[ICSK]: Introduce reqsk_queue_prune from code in tcp_synack_timer
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presnce of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
84
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
90
91 int sysctl_tcp_moderate_rcvbuf = 1;
92
93 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
94 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
95 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
96 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
97 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
98 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
99 #define FLAG_ECE 0x40 /* ECE in this ACK */
100 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
101 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
102
103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
107
108 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
109 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
110 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
111
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
113
114 /* Adapt the MSS value used to make delayed ack decision to the
115 * real world.
116 */
117 static inline void tcp_measure_rcv_mss(struct sock *sk,
118 const struct sk_buff *skb)
119 {
120 struct inet_connection_sock *icsk = inet_csk(sk);
121 const unsigned int lss = icsk->icsk_ack.last_seg_size;
122 unsigned int len;
123
124 icsk->icsk_ack.last_seg_size = 0;
125
126 /* skb->len may jitter because of SACKs, even if peer
127 * sends good full-sized frames.
128 */
129 len = skb->len;
130 if (len >= icsk->icsk_ack.rcv_mss) {
131 icsk->icsk_ack.rcv_mss = len;
132 } else {
133 /* Otherwise, we make more careful check taking into account,
134 * that SACKs block is variable.
135 *
136 * "len" is invariant segment length, including TCP header.
137 */
138 len += skb->data - skb->h.raw;
139 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
140 /* If PSH is not set, packet should be
141 * full sized, provided peer TCP is not badly broken.
142 * This observation (if it is correct 8)) allows
143 * to handle super-low mtu links fairly.
144 */
145 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
146 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
147 /* Subtract also invariant (if peer is RFC compliant),
148 * tcp header plus fixed timestamp option length.
149 * Resulting "len" is MSS free of SACK jitter.
150 */
151 len -= tcp_sk(sk)->tcp_header_len;
152 icsk->icsk_ack.last_seg_size = len;
153 if (len == lss) {
154 icsk->icsk_ack.rcv_mss = len;
155 return;
156 }
157 }
158 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
159 }
160 }
161
162 static void tcp_incr_quickack(struct sock *sk)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
166
167 if (quickacks==0)
168 quickacks=2;
169 if (quickacks > icsk->icsk_ack.quick)
170 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
171 }
172
173 void tcp_enter_quickack_mode(struct sock *sk)
174 {
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 tcp_incr_quickack(sk);
177 icsk->icsk_ack.pingpong = 0;
178 icsk->icsk_ack.ato = TCP_ATO_MIN;
179 }
180
181 /* Send ACKs quickly, if "quick" count is not exhausted
182 * and the session is not interactive.
183 */
184
185 static inline int tcp_in_quickack_mode(const struct sock *sk)
186 {
187 const struct inet_connection_sock *icsk = inet_csk(sk);
188 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
189 }
190
191 /* Buffer size and advertised window tuning.
192 *
193 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
194 */
195
196 static void tcp_fixup_sndbuf(struct sock *sk)
197 {
198 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
199 sizeof(struct sk_buff);
200
201 if (sk->sk_sndbuf < 3 * sndmem)
202 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
203 }
204
205 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
206 *
207 * All tcp_full_space() is split to two parts: "network" buffer, allocated
208 * forward and advertised in receiver window (tp->rcv_wnd) and
209 * "application buffer", required to isolate scheduling/application
210 * latencies from network.
211 * window_clamp is maximal advertised window. It can be less than
212 * tcp_full_space(), in this case tcp_full_space() - window_clamp
213 * is reserved for "application" buffer. The less window_clamp is
214 * the smoother our behaviour from viewpoint of network, but the lower
215 * throughput and the higher sensitivity of the connection to losses. 8)
216 *
217 * rcv_ssthresh is more strict window_clamp used at "slow start"
218 * phase to predict further behaviour of this connection.
219 * It is used for two goals:
220 * - to enforce header prediction at sender, even when application
221 * requires some significant "application buffer". It is check #1.
222 * - to prevent pruning of receive queue because of misprediction
223 * of receiver window. Check #2.
224 *
225 * The scheme does not work when sender sends good segments opening
226 * window and then starts to feed us spagetti. But it should work
227 * in common situations. Otherwise, we have to rely on queue collapsing.
228 */
229
230 /* Slow part of check#2. */
231 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
232 const struct sk_buff *skb)
233 {
234 /* Optimize this! */
235 int truesize = tcp_win_from_space(skb->truesize)/2;
236 int window = tcp_full_space(sk)/2;
237
238 while (tp->rcv_ssthresh <= window) {
239 if (truesize <= skb->len)
240 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
241
242 truesize >>= 1;
243 window >>= 1;
244 }
245 return 0;
246 }
247
248 static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
249 struct sk_buff *skb)
250 {
251 /* Check #1 */
252 if (tp->rcv_ssthresh < tp->window_clamp &&
253 (int)tp->rcv_ssthresh < tcp_space(sk) &&
254 !tcp_memory_pressure) {
255 int incr;
256
257 /* Check #2. Increase window, if skb with such overhead
258 * will fit to rcvbuf in future.
259 */
260 if (tcp_win_from_space(skb->truesize) <= skb->len)
261 incr = 2*tp->advmss;
262 else
263 incr = __tcp_grow_window(sk, tp, skb);
264
265 if (incr) {
266 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
267 inet_csk(sk)->icsk_ack.quick |= 1;
268 }
269 }
270 }
271
272 /* 3. Tuning rcvbuf, when connection enters established state. */
273
274 static void tcp_fixup_rcvbuf(struct sock *sk)
275 {
276 struct tcp_sock *tp = tcp_sk(sk);
277 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
278
279 /* Try to select rcvbuf so that 4 mss-sized segments
280 * will fit to window and correspoding skbs will fit to our rcvbuf.
281 * (was 3; 4 is minimum to allow fast retransmit to work.)
282 */
283 while (tcp_win_from_space(rcvmem) < tp->advmss)
284 rcvmem += 128;
285 if (sk->sk_rcvbuf < 4 * rcvmem)
286 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
287 }
288
289 /* 4. Try to fixup all. It is made iimediately after connection enters
290 * established state.
291 */
292 static void tcp_init_buffer_space(struct sock *sk)
293 {
294 struct tcp_sock *tp = tcp_sk(sk);
295 int maxwin;
296
297 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
298 tcp_fixup_rcvbuf(sk);
299 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
300 tcp_fixup_sndbuf(sk);
301
302 tp->rcvq_space.space = tp->rcv_wnd;
303
304 maxwin = tcp_full_space(sk);
305
306 if (tp->window_clamp >= maxwin) {
307 tp->window_clamp = maxwin;
308
309 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
310 tp->window_clamp = max(maxwin -
311 (maxwin >> sysctl_tcp_app_win),
312 4 * tp->advmss);
313 }
314
315 /* Force reservation of one segment. */
316 if (sysctl_tcp_app_win &&
317 tp->window_clamp > 2 * tp->advmss &&
318 tp->window_clamp + tp->advmss > maxwin)
319 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
320
321 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
322 tp->snd_cwnd_stamp = tcp_time_stamp;
323 }
324
325 /* 5. Recalculate window clamp after socket hit its memory bounds. */
326 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
327 {
328 struct sk_buff *skb;
329 unsigned int app_win = tp->rcv_nxt - tp->copied_seq;
330 int ofo_win = 0;
331
332 inet_csk(sk)->icsk_ack.quick = 0;
333
334 skb_queue_walk(&tp->out_of_order_queue, skb) {
335 ofo_win += skb->len;
336 }
337
338 /* If overcommit is due to out of order segments,
339 * do not clamp window. Try to expand rcvbuf instead.
340 */
341 if (ofo_win) {
342 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
343 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
344 !tcp_memory_pressure &&
345 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
346 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
347 sysctl_tcp_rmem[2]);
348 }
349 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
350 app_win += ofo_win;
351 if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf)
352 app_win >>= 1;
353 if (app_win > inet_csk(sk)->icsk_ack.rcv_mss)
354 app_win -= inet_csk(sk)->icsk_ack.rcv_mss;
355 app_win = max(app_win, 2U*tp->advmss);
356
357 if (!ofo_win)
358 tp->window_clamp = min(tp->window_clamp, app_win);
359 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
360 }
361 }
362
363 /* Receiver "autotuning" code.
364 *
365 * The algorithm for RTT estimation w/o timestamps is based on
366 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
367 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
368 *
369 * More detail on this code can be found at
370 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
371 * though this reference is out of date. A new paper
372 * is pending.
373 */
374 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
375 {
376 u32 new_sample = tp->rcv_rtt_est.rtt;
377 long m = sample;
378
379 if (m == 0)
380 m = 1;
381
382 if (new_sample != 0) {
383 /* If we sample in larger samples in the non-timestamp
384 * case, we could grossly overestimate the RTT especially
385 * with chatty applications or bulk transfer apps which
386 * are stalled on filesystem I/O.
387 *
388 * Also, since we are only going for a minimum in the
389 * non-timestamp case, we do not smoothe things out
390 * else with timestamps disabled convergance takes too
391 * long.
392 */
393 if (!win_dep) {
394 m -= (new_sample >> 3);
395 new_sample += m;
396 } else if (m < new_sample)
397 new_sample = m << 3;
398 } else {
399 /* No previous mesaure. */
400 new_sample = m << 3;
401 }
402
403 if (tp->rcv_rtt_est.rtt != new_sample)
404 tp->rcv_rtt_est.rtt = new_sample;
405 }
406
407 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
408 {
409 if (tp->rcv_rtt_est.time == 0)
410 goto new_measure;
411 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
412 return;
413 tcp_rcv_rtt_update(tp,
414 jiffies - tp->rcv_rtt_est.time,
415 1);
416
417 new_measure:
418 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
419 tp->rcv_rtt_est.time = tcp_time_stamp;
420 }
421
422 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
423 {
424 struct tcp_sock *tp = tcp_sk(sk);
425 if (tp->rx_opt.rcv_tsecr &&
426 (TCP_SKB_CB(skb)->end_seq -
427 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
428 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
429 }
430
431 /*
432 * This function should be called every time data is copied to user space.
433 * It calculates the appropriate TCP receive buffer space.
434 */
435 void tcp_rcv_space_adjust(struct sock *sk)
436 {
437 struct tcp_sock *tp = tcp_sk(sk);
438 int time;
439 int space;
440
441 if (tp->rcvq_space.time == 0)
442 goto new_measure;
443
444 time = tcp_time_stamp - tp->rcvq_space.time;
445 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
446 tp->rcv_rtt_est.rtt == 0)
447 return;
448
449 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
450
451 space = max(tp->rcvq_space.space, space);
452
453 if (tp->rcvq_space.space != space) {
454 int rcvmem;
455
456 tp->rcvq_space.space = space;
457
458 if (sysctl_tcp_moderate_rcvbuf) {
459 int new_clamp = space;
460
461 /* Receive space grows, normalize in order to
462 * take into account packet headers and sk_buff
463 * structure overhead.
464 */
465 space /= tp->advmss;
466 if (!space)
467 space = 1;
468 rcvmem = (tp->advmss + MAX_TCP_HEADER +
469 16 + sizeof(struct sk_buff));
470 while (tcp_win_from_space(rcvmem) < tp->advmss)
471 rcvmem += 128;
472 space *= rcvmem;
473 space = min(space, sysctl_tcp_rmem[2]);
474 if (space > sk->sk_rcvbuf) {
475 sk->sk_rcvbuf = space;
476
477 /* Make the window clamp follow along. */
478 tp->window_clamp = new_clamp;
479 }
480 }
481 }
482
483 new_measure:
484 tp->rcvq_space.seq = tp->copied_seq;
485 tp->rcvq_space.time = tcp_time_stamp;
486 }
487
488 /* There is something which you must keep in mind when you analyze the
489 * behavior of the tp->ato delayed ack timeout interval. When a
490 * connection starts up, we want to ack as quickly as possible. The
491 * problem is that "good" TCP's do slow start at the beginning of data
492 * transmission. The means that until we send the first few ACK's the
493 * sender will sit on his end and only queue most of his data, because
494 * he can only send snd_cwnd unacked packets at any given time. For
495 * each ACK we send, he increments snd_cwnd and transmits more of his
496 * queue. -DaveM
497 */
498 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
499 {
500 struct inet_connection_sock *icsk = inet_csk(sk);
501 u32 now;
502
503 inet_csk_schedule_ack(sk);
504
505 tcp_measure_rcv_mss(sk, skb);
506
507 tcp_rcv_rtt_measure(tp);
508
509 now = tcp_time_stamp;
510
511 if (!icsk->icsk_ack.ato) {
512 /* The _first_ data packet received, initialize
513 * delayed ACK engine.
514 */
515 tcp_incr_quickack(sk);
516 icsk->icsk_ack.ato = TCP_ATO_MIN;
517 } else {
518 int m = now - icsk->icsk_ack.lrcvtime;
519
520 if (m <= TCP_ATO_MIN/2) {
521 /* The fastest case is the first. */
522 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
523 } else if (m < icsk->icsk_ack.ato) {
524 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
525 if (icsk->icsk_ack.ato > icsk->icsk_rto)
526 icsk->icsk_ack.ato = icsk->icsk_rto;
527 } else if (m > icsk->icsk_rto) {
528 /* Too long gap. Apparently sender falled to
529 * restart window, so that we send ACKs quickly.
530 */
531 tcp_incr_quickack(sk);
532 sk_stream_mem_reclaim(sk);
533 }
534 }
535 icsk->icsk_ack.lrcvtime = now;
536
537 TCP_ECN_check_ce(tp, skb);
538
539 if (skb->len >= 128)
540 tcp_grow_window(sk, tp, skb);
541 }
542
543 /* Called to compute a smoothed rtt estimate. The data fed to this
544 * routine either comes from timestamps, or from segments that were
545 * known _not_ to have been retransmitted [see Karn/Partridge
546 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
547 * piece by Van Jacobson.
548 * NOTE: the next three routines used to be one big routine.
549 * To save cycles in the RFC 1323 implementation it was better to break
550 * it up into three procedures. -- erics
551 */
552 static void tcp_rtt_estimator(struct tcp_sock *tp, __u32 mrtt, u32 *usrtt)
553 {
554 long m = mrtt; /* RTT */
555
556 /* The following amusing code comes from Jacobson's
557 * article in SIGCOMM '88. Note that rtt and mdev
558 * are scaled versions of rtt and mean deviation.
559 * This is designed to be as fast as possible
560 * m stands for "measurement".
561 *
562 * On a 1990 paper the rto value is changed to:
563 * RTO = rtt + 4 * mdev
564 *
565 * Funny. This algorithm seems to be very broken.
566 * These formulae increase RTO, when it should be decreased, increase
567 * too slowly, when it should be incresed fastly, decrease too fastly
568 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
569 * does not matter how to _calculate_ it. Seems, it was trap
570 * that VJ failed to avoid. 8)
571 */
572 if(m == 0)
573 m = 1;
574 if (tp->srtt != 0) {
575 m -= (tp->srtt >> 3); /* m is now error in rtt est */
576 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
577 if (m < 0) {
578 m = -m; /* m is now abs(error) */
579 m -= (tp->mdev >> 2); /* similar update on mdev */
580 /* This is similar to one of Eifel findings.
581 * Eifel blocks mdev updates when rtt decreases.
582 * This solution is a bit different: we use finer gain
583 * for mdev in this case (alpha*beta).
584 * Like Eifel it also prevents growth of rto,
585 * but also it limits too fast rto decreases,
586 * happening in pure Eifel.
587 */
588 if (m > 0)
589 m >>= 3;
590 } else {
591 m -= (tp->mdev >> 2); /* similar update on mdev */
592 }
593 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
594 if (tp->mdev > tp->mdev_max) {
595 tp->mdev_max = tp->mdev;
596 if (tp->mdev_max > tp->rttvar)
597 tp->rttvar = tp->mdev_max;
598 }
599 if (after(tp->snd_una, tp->rtt_seq)) {
600 if (tp->mdev_max < tp->rttvar)
601 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
602 tp->rtt_seq = tp->snd_nxt;
603 tp->mdev_max = TCP_RTO_MIN;
604 }
605 } else {
606 /* no previous measure. */
607 tp->srtt = m<<3; /* take the measured time to be rtt */
608 tp->mdev = m<<1; /* make sure rto = 3*rtt */
609 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
610 tp->rtt_seq = tp->snd_nxt;
611 }
612
613 if (tp->ca_ops->rtt_sample)
614 tp->ca_ops->rtt_sample(tp, *usrtt);
615 }
616
617 /* Calculate rto without backoff. This is the second half of Van Jacobson's
618 * routine referred to above.
619 */
620 static inline void tcp_set_rto(struct sock *sk)
621 {
622 const struct tcp_sock *tp = tcp_sk(sk);
623 /* Old crap is replaced with new one. 8)
624 *
625 * More seriously:
626 * 1. If rtt variance happened to be less 50msec, it is hallucination.
