Merge tag 'dmaengine-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw...
[deliverable/linux.git] / net / ipv4 / tcp_ipv4.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * IPv4 specific functions
9 *
10 *
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
15 *
16 * See tcp.c for author information
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24 /*
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
51 */
52
53 #define pr_fmt(fmt) "TCP: " fmt
54
55 #include <linux/bottom_half.h>
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
64 #include <linux/slab.h>
65
66 #include <net/net_namespace.h>
67 #include <net/icmp.h>
68 #include <net/inet_hashtables.h>
69 #include <net/tcp.h>
70 #include <net/transp_v6.h>
71 #include <net/ipv6.h>
72 #include <net/inet_common.h>
73 #include <net/timewait_sock.h>
74 #include <net/xfrm.h>
75 #include <net/secure_seq.h>
76 #include <net/tcp_memcontrol.h>
77 #include <net/busy_poll.h>
78
79 #include <linux/inet.h>
80 #include <linux/ipv6.h>
81 #include <linux/stddef.h>
82 #include <linux/proc_fs.h>
83 #include <linux/seq_file.h>
84
85 #include <linux/crypto.h>
86 #include <linux/scatterlist.h>
87
88 int sysctl_tcp_tw_reuse __read_mostly;
89 int sysctl_tcp_low_latency __read_mostly;
90 EXPORT_SYMBOL(sysctl_tcp_low_latency);
91
92
93 #ifdef CONFIG_TCP_MD5SIG
94 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
95 __be32 daddr, __be32 saddr, const struct tcphdr *th);
96 #endif
97
98 struct inet_hashinfo tcp_hashinfo;
99 EXPORT_SYMBOL(tcp_hashinfo);
100
101 static __u32 tcp_v4_init_sequence(const struct sk_buff *skb)
102 {
103 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
104 ip_hdr(skb)->saddr,
105 tcp_hdr(skb)->dest,
106 tcp_hdr(skb)->source);
107 }
108
109 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
110 {
111 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
112 struct tcp_sock *tp = tcp_sk(sk);
113
114 /* With PAWS, it is safe from the viewpoint
115 of data integrity. Even without PAWS it is safe provided sequence
116 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
117
118 Actually, the idea is close to VJ's one, only timestamp cache is
119 held not per host, but per port pair and TW bucket is used as state
120 holder.
121
122 If TW bucket has been already destroyed we fall back to VJ's scheme
123 and use initial timestamp retrieved from peer table.
124 */
125 if (tcptw->tw_ts_recent_stamp &&
126 (twp == NULL || (sysctl_tcp_tw_reuse &&
127 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
128 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
129 if (tp->write_seq == 0)
130 tp->write_seq = 1;
131 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
132 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
133 sock_hold(sktw);
134 return 1;
135 }
136
137 return 0;
138 }
139 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
140
141 /* This will initiate an outgoing connection. */
142 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
143 {
144 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
145 struct inet_sock *inet = inet_sk(sk);
146 struct tcp_sock *tp = tcp_sk(sk);
147 __be16 orig_sport, orig_dport;
148 __be32 daddr, nexthop;
149 struct flowi4 *fl4;
150 struct rtable *rt;
151 int err;
152 struct ip_options_rcu *inet_opt;
153
154 if (addr_len < sizeof(struct sockaddr_in))
155 return -EINVAL;
156
157 if (usin->sin_family != AF_INET)
158 return -EAFNOSUPPORT;
159
160 nexthop = daddr = usin->sin_addr.s_addr;
161 inet_opt = rcu_dereference_protected(inet->inet_opt,
162 sock_owned_by_user(sk));
163 if (inet_opt && inet_opt->opt.srr) {
164 if (!daddr)
165 return -EINVAL;
166 nexthop = inet_opt->opt.faddr;
167 }
168
169 orig_sport = inet->inet_sport;
170 orig_dport = usin->sin_port;
171 fl4 = &inet->cork.fl.u.ip4;
172 rt = ip_route_connect(fl4, nexthop, inet->inet_saddr,
173 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174 IPPROTO_TCP,
175 orig_sport, orig_dport, sk);
176 if (IS_ERR(rt)) {
177 err = PTR_ERR(rt);
178 if (err == -ENETUNREACH)
179 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
180 return err;
181 }
182
183 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
184 ip_rt_put(rt);
185 return -ENETUNREACH;
186 }
187
188 if (!inet_opt || !inet_opt->opt.srr)
189 daddr = fl4->daddr;
190
191 if (!inet->inet_saddr)
192 inet->inet_saddr = fl4->saddr;
193 inet->inet_rcv_saddr = inet->inet_saddr;
194
195 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
196 /* Reset inherited state */
197 tp->rx_opt.ts_recent = 0;
198 tp->rx_opt.ts_recent_stamp = 0;
199 if (likely(!tp->repair))
200 tp->write_seq = 0;
201 }
202
203 if (tcp_death_row.sysctl_tw_recycle &&
204 !tp->rx_opt.ts_recent_stamp && fl4->daddr == daddr)
205 tcp_fetch_timewait_stamp(sk, &rt->dst);
206
207 inet->inet_dport = usin->sin_port;
208 inet->inet_daddr = daddr;
209
210 inet_set_txhash(sk);
211
212 inet_csk(sk)->icsk_ext_hdr_len = 0;
213 if (inet_opt)
214 inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
215
216 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
217
218 /* Socket identity is still unknown (sport may be zero).
219 * However we set state to SYN-SENT and not releasing socket
220 * lock select source port, enter ourselves into the hash tables and
221 * complete initialization after this.
222 */
223 tcp_set_state(sk, TCP_SYN_SENT);
224 err = inet_hash_connect(&tcp_death_row, sk);
225 if (err)
226 goto failure;
227
228 rt = ip_route_newports(fl4, rt, orig_sport, orig_dport,
229 inet->inet_sport, inet->inet_dport, sk);
230 if (IS_ERR(rt)) {
231 err = PTR_ERR(rt);
232 rt = NULL;
233 goto failure;
234 }
235 /* OK, now commit destination to socket. */
236 sk->sk_gso_type = SKB_GSO_TCPV4;
237 sk_setup_caps(sk, &rt->dst);
238
239 if (!tp->write_seq && likely(!tp->repair))
240 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
241 inet->inet_daddr,
242 inet->inet_sport,
243 usin->sin_port);
244
245 inet->inet_id = tp->write_seq ^ jiffies;
246
247 err = tcp_connect(sk);
248
249 rt = NULL;
250 if (err)
251 goto failure;
252
253 return 0;
254
255 failure:
256 /*
257 * This unhashes the socket and releases the local port,
258 * if necessary.
259 */
260 tcp_set_state(sk, TCP_CLOSE);
261 ip_rt_put(rt);
262 sk->sk_route_caps = 0;
263 inet->inet_dport = 0;
264 return err;
265 }
266 EXPORT_SYMBOL(tcp_v4_connect);
267
268 /*
269 * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191.
270 * It can be called through tcp_release_cb() if socket was owned by user
271 * at the time tcp_v4_err() was called to handle ICMP message.
272 */
273 void tcp_v4_mtu_reduced(struct sock *sk)
274 {
275 struct dst_entry *dst;
276 struct inet_sock *inet = inet_sk(sk);
277 u32 mtu = tcp_sk(sk)->mtu_info;
278
279 dst = inet_csk_update_pmtu(sk, mtu);
280 if (!dst)
281 return;
282
283 /* Something is about to be wrong... Remember soft error
284 * for the case, if this connection will not able to recover.
285 */
286 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
287 sk->sk_err_soft = EMSGSIZE;
288
289 mtu = dst_mtu(dst);
290
291 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
292 ip_sk_accept_pmtu(sk) &&
293 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
294 tcp_sync_mss(sk, mtu);
295
296 /* Resend the TCP packet because it's
297 * clear that the old packet has been
298 * dropped. This is the new "fast" path mtu
299 * discovery.
300 */
301 tcp_simple_retransmit(sk);
302 } /* else let the usual retransmit timer handle it */
303 }
304 EXPORT_SYMBOL(tcp_v4_mtu_reduced);
305
306 static void do_redirect(struct sk_buff *skb, struct sock *sk)
307 {
308 struct dst_entry *dst = __sk_dst_check(sk, 0);
309
310 if (dst)
311 dst->ops->redirect(dst, sk, skb);
312 }
313
314 /*
315 * This routine is called by the ICMP module when it gets some
316 * sort of error condition. If err < 0 then the socket should
317 * be closed and the error returned to the user. If err > 0
318 * it's just the icmp type << 8 | icmp code. After adjustment
319 * header points to the first 8 bytes of the tcp header. We need
320 * to find the appropriate port.
321 *
322 * The locking strategy used here is very "optimistic". When
323 * someone else accesses the socket the ICMP is just dropped
324 * and for some paths there is no check at all.
325 * A more general error queue to queue errors for later handling
326 * is probably better.
327 *
328 */
329
330 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
331 {
332 const struct iphdr *iph = (const struct iphdr *)icmp_skb->data;
333 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
334 struct inet_connection_sock *icsk;
335 struct tcp_sock *tp;
336 struct inet_sock *inet;
337 const int type = icmp_hdr(icmp_skb)->type;
338 const int code = icmp_hdr(icmp_skb)->code;
339 struct sock *sk;
340 struct sk_buff *skb;
341 struct request_sock *fastopen;
342 __u32 seq, snd_una;
343 __u32 remaining;
344 int err;
345 struct net *net = dev_net(icmp_skb->dev);
346
347 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
348 iph->saddr, th->source, inet_iif(icmp_skb));
349 if (!sk) {
350 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
351 return;
352 }
353 if (sk->sk_state == TCP_TIME_WAIT) {
354 inet_twsk_put(inet_twsk(sk));
355 return;
356 }
357
358 bh_lock_sock(sk);
359 /* If too many ICMPs get dropped on busy
360 * servers this needs to be solved differently.
