arch: Mass conversion of smp_mb__*()
[deliverable/linux.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
70
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 int push_one, gfp_t gfp);
73
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 struct inet_connection_sock *icsk = inet_csk(sk);
78 struct tcp_sock *tp = tcp_sk(sk);
79 unsigned int prior_packets = tp->packets_out;
80
81 tcp_advance_send_head(sk, skb);
82 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
83
84 tp->packets_out += tcp_skb_pcount(skb);
85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
86 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
87 tcp_rearm_rto(sk);
88 }
89
90 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
91 tcp_skb_pcount(skb));
92 }
93
94 /* SND.NXT, if window was not shrunk.
95 * If window has been shrunk, what should we make? It is not clear at all.
96 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
97 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
98 * invalid. OK, let's make this for now:
99 */
100 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
101 {
102 const struct tcp_sock *tp = tcp_sk(sk);
103
104 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
105 return tp->snd_nxt;
106 else
107 return tcp_wnd_end(tp);
108 }
109
110 /* Calculate mss to advertise in SYN segment.
111 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
112 *
113 * 1. It is independent of path mtu.
114 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
115 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
116 * attached devices, because some buggy hosts are confused by
117 * large MSS.
118 * 4. We do not make 3, we advertise MSS, calculated from first
119 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
120 * This may be overridden via information stored in routing table.
121 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
122 * probably even Jumbo".
123 */
124 static __u16 tcp_advertise_mss(struct sock *sk)
125 {
126 struct tcp_sock *tp = tcp_sk(sk);
127 const struct dst_entry *dst = __sk_dst_get(sk);
128 int mss = tp->advmss;
129
130 if (dst) {
131 unsigned int metric = dst_metric_advmss(dst);
132
133 if (metric < mss) {
134 mss = metric;
135 tp->advmss = mss;
136 }
137 }
138
139 return (__u16)mss;
140 }
141
142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
143 * This is the first part of cwnd validation mechanism. */
144 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
145 {
146 struct tcp_sock *tp = tcp_sk(sk);
147 s32 delta = tcp_time_stamp - tp->lsndtime;
148 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
149 u32 cwnd = tp->snd_cwnd;
150
151 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
152
153 tp->snd_ssthresh = tcp_current_ssthresh(sk);
154 restart_cwnd = min(restart_cwnd, cwnd);
155
156 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
157 cwnd >>= 1;
158 tp->snd_cwnd = max(cwnd, restart_cwnd);
159 tp->snd_cwnd_stamp = tcp_time_stamp;
160 tp->snd_cwnd_used = 0;
161 }
162
163 /* Congestion state accounting after a packet has been sent. */
164 static void tcp_event_data_sent(struct tcp_sock *tp,
165 struct sock *sk)
166 {
167 struct inet_connection_sock *icsk = inet_csk(sk);
168 const u32 now = tcp_time_stamp;
169 const struct dst_entry *dst = __sk_dst_get(sk);
170
171 if (sysctl_tcp_slow_start_after_idle &&
172 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
173 tcp_cwnd_restart(sk, __sk_dst_get(sk));
174
175 tp->lsndtime = now;
176
177 /* If it is a reply for ato after last received
178 * packet, enter pingpong mode.
179 */
180 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
181 (!dst || !dst_metric(dst, RTAX_QUICKACK)))
182 icsk->icsk_ack.pingpong = 1;
183 }
184
185 /* Account for an ACK we sent. */
186 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
187 {
188 tcp_dec_quickack_mode(sk, pkts);
189 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
190 }
191
192
193 u32 tcp_default_init_rwnd(u32 mss)
194 {
195 /* Initial receive window should be twice of TCP_INIT_CWND to
196 * enable proper sending of new unsent data during fast recovery
197 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
198 * limit when mss is larger than 1460.
199 */
200 u32 init_rwnd = TCP_INIT_CWND * 2;
201
202 if (mss > 1460)
203 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
204 return init_rwnd;
205 }
206
207 /* Determine a window scaling and initial window to offer.
208 * Based on the assumption that the given amount of space
209 * will be offered. Store the results in the tp structure.
210 * NOTE: for smooth operation initial space offering should
211 * be a multiple of mss if possible. We assume here that mss >= 1.
212 * This MUST be enforced by all callers.
213 */
214 void tcp_select_initial_window(int __space, __u32 mss,
215 __u32 *rcv_wnd, __u32 *window_clamp,
216 int wscale_ok, __u8 *rcv_wscale,
217 __u32 init_rcv_wnd)
218 {
219 unsigned int space = (__space < 0 ? 0 : __space);
220
221 /* If no clamp set the clamp to the max possible scaled window */
222 if (*window_clamp == 0)
223 (*window_clamp) = (65535 << 14);
224 space = min(*window_clamp, space);
225
226 /* Quantize space offering to a multiple of mss if possible. */
227 if (space > mss)
228 space = (space / mss) * mss;
229
230 /* NOTE: offering an initial window larger than 32767
231 * will break some buggy TCP stacks. If the admin tells us
232 * it is likely we could be speaking with such a buggy stack
233 * we will truncate our initial window offering to 32K-1
234 * unless the remote has sent us a window scaling option,
235 * which we interpret as a sign the remote TCP is not
236 * misinterpreting the window field as a signed quantity.
237 */
238 if (sysctl_tcp_workaround_signed_windows)
239 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
240 else
241 (*rcv_wnd) = space;
242
243 (*rcv_wscale) = 0;
244 if (wscale_ok) {
245 /* Set window scaling on max possible window
246 * See RFC1323 for an explanation of the limit to 14
247 */
248 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
249 space = min_t(u32, space, *window_clamp);
250 while (space > 65535 && (*rcv_wscale) < 14) {
251 space >>= 1;
252 (*rcv_wscale)++;
253 }
254 }
255
256 if (mss > (1 << *rcv_wscale)) {
257 if (!init_rcv_wnd) /* Use default unless specified otherwise */
258 init_rcv_wnd = tcp_default_init_rwnd(mss);
259 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
260 }
261
262 /* Set the clamp no higher than max representable value */
263 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
264 }
265 EXPORT_SYMBOL(tcp_select_initial_window);
266
267 /* Chose a new window to advertise, update state in tcp_sock for the
268 * socket, and return result with RFC1323 scaling applied. The return
269 * value can be stuffed directly into th->window for an outgoing
270 * frame.
271 */
272 static u16 tcp_select_window(struct sock *sk)
273 {
274 struct tcp_sock *tp = tcp_sk(sk);
275 u32 old_win = tp->rcv_wnd;
276 u32 cur_win = tcp_receive_window(tp);
277 u32 new_win = __tcp_select_window(sk);
278
279 /* Never shrink the offered window */
280 if (new_win < cur_win) {
281 /* Danger Will Robinson!
282 * Don't update rcv_wup/rcv_wnd here or else
283 * we will not be able to advertise a zero
284 * window in time. --DaveM
285 *
286 * Relax Will Robinson.
287 */
288 if (new_win == 0)
289 NET_INC_STATS(sock_net(sk),
290 LINUX_MIB_TCPWANTZEROWINDOWADV);
291 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
292 }
293 tp->rcv_wnd = new_win;
294 tp->rcv_wup = tp->rcv_nxt;
295
296 /* Make sure we do not exceed the maximum possible
297 * scaled window.
298 */
299 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
300 new_win = min(new_win, MAX_TCP_WINDOW);
301 else
302 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
303
304 /* RFC1323 scaling applied */
305 new_win >>= tp->rx_opt.rcv_wscale;
306
307 /* If we advertise zero window, disable fast path. */
308 if (new_win == 0) {
309 tp->pred_flags = 0;
310 if (old_win)
311 NET_INC_STATS(sock_net(sk),
312 LINUX_MIB_TCPTOZEROWINDOWADV);
313 } else if (old_win == 0) {
314 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
315 }
316
317 return new_win;
318 }
319
320 /* Packet ECN state for a SYN-ACK */
321 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
322 {
323 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
324 if (!(tp->ecn_flags & TCP_ECN_OK))
325 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
326 }
327
328 /* Packet ECN state for a SYN. */
329 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
330 {
331 struct tcp_sock *tp = tcp_sk(sk);
332
333 tp->ecn_flags = 0;
334 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
335 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
336 tp->ecn_flags = TCP_ECN_OK;
337 }
338 }
339
340 static __inline__ void
341 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
342 {
343 if (inet_rsk(req)->ecn_ok)
344 th->ece = 1;
345 }
346
347 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
348 * be sent.
349 */
350 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
351 int tcp_header_len)
352 {
353 struct tcp_sock *tp = tcp_sk(sk);
354
355 if (tp->ecn_flags & TCP_ECN_OK) {
356 /* Not-retransmitted data segment: set ECT and inject CWR. */
357 if (skb->len != tcp_header_len &&
358 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
359 INET_ECN_xmit(sk);
360 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
361 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
362 tcp_hdr(skb)->cwr = 1;
363 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
364 }
365 } else {
366 /* ACK or retransmitted segment: clear ECT|CE */
367 INET_ECN_dontxmit(sk);
368 }
369 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
370 tcp_hdr(skb)->ece = 1;
371 }
372 }
373
374 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
375 * auto increment end seqno.
