 sk_stream_for_retrans_queue(skb, sk) {
1160 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1161 }
1162 tcp_sync_left_out(tp);
1163
1164 tcp_set_ca_state(sk, TCP_CA_Open);
1165 tp->frto_highmark = tp->snd_nxt;
1166 }
1167
1168 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1169 * which indicates that we should follow the traditional RTO recovery,
1170 * i.e. mark everything lost and do go-back-N retransmission.
1171 */
1172 static void tcp_enter_frto_loss(struct sock *sk)
1173 {
1174 struct tcp_sock *tp = tcp_sk(sk);
1175 struct sk_buff *skb;
1176 int cnt = 0;
1177
1178 tp->sacked_out = 0;
1179 tp->lost_out = 0;
1180 tp->fackets_out = 0;
1181
1182 sk_stream_for_retrans_queue(skb, sk) {
1183 cnt += tcp_skb_pcount(skb);
1184 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1185 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1186
1187 /* Do not mark those segments lost that were
1188 * forward transmitted after RTO
1189 */
1190 if (!after(TCP_SKB_CB(skb)->end_seq,
1191 tp->frto_highmark)) {
1192 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1193 tp->lost_out += tcp_skb_pcount(skb);
1194 }
1195 } else {
1196 tp->sacked_out += tcp_skb_pcount(skb);
1197 tp->fackets_out = cnt;
1198 }
1199 }
1200 tcp_sync_left_out(tp);
1201
1202 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1203 tp->snd_cwnd_cnt = 0;
1204 tp->snd_cwnd_stamp = tcp_time_stamp;
1205 tp->undo_marker = 0;
1206 tp->frto_counter = 0;
1207
1208 tp->reordering = min_t(unsigned int, tp->reordering,
1209 sysctl_tcp_reordering);
1210 tcp_set_ca_state(sk, TCP_CA_Loss);
1211 tp->high_seq = tp->frto_highmark;
1212 TCP_ECN_queue_cwr(tp);
1213 }
1214
1215 void tcp_clear_retrans(struct tcp_sock *tp)
1216 {
1217 tp->left_out = 0;
1218 tp->retrans_out = 0;
1219
1220 tp->fackets_out = 0;
1221 tp->sacked_out = 0;
1222 tp->lost_out = 0;
1223
1224 tp->undo_marker = 0;
1225 tp->undo_retrans = 0;
1226 }
1227
1228 /* Enter Loss state. If "how" is not zero, forget all SACK information
1229 * and reset tags completely, otherwise preserve SACKs. If receiver
1230 * dropped its ofo queue, we will know this due to reneging detection.
1231 */
1232 void tcp_enter_loss(struct sock *sk, int how)
1233 {
1234 const struct inet_connection_sock *icsk = inet_csk(sk);
1235 struct tcp_sock *tp = tcp_sk(sk);
1236 struct sk_buff *skb;
1237 int cnt = 0;
1238
1239 /* Reduce ssthresh if it has not yet been made inside this window. */
1240 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1241 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1242 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1243 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1244 tcp_ca_event(sk, CA_EVENT_LOSS);
1245 }
1246 tp->snd_cwnd = 1;
1247 tp->snd_cwnd_cnt = 0;
1248 tp->snd_cwnd_stamp = tcp_time_stamp;
1249
1250 tcp_clear_retrans(tp);
1251
1252 /* Push undo marker, if it was plain RTO and nothing
1253 * was retransmitted. */
1254 if (!how)
1255 tp->undo_marker = tp->snd_una;
1256
1257 sk_stream_for_retrans_queue(skb, sk) {
1258 cnt += tcp_skb_pcount(skb);
1259 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1260 tp->undo_marker = 0;
1261 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1262 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1263 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1264 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1265 tp->lost_out += tcp_skb_pcount(skb);
1266 } else {
1267 tp->sacked_out += tcp_skb_pcount(skb);
1268 tp->fackets_out = cnt;
1269 }
1270 }
1271 tcp_sync_left_out(tp);
1272
1273 tp->reordering = min_t(unsigned int, tp->reordering,
1274 sysctl_tcp_reordering);
1275 tcp_set_ca_state(sk, TCP_CA_Loss);
1276 tp->high_seq = tp->snd_nxt;
1277 TCP_ECN_queue_cwr(tp);
1278 }
1279
1280 static int tcp_check_sack_reneging(struct sock *sk)
1281 {
1282 struct sk_buff *skb;
1283
1284 /* If ACK arrived pointing to a remembered SACK,
1285 * it means that our remembered SACKs do not reflect
1286 * real state of receiver i.e.
1287 * receiver _host_ is heavily congested (or buggy).
1288 * Do processing similar to RTO timeout.
1289 */
1290 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1291 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1292 struct inet_connection_sock *icsk = inet_csk(sk);
1293 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1294
1295 tcp_enter_loss(sk, 1);
1296 icsk->icsk_retransmits++;
1297 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1298 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1299 icsk->icsk_rto, TCP_RTO_MAX);
1300 return 1;
1301 }
1302 return 0;
1303 }
1304
1305 static inline int tcp_fackets_out(struct tcp_sock *tp)
1306 {
1307 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1308 }
1309
1310 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1311 {
1312 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1313 }
1314
1315 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1316 {
1317 return tp->packets_out &&
1318 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1319 }
1320
1321 /* Linux NewReno/SACK/FACK/ECN state machine.
1322 * --------------------------------------
1323 *
1324 * "Open" Normal state, no dubious events, fast path.
1325 * "Disorder" In all the respects it is "Open",
1326 * but requires a bit more attention. It is entered when
1327 * we see some SACKs or dupacks. It is split of "Open"
1328 * mainly to move some processing from fast path to slow one.
1329 * "CWR" CWND was reduced due to some Congestion Notification event.
1330 * It can be ECN, ICMP source quench, local device congestion.
1331 * "Recovery" CWND was reduced, we are fast-retransmitting.
1332 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1333 *
1334 * tcp_fastretrans_alert() is entered:
1335 * - each incoming ACK, if state is not "Open"
1336 * - when arrived ACK is unusual, namely:
1337 * * SACK
1338 * * Duplicate ACK.
1339 * * ECN ECE.
1340 *
1341 * Counting packets in flight is pretty simple.
1342 *
1343 * in_flight = packets_out - left_out + retrans_out
1344 *
1345 * packets_out is SND.NXT-SND.UNA counted in packets.
1346 *
1347 * retrans_out is number of retransmitted segments.
1348 *
1349 * left_out is number of segments left network, but not ACKed yet.
1350 *
1351 * left_out = sacked_out + lost_out
1352 *
1353 * sacked_out: Packets, which arrived to receiver out of order
1354 * and hence not ACKed. With SACKs this number is simply
1355 * amount of SACKed data. Even without SACKs
1356 * it is easy to give pretty reliable estimate of this number,
1357 * counting duplicate ACKs.
1358 *
1359 * lost_out: Packets lost by network. TCP has no explicit
1360 * "loss notification" feedback from network (for now).
1361 * It means that this number can be only _guessed_.
1362 * Actually, it is the heuristics to predict lossage that
1363 * distinguishes different algorithms.
1364 *
1365 * F.e. after RTO, when all the queue is considered as lost,
1366 * lost_out = packets_out and in_flight = retrans_out.
1367 *
1368 * Essentially, we have now two algorithms counting
1369 * lost packets.
1370 *
1371 * FACK: It is the simplest heuristics. As soon as we decided
1372 * that something is lost, we decide that _all_ not SACKed
1373 * packets until the most forward SACK are lost. I.e.
1374 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1375 * It is absolutely correct estimate, if network does not reorder
1376 * packets. And it loses any connection to reality when reordering
1377 * takes place. We use FACK by default until reordering
1378 * is suspected on the path to this destination.
1379 *
1380 * NewReno: when Recovery is entered, we assume that one segment
1381 * is lost (classic Reno). While we are in Recovery and
1382 * a partial ACK arrives, we assume that one more packet
1383 * is lost (NewReno). This heuristics are the same in NewReno
1384 * and SACK.
1385 *
1386 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1387 * deflation etc. CWND is real congestion window, never inflated, changes
1388 * only according to classic VJ rules.
1389 *
1390 * Really tricky (and requiring careful tuning) part of algorithm
1391 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1392 * The first determines the moment _when_ we should reduce CWND and,
1393 * hence, slow down forward transmission. In fact, it determines the moment
1394 * when we decide that hole is caused by loss, rather than by a reorder.
1395 *
1396 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1397 * holes, caused by lost packets.
1398 *
1399 * And the most logically complicated part of algorithm is undo
1400 * heuristics. We detect false retransmits due to both too early
1401 * fast retransmit (reordering) and underestimated RTO, analyzing
1402 * timestamps and D-SACKs. When we detect that some segments were
1403 * retransmitted by mistake and CWND reduction was wrong, we undo
1404 * window reduction and abort recovery phase. This logic is hidden
1405 * inside several functions named tcp_try_undo_<something>.
1406 */
1407
1408 /* This function decides, when we should leave Disordered state
1409 * and enter Recovery phase, reducing congestion window.
1410 *
1411 * Main question: may we further continue forward transmission
1412 * with the same cwnd?
1413 */
1414 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1415 {
1416 __u32 packets_out;
1417
1418 /* Trick#1: The loss is proven. */
1419 if (tp->lost_out)
1420 return 1;
1421
1422 /* Not-A-Trick#2 : Classic rule... */
1423 if (tcp_fackets_out(tp) > tp->reordering)
1424 return 1;
1425
1426 /* Trick#3 : when we use RFC2988 timer restart, fast
1427 * retransmit can be triggered by timeout of queue head.
1428 */
1429 if (tcp_head_timedout(sk, tp))
1430 return 1;
1431
1432 /* Trick#4: It is still not OK... But will it be useful to delay
1433 * recovery more?
1434 */
1435 packets_out = tp->packets_out;
1436 if (packets_out <= tp->reordering &&
1437 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1438 !tcp_may_send_now(sk, tp)) {
1439 /* We have nothing to send. This connection is limited
1440 * either by receiver window or by application.
1441 */
1442 return 1;
1443 }
1444
1445 return 0;
1446 }
1447
1448 /* If we receive more dupacks than we expected counting segments
1449 * in assumption of absent reordering, interpret this as reordering.
1450 * The only another reason could be bug in receiver TCP.
1451 */
1452 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1453 {
1454 struct tcp_sock *tp = tcp_sk(sk);
1455 u32 holes;
1456
1457 holes = max(tp->lost_out, 1U);
1458 holes = min(holes, tp->packets_out);
1459
1460 if ((tp->sacked_out + holes) > tp->packets_out) {
1461 tp->sacked_out = tp->packets_out - holes;
1462 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1463 }
1464 }
1465
1466 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1467
1468 static void tcp_add_reno_sack(struct sock *sk)
1469 {
1470 struct tcp_sock *tp = tcp_sk(sk);
1471 tp->sacked_out++;
1472 tcp_check_reno_reordering(sk, 0);
1473 tcp_sync_left_out(tp);
1474 }
1475
1476 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1477
1478 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1479 {
1480 if (acked > 0) {
1481 /* One ACK acked hole. The rest eat duplicate ACKs. */
1482 if (acked-1 >= tp->sacked_out)
1483 tp->sacked_out = 0;
1484 else
1485 tp->sacked_out -= acked-1;
1486 }
1487 tcp_check_reno_reordering(sk, acked);
1488 tcp_sync_left_out(tp);
1489 }
1490
1491 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1492 {
1493 tp->sacked_out = 0;
1494 tp->left_out = tp->lost_out;
1495 }
1496
1497 /* Mark head of queue up as lost. */
1498 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1499 int packets, u32 high_seq)
1500 {
1501 struct sk_buff *skb;
1502 int cnt = packets;
1503
1504 BUG_TRAP(cnt <= tp->packets_out);
1505
1506 sk_stream_for_retrans_queue(skb, sk) {
1507 cnt -= tcp_skb_pcount(skb);
1508 if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1509 break;
1510 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1511 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1512 tp->lost_out += tcp_skb_pcount(skb);
1513 }
1514 }
1515 tcp_sync_left_out(tp);
1516 }
1517
1518 /* Account newly detected lost packet(s) */
1519
1520 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1521 {
1522 if (IsFack(tp)) {
1523 int lost = tp->fackets_out - tp->reordering;
1524 if (lost <= 0)
1525 lost = 1;
1526 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1527 } else {
1528 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1529 }
1530
1531 /* New heuristics: it is possible only after we switched
1532 * to restart timer each time when something is ACKed.
1533 * Hence, we can detect timed out packets during fast
1534 * retransmit without falling to slow start.