627 * It cannot be less due to utterly erratic ACK generation made
628 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
629 * to do with delayed acks, because at cwnd>2 true delack timeout
630 * is invisible. Actually, Linux-2.4 also generates erratic
631 * ACKs in some curcumstances.
632 */
633 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
634
635 /* 2. Fixups made earlier cannot be right.
636 * If we do not estimate RTO correctly without them,
637 * all the algo is pure shit and should be replaced
638 * with correct one. It is exaclty, which we pretend to do.
639 */
640 }
641
642 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
643 * guarantees that rto is higher.
644 */
645 static inline void tcp_bound_rto(struct sock *sk)
646 {
647 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
648 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
649 }
650
651 /* Save metrics learned by this TCP session.
652 This function is called only, when TCP finishes successfully
653 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
654 */
655 void tcp_update_metrics(struct sock *sk)
656 {
657 struct tcp_sock *tp = tcp_sk(sk);
658 struct dst_entry *dst = __sk_dst_get(sk);
659
660 if (sysctl_tcp_nometrics_save)
661 return;
662
663 dst_confirm(dst);
664
665 if (dst && (dst->flags&DST_HOST)) {
666 int m;
667
668 if (inet_csk(sk)->icsk_backoff || !tp->srtt) {
669 /* This session failed to estimate rtt. Why?
670 * Probably, no packets returned in time.
671 * Reset our results.
672 */
673 if (!(dst_metric_locked(dst, RTAX_RTT)))
674 dst->metrics[RTAX_RTT-1] = 0;
675 return;
676 }
677
678 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
679
680 /* If newly calculated rtt larger than stored one,
681 * store new one. Otherwise, use EWMA. Remember,
682 * rtt overestimation is always better than underestimation.
683 */
684 if (!(dst_metric_locked(dst, RTAX_RTT))) {
685 if (m <= 0)
686 dst->metrics[RTAX_RTT-1] = tp->srtt;
687 else
688 dst->metrics[RTAX_RTT-1] -= (m>>3);
689 }
690
691 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
692 if (m < 0)
693 m = -m;
694
695 /* Scale deviation to rttvar fixed point */
696 m >>= 1;
697 if (m < tp->mdev)
698 m = tp->mdev;
699
700 if (m >= dst_metric(dst, RTAX_RTTVAR))
701 dst->metrics[RTAX_RTTVAR-1] = m;
702 else
703 dst->metrics[RTAX_RTTVAR-1] -=
704 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
705 }
706
707 if (tp->snd_ssthresh >= 0xFFFF) {
708 /* Slow start still did not finish. */
709 if (dst_metric(dst, RTAX_SSTHRESH) &&
710 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
711 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
712 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
713 if (!dst_metric_locked(dst, RTAX_CWND) &&
714 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
715 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
716 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
717 tp->ca_state == TCP_CA_Open) {
718 /* Cong. avoidance phase, cwnd is reliable. */
719 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
720 dst->metrics[RTAX_SSTHRESH-1] =
721 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
722 if (!dst_metric_locked(dst, RTAX_CWND))
723 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
724 } else {
725 /* Else slow start did not finish, cwnd is non-sense,
726 ssthresh may be also invalid.
727 */
728 if (!dst_metric_locked(dst, RTAX_CWND))
729 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
730 if (dst->metrics[RTAX_SSTHRESH-1] &&
731 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
732 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
733 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
734 }
735
736 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
737 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
738 tp->reordering != sysctl_tcp_reordering)
739 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
740 }
741 }
742 }
743
744 /* Numbers are taken from RFC2414. */
745 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
746 {
747 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
748
749 if (!cwnd) {
750 if (tp->mss_cache > 1460)
751 cwnd = 2;
752 else
753 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
754 }
755 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
756 }
757
758 /* Initialize metrics on socket. */
759
760 static void tcp_init_metrics(struct sock *sk)
761 {
762 struct tcp_sock *tp = tcp_sk(sk);
763 struct dst_entry *dst = __sk_dst_get(sk);
764
765 if (dst == NULL)
766 goto reset;
767
768 dst_confirm(dst);
769
770 if (dst_metric_locked(dst, RTAX_CWND))
771 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
772 if (dst_metric(dst, RTAX_SSTHRESH)) {
773 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
774 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
775 tp->snd_ssthresh = tp->snd_cwnd_clamp;
776 }
777 if (dst_metric(dst, RTAX_REORDERING) &&
778 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
779 tp->rx_opt.sack_ok &= ~2;
780 tp->reordering = dst_metric(dst, RTAX_REORDERING);
781 }
782
783 if (dst_metric(dst, RTAX_RTT) == 0)
784 goto reset;
785
786 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
787 goto reset;
788
789 /* Initial rtt is determined from SYN,SYN-ACK.
790 * The segment is small and rtt may appear much
791 * less than real one. Use per-dst memory
792 * to make it more realistic.
793 *
794 * A bit of theory. RTT is time passed after "normal" sized packet
795 * is sent until it is ACKed. In normal curcumstances sending small
796 * packets force peer to delay ACKs and calculation is correct too.
797 * The algorithm is adaptive and, provided we follow specs, it
798 * NEVER underestimate RTT. BUT! If peer tries to make some clever
799 * tricks sort of "quick acks" for time long enough to decrease RTT
800 * to low value, and then abruptly stops to do it and starts to delay
801 * ACKs, wait for troubles.
802 */
803 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
804 tp->srtt = dst_metric(dst, RTAX_RTT);
805 tp->rtt_seq = tp->snd_nxt;
806 }
807 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
808 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
809 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
810 }
811 tcp_set_rto(sk);
812 tcp_bound_rto(sk);
813 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
814 goto reset;
815 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
816 tp->snd_cwnd_stamp = tcp_time_stamp;
817 return;
818
819 reset:
820 /* Play conservative. If timestamps are not
821 * supported, TCP will fail to recalculate correct
822 * rtt, if initial rto is too small. FORGET ALL AND RESET!
823 */
824 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
825 tp->srtt = 0;
826 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
827 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
828 }
829 }
830
831 static void tcp_update_reordering(struct tcp_sock *tp, int metric, int ts)
832 {
833 if (metric > tp->reordering) {
834 tp->reordering = min(TCP_MAX_REORDERING, metric);
835
836 /* This exciting event is worth to be remembered. 8) */
837 if (ts)
838 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
839 else if (IsReno(tp))
840 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
841 else if (IsFack(tp))
842 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
843 else
844 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
845 #if FASTRETRANS_DEBUG > 1
846 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
847 tp->rx_opt.sack_ok, tp->ca_state,
848 tp->reordering,
849 tp->fackets_out,
850 tp->sacked_out,
851 tp->undo_marker ? tp->undo_retrans : 0);
852 #endif
853 /* Disable FACK yet. */
854 tp->rx_opt.sack_ok &= ~2;
855 }
856 }
857
858 /* This procedure tags the retransmission queue when SACKs arrive.
859 *
860 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
861 * Packets in queue with these bits set are counted in variables
862 * sacked_out, retrans_out and lost_out, correspondingly.
863 *
864 * Valid combinations are:
865 * Tag InFlight Description
866 * 0 1 - orig segment is in flight.
867 * S 0 - nothing flies, orig reached receiver.
868 * L 0 - nothing flies, orig lost by net.
869 * R 2 - both orig and retransmit are in flight.
870 * L|R 1 - orig is lost, retransmit is in flight.
871 * S|R 1 - orig reached receiver, retrans is still in flight.
872 * (L|S|R is logically valid, it could occur when L|R is sacked,
873 * but it is equivalent to plain S and code short-curcuits it to S.
874 * L|S is logically invalid, it would mean -1 packet in flight 8))
875 *
876 * These 6 states form finite state machine, controlled by the following events:
877 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
878 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
879 * 3. Loss detection event of one of three flavors:
880 * A. Scoreboard estimator decided the packet is lost.
881 * A'. Reno "three dupacks" marks head of queue lost.
882 * A''. Its FACK modfication, head until snd.fack is lost.
883 * B. SACK arrives sacking data transmitted after never retransmitted
884 * hole was sent out.
885 * C. SACK arrives sacking SND.NXT at the moment, when the
886 * segment was retransmitted.
887 * 4. D-SACK added new rule: D-SACK changes any tag to S.
888 *
889 * It is pleasant to note, that state diagram turns out to be commutative,
890 * so that we are allowed not to be bothered by order of our actions,
891 * when multiple events arrive simultaneously. (see the function below).
892 *
893 * Reordering detection.
894 * --------------------
895 * Reordering metric is maximal distance, which a packet can be displaced
896 * in packet stream. With SACKs we can estimate it:
897 *
898 * 1. SACK fills old hole and the corresponding segment was not
899 * ever retransmitted -> reordering. Alas, we cannot use it
900 * when segment was retransmitted.
901 * 2. The last flaw is solved with D-SACK. D-SACK arrives
902 * for retransmitted and already SACKed segment -> reordering..
903 * Both of these heuristics are not used in Loss state, when we cannot
904 * account for retransmits accurately.
905 */
906 static int
907 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
908 {
909 struct tcp_sock *tp = tcp_sk(sk);
910 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
911 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
912 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
913 int reord = tp->packets_out;
914 int prior_fackets;
915 u32 lost_retrans = 0;
916 int flag = 0;
917 int i;
918
919 /* So, SACKs for already sent large segments will be lost.
920 * Not good, but alternative is to resegment the queue. */
921 if (sk->sk_route_caps & NETIF_F_TSO) {
922 sk->sk_route_caps &= ~NETIF_F_TSO;
923 sock_set_flag(sk, SOCK_NO_LARGESEND);
924 tp->mss_cache = tp->mss_cache;
925 }
926
927 if (!tp->sacked_out)
928 tp->fackets_out = 0;
929 prior_fackets = tp->fackets_out;
930
931 for (i=0; i<num_sacks; i++, sp++) {
932 struct sk_buff *skb;
933 __u32 start_seq = ntohl(sp->start_seq);
934 __u32 end_seq = ntohl(sp->end_seq);
935 int fack_count = 0;
936 int dup_sack = 0;
937
938 /* Check for D-SACK. */
939 if (i == 0) {
940 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
941
942 if (before(start_seq, ack)) {
943 dup_sack = 1;
944 tp->rx_opt.sack_ok |= 4;
945 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
946 } else if (num_sacks > 1 &&
947 !after(end_seq, ntohl(sp[1].end_seq)) &&
948 !before(start_seq, ntohl(sp[1].start_seq))) {
949 dup_sack = 1;
950 tp->rx_opt.sack_ok |= 4;
951 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
952 }
953
954 /* D-SACK for already forgotten data...
955 * Do dumb counting. */
956 if (dup_sack &&
957 !after(end_seq, prior_snd_una) &&
958 after(end_seq, tp->undo_marker))
959 tp->undo_retrans--;
960
961 /* Eliminate too old ACKs, but take into
962 * account more or less fresh ones, they can
963 * contain valid SACK info.
964 */
965 if (before(ack, prior_snd_una - tp->max_window))
966 return 0;
967 }
968
969 /* Event "B" in the comment above. */
970 if (after(end_seq, tp->high_seq))
971 flag |= FLAG_DATA_LOST;
972
973 sk_stream_for_retrans_queue(skb, sk) {
974 u8 sacked = TCP_SKB_CB(skb)->sacked;
975 int in_sack;
976
977 /* The retransmission queue is always in order, so
978 * we can short-circuit the walk early.
979 */
980 if(!before(TCP_SKB_CB(skb)->seq, end_seq))
981 break;
982
983 fack_count += tcp_skb_pcount(skb);
984
985 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
986 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
987
988 /* Account D-SACK for retransmitted packet. */
989 if ((dup_sack && in_sack) &&
990 (sacked & TCPCB_RETRANS) &&
991 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
992 tp->undo_retrans--;
993
994 /* The frame is ACKed. */
995 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
996 if (sacked&TCPCB_RETRANS) {
997 if ((dup_sack && in_sack) &&
998 (sacked&TCPCB_SACKED_ACKED))
999 reord = min(fack_count, reord);
1000 } else {
1001 /* If it was in a hole, we detected reordering. */
1002 if (fack_count < prior_fackets &&
1003 !(sacked&TCPCB_SACKED_ACKED))
1004 reord = min(fack_count, reord);
1005 }
1006
1007 /* Nothing to do; acked frame is about to be dropped. */
1008 continue;
1009 }
1010
1011 if ((sacked&TCPCB_SACKED_RETRANS) &&
1012 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1013 (!lost_retrans || after(end_seq, lost_retrans)))
1014 lost_retrans = end_seq;
1015
1016 if (!in_sack)
1017 continue;
1018
1019 if (!(sacked&TCPCB_SACKED_ACKED)) {
1020 if (sacked & TCPCB_SACKED_RETRANS) {
1021 /* If the segment is not tagged as lost,
1022 * we do not clear RETRANS, believing
1023 * that retransmission is still in flight.
1024 */
1025 if (sacked & TCPCB_LOST) {
1026 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1027 tp->lost_out -= tcp_skb_pcount(skb);
1028 tp->retrans_out -= tcp_skb_pcount(skb);
1029 }
1030 } else {
1031 /* New sack for not retransmitted frame,
1032 * which was in hole. It is reordering.
1033 */
1034 if (!(sacked & TCPCB_RETRANS) &&
1035 fack_count < prior_fackets)
1036 reord = min(fack_count, reord);
1037
1038 if (sacked & TCPCB_LOST) {
1039 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1040 tp->lost_out -= tcp_skb_pcount(skb);
1041 }
1042 }
1043
1044 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1045 flag |= FLAG_DATA_SACKED;
1046 tp->sacked_out += tcp_skb_pcount(skb);
1047
1048 if (fack_count > tp->fackets_out)
1049 tp->fackets_out = fack_count;
1050 } else {
1051 if (dup_sack && (sacked&TCPCB_RETRANS))
1052 reord = min(fack_count, reord);
1053 }
1054
1055 /* D-SACK. We can detect redundant retransmission
1056 * in S|R and plain R frames and clear it.
1057 * undo_retrans is decreased above, L|R frames
1058 * are accounted above as well.
1059 */
1060 if (dup_sack &&
1061 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1062 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1063 tp->retrans_out -= tcp_skb_pcount(skb);
1064 }
1065 }
1066 }
1067
1068 /* Check for lost retransmit. This superb idea is
1069 * borrowed from "ratehalving". Event "C".
1070 * Later note: FACK people cheated me again 8),
1071 * we have to account for reordering! Ugly,
1072 * but should help.
1073 */
1074 if (lost_retrans && tp->ca_state == TCP_CA_Recovery) {
1075 struct sk_buff *skb;
1076
1077 sk_stream_for_retrans_queue(skb, sk) {
1078 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1079 break;
1080 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1081 continue;
1082 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1083 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1084 (IsFack(tp) ||
1085 !before(lost_retrans,
1086 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1087 tp->mss_cache))) {
1088 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1089 tp->retrans_out -= tcp_skb_pcount(skb);
1090
1091 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1092 tp->lost_out += tcp_skb_pcount(skb);
1093 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1094 flag |= FLAG_DATA_SACKED;
1095 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1096 }
1097 }
1098 }
1099 }
1100
1101 tp->left_out = tp->sacked_out + tp->lost_out;
1102
1103 if ((reord < tp->fackets_out) && tp->ca_state != TCP_CA_Loss)
1104 tcp_update_reordering(tp, ((tp->fackets_out + 1) - reord), 0);
1105
1106 #if FASTRETRANS_DEBUG > 0
1107 BUG_TRAP((int)tp->sacked_out >= 0);
1108 BUG_TRAP((int)tp->lost_out >= 0);
1109 BUG_TRAP((int)tp->retrans_out >= 0);
1110 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1111 #endif
1112 return flag;
1113 }
1114
1115 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1116 * segments to see from the next ACKs whether any data was really missing.
1117 * If the RTO was spurious, new ACKs should arrive.
1118 */
1119 void tcp_enter_frto(struct sock *sk)
1120 {
1121 struct tcp_sock *tp = tcp_sk(sk);
1122 struct sk_buff *skb;
1123
1124 tp->frto_counter = 1;
1125
1126 if (tp->ca_state <= TCP_CA_Disorder ||
1127 tp->snd_una == tp->high_seq ||
1128 (tp->ca_state == TCP_CA_Loss && !inet_csk(sk)->icsk_retransmits)) {
1129 tp->prior_ssthresh = tcp_current_ssthresh(tp);
1130 tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1131 tcp_ca_event(tp, CA_EVENT_FRTO);
1132 }
1133
1134 /* Have to clear retransmission markers here to keep the bookkeeping
1135 * in shape, even though we are not yet in Loss state.
1136 * If something was really lost, it is eventually caught up
1137 * in tcp_enter_frto_loss.