376 */
377 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
378 {
379 struct skb_shared_info *shinfo = skb_shinfo(skb);
380
381 skb->ip_summed = CHECKSUM_PARTIAL;
382 skb->csum = 0;
383
384 TCP_SKB_CB(skb)->tcp_flags = flags;
385 TCP_SKB_CB(skb)->sacked = 0;
386
387 shinfo->gso_segs = 1;
388 shinfo->gso_size = 0;
389 shinfo->gso_type = 0;
390
391 TCP_SKB_CB(skb)->seq = seq;
392 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
393 seq++;
394 TCP_SKB_CB(skb)->end_seq = seq;
395 }
396
397 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
398 {
399 return tp->snd_una != tp->snd_up;
400 }
401
402 #define OPTION_SACK_ADVERTISE (1 << 0)
403 #define OPTION_TS (1 << 1)
404 #define OPTION_MD5 (1 << 2)
405 #define OPTION_WSCALE (1 << 3)
406 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
407
408 struct tcp_out_options {
409 u16 options; /* bit field of OPTION_* */
410 u16 mss; /* 0 to disable */
411 u8 ws; /* window scale, 0 to disable */
412 u8 num_sack_blocks; /* number of SACK blocks to include */
413 u8 hash_size; /* bytes in hash_location */
414 __u8 *hash_location; /* temporary pointer, overloaded */
415 __u32 tsval, tsecr; /* need to include OPTION_TS */
416 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
417 };
418
419 /* Write previously computed TCP options to the packet.
420 *
421 * Beware: Something in the Internet is very sensitive to the ordering of
422 * TCP options, we learned this through the hard way, so be careful here.
423 * Luckily we can at least blame others for their non-compliance but from
424 * inter-operability perspective it seems that we're somewhat stuck with
425 * the ordering which we have been using if we want to keep working with
426 * those broken things (not that it currently hurts anybody as there isn't
427 * particular reason why the ordering would need to be changed).
428 *
429 * At least SACK_PERM as the first option is known to lead to a disaster
430 * (but it may well be that other scenarios fail similarly).
431 */
432 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
433 struct tcp_out_options *opts)
434 {
435 u16 options = opts->options; /* mungable copy */
436
437 if (unlikely(OPTION_MD5 & options)) {
438 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
439 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
440 /* overload cookie hash location */
441 opts->hash_location = (__u8 *)ptr;
442 ptr += 4;
443 }
444
445 if (unlikely(opts->mss)) {
446 *ptr++ = htonl((TCPOPT_MSS << 24) |
447 (TCPOLEN_MSS << 16) |
448 opts->mss);
449 }
450
451 if (likely(OPTION_TS & options)) {
452 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
453 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
454 (TCPOLEN_SACK_PERM << 16) |
455 (TCPOPT_TIMESTAMP << 8) |
456 TCPOLEN_TIMESTAMP);
457 options &= ~OPTION_SACK_ADVERTISE;
458 } else {
459 *ptr++ = htonl((TCPOPT_NOP << 24) |
460 (TCPOPT_NOP << 16) |
461 (TCPOPT_TIMESTAMP << 8) |
462 TCPOLEN_TIMESTAMP);
463 }
464 *ptr++ = htonl(opts->tsval);
465 *ptr++ = htonl(opts->tsecr);
466 }
467
468 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
469 *ptr++ = htonl((TCPOPT_NOP << 24) |
470 (TCPOPT_NOP << 16) |
471 (TCPOPT_SACK_PERM << 8) |
472 TCPOLEN_SACK_PERM);
473 }
474
475 if (unlikely(OPTION_WSCALE & options)) {
476 *ptr++ = htonl((TCPOPT_NOP << 24) |
477 (TCPOPT_WINDOW << 16) |
478 (TCPOLEN_WINDOW << 8) |
479 opts->ws);
480 }
481
482 if (unlikely(opts->num_sack_blocks)) {
483 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
484 tp->duplicate_sack : tp->selective_acks;
485 int this_sack;
486
487 *ptr++ = htonl((TCPOPT_NOP << 24) |
488 (TCPOPT_NOP << 16) |
489 (TCPOPT_SACK << 8) |
490 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
491 TCPOLEN_SACK_PERBLOCK)));
492
493 for (this_sack = 0; this_sack < opts->num_sack_blocks;
494 ++this_sack) {
495 *ptr++ = htonl(sp[this_sack].start_seq);
496 *ptr++ = htonl(sp[this_sack].end_seq);
497 }
498
499 tp->rx_opt.dsack = 0;
500 }
501
502 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
503 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
504
505 *ptr++ = htonl((TCPOPT_EXP << 24) |
506 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
507 TCPOPT_FASTOPEN_MAGIC);
508
509 memcpy(ptr, foc->val, foc->len);
510 if ((foc->len & 3) == 2) {
511 u8 *align = ((u8 *)ptr) + foc->len;
512 align[0] = align[1] = TCPOPT_NOP;
513 }
514 ptr += (foc->len + 3) >> 2;
515 }
516 }
517
518 /* Compute TCP options for SYN packets. This is not the final
519 * network wire format yet.
520 */
521 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
522 struct tcp_out_options *opts,
523 struct tcp_md5sig_key **md5)
524 {
525 struct tcp_sock *tp = tcp_sk(sk);
526 unsigned int remaining = MAX_TCP_OPTION_SPACE;
527 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
528
529 #ifdef CONFIG_TCP_MD5SIG
530 *md5 = tp->af_specific->md5_lookup(sk, sk);
531 if (*md5) {
532 opts->options |= OPTION_MD5;
533 remaining -= TCPOLEN_MD5SIG_ALIGNED;
534 }
535 #else
536 *md5 = NULL;
537 #endif
538
539 /* We always get an MSS option. The option bytes which will be seen in
540 * normal data packets should timestamps be used, must be in the MSS
541 * advertised. But we subtract them from tp->mss_cache so that
542 * calculations in tcp_sendmsg are simpler etc. So account for this
543 * fact here if necessary. If we don't do this correctly, as a
544 * receiver we won't recognize data packets as being full sized when we
545 * should, and thus we won't abide by the delayed ACK rules correctly.
546 * SACKs don't matter, we never delay an ACK when we have any of those
547 * going out. */
548 opts->mss = tcp_advertise_mss(sk);
549 remaining -= TCPOLEN_MSS_ALIGNED;
550
551 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
552 opts->options |= OPTION_TS;
553 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
554 opts->tsecr = tp->rx_opt.ts_recent;
555 remaining -= TCPOLEN_TSTAMP_ALIGNED;
556 }
557 if (likely(sysctl_tcp_window_scaling)) {
558 opts->ws = tp->rx_opt.rcv_wscale;
559 opts->options |= OPTION_WSCALE;
560 remaining -= TCPOLEN_WSCALE_ALIGNED;
561 }
562 if (likely(sysctl_tcp_sack)) {
563 opts->options |= OPTION_SACK_ADVERTISE;
564 if (unlikely(!(OPTION_TS & opts->options)))
565 remaining -= TCPOLEN_SACKPERM_ALIGNED;
566 }
567
568 if (fastopen && fastopen->cookie.len >= 0) {
569 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
570 need = (need + 3) & ~3U; /* Align to 32 bits */
571 if (remaining >= need) {
572 opts->options |= OPTION_FAST_OPEN_COOKIE;
573 opts->fastopen_cookie = &fastopen->cookie;
574 remaining -= need;
575 tp->syn_fastopen = 1;
576 }
577 }
578
579 return MAX_TCP_OPTION_SPACE - remaining;
580 }
581
582 /* Set up TCP options for SYN-ACKs. */
583 static unsigned int tcp_synack_options(struct sock *sk,
584 struct request_sock *req,
585 unsigned int mss, struct sk_buff *skb,
586 struct tcp_out_options *opts,
587 struct tcp_md5sig_key **md5,
588 struct tcp_fastopen_cookie *foc)
589 {
590 struct inet_request_sock *ireq = inet_rsk(req);
591 unsigned int remaining = MAX_TCP_OPTION_SPACE;
592
593 #ifdef CONFIG_TCP_MD5SIG
594 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
595 if (*md5) {
596 opts->options |= OPTION_MD5;
597 remaining -= TCPOLEN_MD5SIG_ALIGNED;
598
599 /* We can't fit any SACK blocks in a packet with MD5 + TS
600 * options. There was discussion about disabling SACK
601 * rather than TS in order to fit in better with old,
602 * buggy kernels, but that was deemed to be unnecessary.