361 * We do take care of PMTU discovery (RFC1191) special case :
362 * we can receive locally generated ICMP messages while socket is held.
363 */
364 if (sock_owned_by_user(sk)) {
365 if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED))
366 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
367 }
368 if (sk->sk_state == TCP_CLOSE)
369 goto out;
370
371 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
372 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
373 goto out;
374 }
375
376 icsk = inet_csk(sk);
377 tp = tcp_sk(sk);
378 seq = ntohl(th->seq);
379 /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */
380 fastopen = tp->fastopen_rsk;
381 snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una;
382 if (sk->sk_state != TCP_LISTEN &&
383 !between(seq, snd_una, tp->snd_nxt)) {
384 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
385 goto out;
386 }
387
388 switch (type) {
389 case ICMP_REDIRECT:
390 do_redirect(icmp_skb, sk);
391 goto out;
392 case ICMP_SOURCE_QUENCH:
393 /* Just silently ignore these. */
394 goto out;
395 case ICMP_PARAMETERPROB:
396 err = EPROTO;
397 break;
398 case ICMP_DEST_UNREACH:
399 if (code > NR_ICMP_UNREACH)
400 goto out;
401
402 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
403 /* We are not interested in TCP_LISTEN and open_requests
404 * (SYN-ACKs send out by Linux are always <576bytes so
405 * they should go through unfragmented).
406 */
407 if (sk->sk_state == TCP_LISTEN)
408 goto out;
409
410 tp->mtu_info = info;
411 if (!sock_owned_by_user(sk)) {
412 tcp_v4_mtu_reduced(sk);
413 } else {
414 if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &tp->tsq_flags))
415 sock_hold(sk);
416 }
417 goto out;
418 }
419
420 err = icmp_err_convert[code].errno;
421 /* check if icmp_skb allows revert of backoff
422 * (see draft-zimmermann-tcp-lcd) */
423 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
424 break;
425 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
426 !icsk->icsk_backoff || fastopen)
427 break;
428
429 if (sock_owned_by_user(sk))
430 break;
431
432 icsk->icsk_backoff--;
433 inet_csk(sk)->icsk_rto = (tp->srtt_us ? __tcp_set_rto(tp) :
434 TCP_TIMEOUT_INIT) << icsk->icsk_backoff;
435 tcp_bound_rto(sk);
436
437 skb = tcp_write_queue_head(sk);
438 BUG_ON(!skb);
439
440 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
441 tcp_time_stamp - TCP_SKB_CB(skb)->when);
442
443 if (remaining) {
444 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
445 remaining, TCP_RTO_MAX);
446 } else {
447 /* RTO revert clocked out retransmission.
448 * Will retransmit now */
449 tcp_retransmit_timer(sk);
450 }
451
452 break;
453 case ICMP_TIME_EXCEEDED:
454 err = EHOSTUNREACH;
455 break;
456 default:
457 goto out;
458 }
459
460 switch (sk->sk_state) {
461 struct request_sock *req, **prev;
462 case TCP_LISTEN:
463 if (sock_owned_by_user(sk))
464 goto out;
465
466 req = inet_csk_search_req(sk, &prev, th->dest,
467 iph->daddr, iph->saddr);
468 if (!req)
469 goto out;
470
471 /* ICMPs are not backlogged, hence we cannot get
472 an established socket here.
473 */
474 WARN_ON(req->sk);
475
476 if (seq != tcp_rsk(req)->snt_isn) {
477 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
478 goto out;
479 }
480
481 /*
482 * Still in SYN_RECV, just remove it silently.
483 * There is no good way to pass the error to the newly
484 * created socket, and POSIX does not want network
485 * errors returned from accept().
486 */
487 inet_csk_reqsk_queue_drop(sk, req, prev);
488 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
489 goto out;
490
491 case TCP_SYN_SENT:
492 case TCP_SYN_RECV:
493 /* Only in fast or simultaneous open. If a fast open socket is
494 * is already accepted it is treated as a connected one below.
495 */
496 if (fastopen && fastopen->sk == NULL)
497 break;
498
499 if (!sock_owned_by_user(sk)) {
500 sk->sk_err = err;
501
502 sk->sk_error_report(sk);
503
504 tcp_done(sk);
505 } else {
506 sk->sk_err_soft = err;
507 }
508 goto out;
509 }
510
511 /* If we've already connected we will keep trying
512 * until we time out, or the user gives up.
513 *
514 * rfc1122 4.2.3.9 allows to consider as hard errors
515 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
516 * but it is obsoleted by pmtu discovery).
517 *
518 * Note, that in modern internet, where routing is unreliable
519 * and in each dark corner broken firewalls sit, sending random
520 * errors ordered by their masters even this two messages finally lose
521 * their original sense (even Linux sends invalid PORT_UNREACHs)
522 *
523 * Now we are in compliance with RFCs.
524 * --ANK (980905)
525 */
526
527 inet = inet_sk(sk);
528 if (!sock_owned_by_user(sk) && inet->recverr) {
529 sk->sk_err = err;
530 sk->sk_error_report(sk);
531 } else { /* Only an error on timeout */
532 sk->sk_err_soft = err;
533 }
534
535 out:
536 bh_unlock_sock(sk);
537 sock_put(sk);
538 }
539
540 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr)
541 {
542 struct tcphdr *th = tcp_hdr(skb);
543
544 if (skb->ip_summed == CHECKSUM_PARTIAL) {
545 th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0);
546 skb->csum_start = skb_transport_header(skb) - skb->head;
547 skb->csum_offset = offsetof(struct tcphdr, check);
548 } else {
549 th->check = tcp_v4_check(skb->len, saddr, daddr,
550 csum_partial(th,
551 th->doff << 2,
552 skb->csum));
553 }
554 }
555
556 /* This routine computes an IPv4 TCP checksum. */
557 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb)
558 {
559 const struct inet_sock *inet = inet_sk(sk);
560
561 __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr);
562 }
563 EXPORT_SYMBOL(tcp_v4_send_check);
564
565 /*
566 * This routine will send an RST to the other tcp.
567 *
568 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
569 * for reset.
570 * Answer: if a packet caused RST, it is not for a socket
571 * existing in our system, if it is matched to a socket,
572 * it is just duplicate segment or bug in other side's TCP.
573 * So that we build reply only basing on parameters
574 * arrived with segment.
575 * Exception: precedence violation. We do not implement it in any case.
576 */
577
578 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
579 {
580 const struct tcphdr *th = tcp_hdr(skb);
581 struct {
582 struct tcphdr th;
583 #ifdef CONFIG_TCP_MD5SIG
584 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
585 #endif
586 } rep;
587 struct ip_reply_arg arg;
588 #ifdef CONFIG_TCP_MD5SIG
589 struct tcp_md5sig_key *key;
590 const __u8 *hash_location = NULL;
591 unsigned char newhash[16];
592 int genhash;
593 struct sock *sk1 = NULL;
594 #endif
595 struct net *net;
596
597 /* Never send a reset in response to a reset. */
598 if (th->rst)
599 return;
600
601 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
602 return;
603
604 /* Swap the send and the receive. */
605 memset(&rep, 0, sizeof(rep));
606 rep.th.dest = th->source;
607 rep.th.source = th->dest;
608 rep.th.doff = sizeof(struct tcphdr) / 4;
609 rep.th.rst = 1;
610
611 if (th->ack) {
612 rep.th.seq = th->ack_seq;
613 } else {
614 rep.th.ack = 1;
615 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
616 skb->len - (th->doff << 2));
617 }
618
619 memset(&arg, 0, sizeof(arg));
620 arg.iov[0].iov_base = (unsigned char *)&rep;
621 arg.iov[0].iov_len = sizeof(rep.th);
622
623 #ifdef CONFIG_TCP_MD5SIG
624 hash_location = tcp_parse_md5sig_option(th);
625 if (!sk && hash_location) {
626 /*
627 * active side is lost. Try to find listening socket through
628 * source port, and then find md5 key through listening socket.
629 * we are not loose security here:
630 * Incoming packet is checked with md5 hash with finding key,
631 * no RST generated if md5 hash doesn't match.
632 */
633 sk1 = __inet_lookup_listener(dev_net(skb_dst(skb)->dev),
634 &tcp_hashinfo, ip_hdr(skb)->saddr,
635 th->source, ip_hdr(skb)->daddr,
636 ntohs(th->source), inet_iif(skb));
637 /* don't send rst if it can't find key */
638 if (!sk1)
639 return;
640 rcu_read_lock();
641 key = tcp_md5_do_lookup(sk1, (union tcp_md5_addr *)
642 &ip_hdr(skb)->saddr, AF_INET);
643 if (!key)
644 goto release_sk1;
645
646 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, NULL, skb);
647 if (genhash || memcmp(hash_location, newhash, 16) != 0)
648 goto release_sk1;
649 } else {
650 key = sk ? tcp_md5_do_lookup(sk, (union tcp_md5_addr *)
651 &ip_hdr(skb)->saddr,
652 AF_INET) : NULL;
653 }
654
655 if (key) {
656 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
657 (TCPOPT_NOP << 16) |
658 (TCPOPT_MD5SIG << 8) |
659 TCPOLEN_MD5SIG);
660 /* Update length and the length the header thinks exists */
661 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
662 rep.th.doff = arg.iov[0].iov_len / 4;
663
664 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
665 key, ip_hdr(skb)->saddr,
666 ip_hdr(skb)->daddr, &rep.th);
667 }
668 #endif
669 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
670 ip_hdr(skb)->saddr, /* XXX */
671 arg.iov[0].iov_len, IPPROTO_TCP, 0);
672 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
673 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
674 /* When socket is gone, all binding information is lost.