1535 */
1536 if (tcp_head_timedout(sk, tp)) {
1537 struct sk_buff *skb;
1538
1539 sk_stream_for_retrans_queue(skb, sk) {
1540 if (tcp_skb_timedout(sk, skb) &&
1541 !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1542 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1543 tp->lost_out += tcp_skb_pcount(skb);
1544 }
1545 }
1546 tcp_sync_left_out(tp);
1547 }
1548 }
1549
1550 /* CWND moderation, preventing bursts due to too big ACKs
1551 * in dubious situations.
1552 */
1553 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1554 {
1555 tp->snd_cwnd = min(tp->snd_cwnd,
1556 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1557 tp->snd_cwnd_stamp = tcp_time_stamp;
1558 }
1559
1560 /* Decrease cwnd each second ack. */
1561 static void tcp_cwnd_down(struct sock *sk)
1562 {
1563 const struct inet_connection_sock *icsk = inet_csk(sk);
1564 struct tcp_sock *tp = tcp_sk(sk);
1565 int decr = tp->snd_cwnd_cnt + 1;
1566
1567 tp->snd_cwnd_cnt = decr&1;
1568 decr >>= 1;
1569
1570 if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk))
1571 tp->snd_cwnd -= decr;
1572
1573 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1574 tp->snd_cwnd_stamp = tcp_time_stamp;
1575 }
1576
1577 /* Nothing was retransmitted or returned timestamp is less
1578 * than timestamp of the first retransmission.
1579 */
1580 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1581 {
1582 return !tp->retrans_stamp ||
1583 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1584 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1585 }
1586
1587 /* Undo procedures. */
1588
1589 #if FASTRETRANS_DEBUG > 1
1590 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1591 {
1592 struct inet_sock *inet = inet_sk(sk);
1593 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1594 msg,
1595 NIPQUAD(inet->daddr), ntohs(inet->dport),
1596 tp->snd_cwnd, tp->left_out,
1597 tp->snd_ssthresh, tp->prior_ssthresh,
1598 tp->packets_out);
1599 }
1600 #else
1601 #define DBGUNDO(x...) do { } while (0)
1602 #endif
1603
1604 static void tcp_undo_cwr(struct sock *sk, const int undo)
1605 {
1606 struct tcp_sock *tp = tcp_sk(sk);
1607
1608 if (tp->prior_ssthresh) {
1609 const struct inet_connection_sock *icsk = inet_csk(sk);
1610
1611 if (icsk->icsk_ca_ops->undo_cwnd)
1612 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1613 else
1614 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1615
1616 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1617 tp->snd_ssthresh = tp->prior_ssthresh;
1618 TCP_ECN_withdraw_cwr(tp);
1619 }
1620 } else {
1621 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1622 }
1623 tcp_moderate_cwnd(tp);
1624 tp->snd_cwnd_stamp = tcp_time_stamp;
1625 }
1626
1627 static inline int tcp_may_undo(struct tcp_sock *tp)
1628 {
1629 return tp->undo_marker &&
1630 (!tp->undo_retrans || tcp_packet_delayed(tp));
1631 }
1632
1633 /* People celebrate: "We love our President!" */
1634 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1635 {
1636 if (tcp_may_undo(tp)) {
1637 /* Happy end! We did not retransmit anything
1638 * or our original transmission succeeded.
1639 */
1640 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1641 tcp_undo_cwr(sk, 1);
1642 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1643 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1644 else
1645 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1646 tp->undo_marker = 0;
1647 }
1648 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1649 /* Hold old state until something *above* high_seq
1650 * is ACKed. For Reno it is MUST to prevent false
1651 * fast retransmits (RFC2582). SACK TCP is safe. */
1652 tcp_moderate_cwnd(tp);
1653 return 1;
1654 }
1655 tcp_set_ca_state(sk, TCP_CA_Open);
1656 return 0;
1657 }
1658
1659 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1660 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1661 {
1662 if (tp->undo_marker && !tp->undo_retrans) {
1663 DBGUNDO(sk, tp, "D-SACK");
1664 tcp_undo_cwr(sk, 1);
1665 tp->undo_marker = 0;
1666 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1667 }
1668 }
1669
1670 /* Undo during fast recovery after partial ACK. */
1671
1672 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1673 int acked)
1674 {
1675 /* Partial ACK arrived. Force Hoe's retransmit. */
1676 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1677
1678 if (tcp_may_undo(tp)) {
1679 /* Plain luck! Hole if filled with delayed
1680 * packet, rather than with a retransmit.
1681 */
1682 if (tp->retrans_out == 0)
1683 tp->retrans_stamp = 0;
1684
1685 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1686
1687 DBGUNDO(sk, tp, "Hoe");
1688 tcp_undo_cwr(sk, 0);
1689 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1690
1691 /* So... Do not make Hoe's retransmit yet.
1692 * If the first packet was delayed, the rest
1693 * ones are most probably delayed as well.
1694 */
1695 failed = 0;
1696 }
1697 return failed;
1698 }
1699
1700 /* Undo during loss recovery after partial ACK. */
1701 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1702 {
1703 if (tcp_may_undo(tp)) {
1704 struct sk_buff *skb;
1705 sk_stream_for_retrans_queue(skb, sk) {
1706 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1707 }
1708 DBGUNDO(sk, tp, "partial loss");
1709 tp->lost_out = 0;
1710 tp->left_out = tp->sacked_out;
1711 tcp_undo_cwr(sk, 1);
1712 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1713 inet_csk(sk)->icsk_retransmits = 0;
1714 tp->undo_marker = 0;
1715 if (!IsReno(tp))
1716 tcp_set_ca_state(sk, TCP_CA_Open);
1717 return 1;
1718 }
1719 return 0;
1720 }
1721
1722 static inline void tcp_complete_cwr(struct sock *sk)
1723 {
1724 struct tcp_sock *tp = tcp_sk(sk);
1725 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1726 tp->snd_cwnd_stamp = tcp_time_stamp;
1727 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1728 }
1729
1730 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1731 {
1732 tp->left_out = tp->sacked_out;
1733
1734 if (tp->retrans_out == 0)
1735 tp->retrans_stamp = 0;
1736
1737 if (flag&FLAG_ECE)
1738 tcp_enter_cwr(sk);
1739
1740 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1741 int state = TCP_CA_Open;
1742
1743 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1744 state = TCP_CA_Disorder;
1745
1746 if (inet_csk(sk)->icsk_ca_state != state) {
1747 tcp_set_ca_state(sk, state);
1748 tp->high_seq = tp->snd_nxt;
1749 }
1750 tcp_moderate_cwnd(tp);
1751 } else {
1752 tcp_cwnd_down(sk);
1753 }
1754 }
1755
1756 /* Process an event, which can update packets-in-flight not trivially.
1757 * Main goal of this function is to calculate new estimate for left_out,
1758 * taking into account both packets sitting in receiver's buffer and
1759 * packets lost by network.
1760 *
1761 * Besides that it does CWND reduction, when packet loss is detected
1762 * and changes state of machine.
1763 *
1764 * It does _not_ decide what to send, it is made in function
1765 * tcp_xmit_retransmit_queue().
1766 */
1767 static void
1768 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1769 int prior_packets, int flag)
1770 {
1771 struct inet_connection_sock *icsk = inet_csk(sk);
1772 struct tcp_sock *tp = tcp_sk(sk);
1773 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1774
1775 /* Some technical things:
1776 * 1. Reno does not count dupacks (sacked_out) automatically. */
1777 if (!tp->packets_out)
1778 tp->sacked_out = 0;
1779 /* 2. SACK counts snd_fack in packets inaccurately. */
1780 if (tp->sacked_out == 0)
1781 tp->fackets_out = 0;
1782
1783 /* Now state machine starts.
1784 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1785 if (flag&FLAG_ECE)
1786 tp->prior_ssthresh = 0;
1787
1788 /* B. In all the states check for reneging SACKs. */
1789 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1790 return;
1791
1792 /* C. Process data loss notification, provided it is valid. */
1793 if ((flag&FLAG_DATA_LOST) &&
1794 before(tp->snd_una, tp->high_seq) &&
1795 icsk->icsk_ca_state != TCP_CA_Open &&
1796 tp->fackets_out > tp->reordering) {
1797 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1798 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1799 }
1800
1801 /* D. Synchronize left_out to current state. */
1802 tcp_sync_left_out(tp);
1803
1804 /* E. Check state exit conditions. State can be terminated
1805 * when high_seq is ACKed. */
1806 if (icsk->icsk_ca_state == TCP_CA_Open) {
1807 if (!sysctl_tcp_frto)
1808 BUG_TRAP(tp->retrans_out == 0);
1809 tp->retrans_stamp = 0;
1810 } else if (!before(tp->snd_una, tp->high_seq)) {
1811 switch (icsk->icsk_ca_state) {
1812 case TCP_CA_Loss:
1813 icsk->icsk_retransmits = 0;
1814 if (tcp_try_undo_recovery(sk, tp))
1815 return;
1816 break;
1817
1818 case TCP_CA_CWR:
1819 /* CWR is to be held something *above* high_seq
1820 * is ACKed for CWR bit to reach receiver. */
1821 if (tp->snd_una != tp->high_seq) {
1822 tcp_complete_cwr(sk);
1823 tcp_set_ca_state(sk, TCP_CA_Open);
1824 }
1825 break;
1826
1827 case TCP_CA_Disorder:
1828 tcp_try_undo_dsack(sk, tp);
1829 if (!tp->undo_marker ||
1830 /* For SACK case do not Open to allow to undo
1831 * catching for all duplicate ACKs. */
1832 IsReno(tp) || tp->snd_una != tp->high_seq) {
1833 tp->undo_marker = 0;
1834 tcp_set_ca_state(sk, TCP_CA_Open);
1835 }
1836 break;
1837
1838 case TCP_CA_Recovery:
1839 if (IsReno(tp))
1840 tcp_reset_reno_sack(tp);
1841 if (tcp_try_undo_recovery(sk, tp))
1842 return;
1843 tcp_complete_cwr(sk);
1844 break;
1845 }
1846 }
1847
1848 /* F. Process state. */
1849 switch (icsk->icsk_ca_state) {
1850 case TCP_CA_Recovery:
1851 if (prior_snd_una == tp->snd_una) {
1852 if (IsReno(tp) && is_dupack)
1853 tcp_add_reno_sack(sk);
1854 } else {
1855 int acked = prior_packets - tp->packets_out;
1856 if (IsReno(tp))
1857 tcp_remove_reno_sacks(sk, tp, acked);
1858 is_dupack = tcp_try_undo_partial(sk, tp, acked);
1859 }
1860 break;
1861 case TCP_CA_Loss:
1862 if (flag&FLAG_DATA_ACKED)
1863 icsk->icsk_retransmits = 0;
1864 if (!tcp_try_undo_loss(sk, tp)) {
1865 tcp_moderate_cwnd(tp);
1866 tcp_xmit_retransmit_queue(sk);
1867 return;
1868 }
1869 if (icsk->icsk_ca_state != TCP_CA_Open)
1870 return;
1871 /* Loss is undone; fall through to processing in Open state. */
1872 default:
1873 if (IsReno(tp)) {
1874 if (tp->snd_una != prior_snd_una)
1875 tcp_reset_reno_sack(tp);
1876 if (is_dupack)
1877 tcp_add_reno_sack(sk);
1878 }
1879
1880 if (icsk->icsk_ca_state == TCP_CA_Disorder)
1881 tcp_try_undo_dsack(sk, tp);
1882
1883 if (!tcp_time_to_recover(sk, tp)) {
1884 tcp_try_to_open(sk, tp, flag);
1885 return;
1886 }
1887
1888 /* Otherwise enter Recovery state */
1889
1890 if (IsReno(tp))
1891 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
1892 else
1893 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
1894
1895 tp->high_seq = tp->snd_nxt;
1896 tp->prior_ssthresh = 0;
1897 tp->undo_marker = tp->snd_una;
1898 tp->undo_retrans = tp->retrans_out;
1899
1900 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1901 if (!(flag&FLAG_ECE))
1902 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1903 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1904 TCP_ECN_queue_cwr(tp);
1905 }
1906
1907 tp->snd_cwnd_cnt = 0;
1908 tcp_set_ca_state(sk, TCP_CA_Recovery);
1909 }
1910
1911 if (is_dupack || tcp_head_timedout(sk, tp))
1912 tcp_update_scoreboard(sk, tp);
1913 tcp_cwnd_down(sk);
1914 tcp_xmit_retransmit_queue(sk);
1915 }
1916
1917 /* Read draft-ietf-tcplw-high-performance before mucking
1918 * with this code. (Superceeds RFC1323)
1919 */
1920 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1921 {
1922 /* RTTM Rule: A TSecr value received in a segment is used to
1923 * update the averaged RTT measurement only if the segment
1924 * acknowledges some new data, i.e., only if it advances the
1925 * left edge of the send window.