1138 */
1139 tp->retrans_out = 0;
1140 tp->undo_marker = tp->snd_una;
1141 tp->undo_retrans = 0;
1142
1143 sk_stream_for_retrans_queue(skb, sk) {
1144 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1145 }
1146 tcp_sync_left_out(tp);
1147
1148 tcp_set_ca_state(tp, TCP_CA_Open);
1149 tp->frto_highmark = tp->snd_nxt;
1150 }
1151
1152 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1153 * which indicates that we should follow the traditional RTO recovery,
1154 * i.e. mark everything lost and do go-back-N retransmission.
1155 */
1156 static void tcp_enter_frto_loss(struct sock *sk)
1157 {
1158 struct tcp_sock *tp = tcp_sk(sk);
1159 struct sk_buff *skb;
1160 int cnt = 0;
1161
1162 tp->sacked_out = 0;
1163 tp->lost_out = 0;
1164 tp->fackets_out = 0;
1165
1166 sk_stream_for_retrans_queue(skb, sk) {
1167 cnt += tcp_skb_pcount(skb);
1168 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1169 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1170
1171 /* Do not mark those segments lost that were
1172 * forward transmitted after RTO
1173 */
1174 if (!after(TCP_SKB_CB(skb)->end_seq,
1175 tp->frto_highmark)) {
1176 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1177 tp->lost_out += tcp_skb_pcount(skb);
1178 }
1179 } else {
1180 tp->sacked_out += tcp_skb_pcount(skb);
1181 tp->fackets_out = cnt;
1182 }
1183 }
1184 tcp_sync_left_out(tp);
1185
1186 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1187 tp->snd_cwnd_cnt = 0;
1188 tp->snd_cwnd_stamp = tcp_time_stamp;
1189 tp->undo_marker = 0;
1190 tp->frto_counter = 0;
1191
1192 tp->reordering = min_t(unsigned int, tp->reordering,
1193 sysctl_tcp_reordering);
1194 tcp_set_ca_state(tp, TCP_CA_Loss);
1195 tp->high_seq = tp->frto_highmark;
1196 TCP_ECN_queue_cwr(tp);
1197 }
1198
1199 void tcp_clear_retrans(struct tcp_sock *tp)
1200 {
1201 tp->left_out = 0;
1202 tp->retrans_out = 0;
1203
1204 tp->fackets_out = 0;
1205 tp->sacked_out = 0;
1206 tp->lost_out = 0;
1207
1208 tp->undo_marker = 0;
1209 tp->undo_retrans = 0;
1210 }
1211
1212 /* Enter Loss state. If "how" is not zero, forget all SACK information
1213 * and reset tags completely, otherwise preserve SACKs. If receiver
1214 * dropped its ofo queue, we will know this due to reneging detection.
1215 */
1216 void tcp_enter_loss(struct sock *sk, int how)
1217 {
1218 struct tcp_sock *tp = tcp_sk(sk);
1219 struct sk_buff *skb;
1220 int cnt = 0;
1221
1222 /* Reduce ssthresh if it has not yet been made inside this window. */
1223 if (tp->ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1224 (tp->ca_state == TCP_CA_Loss && !inet_csk(sk)->icsk_retransmits)) {
1225 tp->prior_ssthresh = tcp_current_ssthresh(tp);
1226 tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1227 tcp_ca_event(tp, CA_EVENT_LOSS);
1228 }
1229 tp->snd_cwnd = 1;
1230 tp->snd_cwnd_cnt = 0;
1231 tp->snd_cwnd_stamp = tcp_time_stamp;
1232
1233 tcp_clear_retrans(tp);
1234
1235 /* Push undo marker, if it was plain RTO and nothing
1236 * was retransmitted. */
1237 if (!how)
1238 tp->undo_marker = tp->snd_una;
1239
1240 sk_stream_for_retrans_queue(skb, sk) {
1241 cnt += tcp_skb_pcount(skb);
1242 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1243 tp->undo_marker = 0;
1244 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1245 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1246 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1247 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1248 tp->lost_out += tcp_skb_pcount(skb);
1249 } else {
1250 tp->sacked_out += tcp_skb_pcount(skb);
1251 tp->fackets_out = cnt;
1252 }
1253 }
1254 tcp_sync_left_out(tp);
1255
1256 tp->reordering = min_t(unsigned int, tp->reordering,
1257 sysctl_tcp_reordering);
1258 tcp_set_ca_state(tp, TCP_CA_Loss);
1259 tp->high_seq = tp->snd_nxt;
1260 TCP_ECN_queue_cwr(tp);
1261 }
1262
1263 static int tcp_check_sack_reneging(struct sock *sk)
1264 {
1265 struct sk_buff *skb;
1266
1267 /* If ACK arrived pointing to a remembered SACK,
1268 * it means that our remembered SACKs do not reflect
1269 * real state of receiver i.e.
1270 * receiver _host_ is heavily congested (or buggy).
1271 * Do processing similar to RTO timeout.
1272 */
1273 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1274 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1275 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1276
1277 tcp_enter_loss(sk, 1);
1278 inet_csk(sk)->icsk_retransmits++;
1279 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1280 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1281 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1282 return 1;
1283 }
1284 return 0;
1285 }
1286
1287 static inline int tcp_fackets_out(struct tcp_sock *tp)
1288 {
1289 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1290 }
1291
1292 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1293 {
1294 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1295 }
1296
1297 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1298 {
1299 return tp->packets_out &&
1300 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1301 }
1302
1303 /* Linux NewReno/SACK/FACK/ECN state machine.
1304 * --------------------------------------
1305 *
1306 * "Open" Normal state, no dubious events, fast path.
1307 * "Disorder" In all the respects it is "Open",
1308 * but requires a bit more attention. It is entered when
1309 * we see some SACKs or dupacks. It is split of "Open"
1310 * mainly to move some processing from fast path to slow one.
1311 * "CWR" CWND was reduced due to some Congestion Notification event.
1312 * It can be ECN, ICMP source quench, local device congestion.
1313 * "Recovery" CWND was reduced, we are fast-retransmitting.
1314 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1315 *
1316 * tcp_fastretrans_alert() is entered:
1317 * - each incoming ACK, if state is not "Open"
1318 * - when arrived ACK is unusual, namely:
1319 * * SACK
1320 * * Duplicate ACK.
1321 * * ECN ECE.
1322 *
1323 * Counting packets in flight is pretty simple.
1324 *
1325 * in_flight = packets_out - left_out + retrans_out
1326 *
1327 * packets_out is SND.NXT-SND.UNA counted in packets.
1328 *
1329 * retrans_out is number of retransmitted segments.
1330 *
1331 * left_out is number of segments left network, but not ACKed yet.
1332 *
1333 * left_out = sacked_out + lost_out
1334 *
1335 * sacked_out: Packets, which arrived to receiver out of order
1336 * and hence not ACKed. With SACKs this number is simply
1337 * amount of SACKed data. Even without SACKs
1338 * it is easy to give pretty reliable estimate of this number,
1339 * counting duplicate ACKs.
1340 *
1341 * lost_out: Packets lost by network. TCP has no explicit
1342 * "loss notification" feedback from network (for now).
1343 * It means that this number can be only _guessed_.
1344 * Actually, it is the heuristics to predict lossage that
1345 * distinguishes different algorithms.
1346 *
1347 * F.e. after RTO, when all the queue is considered as lost,
1348 * lost_out = packets_out and in_flight = retrans_out.
1349 *
1350 * Essentially, we have now two algorithms counting
1351 * lost packets.
1352 *
1353 * FACK: It is the simplest heuristics. As soon as we decided
1354 * that something is lost, we decide that _all_ not SACKed
1355 * packets until the most forward SACK are lost. I.e.
1356 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1357 * It is absolutely correct estimate, if network does not reorder
1358 * packets. And it loses any connection to reality when reordering
1359 * takes place. We use FACK by default until reordering
1360 * is suspected on the path to this destination.
1361 *
1362 * NewReno: when Recovery is entered, we assume that one segment
1363 * is lost (classic Reno). While we are in Recovery and
1364 * a partial ACK arrives, we assume that one more packet
1365 * is lost (NewReno). This heuristics are the same in NewReno
1366 * and SACK.
1367 *
1368 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1369 * deflation etc. CWND is real congestion window, never inflated, changes
1370 * only according to classic VJ rules.
1371 *
1372 * Really tricky (and requiring careful tuning) part of algorithm
1373 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1374 * The first determines the moment _when_ we should reduce CWND and,
1375 * hence, slow down forward transmission. In fact, it determines the moment
1376 * when we decide that hole is caused by loss, rather than by a reorder.
1377 *
1378 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1379 * holes, caused by lost packets.
1380 *
1381 * And the most logically complicated part of algorithm is undo
1382 * heuristics. We detect false retransmits due to both too early
1383 * fast retransmit (reordering) and underestimated RTO, analyzing
1384 * timestamps and D-SACKs. When we detect that some segments were
1385 * retransmitted by mistake and CWND reduction was wrong, we undo
1386 * window reduction and abort recovery phase. This logic is hidden
1387 * inside several functions named tcp_try_undo_<something>.
1388 */
1389
1390 /* This function decides, when we should leave Disordered state
1391 * and enter Recovery phase, reducing congestion window.
1392 *
1393 * Main question: may we further continue forward transmission
1394 * with the same cwnd?
1395 */
1396 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1397 {
1398 __u32 packets_out;
1399
1400 /* Trick#1: The loss is proven. */
1401 if (tp->lost_out)
1402 return 1;
1403
1404 /* Not-A-Trick#2 : Classic rule... */
1405 if (tcp_fackets_out(tp) > tp->reordering)
1406 return 1;
1407
1408 /* Trick#3 : when we use RFC2988 timer restart, fast
1409 * retransmit can be triggered by timeout of queue head.
1410 */
1411 if (tcp_head_timedout(sk, tp))
1412 return 1;
1413
1414 /* Trick#4: It is still not OK... But will it be useful to delay
1415 * recovery more?
1416 */
1417 packets_out = tp->packets_out;
1418 if (packets_out <= tp->reordering &&
1419 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1420 !tcp_may_send_now(sk, tp)) {
1421 /* We have nothing to send. This connection is limited
1422 * either by receiver window or by application.
1423 */
1424 return 1;
1425 }
1426
1427 return 0;
1428 }
1429
1430 /* If we receive more dupacks than we expected counting segments
1431 * in assumption of absent reordering, interpret this as reordering.
1432 * The only another reason could be bug in receiver TCP.
1433 */
1434 static void tcp_check_reno_reordering(struct tcp_sock *tp, int addend)
1435 {
1436 u32 holes;
1437
1438 holes = max(tp->lost_out, 1U);
1439 holes = min(holes, tp->packets_out);
1440
1441 if ((tp->sacked_out + holes) > tp->packets_out) {
1442 tp->sacked_out = tp->packets_out - holes;
1443 tcp_update_reordering(tp, tp->packets_out+addend, 0);
1444 }
1445 }
1446
1447 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1448
1449 static void tcp_add_reno_sack(struct tcp_sock *tp)
1450 {
1451 tp->sacked_out++;
1452 tcp_check_reno_reordering(tp, 0);
1453 tcp_sync_left_out(tp);
1454 }
1455
1456 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1457
1458 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1459 {
1460 if (acked > 0) {
1461 /* One ACK acked hole. The rest eat duplicate ACKs. */
1462 if (acked-1 >= tp->sacked_out)
1463 tp->sacked_out = 0;
1464 else
1465 tp->sacked_out -= acked-1;
1466 }
1467 tcp_check_reno_reordering(tp, acked);
1468 tcp_sync_left_out(tp);
1469 }
1470
1471 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1472 {
1473 tp->sacked_out = 0;
1474 tp->left_out = tp->lost_out;
1475 }
1476
1477 /* Mark head of queue up as lost. */
1478 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1479 int packets, u32 high_seq)
1480 {
1481 struct sk_buff *skb;
1482 int cnt = packets;
1483
1484 BUG_TRAP(cnt <= tp->packets_out);
1485
1486 sk_stream_for_retrans_queue(skb, sk) {
1487 cnt -= tcp_skb_pcount(skb);
1488 if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1489 break;
1490 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1491 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1492 tp->lost_out += tcp_skb_pcount(skb);
1493 }
1494 }
1495 tcp_sync_left_out(tp);
1496 }
1497
1498 /* Account newly detected lost packet(s) */
1499
1500 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1501 {
1502 if (IsFack(tp)) {
1503 int lost = tp->fackets_out - tp->reordering;
1504 if (lost <= 0)
1505 lost = 1;
1506 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1507 } else {
1508 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1509 }
1510
1511 /* New heuristics: it is possible only after we switched
1512 * to restart timer each time when something is ACKed.
1513 * Hence, we can detect timed out packets during fast
1514 * retransmit without falling to slow start.
1515 */
1516 if (tcp_head_timedout(sk, tp)) {
1517 struct sk_buff *skb;
1518
1519 sk_stream_for_retrans_queue(skb, sk) {
1520 if (tcp_skb_timedout(sk, skb) &&
1521 !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1522 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1523 tp->lost_out += tcp_skb_pcount(skb);
1524 }
1525 }
1526 tcp_sync_left_out(tp);
1527 }
1528 }
1529
1530 /* CWND moderation, preventing bursts due to too big ACKs
1531 * in dubious situations.
1532 */
1533 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1534 {
1535 tp->snd_cwnd = min(tp->snd_cwnd,
1536 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1537 tp->snd_cwnd_stamp = tcp_time_stamp;
1538 }
1539
1540 /* Decrease cwnd each second ack. */
1541 static void tcp_cwnd_down(struct tcp_sock *tp)
1542 {
1543 int decr = tp->snd_cwnd_cnt + 1;
1544
1545 tp->snd_cwnd_cnt = decr&1;
1546 decr >>= 1;
1547
1548 if (decr && tp->snd_cwnd > tp->ca_ops->min_cwnd(tp))
1549 tp->snd_cwnd -= decr;
1550
1551 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1552 tp->snd_cwnd_stamp = tcp_time_stamp;
1553 }
1554
1555 /* Nothing was retransmitted or returned timestamp is less
1556 * than timestamp of the first retransmission.
1557 */
1558 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1559 {
1560 return !tp->retrans_stamp ||
1561 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1562 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1563 }
1564
1565 /* Undo procedures. */
1566
1567 #if FASTRETRANS_DEBUG > 1
1568 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1569 {
1570 struct inet_sock *inet = inet_sk(sk);
1571 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1572 msg,
1573 NIPQUAD(inet->daddr), ntohs(inet->dport),
1574 tp->snd_cwnd, tp->left_out,
1575 tp->snd_ssthresh, tp->prior_ssthresh,
1576 tp->packets_out);
1577 }
1578 #else
1579 #define DBGUNDO(x...) do { } while (0)
1580 #endif
1581
1582 static void tcp_undo_cwr(struct tcp_sock *tp, int undo)
1583 {
1584 if (tp->prior_ssthresh) {
1585 if (tp->ca_ops->undo_cwnd)
1586 tp->snd_cwnd = tp->ca_ops->undo_cwnd(tp);
1587 else
1588 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1589
1590 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1591 tp->snd_ssthresh = tp->prior_ssthresh;
1592 TCP_ECN_withdraw_cwr(tp);
1593 }
1594 } else {
1595 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1596 }
1597 tcp_moderate_cwnd(tp);
1598 tp->snd_cwnd_stamp = tcp_time_stamp;
1599 }
1600
1601 static inline int tcp_may_undo(struct tcp_sock *tp)
1602 {
1603 return tp->undo_marker &&
1604 (!tp->undo_retrans || tcp_packet_delayed(tp));
1605 }
1606
1607 /* People celebrate: "We love our President!" */
1608 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1609 {
1610 if (tcp_may_undo(tp)) {
1611 /* Happy end! We did not retransmit anything
1612 * or our original transmission succeeded.
1613 */
1614 DBGUNDO(sk, tp, tp->ca_state == TCP_CA_Loss ? "loss" : "retrans");
1615 tcp_undo_cwr(tp, 1);
1616 if (tp->ca_state == TCP_CA_Loss)
1617 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1618 else
1619 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1620 tp->undo_marker = 0;
1621 }
1622 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1623 /* Hold old state until something *above* high_seq
1624 * is ACKed. For Reno it is MUST to prevent false
1625 * fast retransmits (RFC2582). SACK TCP is safe. */
1626 tcp_moderate_cwnd(tp);
1627 return 1;
1628 }
1629 tcp_set_ca_state(tp, TCP_CA_Open);
1630 return 0;
1631 }
1632
1633 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1634 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1635 {
1636 if (tp->undo_marker && !tp->undo_retrans) {
1637 DBGUNDO(sk, tp, "D-SACK");
1638 tcp_undo_cwr(tp, 1);
1639 tp->undo_marker = 0;
1640 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1641 }
1642 }
1643
1644 /* Undo during fast recovery after partial ACK. */
1645
1646 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1647 int acked)
1648 {
1649 /* Partial ACK arrived. Force Hoe's retransmit. */
1650 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1651
1652 if (tcp_may_undo(tp)) {
1653 /* Plain luck! Hole if filled with delayed
1654 * packet, rather than with a retransmit.