675 * routing might fail in this case. No choice here, if we choose to force
676 * input interface, we will misroute in case of asymmetric route.
677 */
678 if (sk)
679 arg.bound_dev_if = sk->sk_bound_dev_if;
680
681 net = dev_net(skb_dst(skb)->dev);
682 arg.tos = ip_hdr(skb)->tos;
683 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
684 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
685
686 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
687 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
688
689 #ifdef CONFIG_TCP_MD5SIG
690 release_sk1:
691 if (sk1) {
692 rcu_read_unlock();
693 sock_put(sk1);
694 }
695 #endif
696 }
697
698 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
699 outside socket context is ugly, certainly. What can I do?
700 */
701
702 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
703 u32 win, u32 tsval, u32 tsecr, int oif,
704 struct tcp_md5sig_key *key,
705 int reply_flags, u8 tos)
706 {
707 const struct tcphdr *th = tcp_hdr(skb);
708 struct {
709 struct tcphdr th;
710 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
711 #ifdef CONFIG_TCP_MD5SIG
712 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
713 #endif
714 ];
715 } rep;
716 struct ip_reply_arg arg;
717 struct net *net = dev_net(skb_dst(skb)->dev);
718
719 memset(&rep.th, 0, sizeof(struct tcphdr));
720 memset(&arg, 0, sizeof(arg));
721
722 arg.iov[0].iov_base = (unsigned char *)&rep;
723 arg.iov[0].iov_len = sizeof(rep.th);
724 if (tsecr) {
725 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
726 (TCPOPT_TIMESTAMP << 8) |
727 TCPOLEN_TIMESTAMP);
728 rep.opt[1] = htonl(tsval);
729 rep.opt[2] = htonl(tsecr);
730 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
731 }
732
733 /* Swap the send and the receive. */
734 rep.th.dest = th->source;
735 rep.th.source = th->dest;
736 rep.th.doff = arg.iov[0].iov_len / 4;
737 rep.th.seq = htonl(seq);
738 rep.th.ack_seq = htonl(ack);
739 rep.th.ack = 1;
740 rep.th.window = htons(win);
741
742 #ifdef CONFIG_TCP_MD5SIG
743 if (key) {
744 int offset = (tsecr) ? 3 : 0;
745
746 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
747 (TCPOPT_NOP << 16) |
748 (TCPOPT_MD5SIG << 8) |
749 TCPOLEN_MD5SIG);
750 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
751 rep.th.doff = arg.iov[0].iov_len/4;
752
753 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
754 key, ip_hdr(skb)->saddr,
755 ip_hdr(skb)->daddr, &rep.th);
756 }
757 #endif
758 arg.flags = reply_flags;
759 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
760 ip_hdr(skb)->saddr, /* XXX */
761 arg.iov[0].iov_len, IPPROTO_TCP, 0);
762 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
763 if (oif)
764 arg.bound_dev_if = oif;
765 arg.tos = tos;
766 ip_send_unicast_reply(net, skb, ip_hdr(skb)->saddr,
767 ip_hdr(skb)->daddr, &arg, arg.iov[0].iov_len);
768
769 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
770 }
771
772 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
773 {
774 struct inet_timewait_sock *tw = inet_twsk(sk);
775 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
776
777 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
778 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
779 tcp_time_stamp + tcptw->tw_ts_offset,
780 tcptw->tw_ts_recent,
781 tw->tw_bound_dev_if,
782 tcp_twsk_md5_key(tcptw),
783 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0,
784 tw->tw_tos
785 );
786
787 inet_twsk_put(tw);
788 }
789
790 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
791 struct request_sock *req)
792 {
793 /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV
794 * sk->sk_state == TCP_SYN_RECV -> for Fast Open.
795 */
796 tcp_v4_send_ack(skb, (sk->sk_state == TCP_LISTEN) ?
797 tcp_rsk(req)->snt_isn + 1 : tcp_sk(sk)->snd_nxt,
798 tcp_rsk(req)->rcv_nxt, req->rcv_wnd,
799 tcp_time_stamp,
800 req->ts_recent,
801 0,
802 tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&ip_hdr(skb)->daddr,
803 AF_INET),
804 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0,
805 ip_hdr(skb)->tos);
806 }
807
808 /*
809 * Send a SYN-ACK after having received a SYN.
810 * This still operates on a request_sock only, not on a big
811 * socket.
812 */
813 static int tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
814 struct flowi *fl,
815 struct request_sock *req,
816 u16 queue_mapping,
817 struct tcp_fastopen_cookie *foc)
818 {
819 const struct inet_request_sock *ireq = inet_rsk(req);
820 struct flowi4 fl4;
821 int err = -1;
822 struct sk_buff *skb;
823
824 /* First, grab a route. */
825 if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL)
826 return -1;
827
828 skb = tcp_make_synack(sk, dst, req, foc);
829
830 if (skb) {
831 __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr);
832
833 skb_set_queue_mapping(skb, queue_mapping);
834 err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr,
835 ireq->ir_rmt_addr,
836 ireq->opt);
837 err = net_xmit_eval(err);
838 }
839
840 return err;
841 }
842
843 /*
844 * IPv4 request_sock destructor.
845 */
846 static void tcp_v4_reqsk_destructor(struct request_sock *req)
847 {
848 kfree(inet_rsk(req)->opt);
849 }
850
851 /*
852 * Return true if a syncookie should be sent
853 */
854 bool tcp_syn_flood_action(struct sock *sk,
855 const struct sk_buff *skb,
856 const char *proto)
857 {
858 const char *msg = "Dropping request";
859 bool want_cookie = false;
860 struct listen_sock *lopt;
861
862 #ifdef CONFIG_SYN_COOKIES
863 if (sysctl_tcp_syncookies) {
864 msg = "Sending cookies";
865 want_cookie = true;
866 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
867 } else
868 #endif
869 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
870
871 lopt = inet_csk(sk)->icsk_accept_queue.listen_opt;
872 if (!lopt->synflood_warned && sysctl_tcp_syncookies != 2) {
873 lopt->synflood_warned = 1;
874 pr_info("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
875 proto, ntohs(tcp_hdr(skb)->dest), msg);
876 }
877 return want_cookie;
878 }
879 EXPORT_SYMBOL(tcp_syn_flood_action);
880
881 /*
882 * Save and compile IPv4 options into the request_sock if needed.
883 */
884 static struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
885 {
886 const struct ip_options *opt = &(IPCB(skb)->opt);
887 struct ip_options_rcu *dopt = NULL;
888
889 if (opt && opt->optlen) {
890 int opt_size = sizeof(*dopt) + opt->optlen;
891
892 dopt = kmalloc(opt_size, GFP_ATOMIC);
893 if (dopt) {
894 if (ip_options_echo(&dopt->opt, skb)) {
895 kfree(dopt);
896 dopt = NULL;
897 }
898 }
899 }
900 return dopt;
901 }
902
903 #ifdef CONFIG_TCP_MD5SIG
904 /*
905 * RFC2385 MD5 checksumming requires a mapping of
906 * IP address->MD5 Key.
907 * We need to maintain these in the sk structure.
