[TCP]: Reordered ACK's (old) SACKs not included to discarded MIB
[deliverable/linux.git] / net / ipv4 / tcp_input.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23 /*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108
109 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121 * real world.
122 */
123 static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
125 {
126 struct inet_connection_sock *icsk = inet_csk(sk);
127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
128 unsigned int len;
129
130 icsk->icsk_ack.last_seg_size = 0;
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
135 len = skb_shinfo(skb)->gso_size ?: skb->len;
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
144 len += skb->data - skb_transport_header(skb);
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
159 if (len == lss) {
160 icsk->icsk_ack.rcv_mss = len;
161 return;
162 }
163 }
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167 }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175 if (quickacks==0)
176 quickacks=2;
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
283 * window and then starts to feed us spaghetti. But it should work
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290 struct tcp_sock *tp = tcp_sk(sk);
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk,
306 struct sk_buff *skb)
307 {
308 struct tcp_sock *tp = tcp_sk(sk);
309
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
322 incr = __tcp_grow_window(sk, skb);
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326 inet_csk(sk)->icsk_ack.quick |= 1;
327 }
328 }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
339 * will fit to window and corresponding skbs will fit to our rcvbuf.
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349 * established state.
350 */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387 struct tcp_sock *tp = tcp_sk(sk);
388 struct inet_connection_sock *icsk = inet_csk(sk);
389
390 icsk->icsk_ack.quick = 0;
391
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
398 }
399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401 }
402
403
404 /* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
449 * non-timestamp case, we do not smooth things out
450 * else with timestamps disabled convergence takes too
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
459 /* No previous measure. */
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
475 1);
476
477 new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
480 }
481
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483 {
484 struct tcp_sock *tp = tcp_sk(sk);
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489 }
490
491 /*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495 void tcp_rcv_space_adjust(struct sock *sk)
496 {
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
500
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
503
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
508
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511 space = max(tp->rcvq_space.space, space);
512
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
515
516 tp->rcvq_space.space = space;
517
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520 int new_clamp = space;
521
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
525 */
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
537
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
540 }
541 }
542 }
543
544 new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
547 }
548
549 /* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
558 */
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560 {
561 struct tcp_sock *tp = tcp_sk(sk);
562 struct inet_connection_sock *icsk = inet_csk(sk);
563 u32 now;
564
565 inet_csk_schedule_ack(sk);
566
567 tcp_measure_rcv_mss(sk, skb);
568
569 tcp_rcv_rtt_measure(tp);
570
571 now = tcp_time_stamp;
572
573 if (!icsk->icsk_ack.ato) {
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
576 */
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
579 } else {
580 int m = now - icsk->icsk_ack.lrcvtime;
581
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
590 /* Too long gap. Apparently sender failed to
591 * restart window, so that we send ACKs quickly.
592 */
593 tcp_incr_quickack(sk);
594 sk_stream_mem_reclaim(sk);
595 }
596 }
597 icsk->icsk_ack.lrcvtime = now;
598
599 TCP_ECN_check_ce(tp, skb);
600
601 if (skb->len >= 128)
602 tcp_grow_window(sk, skb);
603 }
604
605 static u32 tcp_rto_min(struct sock *sk)
606 {
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
609
610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
613 }
614
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 {
626 struct tcp_sock *tp = tcp_sk(sk);
627 long m = mrtt; /* RTT */
628
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
632 * This is designed to be as fast as possible
633 * m stands for "measurement".
634 *
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
637 *
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
640 * too slowly, when it should be increased quickly, decrease too quickly
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
644 */
645 if (m == 0)
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
660 */
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 }
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
671 }
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
676 tp->mdev_max = tcp_rto_min(sk);
677 }
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683 tp->rtt_seq = tp->snd_nxt;
684 }
685 }
686
687 /* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
690 static inline void tcp_set_rto(struct sock *sk)
691 {
692 const struct tcp_sock *tp = tcp_sk(sk);
693 /* Old crap is replaced with new one. 8)
694 *
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
701 * ACKs in some circumstances.
702 */
703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
708 * with correct one. It is exactly, which we pretend to do.
709 */
710 }
711
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
715 static inline void tcp_bound_rto(struct sock *sk)
716 {
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719 }
720
721 /* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725 void tcp_update_metrics(struct sock *sk)
726 {
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
729
730 if (sysctl_tcp_nometrics_save)
731 return;
732
733 dst_confirm(dst);
734
735 if (dst && (dst->flags&DST_HOST)) {
736 const struct inet_connection_sock *icsk = inet_csk(sk);
737 int m;
738
739 if (icsk->icsk_backoff || !tp->srtt) {
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
743 */
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
747 }
748
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
760 }
761
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
765
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
770
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 }
777
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788 icsk->icsk_ca_state == TCP_CA_Open) {
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
798 */
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 }
812 }
813 }
814
815 /* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
823 */
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 {
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd) {
829 if (tp->mss_cache > 1460)
830 cwnd = 2;
831 else
832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833 }
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840 struct tcp_sock *tp = tcp_sk(sk);
841 const struct inet_connection_sock *icsk = inet_csk(sk);
842
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
846 tp->undo_marker = 0;
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
855
856 tcp_set_ca_state(sk, TCP_CA_CWR);
857 }
858 }
859
860 /*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866 tp->rx_opt.sack_ok &= ~2;
867 }
868
869 /* Take a notice that peer is sending DSACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872 tp->rx_opt.sack_ok |= 4;
873 }
874
875 /* Initialize metrics on socket. */
876
877 static void tcp_init_metrics(struct sock *sk)
878 {
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
881
882 if (dst == NULL)
883 goto reset;
884
885 dst_confirm(dst);
886
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 }
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896 tcp_disable_fack(tp);
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 }
899
900 if (dst_metric(dst, RTAX_RTT) == 0)
901 goto reset;
902
903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 goto reset;
905
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
910 *
911 * A bit of theory. RTT is time passed after "normal" sized packet
912 * is sent until it is ACKed. In normal circumstances sending small
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
919 */
920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric(dst, RTAX_RTT);
922 tp->rtt_seq = tp->snd_nxt;
923 }
924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
927 }
928 tcp_set_rto(sk);
929 tcp_bound_rto(sk);
930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931 goto reset;
932 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 tp->snd_cwnd_stamp = tcp_time_stamp;
934 return;
935
936 reset:
937 /* Play conservative. If timestamps are not
938 * supported, TCP will fail to recalculate correct
939 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 */
941 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 tp->srtt = 0;
943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945 }
946 }
947
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949 const int ts)
950 {
951 struct tcp_sock *tp = tcp_sk(sk);
952 if (metric > tp->reordering) {
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958 else if (tcp_is_reno(tp))
959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960 else if (tcp_is_fack(tp))
961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 else
963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967 tp->reordering,
968 tp->fackets_out,
969 tp->sacked_out,
970 tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972 tcp_disable_fack(tp);
973 }
974 }
975
976 /* This procedure tags the retransmission queue when SACKs arrive.
977 *
978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979 * Packets in queue with these bits set are counted in variables
980 * sacked_out, retrans_out and lost_out, correspondingly.
981 *
982 * Valid combinations are:
983 * Tag InFlight Description
984 * 0 1 - orig segment is in flight.
985 * S 0 - nothing flies, orig reached receiver.
986 * L 0 - nothing flies, orig lost by net.
987 * R 2 - both orig and retransmit are in flight.
988 * L|R 1 - orig is lost, retransmit is in flight.
989 * S|R 1 - orig reached receiver, retrans is still in flight.
990 * (L|S|R is logically valid, it could occur when L|R is sacked,
991 * but it is equivalent to plain S and code short-curcuits it to S.
992 * L|S is logically invalid, it would mean -1 packet in flight 8))
993 *
994 * These 6 states form finite state machine, controlled by the following events:
995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997 * 3. Loss detection event of one of three flavors:
998 * A. Scoreboard estimator decided the packet is lost.
999 * A'. Reno "three dupacks" marks head of queue lost.
1000 * A''. Its FACK modfication, head until snd.fack is lost.
1001 * B. SACK arrives sacking data transmitted after never retransmitted
1002 * hole was sent out.
1003 * C. SACK arrives sacking SND.NXT at the moment, when the
1004 * segment was retransmitted.
1005 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006 *
1007 * It is pleasant to note, that state diagram turns out to be commutative,
1008 * so that we are allowed not to be bothered by order of our actions,
1009 * when multiple events arrive simultaneously. (see the function below).
1010 *
1011 * Reordering detection.
1012 * --------------------
1013 * Reordering metric is maximal distance, which a packet can be displaced
1014 * in packet stream. With SACKs we can estimate it:
1015 *
1016 * 1. SACK fills old hole and the corresponding segment was not
1017 * ever retransmitted -> reordering. Alas, we cannot use it
1018 * when segment was retransmitted.
1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020 * for retransmitted and already SACKed segment -> reordering..
1021 * Both of these heuristics are not used in Loss state, when we cannot
1022 * account for retransmits accurately.
1023 *
1024 * SACK block validation.
1025 * ----------------------
1026 *
1027 * SACK block range validation checks that the received SACK block fits to
1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029 * Note that SND.UNA is not included to the range though being valid because
1030 * it means that the receiver is rather inconsistent with itself (reports
1031 * SACK reneging when it should advance SND.UNA).
1032 *
1033 * Implements also blockage to start_seq wrap-around. Problem lies in the
1034 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1035 * there's no guarantee that it will be before snd_nxt (n). The problem
1036 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1037 * wrap (s_w):
1038 *
1039 * <- outs wnd -> <- wrapzone ->
1040 * u e n u_w e_w s n_w
1041 * | | | | | | |
1042 * |<------------+------+----- TCP seqno space --------------+---------->|
1043 * ...-- <2^31 ->| |<--------...
1044 * ...---- >2^31 ------>| |<--------...
1045 *
1046 * Current code wouldn't be vulnerable but it's better still to discard such
1047 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1048 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1049 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1050 * equal to the ideal case (infinite seqno space without wrap caused issues).
1051 *
1052 * With D-SACK the lower bound is extended to cover sequence space below
1053 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1054 * again, DSACK block must not to go across snd_una (for the same reason as
1055 * for the normal SACK blocks, explained above). But there all simplicity
1056 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1057 * fully below undo_marker they do not affect behavior in anyway and can
1058 * therefore be safely ignored. In rare cases (which are more or less
1059 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1060 * fragmentation and packet reordering past skb's retransmission. To consider
1061 * them correctly, the acceptable range must be extended even more though
1062 * the exact amount is rather hard to quantify. However, tp->max_window can
1063 * be used as an exaggerated estimate.
1064 */
1065 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1066 u32 start_seq, u32 end_seq)
1067 {
1068 /* Too far in future, or reversed (interpretation is ambiguous) */
1069 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1070 return 0;
1071
1072 /* Nasty start_seq wrap-around check (see comments above) */
1073 if (!before(start_seq, tp->snd_nxt))
1074 return 0;
1075
1076 /* In outstanding window? ...This is valid exit for DSACKs too.
1077 * start_seq == snd_una is non-sensical (see comments above)
1078 */
1079 if (after(start_seq, tp->snd_una))
1080 return 1;
1081
1082 if (!is_dsack || !tp->undo_marker)
1083 return 0;
1084
1085 /* ...Then it's D-SACK, and must reside below snd_una completely */
1086 if (!after(end_seq, tp->snd_una))
1087 return 0;
1088
1089 if (!before(start_seq, tp->undo_marker))
1090 return 1;
1091
1092 /* Too old */
1093 if (!after(end_seq, tp->undo_marker))
1094 return 0;
1095
1096 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1097 * start_seq < undo_marker and end_seq >= undo_marker.
1098 */
1099 return !before(start_seq, end_seq - tp->max_window);
1100 }
1101
1102
1103 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1104 struct tcp_sack_block_wire *sp, int num_sacks,
1105 u32 prior_snd_una)
1106 {
1107 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1108 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1109 int dup_sack = 0;
1110
1111 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1112 dup_sack = 1;
1113 tcp_dsack_seen(tp);
1114 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1115 } else if (num_sacks > 1) {
1116 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1117 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1118
1119 if (!after(end_seq_0, end_seq_1) &&
1120 !before(start_seq_0, start_seq_1)) {
1121 dup_sack = 1;
1122 tcp_dsack_seen(tp);
1123 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1124 }
1125 }
1126
1127 /* D-SACK for already forgotten data... Do dumb counting. */
1128 if (dup_sack &&
1129 !after(end_seq_0, prior_snd_una) &&
1130 after(end_seq_0, tp->undo_marker))
1131 tp->undo_retrans--;
1132
1133 return dup_sack;
1134 }
1135
1136 static int
1137 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1138 {
1139 const struct inet_connection_sock *icsk = inet_csk(sk);
1140 struct tcp_sock *tp = tcp_sk(sk);
1141 unsigned char *ptr = (skb_transport_header(ack_skb) +
1142 TCP_SKB_CB(ack_skb)->sacked);
1143 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
1144 struct sk_buff *cached_skb;
1145 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1146 int reord = tp->packets_out;
1147 int prior_fackets;
1148 u32 lost_retrans = 0;
1149 int flag = 0;
1150 int found_dup_sack = 0;
1151 int cached_fack_count;
1152 int i;
1153 int first_sack_index;
1154
1155 if (!tp->sacked_out) {
1156 tp->fackets_out = 0;
1157 tp->highest_sack = tp->snd_una;
1158 }
1159 prior_fackets = tp->fackets_out;
1160
1161 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1162 num_sacks, prior_snd_una);
1163 if (found_dup_sack)
1164 flag |= FLAG_DSACKING_ACK;
1165
1166 /* Eliminate too old ACKs, but take into
1167 * account more or less fresh ones, they can
1168 * contain valid SACK info.
1169 */
1170 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1171 return 0;
1172
1173 /* SACK fastpath:
1174 * if the only SACK change is the increase of the end_seq of
1175 * the first block then only apply that SACK block
1176 * and use retrans queue hinting otherwise slowpath */
1177 flag = 1;
1178 for (i = 0; i < num_sacks; i++) {
1179 __be32 start_seq = sp[i].start_seq;
1180 __be32 end_seq = sp[i].end_seq;
1181
1182 if (i == 0) {
1183 if (tp->recv_sack_cache[i].start_seq != start_seq)
1184 flag = 0;
1185 } else {
1186 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1187 (tp->recv_sack_cache[i].end_seq != end_seq))
1188 flag = 0;
1189 }
1190 tp->recv_sack_cache[i].start_seq = start_seq;
1191 tp->recv_sack_cache[i].end_seq = end_seq;
1192 }
1193 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1194 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1195 tp->recv_sack_cache[i].start_seq = 0;
1196 tp->recv_sack_cache[i].end_seq = 0;
1197 }
1198
1199 first_sack_index = 0;
1200 if (flag)
1201 num_sacks = 1;
1202 else {
1203 int j;
1204 tp->fastpath_skb_hint = NULL;
1205
1206 /* order SACK blocks to allow in order walk of the retrans queue */
1207 for (i = num_sacks-1; i > 0; i--) {
1208 for (j = 0; j < i; j++){
1209 if (after(ntohl(sp[j].start_seq),
1210 ntohl(sp[j+1].start_seq))){
1211 struct tcp_sack_block_wire tmp;
1212
1213 tmp = sp[j];
1214 sp[j] = sp[j+1];
1215 sp[j+1] = tmp;
1216
1217 /* Track where the first SACK block goes to */
1218 if (j == first_sack_index)
1219 first_sack_index = j+1;
1220 }
1221
1222 }
1223 }
1224 }
1225
1226 /* clear flag as used for different purpose in following code */
1227 flag = 0;
1228
1229 /* Use SACK fastpath hint if valid */
1230 cached_skb = tp->fastpath_skb_hint;
1231 cached_fack_count = tp->fastpath_cnt_hint;
1232 if (!cached_skb) {
1233 cached_skb = tcp_write_queue_head(sk);
1234 cached_fack_count = 0;
1235 }
1236
1237 for (i=0; i<num_sacks; i++, sp++) {
1238 struct sk_buff *skb;
1239 __u32 start_seq = ntohl(sp->start_seq);
1240 __u32 end_seq = ntohl(sp->end_seq);
1241 int fack_count;
1242 int dup_sack = (found_dup_sack && (i == first_sack_index));
1243
1244 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1245 if (dup_sack) {
1246 if (!tp->undo_marker)
1247 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1248 else
1249 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1250 } else {
1251 /* Don't count olds caused by ACK reordering */
1252 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1253 !after(end_seq, tp->snd_una))
1254 continue;
1255 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1256 }
1257 continue;
1258 }
1259
1260 skb = cached_skb;
1261 fack_count = cached_fack_count;
1262
1263 /* Event "B" in the comment above. */
1264 if (after(end_seq, tp->high_seq))
1265 flag |= FLAG_DATA_LOST;
1266
1267 tcp_for_write_queue_from(skb, sk) {
1268 int in_sack, pcount;
1269 u8 sacked;
1270
1271 if (skb == tcp_send_head(sk))
1272 break;
1273
1274 cached_skb = skb;
1275 cached_fack_count = fack_count;
1276 if (i == first_sack_index) {
1277 tp->fastpath_skb_hint = skb;
1278 tp->fastpath_cnt_hint = fack_count;
1279 }
1280
1281 /* The retransmission queue is always in order, so
1282 * we can short-circuit the walk early.