1655 */
1656 if (tp->retrans_out == 0)
1657 tp->retrans_stamp = 0;
1658
1659 tcp_update_reordering(tp, tcp_fackets_out(tp)+acked, 1);
1660
1661 DBGUNDO(sk, tp, "Hoe");
1662 tcp_undo_cwr(tp, 0);
1663 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1664
1665 /* So... Do not make Hoe's retransmit yet.
1666 * If the first packet was delayed, the rest
1667 * ones are most probably delayed as well.
1668 */
1669 failed = 0;
1670 }
1671 return failed;
1672 }
1673
1674 /* Undo during loss recovery after partial ACK. */
1675 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1676 {
1677 if (tcp_may_undo(tp)) {
1678 struct sk_buff *skb;
1679 sk_stream_for_retrans_queue(skb, sk) {
1680 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1681 }
1682 DBGUNDO(sk, tp, "partial loss");
1683 tp->lost_out = 0;
1684 tp->left_out = tp->sacked_out;
1685 tcp_undo_cwr(tp, 1);
1686 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1687 inet_csk(sk)->icsk_retransmits = 0;
1688 tp->undo_marker = 0;
1689 if (!IsReno(tp))
1690 tcp_set_ca_state(tp, TCP_CA_Open);
1691 return 1;
1692 }
1693 return 0;
1694 }
1695
1696 static inline void tcp_complete_cwr(struct tcp_sock *tp)
1697 {
1698 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1699 tp->snd_cwnd_stamp = tcp_time_stamp;
1700 tcp_ca_event(tp, CA_EVENT_COMPLETE_CWR);
1701 }
1702
1703 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1704 {
1705 tp->left_out = tp->sacked_out;
1706
1707 if (tp->retrans_out == 0)
1708 tp->retrans_stamp = 0;
1709
1710 if (flag&FLAG_ECE)
1711 tcp_enter_cwr(tp);
1712
1713 if (tp->ca_state != TCP_CA_CWR) {
1714 int state = TCP_CA_Open;
1715
1716 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1717 state = TCP_CA_Disorder;
1718
1719 if (tp->ca_state != state) {
1720 tcp_set_ca_state(tp, state);
1721 tp->high_seq = tp->snd_nxt;
1722 }
1723 tcp_moderate_cwnd(tp);
1724 } else {
1725 tcp_cwnd_down(tp);
1726 }
1727 }
1728
1729 /* Process an event, which can update packets-in-flight not trivially.
1730 * Main goal of this function is to calculate new estimate for left_out,
1731 * taking into account both packets sitting in receiver's buffer and
1732 * packets lost by network.
1733 *
1734 * Besides that it does CWND reduction, when packet loss is detected
1735 * and changes state of machine.
1736 *
1737 * It does _not_ decide what to send, it is made in function
1738 * tcp_xmit_retransmit_queue().
1739 */
1740 static void
1741 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1742 int prior_packets, int flag)
1743 {
1744 struct tcp_sock *tp = tcp_sk(sk);
1745 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1746
1747 /* Some technical things:
1748 * 1. Reno does not count dupacks (sacked_out) automatically. */
1749 if (!tp->packets_out)
1750 tp->sacked_out = 0;
1751 /* 2. SACK counts snd_fack in packets inaccurately. */
1752 if (tp->sacked_out == 0)
1753 tp->fackets_out = 0;
1754
1755 /* Now state machine starts.
1756 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1757 if (flag&FLAG_ECE)
1758 tp->prior_ssthresh = 0;
1759
1760 /* B. In all the states check for reneging SACKs. */
1761 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1762 return;
1763
1764 /* C. Process data loss notification, provided it is valid. */
1765 if ((flag&FLAG_DATA_LOST) &&
1766 before(tp->snd_una, tp->high_seq) &&
1767 tp->ca_state != TCP_CA_Open &&
1768 tp->fackets_out > tp->reordering) {
1769 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1770 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1771 }
1772
1773 /* D. Synchronize left_out to current state. */
1774 tcp_sync_left_out(tp);
1775
1776 /* E. Check state exit conditions. State can be terminated
1777 * when high_seq is ACKed. */
1778 if (tp->ca_state == TCP_CA_Open) {
1779 if (!sysctl_tcp_frto)
1780 BUG_TRAP(tp->retrans_out == 0);
1781 tp->retrans_stamp = 0;
1782 } else if (!before(tp->snd_una, tp->high_seq)) {
1783 switch (tp->ca_state) {
1784 case TCP_CA_Loss:
1785 inet_csk(sk)->icsk_retransmits = 0;
1786 if (tcp_try_undo_recovery(sk, tp))
1787 return;
1788 break;
1789
1790 case TCP_CA_CWR:
1791 /* CWR is to be held something *above* high_seq
1792 * is ACKed for CWR bit to reach receiver. */
1793 if (tp->snd_una != tp->high_seq) {
1794 tcp_complete_cwr(tp);
1795 tcp_set_ca_state(tp, TCP_CA_Open);
1796 }
1797 break;
1798
1799 case TCP_CA_Disorder:
1800 tcp_try_undo_dsack(sk, tp);
1801 if (!tp->undo_marker ||
1802 /* For SACK case do not Open to allow to undo
1803 * catching for all duplicate ACKs. */
1804 IsReno(tp) || tp->snd_una != tp->high_seq) {
1805 tp->undo_marker = 0;
1806 tcp_set_ca_state(tp, TCP_CA_Open);
1807 }
1808 break;
1809
1810 case TCP_CA_Recovery:
1811 if (IsReno(tp))
1812 tcp_reset_reno_sack(tp);
1813 if (tcp_try_undo_recovery(sk, tp))
1814 return;
1815 tcp_complete_cwr(tp);
1816 break;
1817 }
1818 }
1819
1820 /* F. Process state. */
1821 switch (tp->ca_state) {
1822 case TCP_CA_Recovery:
1823 if (prior_snd_una == tp->snd_una) {
1824 if (IsReno(tp) && is_dupack)
1825 tcp_add_reno_sack(tp);
1826 } else {
1827 int acked = prior_packets - tp->packets_out;
1828 if (IsReno(tp))
1829 tcp_remove_reno_sacks(sk, tp, acked);
1830 is_dupack = tcp_try_undo_partial(sk, tp, acked);
1831 }
1832 break;
1833 case TCP_CA_Loss:
1834 if (flag&FLAG_DATA_ACKED)
1835 inet_csk(sk)->icsk_retransmits = 0;
1836 if (!tcp_try_undo_loss(sk, tp)) {
1837 tcp_moderate_cwnd(tp);
1838 tcp_xmit_retransmit_queue(sk);
1839 return;
1840 }
1841 if (tp->ca_state != TCP_CA_Open)
1842 return;
1843 /* Loss is undone; fall through to processing in Open state. */
1844 default:
1845 if (IsReno(tp)) {
1846 if (tp->snd_una != prior_snd_una)
1847 tcp_reset_reno_sack(tp);
1848 if (is_dupack)
1849 tcp_add_reno_sack(tp);
1850 }
1851
1852 if (tp->ca_state == TCP_CA_Disorder)
1853 tcp_try_undo_dsack(sk, tp);
1854
1855 if (!tcp_time_to_recover(sk, tp)) {
1856 tcp_try_to_open(sk, tp, flag);
1857 return;
1858 }
1859
1860 /* Otherwise enter Recovery state */
1861
1862 if (IsReno(tp))
1863 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
1864 else
1865 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
1866
1867 tp->high_seq = tp->snd_nxt;
1868 tp->prior_ssthresh = 0;
1869 tp->undo_marker = tp->snd_una;
1870 tp->undo_retrans = tp->retrans_out;
1871
1872 if (tp->ca_state < TCP_CA_CWR) {
1873 if (!(flag&FLAG_ECE))
1874 tp->prior_ssthresh = tcp_current_ssthresh(tp);
1875 tp->snd_ssthresh = tp->ca_ops->ssthresh(tp);
1876 TCP_ECN_queue_cwr(tp);
1877 }
1878
1879 tp->snd_cwnd_cnt = 0;
1880 tcp_set_ca_state(tp, TCP_CA_Recovery);
1881 }
1882
1883 if (is_dupack || tcp_head_timedout(sk, tp))
1884 tcp_update_scoreboard(sk, tp);
1885 tcp_cwnd_down(tp);
1886 tcp_xmit_retransmit_queue(sk);
1887 }
1888
1889 /* Read draft-ietf-tcplw-high-performance before mucking
1890 * with this code. (Superceeds RFC1323)
1891 */
1892 static void tcp_ack_saw_tstamp(struct sock *sk, u32 *usrtt, int flag)
1893 {
1894 /* RTTM Rule: A TSecr value received in a segment is used to
1895 * update the averaged RTT measurement only if the segment
1896 * acknowledges some new data, i.e., only if it advances the
1897 * left edge of the send window.
1898 *
1899 * See draft-ietf-tcplw-high-performance-00, section 3.3.
1900 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1901 *
1902 * Changed: reset backoff as soon as we see the first valid sample.
1903 * If we do not, we get strongly overstimated rto. With timestamps
1904 * samples are accepted even from very old segments: f.e., when rtt=1
1905 * increases to 8, we retransmit 5 times and after 8 seconds delayed
1906 * answer arrives rto becomes 120 seconds! If at least one of segments
1907 * in window is lost... Voila. --ANK (010210)
1908 */
1909 struct tcp_sock *tp = tcp_sk(sk);
1910 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
1911 tcp_rtt_estimator(tp, seq_rtt, usrtt);
1912 tcp_set_rto(sk);
1913 inet_csk(sk)->icsk_backoff = 0;
1914 tcp_bound_rto(sk);
1915 }
1916
1917 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, u32 *usrtt, int flag)
1918 {
1919 /* We don't have a timestamp. Can only use
1920 * packets that are not retransmitted to determine
1921 * rtt estimates. Also, we must not reset the
1922 * backoff for rto until we get a non-retransmitted
1923 * packet. This allows us to deal with a situation
1924 * where the network delay has increased suddenly.
1925 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
1926 */
1927
1928 if (flag & FLAG_RETRANS_DATA_ACKED)
1929 return;
1930
1931 tcp_rtt_estimator(tcp_sk(sk), seq_rtt, usrtt);
1932 tcp_set_rto(sk);
1933 inet_csk(sk)->icsk_backoff = 0;
1934 tcp_bound_rto(sk);
1935 }
1936
1937 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
1938 const s32 seq_rtt, u32 *usrtt)
1939 {
1940 const struct tcp_sock *tp = tcp_sk(sk);
1941 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
1942 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
1943 tcp_ack_saw_tstamp(sk, usrtt, flag);
1944 else if (seq_rtt >= 0)
1945 tcp_ack_no_tstamp(sk, seq_rtt, usrtt, flag);
1946 }
1947
1948 static inline void tcp_cong_avoid(struct tcp_sock *tp, u32 ack, u32 rtt,
1949 u32 in_flight, int good)
1950 {
1951 tp->ca_ops->cong_avoid(tp, ack, rtt, in_flight, good);
1952 tp->snd_cwnd_stamp = tcp_time_stamp;
1953 }
1954
1955 /* Restart timer after forward progress on connection.
1956 * RFC2988 recommends to restart timer to now+rto.
1957 */
1958
1959 static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1960 {
1961 if (!tp->packets_out) {
1962 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1963 } else {
1964 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1965 }
1966 }
1967
1968 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
1969 __u32 now, __s32 *seq_rtt)
1970 {
1971 struct tcp_sock *tp = tcp_sk(sk);
1972 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1973 __u32 seq = tp->snd_una;
1974 __u32 packets_acked;
1975 int acked = 0;
1976
1977 /* If we get here, the whole TSO packet has not been
1978 * acked.
1979 */
1980 BUG_ON(!after(scb->end_seq, seq));
1981
1982 packets_acked = tcp_skb_pcount(skb);
1983 if (tcp_trim_head(sk, skb, seq - scb->seq))
1984 return 0;
1985 packets_acked -= tcp_skb_pcount(skb);
1986
1987 if (packets_acked) {
1988 __u8 sacked = scb->sacked;
1989
1990 acked |= FLAG_DATA_ACKED;
1991 if (sacked) {
1992 if (sacked & TCPCB_RETRANS) {
1993 if (sacked & TCPCB_SACKED_RETRANS)
1994 tp->retrans_out -= packets_acked;
1995 acked |= FLAG_RETRANS_DATA_ACKED;
1996 *seq_rtt = -1;
1997 } else if (*seq_rtt < 0)
1998 *seq_rtt = now - scb->when;
1999 if (sacked & TCPCB_SACKED_ACKED)
2000 tp->sacked_out -= packets_acked;
2001 if (sacked & TCPCB_LOST)
2002 tp->lost_out -= packets_acked;
2003 if (sacked & TCPCB_URG) {
2004 if (tp->urg_mode &&
2005 !before(seq, tp->snd_up))
2006 tp->urg_mode = 0;
2007 }
2008 } else if (*seq_rtt < 0)
2009 *seq_rtt = now - scb->when;
2010
2011 if (tp->fackets_out) {
2012 __u32 dval = min(tp->fackets_out, packets_acked);
2013 tp->fackets_out -= dval;
2014 }
2015 tp->packets_out -= packets_acked;
2016
2017 BUG_ON(tcp_skb_pcount(skb) == 0);
2018 BUG_ON(!before(scb->seq, scb->end_seq));
2019 }
2020
2021 return acked;
2022 }
2023
2024
2025 /* Remove acknowledged frames from the retransmission queue. */
2026 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p, s32 *seq_usrtt)
2027 {
2028 struct tcp_sock *tp = tcp_sk(sk);
2029 struct sk_buff *skb;
2030 __u32 now = tcp_time_stamp;
2031 int acked = 0;
2032 __s32 seq_rtt = -1;
2033 struct timeval usnow;
2034 u32 pkts_acked = 0;
2035
2036 if (seq_usrtt)
2037 do_gettimeofday(&usnow);
2038
2039 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2040 skb != sk->sk_send_head) {
2041 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2042 __u8 sacked = scb->sacked;
2043
2044 /* If our packet is before the ack sequence we can
2045 * discard it as it's confirmed to have arrived at
2046 * the other end.
2047 */
2048 if (after(scb->end_seq, tp->snd_una)) {
2049 if (tcp_skb_pcount(skb) > 1 &&
2050 after(tp->snd_una, scb->seq))
2051 acked |= tcp_tso_acked(sk, skb,
2052 now, &seq_rtt);
2053 break;
2054 }
2055
2056 /* Initial outgoing SYN's get put onto the write_queue
2057 * just like anything else we transmit. It is not
2058 * true data, and if we misinform our callers that
2059 * this ACK acks real data, we will erroneously exit
2060 * connection startup slow start one packet too
2061 * quickly. This is severely frowned upon behavior.
2062 */
2063 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2064 acked |= FLAG_DATA_ACKED;
2065 ++pkts_acked;
2066 } else {
2067 acked |= FLAG_SYN_ACKED;
2068 tp->retrans_stamp = 0;
2069 }
2070
2071 if (sacked) {
2072 if (sacked & TCPCB_RETRANS) {
2073 if(sacked & TCPCB_SACKED_RETRANS)
2074 tp->retrans_out -= tcp_skb_pcount(skb);
2075 acked |= FLAG_RETRANS_DATA_ACKED;
2076 seq_rtt = -1;
2077 } else if (seq_rtt < 0)
2078 seq_rtt = now - scb->when;
2079 if (seq_usrtt)
2080 *seq_usrtt = (usnow.tv_sec - skb->stamp.tv_sec) * 1000000
2081 + (usnow.tv_usec - skb->stamp.tv_usec);
2082
2083 if (sacked & TCPCB_SACKED_ACKED)
2084 tp->sacked_out -= tcp_skb_pcount(skb);
2085 if (sacked & TCPCB_LOST)
2086 tp->lost_out -= tcp_skb_pcount(skb);
2087 if (sacked & TCPCB_URG) {
2088 if (tp->urg_mode &&
2089 !before(scb->end_seq, tp->snd_up))
2090 tp->urg_mode = 0;
2091 }
2092 } else if (seq_rtt < 0)
2093 seq_rtt = now - scb->when;
2094 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2095 tcp_packets_out_dec(tp, skb);
2096 __skb_unlink(skb, &sk->sk_write_queue);
2097 sk_stream_free_skb(sk, skb);
2098 }
2099
2100 if (acked&FLAG_ACKED) {
2101 tcp_ack_update_rtt(sk, acked, seq_rtt, seq_usrtt);
2102 tcp_ack_packets_out(sk, tp);
2103
2104 if (tp->ca_ops->pkts_acked)
2105 tp->ca_ops->pkts_acked(tp, pkts_acked);
2106 }
2107
2108 #if FASTRETRANS_DEBUG > 0
2109 BUG_TRAP((int)tp->sacked_out >= 0);
2110 BUG_TRAP((int)tp->lost_out >= 0);
2111 BUG_TRAP((int)tp->retrans_out >= 0);
2112 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2113 if (tp->lost_out) {
2114 printk(KERN_DEBUG "Leak l=%u %d\n",
2115 tp->lost_out, tp->ca_state);
2116 tp->lost_out = 0;
2117 }
2118 if (tp->sacked_out) {
2119 printk(KERN_DEBUG "Leak s=%u %d\n",
2120 tp->sacked_out, tp->ca_state);
2121 tp->sacked_out = 0;
2122 }
2123 if (tp->retrans_out) {
2124 printk(KERN_DEBUG "Leak r=%u %d\n",
2125 tp->retrans_out, tp->ca_state);
2126 tp->retrans_out = 0;
2127 }
2128 }
2129 #endif
2130 *seq_rtt_p = seq_rtt;
2131 return acked;
2132 }
2133
2134 static void tcp_ack_probe(struct sock *sk)
2135 {
2136 const struct tcp_sock *tp = tcp_sk(sk);
2137 struct inet_connection_sock *icsk = inet_csk(sk);
2138
2139 /* Was it a usable window open? */
2140
2141 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2142 tp->snd_una + tp->snd_wnd)) {
2143 icsk->icsk_backoff = 0;
2144 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2145 /* Socket must be waked up by subsequent tcp_data_snd_check().