603 */
604 ireq->tstamp_ok &= !ireq->sack_ok;
605 }
606 #else
607 *md5 = NULL;
608 #endif
609
610 /* We always send an MSS option. */
611 opts->mss = mss;
612 remaining -= TCPOLEN_MSS_ALIGNED;
613
614 if (likely(ireq->wscale_ok)) {
615 opts->ws = ireq->rcv_wscale;
616 opts->options |= OPTION_WSCALE;
617 remaining -= TCPOLEN_WSCALE_ALIGNED;
618 }
619 if (likely(ireq->tstamp_ok)) {
620 opts->options |= OPTION_TS;
621 opts->tsval = TCP_SKB_CB(skb)->when;
622 opts->tsecr = req->ts_recent;
623 remaining -= TCPOLEN_TSTAMP_ALIGNED;
624 }
625 if (likely(ireq->sack_ok)) {
626 opts->options |= OPTION_SACK_ADVERTISE;
627 if (unlikely(!ireq->tstamp_ok))
628 remaining -= TCPOLEN_SACKPERM_ALIGNED;
629 }
630 if (foc != NULL) {
631 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
632 need = (need + 3) & ~3U; /* Align to 32 bits */
633 if (remaining >= need) {
634 opts->options |= OPTION_FAST_OPEN_COOKIE;
635 opts->fastopen_cookie = foc;
636 remaining -= need;
637 }
638 }
639
640 return MAX_TCP_OPTION_SPACE - remaining;
641 }
642
643 /* Compute TCP options for ESTABLISHED sockets. This is not the
644 * final wire format yet.
645 */
646 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
647 struct tcp_out_options *opts,
648 struct tcp_md5sig_key **md5)
649 {
650 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
651 struct tcp_sock *tp = tcp_sk(sk);
652 unsigned int size = 0;
653 unsigned int eff_sacks;
654
655 opts->options = 0;
656
657 #ifdef CONFIG_TCP_MD5SIG
658 *md5 = tp->af_specific->md5_lookup(sk, sk);
659 if (unlikely(*md5)) {
660 opts->options |= OPTION_MD5;
661 size += TCPOLEN_MD5SIG_ALIGNED;
662 }
663 #else
664 *md5 = NULL;
665 #endif
666
667 if (likely(tp->rx_opt.tstamp_ok)) {
668 opts->options |= OPTION_TS;
669 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
670 opts->tsecr = tp->rx_opt.ts_recent;
671 size += TCPOLEN_TSTAMP_ALIGNED;
672 }
673
674 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
675 if (unlikely(eff_sacks)) {
676 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
677 opts->num_sack_blocks =
678 min_t(unsigned int, eff_sacks,
679 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
680 TCPOLEN_SACK_PERBLOCK);
681 size += TCPOLEN_SACK_BASE_ALIGNED +
682 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
683 }
684
685 return size;
686 }
687
688
689 /* TCP SMALL QUEUES (TSQ)
690 *
691 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
692 * to reduce RTT and bufferbloat.
693 * We do this using a special skb destructor (tcp_wfree).
694 *
695 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
696 * needs to be reallocated in a driver.
697 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
698 *
699 * Since transmit from skb destructor is forbidden, we use a tasklet
700 * to process all sockets that eventually need to send more skbs.
701 * We use one tasklet per cpu, with its own queue of sockets.
702 */
703 struct tsq_tasklet {
704 struct tasklet_struct tasklet;
705 struct list_head head; /* queue of tcp sockets */
706 };
707 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
708
709 static void tcp_tsq_handler(struct sock *sk)
710 {
711 if ((1 << sk->sk_state) &
712 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
713 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
714 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
715 0, GFP_ATOMIC);
716 }
717 /*
718 * One tasklet per cpu tries to send more skbs.
719 * We run in tasklet context but need to disable irqs when
720 * transferring tsq->head because tcp_wfree() might
721 * interrupt us (non NAPI drivers)
722 */
723 static void tcp_tasklet_func(unsigned long data)
724 {
725 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
726 LIST_HEAD(list);
727 unsigned long flags;
728 struct list_head *q, *n;
729 struct tcp_sock *tp;
730 struct sock *sk;
731
732 local_irq_save(flags);
733 list_splice_init(&tsq->head, &list);
734 local_irq_restore(flags);
735
736 list_for_each_safe(q, n, &list) {
737 tp = list_entry(q, struct tcp_sock, tsq_node);
738 list_del(&tp->tsq_node);
739
740 sk = (struct sock *)tp;
741 bh_lock_sock(sk);
742
743 if (!sock_owned_by_user(sk)) {
744 tcp_tsq_handler(sk);
745 } else {
746 /* defer the work to tcp_release_cb() */
747 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
748 }
749 bh_unlock_sock(sk);
750
751 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
752 sk_free(sk);
753 }
754 }
755
756 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
757 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
758 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
759 (1UL << TCP_MTU_REDUCED_DEFERRED))
760 /**
761 * tcp_release_cb - tcp release_sock() callback
762 * @sk: socket
763 *
764 * called from release_sock() to perform protocol dependent
765 * actions before socket release.
766 */
767 void tcp_release_cb(struct sock *sk)
768 {
769 struct tcp_sock *tp = tcp_sk(sk);
770 unsigned long flags, nflags;
771
772 /* perform an atomic operation only if at least one flag is set */
773 do {
774 flags = tp->tsq_flags;
775 if (!(flags & TCP_DEFERRED_ALL))
776 return;
777 nflags = flags & ~TCP_DEFERRED_ALL;
778 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
779
780 if (flags & (1UL << TCP_TSQ_DEFERRED))
781 tcp_tsq_handler(sk);
782
783 /* Here begins the tricky part :
784 * We are called from release_sock() with :
785 * 1) BH disabled
786 * 2) sk_lock.slock spinlock held
787 * 3) socket owned by us (sk->sk_lock.owned == 1)
788 *
789 * But following code is meant to be called from BH handlers,
790 * so we should keep BH disabled, but early release socket ownership
791 */
792 sock_release_ownership(sk);
793
794 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
795 tcp_write_timer_handler(sk);
796 __sock_put(sk);
797 }
798 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
799 tcp_delack_timer_handler(sk);
800 __sock_put(sk);
801 }
802 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
803 sk->sk_prot->mtu_reduced(sk);
804 __sock_put(sk);
805 }
806 }
807 EXPORT_SYMBOL(tcp_release_cb);
808
809 void __init tcp_tasklet_init(void)
810 {
811 int i;
812
813 for_each_possible_cpu(i) {
814 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
815
816 INIT_LIST_HEAD(&tsq->head);
817 tasklet_init(&tsq->tasklet,
818 tcp_tasklet_func,
819 (unsigned long)tsq);
820 }
821 }
822
823 /*
824 * Write buffer destructor automatically called from kfree_skb.
825 * We can't xmit new skbs from this context, as we might already
826 * hold qdisc lock.
827 */
828 void tcp_wfree(struct sk_buff *skb)
829 {
830 struct sock *sk = skb->sk;
831 struct tcp_sock *tp = tcp_sk(sk);
832
833 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
834 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
835 unsigned long flags;
836 struct tsq_tasklet *tsq;
837
838 /* Keep a ref on socket.
839 * This last ref will be released in tcp_tasklet_func()
840 */
841 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
842
843 /* queue this socket to tasklet queue */
844 local_irq_save(flags);
845 tsq = &__get_cpu_var(tsq_tasklet);
846 list_add(&tp->tsq_node, &tsq->head);
847 tasklet_schedule(&tsq->tasklet);
848 local_irq_restore(flags);
849 } else {
850 sock_wfree(skb);
851 }
852 }
853
854 /* This routine actually transmits TCP packets queued in by
855 * tcp_do_sendmsg(). This is used by both the initial
856 * transmission and possible later retransmissions.
857 * All SKB's seen here are completely headerless. It is our
858 * job to build the TCP header, and pass the packet down to
859 * IP so it can do the same plus pass the packet off to the
860 * device.
861 *
862 * We are working here with either a clone of the original
863 * SKB, or a fresh unique copy made by the retransmit engine.
864 */
865 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
866 gfp_t gfp_mask)
867 {
868 const struct inet_connection_sock *icsk = inet_csk(sk);
869 struct inet_sock *inet;
870 struct tcp_sock *tp;
871 struct tcp_skb_cb *tcb;
872 struct tcp_out_options opts;
873 unsigned int tcp_options_size, tcp_header_size;
874 struct tcp_md5sig_key *md5;
875 struct tcphdr *th;
876 int err;
877
878 BUG_ON(!skb || !tcp_skb_pcount(skb));
879
880 if (clone_it) {
881 const struct sk_buff *fclone = skb + 1;
882
883 skb_mstamp_get(&skb->skb_mstamp);
884
885 if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
886 fclone->fclone == SKB_FCLONE_CLONE))
887 NET_INC_STATS(sock_net(sk),
888 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
889
890 if (unlikely(skb_cloned(skb)))
891 skb = pskb_copy(skb, gfp_mask);
892 else
893 skb = skb_clone(skb, gfp_mask);
894 if (unlikely(!skb))
895 return -ENOBUFS;
896 /* Our usage of tstamp should remain private */
897 skb->tstamp.tv64 = 0;
898 }
899
900 inet = inet_sk(sk);
901 tp = tcp_sk(sk);
902 tcb = TCP_SKB_CB(skb);
903 memset(&opts, 0, sizeof(opts));
904
905 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
906 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
907 else
908 tcp_options_size = tcp_established_options(sk, skb, &opts,
909 &md5);
910 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
911
912 if (tcp_packets_in_flight(tp) == 0)
913 tcp_ca_event(sk, CA_EVENT_TX_START);
914
915 /* if no packet is in qdisc/device queue, then allow XPS to select
916 * another queue.