1283 */
1284 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1285 break;
1286
1287 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1288 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1289
1290 pcount = tcp_skb_pcount(skb);
1291
1292 if (pcount > 1 && !in_sack &&
1293 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1294 unsigned int pkt_len;
1295
1296 in_sack = !after(start_seq,
1297 TCP_SKB_CB(skb)->seq);
1298
1299 if (!in_sack)
1300 pkt_len = (start_seq -
1301 TCP_SKB_CB(skb)->seq);
1302 else
1303 pkt_len = (end_seq -
1304 TCP_SKB_CB(skb)->seq);
1305 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
1306 break;
1307 pcount = tcp_skb_pcount(skb);
1308 }
1309
1310 fack_count += pcount;
1311
1312 sacked = TCP_SKB_CB(skb)->sacked;
1313
1314 /* Account D-SACK for retransmitted packet. */
1315 if ((dup_sack && in_sack) &&
1316 (sacked & TCPCB_RETRANS) &&
1317 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1318 tp->undo_retrans--;
1319
1320 /* The frame is ACKed. */
1321 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1322 if (sacked&TCPCB_RETRANS) {
1323 if ((dup_sack && in_sack) &&
1324 (sacked&TCPCB_SACKED_ACKED))
1325 reord = min(fack_count, reord);
1326 } else {
1327 /* If it was in a hole, we detected reordering. */
1328 if (fack_count < prior_fackets &&
1329 !(sacked&TCPCB_SACKED_ACKED))
1330 reord = min(fack_count, reord);
1331 }
1332
1333 /* Nothing to do; acked frame is about to be dropped. */
1334 continue;
1335 }
1336
1337 if ((sacked&TCPCB_SACKED_RETRANS) &&
1338 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1339 (!lost_retrans || after(end_seq, lost_retrans)))
1340 lost_retrans = end_seq;
1341
1342 if (!in_sack)
1343 continue;
1344
1345 if (!(sacked&TCPCB_SACKED_ACKED)) {
1346 if (sacked & TCPCB_SACKED_RETRANS) {
1347 /* If the segment is not tagged as lost,
1348 * we do not clear RETRANS, believing
1349 * that retransmission is still in flight.
1350 */
1351 if (sacked & TCPCB_LOST) {
1352 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1353 tp->lost_out -= tcp_skb_pcount(skb);
1354 tp->retrans_out -= tcp_skb_pcount(skb);
1355
1356 /* clear lost hint */
1357 tp->retransmit_skb_hint = NULL;
1358 }
1359 } else {
1360 /* New sack for not retransmitted frame,
1361 * which was in hole. It is reordering.
1362 */
1363 if (!(sacked & TCPCB_RETRANS) &&
1364 fack_count < prior_fackets)
1365 reord = min(fack_count, reord);
1366
1367 if (sacked & TCPCB_LOST) {
1368 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1369 tp->lost_out -= tcp_skb_pcount(skb);
1370
1371 /* clear lost hint */
1372 tp->retransmit_skb_hint = NULL;
1373 }
1374 /* SACK enhanced F-RTO detection.
1375 * Set flag if and only if non-rexmitted
1376 * segments below frto_highmark are
1377 * SACKed (RFC4138; Appendix B).
1378 * Clearing correct due to in-order walk
1379 */
1380 if (after(end_seq, tp->frto_highmark)) {
1381 flag &= ~FLAG_ONLY_ORIG_SACKED;
1382 } else {
1383 if (!(sacked & TCPCB_RETRANS))
1384 flag |= FLAG_ONLY_ORIG_SACKED;
1385 }
1386 }
1387
1388 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1389 flag |= FLAG_DATA_SACKED;
1390 tp->sacked_out += tcp_skb_pcount(skb);
1391
1392 if (fack_count > tp->fackets_out)
1393 tp->fackets_out = fack_count;
1394
1395 if (after(TCP_SKB_CB(skb)->seq,
1396 tp->highest_sack))
1397 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1398 } else {
1399 if (dup_sack && (sacked&TCPCB_RETRANS))
1400 reord = min(fack_count, reord);
1401 }
1402
1403 /* D-SACK. We can detect redundant retransmission
1404 * in S|R and plain R frames and clear it.
1405 * undo_retrans is decreased above, L|R frames
1406 * are accounted above as well.
1407 */
1408 if (dup_sack &&
1409 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1410 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1411 tp->retrans_out -= tcp_skb_pcount(skb);
1412 tp->retransmit_skb_hint = NULL;
1413 }
1414 }
1415 }
1416
1417 /* Check for lost retransmit. This superb idea is
1418 * borrowed from "ratehalving". Event "C".
1419 * Later note: FACK people cheated me again 8),
1420 * we have to account for reordering! Ugly,
1421 * but should help.
1422 */
1423 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1424 struct sk_buff *skb;
1425
1426 tcp_for_write_queue(skb, sk) {
1427 if (skb == tcp_send_head(sk))
1428 break;
1429 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1430 break;
1431 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1432 continue;
1433 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1434 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1435 (tcp_is_fack(tp) ||
1436 !before(lost_retrans,
1437 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1438 tp->mss_cache))) {
1439 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1440 tp->retrans_out -= tcp_skb_pcount(skb);
1441
1442 /* clear lost hint */
1443 tp->retransmit_skb_hint = NULL;
1444
1445 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1446 tp->lost_out += tcp_skb_pcount(skb);
1447 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1448 flag |= FLAG_DATA_SACKED;
1449 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1450 }
1451 }
1452 }
1453 }
1454
1455 tcp_verify_left_out(tp);
1456
1457 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1458 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1459 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1460
1461 #if FASTRETRANS_DEBUG > 0
1462 BUG_TRAP((int)tp->sacked_out >= 0);
1463 BUG_TRAP((int)tp->lost_out >= 0);
1464 BUG_TRAP((int)tp->retrans_out >= 0);
1465 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1466 #endif
1467 return flag;
1468 }
1469
1470 /* F-RTO can only be used if TCP has never retransmitted anything other than
1471 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1472 */
1473 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1474 {
1475 struct tcp_sock *tp = tcp_sk(sk);
1476 u32 holes;
1477
1478 holes = max(tp->lost_out, 1U);
1479 holes = min(holes, tp->packets_out);
1480
1481 if ((tp->sacked_out + holes) > tp->packets_out) {
1482 tp->sacked_out = tp->packets_out - holes;
1483 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1484 }
1485 }
1486
1487 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1488
1489 static void tcp_add_reno_sack(struct sock *sk)
1490 {
1491 struct tcp_sock *tp = tcp_sk(sk);
1492 tp->sacked_out++;
1493 tcp_check_reno_reordering(sk, 0);
1494 tcp_verify_left_out(tp);
1495 }
1496
1497 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1498
1499 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1500 {
1501 struct tcp_sock *tp = tcp_sk(sk);
1502
1503 if (acked > 0) {
1504 /* One ACK acked hole. The rest eat duplicate ACKs. */
1505 if (acked-1 >= tp->sacked_out)
1506 tp->sacked_out = 0;
1507 else
1508 tp->sacked_out -= acked-1;
1509 }
1510 tcp_check_reno_reordering(sk, acked);
1511 tcp_verify_left_out(tp);
1512 }
1513
1514 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1515 {
1516 tp->sacked_out = 0;
1517 }
1518
1519 int tcp_use_frto(struct sock *sk)
1520 {
1521 const struct tcp_sock *tp = tcp_sk(sk);
1522 struct sk_buff *skb;
1523
1524 if (!sysctl_tcp_frto)
1525 return 0;
1526
1527 if (IsSackFrto())
1528 return 1;
1529
1530 /* Avoid expensive walking of rexmit queue if possible */
1531 if (tp->retrans_out > 1)
1532 return 0;
1533
1534 skb = tcp_write_queue_head(sk);
1535 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1536 tcp_for_write_queue_from(skb, sk) {
1537 if (skb == tcp_send_head(sk))
1538 break;
1539 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1540 return 0;
1541 /* Short-circuit when first non-SACKed skb has been checked */
1542 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1543 break;
1544 }
1545 return 1;
1546 }
1547
1548 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1549 * recovery a bit and use heuristics in tcp_process_frto() to detect if
1550 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1551 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1552 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1553 * bits are handled if the Loss state is really to be entered (in
1554 * tcp_enter_frto_loss).
1555 *
1556 * Do like tcp_enter_loss() would; when RTO expires the second time it
1557 * does:
1558 * "Reduce ssthresh if it has not yet been made inside this window."
1559 */
1560 void tcp_enter_frto(struct sock *sk)
1561 {
1562 const struct inet_connection_sock *icsk = inet_csk(sk);
1563 struct tcp_sock *tp = tcp_sk(sk);
1564 struct sk_buff *skb;
1565
1566 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1567 tp->snd_una == tp->high_seq ||
1568 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1569 !icsk->icsk_retransmits)) {
1570 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1571 /* Our state is too optimistic in ssthresh() call because cwnd
1572 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1573 * recovery has not yet completed. Pattern would be this: RTO,
1574 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1575 * up here twice).
1576 * RFC4138 should be more specific on what to do, even though
1577 * RTO is quite unlikely to occur after the first Cumulative ACK
1578 * due to back-off and complexity of triggering events ...
1579 */
1580 if (tp->frto_counter) {
1581 u32 stored_cwnd;
1582 stored_cwnd = tp->snd_cwnd;
1583 tp->snd_cwnd = 2;
1584 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1585 tp->snd_cwnd = stored_cwnd;
1586 } else {
1587 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1588 }
1589 /* ... in theory, cong.control module could do "any tricks" in
1590 * ssthresh(), which means that ca_state, lost bits and lost_out
1591 * counter would have to be faked before the call occurs. We
1592 * consider that too expensive, unlikely and hacky, so modules
1593 * using these in ssthresh() must deal these incompatibility
1594 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1595 */
1596 tcp_ca_event(sk, CA_EVENT_FRTO);
1597 }
1598
1599 tp->undo_marker = tp->snd_una;
1600 tp->undo_retrans = 0;
1601
1602 skb = tcp_write_queue_head(sk);
1603 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1604 tp->undo_marker = 0;
1605 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1606 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1607 tp->retrans_out -= tcp_skb_pcount(skb);
1608 }
1609 tcp_verify_left_out(tp);
1610
1611 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1612 * The last condition is necessary at least in tp->frto_counter case.
1613 */
1614 if (IsSackFrto() && (tp->frto_counter ||
1615 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1616 after(tp->high_seq, tp->snd_una)) {
1617 tp->frto_highmark = tp->high_seq;
1618 } else {
1619 tp->frto_highmark = tp->snd_nxt;
1620 }
1621 tcp_set_ca_state(sk, TCP_CA_Disorder);
1622 tp->high_seq = tp->snd_nxt;
1623 tp->frto_counter = 1;
1624 }
1625
1626 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1627 * which indicates that we should follow the traditional RTO recovery,
1628 * i.e. mark everything lost and do go-back-N retransmission.
1629 */
1630 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1631 {
1632 struct tcp_sock *tp = tcp_sk(sk);
1633 struct sk_buff *skb;
1634
1635 tp->lost_out = 0;
1636 tp->retrans_out = 0;
1637 if (tcp_is_reno(tp))
1638 tcp_reset_reno_sack(tp);
1639
1640 tcp_for_write_queue(skb, sk) {
1641 if (skb == tcp_send_head(sk))
1642 break;
1643 /*
1644 * Count the retransmission made on RTO correctly (only when
1645 * waiting for the first ACK and did not get it)...
1646 */
1647 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1648 /* For some reason this R-bit might get cleared? */
1649 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1650 tp->retrans_out += tcp_skb_pcount(skb);
1651 /* ...enter this if branch just for the first segment */
1652 flag |= FLAG_DATA_ACKED;
1653 } else {
1654 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1655 tp->undo_marker = 0;
1656 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1657 }
1658
1659 /* Don't lost mark skbs that were fwd transmitted after RTO */
1660 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1661 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1662 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1663 tp->lost_out += tcp_skb_pcount(skb);
1664 }
1665 }
1666 tcp_verify_left_out(tp);
1667
1668 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1669 tp->snd_cwnd_cnt = 0;
1670 tp->snd_cwnd_stamp = tcp_time_stamp;
1671 tp->frto_counter = 0;
1672
1673 tp->reordering = min_t(unsigned int, tp->reordering,
1674 sysctl_tcp_reordering);
1675 tcp_set_ca_state(sk, TCP_CA_Loss);
1676 tp->high_seq = tp->frto_highmark;
1677 TCP_ECN_queue_cwr(tp);
1678
1679 tcp_clear_retrans_hints_partial(tp);
1680 }
1681
1682 void tcp_clear_retrans(struct tcp_sock *tp)
1683 {
1684 tp->retrans_out = 0;
1685
1686 tp->fackets_out = 0;
1687 tp->sacked_out = 0;
1688 tp->lost_out = 0;
1689
1690 tp->undo_marker = 0;
1691 tp->undo_retrans = 0;
1692 }
1693
1694 /* Enter Loss state. If "how" is not zero, forget all SACK information
1695 * and reset tags completely, otherwise preserve SACKs. If receiver
1696 * dropped its ofo queue, we will know this due to reneging detection.
1697 */
1698 void tcp_enter_loss(struct sock *sk, int how)
1699 {
1700 const struct inet_connection_sock *icsk = inet_csk(sk);
1701 struct tcp_sock *tp = tcp_sk(sk);
1702 struct sk_buff *skb;
1703 int cnt = 0;
1704
1705 /* Reduce ssthresh if it has not yet been made inside this window. */
1706 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1707 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1708 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1709 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1710 tcp_ca_event(sk, CA_EVENT_LOSS);
1711 }
1712 tp->snd_cwnd = 1;
1713 tp->snd_cwnd_cnt = 0;
1714 tp->snd_cwnd_stamp = tcp_time_stamp;
1715
1716 tp->bytes_acked = 0;
1717 tcp_clear_retrans(tp);
1718
1719 if (!how) {
1720 /* Push undo marker, if it was plain RTO and nothing
1721 * was retransmitted. */
1722 tp->undo_marker = tp->snd_una;
1723 tcp_clear_retrans_hints_partial(tp);
1724 } else {
1725 tcp_clear_all_retrans_hints(tp);
1726 }
1727
1728 tcp_for_write_queue(skb, sk) {
1729 if (skb == tcp_send_head(sk))
1730 break;
1731 cnt += tcp_skb_pcount(skb);
1732 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1733 tp->undo_marker = 0;
1734 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1735 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1736 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1737 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1738 tp->lost_out += tcp_skb_pcount(skb);
1739 } else {
1740 tp->sacked_out += tcp_skb_pcount(skb);
1741 tp->fackets_out = cnt;
1742 }
1743 }
1744 tcp_verify_left_out(tp);
1745
1746 tp->reordering = min_t(unsigned int, tp->reordering,
1747 sysctl_tcp_reordering);
1748 tcp_set_ca_state(sk, TCP_CA_Loss);
1749 tp->high_seq = tp->snd_nxt;
1750 TCP_ECN_queue_cwr(tp);
1751 /* Abort FRTO algorithm if one is in progress */
1752 tp->frto_counter = 0;
1753 }
1754
1755 static int tcp_check_sack_reneging(struct sock *sk)
1756 {
1757 struct sk_buff *skb;
1758
1759 /* If ACK arrived pointing to a remembered SACK,
1760 * it means that our remembered SACKs do not reflect
1761 * real state of receiver i.e.
1762 * receiver _host_ is heavily congested (or buggy).
1763 * Do processing similar to RTO timeout.
1764 */
1765 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1766 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1767 struct inet_connection_sock *icsk = inet_csk(sk);
1768 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1769
1770 tcp_enter_loss(sk, 1);
1771 icsk->icsk_retransmits++;
1772 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1773 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1774 icsk->icsk_rto, TCP_RTO_MAX);
1775 return 1;
1776 }
1777 return 0;
1778 }
1779
1780 static inline int tcp_fackets_out(struct tcp_sock *tp)
1781 {
1782 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1783 }
1784
1785 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1786 {
1787 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1788 }
1789
1790 static inline int tcp_head_timedout(struct sock *sk)
1791 {
1792 struct tcp_sock *tp = tcp_sk(sk);
1793
1794 return tp->packets_out &&
1795 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1796 }
1797
1798 /* Linux NewReno/SACK/FACK/ECN state machine.
1799 * --------------------------------------
1800 *
1801 * "Open" Normal state, no dubious events, fast path.
1802 * "Disorder" In all the respects it is "Open",
1803 * but requires a bit more attention. It is entered when
1804 * we see some SACKs or dupacks. It is split of "Open"
1805 * mainly to move some processing from fast path to slow one.