2146 * This function is not for random using!
2147 */
2148 } else {
2149 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2150 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2151 TCP_RTO_MAX);
2152 }
2153 }
2154
2155 static inline int tcp_ack_is_dubious(struct tcp_sock *tp, int flag)
2156 {
2157 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2158 tp->ca_state != TCP_CA_Open);
2159 }
2160
2161 static inline int tcp_may_raise_cwnd(struct tcp_sock *tp, int flag)
2162 {
2163 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2164 !((1<<tp->ca_state)&(TCPF_CA_Recovery|TCPF_CA_CWR));
2165 }
2166
2167 /* Check that window update is acceptable.
2168 * The function assumes that snd_una<=ack<=snd_next.
2169 */
2170 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2171 const u32 ack_seq, const u32 nwin)
2172 {
2173 return (after(ack, tp->snd_una) ||
2174 after(ack_seq, tp->snd_wl1) ||
2175 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2176 }
2177
2178 /* Update our send window.
2179 *
2180 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2181 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2182 */
2183 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2184 struct sk_buff *skb, u32 ack, u32 ack_seq)
2185 {
2186 int flag = 0;
2187 u32 nwin = ntohs(skb->h.th->window);
2188
2189 if (likely(!skb->h.th->syn))
2190 nwin <<= tp->rx_opt.snd_wscale;
2191
2192 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2193 flag |= FLAG_WIN_UPDATE;
2194 tcp_update_wl(tp, ack, ack_seq);
2195
2196 if (tp->snd_wnd != nwin) {
2197 tp->snd_wnd = nwin;
2198
2199 /* Note, it is the only place, where
2200 * fast path is recovered for sending TCP.
2201 */
2202 tcp_fast_path_check(sk, tp);
2203
2204 if (nwin > tp->max_window) {
2205 tp->max_window = nwin;
2206 tcp_sync_mss(sk, tp->pmtu_cookie);
2207 }
2208 }
2209 }
2210
2211 tp->snd_una = ack;
2212
2213 return flag;
2214 }
2215
2216 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2217 {
2218 struct tcp_sock *tp = tcp_sk(sk);
2219
2220 tcp_sync_left_out(tp);
2221
2222 if (tp->snd_una == prior_snd_una ||
2223 !before(tp->snd_una, tp->frto_highmark)) {
2224 /* RTO was caused by loss, start retransmitting in
2225 * go-back-N slow start
2226 */
2227 tcp_enter_frto_loss(sk);
2228 return;
2229 }
2230
2231 if (tp->frto_counter == 1) {
2232 /* First ACK after RTO advances the window: allow two new
2233 * segments out.
2234 */
2235 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2236 } else {
2237 /* Also the second ACK after RTO advances the window.
2238 * The RTO was likely spurious. Reduce cwnd and continue
2239 * in congestion avoidance
2240 */
2241 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2242 tcp_moderate_cwnd(tp);
2243 }
2244
2245 /* F-RTO affects on two new ACKs following RTO.
2246 * At latest on third ACK the TCP behavor is back to normal.
2247 */
2248 tp->frto_counter = (tp->frto_counter + 1) % 3;
2249 }
2250
2251 /* This routine deals with incoming acks, but not outgoing ones. */
2252 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2253 {
2254 struct tcp_sock *tp = tcp_sk(sk);
2255 u32 prior_snd_una = tp->snd_una;
2256 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2257 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2258 u32 prior_in_flight;
2259 s32 seq_rtt;
2260 s32 seq_usrtt = 0;
2261 int prior_packets;
2262
2263 /* If the ack is newer than sent or older than previous acks
2264 * then we can probably ignore it.
2265 */
2266 if (after(ack, tp->snd_nxt))
2267 goto uninteresting_ack;
2268
2269 if (before(ack, prior_snd_una))
2270 goto old_ack;
2271
2272 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2273 /* Window is constant, pure forward advance.
2274 * No more checks are required.
2275 * Note, we use the fact that SND.UNA>=SND.WL2.
2276 */
2277 tcp_update_wl(tp, ack, ack_seq);
2278 tp->snd_una = ack;
2279 flag |= FLAG_WIN_UPDATE;
2280
2281 tcp_ca_event(tp, CA_EVENT_FAST_ACK);
2282
2283 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2284 } else {
2285 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2286 flag |= FLAG_DATA;
2287 else
2288 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2289
2290 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2291
2292 if (TCP_SKB_CB(skb)->sacked)
2293 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2294
2295 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2296 flag |= FLAG_ECE;
2297
2298 tcp_ca_event(tp, CA_EVENT_SLOW_ACK);
2299 }
2300
2301 /* We passed data and got it acked, remove any soft error
2302 * log. Something worked...
2303 */
2304 sk->sk_err_soft = 0;
2305 tp->rcv_tstamp = tcp_time_stamp;
2306 prior_packets = tp->packets_out;
2307 if (!prior_packets)
2308 goto no_queue;
2309
2310 prior_in_flight = tcp_packets_in_flight(tp);
2311
2312 /* See if we can take anything off of the retransmit queue. */
2313 flag |= tcp_clean_rtx_queue(sk, &seq_rtt,
2314 tp->ca_ops->rtt_sample ? &seq_usrtt : NULL);
2315
2316 if (tp->frto_counter)
2317 tcp_process_frto(sk, prior_snd_una);
2318
2319 if (tcp_ack_is_dubious(tp, flag)) {
2320 /* Advanve CWND, if state allows this. */
2321 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(tp, flag))
2322 tcp_cong_avoid(tp, ack, seq_rtt, prior_in_flight, 0);
2323 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2324 } else {
2325 if ((flag & FLAG_DATA_ACKED))
2326 tcp_cong_avoid(tp, ack, seq_rtt, prior_in_flight, 1);
2327 }
2328
2329 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2330 dst_confirm(sk->sk_dst_cache);
2331
2332 return 1;
2333
2334 no_queue:
2335 tp->probes_out = 0;
2336
2337 /* If this ack opens up a zero window, clear backoff. It was
2338 * being used to time the probes, and is probably far higher than
2339 * it needs to be for normal retransmission.
2340 */
2341 if (sk->sk_send_head)
2342 tcp_ack_probe(sk);
2343 return 1;
2344
2345 old_ack:
2346 if (TCP_SKB_CB(skb)->sacked)
2347 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2348
2349 uninteresting_ack:
2350 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2351 return 0;
2352 }
2353
2354
2355 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2356 * But, this can also be called on packets in the established flow when
2357 * the fast version below fails.
2358 */
2359 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2360 {
2361 unsigned char *ptr;
2362 struct tcphdr *th = skb->h.th;
2363 int length=(th->doff*4)-sizeof(struct tcphdr);
2364
2365 ptr = (unsigned char *)(th + 1);
2366 opt_rx->saw_tstamp = 0;
2367
2368 while(length>0) {
2369 int opcode=*ptr++;
2370 int opsize;
2371
2372 switch (opcode) {
2373 case TCPOPT_EOL:
2374 return;
2375 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2376 length--;
2377 continue;
2378 default:
2379 opsize=*ptr++;
2380 if (opsize < 2) /* "silly options" */
2381 return;
2382 if (opsize > length)
2383 return; /* don't parse partial options */
2384 switch(opcode) {
2385 case TCPOPT_MSS:
2386 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2387 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2388 if (in_mss) {
2389 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2390 in_mss = opt_rx->user_mss;
2391 opt_rx->mss_clamp = in_mss;
2392 }
2393 }
2394 break;
2395 case TCPOPT_WINDOW:
2396 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2397 if (sysctl_tcp_window_scaling) {
2398 __u8 snd_wscale = *(__u8 *) ptr;
2399 opt_rx->wscale_ok = 1;
2400 if (snd_wscale > 14) {
2401 if(net_ratelimit())
2402 printk(KERN_INFO "tcp_parse_options: Illegal window "
2403 "scaling value %d >14 received.\n",
2404 snd_wscale);
2405 snd_wscale = 14;
2406 }
2407 opt_rx->snd_wscale = snd_wscale;
2408 }
2409 break;
2410 case TCPOPT_TIMESTAMP:
2411 if(opsize==TCPOLEN_TIMESTAMP) {
2412 if ((estab && opt_rx->tstamp_ok) ||
2413 (!estab && sysctl_tcp_timestamps)) {
2414 opt_rx->saw_tstamp = 1;
2415 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2416 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2417 }
2418 }
2419 break;
2420 case TCPOPT_SACK_PERM:
2421 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2422 if (sysctl_tcp_sack) {
2423 opt_rx->sack_ok = 1;
2424 tcp_sack_reset(opt_rx);
2425 }
2426 }
2427 break;
2428
2429 case TCPOPT_SACK:
2430 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2431 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2432 opt_rx->sack_ok) {
2433 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2434 }
2435 };
2436 ptr+=opsize-2;
2437 length-=opsize;
2438 };
2439 }
2440 }
2441
2442 /* Fast parse options. This hopes to only see timestamps.
2443 * If it is wrong it falls back on tcp_parse_options().
2444 */
2445 static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2446 struct tcp_sock *tp)
2447 {
2448 if (th->doff == sizeof(struct tcphdr)>>2) {
2449 tp->rx_opt.saw_tstamp = 0;
2450 return 0;
2451 } else if (tp->rx_opt.tstamp_ok &&
2452 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2453 __u32 *ptr = (__u32 *)(th + 1);
2454 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2455 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2456 tp->rx_opt.saw_tstamp = 1;
2457 ++ptr;
2458 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2459 ++ptr;
2460 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2461 return 1;
2462 }
2463 }
2464 tcp_parse_options(skb, &tp->rx_opt, 1);
2465 return 1;
2466 }
2467
2468 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2469 {
2470 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2471 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2472 }
2473
2474 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2475 {
2476 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2477 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2478 * extra check below makes sure this can only happen
2479 * for pure ACK frames. -DaveM
2480 *
2481 * Not only, also it occurs for expired timestamps.
2482 */
2483
2484 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2485 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2486 tcp_store_ts_recent(tp);
2487 }
2488 }
2489
2490 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2491 *
2492 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2493 * it can pass through stack. So, the following predicate verifies that
2494 * this segment is not used for anything but congestion avoidance or
2495 * fast retransmit. Moreover, we even are able to eliminate most of such
2496 * second order effects, if we apply some small "replay" window (~RTO)
2497 * to timestamp space.
2498 *
2499 * All these measures still do not guarantee that we reject wrapped ACKs
2500 * on networks with high bandwidth, when sequence space is recycled fastly,
2501 * but it guarantees that such events will be very rare and do not affect
2502 * connection seriously. This doesn't look nice, but alas, PAWS is really
2503 * buggy extension.
2504 *
2505 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2506 * states that events when retransmit arrives after original data are rare.
2507 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2508 * the biggest problem on large power networks even with minor reordering.
2509 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2510 * up to bandwidth of 18Gigabit/sec. 8) ]
2511 */
2512
2513 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2514 {
2515 struct tcp_sock *tp = tcp_sk(sk);
2516 struct tcphdr *th = skb->h.th;
2517 u32 seq = TCP_SKB_CB(skb)->seq;
2518 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2519
2520 return (/* 1. Pure ACK with correct sequence number. */
2521 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2522
2523 /* 2. ... and duplicate ACK. */
2524 ack == tp->snd_una &&
2525
2526 /* 3. ... and does not update window. */
2527 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2528
2529 /* 4. ... and sits in replay window. */
2530 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2531 }
2532
2533 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2534 {
2535 const struct tcp_sock *tp = tcp_sk(sk);
2536 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2537 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2538 !tcp_disordered_ack(sk, skb));
2539 }
2540
2541 /* Check segment sequence number for validity.
2542 *
2543 * Segment controls are considered valid, if the segment
2544 * fits to the window after truncation to the window. Acceptability
2545 * of data (and SYN, FIN, of course) is checked separately.
2546 * See tcp_data_queue(), for example.
2547 *
2548 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2549 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2550 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2551 * (borrowed from freebsd)
2552 */
2553
2554 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2555 {
2556 return !before(end_seq, tp->rcv_wup) &&
2557 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2558 }
2559
2560 /* When we get a reset we do this. */
2561 static void tcp_reset(struct sock *sk)
2562 {
2563 /* We want the right error as BSD sees it (and indeed as we do). */
2564 switch (sk->sk_state) {
2565 case TCP_SYN_SENT:
2566 sk->sk_err = ECONNREFUSED;
2567 break;
2568 case TCP_CLOSE_WAIT:
2569 sk->sk_err = EPIPE;
2570 break;
2571 case TCP_CLOSE:
2572 return;
2573 default:
2574 sk->sk_err = ECONNRESET;
2575 }
2576
2577 if (!sock_flag(sk, SOCK_DEAD))
2578 sk->sk_error_report(sk);
2579
2580 tcp_done(sk);
2581 }
2582
2583 /*
2584 * Process the FIN bit. This now behaves as it is supposed to work
2585 * and the FIN takes effect when it is validly part of sequence
2586 * space. Not before when we get holes.
2587 *
2588 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2589 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2590 * TIME-WAIT)
2591 *
2592 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2593 * close and we go into CLOSING (and later onto TIME-WAIT)
2594 *
2595 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2596 */
2597 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2598 {
2599 struct tcp_sock *tp = tcp_sk(sk);
2600
2601 inet_csk_schedule_ack(sk);
2602
2603 sk->sk_shutdown |= RCV_SHUTDOWN;
2604 sock_set_flag(sk, SOCK_DONE);
2605
2606 switch (sk->sk_state) {
2607 case TCP_SYN_RECV:
2608 case TCP_ESTABLISHED:
2609 /* Move to CLOSE_WAIT */
2610 tcp_set_state(sk, TCP_CLOSE_WAIT);
2611 inet_csk(sk)->icsk_ack.pingpong = 1;
2612 break;
2613
2614 case TCP_CLOSE_WAIT:
2615 case TCP_CLOSING:
2616 /* Received a retransmission of the FIN, do
2617 * nothing.
2618 */
2619 break;
2620 case TCP_LAST_ACK:
2621 /* RFC793: Remain in the LAST-ACK state. */
2622 break;
2623
2624 case TCP_FIN_WAIT1:
2625 /* This case occurs when a simultaneous close
2626 * happens, we must ack the received FIN and
2627 * enter the CLOSING state.
2628 */
2629 tcp_send_ack(sk);
2630 tcp_set_state(sk, TCP_CLOSING);
2631 break;
2632 case TCP_FIN_WAIT2:
2633 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2634 tcp_send_ack(sk);
2635 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2636 break;
2637 default:
2638 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2639 * cases we should never reach this piece of code.
2640 */
2641 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2642 __FUNCTION__, sk->sk_state);
2643 break;
2644 };
2645
2646 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2647 * Probably, we should reset in this case. For now drop them.
2648 */
2649 __skb_queue_purge(&tp->out_of_order_queue);
2650 if (tp->rx_opt.sack_ok)
2651 tcp_sack_reset(&tp->rx_opt);
2652 sk_stream_mem_reclaim(sk);
2653
2654 if (!sock_flag(sk, SOCK_DEAD)) {
2655 sk->sk_state_change(sk);
2656
2657 /* Do not send POLL_HUP for half duplex close. */
2658 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2659 sk->sk_state == TCP_CLOSE)
2660 sk_wake_async(sk, 1, POLL_HUP);
2661 else
2662 sk_wake_async(sk, 1, POLL_IN);
2663 }
2664 }
2665
2666 static __inline__ int
2667 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2668 {
2669 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2670 if (before(seq, sp->start_seq))
2671 sp->start_seq = seq;
2672 if (after(end_seq, sp->end_seq))
2673 sp->end_seq = end_seq;
2674 return 1;
2675 }
2676 return 0;
2677 }
2678
2679 static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2680 {
2681 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2682 if (before(seq, tp->rcv_nxt))
2683 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2684 else
2685 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2686
2687 tp->rx_opt.dsack = 1;
2688 tp->duplicate_sack[0].start_seq = seq;
2689 tp->duplicate_sack[0].end_seq = end_seq;
2690 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2691 }
2692 }
2693
2694 static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2695 {
2696 if (!tp->rx_opt.dsack)
2697 tcp_dsack_set(tp, seq, end_seq);
2698 else
2699 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2700 }
2701
2702 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2703 {
2704 struct tcp_sock *tp = tcp_sk(sk);
2705
2706 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2707 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2708 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2709 tcp_enter_quickack_mode(sk);
2710
2711 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2712 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2713
2714 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2715 end_seq = tp->rcv_nxt;
2716 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2717 }
2718 }
2719
2720 tcp_send_ack(sk);
2721 }
2722
2723 /* These routines update the SACK block as out-of-order packets arrive or
2724 * in-order packets close up the sequence space.