917 */
918 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
919
920 skb_push(skb, tcp_header_size);
921 skb_reset_transport_header(skb);
922
923 skb_orphan(skb);
924 skb->sk = sk;
925 skb->destructor = tcp_wfree;
926 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
927
928 /* Build TCP header and checksum it. */
929 th = tcp_hdr(skb);
930 th->source = inet->inet_sport;
931 th->dest = inet->inet_dport;
932 th->seq = htonl(tcb->seq);
933 th->ack_seq = htonl(tp->rcv_nxt);
934 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
935 tcb->tcp_flags);
936
937 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
938 /* RFC1323: The window in SYN & SYN/ACK segments
939 * is never scaled.
940 */
941 th->window = htons(min(tp->rcv_wnd, 65535U));
942 } else {
943 th->window = htons(tcp_select_window(sk));
944 }
945 th->check = 0;
946 th->urg_ptr = 0;
947
948 /* The urg_mode check is necessary during a below snd_una win probe */
949 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
950 if (before(tp->snd_up, tcb->seq + 0x10000)) {
951 th->urg_ptr = htons(tp->snd_up - tcb->seq);
952 th->urg = 1;
953 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
954 th->urg_ptr = htons(0xFFFF);
955 th->urg = 1;
956 }
957 }
958
959 tcp_options_write((__be32 *)(th + 1), tp, &opts);
960 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
961 TCP_ECN_send(sk, skb, tcp_header_size);
962
963 #ifdef CONFIG_TCP_MD5SIG
964 /* Calculate the MD5 hash, as we have all we need now */
965 if (md5) {
966 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
967 tp->af_specific->calc_md5_hash(opts.hash_location,
968 md5, sk, NULL, skb);
969 }
970 #endif
971
972 icsk->icsk_af_ops->send_check(sk, skb);
973
974 if (likely(tcb->tcp_flags & TCPHDR_ACK))
975 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
976
977 if (skb->len != tcp_header_size)
978 tcp_event_data_sent(tp, sk);
979
980 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
981 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
982 tcp_skb_pcount(skb));
983
984 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
985 if (likely(err <= 0))
986 return err;
987
988 tcp_enter_cwr(sk, 1);
989
990 return net_xmit_eval(err);
991 }
992
993 /* This routine just queues the buffer for sending.
994 *
995 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
996 * otherwise socket can stall.
997 */
998 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
999 {
1000 struct tcp_sock *tp = tcp_sk(sk);
1001
1002 /* Advance write_seq and place onto the write_queue. */
1003 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1004 skb_header_release(skb);
1005 tcp_add_write_queue_tail(sk, skb);
1006 sk->sk_wmem_queued += skb->truesize;
1007 sk_mem_charge(sk, skb->truesize);
1008 }
1009
1010 /* Initialize TSO segments for a packet. */
1011 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1012 unsigned int mss_now)
1013 {
1014 struct skb_shared_info *shinfo = skb_shinfo(skb);
1015
1016 /* Make sure we own this skb before messing gso_size/gso_segs */
1017 WARN_ON_ONCE(skb_cloned(skb));
1018
1019 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1020 /* Avoid the costly divide in the normal
1021 * non-TSO case.
1022 */
1023 shinfo->gso_segs = 1;
1024 shinfo->gso_size = 0;
1025 shinfo->gso_type = 0;
1026 } else {
1027 shinfo->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1028 shinfo->gso_size = mss_now;
1029 shinfo->gso_type = sk->sk_gso_type;
1030 }
1031 }
1032
1033 /* When a modification to fackets out becomes necessary, we need to check
1034 * skb is counted to fackets_out or not.
1035 */
1036 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1037 int decr)
1038 {
1039 struct tcp_sock *tp = tcp_sk(sk);
1040
1041 if (!tp->sacked_out || tcp_is_reno(tp))
1042 return;
1043
1044 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1045 tp->fackets_out -= decr;
1046 }
1047
1048 /* Pcount in the middle of the write queue got changed, we need to do various
1049 * tweaks to fix counters
1050 */
1051 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1052 {
1053 struct tcp_sock *tp = tcp_sk(sk);
1054
1055 tp->packets_out -= decr;
1056
1057 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1058 tp->sacked_out -= decr;
1059 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1060 tp->retrans_out -= decr;
1061 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1062 tp->lost_out -= decr;
1063
1064 /* Reno case is special. Sigh... */
1065 if (tcp_is_reno(tp) && decr > 0)
1066 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1067
1068 tcp_adjust_fackets_out(sk, skb, decr);
1069
1070 if (tp->lost_skb_hint &&
1071 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1072 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1073 tp->lost_cnt_hint -= decr;
1074
1075 tcp_verify_left_out(tp);
1076 }
1077
1078 /* Function to create two new TCP segments. Shrinks the given segment
1079 * to the specified size and appends a new segment with the rest of the
1080 * packet to the list. This won't be called frequently, I hope.
1081 * Remember, these are still headerless SKBs at this point.
1082 */
1083 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1084 unsigned int mss_now)
1085 {
1086 struct tcp_sock *tp = tcp_sk(sk);
1087 struct sk_buff *buff;
1088 int nsize, old_factor;
1089 int nlen;
1090 u8 flags;
1091
1092 if (WARN_ON(len > skb->len))
1093 return -EINVAL;
1094
1095 nsize = skb_headlen(skb) - len;
1096 if (nsize < 0)
1097 nsize = 0;
1098
1099 if (skb_unclone(skb, GFP_ATOMIC))
1100 return -ENOMEM;
1101
1102 /* Get a new skb... force flag on. */
1103 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1104 if (buff == NULL)
1105 return -ENOMEM; /* We'll just try again later. */
1106
1107 sk->sk_wmem_queued += buff->truesize;
1108 sk_mem_charge(sk, buff->truesize);
1109 nlen = skb->len - len - nsize;
1110 buff->truesize += nlen;
1111 skb->truesize -= nlen;
1112
1113 /* Correct the sequence numbers. */
1114 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1115 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1116 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1117
1118 /* PSH and FIN should only be set in the second packet. */
1119 flags = TCP_SKB_CB(skb)->tcp_flags;
1120 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1121 TCP_SKB_CB(buff)->tcp_flags = flags;
1122 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1123
1124 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1125 /* Copy and checksum data tail into the new buffer. */
1126 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1127 skb_put(buff, nsize),
1128 nsize, 0);
1129
1130 skb_trim(skb, len);
1131
1132 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1133 } else {
1134 skb->ip_summed = CHECKSUM_PARTIAL;
1135 skb_split(skb, buff, len);
1136 }
1137
1138 buff->ip_summed = skb->ip_summed;
1139
1140 /* Looks stupid, but our code really uses when of
1141 * skbs, which it never sent before. --ANK
1142 */
1143 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1144 buff->tstamp = skb->tstamp;
1145
1146 old_factor = tcp_skb_pcount(skb);
1147
1148 /* Fix up tso_factor for both original and new SKB. */
1149 tcp_set_skb_tso_segs(sk, skb, mss_now);
1150 tcp_set_skb_tso_segs(sk, buff, mss_now);
1151
1152 /* If this packet has been sent out already, we must
1153 * adjust the various packet counters.
1154 */
1155 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1156 int diff = old_factor - tcp_skb_pcount(skb) -
1157 tcp_skb_pcount(buff);
1158
1159 if (diff)
1160 tcp_adjust_pcount(sk, skb, diff);
1161 }
1162
1163 /* Link BUFF into the send queue. */
1164 skb_header_release(buff);
1165 tcp_insert_write_queue_after(skb, buff, sk);
1166
1167 return 0;
1168 }
1169
1170 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1171 * eventually). The difference is that pulled data not copied, but
1172 * immediately discarded.