1926 *
1927 * See draft-ietf-tcplw-high-performance-00, section 3.3.
1928 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1929 *
1930 * Changed: reset backoff as soon as we see the first valid sample.
1931 * If we do not, we get strongly overstimated rto. With timestamps
1932 * samples are accepted even from very old segments: f.e., when rtt=1
1933 * increases to 8, we retransmit 5 times and after 8 seconds delayed
1934 * answer arrives rto becomes 120 seconds! If at least one of segments
1935 * in window is lost... Voila. --ANK (010210)
1936 */
1937 struct tcp_sock *tp = tcp_sk(sk);
1938 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
1939 tcp_rtt_estimator(sk, seq_rtt);
1940 tcp_set_rto(sk);
1941 inet_csk(sk)->icsk_backoff = 0;
1942 tcp_bound_rto(sk);
1943 }
1944
1945 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1946 {
1947 /* We don't have a timestamp. Can only use
1948 * packets that are not retransmitted to determine
1949 * rtt estimates. Also, we must not reset the
1950 * backoff for rto until we get a non-retransmitted
1951 * packet. This allows us to deal with a situation
1952 * where the network delay has increased suddenly.
1953 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
1954 */
1955
1956 if (flag & FLAG_RETRANS_DATA_ACKED)
1957 return;
1958
1959 tcp_rtt_estimator(sk, seq_rtt);
1960 tcp_set_rto(sk);
1961 inet_csk(sk)->icsk_backoff = 0;
1962 tcp_bound_rto(sk);
1963 }
1964
1965 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
1966 const s32 seq_rtt)
1967 {
1968 const struct tcp_sock *tp = tcp_sk(sk);
1969 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
1970 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
1971 tcp_ack_saw_tstamp(sk, flag);
1972 else if (seq_rtt >= 0)
1973 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1974 }
1975
1976 static inline void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
1977 u32 in_flight, int good)
1978 {
1979 const struct inet_connection_sock *icsk = inet_csk(sk);
1980 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
1981 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1982 }
1983
1984 /* Restart timer after forward progress on connection.
1985 * RFC2988 recommends to restart timer to now+rto.
1986 */
1987
1988 static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1989 {
1990 if (!tp->packets_out) {
1991 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1992 } else {
1993 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1994 }
1995 }
1996
1997 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
1998 __u32 now, __s32 *seq_rtt)
1999 {
2000 struct tcp_sock *tp = tcp_sk(sk);
2001 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2002 __u32 seq = tp->snd_una;
2003 __u32 packets_acked;
2004 int acked = 0;
2005
2006 /* If we get here, the whole TSO packet has not been
2007 * acked.
2008 */
2009 BUG_ON(!after(scb->end_seq, seq));
2010
2011 packets_acked = tcp_skb_pcount(skb);
2012 if (tcp_trim_head(sk, skb, seq - scb->seq))
2013 return 0;
2014 packets_acked -= tcp_skb_pcount(skb);
2015
2016 if (packets_acked) {
2017 __u8 sacked = scb->sacked;
2018
2019 acked |= FLAG_DATA_ACKED;
2020 if (sacked) {
2021 if (sacked & TCPCB_RETRANS) {
2022 if (sacked & TCPCB_SACKED_RETRANS)
2023 tp->retrans_out -= packets_acked;
2024 acked |= FLAG_RETRANS_DATA_ACKED;
2025 *seq_rtt = -1;
2026 } else if (*seq_rtt < 0)
2027 *seq_rtt = now - scb->when;
2028 if (sacked & TCPCB_SACKED_ACKED)
2029 tp->sacked_out -= packets_acked;
2030 if (sacked & TCPCB_LOST)
2031 tp->lost_out -= packets_acked;
2032 if (sacked & TCPCB_URG) {
2033 if (tp->urg_mode &&
2034 !before(seq, tp->snd_up))
2035 tp->urg_mode = 0;
2036 }
2037 } else if (*seq_rtt < 0)
2038 *seq_rtt = now - scb->when;
2039
2040 if (tp->fackets_out) {
2041 __u32 dval = min(tp->fackets_out, packets_acked);
2042 tp->fackets_out -= dval;
2043 }
2044 tp->packets_out -= packets_acked;
2045
2046 BUG_ON(tcp_skb_pcount(skb) == 0);
2047 BUG_ON(!before(scb->seq, scb->end_seq));
2048 }
2049
2050 return acked;
2051 }
2052
2053 static inline u32 tcp_usrtt(const struct sk_buff *skb)
2054 {
2055 struct timeval tv, now;
2056
2057 do_gettimeofday(&now);
2058 skb_get_timestamp(skb, &tv);
2059 return (now.tv_sec - tv.tv_sec) * 1000000 + (now.tv_usec - tv.tv_usec);
2060 }
2061
2062 /* Remove acknowledged frames from the retransmission queue. */
2063 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
2064 {
2065 struct tcp_sock *tp = tcp_sk(sk);
2066 const struct inet_connection_sock *icsk = inet_csk(sk);
2067 struct sk_buff *skb;
2068 __u32 now = tcp_time_stamp;
2069 int acked = 0;
2070 __s32 seq_rtt = -1;
2071 u32 pkts_acked = 0;
2072 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2073 = icsk->icsk_ca_ops->rtt_sample;
2074
2075 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2076 skb != sk->sk_send_head) {
2077 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2078 __u8 sacked = scb->sacked;
2079
2080 /* If our packet is before the ack sequence we can
2081 * discard it as it's confirmed to have arrived at
2082 * the other end.
2083 */
2084 if (after(scb->end_seq, tp->snd_una)) {
2085 if (tcp_skb_pcount(skb) > 1 &&
2086 after(tp->snd_una, scb->seq))
2087 acked |= tcp_tso_acked(sk, skb,
2088 now, &seq_rtt);
2089 break;
2090 }
2091
2092 /* Initial outgoing SYN's get put onto the write_queue
2093 * just like anything else we transmit. It is not
2094 * true data, and if we misinform our callers that
2095 * this ACK acks real data, we will erroneously exit
2096 * connection startup slow start one packet too
2097 * quickly. This is severely frowned upon behavior.
2098 */
2099 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2100 acked |= FLAG_DATA_ACKED;
2101 ++pkts_acked;
2102 } else {
2103 acked |= FLAG_SYN_ACKED;
2104 tp->retrans_stamp = 0;
2105 }
2106
2107 if (sacked) {
2108 if (sacked & TCPCB_RETRANS) {
2109 if(sacked & TCPCB_SACKED_RETRANS)
2110 tp->retrans_out -= tcp_skb_pcount(skb);
2111 acked |= FLAG_RETRANS_DATA_ACKED;
2112 seq_rtt = -1;
2113 } else if (seq_rtt < 0) {
2114 seq_rtt = now - scb->when;
2115 if (rtt_sample)
2116 (*rtt_sample)(sk, tcp_usrtt(skb));
2117 }
2118 if (sacked & TCPCB_SACKED_ACKED)
2119 tp->sacked_out -= tcp_skb_pcount(skb);
2120 if (sacked & TCPCB_LOST)
2121 tp->lost_out -= tcp_skb_pcount(skb);
2122 if (sacked & TCPCB_URG) {
2123 if (tp->urg_mode &&
2124 !before(scb->end_seq, tp->snd_up))
2125 tp->urg_mode = 0;
2126 }
2127 } else if (seq_rtt < 0) {
2128 seq_rtt = now - scb->when;
2129 if (rtt_sample)
2130 (*rtt_sample)(sk, tcp_usrtt(skb));
2131 }
2132 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2133 tcp_packets_out_dec(tp, skb);
2134 __skb_unlink(skb, &sk->sk_write_queue);
2135 sk_stream_free_skb(sk, skb);
2136 }
2137
2138 if (acked&FLAG_ACKED) {
2139 tcp_ack_update_rtt(sk, acked, seq_rtt);
2140 tcp_ack_packets_out(sk, tp);
2141
2142 if (icsk->icsk_ca_ops->pkts_acked)
2143 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2144 }
2145
2146 #if FASTRETRANS_DEBUG > 0
2147 BUG_TRAP((int)tp->sacked_out >= 0);
2148 BUG_TRAP((int)tp->lost_out >= 0);
2149 BUG_TRAP((int)tp->retrans_out >= 0);
2150 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2151 const struct inet_connection_sock *icsk = inet_csk(sk);
2152 if (tp->lost_out) {
2153 printk(KERN_DEBUG "Leak l=%u %d\n",
2154 tp->lost_out, icsk->icsk_ca_state);
2155 tp->lost_out = 0;
2156 }
2157 if (tp->sacked_out) {
2158 printk(KERN_DEBUG "Leak s=%u %d\n",
2159 tp->sacked_out, icsk->icsk_ca_state);
2160 tp->sacked_out = 0;
2161 }
2162 if (tp->retrans_out) {
2163 printk(KERN_DEBUG "Leak r=%u %d\n",
2164 tp->retrans_out, icsk->icsk_ca_state);
2165 tp->retrans_out = 0;
2166 }
2167 }
2168 #endif
2169 *seq_rtt_p = seq_rtt;
2170 return acked;
2171 }
2172
2173 static void tcp_ack_probe(struct sock *sk)
2174 {
2175 const struct tcp_sock *tp = tcp_sk(sk);
2176 struct inet_connection_sock *icsk = inet_csk(sk);
2177
2178 /* Was it a usable window open? */
2179
2180 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2181 tp->snd_una + tp->snd_wnd)) {
2182 icsk->icsk_backoff = 0;
2183 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2184 /* Socket must be waked up by subsequent tcp_data_snd_check().
2185 * This function is not for random using!
2186 */
2187 } else {
2188 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2189 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2190 TCP_RTO_MAX);
2191 }
2192 }
2193
2194 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2195 {
2196 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2197 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2198 }
2199
2200 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2201 {
2202 const struct tcp_sock *tp = tcp_sk(sk);
2203 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2204 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2205 }
2206
2207 /* Check that window update is acceptable.
2208 * The function assumes that snd_una<=ack<=snd_next.
2209 */
2210 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2211 const u32 ack_seq, const u32 nwin)
2212 {
2213 return (after(ack, tp->snd_una) ||
2214 after(ack_seq, tp->snd_wl1) ||
2215 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2216 }
2217
2218 /* Update our send window.
2219 *
2220 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2221 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2222 */
2223 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2224 struct sk_buff *skb, u32 ack, u32 ack_seq)
2225 {
2226 int flag = 0;
2227 u32 nwin = ntohs(skb->h.th->window);
2228
2229 if (likely(!skb->h.th->syn))
2230 nwin <<= tp->rx_opt.snd_wscale;
2231
2232 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2233 flag |= FLAG_WIN_UPDATE;
2234 tcp_update_wl(tp, ack, ack_seq);
2235
2236 if (tp->snd_wnd != nwin) {
2237 tp->snd_wnd = nwin;
2238
2239 /* Note, it is the only place, where
2240 * fast path is recovered for sending TCP.
2241 */
2242 tp->pred_flags = 0;
2243 tcp_fast_path_check(sk, tp);
2244
2245 if (nwin > tp->max_window) {
2246 tp->max_window = nwin;
2247 tcp_sync_mss(sk, tp->pmtu_cookie);
2248 }
2249 }
2250 }
2251
2252 tp->snd_una = ack;
2253
2254 return flag;
2255 }
2256
2257 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2258 {
2259 struct tcp_sock *tp = tcp_sk(sk);
2260
2261 tcp_sync_left_out(tp);
2262
2263 if (tp->snd_una == prior_snd_una ||
2264 !before(tp->snd_una, tp->frto_highmark)) {
2265 /* RTO was caused by loss, start retransmitting in
2266 * go-back-N slow start
2267 */
2268 tcp_enter_frto_loss(sk);
2269 return;
2270 }
2271
2272 if (tp->frto_counter == 1) {
2273 /* First ACK after RTO advances the window: allow two new
2274 * segments out.
2275 */
2276 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2277 } else {
2278 /* Also the second ACK after RTO advances the window.
2279 * The RTO was likely spurious. Reduce cwnd and continue
2280 * in congestion avoidance
2281 */
2282 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2283 tcp_moderate_cwnd(tp);
2284 }
2285
2286 /* F-RTO affects on two new ACKs following RTO.
2287 * At latest on third ACK the TCP behavor is back to normal.