2725 */
2726 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2727 {
2728 int this_sack;
2729 struct tcp_sack_block *sp = &tp->selective_acks[0];
2730 struct tcp_sack_block *swalk = sp+1;
2731
2732 /* See if the recent change to the first SACK eats into
2733 * or hits the sequence space of other SACK blocks, if so coalesce.
2734 */
2735 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2736 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2737 int i;
2738
2739 /* Zap SWALK, by moving every further SACK up by one slot.
2740 * Decrease num_sacks.
2741 */
2742 tp->rx_opt.num_sacks--;
2743 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2744 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2745 sp[i] = sp[i+1];
2746 continue;
2747 }
2748 this_sack++, swalk++;
2749 }
2750 }
2751
2752 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2753 {
2754 __u32 tmp;
2755
2756 tmp = sack1->start_seq;
2757 sack1->start_seq = sack2->start_seq;
2758 sack2->start_seq = tmp;
2759
2760 tmp = sack1->end_seq;
2761 sack1->end_seq = sack2->end_seq;
2762 sack2->end_seq = tmp;
2763 }
2764
2765 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2766 {
2767 struct tcp_sock *tp = tcp_sk(sk);
2768 struct tcp_sack_block *sp = &tp->selective_acks[0];
2769 int cur_sacks = tp->rx_opt.num_sacks;
2770 int this_sack;
2771
2772 if (!cur_sacks)
2773 goto new_sack;
2774
2775 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2776 if (tcp_sack_extend(sp, seq, end_seq)) {
2777 /* Rotate this_sack to the first one. */
2778 for (; this_sack>0; this_sack--, sp--)
2779 tcp_sack_swap(sp, sp-1);
2780 if (cur_sacks > 1)
2781 tcp_sack_maybe_coalesce(tp);
2782 return;
2783 }
2784 }
2785
2786 /* Could not find an adjacent existing SACK, build a new one,
2787 * put it at the front, and shift everyone else down. We
2788 * always know there is at least one SACK present already here.
2789 *
2790 * If the sack array is full, forget about the last one.
2791 */
2792 if (this_sack >= 4) {
2793 this_sack--;
2794 tp->rx_opt.num_sacks--;
2795 sp--;
2796 }
2797 for(; this_sack > 0; this_sack--, sp--)
2798 *sp = *(sp-1);
2799
2800 new_sack:
2801 /* Build the new head SACK, and we're done. */
2802 sp->start_seq = seq;
2803 sp->end_seq = end_seq;
2804 tp->rx_opt.num_sacks++;
2805 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2806 }
2807
2808 /* RCV.NXT advances, some SACKs should be eaten. */
2809
2810 static void tcp_sack_remove(struct tcp_sock *tp)
2811 {
2812 struct tcp_sack_block *sp = &tp->selective_acks[0];
2813 int num_sacks = tp->rx_opt.num_sacks;
2814 int this_sack;
2815
2816 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2817 if (skb_queue_empty(&tp->out_of_order_queue)) {
2818 tp->rx_opt.num_sacks = 0;
2819 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
2820 return;
2821 }
2822
2823 for(this_sack = 0; this_sack < num_sacks; ) {
2824 /* Check if the start of the sack is covered by RCV.NXT. */
2825 if (!before(tp->rcv_nxt, sp->start_seq)) {
2826 int i;
2827
2828 /* RCV.NXT must cover all the block! */
2829 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
2830
2831 /* Zap this SACK, by moving forward any other SACKS. */
2832 for (i=this_sack+1; i < num_sacks; i++)
2833 tp->selective_acks[i-1] = tp->selective_acks[i];
2834 num_sacks--;
2835 continue;
2836 }
2837 this_sack++;
2838 sp++;
2839 }
2840 if (num_sacks != tp->rx_opt.num_sacks) {
2841 tp->rx_opt.num_sacks = num_sacks;
2842 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2843 }
2844 }
2845
2846 /* This one checks to see if we can put data from the
2847 * out_of_order queue into the receive_queue.
2848 */
2849 static void tcp_ofo_queue(struct sock *sk)
2850 {
2851 struct tcp_sock *tp = tcp_sk(sk);
2852 __u32 dsack_high = tp->rcv_nxt;
2853 struct sk_buff *skb;
2854
2855 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
2856 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
2857 break;
2858
2859 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
2860 __u32 dsack = dsack_high;
2861 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
2862 dsack_high = TCP_SKB_CB(skb)->end_seq;
2863 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
2864 }
2865
2866 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2867 SOCK_DEBUG(sk, "ofo packet was already received \n");
2868 __skb_unlink(skb, &tp->out_of_order_queue);
2869 __kfree_skb(skb);
2870 continue;
2871 }
2872 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
2873 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2874 TCP_SKB_CB(skb)->end_seq);
2875
2876 __skb_unlink(skb, &tp->out_of_order_queue);
2877 __skb_queue_tail(&sk->sk_receive_queue, skb);
2878 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2879 if(skb->h.th->fin)
2880 tcp_fin(skb, sk, skb->h.th);
2881 }
2882 }
2883
2884 static int tcp_prune_queue(struct sock *sk);
2885
2886 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
2887 {
2888 struct tcphdr *th = skb->h.th;
2889 struct tcp_sock *tp = tcp_sk(sk);
2890 int eaten = -1;
2891
2892 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
2893 goto drop;
2894
2895 __skb_pull(skb, th->doff*4);
2896
2897 TCP_ECN_accept_cwr(tp, skb);
2898
2899 if (tp->rx_opt.dsack) {
2900 tp->rx_opt.dsack = 0;
2901 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
2902 4 - tp->rx_opt.tstamp_ok);
2903 }
2904
2905 /* Queue data for delivery to the user.
2906 * Packets in sequence go to the receive queue.
2907 * Out of sequence packets to the out_of_order_queue.
2908 */
2909 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
2910 if (tcp_receive_window(tp) == 0)
2911 goto out_of_window;
2912
2913 /* Ok. In sequence. In window. */
2914 if (tp->ucopy.task == current &&
2915 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
2916 sock_owned_by_user(sk) && !tp->urg_data) {
2917 int chunk = min_t(unsigned int, skb->len,
2918 tp->ucopy.len);
2919
2920 __set_current_state(TASK_RUNNING);
2921
2922 local_bh_enable();
2923 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
2924 tp->ucopy.len -= chunk;
2925 tp->copied_seq += chunk;
2926 eaten = (chunk == skb->len && !th->fin);
2927 tcp_rcv_space_adjust(sk);
2928 }
2929 local_bh_disable();
2930 }
2931
2932 if (eaten <= 0) {
2933 queue_and_out:
2934 if (eaten < 0 &&
2935 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
2936 !sk_stream_rmem_schedule(sk, skb))) {
2937 if (tcp_prune_queue(sk) < 0 ||
2938 !sk_stream_rmem_schedule(sk, skb))
2939 goto drop;
2940 }
2941 sk_stream_set_owner_r(skb, sk);
2942 __skb_queue_tail(&sk->sk_receive_queue, skb);
2943 }
2944 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2945 if(skb->len)
2946 tcp_event_data_recv(sk, tp, skb);
2947 if(th->fin)
2948 tcp_fin(skb, sk, th);
2949
2950 if (!skb_queue_empty(&tp->out_of_order_queue)) {
2951 tcp_ofo_queue(sk);
2952
2953 /* RFC2581. 4.2. SHOULD send immediate ACK, when
2954 * gap in queue is filled.
2955 */
2956 if (skb_queue_empty(&tp->out_of_order_queue))
2957 inet_csk(sk)->icsk_ack.pingpong = 0;
2958 }
2959
2960 if (tp->rx_opt.num_sacks)
2961 tcp_sack_remove(tp);
2962
2963 tcp_fast_path_check(sk, tp);
2964
2965 if (eaten > 0)
2966 __kfree_skb(skb);
2967 else if (!sock_flag(sk, SOCK_DEAD))
2968 sk->sk_data_ready(sk, 0);
2969 return;
2970 }
2971
2972 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2973 /* A retransmit, 2nd most common case. Force an immediate ack. */
2974 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2975 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
2976
2977 out_of_window:
2978 tcp_enter_quickack_mode(sk);
2979 inet_csk_schedule_ack(sk);
2980 drop:
2981 __kfree_skb(skb);
2982 return;
2983 }
2984
2985 /* Out of window. F.e. zero window probe. */
2986 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
2987 goto out_of_window;
2988
2989 tcp_enter_quickack_mode(sk);
2990
2991 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2992 /* Partial packet, seq < rcv_next < end_seq */
2993 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
2994 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2995 TCP_SKB_CB(skb)->end_seq);
2996
2997 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
2998
2999 /* If window is closed, drop tail of packet. But after
3000 * remembering D-SACK for its head made in previous line.
3001 */
3002 if (!tcp_receive_window(tp))
3003 goto out_of_window;
3004 goto queue_and_out;
3005 }
3006
3007 TCP_ECN_check_ce(tp, skb);
3008
3009 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3010 !sk_stream_rmem_schedule(sk, skb)) {
3011 if (tcp_prune_queue(sk) < 0 ||
3012 !sk_stream_rmem_schedule(sk, skb))
3013 goto drop;
3014 }
3015
3016 /* Disable header prediction. */
3017 tp->pred_flags = 0;
3018 inet_csk_schedule_ack(sk);
3019
3020 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3021 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3022
3023 sk_stream_set_owner_r(skb, sk);
3024
3025 if (!skb_peek(&tp->out_of_order_queue)) {
3026 /* Initial out of order segment, build 1 SACK. */
3027 if (tp->rx_opt.sack_ok) {
3028 tp->rx_opt.num_sacks = 1;
3029 tp->rx_opt.dsack = 0;
3030 tp->rx_opt.eff_sacks = 1;
3031 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3032 tp->selective_acks[0].end_seq =
3033 TCP_SKB_CB(skb)->end_seq;
3034 }
3035 __skb_queue_head(&tp->out_of_order_queue,skb);
3036 } else {
3037 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3038 u32 seq = TCP_SKB_CB(skb)->seq;
3039 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3040
3041 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3042 __skb_append(skb1, skb, &tp->out_of_order_queue);
3043
3044 if (!tp->rx_opt.num_sacks ||
3045 tp->selective_acks[0].end_seq != seq)
3046 goto add_sack;
3047
3048 /* Common case: data arrive in order after hole. */
3049 tp->selective_acks[0].end_seq = end_seq;
3050 return;
3051 }
3052
3053 /* Find place to insert this segment. */
3054 do {
3055 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3056 break;
3057 } while ((skb1 = skb1->prev) !=
3058 (struct sk_buff*)&tp->out_of_order_queue);
3059
3060 /* Do skb overlap to previous one? */
3061 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3062 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3063 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3064 /* All the bits are present. Drop. */
3065 __kfree_skb(skb);
3066 tcp_dsack_set(tp, seq, end_seq);
3067 goto add_sack;
3068 }
3069 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3070 /* Partial overlap. */
3071 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3072 } else {
3073 skb1 = skb1->prev;
3074 }
3075 }
3076 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3077
3078 /* And clean segments covered by new one as whole. */
3079 while ((skb1 = skb->next) !=
3080 (struct sk_buff*)&tp->out_of_order_queue &&
3081 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3082 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3083 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3084 break;
3085 }
3086 __skb_unlink(skb1, &tp->out_of_order_queue);
3087 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3088 __kfree_skb(skb1);
3089 }
3090
3091 add_sack:
3092 if (tp->rx_opt.sack_ok)
3093 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3094 }
3095 }
3096
3097 /* Collapse contiguous sequence of skbs head..tail with
3098 * sequence numbers start..end.
3099 * Segments with FIN/SYN are not collapsed (only because this
3100 * simplifies code)
3101 */
3102 static void
3103 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3104 struct sk_buff *head, struct sk_buff *tail,
3105 u32 start, u32 end)
3106 {
3107 struct sk_buff *skb;
3108
3109 /* First, check that queue is collapsable and find
3110 * the point where collapsing can be useful. */
3111 for (skb = head; skb != tail; ) {
3112 /* No new bits? It is possible on ofo queue. */
3113 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3114 struct sk_buff *next = skb->next;
3115 __skb_unlink(skb, list);
3116 __kfree_skb(skb);
3117 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3118 skb = next;
3119 continue;
3120 }
3121
3122 /* The first skb to collapse is:
3123 * - not SYN/FIN and
3124 * - bloated or contains data before "start" or
3125 * overlaps to the next one.
3126 */
3127 if (!skb->h.th->syn && !skb->h.th->fin &&
3128 (tcp_win_from_space(skb->truesize) > skb->len ||
3129 before(TCP_SKB_CB(skb)->seq, start) ||
3130 (skb->next != tail &&
3131 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3132 break;
3133
3134 /* Decided to skip this, advance start seq. */
3135 start = TCP_SKB_CB(skb)->end_seq;
3136 skb = skb->next;
3137 }
3138 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3139 return;
3140
3141 while (before(start, end)) {
3142 struct sk_buff *nskb;
3143 int header = skb_headroom(skb);
3144 int copy = SKB_MAX_ORDER(header, 0);
3145
3146 /* Too big header? This can happen with IPv6. */
3147 if (copy < 0)
3148 return;
3149 if (end-start < copy)
3150 copy = end-start;
3151 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3152 if (!nskb)
3153 return;
3154 skb_reserve(nskb, header);
3155 memcpy(nskb->head, skb->head, header);
3156 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3157 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3158 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3159 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3160 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3161 __skb_insert(nskb, skb->prev, skb, list);
3162 sk_stream_set_owner_r(nskb, sk);
3163
3164 /* Copy data, releasing collapsed skbs. */
3165 while (copy > 0) {
3166 int offset = start - TCP_SKB_CB(skb)->seq;
3167 int size = TCP_SKB_CB(skb)->end_seq - start;
3168
3169 if (offset < 0) BUG();
3170 if (size > 0) {
3171 size = min(copy, size);
3172 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3173 BUG();
3174 TCP_SKB_CB(nskb)->end_seq += size;
3175 copy -= size;
3176 start += size;
3177 }
3178 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3179 struct sk_buff *next = skb->next;
3180 __skb_unlink(skb, list);
3181 __kfree_skb(skb);
3182 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3183 skb = next;
3184 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3185 return;
3186 }
3187 }
3188 }
3189 }
3190
3191 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3192 * and tcp_collapse() them until all the queue is collapsed.
3193 */
3194 static void tcp_collapse_ofo_queue(struct sock *sk)
3195 {
3196 struct tcp_sock *tp = tcp_sk(sk);
3197 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3198 struct sk_buff *head;
3199 u32 start, end;
3200
3201 if (skb == NULL)
3202 return;
3203
3204 start = TCP_SKB_CB(skb)->seq;
3205 end = TCP_SKB_CB(skb)->end_seq;
3206 head = skb;
3207
3208 for (;;) {
3209 skb = skb->next;
3210
3211 /* Segment is terminated when we see gap or when
3212 * we are at the end of all the queue. */
3213 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3214 after(TCP_SKB_CB(skb)->seq, end) ||
3215 before(TCP_SKB_CB(skb)->end_seq, start)) {
3216 tcp_collapse(sk, &tp->out_of_order_queue,
3217 head, skb, start, end);
3218 head = skb;
3219 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3220 break;
3221 /* Start new segment */
3222 start = TCP_SKB_CB(skb)->seq;
3223 end = TCP_SKB_CB(skb)->end_seq;
3224 } else {
3225 if (before(TCP_SKB_CB(skb)->seq, start))
3226 start = TCP_SKB_CB(skb)->seq;
3227 if (after(TCP_SKB_CB(skb)->end_seq, end))
3228 end = TCP_SKB_CB(skb)->end_seq;
3229 }
3230 }
3231 }
3232
3233 /* Reduce allocated memory if we can, trying to get
3234 * the socket within its memory limits again.
3235 *
3236 * Return less than zero if we should start dropping frames
3237 * until the socket owning process reads some of the data
3238 * to stabilize the situation.