1173 */
1174 static void __pskb_trim_head(struct sk_buff *skb, int len)
1175 {
1176 struct skb_shared_info *shinfo;
1177 int i, k, eat;
1178
1179 eat = min_t(int, len, skb_headlen(skb));
1180 if (eat) {
1181 __skb_pull(skb, eat);
1182 len -= eat;
1183 if (!len)
1184 return;
1185 }
1186 eat = len;
1187 k = 0;
1188 shinfo = skb_shinfo(skb);
1189 for (i = 0; i < shinfo->nr_frags; i++) {
1190 int size = skb_frag_size(&shinfo->frags[i]);
1191
1192 if (size <= eat) {
1193 skb_frag_unref(skb, i);
1194 eat -= size;
1195 } else {
1196 shinfo->frags[k] = shinfo->frags[i];
1197 if (eat) {
1198 shinfo->frags[k].page_offset += eat;
1199 skb_frag_size_sub(&shinfo->frags[k], eat);
1200 eat = 0;
1201 }
1202 k++;
1203 }
1204 }
1205 shinfo->nr_frags = k;
1206
1207 skb_reset_tail_pointer(skb);
1208 skb->data_len -= len;
1209 skb->len = skb->data_len;
1210 }
1211
1212 /* Remove acked data from a packet in the transmit queue. */
1213 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1214 {
1215 if (skb_unclone(skb, GFP_ATOMIC))
1216 return -ENOMEM;
1217
1218 __pskb_trim_head(skb, len);
1219
1220 TCP_SKB_CB(skb)->seq += len;
1221 skb->ip_summed = CHECKSUM_PARTIAL;
1222
1223 skb->truesize -= len;
1224 sk->sk_wmem_queued -= len;
1225 sk_mem_uncharge(sk, len);
1226 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1227
1228 /* Any change of skb->len requires recalculation of tso factor. */
1229 if (tcp_skb_pcount(skb) > 1)
1230 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1231
1232 return 0;
1233 }
1234
1235 /* Calculate MSS not accounting any TCP options. */
1236 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1237 {
1238 const struct tcp_sock *tp = tcp_sk(sk);
1239 const struct inet_connection_sock *icsk = inet_csk(sk);
1240 int mss_now;
1241
1242 /* Calculate base mss without TCP options:
1243 It is MMS_S - sizeof(tcphdr) of rfc1122
1244 */
1245 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1246
1247 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1248 if (icsk->icsk_af_ops->net_frag_header_len) {
1249 const struct dst_entry *dst = __sk_dst_get(sk);
1250
1251 if (dst && dst_allfrag(dst))
1252 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1253 }
1254
1255 /* Clamp it (mss_clamp does not include tcp options) */
1256 if (mss_now > tp->rx_opt.mss_clamp)
1257 mss_now = tp->rx_opt.mss_clamp;
1258
1259 /* Now subtract optional transport overhead */
1260 mss_now -= icsk->icsk_ext_hdr_len;
1261
1262 /* Then reserve room for full set of TCP options and 8 bytes of data */
1263 if (mss_now < 48)
1264 mss_now = 48;
1265 return mss_now;
1266 }
1267
1268 /* Calculate MSS. Not accounting for SACKs here. */
1269 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1270 {
1271 /* Subtract TCP options size, not including SACKs */
1272 return __tcp_mtu_to_mss(sk, pmtu) -
1273 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1274 }
1275
1276 /* Inverse of above */
1277 int tcp_mss_to_mtu(struct sock *sk, int mss)
1278 {
1279 const struct tcp_sock *tp = tcp_sk(sk);
1280 const struct inet_connection_sock *icsk = inet_csk(sk);
1281 int mtu;
1282
1283 mtu = mss +
1284 tp->tcp_header_len +
1285 icsk->icsk_ext_hdr_len +
1286 icsk->icsk_af_ops->net_header_len;
1287
1288 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1289 if (icsk->icsk_af_ops->net_frag_header_len) {
1290 const struct dst_entry *dst = __sk_dst_get(sk);
1291
1292 if (dst && dst_allfrag(dst))
1293 mtu += icsk->icsk_af_ops->net_frag_header_len;
1294 }
1295 return mtu;
1296 }
1297
1298 /* MTU probing init per socket */
1299 void tcp_mtup_init(struct sock *sk)
1300 {
1301 struct tcp_sock *tp = tcp_sk(sk);
1302 struct inet_connection_sock *icsk = inet_csk(sk);
1303
1304 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1305 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1306 icsk->icsk_af_ops->net_header_len;
1307 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1308 icsk->icsk_mtup.probe_size = 0;
1309 }
1310 EXPORT_SYMBOL(tcp_mtup_init);
1311
1312 /* This function synchronize snd mss to current pmtu/exthdr set.
1313
1314 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1315 for TCP options, but includes only bare TCP header.
1316
1317 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1318 It is minimum of user_mss and mss received with SYN.
1319 It also does not include TCP options.
1320
1321 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1322
1323 tp->mss_cache is current effective sending mss, including
1324 all tcp options except for SACKs. It is evaluated,
1325 taking into account current pmtu, but never exceeds
1326 tp->rx_opt.mss_clamp.
1327
1328 NOTE1. rfc1122 clearly states that advertised MSS
1329 DOES NOT include either tcp or ip options.
1330
1331 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1332 are READ ONLY outside this function. --ANK (980731)
1333 */
1334 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1335 {
1336 struct tcp_sock *tp = tcp_sk(sk);
1337 struct inet_connection_sock *icsk = inet_csk(sk);
1338 int mss_now;
1339
1340 if (icsk->icsk_mtup.search_high > pmtu)
1341 icsk->icsk_mtup.search_high = pmtu;
1342
1343 mss_now = tcp_mtu_to_mss(sk, pmtu);
1344 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1345
1346 /* And store cached results */
1347 icsk->icsk_pmtu_cookie = pmtu;
1348 if (icsk->icsk_mtup.enabled)
1349 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1350 tp->mss_cache = mss_now;
1351
1352 return mss_now;
1353 }
1354 EXPORT_SYMBOL(tcp_sync_mss);
1355
1356 /* Compute the current effective MSS, taking SACKs and IP options,
1357 * and even PMTU discovery events into account.
1358 */
1359 unsigned int tcp_current_mss(struct sock *sk)
1360 {
1361 const struct tcp_sock *tp = tcp_sk(sk);
1362 const struct dst_entry *dst = __sk_dst_get(sk);
1363 u32 mss_now;
1364 unsigned int header_len;
1365 struct tcp_out_options opts;
1366 struct tcp_md5sig_key *md5;
1367
1368 mss_now = tp->mss_cache;
1369
1370 if (dst) {
1371 u32 mtu = dst_mtu(dst);
1372 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1373 mss_now = tcp_sync_mss(sk, mtu);
1374 }
1375
1376 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1377 sizeof(struct tcphdr);
1378 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1379 * some common options. If this is an odd packet (because we have SACK
1380 * blocks etc) then our calculated header_len will be different, and
1381 * we have to adjust mss_now correspondingly */
1382 if (header_len != tp->tcp_header_len) {
1383 int delta = (int) header_len - tp->tcp_header_len;
1384 mss_now -= delta;
1385 }
1386
1387 return mss_now;
1388 }
1389
1390 /* Congestion window validation. (RFC2861) */
1391 static void tcp_cwnd_validate(struct sock *sk)
1392 {
1393 struct tcp_sock *tp = tcp_sk(sk);
1394
1395 if (tp->packets_out >= tp->snd_cwnd) {
1396 /* Network is feed fully. */
1397 tp->snd_cwnd_used = 0;
1398 tp->snd_cwnd_stamp = tcp_time_stamp;
1399 } else {
1400 /* Network starves. */
1401 if (tp->packets_out > tp->snd_cwnd_used)
1402 tp->snd_cwnd_used = tp->packets_out;
1403
1404 if (sysctl_tcp_slow_start_after_idle &&
1405 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1406 tcp_cwnd_application_limited(sk);
1407 }
1408 }
1409
1410 /* Minshall's variant of the Nagle send check. */
1411 static bool tcp_minshall_check(const struct tcp_sock *tp)
1412 {
1413 return after(tp->snd_sml, tp->snd_una) &&
1414 !after(tp->snd_sml, tp->snd_nxt);
1415 }
1416
1417 /* Update snd_sml if this skb is under mss
1418 * Note that a TSO packet might end with a sub-mss segment
1419 * The test is really :
1420 * if ((skb->len % mss) != 0)
1421 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1422 * But we can avoid doing the divide again given we already have
1423 * skb_pcount = skb->len / mss_now
1424 */
1425 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1426 const struct sk_buff *skb)
1427 {
1428 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1429 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1430 }
1431
1432 /* Return false, if packet can be sent now without violation Nagle's rules:
1433 * 1. It is full sized. (provided by caller in %partial bool)
1434 * 2. Or it contains FIN. (already checked by caller)
1435 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1436 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1437 * With Minshall's modification: all sent small packets are ACKed.
1438 */
1439 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1440 int nonagle)
1441 {
1442 return partial &&
1443 ((nonagle & TCP_NAGLE_CORK) ||
1444 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1445 }
1446 /* Returns the portion of skb which can be sent right away */
1447 static unsigned int tcp_mss_split_point(const struct sock *sk,
1448 const struct sk_buff *skb,
1449 unsigned int mss_now,
1450 unsigned int max_segs,
1451 int nonagle)
1452 {
1453 const struct tcp_sock *tp = tcp_sk(sk);
1454 u32 partial, needed, window, max_len;
1455
1456 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1457 max_len = mss_now * max_segs;
1458
1459 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1460 return max_len;
1461
1462 needed = min(skb->len, window);
1463
1464 if (max_len <= needed)
1465 return max_len;
1466
1467 partial = needed % mss_now;
1468 /* If last segment is not a full MSS, check if Nagle rules allow us
1469 * to include this last segment in this skb.