908 */
909
910 /* Find the Key structure for an address. */
911 struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
912 const union tcp_md5_addr *addr,
913 int family)
914 {
915 struct tcp_sock *tp = tcp_sk(sk);
916 struct tcp_md5sig_key *key;
917 unsigned int size = sizeof(struct in_addr);
918 struct tcp_md5sig_info *md5sig;
919
920 /* caller either holds rcu_read_lock() or socket lock */
921 md5sig = rcu_dereference_check(tp->md5sig_info,
922 sock_owned_by_user(sk) ||
923 lockdep_is_held(&sk->sk_lock.slock));
924 if (!md5sig)
925 return NULL;
926 #if IS_ENABLED(CONFIG_IPV6)
927 if (family == AF_INET6)
928 size = sizeof(struct in6_addr);
929 #endif
930 hlist_for_each_entry_rcu(key, &md5sig->head, node) {
931 if (key->family != family)
932 continue;
933 if (!memcmp(&key->addr, addr, size))
934 return key;
935 }
936 return NULL;
937 }
938 EXPORT_SYMBOL(tcp_md5_do_lookup);
939
940 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
941 struct sock *addr_sk)
942 {
943 union tcp_md5_addr *addr;
944
945 addr = (union tcp_md5_addr *)&inet_sk(addr_sk)->inet_daddr;
946 return tcp_md5_do_lookup(sk, addr, AF_INET);
947 }
948 EXPORT_SYMBOL(tcp_v4_md5_lookup);
949
950 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
951 struct request_sock *req)
952 {
953 union tcp_md5_addr *addr;
954
955 addr = (union tcp_md5_addr *)&inet_rsk(req)->ir_rmt_addr;
956 return tcp_md5_do_lookup(sk, addr, AF_INET);
957 }
958
959 /* This can be called on a newly created socket, from other files */
960 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
961 int family, const u8 *newkey, u8 newkeylen, gfp_t gfp)
962 {
963 /* Add Key to the list */
964 struct tcp_md5sig_key *key;
965 struct tcp_sock *tp = tcp_sk(sk);
966 struct tcp_md5sig_info *md5sig;
967
968 key = tcp_md5_do_lookup(sk, addr, family);
969 if (key) {
970 /* Pre-existing entry - just update that one. */
971 memcpy(key->key, newkey, newkeylen);
972 key->keylen = newkeylen;
973 return 0;
974 }
975
976 md5sig = rcu_dereference_protected(tp->md5sig_info,
977 sock_owned_by_user(sk));
978 if (!md5sig) {
979 md5sig = kmalloc(sizeof(*md5sig), gfp);
980 if (!md5sig)
981 return -ENOMEM;
982
983 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
984 INIT_HLIST_HEAD(&md5sig->head);
985 rcu_assign_pointer(tp->md5sig_info, md5sig);
986 }
987
988 key = sock_kmalloc(sk, sizeof(*key), gfp);
989 if (!key)
990 return -ENOMEM;
991 if (!tcp_alloc_md5sig_pool()) {
992 sock_kfree_s(sk, key, sizeof(*key));
993 return -ENOMEM;
994 }
995
996 memcpy(key->key, newkey, newkeylen);
997 key->keylen = newkeylen;
998 key->family = family;
999 memcpy(&key->addr, addr,
1000 (family == AF_INET6) ? sizeof(struct in6_addr) :
1001 sizeof(struct in_addr));
1002 hlist_add_head_rcu(&key->node, &md5sig->head);
1003 return 0;
1004 }
1005 EXPORT_SYMBOL(tcp_md5_do_add);
1006
1007 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family)
1008 {
1009 struct tcp_md5sig_key *key;
1010
1011 key = tcp_md5_do_lookup(sk, addr, family);
1012 if (!key)
1013 return -ENOENT;
1014 hlist_del_rcu(&key->node);
1015 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1016 kfree_rcu(key, rcu);
1017 return 0;
1018 }
1019 EXPORT_SYMBOL(tcp_md5_do_del);
1020
1021 static void tcp_clear_md5_list(struct sock *sk)
1022 {
1023 struct tcp_sock *tp = tcp_sk(sk);
1024 struct tcp_md5sig_key *key;
1025 struct hlist_node *n;
1026 struct tcp_md5sig_info *md5sig;
1027
1028 md5sig = rcu_dereference_protected(tp->md5sig_info, 1);
1029
1030 hlist_for_each_entry_safe(key, n, &md5sig->head, node) {
1031 hlist_del_rcu(&key->node);
1032 atomic_sub(sizeof(*key), &sk->sk_omem_alloc);
1033 kfree_rcu(key, rcu);
1034 }
1035 }
1036
1037 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
1038 int optlen)
1039 {
1040 struct tcp_md5sig cmd;
1041 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
1042
1043 if (optlen < sizeof(cmd))
1044 return -EINVAL;
1045
1046 if (copy_from_user(&cmd, optval, sizeof(cmd)))
1047 return -EFAULT;
1048
1049 if (sin->sin_family != AF_INET)
1050 return -EINVAL;
1051
1052 if (!cmd.tcpm_keylen)
1053 return tcp_md5_do_del(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1054 AF_INET);
1055
1056 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1057 return -EINVAL;
1058
1059 return tcp_md5_do_add(sk, (union tcp_md5_addr *)&sin->sin_addr.s_addr,
1060 AF_INET, cmd.tcpm_key, cmd.tcpm_keylen,
1061 GFP_KERNEL);
1062 }
1063
1064 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1065 __be32 daddr, __be32 saddr, int nbytes)
1066 {
1067 struct tcp4_pseudohdr *bp;
1068 struct scatterlist sg;
1069
1070 bp = &hp->md5_blk.ip4;
1071
1072 /*
1073 * 1. the TCP pseudo-header (in the order: source IP address,
1074 * destination IP address, zero-padded protocol number, and
1075 * segment length)
1076 */
1077 bp->saddr = saddr;
1078 bp->daddr = daddr;
1079 bp->pad = 0;
1080 bp->protocol = IPPROTO_TCP;
1081 bp->len = cpu_to_be16(nbytes);
1082
1083 sg_init_one(&sg, bp, sizeof(*bp));
1084 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1085 }
1086
1087 static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key,
1088 __be32 daddr, __be32 saddr, const struct tcphdr *th)
1089 {
1090 struct tcp_md5sig_pool *hp;
1091 struct hash_desc *desc;
1092
1093 hp = tcp_get_md5sig_pool();
1094 if (!hp)
1095 goto clear_hash_noput;
1096 desc = &hp->md5_desc;
1097
1098 if (crypto_hash_init(desc))
1099 goto clear_hash;
1100 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1101 goto clear_hash;
1102 if (tcp_md5_hash_header(hp, th))
1103 goto clear_hash;
1104 if (tcp_md5_hash_key(hp, key))
1105 goto clear_hash;
1106 if (crypto_hash_final(desc, md5_hash))
1107 goto clear_hash;
1108
1109 tcp_put_md5sig_pool();
1110 return 0;
1111
1112 clear_hash:
1113 tcp_put_md5sig_pool();
1114 clear_hash_noput:
1115 memset(md5_hash, 0, 16);
1116 return 1;
1117 }
1118
1119 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1120 const struct sock *sk, const struct request_sock *req,
1121 const struct sk_buff *skb)
1122 {
1123 struct tcp_md5sig_pool *hp;
1124 struct hash_desc *desc;
1125 const struct tcphdr *th = tcp_hdr(skb);
1126 __be32 saddr, daddr;
1127
1128 if (sk) {
1129 saddr = inet_sk(sk)->inet_saddr;
1130 daddr = inet_sk(sk)->inet_daddr;
1131 } else if (req) {
1132 saddr = inet_rsk(req)->ir_loc_addr;
1133 daddr = inet_rsk(req)->ir_rmt_addr;
1134 } else {
1135 const struct iphdr *iph = ip_hdr(skb);
1136 saddr = iph->saddr;
1137 daddr = iph->daddr;
1138 }
1139
1140 hp = tcp_get_md5sig_pool();
1141 if (!hp)
1142 goto clear_hash_noput;
1143 desc = &hp->md5_desc;
1144
1145 if (crypto_hash_init(desc))
1146 goto clear_hash;
1147
1148 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1149 goto clear_hash;
1150 if (tcp_md5_hash_header(hp, th))
1151 goto clear_hash;
1152 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1153 goto clear_hash;
1154 if (tcp_md5_hash_key(hp, key))
1155 goto clear_hash;
1156 if (crypto_hash_final(desc, md5_hash))
1157 goto clear_hash;
1158
1159 tcp_put_md5sig_pool();
1160 return 0;
1161
1162 clear_hash:
1163 tcp_put_md5sig_pool();
1164 clear_hash_noput:
1165 memset(md5_hash, 0, 16);
1166 return 1;
1167 }
1168 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1169
1170 static bool __tcp_v4_inbound_md5_hash(struct sock *sk,
1171 const struct sk_buff *skb)
1172 {
1173 /*
1174 * This gets called for each TCP segment that arrives
1175 * so we want to be efficient.
1176 * We have 3 drop cases:
1177 * o No MD5 hash and one expected.
1178 * o MD5 hash and we're not expecting one.
1179 * o MD5 hash and its wrong.
1180 */
1181 const __u8 *hash_location = NULL;
1182 struct tcp_md5sig_key *hash_expected;
1183 const struct iphdr *iph = ip_hdr(skb);
1184 const struct tcphdr *th = tcp_hdr(skb);
1185 int genhash;
1186 unsigned char newhash[16];
1187
1188 hash_expected = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&iph->saddr,
1189 AF_INET);
1190 hash_location = tcp_parse_md5sig_option(th);
1191
1192 /* We've parsed the options - do we have a hash? */
1193 if (!hash_expected && !hash_location)
1194 return false;
1195
1196 if (hash_expected && !hash_location) {
1197 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1198 return true;
1199 }
1200
1201 if (!hash_expected && hash_location) {
1202 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1203 return true;
1204 }
1205
1206 /* Okay, so this is hash_expected and hash_location -
1207 * so we need to calculate the checksum.
1208 */
1209 genhash = tcp_v4_md5_hash_skb(newhash,
1210 hash_expected,
1211 NULL, NULL, skb);
1212
1213 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1214 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1215 &iph->saddr, ntohs(th->source),
1216 &iph->daddr, ntohs(th->dest),
1217 genhash ? " tcp_v4_calc_md5_hash failed"
1218 : "");
1219 return true;
1220 }
1221 return false;
1222 }
1223
1224 static bool tcp_v4_inbound_md5_hash(struct sock *sk, const struct sk_buff *skb)
1225 {
1226 bool ret;
1227
1228 rcu_read_lock();
1229 ret = __tcp_v4_inbound_md5_hash(sk, skb);
1230 rcu_read_unlock();
1231
1232 return ret;
1233 }
1234
1235 #endif
1236
1237 static void tcp_v4_init_req(struct request_sock *req, struct sock *sk,
1238 struct sk_buff *skb)
1239 {
1240 struct inet_request_sock *ireq = inet_rsk(req);
1241
1242 ireq->ir_loc_addr = ip_hdr(skb)->daddr;
1243 ireq->ir_rmt_addr = ip_hdr(skb)->saddr;
1244 ireq->no_srccheck = inet_sk(sk)->transparent;
1245 ireq->opt = tcp_v4_save_options(skb);
1246 }
1247
1248 static struct dst_entry *tcp_v4_route_req(struct sock *sk, struct flowi *fl,
1249 const struct request_sock *req,
1250 bool *strict)
1251 {
1252 struct dst_entry *dst = inet_csk_route_req(sk, &fl->u.ip4, req);
1253
1254 if (strict) {
1255 if (fl->u.ip4.daddr == inet_rsk(req)->ir_rmt_addr)
1256 *strict = true;
1257 else
1258 *strict = false;
1259 }
1260
1261 return dst;
1262 }
1263
1264 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1265 .family = PF_INET,
1266 .obj_size = sizeof(struct tcp_request_sock),
1267 .rtx_syn_ack = tcp_rtx_synack,
1268 .send_ack = tcp_v4_reqsk_send_ack,
1269 .destructor = tcp_v4_reqsk_destructor,
1270 .send_reset = tcp_v4_send_reset,
1271 .syn_ack_timeout = tcp_syn_ack_timeout,
1272 };
1273
1274 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1275 .mss_clamp = TCP_MSS_DEFAULT,
1276 #ifdef CONFIG_TCP_MD5SIG
1277 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1278 .calc_md5_hash = tcp_v4_md5_hash_skb,
1279 #endif
1280 .init_req = tcp_v4_init_req,
1281 #ifdef CONFIG_SYN_COOKIES
1282 .cookie_init_seq = cookie_v4_init_sequence,
1283 #endif
1284 .route_req = tcp_v4_route_req,
1285 .init_seq = tcp_v4_init_sequence,
1286 .send_synack = tcp_v4_send_synack,
1287 .queue_hash_add = inet_csk_reqsk_queue_hash_add,
1288 };
1289
1290 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1291 {
1292 /* Never answer to SYNs send to broadcast or multicast */
1293 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1294 goto drop;
1295
1296 return tcp_conn_request(&tcp_request_sock_ops,
1297 &tcp_request_sock_ipv4_ops, sk, skb);
1298
1299 drop:
1300 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1301 return 0;
1302 }
1303 EXPORT_SYMBOL(tcp_v4_conn_request);
1304
1305
1306 /*
1307 * The three way handshake has completed - we got a valid synack -
1308 * now create the new socket.