2288 */
2289 tp->frto_counter = (tp->frto_counter + 1) % 3;
2290 }
2291
2292 /* This routine deals with incoming acks, but not outgoing ones. */
2293 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2294 {
2295 struct inet_connection_sock *icsk = inet_csk(sk);
2296 struct tcp_sock *tp = tcp_sk(sk);
2297 u32 prior_snd_una = tp->snd_una;
2298 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2299 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2300 u32 prior_in_flight;
2301 s32 seq_rtt;
2302 int prior_packets;
2303
2304 /* If the ack is newer than sent or older than previous acks
2305 * then we can probably ignore it.
2306 */
2307 if (after(ack, tp->snd_nxt))
2308 goto uninteresting_ack;
2309
2310 if (before(ack, prior_snd_una))
2311 goto old_ack;
2312
2313 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2314 /* Window is constant, pure forward advance.
2315 * No more checks are required.
2316 * Note, we use the fact that SND.UNA>=SND.WL2.
2317 */
2318 tcp_update_wl(tp, ack, ack_seq);
2319 tp->snd_una = ack;
2320 flag |= FLAG_WIN_UPDATE;
2321
2322 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2323
2324 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2325 } else {
2326 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2327 flag |= FLAG_DATA;
2328 else
2329 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2330
2331 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2332
2333 if (TCP_SKB_CB(skb)->sacked)
2334 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2335
2336 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2337 flag |= FLAG_ECE;
2338
2339 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2340 }
2341
2342 /* We passed data and got it acked, remove any soft error
2343 * log. Something worked...
2344 */
2345 sk->sk_err_soft = 0;
2346 tp->rcv_tstamp = tcp_time_stamp;
2347 prior_packets = tp->packets_out;
2348 if (!prior_packets)
2349 goto no_queue;
2350
2351 prior_in_flight = tcp_packets_in_flight(tp);
2352
2353 /* See if we can take anything off of the retransmit queue. */
2354 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
2355
2356 if (tp->frto_counter)
2357 tcp_process_frto(sk, prior_snd_una);
2358
2359 if (tcp_ack_is_dubious(sk, flag)) {
2360 /* Advanve CWND, if state allows this. */
2361 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2362 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2363 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2364 } else {
2365 if ((flag & FLAG_DATA_ACKED))
2366 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2367 }
2368
2369 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2370 dst_confirm(sk->sk_dst_cache);
2371
2372 return 1;
2373
2374 no_queue:
2375 icsk->icsk_probes_out = 0;
2376
2377 /* If this ack opens up a zero window, clear backoff. It was
2378 * being used to time the probes, and is probably far higher than
2379 * it needs to be for normal retransmission.
2380 */
2381 if (sk->sk_send_head)
2382 tcp_ack_probe(sk);
2383 return 1;
2384
2385 old_ack:
2386 if (TCP_SKB_CB(skb)->sacked)
2387 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2388
2389 uninteresting_ack:
2390 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2391 return 0;
2392 }
2393
2394
2395 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2396 * But, this can also be called on packets in the established flow when
2397 * the fast version below fails.
2398 */
2399 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2400 {
2401 unsigned char *ptr;
2402 struct tcphdr *th = skb->h.th;
2403 int length=(th->doff*4)-sizeof(struct tcphdr);
2404
2405 ptr = (unsigned char *)(th + 1);
2406 opt_rx->saw_tstamp = 0;
2407
2408 while(length>0) {
2409 int opcode=*ptr++;
2410 int opsize;
2411
2412 switch (opcode) {
2413 case TCPOPT_EOL:
2414 return;
2415 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2416 length--;
2417 continue;
2418 default:
2419 opsize=*ptr++;
2420 if (opsize < 2) /* "silly options" */
2421 return;
2422 if (opsize > length)
2423 return; /* don't parse partial options */
2424 switch(opcode) {
2425 case TCPOPT_MSS:
2426 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2427 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2428 if (in_mss) {
2429 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2430 in_mss = opt_rx->user_mss;
2431 opt_rx->mss_clamp = in_mss;
2432 }
2433 }
2434 break;
2435 case TCPOPT_WINDOW:
2436 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2437 if (sysctl_tcp_window_scaling) {
2438 __u8 snd_wscale = *(__u8 *) ptr;
2439 opt_rx->wscale_ok = 1;
2440 if (snd_wscale > 14) {
2441 if(net_ratelimit())
2442 printk(KERN_INFO "tcp_parse_options: Illegal window "
2443 "scaling value %d >14 received.\n",
2444 snd_wscale);
2445 snd_wscale = 14;
2446 }
2447 opt_rx->snd_wscale = snd_wscale;
2448 }
2449 break;
2450 case TCPOPT_TIMESTAMP:
2451 if(opsize==TCPOLEN_TIMESTAMP) {
2452 if ((estab && opt_rx->tstamp_ok) ||
2453 (!estab && sysctl_tcp_timestamps)) {
2454 opt_rx->saw_tstamp = 1;
2455 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2456 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2457 }
2458 }
2459 break;
2460 case TCPOPT_SACK_PERM:
2461 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2462 if (sysctl_tcp_sack) {
2463 opt_rx->sack_ok = 1;
2464 tcp_sack_reset(opt_rx);
2465 }
2466 }
2467 break;
2468
2469 case TCPOPT_SACK:
2470 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2471 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2472 opt_rx->sack_ok) {
2473 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2474 }
2475 };
2476 ptr+=opsize-2;
2477 length-=opsize;
2478 };
2479 }
2480 }
2481
2482 /* Fast parse options. This hopes to only see timestamps.
2483 * If it is wrong it falls back on tcp_parse_options().
2484 */
2485 static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2486 struct tcp_sock *tp)
2487 {
2488 if (th->doff == sizeof(struct tcphdr)>>2) {
2489 tp->rx_opt.saw_tstamp = 0;
2490 return 0;
2491 } else if (tp->rx_opt.tstamp_ok &&
2492 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2493 __u32 *ptr = (__u32 *)(th + 1);
2494 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2495 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2496 tp->rx_opt.saw_tstamp = 1;
2497 ++ptr;
2498 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2499 ++ptr;
2500 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2501 return 1;
2502 }
2503 }
2504 tcp_parse_options(skb, &tp->rx_opt, 1);
2505 return 1;
2506 }
2507
2508 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2509 {
2510 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2511 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2512 }
2513
2514 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2515 {
2516 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2517 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2518 * extra check below makes sure this can only happen
2519 * for pure ACK frames. -DaveM
2520 *
2521 * Not only, also it occurs for expired timestamps.
2522 */
2523
2524 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2525 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2526 tcp_store_ts_recent(tp);
2527 }
2528 }
2529
2530 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2531 *
2532 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2533 * it can pass through stack. So, the following predicate verifies that
2534 * this segment is not used for anything but congestion avoidance or
2535 * fast retransmit. Moreover, we even are able to eliminate most of such
2536 * second order effects, if we apply some small "replay" window (~RTO)
2537 * to timestamp space.
2538 *
2539 * All these measures still do not guarantee that we reject wrapped ACKs
2540 * on networks with high bandwidth, when sequence space is recycled fastly,
2541 * but it guarantees that such events will be very rare and do not affect
2542 * connection seriously. This doesn't look nice, but alas, PAWS is really
2543 * buggy extension.
2544 *
2545 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2546 * states that events when retransmit arrives after original data are rare.
2547 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2548 * the biggest problem on large power networks even with minor reordering.
2549 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2550 * up to bandwidth of 18Gigabit/sec. 8) ]
2551 */
2552
2553 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2554 {
2555 struct tcp_sock *tp = tcp_sk(sk);
2556 struct tcphdr *th = skb->h.th;
2557 u32 seq = TCP_SKB_CB(skb)->seq;
2558 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2559
2560 return (/* 1. Pure ACK with correct sequence number. */
2561 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2562
2563 /* 2. ... and duplicate ACK. */
2564 ack == tp->snd_una &&
2565
2566 /* 3. ... and does not update window. */
2567 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2568
2569 /* 4. ... and sits in replay window. */
2570 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2571 }
2572
2573 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2574 {
2575 const struct tcp_sock *tp = tcp_sk(sk);
2576 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2577 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2578 !tcp_disordered_ack(sk, skb));
2579 }
2580
2581 /* Check segment sequence number for validity.
2582 *
2583 * Segment controls are considered valid, if the segment
2584 * fits to the window after truncation to the window. Acceptability
2585 * of data (and SYN, FIN, of course) is checked separately.
2586 * See tcp_data_queue(), for example.
2587 *
2588 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2589 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2590 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2591 * (borrowed from freebsd)
2592 */
2593
2594 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2595 {
2596 return !before(end_seq, tp->rcv_wup) &&
2597 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2598 }
2599
2600 /* When we get a reset we do this. */
2601 static void tcp_reset(struct sock *sk)
2602 {
2603 /* We want the right error as BSD sees it (and indeed as we do). */
2604 switch (sk->sk_state) {
2605 case TCP_SYN_SENT:
2606 sk->sk_err = ECONNREFUSED;
2607 break;
2608 case TCP_CLOSE_WAIT:
2609 sk->sk_err = EPIPE;
2610 break;
2611 case TCP_CLOSE:
2612 return;
2613 default:
2614 sk->sk_err = ECONNRESET;
2615 }
2616
2617 if (!sock_flag(sk, SOCK_DEAD))
2618 sk->sk_error_report(sk);
2619
2620 tcp_done(sk);
2621 }
2622
2623 /*
2624 * Process the FIN bit. This now behaves as it is supposed to work
2625 * and the FIN takes effect when it is validly part of sequence
2626 * space. Not before when we get holes.
2627 *
2628 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2629 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2630 * TIME-WAIT)
2631 *
2632 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2633 * close and we go into CLOSING (and later onto TIME-WAIT)
2634 *
2635 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2636 */
2637 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2638 {
2639 struct tcp_sock *tp = tcp_sk(sk);
2640
2641 inet_csk_schedule_ack(sk);
2642
2643 sk->sk_shutdown |= RCV_SHUTDOWN;
2644 sock_set_flag(sk, SOCK_DONE);
2645
2646 switch (sk->sk_state) {
2647 case TCP_SYN_RECV:
2648 case TCP_ESTABLISHED:
2649 /* Move to CLOSE_WAIT */
2650 tcp_set_state(sk, TCP_CLOSE_WAIT);
2651 inet_csk(sk)->icsk_ack.pingpong = 1;
2652 break;
2653
2654 case TCP_CLOSE_WAIT:
2655 case TCP_CLOSING:
2656 /* Received a retransmission of the FIN, do
2657 * nothing.
2658 */
2659 break;
2660 case TCP_LAST_ACK:
2661 /* RFC793: Remain in the LAST-ACK state. */
2662 break;
2663
2664 case TCP_FIN_WAIT1:
2665 /* This case occurs when a simultaneous close
2666 * happens, we must ack the received FIN and
2667 * enter the CLOSING state.
2668 */
2669 tcp_send_ack(sk);
2670 tcp_set_state(sk, TCP_CLOSING);
2671 break;
2672 case TCP_FIN_WAIT2:
2673 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2674 tcp_send_ack(sk);
2675 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2676 break;
2677 default:
2678 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2679 * cases we should never reach this piece of code.
2680 */
2681 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2682 __FUNCTION__, sk->sk_state);
2683 break;
2684 };
2685
2686 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2687 * Probably, we should reset in this case. For now drop them.
2688 */
2689 __skb_queue_purge(&tp->out_of_order_queue);
2690 if (tp->rx_opt.sack_ok)
2691 tcp_sack_reset(&tp->rx_opt);
2692 sk_stream_mem_reclaim(sk);
2693
2694 if (!sock_flag(sk, SOCK_DEAD)) {
2695 sk->sk_state_change(sk);
2696
2697 /* Do not send POLL_HUP for half duplex close. */
2698 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2699 sk->sk_state == TCP_CLOSE)
2700 sk_wake_async(sk, 1, POLL_HUP);
2701 else
2702 sk_wake_async(sk, 1, POLL_IN);
2703 }
2704 }
2705
2706 static __inline__ int
2707 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2708 {
2709 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2710 if (before(seq, sp->start_seq))
2711 sp->start_seq = seq;
2712 if (after(end_seq, sp->end_seq))
2713 sp->end_seq = end_seq;
2714 return 1;
2715 }
2716 return 0;
2717 }
2718
2719 static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2720 {
2721 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2722 if (before(seq, tp->rcv_nxt))
2723 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2724 else
2725 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2726
2727 tp->rx_opt.dsack = 1;
2728 tp->duplicate_sack[0].start_seq = seq;
2729 tp->duplicate_sack[0].end_seq = end_seq;
2730 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2731 }
2732 }
2733
2734 static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2735 {
2736 if (!tp->rx_opt.dsack)
2737 tcp_dsack_set(tp, seq, end_seq);
2738 else
2739 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2740 }
2741
2742 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2743 {
2744 struct tcp_sock *tp = tcp_sk(sk);
2745
2746 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2747 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2748 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2749 tcp_enter_quickack_mode(sk);
2750
2751 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2752 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2753
2754 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2755 end_seq = tp->rcv_nxt;
2756 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2757 }
2758 }
2759
2760 tcp_send_ack(sk);
2761 }
2762
2763 /* These routines update the SACK block as out-of-order packets arrive or
2764 * in-order packets close up the sequence space.