1470 * Otherwise, we'll split the skb at last MSS boundary
1471 */
1472 if (tcp_nagle_check(partial != 0, tp, nonagle))
1473 return needed - partial;
1474
1475 return needed;
1476 }
1477
1478 /* Can at least one segment of SKB be sent right now, according to the
1479 * congestion window rules? If so, return how many segments are allowed.
1480 */
1481 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1482 const struct sk_buff *skb)
1483 {
1484 u32 in_flight, cwnd;
1485
1486 /* Don't be strict about the congestion window for the final FIN. */
1487 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1488 tcp_skb_pcount(skb) == 1)
1489 return 1;
1490
1491 in_flight = tcp_packets_in_flight(tp);
1492 cwnd = tp->snd_cwnd;
1493 if (in_flight < cwnd)
1494 return (cwnd - in_flight);
1495
1496 return 0;
1497 }
1498
1499 /* Initialize TSO state of a skb.
1500 * This must be invoked the first time we consider transmitting
1501 * SKB onto the wire.
1502 */
1503 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1504 unsigned int mss_now)
1505 {
1506 int tso_segs = tcp_skb_pcount(skb);
1507
1508 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1509 tcp_set_skb_tso_segs(sk, skb, mss_now);
1510 tso_segs = tcp_skb_pcount(skb);
1511 }
1512 return tso_segs;
1513 }
1514
1515
1516 /* Return true if the Nagle test allows this packet to be
1517 * sent now.
1518 */
1519 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1520 unsigned int cur_mss, int nonagle)
1521 {
1522 /* Nagle rule does not apply to frames, which sit in the middle of the
1523 * write_queue (they have no chances to get new data).
1524 *
1525 * This is implemented in the callers, where they modify the 'nonagle'
1526 * argument based upon the location of SKB in the send queue.
1527 */
1528 if (nonagle & TCP_NAGLE_PUSH)
1529 return true;
1530
1531 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1532 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1533 return true;
1534
1535 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1536 return true;
1537
1538 return false;
1539 }
1540
1541 /* Does at least the first segment of SKB fit into the send window? */
1542 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1543 const struct sk_buff *skb,
1544 unsigned int cur_mss)
1545 {
1546 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1547
1548 if (skb->len > cur_mss)
1549 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1550
1551 return !after(end_seq, tcp_wnd_end(tp));
1552 }
1553
1554 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1555 * should be put on the wire right now. If so, it returns the number of
1556 * packets allowed by the congestion window.
1557 */
1558 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1559 unsigned int cur_mss, int nonagle)
1560 {
1561 const struct tcp_sock *tp = tcp_sk(sk);
1562 unsigned int cwnd_quota;
1563
1564 tcp_init_tso_segs(sk, skb, cur_mss);
1565
1566 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1567 return 0;
1568
1569 cwnd_quota = tcp_cwnd_test(tp, skb);
1570 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1571 cwnd_quota = 0;
1572
1573 return cwnd_quota;
1574 }
1575
1576 /* Test if sending is allowed right now. */
1577 bool tcp_may_send_now(struct sock *sk)
1578 {
1579 const struct tcp_sock *tp = tcp_sk(sk);
1580 struct sk_buff *skb = tcp_send_head(sk);
1581
1582 return skb &&
1583 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1584 (tcp_skb_is_last(sk, skb) ?
1585 tp->nonagle : TCP_NAGLE_PUSH));
1586 }
1587
1588 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1589 * which is put after SKB on the list. It is very much like
1590 * tcp_fragment() except that it may make several kinds of assumptions
1591 * in order to speed up the splitting operation. In particular, we
1592 * know that all the data is in scatter-gather pages, and that the
1593 * packet has never been sent out before (and thus is not cloned).
1594 */
1595 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1596 unsigned int mss_now, gfp_t gfp)
1597 {
1598 struct sk_buff *buff;
1599 int nlen = skb->len - len;
1600 u8 flags;
1601
1602 /* All of a TSO frame must be composed of paged data. */
1603 if (skb->len != skb->data_len)
1604 return tcp_fragment(sk, skb, len, mss_now);
1605
1606 buff = sk_stream_alloc_skb(sk, 0, gfp);
1607 if (unlikely(buff == NULL))
1608 return -ENOMEM;
1609
1610 sk->sk_wmem_queued += buff->truesize;
1611 sk_mem_charge(sk, buff->truesize);
1612 buff->truesize += nlen;
1613 skb->truesize -= nlen;
1614
1615 /* Correct the sequence numbers. */
1616 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1617 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1618 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1619
1620 /* PSH and FIN should only be set in the second packet. */
1621 flags = TCP_SKB_CB(skb)->tcp_flags;
1622 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1623 TCP_SKB_CB(buff)->tcp_flags = flags;
1624
1625 /* This packet was never sent out yet, so no SACK bits. */
1626 TCP_SKB_CB(buff)->sacked = 0;
1627
1628 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1629 skb_split(skb, buff, len);
1630
1631 /* Fix up tso_factor for both original and new SKB. */
1632 tcp_set_skb_tso_segs(sk, skb, mss_now);
1633 tcp_set_skb_tso_segs(sk, buff, mss_now);
1634
1635 /* Link BUFF into the send queue. */
1636 skb_header_release(buff);
1637 tcp_insert_write_queue_after(skb, buff, sk);
1638
1639 return 0;
1640 }
1641
1642 /* Try to defer sending, if possible, in order to minimize the amount
1643 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1644 *
1645 * This algorithm is from John Heffner.
1646 */
1647 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1648 {
1649 struct tcp_sock *tp = tcp_sk(sk);
1650 const struct inet_connection_sock *icsk = inet_csk(sk);
1651 u32 send_win, cong_win, limit, in_flight;
1652 int win_divisor;
1653
1654 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1655 goto send_now;
1656
1657 if (icsk->icsk_ca_state != TCP_CA_Open)
1658 goto send_now;
1659
1660 /* Defer for less than two clock ticks. */
1661 if (tp->tso_deferred &&
1662 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1663 goto send_now;
1664
1665 in_flight = tcp_packets_in_flight(tp);
1666
1667 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1668
1669 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1670
1671 /* From in_flight test above, we know that cwnd > in_flight. */
1672 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1673
1674 limit = min(send_win, cong_win);
1675
1676 /* If a full-sized TSO skb can be sent, do it. */
1677 if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1678 tp->xmit_size_goal_segs * tp->mss_cache))
1679 goto send_now;
1680
1681 /* Middle in queue won't get any more data, full sendable already? */
1682 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1683 goto send_now;
1684
1685 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1686 if (win_divisor) {
1687 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1688
1689 /* If at least some fraction of a window is available,
1690 * just use it.
1691 */
1692 chunk /= win_divisor;
1693 if (limit >= chunk)
1694 goto send_now;
1695 } else {
1696 /* Different approach, try not to defer past a single
1697 * ACK. Receiver should ACK every other full sized
1698 * frame, so if we have space for more than 3 frames
1699 * then send now.
1700 */
1701 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1702 goto send_now;
1703 }
1704
1705 /* Ok, it looks like it is advisable to defer.
1706 * Do not rearm the timer if already set to not break TCP ACK clocking.
1707 */
1708 if (!tp->tso_deferred)
1709 tp->tso_deferred = 1 | (jiffies << 1);
1710
1711 return true;
1712
1713 send_now:
1714 tp->tso_deferred = 0;
1715 return false;
1716 }
1717
1718 /* Create a new MTU probe if we are ready.
1719 * MTU probe is regularly attempting to increase the path MTU by
1720 * deliberately sending larger packets. This discovers routing
1721 * changes resulting in larger path MTUs.
1722 *
1723 * Returns 0 if we should wait to probe (no cwnd available),
1724 * 1 if a probe was sent,
1725 * -1 otherwise
1726 */
1727 static int tcp_mtu_probe(struct sock *sk)
1728 {
1729 struct tcp_sock *tp = tcp_sk(sk);
1730 struct inet_connection_sock *icsk = inet_csk(sk);
1731 struct sk_buff *skb, *nskb, *next;
1732 int len;
1733 int probe_size;
1734 int size_needed;
1735 int copy;
1736 int mss_now;
1737
1738 /* Not currently probing/verifying,
1739 * not in recovery,
1740 * have enough cwnd, and
1741 * not SACKing (the variable headers throw things off) */
1742 if (!icsk->icsk_mtup.enabled ||
1743 icsk->icsk_mtup.probe_size ||
1744 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1745 tp->snd_cwnd < 11 ||
1746 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1747 return -1;
1748
1749 /* Very simple search strategy: just double the MSS. */
1750 mss_now = tcp_current_mss(sk);
1751 probe_size = 2 * tp->mss_cache;
1752 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1753 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1754 /* TODO: set timer for probe_converge_event */
1755 return -1;
1756 }
1757
1758 /* Have enough data in the send queue to probe? */
1759 if (tp->write_seq - tp->snd_nxt < size_needed)
1760 return -1;
1761
1762 if (tp->snd_wnd < size_needed)
1763 return -1;
1764 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1765 return 0;
1766
1767 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1768 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1769 if (!tcp_packets_in_flight(tp))
1770 return -1;
1771 else
1772 return 0;
1773 }
1774
1775 /* We're allowed to probe. Build it now. */
1776 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1777 return -1;
1778 sk->sk_wmem_queued += nskb->truesize;
1779 sk_mem_charge(sk, nskb->truesize);
1780
1781 skb = tcp_send_head(sk);
1782
1783 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1784 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1785 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1786 TCP_SKB_CB(nskb)->sacked = 0;
1787 nskb->csum = 0;
1788 nskb->ip_summed = skb->ip_summed;
1789
1790 tcp_insert_write_queue_before(nskb, skb, sk);
1791
1792 len = 0;
1793 tcp_for_write_queue_from_safe(skb, next, sk) {
1794 copy = min_t(int, skb->len, probe_size - len);
1795 if (nskb->ip_summed)
1796 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1797 else
1798 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1799 skb_put(nskb, copy),
1800 copy, nskb->csum);
1801
1802 if (skb->len <= copy) {
1803 /* We've eaten all the data from this skb.