3239 */
3240 static int tcp_prune_queue(struct sock *sk)
3241 {
3242 struct tcp_sock *tp = tcp_sk(sk);
3243
3244 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3245
3246 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3247
3248 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3249 tcp_clamp_window(sk, tp);
3250 else if (tcp_memory_pressure)
3251 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3252
3253 tcp_collapse_ofo_queue(sk);
3254 tcp_collapse(sk, &sk->sk_receive_queue,
3255 sk->sk_receive_queue.next,
3256 (struct sk_buff*)&sk->sk_receive_queue,
3257 tp->copied_seq, tp->rcv_nxt);
3258 sk_stream_mem_reclaim(sk);
3259
3260 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3261 return 0;
3262
3263 /* Collapsing did not help, destructive actions follow.
3264 * This must not ever occur. */
3265
3266 /* First, purge the out_of_order queue. */
3267 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3268 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3269 __skb_queue_purge(&tp->out_of_order_queue);
3270
3271 /* Reset SACK state. A conforming SACK implementation will
3272 * do the same at a timeout based retransmit. When a connection
3273 * is in a sad state like this, we care only about integrity
3274 * of the connection not performance.
3275 */
3276 if (tp->rx_opt.sack_ok)
3277 tcp_sack_reset(&tp->rx_opt);
3278 sk_stream_mem_reclaim(sk);
3279 }
3280
3281 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3282 return 0;
3283
3284 /* If we are really being abused, tell the caller to silently
3285 * drop receive data on the floor. It will get retransmitted
3286 * and hopefully then we'll have sufficient space.
3287 */
3288 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3289
3290 /* Massive buffer overcommit. */
3291 tp->pred_flags = 0;
3292 return -1;
3293 }
3294
3295
3296 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3297 * As additional protections, we do not touch cwnd in retransmission phases,
3298 * and if application hit its sndbuf limit recently.
3299 */
3300 void tcp_cwnd_application_limited(struct sock *sk)
3301 {
3302 struct tcp_sock *tp = tcp_sk(sk);
3303
3304 if (tp->ca_state == TCP_CA_Open &&
3305 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3306 /* Limited by application or receiver window. */
3307 u32 win_used = max(tp->snd_cwnd_used, 2U);
3308 if (win_used < tp->snd_cwnd) {
3309 tp->snd_ssthresh = tcp_current_ssthresh(tp);
3310 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3311 }
3312 tp->snd_cwnd_used = 0;
3313 }
3314 tp->snd_cwnd_stamp = tcp_time_stamp;
3315 }
3316
3317 static inline int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3318 {
3319 /* If the user specified a specific send buffer setting, do
3320 * not modify it.
3321 */
3322 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3323 return 0;
3324
3325 /* If we are under global TCP memory pressure, do not expand. */
3326 if (tcp_memory_pressure)
3327 return 0;
3328
3329 /* If we are under soft global TCP memory pressure, do not expand. */
3330 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3331 return 0;
3332
3333 /* If we filled the congestion window, do not expand. */
3334 if (tp->packets_out >= tp->snd_cwnd)
3335 return 0;
3336
3337 return 1;
3338 }
3339
3340 /* When incoming ACK allowed to free some skb from write_queue,
3341 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3342 * on the exit from tcp input handler.
3343 *
3344 * PROBLEM: sndbuf expansion does not work well with largesend.
3345 */
3346 static void tcp_new_space(struct sock *sk)
3347 {
3348 struct tcp_sock *tp = tcp_sk(sk);
3349
3350 if (tcp_should_expand_sndbuf(sk, tp)) {
3351 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3352 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3353 demanded = max_t(unsigned int, tp->snd_cwnd,
3354 tp->reordering + 1);
3355 sndmem *= 2*demanded;
3356 if (sndmem > sk->sk_sndbuf)
3357 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3358 tp->snd_cwnd_stamp = tcp_time_stamp;
3359 }
3360
3361 sk->sk_write_space(sk);
3362 }
3363
3364 static inline void tcp_check_space(struct sock *sk)
3365 {
3366 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3367 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3368 if (sk->sk_socket &&
3369 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3370 tcp_new_space(sk);
3371 }
3372 }
3373
3374 static __inline__ void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3375 {
3376 tcp_push_pending_frames(sk, tp);
3377 tcp_check_space(sk);
3378 }
3379
3380 /*
3381 * Check if sending an ack is needed.
3382 */
3383 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3384 {
3385 struct tcp_sock *tp = tcp_sk(sk);
3386
3387 /* More than one full frame received... */
3388 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3389 /* ... and right edge of window advances far enough.
3390 * (tcp_recvmsg() will send ACK otherwise). Or...
3391 */
3392 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3393 /* We ACK each frame or... */
3394 tcp_in_quickack_mode(sk) ||
3395 /* We have out of order data. */
3396 (ofo_possible &&
3397 skb_peek(&tp->out_of_order_queue))) {
3398 /* Then ack it now */
3399 tcp_send_ack(sk);
3400 } else {
3401 /* Else, send delayed ack. */
3402 tcp_send_delayed_ack(sk);
3403 }
3404 }
3405
3406 static __inline__ void tcp_ack_snd_check(struct sock *sk)
3407 {
3408 if (!inet_csk_ack_scheduled(sk)) {
3409 /* We sent a data segment already. */
3410 return;
3411 }
3412 __tcp_ack_snd_check(sk, 1);
3413 }
3414
3415 /*
3416 * This routine is only called when we have urgent data
3417 * signalled. Its the 'slow' part of tcp_urg. It could be
3418 * moved inline now as tcp_urg is only called from one
3419 * place. We handle URGent data wrong. We have to - as
3420 * BSD still doesn't use the correction from RFC961.
3421 * For 1003.1g we should support a new option TCP_STDURG to permit
3422 * either form (or just set the sysctl tcp_stdurg).
3423 */
3424
3425 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3426 {
3427 struct tcp_sock *tp = tcp_sk(sk);
3428 u32 ptr = ntohs(th->urg_ptr);
3429
3430 if (ptr && !sysctl_tcp_stdurg)
3431 ptr--;
3432 ptr += ntohl(th->seq);
3433
3434 /* Ignore urgent data that we've already seen and read. */
3435 if (after(tp->copied_seq, ptr))
3436 return;
3437
3438 /* Do not replay urg ptr.
3439 *
3440 * NOTE: interesting situation not covered by specs.
3441 * Misbehaving sender may send urg ptr, pointing to segment,
3442 * which we already have in ofo queue. We are not able to fetch
3443 * such data and will stay in TCP_URG_NOTYET until will be eaten
3444 * by recvmsg(). Seems, we are not obliged to handle such wicked
3445 * situations. But it is worth to think about possibility of some
3446 * DoSes using some hypothetical application level deadlock.
3447 */
3448 if (before(ptr, tp->rcv_nxt))
3449 return;
3450
3451 /* Do we already have a newer (or duplicate) urgent pointer? */
3452 if (tp->urg_data && !after(ptr, tp->urg_seq))
3453 return;
3454
3455 /* Tell the world about our new urgent pointer. */
3456 sk_send_sigurg(sk);
3457
3458 /* We may be adding urgent data when the last byte read was
3459 * urgent. To do this requires some care. We cannot just ignore
3460 * tp->copied_seq since we would read the last urgent byte again
3461 * as data, nor can we alter copied_seq until this data arrives
3462 * or we break the sematics of SIOCATMARK (and thus sockatmark())
3463 *
3464 * NOTE. Double Dutch. Rendering to plain English: author of comment
3465 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3466 * and expect that both A and B disappear from stream. This is _wrong_.
3467 * Though this happens in BSD with high probability, this is occasional.
3468 * Any application relying on this is buggy. Note also, that fix "works"
3469 * only in this artificial test. Insert some normal data between A and B and we will
3470 * decline of BSD again. Verdict: it is better to remove to trap
3471 * buggy users.
3472 */
3473 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3474 !sock_flag(sk, SOCK_URGINLINE) &&
3475 tp->copied_seq != tp->rcv_nxt) {
3476 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3477 tp->copied_seq++;
3478 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3479 __skb_unlink(skb, &sk->sk_receive_queue);
3480 __kfree_skb(skb);
3481 }
3482 }
3483
3484 tp->urg_data = TCP_URG_NOTYET;
3485 tp->urg_seq = ptr;
3486
3487 /* Disable header prediction. */
3488 tp->pred_flags = 0;
3489 }
3490
3491 /* This is the 'fast' part of urgent handling. */
3492 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3493 {
3494 struct tcp_sock *tp = tcp_sk(sk);
3495
3496 /* Check if we get a new urgent pointer - normally not. */
3497 if (th->urg)
3498 tcp_check_urg(sk,th);
3499
3500 /* Do we wait for any urgent data? - normally not... */
3501 if (tp->urg_data == TCP_URG_NOTYET) {
3502 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3503 th->syn;
3504
3505 /* Is the urgent pointer pointing into this packet? */
3506 if (ptr < skb->len) {
3507 u8 tmp;
3508 if (skb_copy_bits(skb, ptr, &tmp, 1))
3509 BUG();
3510 tp->urg_data = TCP_URG_VALID | tmp;
3511 if (!sock_flag(sk, SOCK_DEAD))
3512 sk->sk_data_ready(sk, 0);
3513 }
3514 }
3515 }
3516
3517 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3518 {
3519 struct tcp_sock *tp = tcp_sk(sk);
3520 int chunk = skb->len - hlen;
3521 int err;
3522
3523 local_bh_enable();
3524 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3525 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3526 else
3527 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3528 tp->ucopy.iov);
3529
3530 if (!err) {
3531 tp->ucopy.len -= chunk;
3532 tp->copied_seq += chunk;
3533 tcp_rcv_space_adjust(sk);
3534 }
3535
3536 local_bh_disable();
3537 return err;
3538 }
3539
3540 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3541 {
3542 int result;
3543
3544 if (sock_owned_by_user(sk)) {
3545 local_bh_enable();
3546 result = __tcp_checksum_complete(skb);
3547 local_bh_disable();
3548 } else {
3549 result = __tcp_checksum_complete(skb);
3550 }
3551 return result;
3552 }
3553
3554 static __inline__ int
3555 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3556 {
3557 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3558 __tcp_checksum_complete_user(sk, skb);
3559 }
3560
3561 /*
3562 * TCP receive function for the ESTABLISHED state.
3563 *
3564 * It is split into a fast path and a slow path. The fast path is
3565 * disabled when:
3566 * - A zero window was announced from us - zero window probing
3567 * is only handled properly in the slow path.
3568 * - Out of order segments arrived.
3569 * - Urgent data is expected.
3570 * - There is no buffer space left
3571 * - Unexpected TCP flags/window values/header lengths are received
3572 * (detected by checking the TCP header against pred_flags)
3573 * - Data is sent in both directions. Fast path only supports pure senders
3574 * or pure receivers (this means either the sequence number or the ack
3575 * value must stay constant)
3576 * - Unexpected TCP option.
3577 *
3578 * When these conditions are not satisfied it drops into a standard
3579 * receive procedure patterned after RFC793 to handle all cases.
3580 * The first three cases are guaranteed by proper pred_flags setting,
3581 * the rest is checked inline. Fast processing is turned on in
3582 * tcp_data_queue when everything is OK.
3583 */
3584 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3585 struct tcphdr *th, unsigned len)
3586 {
3587 struct tcp_sock *tp = tcp_sk(sk);
3588
3589 /*
3590 * Header prediction.
3591 * The code loosely follows the one in the famous
3592 * "30 instruction TCP receive" Van Jacobson mail.
3593 *
3594 * Van's trick is to deposit buffers into socket queue
3595 * on a device interrupt, to call tcp_recv function
3596 * on the receive process context and checksum and copy
3597 * the buffer to user space. smart...
3598 *
3599 * Our current scheme is not silly either but we take the
3600 * extra cost of the net_bh soft interrupt processing...
3601 * We do checksum and copy also but from device to kernel.
3602 */
3603
3604 tp->rx_opt.saw_tstamp = 0;
3605
3606 /* pred_flags is 0xS?10 << 16 + snd_wnd
3607 * if header_predition is to be made
3608 * 'S' will always be tp->tcp_header_len >> 2
3609 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3610 * turn it off (when there are holes in the receive
3611 * space for instance)
3612 * PSH flag is ignored.
3613 */
3614
3615 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3616 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3617 int tcp_header_len = tp->tcp_header_len;
3618
3619 /* Timestamp header prediction: tcp_header_len
3620 * is automatically equal to th->doff*4 due to pred_flags
3621 * match.
3622 */
3623
3624 /* Check timestamp */
3625 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3626 __u32 *ptr = (__u32 *)(th + 1);
3627
3628 /* No? Slow path! */
3629 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3630 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3631 goto slow_path;
3632
3633 tp->rx_opt.saw_tstamp = 1;
3634 ++ptr;
3635 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3636 ++ptr;
3637 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3638
3639 /* If PAWS failed, check it more carefully in slow path */
3640 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3641 goto slow_path;
3642
3643 /* DO NOT update ts_recent here, if checksum fails
3644 * and timestamp was corrupted part, it will result
3645 * in a hung connection since we will drop all
3646 * future packets due to the PAWS test.
3647 */
3648 }
3649
3650 if (len <= tcp_header_len) {
3651 /* Bulk data transfer: sender */
3652 if (len == tcp_header_len) {
3653 /* Predicted packet is in window by definition.
3654 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3655 * Hence, check seq<=rcv_wup reduces to:
3656 */
3657 if (tcp_header_len ==
3658 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3659 tp->rcv_nxt == tp->rcv_wup)
3660 tcp_store_ts_recent(tp);
3661
3662 tcp_rcv_rtt_measure_ts(sk, skb);
3663
3664 /* We know that such packets are checksummed
3665 * on entry.
3666 */
3667 tcp_ack(sk, skb, 0);
3668 __kfree_skb(skb);
3669 tcp_data_snd_check(sk, tp);
3670 return 0;
3671 } else { /* Header too small */
3672 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3673 goto discard;
3674 }
3675 } else {
3676 int eaten = 0;
3677
3678 if (tp->ucopy.task == current &&
3679 tp->copied_seq == tp->rcv_nxt &&
3680 len - tcp_header_len <= tp->ucopy.len &&
3681 sock_owned_by_user(sk)) {
3682 __set_current_state(TASK_RUNNING);
3683
3684 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3685 /* Predicted packet is in window by definition.
3686 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3687 * Hence, check seq<=rcv_wup reduces to:
3688 */
3689 if (tcp_header_len ==
3690 (sizeof(struct tcphdr) +
3691 TCPOLEN_TSTAMP_ALIGNED) &&
3692 tp->rcv_nxt == tp->rcv_wup)
3693 tcp_store_ts_recent(tp);
3694
3695 tcp_rcv_rtt_measure_ts(sk, skb);
3696
3697 __skb_pull(skb, tcp_header_len);
3698 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3699 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3700 eaten = 1;
3701 }
3702 }
3703 if (!eaten) {
3704 if (tcp_checksum_complete_user(sk, skb))
3705 goto csum_error;
3706
3707 /* Predicted packet is in window by definition.
3708 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3709 * Hence, check seq<=rcv_wup reduces to:
3710 */
3711 if (tcp_header_len ==
3712 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3713 tp->rcv_nxt == tp->rcv_wup)
3714 tcp_store_ts_recent(tp);
3715
3716 tcp_rcv_rtt_measure_ts(sk, skb);
3717
3718 if ((int)skb->truesize > sk->sk_forward_alloc)
3719 goto step5;
3720
3721 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3722
3723 /* Bulk data transfer: receiver */
3724 __skb_pull(skb,tcp_header_len);
3725 __skb_queue_tail(&sk->sk_receive_queue, skb);
3726 sk_stream_set_owner_r(skb, sk);
3727 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3728 }
3729
3730 tcp_event_data_recv(sk, tp, skb);
3731
3732 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3733 /* Well, only one small jumplet in fast path... */
3734 tcp_ack(sk, skb, FLAG_DATA);
3735 tcp_data_snd_check(sk, tp);
3736 if (!inet_csk_ack_scheduled(sk))
3737 goto no_ack;
3738 }
3739
3740 __tcp_ack_snd_check(sk, 0);
3741 no_ack:
3742 if (eaten)
3743 __kfree_skb(skb);
3744 else
3745 sk->sk_data_ready(sk, 0);
3746 return 0;
3747 }
3748 }
3749
3750 slow_path:
3751 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3752 goto csum_error;
3753
3754 /*
3755 * RFC1323: H1. Apply PAWS check first.
3756 */
3757 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3758 tcp_paws_discard(sk, skb)) {
3759 if (!th->rst) {
3760 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3761 tcp_send_dupack(sk, skb);
3762 goto discard;
3763 }
3764 /* Resets are accepted even if PAWS failed.
3765
3766 ts_recent update must be made after we are sure
3767 that the packet is in window.
3768 */
3769 }
3770
3771 /*
3772 * Standard slow path.
3773 */
3774
3775 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
3776 /* RFC793, page 37: "In all states except SYN-SENT, all reset
3777 * (RST) segments are validated by checking their SEQ-fields."