1806 * "CWR" CWND was reduced due to some Congestion Notification event.
1807 * It can be ECN, ICMP source quench, local device congestion.
1808 * "Recovery" CWND was reduced, we are fast-retransmitting.
1809 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1810 *
1811 * tcp_fastretrans_alert() is entered:
1812 * - each incoming ACK, if state is not "Open"
1813 * - when arrived ACK is unusual, namely:
1814 * * SACK
1815 * * Duplicate ACK.
1816 * * ECN ECE.
1817 *
1818 * Counting packets in flight is pretty simple.
1819 *
1820 * in_flight = packets_out - left_out + retrans_out
1821 *
1822 * packets_out is SND.NXT-SND.UNA counted in packets.
1823 *
1824 * retrans_out is number of retransmitted segments.
1825 *
1826 * left_out is number of segments left network, but not ACKed yet.
1827 *
1828 * left_out = sacked_out + lost_out
1829 *
1830 * sacked_out: Packets, which arrived to receiver out of order
1831 * and hence not ACKed. With SACKs this number is simply
1832 * amount of SACKed data. Even without SACKs
1833 * it is easy to give pretty reliable estimate of this number,
1834 * counting duplicate ACKs.
1835 *
1836 * lost_out: Packets lost by network. TCP has no explicit
1837 * "loss notification" feedback from network (for now).
1838 * It means that this number can be only _guessed_.
1839 * Actually, it is the heuristics to predict lossage that
1840 * distinguishes different algorithms.
1841 *
1842 * F.e. after RTO, when all the queue is considered as lost,
1843 * lost_out = packets_out and in_flight = retrans_out.
1844 *
1845 * Essentially, we have now two algorithms counting
1846 * lost packets.
1847 *
1848 * FACK: It is the simplest heuristics. As soon as we decided
1849 * that something is lost, we decide that _all_ not SACKed
1850 * packets until the most forward SACK are lost. I.e.
1851 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1852 * It is absolutely correct estimate, if network does not reorder
1853 * packets. And it loses any connection to reality when reordering
1854 * takes place. We use FACK by default until reordering
1855 * is suspected on the path to this destination.
1856 *
1857 * NewReno: when Recovery is entered, we assume that one segment
1858 * is lost (classic Reno). While we are in Recovery and
1859 * a partial ACK arrives, we assume that one more packet
1860 * is lost (NewReno). This heuristics are the same in NewReno
1861 * and SACK.
1862 *
1863 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1864 * deflation etc. CWND is real congestion window, never inflated, changes
1865 * only according to classic VJ rules.
1866 *
1867 * Really tricky (and requiring careful tuning) part of algorithm
1868 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1869 * The first determines the moment _when_ we should reduce CWND and,
1870 * hence, slow down forward transmission. In fact, it determines the moment
1871 * when we decide that hole is caused by loss, rather than by a reorder.
1872 *
1873 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1874 * holes, caused by lost packets.
1875 *
1876 * And the most logically complicated part of algorithm is undo
1877 * heuristics. We detect false retransmits due to both too early
1878 * fast retransmit (reordering) and underestimated RTO, analyzing
1879 * timestamps and D-SACKs. When we detect that some segments were
1880 * retransmitted by mistake and CWND reduction was wrong, we undo
1881 * window reduction and abort recovery phase. This logic is hidden
1882 * inside several functions named tcp_try_undo_<something>.
1883 */
1884
1885 /* This function decides, when we should leave Disordered state
1886 * and enter Recovery phase, reducing congestion window.
1887 *
1888 * Main question: may we further continue forward transmission
1889 * with the same cwnd?
1890 */
1891 static int tcp_time_to_recover(struct sock *sk)
1892 {
1893 struct tcp_sock *tp = tcp_sk(sk);
1894 __u32 packets_out;
1895
1896 /* Do not perform any recovery during FRTO algorithm */
1897 if (tp->frto_counter)
1898 return 0;
1899
1900 /* Trick#1: The loss is proven. */
1901 if (tp->lost_out)
1902 return 1;
1903
1904 /* Not-A-Trick#2 : Classic rule... */
1905 if (tcp_fackets_out(tp) > tp->reordering)
1906 return 1;
1907
1908 /* Trick#3 : when we use RFC2988 timer restart, fast
1909 * retransmit can be triggered by timeout of queue head.
1910 */
1911 if (tcp_head_timedout(sk))
1912 return 1;
1913
1914 /* Trick#4: It is still not OK... But will it be useful to delay
1915 * recovery more?
1916 */
1917 packets_out = tp->packets_out;
1918 if (packets_out <= tp->reordering &&
1919 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1920 !tcp_may_send_now(sk)) {
1921 /* We have nothing to send. This connection is limited
1922 * either by receiver window or by application.
1923 */
1924 return 1;
1925 }
1926
1927 return 0;
1928 }
1929
1930 /* RFC: This is from the original, I doubt that this is necessary at all:
1931 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
1932 * retransmitted past LOST markings in the first place? I'm not fully sure
1933 * about undo and end of connection cases, which can cause R without L?
1934 */
1935 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
1936 struct sk_buff *skb)
1937 {
1938 if ((tp->retransmit_skb_hint != NULL) &&
1939 before(TCP_SKB_CB(skb)->seq,
1940 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1941 tp->retransmit_skb_hint = NULL;
1942 }
1943
1944 /* Mark head of queue up as lost. */
1945 static void tcp_mark_head_lost(struct sock *sk,
1946 int packets, u32 high_seq)
1947 {
1948 struct tcp_sock *tp = tcp_sk(sk);
1949 struct sk_buff *skb;
1950 int cnt;
1951
1952 BUG_TRAP(packets <= tp->packets_out);
1953 if (tp->lost_skb_hint) {
1954 skb = tp->lost_skb_hint;
1955 cnt = tp->lost_cnt_hint;
1956 } else {
1957 skb = tcp_write_queue_head(sk);
1958 cnt = 0;
1959 }
1960
1961 tcp_for_write_queue_from(skb, sk) {
1962 if (skb == tcp_send_head(sk))
1963 break;
1964 /* TODO: do this better */
1965 /* this is not the most efficient way to do this... */
1966 tp->lost_skb_hint = skb;
1967 tp->lost_cnt_hint = cnt;
1968 cnt += tcp_skb_pcount(skb);
1969 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1970 break;
1971 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1972 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1973 tp->lost_out += tcp_skb_pcount(skb);
1974 tcp_verify_retransmit_hint(tp, skb);
1975 }
1976 }
1977 tcp_verify_left_out(tp);
1978 }
1979
1980 /* Account newly detected lost packet(s) */
1981
1982 static void tcp_update_scoreboard(struct sock *sk)
1983 {
1984 struct tcp_sock *tp = tcp_sk(sk);
1985
1986 if (tcp_is_fack(tp)) {
1987 int lost = tp->fackets_out - tp->reordering;
1988 if (lost <= 0)
1989 lost = 1;
1990 tcp_mark_head_lost(sk, lost, tp->high_seq);
1991 } else {
1992 tcp_mark_head_lost(sk, 1, tp->high_seq);
1993 }
1994
1995 /* New heuristics: it is possible only after we switched
1996 * to restart timer each time when something is ACKed.
1997 * Hence, we can detect timed out packets during fast
1998 * retransmit without falling to slow start.
1999 */
2000 if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
2001 struct sk_buff *skb;
2002
2003 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2004 : tcp_write_queue_head(sk);
2005
2006 tcp_for_write_queue_from(skb, sk) {
2007 if (skb == tcp_send_head(sk))
2008 break;
2009 if (!tcp_skb_timedout(sk, skb))
2010 break;
2011
2012 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
2013 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2014 tp->lost_out += tcp_skb_pcount(skb);
2015 tcp_verify_retransmit_hint(tp, skb);
2016 }
2017 }
2018
2019 tp->scoreboard_skb_hint = skb;
2020
2021 tcp_verify_left_out(tp);
2022 }
2023 }
2024
2025 /* CWND moderation, preventing bursts due to too big ACKs
2026 * in dubious situations.
2027 */
2028 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2029 {
2030 tp->snd_cwnd = min(tp->snd_cwnd,
2031 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2032 tp->snd_cwnd_stamp = tcp_time_stamp;
2033 }
2034
2035 /* Lower bound on congestion window is slow start threshold
2036 * unless congestion avoidance choice decides to overide it.
2037 */
2038 static inline u32 tcp_cwnd_min(const struct sock *sk)
2039 {
2040 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2041
2042 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2043 }
2044
2045 /* Decrease cwnd each second ack. */
2046 static void tcp_cwnd_down(struct sock *sk, int flag)
2047 {
2048 struct tcp_sock *tp = tcp_sk(sk);
2049 int decr = tp->snd_cwnd_cnt + 1;
2050
2051 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2052 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2053 tp->snd_cwnd_cnt = decr&1;
2054 decr >>= 1;
2055
2056 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2057 tp->snd_cwnd -= decr;
2058
2059 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2060 tp->snd_cwnd_stamp = tcp_time_stamp;
2061 }
2062 }
2063
2064 /* Nothing was retransmitted or returned timestamp is less
2065 * than timestamp of the first retransmission.
2066 */
2067 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2068 {
2069 return !tp->retrans_stamp ||
2070 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2071 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2072 }
2073
2074 /* Undo procedures. */
2075
2076 #if FASTRETRANS_DEBUG > 1
2077 static void DBGUNDO(struct sock *sk, const char *msg)
2078 {
2079 struct tcp_sock *tp = tcp_sk(sk);
2080 struct inet_sock *inet = inet_sk(sk);
2081
2082 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2083 msg,
2084 NIPQUAD(inet->daddr), ntohs(inet->dport),
2085 tp->snd_cwnd, tcp_left_out(tp),
2086 tp->snd_ssthresh, tp->prior_ssthresh,
2087 tp->packets_out);
2088 }
2089 #else
2090 #define DBGUNDO(x...) do { } while (0)
2091 #endif
2092
2093 static void tcp_undo_cwr(struct sock *sk, const int undo)
2094 {
2095 struct tcp_sock *tp = tcp_sk(sk);
2096
2097 if (tp->prior_ssthresh) {
2098 const struct inet_connection_sock *icsk = inet_csk(sk);
2099
2100 if (icsk->icsk_ca_ops->undo_cwnd)
2101 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2102 else
2103 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2104
2105 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2106 tp->snd_ssthresh = tp->prior_ssthresh;
2107 TCP_ECN_withdraw_cwr(tp);
2108 }
2109 } else {
2110 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2111 }
2112 tcp_moderate_cwnd(tp);
2113 tp->snd_cwnd_stamp = tcp_time_stamp;
2114
2115 /* There is something screwy going on with the retrans hints after
2116 an undo */
2117 tcp_clear_all_retrans_hints(tp);
2118 }
2119
2120 static inline int tcp_may_undo(struct tcp_sock *tp)
2121 {
2122 return tp->undo_marker &&
2123 (!tp->undo_retrans || tcp_packet_delayed(tp));
2124 }
2125
2126 /* People celebrate: "We love our President!" */
2127 static int tcp_try_undo_recovery(struct sock *sk)
2128 {
2129 struct tcp_sock *tp = tcp_sk(sk);
2130
2131 if (tcp_may_undo(tp)) {
2132 /* Happy end! We did not retransmit anything
2133 * or our original transmission succeeded.
2134 */
2135 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2136 tcp_undo_cwr(sk, 1);
2137 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2138 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2139 else
2140 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2141 tp->undo_marker = 0;
2142 }
2143 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2144 /* Hold old state until something *above* high_seq
2145 * is ACKed. For Reno it is MUST to prevent false
2146 * fast retransmits (RFC2582). SACK TCP is safe. */
2147 tcp_moderate_cwnd(tp);
2148 return 1;
2149 }
2150 tcp_set_ca_state(sk, TCP_CA_Open);
2151 return 0;
2152 }
2153
2154 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2155 static void tcp_try_undo_dsack(struct sock *sk)
2156 {
2157 struct tcp_sock *tp = tcp_sk(sk);
2158
2159 if (tp->undo_marker && !tp->undo_retrans) {
2160 DBGUNDO(sk, "D-SACK");
2161 tcp_undo_cwr(sk, 1);
2162 tp->undo_marker = 0;
2163 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2164 }
2165 }
2166
2167 /* Undo during fast recovery after partial ACK. */
2168
2169 static int tcp_try_undo_partial(struct sock *sk, int acked)
2170 {
2171 struct tcp_sock *tp = tcp_sk(sk);
2172 /* Partial ACK arrived. Force Hoe's retransmit. */
2173 int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
2174
2175 if (tcp_may_undo(tp)) {
2176 /* Plain luck! Hole if filled with delayed
2177 * packet, rather than with a retransmit.
2178 */
2179 if (tp->retrans_out == 0)
2180 tp->retrans_stamp = 0;
2181
2182 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2183
2184 DBGUNDO(sk, "Hoe");
2185 tcp_undo_cwr(sk, 0);
2186 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2187
2188 /* So... Do not make Hoe's retransmit yet.
2189 * If the first packet was delayed, the rest
2190 * ones are most probably delayed as well.
2191 */
2192 failed = 0;
2193 }
2194 return failed;
2195 }
2196
2197 /* Undo during loss recovery after partial ACK. */
2198 static int tcp_try_undo_loss(struct sock *sk)
2199 {
2200 struct tcp_sock *tp = tcp_sk(sk);
2201
2202 if (tcp_may_undo(tp)) {
2203 struct sk_buff *skb;
2204 tcp_for_write_queue(skb, sk) {
2205 if (skb == tcp_send_head(sk))
2206 break;
2207 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2208 }
2209
2210 tcp_clear_all_retrans_hints(tp);
2211
2212 DBGUNDO(sk, "partial loss");
2213 tp->lost_out = 0;
2214 tcp_undo_cwr(sk, 1);
2215 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2216 inet_csk(sk)->icsk_retransmits = 0;
2217 tp->undo_marker = 0;
2218 if (tcp_is_sack(tp))
2219 tcp_set_ca_state(sk, TCP_CA_Open);
2220 return 1;
2221 }
2222 return 0;
2223 }
2224
2225 static inline void tcp_complete_cwr(struct sock *sk)
2226 {
2227 struct tcp_sock *tp = tcp_sk(sk);
2228 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2229 tp->snd_cwnd_stamp = tcp_time_stamp;
2230 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2231 }
2232
2233 static void tcp_try_to_open(struct sock *sk, int flag)
2234 {
2235 struct tcp_sock *tp = tcp_sk(sk);
2236
2237 tcp_verify_left_out(tp);
2238
2239 if (tp->retrans_out == 0)
2240 tp->retrans_stamp = 0;
2241
2242 if (flag&FLAG_ECE)
2243 tcp_enter_cwr(sk, 1);
2244
2245 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2246 int state = TCP_CA_Open;
2247
2248 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2249 state = TCP_CA_Disorder;
2250
2251 if (inet_csk(sk)->icsk_ca_state != state) {
2252 tcp_set_ca_state(sk, state);
2253 tp->high_seq = tp->snd_nxt;
2254 }
2255 tcp_moderate_cwnd(tp);
2256 } else {
2257 tcp_cwnd_down(sk, flag);
2258 }
2259 }
2260
2261 static void tcp_mtup_probe_failed(struct sock *sk)
2262 {
2263 struct inet_connection_sock *icsk = inet_csk(sk);
2264
2265 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2266 icsk->icsk_mtup.probe_size = 0;
2267 }
2268
2269 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2270 {
2271 struct tcp_sock *tp = tcp_sk(sk);
2272 struct inet_connection_sock *icsk = inet_csk(sk);
2273
2274 /* FIXME: breaks with very large cwnd */
2275 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2276 tp->snd_cwnd = tp->snd_cwnd *
2277 tcp_mss_to_mtu(sk, tp->mss_cache) /
2278 icsk->icsk_mtup.probe_size;
2279 tp->snd_cwnd_cnt = 0;
2280 tp->snd_cwnd_stamp = tcp_time_stamp;
2281 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2282
2283 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2284 icsk->icsk_mtup.probe_size = 0;
2285 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2286 }
2287
2288
2289 /* Process an event, which can update packets-in-flight not trivially.
2290 * Main goal of this function is to calculate new estimate for left_out,
2291 * taking into account both packets sitting in receiver's buffer and
2292 * packets lost by network.
2293 *
2294 * Besides that it does CWND reduction, when packet loss is detected
2295 * and changes state of machine.
2296 *
2297 * It does _not_ decide what to send, it is made in function
2298 * tcp_xmit_retransmit_queue().
2299 */
2300 static void
2301 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2302 {
2303 struct inet_connection_sock *icsk = inet_csk(sk);
2304 struct tcp_sock *tp = tcp_sk(sk);
2305 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2306 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2307 (tp->fackets_out > tp->reordering));
2308
2309 /* Some technical things:
2310 * 1. Reno does not count dupacks (sacked_out) automatically. */
2311 if (!tp->packets_out)
2312 tp->sacked_out = 0;
2313
2314 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2315 tp->fackets_out = 0;
2316
2317 /* Now state machine starts.