2765 */
2766 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2767 {
2768 int this_sack;
2769 struct tcp_sack_block *sp = &tp->selective_acks[0];
2770 struct tcp_sack_block *swalk = sp+1;
2771
2772 /* See if the recent change to the first SACK eats into
2773 * or hits the sequence space of other SACK blocks, if so coalesce.
2774 */
2775 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2776 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2777 int i;
2778
2779 /* Zap SWALK, by moving every further SACK up by one slot.
2780 * Decrease num_sacks.
2781 */
2782 tp->rx_opt.num_sacks--;
2783 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2784 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2785 sp[i] = sp[i+1];
2786 continue;
2787 }
2788 this_sack++, swalk++;
2789 }
2790 }
2791
2792 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2793 {
2794 __u32 tmp;
2795
2796 tmp = sack1->start_seq;
2797 sack1->start_seq = sack2->start_seq;
2798 sack2->start_seq = tmp;
2799
2800 tmp = sack1->end_seq;
2801 sack1->end_seq = sack2->end_seq;
2802 sack2->end_seq = tmp;
2803 }
2804
2805 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2806 {
2807 struct tcp_sock *tp = tcp_sk(sk);
2808 struct tcp_sack_block *sp = &tp->selective_acks[0];
2809 int cur_sacks = tp->rx_opt.num_sacks;
2810 int this_sack;
2811
2812 if (!cur_sacks)
2813 goto new_sack;
2814
2815 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2816 if (tcp_sack_extend(sp, seq, end_seq)) {
2817 /* Rotate this_sack to the first one. */
2818 for (; this_sack>0; this_sack--, sp--)
2819 tcp_sack_swap(sp, sp-1);
2820 if (cur_sacks > 1)
2821 tcp_sack_maybe_coalesce(tp);
2822 return;
2823 }
2824 }
2825
2826 /* Could not find an adjacent existing SACK, build a new one,
2827 * put it at the front, and shift everyone else down. We
2828 * always know there is at least one SACK present already here.
2829 *
2830 * If the sack array is full, forget about the last one.
2831 */
2832 if (this_sack >= 4) {
2833 this_sack--;
2834 tp->rx_opt.num_sacks--;
2835 sp--;
2836 }
2837 for(; this_sack > 0; this_sack--, sp--)
2838 *sp = *(sp-1);
2839
2840 new_sack:
2841 /* Build the new head SACK, and we're done. */
2842 sp->start_seq = seq;
2843 sp->end_seq = end_seq;
2844 tp->rx_opt.num_sacks++;
2845 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2846 }
2847
2848 /* RCV.NXT advances, some SACKs should be eaten. */
2849
2850 static void tcp_sack_remove(struct tcp_sock *tp)
2851 {
2852 struct tcp_sack_block *sp = &tp->selective_acks[0];
2853 int num_sacks = tp->rx_opt.num_sacks;
2854 int this_sack;
2855
2856 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2857 if (skb_queue_empty(&tp->out_of_order_queue)) {
2858 tp->rx_opt.num_sacks = 0;
2859 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
2860 return;
2861 }
2862
2863 for(this_sack = 0; this_sack < num_sacks; ) {
2864 /* Check if the start of the sack is covered by RCV.NXT. */
2865 if (!before(tp->rcv_nxt, sp->start_seq)) {
2866 int i;
2867
2868 /* RCV.NXT must cover all the block! */
2869 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
2870
2871 /* Zap this SACK, by moving forward any other SACKS. */
2872 for (i=this_sack+1; i < num_sacks; i++)
2873 tp->selective_acks[i-1] = tp->selective_acks[i];
2874 num_sacks--;
2875 continue;
2876 }
2877 this_sack++;
2878 sp++;
2879 }
2880 if (num_sacks != tp->rx_opt.num_sacks) {
2881 tp->rx_opt.num_sacks = num_sacks;
2882 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2883 }
2884 }
2885
2886 /* This one checks to see if we can put data from the
2887 * out_of_order queue into the receive_queue.
2888 */
2889 static void tcp_ofo_queue(struct sock *sk)
2890 {
2891 struct tcp_sock *tp = tcp_sk(sk);
2892 __u32 dsack_high = tp->rcv_nxt;
2893 struct sk_buff *skb;
2894
2895 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
2896 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
2897 break;
2898
2899 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
2900 __u32 dsack = dsack_high;
2901 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
2902 dsack_high = TCP_SKB_CB(skb)->end_seq;
2903 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
2904 }
2905
2906 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2907 SOCK_DEBUG(sk, "ofo packet was already received \n");
2908 __skb_unlink(skb, &tp->out_of_order_queue);
2909 __kfree_skb(skb);
2910 continue;
2911 }
2912 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
2913 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2914 TCP_SKB_CB(skb)->end_seq);
2915
2916 __skb_unlink(skb, &tp->out_of_order_queue);
2917 __skb_queue_tail(&sk->sk_receive_queue, skb);
2918 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2919 if(skb->h.th->fin)
2920 tcp_fin(skb, sk, skb->h.th);
2921 }
2922 }
2923
2924 static int tcp_prune_queue(struct sock *sk);
2925
2926 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
2927 {
2928 struct tcphdr *th = skb->h.th;
2929 struct tcp_sock *tp = tcp_sk(sk);
2930 int eaten = -1;
2931
2932 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
2933 goto drop;
2934
2935 __skb_pull(skb, th->doff*4);
2936
2937 TCP_ECN_accept_cwr(tp, skb);
2938
2939 if (tp->rx_opt.dsack) {
2940 tp->rx_opt.dsack = 0;
2941 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
2942 4 - tp->rx_opt.tstamp_ok);
2943 }
2944
2945 /* Queue data for delivery to the user.
2946 * Packets in sequence go to the receive queue.
2947 * Out of sequence packets to the out_of_order_queue.
2948 */
2949 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
2950 if (tcp_receive_window(tp) == 0)
2951 goto out_of_window;
2952
2953 /* Ok. In sequence. In window. */
2954 if (tp->ucopy.task == current &&
2955 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
2956 sock_owned_by_user(sk) && !tp->urg_data) {
2957 int chunk = min_t(unsigned int, skb->len,
2958 tp->ucopy.len);
2959
2960 __set_current_state(TASK_RUNNING);
2961
2962 local_bh_enable();
2963 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
2964 tp->ucopy.len -= chunk;
2965 tp->copied_seq += chunk;
2966 eaten = (chunk == skb->len && !th->fin);
2967 tcp_rcv_space_adjust(sk);
2968 }
2969 local_bh_disable();
2970 }
2971
2972 if (eaten <= 0) {
2973 queue_and_out:
2974 if (eaten < 0 &&
2975 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
2976 !sk_stream_rmem_schedule(sk, skb))) {
2977 if (tcp_prune_queue(sk) < 0 ||
2978 !sk_stream_rmem_schedule(sk, skb))
2979 goto drop;
2980 }
2981 sk_stream_set_owner_r(skb, sk);
2982 __skb_queue_tail(&sk->sk_receive_queue, skb);
2983 }
2984 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2985 if(skb->len)
2986 tcp_event_data_recv(sk, tp, skb);
2987 if(th->fin)
2988 tcp_fin(skb, sk, th);
2989
2990 if (!skb_queue_empty(&tp->out_of_order_queue)) {
2991 tcp_ofo_queue(sk);
2992
2993 /* RFC2581. 4.2. SHOULD send immediate ACK, when
2994 * gap in queue is filled.
2995 */
2996 if (skb_queue_empty(&tp->out_of_order_queue))
2997 inet_csk(sk)->icsk_ack.pingpong = 0;
2998 }
2999
3000 if (tp->rx_opt.num_sacks)
3001 tcp_sack_remove(tp);
3002
3003 tcp_fast_path_check(sk, tp);
3004
3005 if (eaten > 0)
3006 __kfree_skb(skb);
3007 else if (!sock_flag(sk, SOCK_DEAD))
3008 sk->sk_data_ready(sk, 0);
3009 return;
3010 }
3011
3012 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3013 /* A retransmit, 2nd most common case. Force an immediate ack. */
3014 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3015 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3016
3017 out_of_window:
3018 tcp_enter_quickack_mode(sk);
3019 inet_csk_schedule_ack(sk);
3020 drop:
3021 __kfree_skb(skb);
3022 return;
3023 }
3024
3025 /* Out of window. F.e. zero window probe. */
3026 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3027 goto out_of_window;
3028
3029 tcp_enter_quickack_mode(sk);
3030
3031 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3032 /* Partial packet, seq < rcv_next < end_seq */
3033 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3034 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3035 TCP_SKB_CB(skb)->end_seq);
3036
3037 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3038
3039 /* If window is closed, drop tail of packet. But after
3040 * remembering D-SACK for its head made in previous line.
3041 */
3042 if (!tcp_receive_window(tp))
3043 goto out_of_window;
3044 goto queue_and_out;
3045 }
3046
3047 TCP_ECN_check_ce(tp, skb);
3048
3049 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3050 !sk_stream_rmem_schedule(sk, skb)) {
3051 if (tcp_prune_queue(sk) < 0 ||
3052 !sk_stream_rmem_schedule(sk, skb))
3053 goto drop;
3054 }
3055
3056 /* Disable header prediction. */
3057 tp->pred_flags = 0;
3058 inet_csk_schedule_ack(sk);
3059
3060 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3061 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3062
3063 sk_stream_set_owner_r(skb, sk);
3064
3065 if (!skb_peek(&tp->out_of_order_queue)) {
3066 /* Initial out of order segment, build 1 SACK. */
3067 if (tp->rx_opt.sack_ok) {
3068 tp->rx_opt.num_sacks = 1;
3069 tp->rx_opt.dsack = 0;
3070 tp->rx_opt.eff_sacks = 1;
3071 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3072 tp->selective_acks[0].end_seq =
3073 TCP_SKB_CB(skb)->end_seq;
3074 }
3075 __skb_queue_head(&tp->out_of_order_queue,skb);
3076 } else {
3077 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3078 u32 seq = TCP_SKB_CB(skb)->seq;
3079 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3080
3081 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3082 __skb_append(skb1, skb, &tp->out_of_order_queue);
3083
3084 if (!tp->rx_opt.num_sacks ||
3085 tp->selective_acks[0].end_seq != seq)
3086 goto add_sack;
3087
3088 /* Common case: data arrive in order after hole. */
3089 tp->selective_acks[0].end_seq = end_seq;
3090 return;
3091 }
3092
3093 /* Find place to insert this segment. */
3094 do {
3095 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3096 break;
3097 } while ((skb1 = skb1->prev) !=
3098 (struct sk_buff*)&tp->out_of_order_queue);
3099
3100 /* Do skb overlap to previous one? */
3101 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3102 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3103 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3104 /* All the bits are present. Drop. */
3105 __kfree_skb(skb);
3106 tcp_dsack_set(tp, seq, end_seq);
3107 goto add_sack;
3108 }
3109 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3110 /* Partial overlap. */
3111 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3112 } else {
3113 skb1 = skb1->prev;
3114 }
3115 }
3116 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3117
3118 /* And clean segments covered by new one as whole. */
3119 while ((skb1 = skb->next) !=
3120 (struct sk_buff*)&tp->out_of_order_queue &&
3121 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3122 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3123 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3124 break;
3125 }
3126 __skb_unlink(skb1, &tp->out_of_order_queue);
3127 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3128 __kfree_skb(skb1);
3129 }
3130
3131 add_sack:
3132 if (tp->rx_opt.sack_ok)
3133 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3134 }
3135 }
3136
3137 /* Collapse contiguous sequence of skbs head..tail with
3138 * sequence numbers start..end.
3139 * Segments with FIN/SYN are not collapsed (only because this
3140 * simplifies code)
3141 */
3142 static void
3143 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3144 struct sk_buff *head, struct sk_buff *tail,
3145 u32 start, u32 end)
3146 {
3147 struct sk_buff *skb;
3148
3149 /* First, check that queue is collapsable and find
3150 * the point where collapsing can be useful. */
3151 for (skb = head; skb != tail; ) {
3152 /* No new bits? It is possible on ofo queue. */
3153 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3154 struct sk_buff *next = skb->next;
3155 __skb_unlink(skb, list);
3156 __kfree_skb(skb);
3157 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3158 skb = next;
3159 continue;
3160 }
3161
3162 /* The first skb to collapse is:
3163 * - not SYN/FIN and
3164 * - bloated or contains data before "start" or
3165 * overlaps to the next one.