1804 * Throw it away. */
1805 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1806 tcp_unlink_write_queue(skb, sk);
1807 sk_wmem_free_skb(sk, skb);
1808 } else {
1809 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1810 ~(TCPHDR_FIN|TCPHDR_PSH);
1811 if (!skb_shinfo(skb)->nr_frags) {
1812 skb_pull(skb, copy);
1813 if (skb->ip_summed != CHECKSUM_PARTIAL)
1814 skb->csum = csum_partial(skb->data,
1815 skb->len, 0);
1816 } else {
1817 __pskb_trim_head(skb, copy);
1818 tcp_set_skb_tso_segs(sk, skb, mss_now);
1819 }
1820 TCP_SKB_CB(skb)->seq += copy;
1821 }
1822
1823 len += copy;
1824
1825 if (len >= probe_size)
1826 break;
1827 }
1828 tcp_init_tso_segs(sk, nskb, nskb->len);
1829
1830 /* We're ready to send. If this fails, the probe will
1831 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1832 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1833 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1834 /* Decrement cwnd here because we are sending
1835 * effectively two packets. */
1836 tp->snd_cwnd--;
1837 tcp_event_new_data_sent(sk, nskb);
1838
1839 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1840 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1841 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1842
1843 return 1;
1844 }
1845
1846 return -1;
1847 }
1848
1849 /* This routine writes packets to the network. It advances the
1850 * send_head. This happens as incoming acks open up the remote
1851 * window for us.
1852 *
1853 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1854 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1855 * account rare use of URG, this is not a big flaw.
1856 *
1857 * Send at most one packet when push_one > 0. Temporarily ignore
1858 * cwnd limit to force at most one packet out when push_one == 2.
1859
1860 * Returns true, if no segments are in flight and we have queued segments,
1861 * but cannot send anything now because of SWS or another problem.
1862 */
1863 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1864 int push_one, gfp_t gfp)
1865 {
1866 struct tcp_sock *tp = tcp_sk(sk);
1867 struct sk_buff *skb;
1868 unsigned int tso_segs, sent_pkts;
1869 int cwnd_quota;
1870 int result;
1871
1872 sent_pkts = 0;
1873
1874 if (!push_one) {
1875 /* Do MTU probing. */
1876 result = tcp_mtu_probe(sk);
1877 if (!result) {
1878 return false;
1879 } else if (result > 0) {
1880 sent_pkts = 1;
1881 }
1882 }
1883
1884 while ((skb = tcp_send_head(sk))) {
1885 unsigned int limit;
1886
1887 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1888 BUG_ON(!tso_segs);
1889
1890 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1891 goto repair; /* Skip network transmission */
1892
1893 cwnd_quota = tcp_cwnd_test(tp, skb);
1894 if (!cwnd_quota) {
1895 if (push_one == 2)
1896 /* Force out a loss probe pkt. */
1897 cwnd_quota = 1;
1898 else
1899 break;
1900 }
1901
1902 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1903 break;
1904
1905 if (tso_segs == 1) {
1906 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1907 (tcp_skb_is_last(sk, skb) ?
1908 nonagle : TCP_NAGLE_PUSH))))
1909 break;
1910 } else {
1911 if (!push_one && tcp_tso_should_defer(sk, skb))
1912 break;
1913 }
1914
1915 /* TCP Small Queues :
1916 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
1917 * This allows for :
1918 * - better RTT estimation and ACK scheduling
1919 * - faster recovery
1920 * - high rates
1921 * Alas, some drivers / subsystems require a fair amount
1922 * of queued bytes to ensure line rate.
1923 * One example is wifi aggregation (802.11 AMPDU)
1924 */
1925 limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
1926 sk->sk_pacing_rate >> 10);
1927
1928 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
1929 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1930 /* It is possible TX completion already happened
1931 * before we set TSQ_THROTTLED, so we must
1932 * test again the condition.
1933 */
1934 smp_mb__after_atomic();
1935 if (atomic_read(&sk->sk_wmem_alloc) > limit)
1936 break;
1937 }
1938
1939 limit = mss_now;
1940 if (tso_segs > 1 && !tcp_urg_mode(tp))
1941 limit = tcp_mss_split_point(sk, skb, mss_now,
1942 min_t(unsigned int,
1943 cwnd_quota,
1944 sk->sk_gso_max_segs),
1945 nonagle);
1946
1947 if (skb->len > limit &&
1948 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1949 break;
1950
1951 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1952
1953 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1954 break;
1955
1956 repair:
1957 /* Advance the send_head. This one is sent out.
1958 * This call will increment packets_out.
1959 */
1960 tcp_event_new_data_sent(sk, skb);
1961
1962 tcp_minshall_update(tp, mss_now, skb);
1963 sent_pkts += tcp_skb_pcount(skb);
1964
1965 if (push_one)
1966 break;
1967 }
1968
1969 if (likely(sent_pkts)) {
1970 if (tcp_in_cwnd_reduction(sk))
1971 tp->prr_out += sent_pkts;
1972
1973 /* Send one loss probe per tail loss episode. */
1974 if (push_one != 2)
1975 tcp_schedule_loss_probe(sk);
1976 tcp_cwnd_validate(sk);
1977 return false;
1978 }
1979 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
1980 }
1981
1982 bool tcp_schedule_loss_probe(struct sock *sk)
1983 {
1984 struct inet_connection_sock *icsk = inet_csk(sk);
1985 struct tcp_sock *tp = tcp_sk(sk);
1986 u32 timeout, tlp_time_stamp, rto_time_stamp;
1987 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
1988
1989 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
1990 return false;
1991 /* No consecutive loss probes. */
1992 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
1993 tcp_rearm_rto(sk);
1994 return false;
1995 }
1996 /* Don't do any loss probe on a Fast Open connection before 3WHS
1997 * finishes.
1998 */
1999 if (sk->sk_state == TCP_SYN_RECV)
2000 return false;
2001
2002 /* TLP is only scheduled when next timer event is RTO. */
2003 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2004 return false;
2005
2006 /* Schedule a loss probe in 2*RTT for SACK capable connections
2007 * in Open state, that are either limited by cwnd or application.
2008 */
2009 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2010 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2011 return false;
2012
2013 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2014 tcp_send_head(sk))
2015 return false;
2016
2017 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2018 * for delayed ack when there's one outstanding packet.
2019 */
2020 timeout = rtt << 1;
2021 if (tp->packets_out == 1)
2022 timeout = max_t(u32, timeout,
2023 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2024 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2025
2026 /* If RTO is shorter, just schedule TLP in its place. */
2027 tlp_time_stamp = tcp_time_stamp + timeout;
2028 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2029 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2030 s32 delta = rto_time_stamp - tcp_time_stamp;
2031 if (delta > 0)
2032 timeout = delta;
2033 }
2034
2035 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2036 TCP_RTO_MAX);
2037 return true;
2038 }
2039
2040 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2041 * retransmit the last segment.
2042 */
2043 void tcp_send_loss_probe(struct sock *sk)
2044 {
2045 struct tcp_sock *tp = tcp_sk(sk);
2046 struct sk_buff *skb;
2047 int pcount;
2048 int mss = tcp_current_mss(sk);
2049 int err = -1;
2050
2051 if (tcp_send_head(sk) != NULL) {
2052 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2053 goto rearm_timer;
2054 }
2055
2056 /* At most one outstanding TLP retransmission. */
2057 if (tp->tlp_high_seq)
2058 goto rearm_timer;
2059
2060 /* Retransmit last segment. */
2061 skb = tcp_write_queue_tail(sk);
2062 if (WARN_ON(!skb))
2063 goto rearm_timer;
2064
2065 pcount = tcp_skb_pcount(skb);
2066 if (WARN_ON(!pcount))
2067 goto rearm_timer;
2068
2069 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2070 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss)))
2071 goto rearm_timer;
2072 skb = tcp_write_queue_tail(sk);
2073 }
2074
2075 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2076 goto rearm_timer;
2077
2078 /* Probe with zero data doesn't trigger fast recovery. */
2079 if (skb->len > 0)
2080 err = __tcp_retransmit_skb(sk, skb);
2081
2082 /* Record snd_nxt for loss detection. */
2083 if (likely(!err))
2084 tp->tlp_high_seq = tp->snd_nxt;
2085
2086 rearm_timer:
2087 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2088 inet_csk(sk)->icsk_rto,
2089 TCP_RTO_MAX);
2090
2091 if (likely(!err))
2092 NET_INC_STATS_BH(sock_net(sk),
2093 LINUX_MIB_TCPLOSSPROBES);
2094 }
2095
2096 /* Push out any pending frames which were held back due to
2097 * TCP_CORK or attempt at coalescing tiny packets.