2318 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2319 if (flag&FLAG_ECE)
2320 tp->prior_ssthresh = 0;
2321
2322 /* B. In all the states check for reneging SACKs. */
2323 if (tp->sacked_out && tcp_check_sack_reneging(sk))
2324 return;
2325
2326 /* C. Process data loss notification, provided it is valid. */
2327 if ((flag&FLAG_DATA_LOST) &&
2328 before(tp->snd_una, tp->high_seq) &&
2329 icsk->icsk_ca_state != TCP_CA_Open &&
2330 tp->fackets_out > tp->reordering) {
2331 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
2332 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2333 }
2334
2335 /* D. Check consistency of the current state. */
2336 tcp_verify_left_out(tp);
2337
2338 /* E. Check state exit conditions. State can be terminated
2339 * when high_seq is ACKed. */
2340 if (icsk->icsk_ca_state == TCP_CA_Open) {
2341 BUG_TRAP(tp->retrans_out == 0);
2342 tp->retrans_stamp = 0;
2343 } else if (!before(tp->snd_una, tp->high_seq)) {
2344 switch (icsk->icsk_ca_state) {
2345 case TCP_CA_Loss:
2346 icsk->icsk_retransmits = 0;
2347 if (tcp_try_undo_recovery(sk))
2348 return;
2349 break;
2350
2351 case TCP_CA_CWR:
2352 /* CWR is to be held something *above* high_seq
2353 * is ACKed for CWR bit to reach receiver. */
2354 if (tp->snd_una != tp->high_seq) {
2355 tcp_complete_cwr(sk);
2356 tcp_set_ca_state(sk, TCP_CA_Open);
2357 }
2358 break;
2359
2360 case TCP_CA_Disorder:
2361 tcp_try_undo_dsack(sk);
2362 if (!tp->undo_marker ||
2363 /* For SACK case do not Open to allow to undo
2364 * catching for all duplicate ACKs. */
2365 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2366 tp->undo_marker = 0;
2367 tcp_set_ca_state(sk, TCP_CA_Open);
2368 }
2369 break;
2370
2371 case TCP_CA_Recovery:
2372 if (tcp_is_reno(tp))
2373 tcp_reset_reno_sack(tp);
2374 if (tcp_try_undo_recovery(sk))
2375 return;
2376 tcp_complete_cwr(sk);
2377 break;
2378 }
2379 }
2380
2381 /* F. Process state. */
2382 switch (icsk->icsk_ca_state) {
2383 case TCP_CA_Recovery:
2384 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2385 if (tcp_is_reno(tp) && is_dupack)
2386 tcp_add_reno_sack(sk);
2387 } else
2388 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2389 break;
2390 case TCP_CA_Loss:
2391 if (flag&FLAG_DATA_ACKED)
2392 icsk->icsk_retransmits = 0;
2393 if (!tcp_try_undo_loss(sk)) {
2394 tcp_moderate_cwnd(tp);
2395 tcp_xmit_retransmit_queue(sk);
2396 return;
2397 }
2398 if (icsk->icsk_ca_state != TCP_CA_Open)
2399 return;
2400 /* Loss is undone; fall through to processing in Open state. */
2401 default:
2402 if (tcp_is_reno(tp)) {
2403 if (flag & FLAG_SND_UNA_ADVANCED)
2404 tcp_reset_reno_sack(tp);
2405 if (is_dupack)
2406 tcp_add_reno_sack(sk);
2407 }
2408
2409 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2410 tcp_try_undo_dsack(sk);
2411
2412 if (!tcp_time_to_recover(sk)) {
2413 tcp_try_to_open(sk, flag);
2414 return;
2415 }
2416
2417 /* MTU probe failure: don't reduce cwnd */
2418 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2419 icsk->icsk_mtup.probe_size &&
2420 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2421 tcp_mtup_probe_failed(sk);
2422 /* Restores the reduction we did in tcp_mtup_probe() */
2423 tp->snd_cwnd++;
2424 tcp_simple_retransmit(sk);
2425 return;
2426 }
2427
2428 /* Otherwise enter Recovery state */
2429
2430 if (tcp_is_reno(tp))
2431 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2432 else
2433 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2434
2435 tp->high_seq = tp->snd_nxt;
2436 tp->prior_ssthresh = 0;
2437 tp->undo_marker = tp->snd_una;
2438 tp->undo_retrans = tp->retrans_out;
2439
2440 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2441 if (!(flag&FLAG_ECE))
2442 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2443 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2444 TCP_ECN_queue_cwr(tp);
2445 }
2446
2447 tp->bytes_acked = 0;
2448 tp->snd_cwnd_cnt = 0;
2449 tcp_set_ca_state(sk, TCP_CA_Recovery);
2450 }
2451
2452 if (do_lost || tcp_head_timedout(sk))
2453 tcp_update_scoreboard(sk);
2454 tcp_cwnd_down(sk, flag);
2455 tcp_xmit_retransmit_queue(sk);
2456 }
2457
2458 /* Read draft-ietf-tcplw-high-performance before mucking
2459 * with this code. (Supersedes RFC1323)
2460 */
2461 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2462 {
2463 /* RTTM Rule: A TSecr value received in a segment is used to
2464 * update the averaged RTT measurement only if the segment
2465 * acknowledges some new data, i.e., only if it advances the
2466 * left edge of the send window.
2467 *
2468 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2469 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2470 *
2471 * Changed: reset backoff as soon as we see the first valid sample.
2472 * If we do not, we get strongly overestimated rto. With timestamps
2473 * samples are accepted even from very old segments: f.e., when rtt=1
2474 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2475 * answer arrives rto becomes 120 seconds! If at least one of segments
2476 * in window is lost... Voila. --ANK (010210)
2477 */
2478 struct tcp_sock *tp = tcp_sk(sk);
2479 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2480 tcp_rtt_estimator(sk, seq_rtt);
2481 tcp_set_rto(sk);
2482 inet_csk(sk)->icsk_backoff = 0;
2483 tcp_bound_rto(sk);
2484 }
2485
2486 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2487 {
2488 /* We don't have a timestamp. Can only use
2489 * packets that are not retransmitted to determine
2490 * rtt estimates. Also, we must not reset the
2491 * backoff for rto until we get a non-retransmitted
2492 * packet. This allows us to deal with a situation
2493 * where the network delay has increased suddenly.
2494 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2495 */
2496
2497 if (flag & FLAG_RETRANS_DATA_ACKED)
2498 return;
2499
2500 tcp_rtt_estimator(sk, seq_rtt);
2501 tcp_set_rto(sk);
2502 inet_csk(sk)->icsk_backoff = 0;
2503 tcp_bound_rto(sk);
2504 }
2505
2506 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2507 const s32 seq_rtt)
2508 {
2509 const struct tcp_sock *tp = tcp_sk(sk);
2510 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2511 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2512 tcp_ack_saw_tstamp(sk, flag);
2513 else if (seq_rtt >= 0)
2514 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2515 }
2516
2517 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2518 u32 in_flight, int good)
2519 {
2520 const struct inet_connection_sock *icsk = inet_csk(sk);
2521 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2522 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2523 }
2524
2525 /* Restart timer after forward progress on connection.
2526 * RFC2988 recommends to restart timer to now+rto.
2527 */
2528 static void tcp_rearm_rto(struct sock *sk)
2529 {
2530 struct tcp_sock *tp = tcp_sk(sk);
2531
2532 if (!tp->packets_out) {
2533 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2534 } else {
2535 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2536 }
2537 }
2538
2539 /* If we get here, the whole TSO packet has not been acked. */
2540 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2541 {
2542 struct tcp_sock *tp = tcp_sk(sk);
2543 u32 packets_acked;
2544
2545 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2546
2547 packets_acked = tcp_skb_pcount(skb);
2548 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2549 return 0;
2550 packets_acked -= tcp_skb_pcount(skb);
2551
2552 if (packets_acked) {
2553 BUG_ON(tcp_skb_pcount(skb) == 0);
2554 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2555 }
2556
2557 return packets_acked;
2558 }
2559
2560 /* Remove acknowledged frames from the retransmission queue. If our packet
2561 * is before the ack sequence we can discard it as it's confirmed to have
2562 * arrived at the other end.
2563 */
2564 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p)
2565 {
2566 struct tcp_sock *tp = tcp_sk(sk);
2567 const struct inet_connection_sock *icsk = inet_csk(sk);
2568 struct sk_buff *skb;
2569 u32 now = tcp_time_stamp;
2570 int fully_acked = 1;
2571 int flag = 0;
2572 int prior_packets = tp->packets_out;
2573 s32 seq_rtt = -1;
2574 ktime_t last_ackt = net_invalid_timestamp();
2575
2576 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2577 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2578 u32 end_seq;
2579 u32 packets_acked;
2580 u8 sacked = scb->sacked;
2581
2582 if (after(scb->end_seq, tp->snd_una)) {
2583 if (tcp_skb_pcount(skb) == 1 ||
2584 !after(tp->snd_una, scb->seq))
2585 break;
2586
2587 packets_acked = tcp_tso_acked(sk, skb);
2588 if (!packets_acked)
2589 break;
2590
2591 fully_acked = 0;
2592 end_seq = tp->snd_una;
2593 } else {
2594 packets_acked = tcp_skb_pcount(skb);
2595 end_seq = scb->end_seq;
2596 }
2597
2598 /* MTU probing checks */
2599 if (fully_acked && icsk->icsk_mtup.probe_size &&
2600 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2601 tcp_mtup_probe_success(sk, skb);
2602 }
2603
2604 if (sacked) {
2605 if (sacked & TCPCB_RETRANS) {
2606 if (sacked & TCPCB_SACKED_RETRANS)
2607 tp->retrans_out -= packets_acked;
2608 flag |= FLAG_RETRANS_DATA_ACKED;
2609 seq_rtt = -1;
2610 if ((flag & FLAG_DATA_ACKED) ||
2611 (packets_acked > 1))
2612 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2613 } else if (seq_rtt < 0) {
2614 seq_rtt = now - scb->when;
2615 if (fully_acked)
2616 last_ackt = skb->tstamp;
2617 }
2618
2619 if (sacked & TCPCB_SACKED_ACKED)
2620 tp->sacked_out -= packets_acked;
2621 if (sacked & TCPCB_LOST)
2622 tp->lost_out -= packets_acked;
2623
2624 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2625 !before(end_seq, tp->snd_up))
2626 tp->urg_mode = 0;
2627 } else if (seq_rtt < 0) {
2628 seq_rtt = now - scb->when;
2629 if (fully_acked)
2630 last_ackt = skb->tstamp;
2631 }
2632 tp->packets_out -= packets_acked;
2633
2634 /* Initial outgoing SYN's get put onto the write_queue
2635 * just like anything else we transmit. It is not
2636 * true data, and if we misinform our callers that
2637 * this ACK acks real data, we will erroneously exit
2638 * connection startup slow start one packet too
2639 * quickly. This is severely frowned upon behavior.
2640 */
2641 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2642 flag |= FLAG_DATA_ACKED;
2643 } else {
2644 flag |= FLAG_SYN_ACKED;
2645 tp->retrans_stamp = 0;
2646 }
2647
2648 if (!fully_acked)
2649 break;
2650
2651 tcp_unlink_write_queue(skb, sk);
2652 sk_stream_free_skb(sk, skb);
2653 tcp_clear_all_retrans_hints(tp);
2654 }
2655
2656 if (flag & FLAG_ACKED) {
2657 u32 pkts_acked = prior_packets - tp->packets_out;
2658 const struct tcp_congestion_ops *ca_ops
2659 = inet_csk(sk)->icsk_ca_ops;
2660
2661 tcp_ack_update_rtt(sk, flag, seq_rtt);
2662 tcp_rearm_rto(sk);
2663
2664 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2665 /* hint's skb might be NULL but we don't need to care */
2666 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2667 tp->fastpath_cnt_hint);
2668 if (tcp_is_reno(tp))
2669 tcp_remove_reno_sacks(sk, pkts_acked);
2670
2671 if (ca_ops->pkts_acked) {
2672 s32 rtt_us = -1;
2673
2674 /* Is the ACK triggering packet unambiguous? */
2675 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2676 /* High resolution needed and available? */
2677 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2678 !ktime_equal(last_ackt,
2679 net_invalid_timestamp()))
2680 rtt_us = ktime_us_delta(ktime_get_real(),
2681 last_ackt);
2682 else if (seq_rtt > 0)
2683 rtt_us = jiffies_to_usecs(seq_rtt);
2684 }
2685
2686 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2687 }
2688 }
2689
2690 #if FASTRETRANS_DEBUG > 0
2691 BUG_TRAP((int)tp->sacked_out >= 0);
2692 BUG_TRAP((int)tp->lost_out >= 0);
2693 BUG_TRAP((int)tp->retrans_out >= 0);
2694 if (!tp->packets_out && tcp_is_sack(tp)) {
2695 const struct inet_connection_sock *icsk = inet_csk(sk);
2696 if (tp->lost_out) {
2697 printk(KERN_DEBUG "Leak l=%u %d\n",
2698 tp->lost_out, icsk->icsk_ca_state);
2699 tp->lost_out = 0;
2700 }
2701 if (tp->sacked_out) {
2702 printk(KERN_DEBUG "Leak s=%u %d\n",
2703 tp->sacked_out, icsk->icsk_ca_state);
2704 tp->sacked_out = 0;
2705 }
2706 if (tp->retrans_out) {
2707 printk(KERN_DEBUG "Leak r=%u %d\n",
2708 tp->retrans_out, icsk->icsk_ca_state);
2709 tp->retrans_out = 0;
2710 }
2711 }
2712 #endif
2713 *seq_rtt_p = seq_rtt;
2714 return flag;
2715 }
2716
2717 static void tcp_ack_probe(struct sock *sk)
2718 {
2719 const struct tcp_sock *tp = tcp_sk(sk);
2720 struct inet_connection_sock *icsk = inet_csk(sk);
2721
2722 /* Was it a usable window open? */
2723
2724 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2725 tp->snd_una + tp->snd_wnd)) {
2726 icsk->icsk_backoff = 0;
2727 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2728 /* Socket must be waked up by subsequent tcp_data_snd_check().
2729 * This function is not for random using!
2730 */
2731 } else {
2732 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2733 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2734 TCP_RTO_MAX);
2735 }
2736 }
2737
2738 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2739 {
2740 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2741 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2742 }
2743
2744 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2745 {
2746 const struct tcp_sock *tp = tcp_sk(sk);
2747 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2748 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2749 }
2750
2751 /* Check that window update is acceptable.
2752 * The function assumes that snd_una<=ack<=snd_next.
2753 */
2754 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2755 const u32 ack_seq, const u32 nwin)
2756 {
2757 return (after(ack, tp->snd_una) ||
2758 after(ack_seq, tp->snd_wl1) ||
2759 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2760 }
2761
2762 /* Update our send window.
2763 *
2764 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2765 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2766 */
2767 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2768 u32 ack_seq)
2769 {
2770 struct tcp_sock *tp = tcp_sk(sk);
2771 int flag = 0;
2772 u32 nwin = ntohs(tcp_hdr(skb)->window);
2773
2774 if (likely(!tcp_hdr(skb)->syn))
2775 nwin <<= tp->rx_opt.snd_wscale;
2776
2777 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2778 flag |= FLAG_WIN_UPDATE;
2779 tcp_update_wl(tp, ack, ack_seq);
2780
2781 if (tp->snd_wnd != nwin) {
2782 tp->snd_wnd = nwin;
2783
2784 /* Note, it is the only place, where
2785 * fast path is recovered for sending TCP.
2786 */
2787 tp->pred_flags = 0;
2788 tcp_fast_path_check(sk);
2789
2790 if (nwin > tp->max_window) {
2791 tp->max_window = nwin;
2792 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2793 }
2794 }
2795 }
2796
2797 tp->snd_una = ack;
2798
2799 return flag;
2800 }
2801
2802 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2803 * continue in congestion avoidance.
2804 */
2805 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2806 {
2807 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2808 tp->snd_cwnd_cnt = 0;
2809 TCP_ECN_queue_cwr(tp);
2810 tcp_moderate_cwnd(tp);
2811 }
2812
2813 /* A conservative spurious RTO response algorithm: reduce cwnd using
2814 * rate halving and continue in congestion avoidance.
2815 */
2816 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2817 {
2818 tcp_enter_cwr(sk, 0);
2819 }
2820
2821 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2822 {
2823 if (flag&FLAG_ECE)
2824 tcp_ratehalving_spur_to_response(sk);
2825 else
2826 tcp_undo_cwr(sk, 1);
2827 }
2828
2829 /* F-RTO spurious RTO detection algorithm (RFC4138)
2830 *
2831 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2832 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2833 * window (but not to or beyond highest sequence sent before RTO):
2834 * On First ACK, send two new segments out.
2835 * On Second ACK, RTO was likely spurious. Do spurious response (response
2836 * algorithm is not part of the F-RTO detection algorithm
2837 * given in RFC4138 but can be selected separately).