1309 */
1310 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1311 struct request_sock *req,
1312 struct dst_entry *dst)
1313 {
1314 struct inet_request_sock *ireq;
1315 struct inet_sock *newinet;
1316 struct tcp_sock *newtp;
1317 struct sock *newsk;
1318 #ifdef CONFIG_TCP_MD5SIG
1319 struct tcp_md5sig_key *key;
1320 #endif
1321 struct ip_options_rcu *inet_opt;
1322
1323 if (sk_acceptq_is_full(sk))
1324 goto exit_overflow;
1325
1326 newsk = tcp_create_openreq_child(sk, req, skb);
1327 if (!newsk)
1328 goto exit_nonewsk;
1329
1330 newsk->sk_gso_type = SKB_GSO_TCPV4;
1331 inet_sk_rx_dst_set(newsk, skb);
1332
1333 newtp = tcp_sk(newsk);
1334 newinet = inet_sk(newsk);
1335 ireq = inet_rsk(req);
1336 newinet->inet_daddr = ireq->ir_rmt_addr;
1337 newinet->inet_rcv_saddr = ireq->ir_loc_addr;
1338 newinet->inet_saddr = ireq->ir_loc_addr;
1339 inet_opt = ireq->opt;
1340 rcu_assign_pointer(newinet->inet_opt, inet_opt);
1341 ireq->opt = NULL;
1342 newinet->mc_index = inet_iif(skb);
1343 newinet->mc_ttl = ip_hdr(skb)->ttl;
1344 newinet->rcv_tos = ip_hdr(skb)->tos;
1345 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1346 inet_set_txhash(newsk);
1347 if (inet_opt)
1348 inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen;
1349 newinet->inet_id = newtp->write_seq ^ jiffies;
1350
1351 if (!dst) {
1352 dst = inet_csk_route_child_sock(sk, newsk, req);
1353 if (!dst)
1354 goto put_and_exit;
1355 } else {
1356 /* syncookie case : see end of cookie_v4_check() */
1357 }
1358 sk_setup_caps(newsk, dst);
1359
1360 tcp_sync_mss(newsk, dst_mtu(dst));
1361 newtp->advmss = dst_metric_advmss(dst);
1362 if (tcp_sk(sk)->rx_opt.user_mss &&
1363 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1364 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1365
1366 tcp_initialize_rcv_mss(newsk);
1367
1368 #ifdef CONFIG_TCP_MD5SIG
1369 /* Copy over the MD5 key from the original socket */
1370 key = tcp_md5_do_lookup(sk, (union tcp_md5_addr *)&newinet->inet_daddr,
1371 AF_INET);
1372 if (key != NULL) {
1373 /*
1374 * We're using one, so create a matching key
1375 * on the newsk structure. If we fail to get
1376 * memory, then we end up not copying the key
1377 * across. Shucks.
1378 */
1379 tcp_md5_do_add(newsk, (union tcp_md5_addr *)&newinet->inet_daddr,
1380 AF_INET, key->key, key->keylen, GFP_ATOMIC);
1381 sk_nocaps_add(newsk, NETIF_F_GSO_MASK);
1382 }
1383 #endif
1384
1385 if (__inet_inherit_port(sk, newsk) < 0)
1386 goto put_and_exit;
1387 __inet_hash_nolisten(newsk, NULL);
1388
1389 return newsk;
1390
1391 exit_overflow:
1392 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1393 exit_nonewsk:
1394 dst_release(dst);
1395 exit:
1396 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1397 return NULL;
1398 put_and_exit:
1399 inet_csk_prepare_forced_close(newsk);
1400 tcp_done(newsk);
1401 goto exit;
1402 }
1403 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
1404
1405 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1406 {
1407 struct tcphdr *th = tcp_hdr(skb);
1408 const struct iphdr *iph = ip_hdr(skb);
1409 struct sock *nsk;
1410 struct request_sock **prev;
1411 /* Find possible connection requests. */
1412 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1413 iph->saddr, iph->daddr);
1414 if (req)
1415 return tcp_check_req(sk, skb, req, prev, false);
1416
1417 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1418 th->source, iph->daddr, th->dest, inet_iif(skb));
1419
1420 if (nsk) {
1421 if (nsk->sk_state != TCP_TIME_WAIT) {
1422 bh_lock_sock(nsk);
1423 return nsk;
1424 }
1425 inet_twsk_put(inet_twsk(nsk));
1426 return NULL;
1427 }
1428
1429 #ifdef CONFIG_SYN_COOKIES
1430 if (!th->syn)
1431 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1432 #endif
1433 return sk;
1434 }
1435
1436 /* The socket must have it's spinlock held when we get
1437 * here.
1438 *
1439 * We have a potential double-lock case here, so even when
1440 * doing backlog processing we use the BH locking scheme.
1441 * This is because we cannot sleep with the original spinlock
1442 * held.
1443 */
1444 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1445 {
1446 struct sock *rsk;
1447
1448 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1449 struct dst_entry *dst = sk->sk_rx_dst;
1450
1451 sock_rps_save_rxhash(sk, skb);
1452 if (dst) {
1453 if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif ||
1454 dst->ops->check(dst, 0) == NULL) {
1455 dst_release(dst);
1456 sk->sk_rx_dst = NULL;
1457 }
1458 }
1459 tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len);
1460 return 0;
1461 }
1462
1463 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1464 goto csum_err;
1465
1466 if (sk->sk_state == TCP_LISTEN) {
1467 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1468 if (!nsk)
1469 goto discard;
1470
1471 if (nsk != sk) {
1472 sock_rps_save_rxhash(nsk, skb);
1473 if (tcp_child_process(sk, nsk, skb)) {
1474 rsk = nsk;
1475 goto reset;
1476 }
1477 return 0;
1478 }
1479 } else
1480 sock_rps_save_rxhash(sk, skb);
1481
1482 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1483 rsk = sk;
1484 goto reset;
1485 }
1486 return 0;
1487
1488 reset:
1489 tcp_v4_send_reset(rsk, skb);
1490 discard:
1491 kfree_skb(skb);
1492 /* Be careful here. If this function gets more complicated and
1493 * gcc suffers from register pressure on the x86, sk (in %ebx)
1494 * might be destroyed here. This current version compiles correctly,
1495 * but you have been warned.
1496 */
1497 return 0;
1498
1499 csum_err:
1500 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
1501 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1502 goto discard;
1503 }
1504 EXPORT_SYMBOL(tcp_v4_do_rcv);
1505
1506 void tcp_v4_early_demux(struct sk_buff *skb)
1507 {
1508 const struct iphdr *iph;
1509 const struct tcphdr *th;
1510 struct sock *sk;
1511
1512 if (skb->pkt_type != PACKET_HOST)
1513 return;
1514
1515 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr)))
1516 return;
1517
1518 iph = ip_hdr(skb);
1519 th = tcp_hdr(skb);
1520
1521 if (th->doff < sizeof(struct tcphdr) / 4)
1522 return;
1523
1524 sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo,
1525 iph->saddr, th->source,
1526 iph->daddr, ntohs(th->dest),
1527 skb->skb_iif);
1528 if (sk) {
1529 skb->sk = sk;
1530 skb->destructor = sock_edemux;
1531 if (sk->sk_state != TCP_TIME_WAIT) {
1532 struct dst_entry *dst = sk->sk_rx_dst;
1533
1534 if (dst)
1535 dst = dst_check(dst, 0);
1536 if (dst &&
1537 inet_sk(sk)->rx_dst_ifindex == skb->skb_iif)
1538 skb_dst_set_noref(skb, dst);
1539 }
1540 }
1541 }
1542
1543 /* Packet is added to VJ-style prequeue for processing in process
1544 * context, if a reader task is waiting. Apparently, this exciting
1545 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1546 * failed somewhere. Latency? Burstiness? Well, at least now we will
1547 * see, why it failed. 8)8) --ANK
1548 *
1549 */
1550 bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1551 {
1552 struct tcp_sock *tp = tcp_sk(sk);
1553
1554 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1555 return false;
1556
1557 if (skb->len <= tcp_hdrlen(skb) &&
1558 skb_queue_len(&tp->ucopy.prequeue) == 0)
1559 return false;
1560
1561 skb_dst_force(skb);
1562 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1563 tp->ucopy.memory += skb->truesize;
1564 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1565 struct sk_buff *skb1;
1566
1567 BUG_ON(sock_owned_by_user(sk));
1568
1569 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1570 sk_backlog_rcv(sk, skb1);
1571 NET_INC_STATS_BH(sock_net(sk),
1572 LINUX_MIB_TCPPREQUEUEDROPPED);
1573 }
1574
1575 tp->ucopy.memory = 0;
1576 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1577 wake_up_interruptible_sync_poll(sk_sleep(sk),
1578 POLLIN | POLLRDNORM | POLLRDBAND);
1579 if (!inet_csk_ack_scheduled(sk))
1580 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1581 (3 * tcp_rto_min(sk)) / 4,
1582 TCP_RTO_MAX);
1583 }
1584 return true;
1585 }
1586 EXPORT_SYMBOL(tcp_prequeue);
1587
1588 /*
1589 * From tcp_input.c
1590 */
1591
1592 int tcp_v4_rcv(struct sk_buff *skb)
1593 {
1594 const struct iphdr *iph;
1595 const struct tcphdr *th;
1596 struct sock *sk;
1597 int ret;
1598 struct net *net = dev_net(skb->dev);
1599
1600 if (skb->pkt_type != PACKET_HOST)
1601 goto discard_it;
1602
1603 /* Count it even if it's bad */
1604 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1605
1606 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1607 goto discard_it;
1608
1609 th = tcp_hdr(skb);
1610
1611 if (th->doff < sizeof(struct tcphdr) / 4)
1612 goto bad_packet;
1613 if (!pskb_may_pull(skb, th->doff * 4))
1614 goto discard_it;
1615
1616 /* An explanation is required here, I think.