3778 * And page 69: "If an incoming segment is not acceptable,
3779 * an acknowledgment should be sent in reply (unless the RST bit
3780 * is set, if so drop the segment and return)".
3781 */
3782 if (!th->rst)
3783 tcp_send_dupack(sk, skb);
3784 goto discard;
3785 }
3786
3787 if(th->rst) {
3788 tcp_reset(sk);
3789 goto discard;
3790 }
3791
3792 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3793
3794 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3795 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3796 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
3797 tcp_reset(sk);
3798 return 1;
3799 }
3800
3801 step5:
3802 if(th->ack)
3803 tcp_ack(sk, skb, FLAG_SLOWPATH);
3804
3805 tcp_rcv_rtt_measure_ts(sk, skb);
3806
3807 /* Process urgent data. */
3808 tcp_urg(sk, skb, th);
3809
3810 /* step 7: process the segment text */
3811 tcp_data_queue(sk, skb);
3812
3813 tcp_data_snd_check(sk, tp);
3814 tcp_ack_snd_check(sk);
3815 return 0;
3816
3817 csum_error:
3818 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3819
3820 discard:
3821 __kfree_skb(skb);
3822 return 0;
3823 }
3824
3825 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
3826 struct tcphdr *th, unsigned len)
3827 {
3828 struct tcp_sock *tp = tcp_sk(sk);
3829 int saved_clamp = tp->rx_opt.mss_clamp;
3830
3831 tcp_parse_options(skb, &tp->rx_opt, 0);
3832
3833 if (th->ack) {
3834 struct inet_connection_sock *icsk;
3835 /* rfc793:
3836 * "If the state is SYN-SENT then
3837 * first check the ACK bit
3838 * If the ACK bit is set
3839 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
3840 * a reset (unless the RST bit is set, if so drop
3841 * the segment and return)"
3842 *
3843 * We do not send data with SYN, so that RFC-correct
3844 * test reduces to:
3845 */
3846 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
3847 goto reset_and_undo;
3848
3849 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3850 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
3851 tcp_time_stamp)) {
3852 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
3853 goto reset_and_undo;
3854 }
3855
3856 /* Now ACK is acceptable.
3857 *
3858 * "If the RST bit is set
3859 * If the ACK was acceptable then signal the user "error:
3860 * connection reset", drop the segment, enter CLOSED state,
3861 * delete TCB, and return."
3862 */
3863
3864 if (th->rst) {
3865 tcp_reset(sk);
3866 goto discard;
3867 }
3868
3869 /* rfc793:
3870 * "fifth, if neither of the SYN or RST bits is set then
3871 * drop the segment and return."
3872 *
3873 * See note below!
3874 * --ANK(990513)
3875 */
3876 if (!th->syn)
3877 goto discard_and_undo;
3878
3879 /* rfc793:
3880 * "If the SYN bit is on ...
3881 * are acceptable then ...
3882 * (our SYN has been ACKed), change the connection
3883 * state to ESTABLISHED..."
3884 */
3885
3886 TCP_ECN_rcv_synack(tp, th);
3887 if (tp->ecn_flags&TCP_ECN_OK)
3888 sock_set_flag(sk, SOCK_NO_LARGESEND);
3889
3890 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
3891 tcp_ack(sk, skb, FLAG_SLOWPATH);
3892
3893 /* Ok.. it's good. Set up sequence numbers and
3894 * move to established.
3895 */
3896 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
3897 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
3898
3899 /* RFC1323: The window in SYN & SYN/ACK segments is
3900 * never scaled.
3901 */
3902 tp->snd_wnd = ntohs(th->window);
3903 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
3904
3905 if (!tp->rx_opt.wscale_ok) {
3906 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
3907 tp->window_clamp = min(tp->window_clamp, 65535U);
3908 }
3909
3910 if (tp->rx_opt.saw_tstamp) {
3911 tp->rx_opt.tstamp_ok = 1;
3912 tp->tcp_header_len =
3913 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
3914 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
3915 tcp_store_ts_recent(tp);
3916 } else {
3917 tp->tcp_header_len = sizeof(struct tcphdr);
3918 }
3919
3920 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
3921 tp->rx_opt.sack_ok |= 2;
3922
3923 tcp_sync_mss(sk, tp->pmtu_cookie);
3924 tcp_initialize_rcv_mss(sk);
3925
3926 /* Remember, tcp_poll() does not lock socket!
3927 * Change state from SYN-SENT only after copied_seq
3928 * is initialized. */
3929 tp->copied_seq = tp->rcv_nxt;
3930 mb();
3931 tcp_set_state(sk, TCP_ESTABLISHED);
3932
3933 /* Make sure socket is routed, for correct metrics. */
3934 tp->af_specific->rebuild_header(sk);
3935
3936 tcp_init_metrics(sk);
3937
3938 tcp_init_congestion_control(tp);
3939
3940 /* Prevent spurious tcp_cwnd_restart() on first data
3941 * packet.
3942 */
3943 tp->lsndtime = tcp_time_stamp;
3944
3945 tcp_init_buffer_space(sk);
3946
3947 if (sock_flag(sk, SOCK_KEEPOPEN))
3948 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
3949
3950 if (!tp->rx_opt.snd_wscale)
3951 __tcp_fast_path_on(tp, tp->snd_wnd);
3952 else
3953 tp->pred_flags = 0;
3954
3955 if (!sock_flag(sk, SOCK_DEAD)) {
3956 sk->sk_state_change(sk);
3957 sk_wake_async(sk, 0, POLL_OUT);
3958 }
3959
3960 icsk = inet_csk(sk);
3961
3962 if (sk->sk_write_pending ||
3963 icsk->icsk_accept_queue.rskq_defer_accept ||
3964 icsk->icsk_ack.pingpong) {
3965 /* Save one ACK. Data will be ready after
3966 * several ticks, if write_pending is set.
3967 *
3968 * It may be deleted, but with this feature tcpdumps
3969 * look so _wonderfully_ clever, that I was not able
3970 * to stand against the temptation 8) --ANK
3971 */
3972 inet_csk_schedule_ack(sk);
3973 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
3974 icsk->icsk_ack.ato = TCP_ATO_MIN;
3975 tcp_incr_quickack(sk);
3976 tcp_enter_quickack_mode(sk);
3977 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3978 TCP_DELACK_MAX, TCP_RTO_MAX);
3979
3980 discard:
3981 __kfree_skb(skb);
3982 return 0;
3983 } else {
3984 tcp_send_ack(sk);
3985 }
3986 return -1;
3987 }
3988
3989 /* No ACK in the segment */
3990
3991 if (th->rst) {
3992 /* rfc793:
3993 * "If the RST bit is set
3994 *
3995 * Otherwise (no ACK) drop the segment and return."
3996 */
3997
3998 goto discard_and_undo;
3999 }
4000
4001 /* PAWS check. */
4002 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4003 goto discard_and_undo;
4004
4005 if (th->syn) {
4006 /* We see SYN without ACK. It is attempt of
4007 * simultaneous connect with crossed SYNs.
4008 * Particularly, it can be connect to self.
4009 */
4010 tcp_set_state(sk, TCP_SYN_RECV);
4011
4012 if (tp->rx_opt.saw_tstamp) {
4013 tp->rx_opt.tstamp_ok = 1;
4014 tcp_store_ts_recent(tp);
4015 tp->tcp_header_len =
4016 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4017 } else {
4018 tp->tcp_header_len = sizeof(struct tcphdr);
4019 }
4020
4021 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4022 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4023
4024 /* RFC1323: The window in SYN & SYN/ACK segments is
4025 * never scaled.
4026 */
4027 tp->snd_wnd = ntohs(th->window);
4028 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4029 tp->max_window = tp->snd_wnd;
4030
4031 TCP_ECN_rcv_syn(tp, th);
4032 if (tp->ecn_flags&TCP_ECN_OK)
4033 sock_set_flag(sk, SOCK_NO_LARGESEND);
4034
4035 tcp_sync_mss(sk, tp->pmtu_cookie);
4036 tcp_initialize_rcv_mss(sk);
4037
4038
4039 tcp_send_synack(sk);
4040 #if 0
4041 /* Note, we could accept data and URG from this segment.
4042 * There are no obstacles to make this.
4043 *
4044 * However, if we ignore data in ACKless segments sometimes,
4045 * we have no reasons to accept it sometimes.
4046 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4047 * is not flawless. So, discard packet for sanity.
4048 * Uncomment this return to process the data.
4049 */
4050 return -1;
4051 #else
4052 goto discard;
4053 #endif
4054 }
4055 /* "fifth, if neither of the SYN or RST bits is set then
4056 * drop the segment and return."
4057 */
4058
4059 discard_and_undo:
4060 tcp_clear_options(&tp->rx_opt);
4061 tp->rx_opt.mss_clamp = saved_clamp;
4062 goto discard;
4063
4064 reset_and_undo:
4065 tcp_clear_options(&tp->rx_opt);
4066 tp->rx_opt.mss_clamp = saved_clamp;
4067 return 1;
4068 }
4069
4070
4071 /*
4072 * This function implements the receiving procedure of RFC 793 for
4073 * all states except ESTABLISHED and TIME_WAIT.
4074 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4075 * address independent.
4076 */
4077
4078 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4079 struct tcphdr *th, unsigned len)
4080 {
4081 struct tcp_sock *tp = tcp_sk(sk);
4082 int queued = 0;
4083
4084 tp->rx_opt.saw_tstamp = 0;
4085
4086 switch (sk->sk_state) {
4087 case TCP_CLOSE:
4088 goto discard;
4089
4090 case TCP_LISTEN:
4091 if(th->ack)
4092 return 1;
4093
4094 if(th->rst)
4095 goto discard;
4096
4097 if(th->syn) {
4098 if(tp->af_specific->conn_request(sk, skb) < 0)
4099 return 1;
4100
4101 /* Now we have several options: In theory there is
4102 * nothing else in the frame. KA9Q has an option to
4103 * send data with the syn, BSD accepts data with the
4104 * syn up to the [to be] advertised window and
4105 * Solaris 2.1 gives you a protocol error. For now
4106 * we just ignore it, that fits the spec precisely
4107 * and avoids incompatibilities. It would be nice in
4108 * future to drop through and process the data.
4109 *
4110 * Now that TTCP is starting to be used we ought to
4111 * queue this data.
4112 * But, this leaves one open to an easy denial of
4113 * service attack, and SYN cookies can't defend
4114 * against this problem. So, we drop the data
4115 * in the interest of security over speed.
4116 */
4117 goto discard;
4118 }
4119 goto discard;
4120
4121 case TCP_SYN_SENT:
4122 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4123 if (queued >= 0)
4124 return queued;
4125
4126 /* Do step6 onward by hand. */
4127 tcp_urg(sk, skb, th);
4128 __kfree_skb(skb);
4129 tcp_data_snd_check(sk, tp);
4130 return 0;
4131 }
4132
4133 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4134 tcp_paws_discard(sk, skb)) {
4135 if (!th->rst) {
4136 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4137 tcp_send_dupack(sk, skb);
4138 goto discard;
4139 }
4140 /* Reset is accepted even if it did not pass PAWS. */
4141 }
4142
4143 /* step 1: check sequence number */
4144 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4145 if (!th->rst)
4146 tcp_send_dupack(sk, skb);
4147 goto discard;
4148 }
4149
4150 /* step 2: check RST bit */
4151 if(th->rst) {
4152 tcp_reset(sk);
4153 goto discard;
4154 }
4155
4156 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4157
4158 /* step 3: check security and precedence [ignored] */
4159
4160 /* step 4:
4161 *
4162 * Check for a SYN in window.
4163 */
4164 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4165 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4166 tcp_reset(sk);
4167 return 1;
4168 }
4169
4170 /* step 5: check the ACK field */
4171 if (th->ack) {
4172 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4173
4174 switch(sk->sk_state) {
4175 case TCP_SYN_RECV:
4176 if (acceptable) {
4177 tp->copied_seq = tp->rcv_nxt;
4178 mb();
4179 tcp_set_state(sk, TCP_ESTABLISHED);
4180 sk->sk_state_change(sk);
4181
4182 /* Note, that this wakeup is only for marginal
4183 * crossed SYN case. Passively open sockets
4184 * are not waked up, because sk->sk_sleep ==
4185 * NULL and sk->sk_socket == NULL.
4186 */
4187 if (sk->sk_socket) {
4188 sk_wake_async(sk,0,POLL_OUT);
4189 }
4190
4191 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4192 tp->snd_wnd = ntohs(th->window) <<
4193 tp->rx_opt.snd_wscale;
4194 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4195 TCP_SKB_CB(skb)->seq);
4196
4197 /* tcp_ack considers this ACK as duplicate
4198 * and does not calculate rtt.
4199 * Fix it at least with timestamps.
4200 */
4201 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4202 !tp->srtt)
4203 tcp_ack_saw_tstamp(sk, 0, 0);
4204
4205 if (tp->rx_opt.tstamp_ok)
4206 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4207
4208 /* Make sure socket is routed, for
4209 * correct metrics.
4210 */
4211 tp->af_specific->rebuild_header(sk);
4212
4213 tcp_init_metrics(sk);
4214
4215 tcp_init_congestion_control(tp);
4216
4217 /* Prevent spurious tcp_cwnd_restart() on
4218 * first data packet.
4219 */
4220 tp->lsndtime = tcp_time_stamp;
4221
4222 tcp_initialize_rcv_mss(sk);
4223 tcp_init_buffer_space(sk);
4224 tcp_fast_path_on(tp);
4225 } else {
4226 return 1;
4227 }
4228 break;
4229
4230 case TCP_FIN_WAIT1:
4231 if (tp->snd_una == tp->write_seq) {
4232 tcp_set_state(sk, TCP_FIN_WAIT2);
4233 sk->sk_shutdown |= SEND_SHUTDOWN;
4234 dst_confirm(sk->sk_dst_cache);
4235
4236 if (!sock_flag(sk, SOCK_DEAD))
4237 /* Wake up lingering close() */
4238 sk->sk_state_change(sk);
4239 else {
4240 int tmo;
4241
4242 if (tp->linger2 < 0 ||
4243 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4244 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4245 tcp_done(sk);
4246 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4247 return 1;
4248 }
4249
4250 tmo = tcp_fin_time(sk);
4251 if (tmo > TCP_TIMEWAIT_LEN) {
4252 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4253 } else if (th->fin || sock_owned_by_user(sk)) {
4254 /* Bad case. We could lose such FIN otherwise.
4255 * It is not a big problem, but it looks confusing
4256 * and not so rare event. We still can lose it now,
4257 * if it spins in bh_lock_sock(), but it is really
4258 * marginal case.
4259 */
4260 inet_csk_reset_keepalive_timer(sk, tmo);
4261 } else {
4262 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4263 goto discard;
4264 }
4265 }
4266 }
4267 break;
4268
4269 case TCP_CLOSING:
4270 if (tp->snd_una == tp->write_seq) {
4271 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4272 goto discard;
4273 }
4274 break;
4275
4276 case TCP_LAST_ACK:
4277 if (tp->snd_una == tp->write_seq) {
4278 tcp_update_metrics(sk);
4279 tcp_done(sk);
4280 goto discard;
4281 }
4282 break;
4283 }
4284 } else
4285 goto discard;
4286
4287 /* step 6: check the URG bit */
4288 tcp_urg(sk, skb, th);
4289
4290 /* step 7: process the segment text */
4291 switch (sk->sk_state) {
4292 case TCP_CLOSE_WAIT:
4293 case TCP_CLOSING:
4294 case TCP_LAST_ACK:
4295 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4296 break;
4297 case TCP_FIN_WAIT1:
4298 case TCP_FIN_WAIT2:
4299 /* RFC 793 says to queue data in these states,
4300 * RFC 1122 says we MUST send a reset.
4301 * BSD 4.4 also does reset.
4302 */
4303 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4304 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4305 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4306 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4307 tcp_reset(sk);
4308 return 1;
4309 }
4310 }
4311 /* Fall through */
4312 case TCP_ESTABLISHED:
4313 tcp_data_queue(sk, skb);
4314 queued = 1;
4315 break;
4316 }
4317
4318 /* tcp_data could move socket to TIME-WAIT */
4319 if (sk->sk_state != TCP_CLOSE) {
4320 tcp_data_snd_check(sk, tp);
4321 tcp_ack_snd_check(sk);
4322 }
4323
4324 if (!queued) {
4325 discard:
4326 __kfree_skb(skb);
4327 }
4328 return 0;
4329 }
4330
4331 EXPORT_SYMBOL(sysctl_tcp_ecn);
4332 EXPORT_SYMBOL(sysctl_tcp_reordering);
4333 EXPORT_SYMBOL(tcp_parse_options);
4334 EXPORT_SYMBOL(tcp_rcv_established);
4335 EXPORT_SYMBOL(tcp_rcv_state_process);
This page took 0.236542 seconds and 6 git commands to generate.