2838 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2839 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2840 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2841 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2842 *
2843 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2844 * original window even after we transmit two new data segments.
2845 *
2846 * SACK version:
2847 * on first step, wait until first cumulative ACK arrives, then move to
2848 * the second step. In second step, the next ACK decides.
2849 *
2850 * F-RTO is implemented (mainly) in four functions:
2851 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2852 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2853 * called when tcp_use_frto() showed green light
2854 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2855 * - tcp_enter_frto_loss() is called if there is not enough evidence
2856 * to prove that the RTO is indeed spurious. It transfers the control
2857 * from F-RTO to the conventional RTO recovery
2858 */
2859 static int tcp_process_frto(struct sock *sk, int flag)
2860 {
2861 struct tcp_sock *tp = tcp_sk(sk);
2862
2863 tcp_verify_left_out(tp);
2864
2865 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2866 if (flag&FLAG_DATA_ACKED)
2867 inet_csk(sk)->icsk_retransmits = 0;
2868
2869 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2870 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2871 tp->undo_marker = 0;
2872
2873 if (!before(tp->snd_una, tp->frto_highmark)) {
2874 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2875 return 1;
2876 }
2877
2878 if (!IsSackFrto() || tcp_is_reno(tp)) {
2879 /* RFC4138 shortcoming in step 2; should also have case c):
2880 * ACK isn't duplicate nor advances window, e.g., opposite dir
2881 * data, winupdate
2882 */
2883 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
2884 return 1;
2885
2886 if (!(flag&FLAG_DATA_ACKED)) {
2887 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2888 flag);
2889 return 1;
2890 }
2891 } else {
2892 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2893 /* Prevent sending of new data. */
2894 tp->snd_cwnd = min(tp->snd_cwnd,
2895 tcp_packets_in_flight(tp));
2896 return 1;
2897 }
2898
2899 if ((tp->frto_counter >= 2) &&
2900 (!(flag&FLAG_FORWARD_PROGRESS) ||
2901 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2902 /* RFC4138 shortcoming (see comment above) */
2903 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2904 return 1;
2905
2906 tcp_enter_frto_loss(sk, 3, flag);
2907 return 1;
2908 }
2909 }
2910
2911 if (tp->frto_counter == 1) {
2912 /* Sending of the next skb must be allowed or no FRTO */
2913 if (!tcp_send_head(sk) ||
2914 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2915 tp->snd_una + tp->snd_wnd)) {
2916 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2917 flag);
2918 return 1;
2919 }
2920
2921 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2922 tp->frto_counter = 2;
2923 return 1;
2924 } else {
2925 switch (sysctl_tcp_frto_response) {
2926 case 2:
2927 tcp_undo_spur_to_response(sk, flag);
2928 break;
2929 case 1:
2930 tcp_conservative_spur_to_response(tp);
2931 break;
2932 default:
2933 tcp_ratehalving_spur_to_response(sk);
2934 break;
2935 }
2936 tp->frto_counter = 0;
2937 tp->undo_marker = 0;
2938 }
2939 return 0;
2940 }
2941
2942 /* This routine deals with incoming acks, but not outgoing ones. */
2943 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2944 {
2945 struct inet_connection_sock *icsk = inet_csk(sk);
2946 struct tcp_sock *tp = tcp_sk(sk);
2947 u32 prior_snd_una = tp->snd_una;
2948 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2949 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2950 u32 prior_in_flight;
2951 s32 seq_rtt;
2952 int prior_packets;
2953 int frto_cwnd = 0;
2954
2955 /* If the ack is newer than sent or older than previous acks
2956 * then we can probably ignore it.
2957 */
2958 if (after(ack, tp->snd_nxt))
2959 goto uninteresting_ack;
2960
2961 if (before(ack, prior_snd_una))
2962 goto old_ack;
2963
2964 if (after(ack, prior_snd_una))
2965 flag |= FLAG_SND_UNA_ADVANCED;
2966
2967 if (sysctl_tcp_abc) {
2968 if (icsk->icsk_ca_state < TCP_CA_CWR)
2969 tp->bytes_acked += ack - prior_snd_una;
2970 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2971 /* we assume just one segment left network */
2972 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2973 }
2974
2975 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2976 /* Window is constant, pure forward advance.
2977 * No more checks are required.
2978 * Note, we use the fact that SND.UNA>=SND.WL2.
2979 */
2980 tcp_update_wl(tp, ack, ack_seq);
2981 tp->snd_una = ack;
2982 flag |= FLAG_WIN_UPDATE;
2983
2984 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2985
2986 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2987 } else {
2988 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2989 flag |= FLAG_DATA;
2990 else
2991 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2992
2993 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
2994
2995 if (TCP_SKB_CB(skb)->sacked)
2996 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2997
2998 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
2999 flag |= FLAG_ECE;
3000
3001 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3002 }
3003
3004 /* We passed data and got it acked, remove any soft error
3005 * log. Something worked...
3006 */
3007 sk->sk_err_soft = 0;
3008 tp->rcv_tstamp = tcp_time_stamp;
3009 prior_packets = tp->packets_out;
3010 if (!prior_packets)
3011 goto no_queue;
3012
3013 prior_in_flight = tcp_packets_in_flight(tp);
3014
3015 /* See if we can take anything off of the retransmit queue. */
3016 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
3017
3018 if (tp->frto_counter)
3019 frto_cwnd = tcp_process_frto(sk, flag);
3020
3021 if (tcp_ack_is_dubious(sk, flag)) {
3022 /* Advance CWND, if state allows this. */
3023 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3024 tcp_may_raise_cwnd(sk, flag))
3025 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
3026 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
3027 } else {
3028 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3029 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
3030 }
3031
3032 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3033 dst_confirm(sk->sk_dst_cache);
3034
3035 return 1;
3036
3037 no_queue:
3038 icsk->icsk_probes_out = 0;
3039
3040 /* If this ack opens up a zero window, clear backoff. It was
3041 * being used to time the probes, and is probably far higher than
3042 * it needs to be for normal retransmission.
3043 */
3044 if (tcp_send_head(sk))
3045 tcp_ack_probe(sk);
3046 return 1;
3047
3048 old_ack:
3049 if (TCP_SKB_CB(skb)->sacked)
3050 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3051
3052 uninteresting_ack:
3053 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3054 return 0;
3055 }
3056
3057
3058 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3059 * But, this can also be called on packets in the established flow when
3060 * the fast version below fails.
3061 */
3062 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3063 {
3064 unsigned char *ptr;
3065 struct tcphdr *th = tcp_hdr(skb);
3066 int length=(th->doff*4)-sizeof(struct tcphdr);
3067
3068 ptr = (unsigned char *)(th + 1);
3069 opt_rx->saw_tstamp = 0;
3070
3071 while (length > 0) {
3072 int opcode=*ptr++;
3073 int opsize;
3074
3075 switch (opcode) {
3076 case TCPOPT_EOL:
3077 return;
3078 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3079 length--;
3080 continue;
3081 default:
3082 opsize=*ptr++;
3083 if (opsize < 2) /* "silly options" */
3084 return;
3085 if (opsize > length)
3086 return; /* don't parse partial options */
3087 switch (opcode) {
3088 case TCPOPT_MSS:
3089 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
3090 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
3091 if (in_mss) {
3092 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3093 in_mss = opt_rx->user_mss;
3094 opt_rx->mss_clamp = in_mss;
3095 }
3096 }
3097 break;
3098 case TCPOPT_WINDOW:
3099 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
3100 if (sysctl_tcp_window_scaling) {
3101 __u8 snd_wscale = *(__u8 *) ptr;
3102 opt_rx->wscale_ok = 1;
3103 if (snd_wscale > 14) {
3104 if (net_ratelimit())
3105 printk(KERN_INFO "tcp_parse_options: Illegal window "
3106 "scaling value %d >14 received.\n",
3107 snd_wscale);
3108 snd_wscale = 14;
3109 }
3110 opt_rx->snd_wscale = snd_wscale;
3111 }
3112 break;
3113 case TCPOPT_TIMESTAMP:
3114 if (opsize==TCPOLEN_TIMESTAMP) {
3115 if ((estab && opt_rx->tstamp_ok) ||
3116 (!estab && sysctl_tcp_timestamps)) {
3117 opt_rx->saw_tstamp = 1;
3118 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3119 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
3120 }
3121 }
3122 break;
3123 case TCPOPT_SACK_PERM:
3124 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
3125 if (sysctl_tcp_sack) {
3126 opt_rx->sack_ok = 1;
3127 tcp_sack_reset(opt_rx);
3128 }
3129 }
3130 break;
3131
3132 case TCPOPT_SACK:
3133 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3134 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3135 opt_rx->sack_ok) {
3136 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3137 }
3138 break;
3139 #ifdef CONFIG_TCP_MD5SIG
3140 case TCPOPT_MD5SIG:
3141 /*
3142 * The MD5 Hash has already been
3143 * checked (see tcp_v{4,6}_do_rcv()).
3144 */
3145 break;
3146 #endif
3147 }
3148
3149 ptr+=opsize-2;
3150 length-=opsize;
3151 }
3152 }
3153 }
3154
3155 /* Fast parse options. This hopes to only see timestamps.
3156 * If it is wrong it falls back on tcp_parse_options().
3157 */
3158 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3159 struct tcp_sock *tp)
3160 {
3161 if (th->doff == sizeof(struct tcphdr)>>2) {
3162 tp->rx_opt.saw_tstamp = 0;
3163 return 0;
3164 } else if (tp->rx_opt.tstamp_ok &&
3165 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3166 __be32 *ptr = (__be32 *)(th + 1);
3167 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3168 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3169 tp->rx_opt.saw_tstamp = 1;
3170 ++ptr;
3171 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3172 ++ptr;
3173 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3174 return 1;
3175 }
3176 }
3177 tcp_parse_options(skb, &tp->rx_opt, 1);
3178 return 1;
3179 }
3180
3181 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3182 {
3183 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3184 tp->rx_opt.ts_recent_stamp = get_seconds();
3185 }
3186
3187 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3188 {
3189 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3190 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3191 * extra check below makes sure this can only happen
3192 * for pure ACK frames. -DaveM
3193 *
3194 * Not only, also it occurs for expired timestamps.
3195 */
3196
3197 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
3198 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
3199 tcp_store_ts_recent(tp);
3200 }
3201 }
3202
3203 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3204 *
3205 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3206 * it can pass through stack. So, the following predicate verifies that
3207 * this segment is not used for anything but congestion avoidance or
3208 * fast retransmit. Moreover, we even are able to eliminate most of such
3209 * second order effects, if we apply some small "replay" window (~RTO)
3210 * to timestamp space.
3211 *
3212 * All these measures still do not guarantee that we reject wrapped ACKs
3213 * on networks with high bandwidth, when sequence space is recycled fastly,
3214 * but it guarantees that such events will be very rare and do not affect
3215 * connection seriously. This doesn't look nice, but alas, PAWS is really
3216 * buggy extension.
3217 *
3218 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3219 * states that events when retransmit arrives after original data are rare.
3220 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3221 * the biggest problem on large power networks even with minor reordering.
3222 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3223 * up to bandwidth of 18Gigabit/sec. 8) ]
3224 */
3225
3226 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3227 {
3228 struct tcp_sock *tp = tcp_sk(sk);
3229 struct tcphdr *th = tcp_hdr(skb);
3230 u32 seq = TCP_SKB_CB(skb)->seq;
3231 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3232
3233 return (/* 1. Pure ACK with correct sequence number. */
3234 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3235
3236 /* 2. ... and duplicate ACK. */
3237 ack == tp->snd_una &&
3238
3239 /* 3. ... and does not update window. */
3240 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3241
3242 /* 4. ... and sits in replay window. */
3243 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3244 }
3245
3246 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
3247 {
3248 const struct tcp_sock *tp = tcp_sk(sk);
3249 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
3250 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
3251 !tcp_disordered_ack(sk, skb));
3252 }
3253
3254 /* Check segment sequence number for validity.
3255 *
3256 * Segment controls are considered valid, if the segment
3257 * fits to the window after truncation to the window. Acceptability
3258 * of data (and SYN, FIN, of course) is checked separately.
3259 * See tcp_data_queue(), for example.
3260 *
3261 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3262 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3263 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3264 * (borrowed from freebsd)
3265 */
3266
3267 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3268 {
3269 return !before(end_seq, tp->rcv_wup) &&
3270 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3271 }
3272
3273 /* When we get a reset we do this. */
3274 static void tcp_reset(struct sock *sk)
3275 {
3276 /* We want the right error as BSD sees it (and indeed as we do). */
3277 switch (sk->sk_state) {
3278 case TCP_SYN_SENT:
3279 sk->sk_err = ECONNREFUSED;
3280 break;
3281 case TCP_CLOSE_WAIT:
3282 sk->sk_err = EPIPE;
3283 break;
3284 case TCP_CLOSE:
3285 return;
3286 default:
3287 sk->sk_err = ECONNRESET;
3288 }
3289
3290 if (!sock_flag(sk, SOCK_DEAD))
3291 sk->sk_error_report(sk);
3292
3293 tcp_done(sk);
3294 }
3295
3296 /*
3297 * Process the FIN bit. This now behaves as it is supposed to work
3298 * and the FIN takes effect when it is validly part of sequence
3299 * space. Not before when we get holes.
3300 *
3301 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3302 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3303 * TIME-WAIT)
3304 *
3305 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3306 * close and we go into CLOSING (and later onto TIME-WAIT)
3307 *
3308 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3309 */
3310 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3311 {
3312 struct tcp_sock *tp = tcp_sk(sk);
3313
3314 inet_csk_schedule_ack(sk);
3315
3316 sk->sk_shutdown |= RCV_SHUTDOWN;
3317 sock_set_flag(sk, SOCK_DONE);
3318
3319 switch (sk->sk_state) {
3320 case TCP_SYN_RECV:
3321 case TCP_ESTABLISHED:
3322 /* Move to CLOSE_WAIT */
3323 tcp_set_state(sk, TCP_CLOSE_WAIT);
3324 inet_csk(sk)->icsk_ack.pingpong = 1;
3325 break;
3326
3327 case TCP_CLOSE_WAIT:
3328 case TCP_CLOSING:
3329 /* Received a retransmission of the FIN, do
3330 * nothing.
3331 */
3332 break;
3333 case TCP_LAST_ACK:
3334 /* RFC793: Remain in the LAST-ACK state. */
3335 break;
3336
3337 case TCP_FIN_WAIT1:
3338 /* This case occurs when a simultaneous close
3339 * happens, we must ack the received FIN and
3340 * enter the CLOSING state.
3341 */
3342 tcp_send_ack(sk);
3343 tcp_set_state(sk, TCP_CLOSING);
3344 break;
3345 case TCP_FIN_WAIT2:
3346 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3347 tcp_send_ack(sk);
3348 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3349 break;
3350 default:
3351 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3352 * cases we should never reach this piece of code.
3353 */
3354 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3355 __FUNCTION__, sk->sk_state);
3356 break;
3357 }
3358
3359 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3360 * Probably, we should reset in this case. For now drop them.
3361 */
3362 __skb_queue_purge(&tp->out_of_order_queue);
3363 if (tcp_is_sack(tp))
3364 tcp_sack_reset(&tp->rx_opt);
3365 sk_stream_mem_reclaim(sk);
3366
3367 if (!sock_flag(sk, SOCK_DEAD)) {
3368 sk->sk_state_change(sk);
3369
3370 /* Do not send POLL_HUP for half duplex close. */
3371 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3372 sk->sk_state == TCP_CLOSE)
3373 sk_wake_async(sk, 1, POLL_HUP);
3374 else
3375 sk_wake_async(sk, 1, POLL_IN);
3376 }
3377 }
3378
3379 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
3380 {
3381 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3382 if (before(seq, sp->start_seq))
3383 sp->start_seq = seq;
3384 if (after(end_seq, sp->end_seq))
3385 sp->end_seq = end_seq;
3386 return 1;
3387 }
3388 return 0;
3389 }
3390
3391 static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
3392 {
3393 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3394 if (before(seq, tp->rcv_nxt))
3395 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3396 else
3397 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3398
3399 tp->rx_opt.dsack = 1;
3400 tp->duplicate_sack[0].start_seq = seq;
3401 tp->duplicate_sack[0].end_seq = end_seq;
3402 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3403 }
3404 }
3405
3406 static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
3407 {
3408 if (!tp->rx_opt.dsack)
3409 tcp_dsack_set(tp, seq, end_seq);
3410 else
3411 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3412 }
3413
3414 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3415 {
3416 struct tcp_sock *tp = tcp_sk(sk);
3417
3418 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3419 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3420 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3421 tcp_enter_quickack_mode(sk);
3422
3423 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
3424 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3425
3426 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3427 end_seq = tp->rcv_nxt;
3428 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3429 }
3430 }
3431
3432 tcp_send_ack(sk);
3433 }
3434
3435 /* These routines update the SACK block as out-of-order packets arrive or
3436 * in-order packets close up the sequence space.