1617 * Packet length and doff are validated by header prediction,
1618 * provided case of th->doff==0 is eliminated.
1619 * So, we defer the checks. */
1620
1621 if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo))
1622 goto csum_error;
1623
1624 th = tcp_hdr(skb);
1625 iph = ip_hdr(skb);
1626 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1627 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1628 skb->len - th->doff * 4);
1629 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1630 TCP_SKB_CB(skb)->when = 0;
1631 TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph);
1632 TCP_SKB_CB(skb)->sacked = 0;
1633
1634 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1635 if (!sk)
1636 goto no_tcp_socket;
1637
1638 process:
1639 if (sk->sk_state == TCP_TIME_WAIT)
1640 goto do_time_wait;
1641
1642 if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) {
1643 NET_INC_STATS_BH(net, LINUX_MIB_TCPMINTTLDROP);
1644 goto discard_and_relse;
1645 }
1646
1647 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1648 goto discard_and_relse;
1649
1650 #ifdef CONFIG_TCP_MD5SIG
1651 /*
1652 * We really want to reject the packet as early as possible
1653 * if:
1654 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1655 * o There is an MD5 option and we're not expecting one
1656 */
1657 if (tcp_v4_inbound_md5_hash(sk, skb))
1658 goto discard_and_relse;
1659 #endif
1660
1661 nf_reset(skb);
1662
1663 if (sk_filter(sk, skb))
1664 goto discard_and_relse;
1665
1666 sk_mark_napi_id(sk, skb);
1667 skb->dev = NULL;
1668
1669 bh_lock_sock_nested(sk);
1670 ret = 0;
1671 if (!sock_owned_by_user(sk)) {
1672 if (!tcp_prequeue(sk, skb))
1673 ret = tcp_v4_do_rcv(sk, skb);
1674 } else if (unlikely(sk_add_backlog(sk, skb,
1675 sk->sk_rcvbuf + sk->sk_sndbuf))) {
1676 bh_unlock_sock(sk);
1677 NET_INC_STATS_BH(net, LINUX_MIB_TCPBACKLOGDROP);
1678 goto discard_and_relse;
1679 }
1680 bh_unlock_sock(sk);
1681
1682 sock_put(sk);
1683
1684 return ret;
1685
1686 no_tcp_socket:
1687 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1688 goto discard_it;
1689
1690 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1691 csum_error:
1692 TCP_INC_STATS_BH(net, TCP_MIB_CSUMERRORS);
1693 bad_packet:
1694 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1695 } else {
1696 tcp_v4_send_reset(NULL, skb);
1697 }
1698
1699 discard_it:
1700 /* Discard frame. */
1701 kfree_skb(skb);
1702 return 0;
1703
1704 discard_and_relse:
1705 sock_put(sk);
1706 goto discard_it;
1707
1708 do_time_wait:
1709 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1710 inet_twsk_put(inet_twsk(sk));
1711 goto discard_it;
1712 }
1713
1714 if (skb->len < (th->doff << 2)) {
1715 inet_twsk_put(inet_twsk(sk));
1716 goto bad_packet;
1717 }
1718 if (tcp_checksum_complete(skb)) {
1719 inet_twsk_put(inet_twsk(sk));
1720 goto csum_error;
1721 }
1722 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1723 case TCP_TW_SYN: {
1724 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1725 &tcp_hashinfo,
1726 iph->saddr, th->source,
1727 iph->daddr, th->dest,
1728 inet_iif(skb));
1729 if (sk2) {
1730 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1731 inet_twsk_put(inet_twsk(sk));
1732 sk = sk2;
1733 goto process;
1734 }
1735 /* Fall through to ACK */
1736 }
1737 case TCP_TW_ACK:
1738 tcp_v4_timewait_ack(sk, skb);
1739 break;
1740 case TCP_TW_RST:
1741 goto no_tcp_socket;
1742 case TCP_TW_SUCCESS:;
1743 }
1744 goto discard_it;
1745 }
1746
1747 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1748 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1749 .twsk_unique = tcp_twsk_unique,
1750 .twsk_destructor= tcp_twsk_destructor,
1751 };
1752
1753 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb)
1754 {
1755 struct dst_entry *dst = skb_dst(skb);
1756
1757 dst_hold(dst);
1758 sk->sk_rx_dst = dst;
1759 inet_sk(sk)->rx_dst_ifindex = skb->skb_iif;
1760 }
1761 EXPORT_SYMBOL(inet_sk_rx_dst_set);
1762
1763 const struct inet_connection_sock_af_ops ipv4_specific = {
1764 .queue_xmit = ip_queue_xmit,
1765 .send_check = tcp_v4_send_check,
1766 .rebuild_header = inet_sk_rebuild_header,
1767 .sk_rx_dst_set = inet_sk_rx_dst_set,
1768 .conn_request = tcp_v4_conn_request,
1769 .syn_recv_sock = tcp_v4_syn_recv_sock,
1770 .net_header_len = sizeof(struct iphdr),
1771 .setsockopt = ip_setsockopt,
1772 .getsockopt = ip_getsockopt,
1773 .addr2sockaddr = inet_csk_addr2sockaddr,
1774 .sockaddr_len = sizeof(struct sockaddr_in),
1775 .bind_conflict = inet_csk_bind_conflict,
1776 #ifdef CONFIG_COMPAT
1777 .compat_setsockopt = compat_ip_setsockopt,
1778 .compat_getsockopt = compat_ip_getsockopt,
1779 #endif
1780 .mtu_reduced = tcp_v4_mtu_reduced,
1781 };
1782 EXPORT_SYMBOL(ipv4_specific);
1783
1784 #ifdef CONFIG_TCP_MD5SIG
1785 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1786 .md5_lookup = tcp_v4_md5_lookup,
1787 .calc_md5_hash = tcp_v4_md5_hash_skb,
1788 .md5_parse = tcp_v4_parse_md5_keys,
1789 };
1790 #endif
1791
1792 /* NOTE: A lot of things set to zero explicitly by call to
1793 * sk_alloc() so need not be done here.
1794 */
1795 static int tcp_v4_init_sock(struct sock *sk)
1796 {
1797 struct inet_connection_sock *icsk = inet_csk(sk);
1798
1799 tcp_init_sock(sk);
1800
1801 icsk->icsk_af_ops = &ipv4_specific;
1802
1803 #ifdef CONFIG_TCP_MD5SIG
1804 tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific;
1805 #endif
1806
1807 return 0;
1808 }
1809
1810 void tcp_v4_destroy_sock(struct sock *sk)
1811 {
1812 struct tcp_sock *tp = tcp_sk(sk);
1813
1814 tcp_clear_xmit_timers(sk);
1815
1816 tcp_cleanup_congestion_control(sk);
1817
1818 /* Cleanup up the write buffer. */
1819 tcp_write_queue_purge(sk);
1820
1821 /* Cleans up our, hopefully empty, out_of_order_queue. */
1822 __skb_queue_purge(&tp->out_of_order_queue);
1823
1824 #ifdef CONFIG_TCP_MD5SIG
1825 /* Clean up the MD5 key list, if any */
1826 if (tp->md5sig_info) {
1827 tcp_clear_md5_list(sk);
1828 kfree_rcu(tp->md5sig_info, rcu);
1829 tp->md5sig_info = NULL;
1830 }
1831 #endif
1832
1833 /* Clean prequeue, it must be empty really */
1834 __skb_queue_purge(&tp->ucopy.prequeue);
1835
1836 /* Clean up a referenced TCP bind bucket. */
1837 if (inet_csk(sk)->icsk_bind_hash)
1838 inet_put_port(sk);
1839
1840 BUG_ON(tp->fastopen_rsk != NULL);
1841
1842 /* If socket is aborted during connect operation */
1843 tcp_free_fastopen_req(tp);
1844
1845 sk_sockets_allocated_dec(sk);
1846 sock_release_memcg(sk);
1847 }
1848 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1849
1850 #ifdef CONFIG_PROC_FS
1851 /* Proc filesystem TCP sock list dumping. */
1852
1853 /*
1854 * Get next listener socket follow cur. If cur is NULL, get first socket
1855 * starting from bucket given in st->bucket; when st->bucket is zero the
1856 * very first socket in the hash table is returned.