3166 */
3167 if (!skb->h.th->syn && !skb->h.th->fin &&
3168 (tcp_win_from_space(skb->truesize) > skb->len ||
3169 before(TCP_SKB_CB(skb)->seq, start) ||
3170 (skb->next != tail &&
3171 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3172 break;
3173
3174 /* Decided to skip this, advance start seq. */
3175 start = TCP_SKB_CB(skb)->end_seq;
3176 skb = skb->next;
3177 }
3178 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3179 return;
3180
3181 while (before(start, end)) {
3182 struct sk_buff *nskb;
3183 int header = skb_headroom(skb);
3184 int copy = SKB_MAX_ORDER(header, 0);
3185
3186 /* Too big header? This can happen with IPv6. */
3187 if (copy < 0)
3188 return;
3189 if (end-start < copy)
3190 copy = end-start;
3191 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3192 if (!nskb)
3193 return;
3194 skb_reserve(nskb, header);
3195 memcpy(nskb->head, skb->head, header);
3196 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3197 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3198 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3199 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3200 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3201 __skb_insert(nskb, skb->prev, skb, list);
3202 sk_stream_set_owner_r(nskb, sk);
3203
3204 /* Copy data, releasing collapsed skbs. */
3205 while (copy > 0) {
3206 int offset = start - TCP_SKB_CB(skb)->seq;
3207 int size = TCP_SKB_CB(skb)->end_seq - start;
3208
3209 if (offset < 0) BUG();
3210 if (size > 0) {
3211 size = min(copy, size);
3212 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3213 BUG();
3214 TCP_SKB_CB(nskb)->end_seq += size;
3215 copy -= size;
3216 start += size;
3217 }
3218 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3219 struct sk_buff *next = skb->next;
3220 __skb_unlink(skb, list);
3221 __kfree_skb(skb);
3222 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3223 skb = next;
3224 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3225 return;
3226 }
3227 }
3228 }
3229 }
3230
3231 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3232 * and tcp_collapse() them until all the queue is collapsed.
3233 */
3234 static void tcp_collapse_ofo_queue(struct sock *sk)
3235 {
3236 struct tcp_sock *tp = tcp_sk(sk);
3237 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3238 struct sk_buff *head;
3239 u32 start, end;
3240
3241 if (skb == NULL)
3242 return;
3243
3244 start = TCP_SKB_CB(skb)->seq;
3245 end = TCP_SKB_CB(skb)->end_seq;
3246 head = skb;
3247
3248 for (;;) {
3249 skb = skb->next;
3250
3251 /* Segment is terminated when we see gap or when
3252 * we are at the end of all the queue. */
3253 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3254 after(TCP_SKB_CB(skb)->seq, end) ||
3255 before(TCP_SKB_CB(skb)->end_seq, start)) {
3256 tcp_collapse(sk, &tp->out_of_order_queue,
3257 head, skb, start, end);
3258 head = skb;
3259 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3260 break;
3261 /* Start new segment */
3262 start = TCP_SKB_CB(skb)->seq;
3263 end = TCP_SKB_CB(skb)->end_seq;
3264 } else {
3265 if (before(TCP_SKB_CB(skb)->seq, start))
3266 start = TCP_SKB_CB(skb)->seq;
3267 if (after(TCP_SKB_CB(skb)->end_seq, end))
3268 end = TCP_SKB_CB(skb)->end_seq;
3269 }
3270 }
3271 }
3272
3273 /* Reduce allocated memory if we can, trying to get
3274 * the socket within its memory limits again.
3275 *
3276 * Return less than zero if we should start dropping frames
3277 * until the socket owning process reads some of the data
3278 * to stabilize the situation.
3279 */
3280 static int tcp_prune_queue(struct sock *sk)
3281 {
3282 struct tcp_sock *tp = tcp_sk(sk);
3283
3284 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3285
3286 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3287
3288 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3289 tcp_clamp_window(sk, tp);
3290 else if (tcp_memory_pressure)
3291 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3292
3293 tcp_collapse_ofo_queue(sk);
3294 tcp_collapse(sk, &sk->sk_receive_queue,
3295 sk->sk_receive_queue.next,
3296 (struct sk_buff*)&sk->sk_receive_queue,
3297 tp->copied_seq, tp->rcv_nxt);
3298 sk_stream_mem_reclaim(sk);
3299
3300 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3301 return 0;
3302
3303 /* Collapsing did not help, destructive actions follow.
3304 * This must not ever occur. */
3305
3306 /* First, purge the out_of_order queue. */
3307 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3308 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3309 __skb_queue_purge(&tp->out_of_order_queue);
3310
3311 /* Reset SACK state. A conforming SACK implementation will
3312 * do the same at a timeout based retransmit. When a connection
3313 * is in a sad state like this, we care only about integrity
3314 * of the connection not performance.
3315 */
3316 if (tp->rx_opt.sack_ok)
3317 tcp_sack_reset(&tp->rx_opt);
3318 sk_stream_mem_reclaim(sk);
3319 }
3320
3321 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3322 return 0;
3323
3324 /* If we are really being abused, tell the caller to silently
3325 * drop receive data on the floor. It will get retransmitted
3326 * and hopefully then we'll have sufficient space.
3327 */
3328 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3329
3330 /* Massive buffer overcommit. */
3331 tp->pred_flags = 0;
3332 return -1;
3333 }
3334
3335
3336 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3337 * As additional protections, we do not touch cwnd in retransmission phases,
3338 * and if application hit its sndbuf limit recently.
3339 */
3340 void tcp_cwnd_application_limited(struct sock *sk)
3341 {
3342 struct tcp_sock *tp = tcp_sk(sk);
3343
3344 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3345 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3346 /* Limited by application or receiver window. */
3347 u32 win_used = max(tp->snd_cwnd_used, 2U);
3348 if (win_used < tp->snd_cwnd) {
3349 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3350 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3351 }
3352 tp->snd_cwnd_used = 0;
3353 }
3354 tp->snd_cwnd_stamp = tcp_time_stamp;
3355 }
3356
3357 static inline int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3358 {
3359 /* If the user specified a specific send buffer setting, do
3360 * not modify it.
3361 */
3362 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3363 return 0;
3364
3365 /* If we are under global TCP memory pressure, do not expand. */
3366 if (tcp_memory_pressure)
3367 return 0;
3368
3369 /* If we are under soft global TCP memory pressure, do not expand. */
3370 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3371 return 0;
3372
3373 /* If we filled the congestion window, do not expand. */
3374 if (tp->packets_out >= tp->snd_cwnd)
3375 return 0;
3376
3377 return 1;
3378 }
3379
3380 /* When incoming ACK allowed to free some skb from write_queue,
3381 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3382 * on the exit from tcp input handler.
3383 *
3384 * PROBLEM: sndbuf expansion does not work well with largesend.
3385 */
3386 static void tcp_new_space(struct sock *sk)
3387 {
3388 struct tcp_sock *tp = tcp_sk(sk);
3389
3390 if (tcp_should_expand_sndbuf(sk, tp)) {
3391 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3392 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3393 demanded = max_t(unsigned int, tp->snd_cwnd,
3394 tp->reordering + 1);
3395 sndmem *= 2*demanded;
3396 if (sndmem > sk->sk_sndbuf)
3397 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3398 tp->snd_cwnd_stamp = tcp_time_stamp;
3399 }
3400
3401 sk->sk_write_space(sk);
3402 }
3403
3404 static inline void tcp_check_space(struct sock *sk)
3405 {
3406 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3407 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3408 if (sk->sk_socket &&
3409 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3410 tcp_new_space(sk);
3411 }
3412 }
3413
3414 static __inline__ void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3415 {
3416 tcp_push_pending_frames(sk, tp);
3417 tcp_check_space(sk);
3418 }
3419
3420 /*
3421 * Check if sending an ack is needed.
3422 */
3423 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3424 {
3425 struct tcp_sock *tp = tcp_sk(sk);
3426
3427 /* More than one full frame received... */
3428 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3429 /* ... and right edge of window advances far enough.
3430 * (tcp_recvmsg() will send ACK otherwise). Or...
3431 */
3432 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3433 /* We ACK each frame or... */
3434 tcp_in_quickack_mode(sk) ||
3435 /* We have out of order data. */
3436 (ofo_possible &&
3437 skb_peek(&tp->out_of_order_queue))) {
3438 /* Then ack it now */
3439 tcp_send_ack(sk);
3440 } else {
3441 /* Else, send delayed ack. */
3442 tcp_send_delayed_ack(sk);
3443 }
3444 }
3445
3446 static __inline__ void tcp_ack_snd_check(struct sock *sk)
3447 {
3448 if (!inet_csk_ack_scheduled(sk)) {
3449 /* We sent a data segment already. */
3450 return;
3451 }
3452 __tcp_ack_snd_check(sk, 1);
3453 }
3454
3455 /*
3456 * This routine is only called when we have urgent data
3457 * signalled. Its the 'slow' part of tcp_urg. It could be
3458 * moved inline now as tcp_urg is only called from one
3459 * place. We handle URGent data wrong. We have to - as
3460 * BSD still doesn't use the correction from RFC961.
3461 * For 1003.1g we should support a new option TCP_STDURG to permit
3462 * either form (or just set the sysctl tcp_stdurg).
3463 */
3464
3465 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3466 {
3467 struct tcp_sock *tp = tcp_sk(sk);
3468 u32 ptr = ntohs(th->urg_ptr);
3469
3470 if (ptr && !sysctl_tcp_stdurg)
3471 ptr--;
3472 ptr += ntohl(th->seq);
3473
3474 /* Ignore urgent data that we've already seen and read. */
3475 if (after(tp->copied_seq, ptr))
3476 return;
3477
3478 /* Do not replay urg ptr.
3479 *
3480 * NOTE: interesting situation not covered by specs.
3481 * Misbehaving sender may send urg ptr, pointing to segment,
3482 * which we already have in ofo queue. We are not able to fetch
3483 * such data and will stay in TCP_URG_NOTYET until will be eaten
3484 * by recvmsg(). Seems, we are not obliged to handle such wicked
3485 * situations. But it is worth to think about possibility of some
3486 * DoSes using some hypothetical application level deadlock.
3487 */
3488 if (before(ptr, tp->rcv_nxt))
3489 return;
3490
3491 /* Do we already have a newer (or duplicate) urgent pointer? */
3492 if (tp->urg_data && !after(ptr, tp->urg_seq))
3493 return;
3494
3495 /* Tell the world about our new urgent pointer. */
3496 sk_send_sigurg(sk);
3497
3498 /* We may be adding urgent data when the last byte read was
3499 * urgent. To do this requires some care. We cannot just ignore
3500 * tp->copied_seq since we would read the last urgent byte again
3501 * as data, nor can we alter copied_seq until this data arrives
3502 * or we break the sematics of SIOCATMARK (and thus sockatmark())
3503 *
3504 * NOTE. Double Dutch. Rendering to plain English: author of comment
3505 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3506 * and expect that both A and B disappear from stream. This is _wrong_.
3507 * Though this happens in BSD with high probability, this is occasional.
3508 * Any application relying on this is buggy. Note also, that fix "works"
3509 * only in this artificial test. Insert some normal data between A and B and we will
3510 * decline of BSD again. Verdict: it is better to remove to trap
3511 * buggy users.