3437 */
3438 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3439 {
3440 int this_sack;
3441 struct tcp_sack_block *sp = &tp->selective_acks[0];
3442 struct tcp_sack_block *swalk = sp+1;
3443
3444 /* See if the recent change to the first SACK eats into
3445 * or hits the sequence space of other SACK blocks, if so coalesce.
3446 */
3447 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3448 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3449 int i;
3450
3451 /* Zap SWALK, by moving every further SACK up by one slot.
3452 * Decrease num_sacks.
3453 */
3454 tp->rx_opt.num_sacks--;
3455 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3456 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
3457 sp[i] = sp[i+1];
3458 continue;
3459 }
3460 this_sack++, swalk++;
3461 }
3462 }
3463
3464 static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
3465 {
3466 __u32 tmp;
3467
3468 tmp = sack1->start_seq;
3469 sack1->start_seq = sack2->start_seq;
3470 sack2->start_seq = tmp;
3471
3472 tmp = sack1->end_seq;
3473 sack1->end_seq = sack2->end_seq;
3474 sack2->end_seq = tmp;
3475 }
3476
3477 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3478 {
3479 struct tcp_sock *tp = tcp_sk(sk);
3480 struct tcp_sack_block *sp = &tp->selective_acks[0];
3481 int cur_sacks = tp->rx_opt.num_sacks;
3482 int this_sack;
3483
3484 if (!cur_sacks)
3485 goto new_sack;
3486
3487 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3488 if (tcp_sack_extend(sp, seq, end_seq)) {
3489 /* Rotate this_sack to the first one. */
3490 for (; this_sack>0; this_sack--, sp--)
3491 tcp_sack_swap(sp, sp-1);
3492 if (cur_sacks > 1)
3493 tcp_sack_maybe_coalesce(tp);
3494 return;
3495 }
3496 }
3497
3498 /* Could not find an adjacent existing SACK, build a new one,
3499 * put it at the front, and shift everyone else down. We
3500 * always know there is at least one SACK present already here.
3501 *
3502 * If the sack array is full, forget about the last one.
3503 */
3504 if (this_sack >= 4) {
3505 this_sack--;
3506 tp->rx_opt.num_sacks--;
3507 sp--;
3508 }
3509 for (; this_sack > 0; this_sack--, sp--)
3510 *sp = *(sp-1);
3511
3512 new_sack:
3513 /* Build the new head SACK, and we're done. */
3514 sp->start_seq = seq;
3515 sp->end_seq = end_seq;
3516 tp->rx_opt.num_sacks++;
3517 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3518 }
3519
3520 /* RCV.NXT advances, some SACKs should be eaten. */
3521
3522 static void tcp_sack_remove(struct tcp_sock *tp)
3523 {
3524 struct tcp_sack_block *sp = &tp->selective_acks[0];
3525 int num_sacks = tp->rx_opt.num_sacks;
3526 int this_sack;
3527
3528 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
3529 if (skb_queue_empty(&tp->out_of_order_queue)) {
3530 tp->rx_opt.num_sacks = 0;
3531 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3532 return;
3533 }
3534
3535 for (this_sack = 0; this_sack < num_sacks; ) {
3536 /* Check if the start of the sack is covered by RCV.NXT. */
3537 if (!before(tp->rcv_nxt, sp->start_seq)) {
3538 int i;
3539
3540 /* RCV.NXT must cover all the block! */
3541 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3542
3543 /* Zap this SACK, by moving forward any other SACKS. */
3544 for (i=this_sack+1; i < num_sacks; i++)
3545 tp->selective_acks[i-1] = tp->selective_acks[i];
3546 num_sacks--;
3547 continue;
3548 }
3549 this_sack++;
3550 sp++;
3551 }
3552 if (num_sacks != tp->rx_opt.num_sacks) {
3553 tp->rx_opt.num_sacks = num_sacks;
3554 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3555 }
3556 }
3557
3558 /* This one checks to see if we can put data from the
3559 * out_of_order queue into the receive_queue.
3560 */
3561 static void tcp_ofo_queue(struct sock *sk)
3562 {
3563 struct tcp_sock *tp = tcp_sk(sk);
3564 __u32 dsack_high = tp->rcv_nxt;
3565 struct sk_buff *skb;
3566
3567 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3568 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3569 break;
3570
3571 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3572 __u32 dsack = dsack_high;
3573 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3574 dsack_high = TCP_SKB_CB(skb)->end_seq;
3575 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3576 }
3577
3578 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3579 SOCK_DEBUG(sk, "ofo packet was already received \n");
3580 __skb_unlink(skb, &tp->out_of_order_queue);
3581 __kfree_skb(skb);
3582 continue;
3583 }
3584 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3585 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3586 TCP_SKB_CB(skb)->end_seq);
3587
3588 __skb_unlink(skb, &tp->out_of_order_queue);
3589 __skb_queue_tail(&sk->sk_receive_queue, skb);
3590 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3591 if (tcp_hdr(skb)->fin)
3592 tcp_fin(skb, sk, tcp_hdr(skb));
3593 }
3594 }
3595
3596 static int tcp_prune_queue(struct sock *sk);
3597
3598 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3599 {
3600 struct tcphdr *th = tcp_hdr(skb);
3601 struct tcp_sock *tp = tcp_sk(sk);
3602 int eaten = -1;
3603
3604 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3605 goto drop;
3606
3607 __skb_pull(skb, th->doff*4);
3608
3609 TCP_ECN_accept_cwr(tp, skb);
3610
3611 if (tp->rx_opt.dsack) {
3612 tp->rx_opt.dsack = 0;
3613 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3614 4 - tp->rx_opt.tstamp_ok);
3615 }
3616
3617 /* Queue data for delivery to the user.
3618 * Packets in sequence go to the receive queue.
3619 * Out of sequence packets to the out_of_order_queue.
3620 */
3621 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3622 if (tcp_receive_window(tp) == 0)
3623 goto out_of_window;
3624
3625 /* Ok. In sequence. In window. */
3626 if (tp->ucopy.task == current &&
3627 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3628 sock_owned_by_user(sk) && !tp->urg_data) {
3629 int chunk = min_t(unsigned int, skb->len,
3630 tp->ucopy.len);
3631
3632 __set_current_state(TASK_RUNNING);
3633
3634 local_bh_enable();
3635 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3636 tp->ucopy.len -= chunk;
3637 tp->copied_seq += chunk;
3638 eaten = (chunk == skb->len && !th->fin);
3639 tcp_rcv_space_adjust(sk);
3640 }
3641 local_bh_disable();
3642 }
3643
3644 if (eaten <= 0) {
3645 queue_and_out:
3646 if (eaten < 0 &&
3647 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3648 !sk_stream_rmem_schedule(sk, skb))) {
3649 if (tcp_prune_queue(sk) < 0 ||
3650 !sk_stream_rmem_schedule(sk, skb))
3651 goto drop;
3652 }
3653 sk_stream_set_owner_r(skb, sk);
3654 __skb_queue_tail(&sk->sk_receive_queue, skb);
3655 }
3656 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3657 if (skb->len)
3658 tcp_event_data_recv(sk, skb);
3659 if (th->fin)
3660 tcp_fin(skb, sk, th);
3661
3662 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3663 tcp_ofo_queue(sk);
3664
3665 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3666 * gap in queue is filled.
3667 */
3668 if (skb_queue_empty(&tp->out_of_order_queue))
3669 inet_csk(sk)->icsk_ack.pingpong = 0;
3670 }
3671
3672 if (tp->rx_opt.num_sacks)
3673 tcp_sack_remove(tp);
3674
3675 tcp_fast_path_check(sk);
3676
3677 if (eaten > 0)
3678 __kfree_skb(skb);
3679 else if (!sock_flag(sk, SOCK_DEAD))
3680 sk->sk_data_ready(sk, 0);
3681 return;
3682 }
3683
3684 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3685 /* A retransmit, 2nd most common case. Force an immediate ack. */
3686 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3687 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3688
3689 out_of_window:
3690 tcp_enter_quickack_mode(sk);
3691 inet_csk_schedule_ack(sk);
3692 drop:
3693 __kfree_skb(skb);
3694 return;
3695 }
3696
3697 /* Out of window. F.e. zero window probe. */
3698 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3699 goto out_of_window;
3700
3701 tcp_enter_quickack_mode(sk);
3702
3703 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3704 /* Partial packet, seq < rcv_next < end_seq */
3705 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3706 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3707 TCP_SKB_CB(skb)->end_seq);
3708
3709 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3710
3711 /* If window is closed, drop tail of packet. But after
3712 * remembering D-SACK for its head made in previous line.
3713 */
3714 if (!tcp_receive_window(tp))
3715 goto out_of_window;
3716 goto queue_and_out;
3717 }
3718
3719 TCP_ECN_check_ce(tp, skb);
3720
3721 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3722 !sk_stream_rmem_schedule(sk, skb)) {
3723 if (tcp_prune_queue(sk) < 0 ||
3724 !sk_stream_rmem_schedule(sk, skb))
3725 goto drop;
3726 }
3727
3728 /* Disable header prediction. */
3729 tp->pred_flags = 0;
3730 inet_csk_schedule_ack(sk);
3731
3732 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3733 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3734
3735 sk_stream_set_owner_r(skb, sk);
3736
3737 if (!skb_peek(&tp->out_of_order_queue)) {
3738 /* Initial out of order segment, build 1 SACK. */
3739 if (tcp_is_sack(tp)) {
3740 tp->rx_opt.num_sacks = 1;
3741 tp->rx_opt.dsack = 0;
3742 tp->rx_opt.eff_sacks = 1;
3743 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3744 tp->selective_acks[0].end_seq =
3745 TCP_SKB_CB(skb)->end_seq;
3746 }
3747 __skb_queue_head(&tp->out_of_order_queue,skb);
3748 } else {
3749 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3750 u32 seq = TCP_SKB_CB(skb)->seq;
3751 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3752
3753 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3754 __skb_append(skb1, skb, &tp->out_of_order_queue);
3755
3756 if (!tp->rx_opt.num_sacks ||
3757 tp->selective_acks[0].end_seq != seq)
3758 goto add_sack;
3759
3760 /* Common case: data arrive in order after hole. */
3761 tp->selective_acks[0].end_seq = end_seq;
3762 return;
3763 }
3764
3765 /* Find place to insert this segment. */
3766 do {
3767 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3768 break;
3769 } while ((skb1 = skb1->prev) !=
3770 (struct sk_buff*)&tp->out_of_order_queue);
3771
3772 /* Do skb overlap to previous one? */
3773 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3774 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3775 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3776 /* All the bits are present. Drop. */
3777 __kfree_skb(skb);
3778 tcp_dsack_set(tp, seq, end_seq);
3779 goto add_sack;
3780 }
3781 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3782 /* Partial overlap. */
3783 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3784 } else {
3785 skb1 = skb1->prev;
3786 }
3787 }
3788 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3789
3790 /* And clean segments covered by new one as whole. */
3791 while ((skb1 = skb->next) !=
3792 (struct sk_buff*)&tp->out_of_order_queue &&
3793 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3794 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3795 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3796 break;
3797 }
3798 __skb_unlink(skb1, &tp->out_of_order_queue);
3799 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3800 __kfree_skb(skb1);
3801 }
3802
3803 add_sack:
3804 if (tcp_is_sack(tp))
3805 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3806 }
3807 }
3808
3809 /* Collapse contiguous sequence of skbs head..tail with
3810 * sequence numbers start..end.
3811 * Segments with FIN/SYN are not collapsed (only because this
3812 * simplifies code)
3813 */
3814 static void
3815 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3816 struct sk_buff *head, struct sk_buff *tail,
3817 u32 start, u32 end)
3818 {
3819 struct sk_buff *skb;
3820
3821 /* First, check that queue is collapsible and find
3822 * the point where collapsing can be useful. */
3823 for (skb = head; skb != tail; ) {
3824 /* No new bits? It is possible on ofo queue. */
3825 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3826 struct sk_buff *next = skb->next;
3827 __skb_unlink(skb, list);
3828 __kfree_skb(skb);
3829 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3830 skb = next;
3831 continue;
3832 }
3833
3834 /* The first skb to collapse is:
3835 * - not SYN/FIN and
3836 * - bloated or contains data before "start" or
3837 * overlaps to the next one.
3838 */
3839 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
3840 (tcp_win_from_space(skb->truesize) > skb->len ||
3841 before(TCP_SKB_CB(skb)->seq, start) ||
3842 (skb->next != tail &&
3843 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3844 break;
3845
3846 /* Decided to skip this, advance start seq. */
3847 start = TCP_SKB_CB(skb)->end_seq;
3848 skb = skb->next;
3849 }
3850 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
3851 return;
3852
3853 while (before(start, end)) {
3854 struct sk_buff *nskb;
3855 int header = skb_headroom(skb);
3856 int copy = SKB_MAX_ORDER(header, 0);
3857
3858 /* Too big header? This can happen with IPv6. */
3859 if (copy < 0)
3860 return;
3861 if (end-start < copy)
3862 copy = end-start;
3863 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3864 if (!nskb)
3865 return;
3866
3867 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
3868 skb_set_network_header(nskb, (skb_network_header(skb) -
3869 skb->head));
3870 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3871 skb->head));
3872 skb_reserve(nskb, header);
3873 memcpy(nskb->head, skb->head, header);
3874 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3875 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3876 __skb_insert(nskb, skb->prev, skb, list);
3877 sk_stream_set_owner_r(nskb, sk);
3878
3879 /* Copy data, releasing collapsed skbs. */
3880 while (copy > 0) {
3881 int offset = start - TCP_SKB_CB(skb)->seq;
3882 int size = TCP_SKB_CB(skb)->end_seq - start;
3883
3884 BUG_ON(offset < 0);
3885 if (size > 0) {
3886 size = min(copy, size);
3887 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3888 BUG();
3889 TCP_SKB_CB(nskb)->end_seq += size;
3890 copy -= size;
3891 start += size;
3892 }
3893 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3894 struct sk_buff *next = skb->next;
3895 __skb_unlink(skb, list);
3896 __kfree_skb(skb);
3897 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3898 skb = next;
3899 if (skb == tail ||
3900 tcp_hdr(skb)->syn ||
3901 tcp_hdr(skb)->fin)
3902 return;
3903 }
3904 }
3905 }
3906 }
3907
3908 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3909 * and tcp_collapse() them until all the queue is collapsed.
3910 */
3911 static void tcp_collapse_ofo_queue(struct sock *sk)
3912 {
3913 struct tcp_sock *tp = tcp_sk(sk);
3914 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3915 struct sk_buff *head;
3916 u32 start, end;
3917
3918 if (skb == NULL)
3919 return;
3920
3921 start = TCP_SKB_CB(skb)->seq;
3922 end = TCP_SKB_CB(skb)->end_seq;
3923 head = skb;
3924
3925 for (;;) {
3926 skb = skb->next;
3927
3928 /* Segment is terminated when we see gap or when
3929 * we are at the end of all the queue. */
3930 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3931 after(TCP_SKB_CB(skb)->seq, end) ||
3932 before(TCP_SKB_CB(skb)->end_seq, start)) {
3933 tcp_collapse(sk, &tp->out_of_order_queue,
3934 head, skb, start, end);
3935 head = skb;
3936 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3937 break;
3938 /* Start new segment */
3939 start = TCP_SKB_CB(skb)->seq;
3940 end = TCP_SKB_CB(skb)->end_seq;
3941 } else {
3942 if (before(TCP_SKB_CB(skb)->seq, start))
3943 start = TCP_SKB_CB(skb)->seq;
3944 if (after(TCP_SKB_CB(skb)->end_seq, end))
3945 end = TCP_SKB_CB(skb)->end_seq;
3946 }
3947 }
3948 }
3949
3950 /* Reduce allocated memory if we can, trying to get
3951 * the socket within its memory limits again.
3952 *
3953 * Return less than zero if we should start dropping frames
3954 * until the socket owning process reads some of the data
3955 * to stabilize the situation.
3956 */
3957 static int tcp_prune_queue(struct sock *sk)
3958 {
3959 struct tcp_sock *tp = tcp_sk(sk);
3960
3961 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3962
3963 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3964
3965 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3966 tcp_clamp_window(sk);
3967 else if (tcp_memory_pressure)
3968 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3969
3970 tcp_collapse_ofo_queue(sk);
3971 tcp_collapse(sk, &sk->sk_receive_queue,
3972 sk->sk_receive_queue.next,
3973 (struct sk_buff*)&sk->sk_receive_queue,
3974 tp->copied_seq, tp->rcv_nxt);
3975 sk_stream_mem_reclaim(sk);
3976
3977 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3978 return 0;
3979
3980 /* Collapsing did not help, destructive actions follow.
3981 * This must not ever occur. */
3982
3983 /* First, purge the out_of_order queue. */
3984 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3985 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3986 __skb_queue_purge(&tp->out_of_order_queue);
3987
3988 /* Reset SACK state. A conforming SACK implementation will
3989 * do the same at a timeout based retransmit. When a connection
3990 * is in a sad state like this, we care only about integrity
3991 * of the connection not performance.