1857 */
1858 static void *listening_get_next(struct seq_file *seq, void *cur)
1859 {
1860 struct inet_connection_sock *icsk;
1861 struct hlist_nulls_node *node;
1862 struct sock *sk = cur;
1863 struct inet_listen_hashbucket *ilb;
1864 struct tcp_iter_state *st = seq->private;
1865 struct net *net = seq_file_net(seq);
1866
1867 if (!sk) {
1868 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1869 spin_lock_bh(&ilb->lock);
1870 sk = sk_nulls_head(&ilb->head);
1871 st->offset = 0;
1872 goto get_sk;
1873 }
1874 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1875 ++st->num;
1876 ++st->offset;
1877
1878 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1879 struct request_sock *req = cur;
1880
1881 icsk = inet_csk(st->syn_wait_sk);
1882 req = req->dl_next;
1883 while (1) {
1884 while (req) {
1885 if (req->rsk_ops->family == st->family) {
1886 cur = req;
1887 goto out;
1888 }
1889 req = req->dl_next;
1890 }
1891 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1892 break;
1893 get_req:
1894 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1895 }
1896 sk = sk_nulls_next(st->syn_wait_sk);
1897 st->state = TCP_SEQ_STATE_LISTENING;
1898 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1899 } else {
1900 icsk = inet_csk(sk);
1901 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1902 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1903 goto start_req;
1904 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1905 sk = sk_nulls_next(sk);
1906 }
1907 get_sk:
1908 sk_nulls_for_each_from(sk, node) {
1909 if (!net_eq(sock_net(sk), net))
1910 continue;
1911 if (sk->sk_family == st->family) {
1912 cur = sk;
1913 goto out;
1914 }
1915 icsk = inet_csk(sk);
1916 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1917 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1918 start_req:
1919 st->uid = sock_i_uid(sk);
1920 st->syn_wait_sk = sk;
1921 st->state = TCP_SEQ_STATE_OPENREQ;
1922 st->sbucket = 0;
1923 goto get_req;
1924 }
1925 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1926 }
1927 spin_unlock_bh(&ilb->lock);
1928 st->offset = 0;
1929 if (++st->bucket < INET_LHTABLE_SIZE) {
1930 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1931 spin_lock_bh(&ilb->lock);
1932 sk = sk_nulls_head(&ilb->head);
1933 goto get_sk;
1934 }
1935 cur = NULL;
1936 out:
1937 return cur;
1938 }
1939
1940 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1941 {
1942 struct tcp_iter_state *st = seq->private;
1943 void *rc;
1944
1945 st->bucket = 0;
1946 st->offset = 0;
1947 rc = listening_get_next(seq, NULL);
1948
1949 while (rc && *pos) {
1950 rc = listening_get_next(seq, rc);
1951 --*pos;
1952 }
1953 return rc;
1954 }
1955
1956 static inline bool empty_bucket(const struct tcp_iter_state *st)
1957 {
1958 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain);
1959 }
1960
1961 /*
1962 * Get first established socket starting from bucket given in st->bucket.
1963 * If st->bucket is zero, the very first socket in the hash is returned.
1964 */
1965 static void *established_get_first(struct seq_file *seq)
1966 {
1967 struct tcp_iter_state *st = seq->private;
1968 struct net *net = seq_file_net(seq);
1969 void *rc = NULL;
1970
1971 st->offset = 0;
1972 for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
1973 struct sock *sk;
1974 struct hlist_nulls_node *node;
1975 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1976
1977 /* Lockless fast path for the common case of empty buckets */
1978 if (empty_bucket(st))
1979 continue;
1980
1981 spin_lock_bh(lock);
1982 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1983 if (sk->sk_family != st->family ||
1984 !net_eq(sock_net(sk), net)) {
1985 continue;
1986 }
1987 rc = sk;
1988 goto out;
1989 }
1990 spin_unlock_bh(lock);
1991 }
1992 out:
1993 return rc;
1994 }
1995
1996 static void *established_get_next(struct seq_file *seq, void *cur)
1997 {
1998 struct sock *sk = cur;
1999 struct hlist_nulls_node *node;
2000 struct tcp_iter_state *st = seq->private;
2001 struct net *net = seq_file_net(seq);
2002
2003 ++st->num;
2004 ++st->offset;
2005
2006 sk = sk_nulls_next(sk);
2007
2008 sk_nulls_for_each_from(sk, node) {
2009 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2010 return sk;
2011 }
2012
2013 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2014 ++st->bucket;
2015 return established_get_first(seq);
2016 }
2017
2018 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2019 {
2020 struct tcp_iter_state *st = seq->private;
2021 void *rc;
2022
2023 st->bucket = 0;
2024 rc = established_get_first(seq);
2025
2026 while (rc && pos) {
2027 rc = established_get_next(seq, rc);
2028 --pos;
2029 }
2030 return rc;
2031 }
2032
2033 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2034 {
2035 void *rc;
2036 struct tcp_iter_state *st = seq->private;
2037
2038 st->state = TCP_SEQ_STATE_LISTENING;
2039 rc = listening_get_idx(seq, &pos);
2040
2041 if (!rc) {
2042 st->state = TCP_SEQ_STATE_ESTABLISHED;
2043 rc = established_get_idx(seq, pos);
2044 }
2045
2046 return rc;
2047 }
2048
2049 static void *tcp_seek_last_pos(struct seq_file *seq)
2050 {
2051 struct tcp_iter_state *st = seq->private;
2052 int offset = st->offset;
2053 int orig_num = st->num;
2054 void *rc = NULL;
2055
2056 switch (st->state) {
2057 case TCP_SEQ_STATE_OPENREQ:
2058 case TCP_SEQ_STATE_LISTENING:
2059 if (st->bucket >= INET_LHTABLE_SIZE)
2060 break;
2061 st->state = TCP_SEQ_STATE_LISTENING;
2062 rc = listening_get_next(seq, NULL);
2063 while (offset-- && rc)
2064 rc = listening_get_next(seq, rc);
2065 if (rc)
2066 break;
2067 st->bucket = 0;
2068 st->state = TCP_SEQ_STATE_ESTABLISHED;
2069 /* Fallthrough */
2070 case TCP_SEQ_STATE_ESTABLISHED:
2071 if (st->bucket > tcp_hashinfo.ehash_mask)
2072 break;
2073 rc = established_get_first(seq);
2074 while (offset-- && rc)
2075 rc = established_get_next(seq, rc);
2076 }
2077
2078 st->num = orig_num;
2079
2080 return rc;
2081 }
2082
2083 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2084 {
2085 struct tcp_iter_state *st = seq->private;
2086 void *rc;
2087
2088 if (*pos && *pos == st->last_pos) {
2089 rc = tcp_seek_last_pos(seq);
2090 if (rc)
2091 goto out;
2092 }
2093
2094 st->state = TCP_SEQ_STATE_LISTENING;
2095 st->num = 0;
2096 st->bucket = 0;
2097 st->offset = 0;
2098 rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2099
2100 out:
2101 st->last_pos = *pos;
2102 return rc;
2103 }
2104
2105 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2106 {
2107 struct tcp_iter_state *st = seq->private;
2108 void *rc = NULL;
2109
2110 if (v == SEQ_START_TOKEN) {
2111 rc = tcp_get_idx(seq, 0);
2112 goto out;
2113 }
2114
2115 switch (st->state) {
2116 case TCP_SEQ_STATE_OPENREQ:
2117 case TCP_SEQ_STATE_LISTENING:
2118 rc = listening_get_next(seq, v);
2119 if (!rc) {
2120 st->state = TCP_SEQ_STATE_ESTABLISHED;
2121 st->bucket = 0;
2122 st->offset = 0;
2123 rc = established_get_first(seq);
2124 }
2125 break;
2126 case TCP_SEQ_STATE_ESTABLISHED:
2127 rc = established_get_next(seq, v);
2128 break;
2129 }
2130 out:
2131 ++*pos;
2132 st->last_pos = *pos;
2133 return rc;
2134 }
2135
2136 static void tcp_seq_stop(struct seq_file *seq, void *v)
2137 {
2138 struct tcp_iter_state *st = seq->private;
2139
2140 switch (st->state) {
2141 case TCP_SEQ_STATE_OPENREQ:
2142 if (v) {
2143 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2144 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2145 }
2146 case TCP_SEQ_STATE_LISTENING:
2147 if (v != SEQ_START_TOKEN)
2148 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2149 break;
2150 case TCP_SEQ_STATE_ESTABLISHED:
2151 if (v)
2152 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2153 break;
2154 }
2155 }
2156
2157 int tcp_seq_open(struct inode *inode, struct file *file)
2158 {
2159 struct tcp_seq_afinfo *afinfo = PDE_DATA(inode);
2160 struct tcp_iter_state *s;
2161 int err;
2162
2163 err = seq_open_net(inode, file, &afinfo->seq_ops,
2164 sizeof(struct tcp_iter_state));
2165 if (err < 0)
2166 return err;
2167
2168 s = ((struct seq_file *)file->private_data)->private;
2169 s->family = afinfo->family;
2170 s->last_pos = 0;
2171 return 0;
2172 }
2173 EXPORT_SYMBOL(tcp_seq_open);
2174
2175 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2176 {
2177 int rc = 0;
2178 struct proc_dir_entry *p;
2179
2180 afinfo->seq_ops.start = tcp_seq_start;
2181 afinfo->seq_ops.next = tcp_seq_next;