3512 */
3513 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3514 !sock_flag(sk, SOCK_URGINLINE) &&
3515 tp->copied_seq != tp->rcv_nxt) {
3516 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3517 tp->copied_seq++;
3518 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3519 __skb_unlink(skb, &sk->sk_receive_queue);
3520 __kfree_skb(skb);
3521 }
3522 }
3523
3524 tp->urg_data = TCP_URG_NOTYET;
3525 tp->urg_seq = ptr;
3526
3527 /* Disable header prediction. */
3528 tp->pred_flags = 0;
3529 }
3530
3531 /* This is the 'fast' part of urgent handling. */
3532 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3533 {
3534 struct tcp_sock *tp = tcp_sk(sk);
3535
3536 /* Check if we get a new urgent pointer - normally not. */
3537 if (th->urg)
3538 tcp_check_urg(sk,th);
3539
3540 /* Do we wait for any urgent data? - normally not... */
3541 if (tp->urg_data == TCP_URG_NOTYET) {
3542 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3543 th->syn;
3544
3545 /* Is the urgent pointer pointing into this packet? */
3546 if (ptr < skb->len) {
3547 u8 tmp;
3548 if (skb_copy_bits(skb, ptr, &tmp, 1))
3549 BUG();
3550 tp->urg_data = TCP_URG_VALID | tmp;
3551 if (!sock_flag(sk, SOCK_DEAD))
3552 sk->sk_data_ready(sk, 0);
3553 }
3554 }
3555 }
3556
3557 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3558 {
3559 struct tcp_sock *tp = tcp_sk(sk);
3560 int chunk = skb->len - hlen;
3561 int err;
3562
3563 local_bh_enable();
3564 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3565 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3566 else
3567 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3568 tp->ucopy.iov);
3569
3570 if (!err) {
3571 tp->ucopy.len -= chunk;
3572 tp->copied_seq += chunk;
3573 tcp_rcv_space_adjust(sk);
3574 }
3575
3576 local_bh_disable();
3577 return err;
3578 }
3579
3580 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3581 {
3582 int result;
3583
3584 if (sock_owned_by_user(sk)) {
3585 local_bh_enable();
3586 result = __tcp_checksum_complete(skb);
3587 local_bh_disable();
3588 } else {
3589 result = __tcp_checksum_complete(skb);
3590 }
3591 return result;
3592 }
3593
3594 static __inline__ int
3595 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3596 {
3597 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3598 __tcp_checksum_complete_user(sk, skb);
3599 }
3600
3601 /*
3602 * TCP receive function for the ESTABLISHED state.
3603 *
3604 * It is split into a fast path and a slow path. The fast path is
3605 * disabled when:
3606 * - A zero window was announced from us - zero window probing
3607 * is only handled properly in the slow path.
3608 * - Out of order segments arrived.
3609 * - Urgent data is expected.
3610 * - There is no buffer space left
3611 * - Unexpected TCP flags/window values/header lengths are received
3612 * (detected by checking the TCP header against pred_flags)
3613 * - Data is sent in both directions. Fast path only supports pure senders
3614 * or pure receivers (this means either the sequence number or the ack
3615 * value must stay constant)
3616 * - Unexpected TCP option.
3617 *
3618 * When these conditions are not satisfied it drops into a standard
3619 * receive procedure patterned after RFC793 to handle all cases.
3620 * The first three cases are guaranteed by proper pred_flags setting,
3621 * the rest is checked inline. Fast processing is turned on in
3622 * tcp_data_queue when everything is OK.
3623 */
3624 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3625 struct tcphdr *th, unsigned len)
3626 {
3627 struct tcp_sock *tp = tcp_sk(sk);
3628
3629 /*
3630 * Header prediction.
3631 * The code loosely follows the one in the famous
3632 * "30 instruction TCP receive" Van Jacobson mail.
3633 *
3634 * Van's trick is to deposit buffers into socket queue
3635 * on a device interrupt, to call tcp_recv function
3636 * on the receive process context and checksum and copy
3637 * the buffer to user space. smart...
3638 *
3639 * Our current scheme is not silly either but we take the
3640 * extra cost of the net_bh soft interrupt processing...
3641 * We do checksum and copy also but from device to kernel.
3642 */
3643
3644 tp->rx_opt.saw_tstamp = 0;
3645
3646 /* pred_flags is 0xS?10 << 16 + snd_wnd
3647 * if header_predition is to be made
3648 * 'S' will always be tp->tcp_header_len >> 2
3649 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3650 * turn it off (when there are holes in the receive
3651 * space for instance)
3652 * PSH flag is ignored.
3653 */
3654
3655 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3656 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3657 int tcp_header_len = tp->tcp_header_len;
3658
3659 /* Timestamp header prediction: tcp_header_len
3660 * is automatically equal to th->doff*4 due to pred_flags
3661 * match.
3662 */
3663
3664 /* Check timestamp */
3665 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3666 __u32 *ptr = (__u32 *)(th + 1);
3667
3668 /* No? Slow path! */
3669 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3670 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3671 goto slow_path;
3672
3673 tp->rx_opt.saw_tstamp = 1;
3674 ++ptr;
3675 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3676 ++ptr;
3677 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3678
3679 /* If PAWS failed, check it more carefully in slow path */
3680 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3681 goto slow_path;
3682
3683 /* DO NOT update ts_recent here, if checksum fails
3684 * and timestamp was corrupted part, it will result
3685 * in a hung connection since we will drop all
3686 * future packets due to the PAWS test.
3687 */
3688 }
3689
3690 if (len <= tcp_header_len) {
3691 /* Bulk data transfer: sender */
3692 if (len == tcp_header_len) {
3693 /* Predicted packet is in window by definition.
3694 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3695 * Hence, check seq<=rcv_wup reduces to:
3696 */
3697 if (tcp_header_len ==
3698 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3699 tp->rcv_nxt == tp->rcv_wup)
3700 tcp_store_ts_recent(tp);
3701
3702 tcp_rcv_rtt_measure_ts(sk, skb);
3703
3704 /* We know that such packets are checksummed
3705 * on entry.
3706 */
3707 tcp_ack(sk, skb, 0);
3708 __kfree_skb(skb);
3709 tcp_data_snd_check(sk, tp);
3710 return 0;
3711 } else { /* Header too small */
3712 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3713 goto discard;
3714 }
3715 } else {
3716 int eaten = 0;
3717
3718 if (tp->ucopy.task == current &&
3719 tp->copied_seq == tp->rcv_nxt &&
3720 len - tcp_header_len <= tp->ucopy.len &&
3721 sock_owned_by_user(sk)) {
3722 __set_current_state(TASK_RUNNING);
3723
3724 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3725 /* Predicted packet is in window by definition.
3726 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3727 * Hence, check seq<=rcv_wup reduces to:
3728 */
3729 if (tcp_header_len ==
3730 (sizeof(struct tcphdr) +
3731 TCPOLEN_TSTAMP_ALIGNED) &&
3732 tp->rcv_nxt == tp->rcv_wup)
3733 tcp_store_ts_recent(tp);
3734
3735 tcp_rcv_rtt_measure_ts(sk, skb);
3736
3737 __skb_pull(skb, tcp_header_len);
3738 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3739 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3740 eaten = 1;
3741 }
3742 }
3743 if (!eaten) {
3744 if (tcp_checksum_complete_user(sk, skb))
3745 goto csum_error;
3746
3747 /* Predicted packet is in window by definition.
3748 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3749 * Hence, check seq<=rcv_wup reduces to:
3750 */
3751 if (tcp_header_len ==
3752 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3753 tp->rcv_nxt == tp->rcv_wup)
3754 tcp_store_ts_recent(tp);
3755
3756 tcp_rcv_rtt_measure_ts(sk, skb);
3757
3758 if ((int)skb->truesize > sk->sk_forward_alloc)
3759 goto step5;
3760
3761 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3762
3763 /* Bulk data transfer: receiver */
3764 __skb_pull(skb,tcp_header_len);
3765 __skb_queue_tail(&sk->sk_receive_queue, skb);
3766 sk_stream_set_owner_r(skb, sk);
3767 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3768 }
3769
3770 tcp_event_data_recv(sk, tp, skb);
3771
3772 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3773 /* Well, only one small jumplet in fast path... */
3774 tcp_ack(sk, skb, FLAG_DATA);
3775 tcp_data_snd_check(sk, tp);
3776 if (!inet_csk_ack_scheduled(sk))
3777 goto no_ack;
3778 }
3779
3780 __tcp_ack_snd_check(sk, 0);
3781 no_ack:
3782 if (eaten)
3783 __kfree_skb(skb);
3784 else
3785 sk->sk_data_ready(sk, 0);
3786 return 0;
3787 }
3788 }
3789
3790 slow_path:
3791 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3792 goto csum_error;
3793
3794 /*
3795 * RFC1323: H1. Apply PAWS check first.
3796 */
3797 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3798 tcp_paws_discard(sk, skb)) {
3799 if (!th->rst) {
3800 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3801 tcp_send_dupack(sk, skb);
3802 goto discard;
3803 }
3804 /* Resets are accepted even if PAWS failed.
3805
3806 ts_recent update must be made after we are sure
3807 that the packet is in window.
3808 */
3809 }
3810
3811 /*
3812 * Standard slow path.
3813 */
3814
3815 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
3816 /* RFC793, page 37: "In all states except SYN-SENT, all reset
3817 * (RST) segments are validated by checking their SEQ-fields."
3818 * And page 69: "If an incoming segment is not acceptable,
3819 * an acknowledgment should be sent in reply (unless the RST bit
3820 * is set, if so drop the segment and return)".
3821 */
3822 if (!th->rst)
3823 tcp_send_dupack(sk, skb);
3824 goto discard;
3825 }
3826
3827 if(th->rst) {
3828 tcp_reset(sk);
3829 goto discard;
3830 }
3831
3832 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3833
3834 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3835 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3836 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
3837 tcp_reset(sk);
3838 return 1;
3839 }
3840
3841 step5:
3842 if(th->ack)
3843 tcp_ack(sk, skb, FLAG_SLOWPATH);
3844
3845 tcp_rcv_rtt_measure_ts(sk, skb);
3846
3847 /* Process urgent data. */
3848 tcp_urg(sk, skb, th);
3849
3850 /* step 7: process the segment text */
3851 tcp_data_queue(sk, skb);
3852
3853 tcp_data_snd_check(sk, tp);
3854 tcp_ack_snd_check(sk);
3855 return 0;
3856
3857 csum_error:
3858 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3859
3860 discard:
3861 __kfree_skb(skb);
3862 return 0;
3863 }
3864
3865 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
3866 struct tcphdr *th, unsigned len)
3867 {
3868 struct tcp_sock *tp = tcp_sk(sk);
3869 int saved_clamp = tp->rx_opt.mss_clamp;
3870
3871 tcp_parse_options(skb, &tp->rx_opt, 0);
3872
3873 if (th->ack) {
3874 struct inet_connection_sock *icsk;
3875 /* rfc793:
3876 * "If the state is SYN-SENT then
3877 * first check the ACK bit
3878 * If the ACK bit is set
3879 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
3880 * a reset (unless the RST bit is set, if so drop
3881 * the segment and return)"
3882 *
3883 * We do not send data with SYN, so that RFC-correct
3884 * test reduces to:
3885 */
3886 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
3887 goto reset_and_undo;
3888
3889 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3890 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
3891 tcp_time_stamp)) {
3892 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
3893 goto reset_and_undo;
3894 }
3895
3896 /* Now ACK is acceptable.
3897 *
3898 * "If the RST bit is set
3899 * If the ACK was acceptable then signal the user "error:
3900 * connection reset", drop the segment, enter CLOSED state,
3901 * delete TCB, and return."
3902 */
3903
3904 if (th->rst) {
3905 tcp_reset(sk);
3906 goto discard;
3907 }
3908
3909 /* rfc793:
3910 * "fifth, if neither of the SYN or RST bits is set then
3911 * drop the segment and return."
3912 *
3913 * See note below!
3914 * --ANK(990513)
3915 */
3916 if (!th->syn)
3917 goto discard_and_undo;
3918
3919 /* rfc793:
3920 * "If the SYN bit is on ...
3921 * are acceptable then ...
3922 * (our SYN has been ACKed), change the connection
3923 * state to ESTABLISHED..."
3924 */
3925
3926 TCP_ECN_rcv_synack(tp, th);
3927 if (tp->ecn_flags&TCP_ECN_OK)
3928 sock_set_flag(sk, SOCK_NO_LARGESEND);
3929
3930 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
3931 tcp_ack(sk, skb, FLAG_SLOWPATH);
3932
3933 /* Ok.. it's good. Set up sequence numbers and
3934 * move to established.
3935 */
3936 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
3937 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
3938
3939 /* RFC1323: The window in SYN & SYN/ACK segments is
3940 * never scaled.
3941 */
3942 tp->snd_wnd = ntohs(th->window);
3943 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
3944
3945 if (!tp->rx_opt.wscale_ok) {
3946 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
3947 tp->window_clamp = min(tp->window_clamp, 65535U);
3948 }
3949
3950 if (tp->rx_opt.saw_tstamp) {
3951 tp->rx_opt.tstamp_ok = 1;
3952 tp->tcp_header_len =
3953 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
3954 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
3955 tcp_store_ts_recent(tp);
3956 } else {
3957 tp->tcp_header_len = sizeof(struct tcphdr);
3958 }
3959
3960 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
3961 tp->rx_opt.sack_ok |= 2;
3962
3963 tcp_sync_mss(sk, tp->pmtu_cookie);
3964 tcp_initialize_rcv_mss(sk);
3965
3966 /* Remember, tcp_poll() does not lock socket!