3992 */
3993 if (tcp_is_sack(tp))
3994 tcp_sack_reset(&tp->rx_opt);
3995 sk_stream_mem_reclaim(sk);
3996 }
3997
3998 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3999 return 0;
4000
4001 /* If we are really being abused, tell the caller to silently
4002 * drop receive data on the floor. It will get retransmitted
4003 * and hopefully then we'll have sufficient space.
4004 */
4005 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4006
4007 /* Massive buffer overcommit. */
4008 tp->pred_flags = 0;
4009 return -1;
4010 }
4011
4012
4013 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4014 * As additional protections, we do not touch cwnd in retransmission phases,
4015 * and if application hit its sndbuf limit recently.
4016 */
4017 void tcp_cwnd_application_limited(struct sock *sk)
4018 {
4019 struct tcp_sock *tp = tcp_sk(sk);
4020
4021 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4022 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4023 /* Limited by application or receiver window. */
4024 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4025 u32 win_used = max(tp->snd_cwnd_used, init_win);
4026 if (win_used < tp->snd_cwnd) {
4027 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4028 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4029 }
4030 tp->snd_cwnd_used = 0;
4031 }
4032 tp->snd_cwnd_stamp = tcp_time_stamp;
4033 }
4034
4035 static int tcp_should_expand_sndbuf(struct sock *sk)
4036 {
4037 struct tcp_sock *tp = tcp_sk(sk);
4038
4039 /* If the user specified a specific send buffer setting, do
4040 * not modify it.
4041 */
4042 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4043 return 0;
4044
4045 /* If we are under global TCP memory pressure, do not expand. */
4046 if (tcp_memory_pressure)
4047 return 0;
4048
4049 /* If we are under soft global TCP memory pressure, do not expand. */
4050 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4051 return 0;
4052
4053 /* If we filled the congestion window, do not expand. */
4054 if (tp->packets_out >= tp->snd_cwnd)
4055 return 0;
4056
4057 return 1;
4058 }
4059
4060 /* When incoming ACK allowed to free some skb from write_queue,
4061 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4062 * on the exit from tcp input handler.
4063 *
4064 * PROBLEM: sndbuf expansion does not work well with largesend.
4065 */
4066 static void tcp_new_space(struct sock *sk)
4067 {
4068 struct tcp_sock *tp = tcp_sk(sk);
4069
4070 if (tcp_should_expand_sndbuf(sk)) {
4071 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4072 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4073 demanded = max_t(unsigned int, tp->snd_cwnd,
4074 tp->reordering + 1);
4075 sndmem *= 2*demanded;
4076 if (sndmem > sk->sk_sndbuf)
4077 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4078 tp->snd_cwnd_stamp = tcp_time_stamp;
4079 }
4080
4081 sk->sk_write_space(sk);
4082 }
4083
4084 static void tcp_check_space(struct sock *sk)
4085 {
4086 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4087 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4088 if (sk->sk_socket &&
4089 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4090 tcp_new_space(sk);
4091 }
4092 }
4093
4094 static inline void tcp_data_snd_check(struct sock *sk)
4095 {
4096 tcp_push_pending_frames(sk);
4097 tcp_check_space(sk);
4098 }
4099
4100 /*
4101 * Check if sending an ack is needed.
4102 */
4103 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4104 {
4105 struct tcp_sock *tp = tcp_sk(sk);
4106
4107 /* More than one full frame received... */
4108 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4109 /* ... and right edge of window advances far enough.
4110 * (tcp_recvmsg() will send ACK otherwise). Or...
4111 */
4112 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4113 /* We ACK each frame or... */
4114 tcp_in_quickack_mode(sk) ||
4115 /* We have out of order data. */
4116 (ofo_possible &&
4117 skb_peek(&tp->out_of_order_queue))) {
4118 /* Then ack it now */
4119 tcp_send_ack(sk);
4120 } else {
4121 /* Else, send delayed ack. */
4122 tcp_send_delayed_ack(sk);
4123 }
4124 }
4125
4126 static inline void tcp_ack_snd_check(struct sock *sk)
4127 {
4128 if (!inet_csk_ack_scheduled(sk)) {
4129 /* We sent a data segment already. */
4130 return;
4131 }
4132 __tcp_ack_snd_check(sk, 1);
4133 }
4134
4135 /*
4136 * This routine is only called when we have urgent data
4137 * signaled. Its the 'slow' part of tcp_urg. It could be
4138 * moved inline now as tcp_urg is only called from one
4139 * place. We handle URGent data wrong. We have to - as
4140 * BSD still doesn't use the correction from RFC961.
4141 * For 1003.1g we should support a new option TCP_STDURG to permit
4142 * either form (or just set the sysctl tcp_stdurg).
4143 */
4144
4145 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4146 {
4147 struct tcp_sock *tp = tcp_sk(sk);
4148 u32 ptr = ntohs(th->urg_ptr);
4149
4150 if (ptr && !sysctl_tcp_stdurg)
4151 ptr--;
4152 ptr += ntohl(th->seq);
4153
4154 /* Ignore urgent data that we've already seen and read. */
4155 if (after(tp->copied_seq, ptr))
4156 return;
4157
4158 /* Do not replay urg ptr.
4159 *
4160 * NOTE: interesting situation not covered by specs.
4161 * Misbehaving sender may send urg ptr, pointing to segment,
4162 * which we already have in ofo queue. We are not able to fetch
4163 * such data and will stay in TCP_URG_NOTYET until will be eaten
4164 * by recvmsg(). Seems, we are not obliged to handle such wicked
4165 * situations. But it is worth to think about possibility of some
4166 * DoSes using some hypothetical application level deadlock.
4167 */
4168 if (before(ptr, tp->rcv_nxt))
4169 return;
4170
4171 /* Do we already have a newer (or duplicate) urgent pointer? */
4172 if (tp->urg_data && !after(ptr, tp->urg_seq))
4173 return;
4174
4175 /* Tell the world about our new urgent pointer. */
4176 sk_send_sigurg(sk);
4177
4178 /* We may be adding urgent data when the last byte read was
4179 * urgent. To do this requires some care. We cannot just ignore
4180 * tp->copied_seq since we would read the last urgent byte again
4181 * as data, nor can we alter copied_seq until this data arrives
4182 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4183 *
4184 * NOTE. Double Dutch. Rendering to plain English: author of comment
4185 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4186 * and expect that both A and B disappear from stream. This is _wrong_.
4187 * Though this happens in BSD with high probability, this is occasional.
4188 * Any application relying on this is buggy. Note also, that fix "works"
4189 * only in this artificial test. Insert some normal data between A and B and we will
4190 * decline of BSD again. Verdict: it is better to remove to trap
4191 * buggy users.
4192 */
4193 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4194 !sock_flag(sk, SOCK_URGINLINE) &&
4195 tp->copied_seq != tp->rcv_nxt) {
4196 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4197 tp->copied_seq++;
4198 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4199 __skb_unlink(skb, &sk->sk_receive_queue);
4200 __kfree_skb(skb);
4201 }
4202 }
4203
4204 tp->urg_data = TCP_URG_NOTYET;
4205 tp->urg_seq = ptr;
4206
4207 /* Disable header prediction. */
4208 tp->pred_flags = 0;
4209 }
4210
4211 /* This is the 'fast' part of urgent handling. */
4212 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4213 {
4214 struct tcp_sock *tp = tcp_sk(sk);
4215
4216 /* Check if we get a new urgent pointer - normally not. */
4217 if (th->urg)
4218 tcp_check_urg(sk,th);
4219
4220 /* Do we wait for any urgent data? - normally not... */
4221 if (tp->urg_data == TCP_URG_NOTYET) {
4222 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4223 th->syn;
4224
4225 /* Is the urgent pointer pointing into this packet? */
4226 if (ptr < skb->len) {
4227 u8 tmp;
4228 if (skb_copy_bits(skb, ptr, &tmp, 1))
4229 BUG();
4230 tp->urg_data = TCP_URG_VALID | tmp;
4231 if (!sock_flag(sk, SOCK_DEAD))
4232 sk->sk_data_ready(sk, 0);
4233 }
4234 }
4235 }
4236
4237 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4238 {
4239 struct tcp_sock *tp = tcp_sk(sk);
4240 int chunk = skb->len - hlen;
4241 int err;
4242
4243 local_bh_enable();
4244 if (skb_csum_unnecessary(skb))
4245 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4246 else
4247 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4248 tp->ucopy.iov);
4249
4250 if (!err) {
4251 tp->ucopy.len -= chunk;
4252 tp->copied_seq += chunk;
4253 tcp_rcv_space_adjust(sk);
4254 }
4255
4256 local_bh_disable();
4257 return err;
4258 }
4259
4260 static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4261 {
4262 __sum16 result;
4263
4264 if (sock_owned_by_user(sk)) {
4265 local_bh_enable();
4266 result = __tcp_checksum_complete(skb);
4267 local_bh_disable();
4268 } else {
4269 result = __tcp_checksum_complete(skb);
4270 }
4271 return result;
4272 }
4273
4274 static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
4275 {
4276 return !skb_csum_unnecessary(skb) &&
4277 __tcp_checksum_complete_user(sk, skb);
4278 }
4279
4280 #ifdef CONFIG_NET_DMA
4281 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4282 {
4283 struct tcp_sock *tp = tcp_sk(sk);
4284 int chunk = skb->len - hlen;
4285 int dma_cookie;
4286 int copied_early = 0;
4287
4288 if (tp->ucopy.wakeup)
4289 return 0;
4290
4291 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4292 tp->ucopy.dma_chan = get_softnet_dma();
4293
4294 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
4295
4296 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4297 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4298
4299 if (dma_cookie < 0)
4300 goto out;
4301
4302 tp->ucopy.dma_cookie = dma_cookie;
4303 copied_early = 1;
4304
4305 tp->ucopy.len -= chunk;
4306 tp->copied_seq += chunk;
4307 tcp_rcv_space_adjust(sk);
4308
4309 if ((tp->ucopy.len == 0) ||
4310 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
4311 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4312 tp->ucopy.wakeup = 1;
4313 sk->sk_data_ready(sk, 0);
4314 }
4315 } else if (chunk > 0) {
4316 tp->ucopy.wakeup = 1;
4317 sk->sk_data_ready(sk, 0);
4318 }
4319 out:
4320 return copied_early;
4321 }
4322 #endif /* CONFIG_NET_DMA */
4323
4324 /*
4325 * TCP receive function for the ESTABLISHED state.
4326 *
4327 * It is split into a fast path and a slow path. The fast path is
4328 * disabled when:
4329 * - A zero window was announced from us - zero window probing
4330 * is only handled properly in the slow path.
4331 * - Out of order segments arrived.
4332 * - Urgent data is expected.
4333 * - There is no buffer space left
4334 * - Unexpected TCP flags/window values/header lengths are received
4335 * (detected by checking the TCP header against pred_flags)
4336 * - Data is sent in both directions. Fast path only supports pure senders
4337 * or pure receivers (this means either the sequence number or the ack
4338 * value must stay constant)
4339 * - Unexpected TCP option.
4340 *
4341 * When these conditions are not satisfied it drops into a standard
4342 * receive procedure patterned after RFC793 to handle all cases.
4343 * The first three cases are guaranteed by proper pred_flags setting,
4344 * the rest is checked inline. Fast processing is turned on in
4345 * tcp_data_queue when everything is OK.
4346 */
4347 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4348 struct tcphdr *th, unsigned len)
4349 {
4350 struct tcp_sock *tp = tcp_sk(sk);
4351
4352 /*
4353 * Header prediction.
4354 * The code loosely follows the one in the famous
4355 * "30 instruction TCP receive" Van Jacobson mail.
4356 *
4357 * Van's trick is to deposit buffers into socket queue
4358 * on a device interrupt, to call tcp_recv function
4359 * on the receive process context and checksum and copy
4360 * the buffer to user space. smart...
4361 *
4362 * Our current scheme is not silly either but we take the
4363 * extra cost of the net_bh soft interrupt processing...
4364 * We do checksum and copy also but from device to kernel.
4365 */
4366
4367 tp->rx_opt.saw_tstamp = 0;
4368
4369 /* pred_flags is 0xS?10 << 16 + snd_wnd
4370 * if header_prediction is to be made
4371 * 'S' will always be tp->tcp_header_len >> 2
4372 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
4373 * turn it off (when there are holes in the receive
4374 * space for instance)
4375 * PSH flag is ignored.
4376 */
4377
4378 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4379 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4380 int tcp_header_len = tp->tcp_header_len;
4381
4382 /* Timestamp header prediction: tcp_header_len
4383 * is automatically equal to th->doff*4 due to pred_flags
4384 * match.
4385 */
4386
4387 /* Check timestamp */
4388 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4389 __be32 *ptr = (__be32 *)(th + 1);
4390
4391 /* No? Slow path! */
4392 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4393 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4394 goto slow_path;
4395
4396 tp->rx_opt.saw_tstamp = 1;
4397 ++ptr;
4398 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4399 ++ptr;
4400 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4401
4402 /* If PAWS failed, check it more carefully in slow path */
4403 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4404 goto slow_path;
4405
4406 /* DO NOT update ts_recent here, if checksum fails
4407 * and timestamp was corrupted part, it will result
4408 * in a hung connection since we will drop all
4409 * future packets due to the PAWS test.
4410 */
4411 }
4412
4413 if (len <= tcp_header_len) {
4414 /* Bulk data transfer: sender */
4415 if (len == tcp_header_len) {
4416 /* Predicted packet is in window by definition.
4417 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4418 * Hence, check seq<=rcv_wup reduces to:
4419 */
4420 if (tcp_header_len ==
4421 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4422 tp->rcv_nxt == tp->rcv_wup)
4423 tcp_store_ts_recent(tp);
4424
4425 /* We know that such packets are checksummed
4426 * on entry.
4427 */
4428 tcp_ack(sk, skb, 0);
4429 __kfree_skb(skb);
4430 tcp_data_snd_check(sk);
4431 return 0;
4432 } else { /* Header too small */
4433 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4434 goto discard;
4435 }
4436 } else {
4437 int eaten = 0;
4438 int copied_early = 0;
4439
4440 if (tp->copied_seq == tp->rcv_nxt &&
4441 len - tcp_header_len <= tp->ucopy.len) {
4442 #ifdef CONFIG_NET_DMA
4443 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4444 copied_early = 1;
4445 eaten = 1;
4446 }
4447 #endif
4448 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4449 __set_current_state(TASK_RUNNING);
4450
4451 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4452 eaten = 1;
4453 }
4454 if (eaten) {
4455 /* Predicted packet is in window by definition.
4456 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4457 * Hence, check seq<=rcv_wup reduces to:
4458 */
4459 if (tcp_header_len ==
4460 (sizeof(struct tcphdr) +
4461 TCPOLEN_TSTAMP_ALIGNED) &&
4462 tp->rcv_nxt == tp->rcv_wup)
4463 tcp_store_ts_recent(tp);
4464
4465 tcp_rcv_rtt_measure_ts(sk, skb);
4466
4467 __skb_pull(skb, tcp_header_len);
4468 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4469 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
4470 }
4471 if (copied_early)
4472 tcp_cleanup_rbuf(sk, skb->len);
4473 }
4474 if (!eaten) {
4475 if (tcp_checksum_complete_user(sk, skb))
4476 goto csum_error;
4477
4478 /* Predicted packet is in window by definition.
4479 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4480 * Hence, check seq<=rcv_wup reduces to:
4481 */
4482 if (tcp_header_len ==
4483 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4484 tp->rcv_nxt == tp->rcv_wup)
4485 tcp_store_ts_recent(tp);
4486
4487 tcp_rcv_rtt_measure_ts(sk, skb);
4488
4489 if ((int)skb->truesize > sk->sk_forward_alloc)
4490 goto step5;
4491
4492 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4493
4494 /* Bulk data transfer: receiver */
4495 __skb_pull(skb,tcp_header_len);
4496 __skb_queue_tail(&sk->sk_receive_queue, skb);
4497 sk_stream_set_owner_r(skb, sk);
4498 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4499 }
4500
4501 tcp_event_data_recv(sk, skb);
4502
4503 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4504 /* Well, only one small jumplet in fast path... */
4505 tcp_ack(sk, skb, FLAG_DATA);
4506 tcp_data_snd_check(sk);
4507 if (!inet_csk_ack_scheduled(sk))
4508 goto no_ack;
4509 }
4510
4511 __tcp_ack_snd_check(sk, 0);
4512 no_ack:
4513 #ifdef CONFIG_NET_DMA
4514 if (copied_early)
4515 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4516 else
4517 #endif
4518 if (eaten)
4519 __kfree_skb(skb);
4520 else
4521 sk->sk_data_ready(sk, 0);
4522 return 0;
4523 }
4524 }
4525
4526 slow_path:
4527 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4528 goto csum_error;
4529
4530 /*
4531 * RFC1323: H1. Apply PAWS check first.
4532 */
4533 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4534 tcp_paws_discard(sk, skb)) {
4535 if (!th->rst) {
4536 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4537 tcp_send_dupack(sk, skb);
4538 goto discard;
4539 }
4540 /* Resets are accepted even if PAWS failed.