2182 afinfo->seq_ops.stop = tcp_seq_stop;
2183
2184 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2185 afinfo->seq_fops, afinfo);
2186 if (!p)
2187 rc = -ENOMEM;
2188 return rc;
2189 }
2190 EXPORT_SYMBOL(tcp_proc_register);
2191
2192 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2193 {
2194 remove_proc_entry(afinfo->name, net->proc_net);
2195 }
2196 EXPORT_SYMBOL(tcp_proc_unregister);
2197
2198 static void get_openreq4(const struct sock *sk, const struct request_sock *req,
2199 struct seq_file *f, int i, kuid_t uid)
2200 {
2201 const struct inet_request_sock *ireq = inet_rsk(req);
2202 long delta = req->expires - jiffies;
2203
2204 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2205 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK",
2206 i,
2207 ireq->ir_loc_addr,
2208 ntohs(inet_sk(sk)->inet_sport),
2209 ireq->ir_rmt_addr,
2210 ntohs(ireq->ir_rmt_port),
2211 TCP_SYN_RECV,
2212 0, 0, /* could print option size, but that is af dependent. */
2213 1, /* timers active (only the expire timer) */
2214 jiffies_delta_to_clock_t(delta),
2215 req->num_timeout,
2216 from_kuid_munged(seq_user_ns(f), uid),
2217 0, /* non standard timer */
2218 0, /* open_requests have no inode */
2219 atomic_read(&sk->sk_refcnt),
2220 req);
2221 }
2222
2223 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i)
2224 {
2225 int timer_active;
2226 unsigned long timer_expires;
2227 const struct tcp_sock *tp = tcp_sk(sk);
2228 const struct inet_connection_sock *icsk = inet_csk(sk);
2229 const struct inet_sock *inet = inet_sk(sk);
2230 struct fastopen_queue *fastopenq = icsk->icsk_accept_queue.fastopenq;
2231 __be32 dest = inet->inet_daddr;
2232 __be32 src = inet->inet_rcv_saddr;
2233 __u16 destp = ntohs(inet->inet_dport);
2234 __u16 srcp = ntohs(inet->inet_sport);
2235 int rx_queue;
2236
2237 if (icsk->icsk_pending == ICSK_TIME_RETRANS ||
2238 icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
2239 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
2240 timer_active = 1;
2241 timer_expires = icsk->icsk_timeout;
2242 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2243 timer_active = 4;
2244 timer_expires = icsk->icsk_timeout;
2245 } else if (timer_pending(&sk->sk_timer)) {
2246 timer_active = 2;
2247 timer_expires = sk->sk_timer.expires;
2248 } else {
2249 timer_active = 0;
2250 timer_expires = jiffies;
2251 }
2252
2253 if (sk->sk_state == TCP_LISTEN)
2254 rx_queue = sk->sk_ack_backlog;
2255 else
2256 /*
2257 * because we dont lock socket, we might find a transient negative value
2258 */
2259 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2260
2261 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2262 "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d",
2263 i, src, srcp, dest, destp, sk->sk_state,
2264 tp->write_seq - tp->snd_una,
2265 rx_queue,
2266 timer_active,
2267 jiffies_delta_to_clock_t(timer_expires - jiffies),
2268 icsk->icsk_retransmits,
2269 from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)),
2270 icsk->icsk_probes_out,
2271 sock_i_ino(sk),
2272 atomic_read(&sk->sk_refcnt), sk,
2273 jiffies_to_clock_t(icsk->icsk_rto),
2274 jiffies_to_clock_t(icsk->icsk_ack.ato),
2275 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2276 tp->snd_cwnd,
2277 sk->sk_state == TCP_LISTEN ?
2278 (fastopenq ? fastopenq->max_qlen : 0) :
2279 (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh));
2280 }
2281
2282 static void get_timewait4_sock(const struct inet_timewait_sock *tw,
2283 struct seq_file *f, int i)
2284 {
2285 __be32 dest, src;
2286 __u16 destp, srcp;
2287 s32 delta = tw->tw_ttd - inet_tw_time_stamp();
2288
2289 dest = tw->tw_daddr;
2290 src = tw->tw_rcv_saddr;
2291 destp = ntohs(tw->tw_dport);
2292 srcp = ntohs(tw->tw_sport);
2293
2294 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2295 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK",
2296 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2297 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0,
2298 atomic_read(&tw->tw_refcnt), tw);
2299 }
2300
2301 #define TMPSZ 150
2302
2303 static int tcp4_seq_show(struct seq_file *seq, void *v)
2304 {
2305 struct tcp_iter_state *st;
2306 struct sock *sk = v;
2307
2308 seq_setwidth(seq, TMPSZ - 1);
2309 if (v == SEQ_START_TOKEN) {
2310 seq_puts(seq, " sl local_address rem_address st tx_queue "
2311 "rx_queue tr tm->when retrnsmt uid timeout "
2312 "inode");
2313 goto out;
2314 }
2315 st = seq->private;
2316
2317 switch (st->state) {
2318 case TCP_SEQ_STATE_LISTENING:
2319 case TCP_SEQ_STATE_ESTABLISHED:
2320 if (sk->sk_state == TCP_TIME_WAIT)
2321 get_timewait4_sock(v, seq, st->num);
2322 else
2323 get_tcp4_sock(v, seq, st->num);
2324 break;
2325 case TCP_SEQ_STATE_OPENREQ:
2326 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid);
2327 break;
2328 }
2329 out:
2330 seq_pad(seq, '\n');
2331 return 0;
2332 }
2333
2334 static const struct file_operations tcp_afinfo_seq_fops = {
2335 .owner = THIS_MODULE,
2336 .open = tcp_seq_open,
2337 .read = seq_read,
2338 .llseek = seq_lseek,
2339 .release = seq_release_net
2340 };
2341
2342 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2343 .name = "tcp",
2344 .family = AF_INET,
2345 .seq_fops = &tcp_afinfo_seq_fops,
2346 .seq_ops = {
2347 .show = tcp4_seq_show,
2348 },
2349 };
2350
2351 static int __net_init tcp4_proc_init_net(struct net *net)
2352 {
2353 return tcp_proc_register(net, &tcp4_seq_afinfo);
2354 }
2355
2356 static void __net_exit tcp4_proc_exit_net(struct net *net)
2357 {
2358 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2359 }
2360
2361 static struct pernet_operations tcp4_net_ops = {
2362 .init = tcp4_proc_init_net,
2363 .exit = tcp4_proc_exit_net,
2364 };
2365
2366 int __init tcp4_proc_init(void)
2367 {
2368 return register_pernet_subsys(&tcp4_net_ops);
2369 }
2370
2371 void tcp4_proc_exit(void)
2372 {
2373 unregister_pernet_subsys(&tcp4_net_ops);
2374 }
2375 #endif /* CONFIG_PROC_FS */
2376
2377 struct proto tcp_prot = {
2378 .name = "TCP",
2379 .owner = THIS_MODULE,
2380 .close = tcp_close,
2381 .connect = tcp_v4_connect,
2382 .disconnect = tcp_disconnect,
2383 .accept = inet_csk_accept,
2384 .ioctl = tcp_ioctl,
2385 .init = tcp_v4_init_sock,
2386 .destroy = tcp_v4_destroy_sock,
2387 .shutdown = tcp_shutdown,
2388 .setsockopt = tcp_setsockopt,
2389 .getsockopt = tcp_getsockopt,
2390 .recvmsg = tcp_recvmsg,
2391 .sendmsg = tcp_sendmsg,
2392 .sendpage = tcp_sendpage,
2393 .backlog_rcv = tcp_v4_do_rcv,
2394 .release_cb = tcp_release_cb,
2395 .hash = inet_hash,
2396 .unhash = inet_unhash,
2397 .get_port = inet_csk_get_port,
2398 .enter_memory_pressure = tcp_enter_memory_pressure,
2399 .stream_memory_free = tcp_stream_memory_free,
2400 .sockets_allocated = &tcp_sockets_allocated,
2401 .orphan_count = &tcp_orphan_count,
2402 .memory_allocated = &tcp_memory_allocated,
2403 .memory_pressure = &tcp_memory_pressure,
2404 .sysctl_mem = sysctl_tcp_mem,
2405 .sysctl_wmem = sysctl_tcp_wmem,
2406 .sysctl_rmem = sysctl_tcp_rmem,
2407 .max_header = MAX_TCP_HEADER,
2408 .obj_size = sizeof(struct tcp_sock),
2409 .slab_flags = SLAB_DESTROY_BY_RCU,
2410 .twsk_prot = &tcp_timewait_sock_ops,
2411 .rsk_prot = &tcp_request_sock_ops,
2412 .h.hashinfo = &tcp_hashinfo,
2413 .no_autobind = true,
2414 #ifdef CONFIG_COMPAT
2415 .compat_setsockopt = compat_tcp_setsockopt,
2416 .compat_getsockopt = compat_tcp_getsockopt,
2417 #endif
2418 #ifdef CONFIG_MEMCG_KMEM
2419 .init_cgroup = tcp_init_cgroup,
2420 .destroy_cgroup = tcp_destroy_cgroup,
2421 .proto_cgroup = tcp_proto_cgroup,
2422 #endif
2423 };
2424 EXPORT_SYMBOL(tcp_prot);
2425
2426 static int __net_init tcp_sk_init(struct net *net)
2427 {
2428 net->ipv4.sysctl_tcp_ecn = 2;
2429 return 0;
2430 }
2431
2432 static void __net_exit tcp_sk_exit(struct net *net)
2433 {
2434 }
2435
2436 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2437 {
2438 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2439 }
2440
2441 static struct pernet_operations __net_initdata tcp_sk_ops = {
2442 .init = tcp_sk_init,
2443 .exit = tcp_sk_exit,
2444 .exit_batch = tcp_sk_exit_batch,
2445 };
2446
2447 void __init tcp_v4_init(void)
2448 {
2449 inet_hashinfo_init(&tcp_hashinfo);
2450 if (register_pernet_subsys(&tcp_sk_ops))
2451 panic("Failed to create the TCP control socket.\n");
2452 }
This page took 0.109623 seconds and 5 git commands to generate.