3967 * Change state from SYN-SENT only after copied_seq
3968 * is initialized. */
3969 tp->copied_seq = tp->rcv_nxt;
3970 mb();
3971 tcp_set_state(sk, TCP_ESTABLISHED);
3972
3973 /* Make sure socket is routed, for correct metrics. */
3974 tp->af_specific->rebuild_header(sk);
3975
3976 tcp_init_metrics(sk);
3977
3978 tcp_init_congestion_control(sk);
3979
3980 /* Prevent spurious tcp_cwnd_restart() on first data
3981 * packet.
3982 */
3983 tp->lsndtime = tcp_time_stamp;
3984
3985 tcp_init_buffer_space(sk);
3986
3987 if (sock_flag(sk, SOCK_KEEPOPEN))
3988 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
3989
3990 if (!tp->rx_opt.snd_wscale)
3991 __tcp_fast_path_on(tp, tp->snd_wnd);
3992 else
3993 tp->pred_flags = 0;
3994
3995 if (!sock_flag(sk, SOCK_DEAD)) {
3996 sk->sk_state_change(sk);
3997 sk_wake_async(sk, 0, POLL_OUT);
3998 }
3999
4000 icsk = inet_csk(sk);
4001
4002 if (sk->sk_write_pending ||
4003 icsk->icsk_accept_queue.rskq_defer_accept ||
4004 icsk->icsk_ack.pingpong) {
4005 /* Save one ACK. Data will be ready after
4006 * several ticks, if write_pending is set.
4007 *
4008 * It may be deleted, but with this feature tcpdumps
4009 * look so _wonderfully_ clever, that I was not able
4010 * to stand against the temptation 8) --ANK
4011 */
4012 inet_csk_schedule_ack(sk);
4013 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4014 icsk->icsk_ack.ato = TCP_ATO_MIN;
4015 tcp_incr_quickack(sk);
4016 tcp_enter_quickack_mode(sk);
4017 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4018 TCP_DELACK_MAX, TCP_RTO_MAX);
4019
4020 discard:
4021 __kfree_skb(skb);
4022 return 0;
4023 } else {
4024 tcp_send_ack(sk);
4025 }
4026 return -1;
4027 }
4028
4029 /* No ACK in the segment */
4030
4031 if (th->rst) {
4032 /* rfc793:
4033 * "If the RST bit is set
4034 *
4035 * Otherwise (no ACK) drop the segment and return."
4036 */
4037
4038 goto discard_and_undo;
4039 }
4040
4041 /* PAWS check. */
4042 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4043 goto discard_and_undo;
4044
4045 if (th->syn) {
4046 /* We see SYN without ACK. It is attempt of
4047 * simultaneous connect with crossed SYNs.
4048 * Particularly, it can be connect to self.
4049 */
4050 tcp_set_state(sk, TCP_SYN_RECV);
4051
4052 if (tp->rx_opt.saw_tstamp) {
4053 tp->rx_opt.tstamp_ok = 1;
4054 tcp_store_ts_recent(tp);
4055 tp->tcp_header_len =
4056 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4057 } else {
4058 tp->tcp_header_len = sizeof(struct tcphdr);
4059 }
4060
4061 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4062 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4063
4064 /* RFC1323: The window in SYN & SYN/ACK segments is
4065 * never scaled.
4066 */
4067 tp->snd_wnd = ntohs(th->window);
4068 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4069 tp->max_window = tp->snd_wnd;
4070
4071 TCP_ECN_rcv_syn(tp, th);
4072 if (tp->ecn_flags&TCP_ECN_OK)
4073 sock_set_flag(sk, SOCK_NO_LARGESEND);
4074
4075 tcp_sync_mss(sk, tp->pmtu_cookie);
4076 tcp_initialize_rcv_mss(sk);
4077
4078
4079 tcp_send_synack(sk);
4080 #if 0
4081 /* Note, we could accept data and URG from this segment.
4082 * There are no obstacles to make this.
4083 *
4084 * However, if we ignore data in ACKless segments sometimes,
4085 * we have no reasons to accept it sometimes.
4086 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4087 * is not flawless. So, discard packet for sanity.
4088 * Uncomment this return to process the data.
4089 */
4090 return -1;
4091 #else
4092 goto discard;
4093 #endif
4094 }
4095 /* "fifth, if neither of the SYN or RST bits is set then
4096 * drop the segment and return."
4097 */
4098
4099 discard_and_undo:
4100 tcp_clear_options(&tp->rx_opt);
4101 tp->rx_opt.mss_clamp = saved_clamp;
4102 goto discard;
4103
4104 reset_and_undo:
4105 tcp_clear_options(&tp->rx_opt);
4106 tp->rx_opt.mss_clamp = saved_clamp;
4107 return 1;
4108 }
4109
4110
4111 /*
4112 * This function implements the receiving procedure of RFC 793 for
4113 * all states except ESTABLISHED and TIME_WAIT.
4114 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4115 * address independent.
4116 */
4117
4118 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4119 struct tcphdr *th, unsigned len)
4120 {
4121 struct tcp_sock *tp = tcp_sk(sk);
4122 int queued = 0;
4123
4124 tp->rx_opt.saw_tstamp = 0;
4125
4126 switch (sk->sk_state) {
4127 case TCP_CLOSE:
4128 goto discard;
4129
4130 case TCP_LISTEN:
4131 if(th->ack)
4132 return 1;
4133
4134 if(th->rst)
4135 goto discard;
4136
4137 if(th->syn) {
4138 if(tp->af_specific->conn_request(sk, skb) < 0)
4139 return 1;
4140
4141 /* Now we have several options: In theory there is
4142 * nothing else in the frame. KA9Q has an option to
4143 * send data with the syn, BSD accepts data with the
4144 * syn up to the [to be] advertised window and
4145 * Solaris 2.1 gives you a protocol error. For now
4146 * we just ignore it, that fits the spec precisely
4147 * and avoids incompatibilities. It would be nice in
4148 * future to drop through and process the data.
4149 *
4150 * Now that TTCP is starting to be used we ought to
4151 * queue this data.
4152 * But, this leaves one open to an easy denial of
4153 * service attack, and SYN cookies can't defend
4154 * against this problem. So, we drop the data
4155 * in the interest of security over speed.
4156 */
4157 goto discard;
4158 }
4159 goto discard;
4160
4161 case TCP_SYN_SENT:
4162 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4163 if (queued >= 0)
4164 return queued;
4165
4166 /* Do step6 onward by hand. */
4167 tcp_urg(sk, skb, th);
4168 __kfree_skb(skb);
4169 tcp_data_snd_check(sk, tp);
4170 return 0;
4171 }
4172
4173 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4174 tcp_paws_discard(sk, skb)) {
4175 if (!th->rst) {
4176 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4177 tcp_send_dupack(sk, skb);
4178 goto discard;
4179 }
4180 /* Reset is accepted even if it did not pass PAWS. */
4181 }
4182
4183 /* step 1: check sequence number */
4184 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4185 if (!th->rst)
4186 tcp_send_dupack(sk, skb);
4187 goto discard;
4188 }
4189
4190 /* step 2: check RST bit */
4191 if(th->rst) {
4192 tcp_reset(sk);
4193 goto discard;
4194 }
4195
4196 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4197
4198 /* step 3: check security and precedence [ignored] */
4199
4200 /* step 4:
4201 *
4202 * Check for a SYN in window.
4203 */
4204 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4205 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4206 tcp_reset(sk);
4207 return 1;
4208 }
4209
4210 /* step 5: check the ACK field */
4211 if (th->ack) {
4212 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4213
4214 switch(sk->sk_state) {
4215 case TCP_SYN_RECV:
4216 if (acceptable) {
4217 tp->copied_seq = tp->rcv_nxt;
4218 mb();
4219 tcp_set_state(sk, TCP_ESTABLISHED);
4220 sk->sk_state_change(sk);
4221
4222 /* Note, that this wakeup is only for marginal
4223 * crossed SYN case. Passively open sockets
4224 * are not waked up, because sk->sk_sleep ==
4225 * NULL and sk->sk_socket == NULL.
4226 */
4227 if (sk->sk_socket) {
4228 sk_wake_async(sk,0,POLL_OUT);
4229 }
4230
4231 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4232 tp->snd_wnd = ntohs(th->window) <<
4233 tp->rx_opt.snd_wscale;
4234 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4235 TCP_SKB_CB(skb)->seq);
4236
4237 /* tcp_ack considers this ACK as duplicate
4238 * and does not calculate rtt.
4239 * Fix it at least with timestamps.
4240 */
4241 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4242 !tp->srtt)
4243 tcp_ack_saw_tstamp(sk, 0);
4244
4245 if (tp->rx_opt.tstamp_ok)
4246 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4247
4248 /* Make sure socket is routed, for
4249 * correct metrics.
4250 */
4251 tp->af_specific->rebuild_header(sk);
4252
4253 tcp_init_metrics(sk);
4254
4255 tcp_init_congestion_control(sk);
4256
4257 /* Prevent spurious tcp_cwnd_restart() on
4258 * first data packet.
4259 */
4260 tp->lsndtime = tcp_time_stamp;
4261
4262 tcp_initialize_rcv_mss(sk);
4263 tcp_init_buffer_space(sk);
4264 tcp_fast_path_on(tp);
4265 } else {
4266 return 1;
4267 }
4268 break;
4269
4270 case TCP_FIN_WAIT1:
4271 if (tp->snd_una == tp->write_seq) {
4272 tcp_set_state(sk, TCP_FIN_WAIT2);
4273 sk->sk_shutdown |= SEND_SHUTDOWN;
4274 dst_confirm(sk->sk_dst_cache);
4275
4276 if (!sock_flag(sk, SOCK_DEAD))
4277 /* Wake up lingering close() */
4278 sk->sk_state_change(sk);
4279 else {
4280 int tmo;
4281
4282 if (tp->linger2 < 0 ||
4283 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4284 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4285 tcp_done(sk);
4286 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4287 return 1;
4288 }
4289
4290 tmo = tcp_fin_time(sk);
4291 if (tmo > TCP_TIMEWAIT_LEN) {
4292 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4293 } else if (th->fin || sock_owned_by_user(sk)) {
4294 /* Bad case. We could lose such FIN otherwise.
4295 * It is not a big problem, but it looks confusing
4296 * and not so rare event. We still can lose it now,
4297 * if it spins in bh_lock_sock(), but it is really
4298 * marginal case.
4299 */
4300 inet_csk_reset_keepalive_timer(sk, tmo);
4301 } else {
4302 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4303 goto discard;
4304 }
4305 }
4306 }
4307 break;
4308
4309 case TCP_CLOSING:
4310 if (tp->snd_una == tp->write_seq) {
4311 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4312 goto discard;
4313 }
4314 break;
4315
4316 case TCP_LAST_ACK:
4317 if (tp->snd_una == tp->write_seq) {
4318 tcp_update_metrics(sk);
4319 tcp_done(sk);
4320 goto discard;
4321 }
4322 break;
4323 }
4324 } else
4325 goto discard;
4326
4327 /* step 6: check the URG bit */
4328 tcp_urg(sk, skb, th);
4329
4330 /* step 7: process the segment text */
4331 switch (sk->sk_state) {
4332 case TCP_CLOSE_WAIT:
4333 case TCP_CLOSING:
4334 case TCP_LAST_ACK:
4335 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4336 break;
4337 case TCP_FIN_WAIT1:
4338 case TCP_FIN_WAIT2:
4339 /* RFC 793 says to queue data in these states,
4340 * RFC 1122 says we MUST send a reset.
4341 * BSD 4.4 also does reset.
4342 */
4343 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4344 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4345 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4346 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4347 tcp_reset(sk);
4348 return 1;
4349 }
4350 }
4351 /* Fall through */
4352 case TCP_ESTABLISHED:
4353 tcp_data_queue(sk, skb);
4354 queued = 1;
4355 break;
4356 }
4357
4358 /* tcp_data could move socket to TIME-WAIT */
4359 if (sk->sk_state != TCP_CLOSE) {
4360 tcp_data_snd_check(sk, tp);
4361 tcp_ack_snd_check(sk);
4362 }
4363
4364 if (!queued) {
4365 discard:
4366 __kfree_skb(skb);
4367 }
4368 return 0;
4369 }
4370
4371 EXPORT_SYMBOL(sysctl_tcp_ecn);
4372 EXPORT_SYMBOL(sysctl_tcp_reordering);
4373 EXPORT_SYMBOL(tcp_parse_options);
4374 EXPORT_SYMBOL(tcp_rcv_established);
4375 EXPORT_SYMBOL(tcp_rcv_state_process);
This page took 0.125114 seconds and 5 git commands to generate.