4541
4542 ts_recent update must be made after we are sure
4543 that the packet is in window.
4544 */
4545 }
4546
4547 /*
4548 * Standard slow path.
4549 */
4550
4551 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4552 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4553 * (RST) segments are validated by checking their SEQ-fields."
4554 * And page 69: "If an incoming segment is not acceptable,
4555 * an acknowledgment should be sent in reply (unless the RST bit
4556 * is set, if so drop the segment and return)".
4557 */
4558 if (!th->rst)
4559 tcp_send_dupack(sk, skb);
4560 goto discard;
4561 }
4562
4563 if (th->rst) {
4564 tcp_reset(sk);
4565 goto discard;
4566 }
4567
4568 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4569
4570 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4571 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4572 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4573 tcp_reset(sk);
4574 return 1;
4575 }
4576
4577 step5:
4578 if (th->ack)
4579 tcp_ack(sk, skb, FLAG_SLOWPATH);
4580
4581 tcp_rcv_rtt_measure_ts(sk, skb);
4582
4583 /* Process urgent data. */
4584 tcp_urg(sk, skb, th);
4585
4586 /* step 7: process the segment text */
4587 tcp_data_queue(sk, skb);
4588
4589 tcp_data_snd_check(sk);
4590 tcp_ack_snd_check(sk);
4591 return 0;
4592
4593 csum_error:
4594 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4595
4596 discard:
4597 __kfree_skb(skb);
4598 return 0;
4599 }
4600
4601 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4602 struct tcphdr *th, unsigned len)
4603 {
4604 struct tcp_sock *tp = tcp_sk(sk);
4605 struct inet_connection_sock *icsk = inet_csk(sk);
4606 int saved_clamp = tp->rx_opt.mss_clamp;
4607
4608 tcp_parse_options(skb, &tp->rx_opt, 0);
4609
4610 if (th->ack) {
4611 /* rfc793:
4612 * "If the state is SYN-SENT then
4613 * first check the ACK bit
4614 * If the ACK bit is set
4615 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4616 * a reset (unless the RST bit is set, if so drop
4617 * the segment and return)"
4618 *
4619 * We do not send data with SYN, so that RFC-correct
4620 * test reduces to:
4621 */
4622 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4623 goto reset_and_undo;
4624
4625 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4626 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4627 tcp_time_stamp)) {
4628 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4629 goto reset_and_undo;
4630 }
4631
4632 /* Now ACK is acceptable.
4633 *
4634 * "If the RST bit is set
4635 * If the ACK was acceptable then signal the user "error:
4636 * connection reset", drop the segment, enter CLOSED state,
4637 * delete TCB, and return."
4638 */
4639
4640 if (th->rst) {
4641 tcp_reset(sk);
4642 goto discard;
4643 }
4644
4645 /* rfc793:
4646 * "fifth, if neither of the SYN or RST bits is set then
4647 * drop the segment and return."
4648 *
4649 * See note below!
4650 * --ANK(990513)
4651 */
4652 if (!th->syn)
4653 goto discard_and_undo;
4654
4655 /* rfc793:
4656 * "If the SYN bit is on ...
4657 * are acceptable then ...
4658 * (our SYN has been ACKed), change the connection
4659 * state to ESTABLISHED..."
4660 */
4661
4662 TCP_ECN_rcv_synack(tp, th);
4663
4664 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4665 tcp_ack(sk, skb, FLAG_SLOWPATH);
4666
4667 /* Ok.. it's good. Set up sequence numbers and
4668 * move to established.
4669 */
4670 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4671 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4672
4673 /* RFC1323: The window in SYN & SYN/ACK segments is
4674 * never scaled.
4675 */
4676 tp->snd_wnd = ntohs(th->window);
4677 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4678
4679 if (!tp->rx_opt.wscale_ok) {
4680 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4681 tp->window_clamp = min(tp->window_clamp, 65535U);
4682 }
4683
4684 if (tp->rx_opt.saw_tstamp) {
4685 tp->rx_opt.tstamp_ok = 1;
4686 tp->tcp_header_len =
4687 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4688 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4689 tcp_store_ts_recent(tp);
4690 } else {
4691 tp->tcp_header_len = sizeof(struct tcphdr);
4692 }
4693
4694 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4695 tcp_enable_fack(tp);
4696
4697 tcp_mtup_init(sk);
4698 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4699 tcp_initialize_rcv_mss(sk);
4700
4701 /* Remember, tcp_poll() does not lock socket!
4702 * Change state from SYN-SENT only after copied_seq
4703 * is initialized. */
4704 tp->copied_seq = tp->rcv_nxt;
4705 smp_mb();
4706 tcp_set_state(sk, TCP_ESTABLISHED);
4707
4708 security_inet_conn_established(sk, skb);
4709
4710 /* Make sure socket is routed, for correct metrics. */
4711 icsk->icsk_af_ops->rebuild_header(sk);
4712
4713 tcp_init_metrics(sk);
4714
4715 tcp_init_congestion_control(sk);
4716
4717 /* Prevent spurious tcp_cwnd_restart() on first data
4718 * packet.
4719 */
4720 tp->lsndtime = tcp_time_stamp;
4721
4722 tcp_init_buffer_space(sk);
4723
4724 if (sock_flag(sk, SOCK_KEEPOPEN))
4725 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
4726
4727 if (!tp->rx_opt.snd_wscale)
4728 __tcp_fast_path_on(tp, tp->snd_wnd);
4729 else
4730 tp->pred_flags = 0;
4731
4732 if (!sock_flag(sk, SOCK_DEAD)) {
4733 sk->sk_state_change(sk);
4734 sk_wake_async(sk, 0, POLL_OUT);
4735 }
4736
4737 if (sk->sk_write_pending ||
4738 icsk->icsk_accept_queue.rskq_defer_accept ||
4739 icsk->icsk_ack.pingpong) {
4740 /* Save one ACK. Data will be ready after
4741 * several ticks, if write_pending is set.
4742 *
4743 * It may be deleted, but with this feature tcpdumps
4744 * look so _wonderfully_ clever, that I was not able
4745 * to stand against the temptation 8) --ANK
4746 */
4747 inet_csk_schedule_ack(sk);
4748 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4749 icsk->icsk_ack.ato = TCP_ATO_MIN;
4750 tcp_incr_quickack(sk);
4751 tcp_enter_quickack_mode(sk);
4752 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4753 TCP_DELACK_MAX, TCP_RTO_MAX);
4754
4755 discard:
4756 __kfree_skb(skb);
4757 return 0;
4758 } else {
4759 tcp_send_ack(sk);
4760 }
4761 return -1;
4762 }
4763
4764 /* No ACK in the segment */
4765
4766 if (th->rst) {
4767 /* rfc793:
4768 * "If the RST bit is set
4769 *
4770 * Otherwise (no ACK) drop the segment and return."
4771 */
4772
4773 goto discard_and_undo;
4774 }
4775
4776 /* PAWS check. */
4777 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4778 goto discard_and_undo;
4779
4780 if (th->syn) {
4781 /* We see SYN without ACK. It is attempt of
4782 * simultaneous connect with crossed SYNs.
4783 * Particularly, it can be connect to self.
4784 */
4785 tcp_set_state(sk, TCP_SYN_RECV);
4786
4787 if (tp->rx_opt.saw_tstamp) {
4788 tp->rx_opt.tstamp_ok = 1;
4789 tcp_store_ts_recent(tp);
4790 tp->tcp_header_len =
4791 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4792 } else {
4793 tp->tcp_header_len = sizeof(struct tcphdr);
4794 }
4795
4796 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4797 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4798
4799 /* RFC1323: The window in SYN & SYN/ACK segments is
4800 * never scaled.
4801 */
4802 tp->snd_wnd = ntohs(th->window);
4803 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4804 tp->max_window = tp->snd_wnd;
4805
4806 TCP_ECN_rcv_syn(tp, th);
4807
4808 tcp_mtup_init(sk);
4809 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
4810 tcp_initialize_rcv_mss(sk);
4811
4812
4813 tcp_send_synack(sk);
4814 #if 0
4815 /* Note, we could accept data and URG from this segment.
4816 * There are no obstacles to make this.
4817 *
4818 * However, if we ignore data in ACKless segments sometimes,
4819 * we have no reasons to accept it sometimes.
4820 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4821 * is not flawless. So, discard packet for sanity.
4822 * Uncomment this return to process the data.
4823 */
4824 return -1;
4825 #else
4826 goto discard;
4827 #endif
4828 }
4829 /* "fifth, if neither of the SYN or RST bits is set then
4830 * drop the segment and return."
4831 */
4832
4833 discard_and_undo:
4834 tcp_clear_options(&tp->rx_opt);
4835 tp->rx_opt.mss_clamp = saved_clamp;
4836 goto discard;
4837
4838 reset_and_undo:
4839 tcp_clear_options(&tp->rx_opt);
4840 tp->rx_opt.mss_clamp = saved_clamp;
4841 return 1;
4842 }
4843
4844
4845 /*
4846 * This function implements the receiving procedure of RFC 793 for
4847 * all states except ESTABLISHED and TIME_WAIT.
4848 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4849 * address independent.
4850 */
4851
4852 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4853 struct tcphdr *th, unsigned len)
4854 {
4855 struct tcp_sock *tp = tcp_sk(sk);
4856 struct inet_connection_sock *icsk = inet_csk(sk);
4857 int queued = 0;
4858
4859 tp->rx_opt.saw_tstamp = 0;
4860
4861 switch (sk->sk_state) {
4862 case TCP_CLOSE:
4863 goto discard;
4864
4865 case TCP_LISTEN:
4866 if (th->ack)
4867 return 1;
4868
4869 if (th->rst)
4870 goto discard;
4871
4872 if (th->syn) {
4873 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
4874 return 1;
4875
4876 /* Now we have several options: In theory there is
4877 * nothing else in the frame. KA9Q has an option to
4878 * send data with the syn, BSD accepts data with the
4879 * syn up to the [to be] advertised window and
4880 * Solaris 2.1 gives you a protocol error. For now
4881 * we just ignore it, that fits the spec precisely
4882 * and avoids incompatibilities. It would be nice in
4883 * future to drop through and process the data.
4884 *
4885 * Now that TTCP is starting to be used we ought to
4886 * queue this data.
4887 * But, this leaves one open to an easy denial of
4888 * service attack, and SYN cookies can't defend
4889 * against this problem. So, we drop the data
4890 * in the interest of security over speed unless
4891 * it's still in use.
4892 */
4893 kfree_skb(skb);
4894 return 0;
4895 }
4896 goto discard;
4897
4898 case TCP_SYN_SENT:
4899 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4900 if (queued >= 0)
4901 return queued;
4902
4903 /* Do step6 onward by hand. */
4904 tcp_urg(sk, skb, th);
4905 __kfree_skb(skb);
4906 tcp_data_snd_check(sk);
4907 return 0;
4908 }
4909
4910 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4911 tcp_paws_discard(sk, skb)) {
4912 if (!th->rst) {
4913 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4914 tcp_send_dupack(sk, skb);
4915 goto discard;
4916 }
4917 /* Reset is accepted even if it did not pass PAWS. */
4918 }
4919
4920 /* step 1: check sequence number */
4921 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4922 if (!th->rst)
4923 tcp_send_dupack(sk, skb);
4924 goto discard;
4925 }
4926
4927 /* step 2: check RST bit */
4928 if (th->rst) {
4929 tcp_reset(sk);
4930 goto discard;
4931 }
4932
4933 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4934
4935 /* step 3: check security and precedence [ignored] */
4936
4937 /* step 4:
4938 *
4939 * Check for a SYN in window.
4940 */
4941 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4942 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4943 tcp_reset(sk);
4944 return 1;
4945 }
4946
4947 /* step 5: check the ACK field */
4948 if (th->ack) {
4949 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4950
4951 switch (sk->sk_state) {
4952 case TCP_SYN_RECV:
4953 if (acceptable) {
4954 tp->copied_seq = tp->rcv_nxt;
4955 smp_mb();
4956 tcp_set_state(sk, TCP_ESTABLISHED);
4957 sk->sk_state_change(sk);
4958
4959 /* Note, that this wakeup is only for marginal
4960 * crossed SYN case. Passively open sockets
4961 * are not waked up, because sk->sk_sleep ==
4962 * NULL and sk->sk_socket == NULL.
4963 */
4964 if (sk->sk_socket) {
4965 sk_wake_async(sk,0,POLL_OUT);
4966 }
4967
4968 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4969 tp->snd_wnd = ntohs(th->window) <<
4970 tp->rx_opt.snd_wscale;
4971 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4972 TCP_SKB_CB(skb)->seq);
4973
4974 /* tcp_ack considers this ACK as duplicate
4975 * and does not calculate rtt.
4976 * Fix it at least with timestamps.
4977 */
4978 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4979 !tp->srtt)
4980 tcp_ack_saw_tstamp(sk, 0);
4981
4982 if (tp->rx_opt.tstamp_ok)
4983 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4984
4985 /* Make sure socket is routed, for
4986 * correct metrics.
4987 */
4988 icsk->icsk_af_ops->rebuild_header(sk);
4989
4990 tcp_init_metrics(sk);
4991
4992 tcp_init_congestion_control(sk);
4993
4994 /* Prevent spurious tcp_cwnd_restart() on
4995 * first data packet.
4996 */
4997 tp->lsndtime = tcp_time_stamp;
4998
4999 tcp_mtup_init(sk);
5000 tcp_initialize_rcv_mss(sk);
5001 tcp_init_buffer_space(sk);
5002 tcp_fast_path_on(tp);
5003 } else {
5004 return 1;
5005 }
5006 break;
5007
5008 case TCP_FIN_WAIT1:
5009 if (tp->snd_una == tp->write_seq) {
5010 tcp_set_state(sk, TCP_FIN_WAIT2);
5011 sk->sk_shutdown |= SEND_SHUTDOWN;
5012 dst_confirm(sk->sk_dst_cache);
5013
5014 if (!sock_flag(sk, SOCK_DEAD))
5015 /* Wake up lingering close() */
5016 sk->sk_state_change(sk);
5017 else {
5018 int tmo;
5019
5020 if (tp->linger2 < 0 ||
5021 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5022 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5023 tcp_done(sk);
5024 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5025 return 1;
5026 }
5027
5028 tmo = tcp_fin_time(sk);
5029 if (tmo > TCP_TIMEWAIT_LEN) {
5030 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5031 } else if (th->fin || sock_owned_by_user(sk)) {
5032 /* Bad case. We could lose such FIN otherwise.
5033 * It is not a big problem, but it looks confusing
5034 * and not so rare event. We still can lose it now,
5035 * if it spins in bh_lock_sock(), but it is really
5036 * marginal case.
5037 */
5038 inet_csk_reset_keepalive_timer(sk, tmo);
5039 } else {
5040 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5041 goto discard;
5042 }
5043 }
5044 }
5045 break;
5046
5047 case TCP_CLOSING:
5048 if (tp->snd_una == tp->write_seq) {
5049 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5050 goto discard;
5051 }
5052 break;
5053
5054 case TCP_LAST_ACK:
5055 if (tp->snd_una == tp->write_seq) {
5056 tcp_update_metrics(sk);
5057 tcp_done(sk);
5058 goto discard;
5059 }
5060 break;
5061 }
5062 } else
5063 goto discard;
5064
5065 /* step 6: check the URG bit */
5066 tcp_urg(sk, skb, th);
5067
5068 /* step 7: process the segment text */
5069 switch (sk->sk_state) {
5070 case TCP_CLOSE_WAIT:
5071 case TCP_CLOSING:
5072 case TCP_LAST_ACK:
5073 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5074 break;
5075 case TCP_FIN_WAIT1:
5076 case TCP_FIN_WAIT2:
5077 /* RFC 793 says to queue data in these states,
5078 * RFC 1122 says we MUST send a reset.
5079 * BSD 4.4 also does reset.
5080 */
5081 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5082 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5083 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5084 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5085 tcp_reset(sk);
5086 return 1;
5087 }
5088 }
5089 /* Fall through */
5090 case TCP_ESTABLISHED:
5091 tcp_data_queue(sk, skb);
5092 queued = 1;
5093 break;
5094 }
5095
5096 /* tcp_data could move socket to TIME-WAIT */
5097 if (sk->sk_state != TCP_CLOSE) {
5098 tcp_data_snd_check(sk);
5099 tcp_ack_snd_check(sk);
5100 }
5101
5102 if (!queued) {
5103 discard:
5104 __kfree_skb(skb);
5105 }
5106 return 0;
5107 }
5108
5109 EXPORT_SYMBOL(sysctl_tcp_ecn);
5110 EXPORT_SYMBOL(sysctl_tcp_reordering);
5111 EXPORT_SYMBOL(tcp_parse_options);
5112 EXPORT_SYMBOL(tcp_rcv_established);
5113 EXPORT_SYMBOL(tcp_rcv_state_process);
5114 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
This page took 0.234759 seconds and 6 git commands to generate.