2098 * The socket must be locked by the caller.
2099 */
2100 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2101 int nonagle)
2102 {
2103 /* If we are closed, the bytes will have to remain here.
2104 * In time closedown will finish, we empty the write queue and
2105 * all will be happy.
2106 */
2107 if (unlikely(sk->sk_state == TCP_CLOSE))
2108 return;
2109
2110 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2111 sk_gfp_atomic(sk, GFP_ATOMIC)))
2112 tcp_check_probe_timer(sk);
2113 }
2114
2115 /* Send _single_ skb sitting at the send head. This function requires
2116 * true push pending frames to setup probe timer etc.
2117 */
2118 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2119 {
2120 struct sk_buff *skb = tcp_send_head(sk);
2121
2122 BUG_ON(!skb || skb->len < mss_now);
2123
2124 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2125 }
2126
2127 /* This function returns the amount that we can raise the
2128 * usable window based on the following constraints
2129 *
2130 * 1. The window can never be shrunk once it is offered (RFC 793)
2131 * 2. We limit memory per socket
2132 *
2133 * RFC 1122:
2134 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2135 * RECV.NEXT + RCV.WIN fixed until:
2136 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2137 *
2138 * i.e. don't raise the right edge of the window until you can raise
2139 * it at least MSS bytes.
2140 *
2141 * Unfortunately, the recommended algorithm breaks header prediction,
2142 * since header prediction assumes th->window stays fixed.
2143 *
2144 * Strictly speaking, keeping th->window fixed violates the receiver
2145 * side SWS prevention criteria. The problem is that under this rule
2146 * a stream of single byte packets will cause the right side of the
2147 * window to always advance by a single byte.
2148 *
2149 * Of course, if the sender implements sender side SWS prevention
2150 * then this will not be a problem.
2151 *
2152 * BSD seems to make the following compromise:
2153 *
2154 * If the free space is less than the 1/4 of the maximum
2155 * space available and the free space is less than 1/2 mss,
2156 * then set the window to 0.
2157 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2158 * Otherwise, just prevent the window from shrinking
2159 * and from being larger than the largest representable value.
2160 *
2161 * This prevents incremental opening of the window in the regime
2162 * where TCP is limited by the speed of the reader side taking
2163 * data out of the TCP receive queue. It does nothing about
2164 * those cases where the window is constrained on the sender side
2165 * because the pipeline is full.
2166 *
2167 * BSD also seems to "accidentally" limit itself to windows that are a
2168 * multiple of MSS, at least until the free space gets quite small.
2169 * This would appear to be a side effect of the mbuf implementation.
2170 * Combining these two algorithms results in the observed behavior
2171 * of having a fixed window size at almost all times.
2172 *
2173 * Below we obtain similar behavior by forcing the offered window to
2174 * a multiple of the mss when it is feasible to do so.
2175 *
2176 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2177 * Regular options like TIMESTAMP are taken into account.
2178 */
2179 u32 __tcp_select_window(struct sock *sk)
2180 {
2181 struct inet_connection_sock *icsk = inet_csk(sk);
2182 struct tcp_sock *tp = tcp_sk(sk);
2183 /* MSS for the peer's data. Previous versions used mss_clamp
2184 * here. I don't know if the value based on our guesses
2185 * of peer's MSS is better for the performance. It's more correct
2186 * but may be worse for the performance because of rcv_mss
2187 * fluctuations. --SAW 1998/11/1
2188 */
2189 int mss = icsk->icsk_ack.rcv_mss;
2190 int free_space = tcp_space(sk);
2191 int allowed_space = tcp_full_space(sk);
2192 int full_space = min_t(int, tp->window_clamp, allowed_space);
2193 int window;
2194
2195 if (mss > full_space)
2196 mss = full_space;
2197
2198 if (free_space < (full_space >> 1)) {
2199 icsk->icsk_ack.quick = 0;
2200
2201 if (sk_under_memory_pressure(sk))
2202 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2203 4U * tp->advmss);
2204
2205 /* free_space might become our new window, make sure we don't
2206 * increase it due to wscale.
2207 */
2208 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2209
2210 /* if free space is less than mss estimate, or is below 1/16th
2211 * of the maximum allowed, try to move to zero-window, else
2212 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2213 * new incoming data is dropped due to memory limits.
2214 * With large window, mss test triggers way too late in order
2215 * to announce zero window in time before rmem limit kicks in.
2216 */
2217 if (free_space < (allowed_space >> 4) || free_space < mss)
2218 return 0;
2219 }
2220
2221 if (free_space > tp->rcv_ssthresh)
2222 free_space = tp->rcv_ssthresh;
2223
2224 /* Don't do rounding if we are using window scaling, since the
2225 * scaled window will not line up with the MSS boundary anyway.
2226 */
2227 window = tp->rcv_wnd;
2228 if (tp->rx_opt.rcv_wscale) {
2229 window = free_space;
2230
2231 /* Advertise enough space so that it won't get scaled away.
2232 * Import case: prevent zero window announcement if
2233 * 1<<rcv_wscale > mss.
2234 */
2235 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2236 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2237 << tp->rx_opt.rcv_wscale);
2238 } else {
2239 /* Get the largest window that is a nice multiple of mss.
2240 * Window clamp already applied above.
2241 * If our current window offering is within 1 mss of the
2242 * free space we just keep it. This prevents the divide
2243 * and multiply from happening most of the time.
2244 * We also don't do any window rounding when the free space
2245 * is too small.
2246 */
2247 if (window <= free_space - mss || window > free_space)
2248 window = (free_space / mss) * mss;
2249 else if (mss == full_space &&
2250 free_space > window + (full_space >> 1))
2251 window = free_space;
2252 }
2253
2254 return window;
2255 }
2256
2257 /* Collapses two adjacent SKB's during retransmission. */
2258 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2259 {
2260 struct tcp_sock *tp = tcp_sk(sk);
2261 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2262 int skb_size, next_skb_size;
2263
2264 skb_size = skb->len;
2265 next_skb_size = next_skb->len;
2266
2267 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2268
2269 tcp_highest_sack_combine(sk, next_skb, skb);
2270
2271 tcp_unlink_write_queue(next_skb, sk);
2272
2273 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2274 next_skb_size);
2275
2276 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2277 skb->ip_summed = CHECKSUM_PARTIAL;
2278
2279 if (skb->ip_summed != CHECKSUM_PARTIAL)
2280 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2281
2282 /* Update sequence range on original skb. */
2283 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2284
2285 /* Merge over control information. This moves PSH/FIN etc. over */
2286 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2287
2288 /* All done, get rid of second SKB and account for it so
2289 * packet counting does not break.
2290 */
2291 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2292
2293 /* changed transmit queue under us so clear hints */
2294 tcp_clear_retrans_hints_partial(tp);
2295 if (next_skb == tp->retransmit_skb_hint)
2296 tp->retransmit_skb_hint = skb;
2297
2298 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2299
2300 sk_wmem_free_skb(sk, next_skb);
2301 }
2302
2303 /* Check if coalescing SKBs is legal. */
2304 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2305 {
2306 if (tcp_skb_pcount(skb) > 1)
2307 return false;
2308 /* TODO: SACK collapsing could be used to remove this condition */
2309 if (skb_shinfo(skb)->nr_frags != 0)
2310 return false;
2311 if (skb_cloned(skb))
2312 return false;
2313 if (skb == tcp_send_head(sk))
2314 return false;
2315 /* Some heurestics for collapsing over SACK'd could be invented */
2316 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2317 return false;
2318
2319 return true;
2320 }
2321
2322 /* Collapse packets in the retransmit queue to make to create
2323 * less packets on the wire. This is only done on retransmission.
2324 */
2325 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2326 int space)
2327 {
2328 struct tcp_sock *tp = tcp_sk(sk);
2329 struct sk_buff *skb = to, *tmp;
2330 bool first = true;
2331
2332 if (!sysctl_tcp_retrans_collapse)
2333 return;
2334 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2335 return;
2336
2337 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2338 if (!tcp_can_collapse(sk, skb))
2339 break;
2340
2341 space -= skb->len;
2342
2343 if (first) {
2344 first = false;
2345 continue;
2346 }
2347
2348 if (space < 0)
2349 break;
2350 /* Punt if not enough space exists in the first SKB for
2351 * the data in the second
2352 */
2353 if (skb->len > skb_availroom(to))
2354 break;
2355
2356 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2357 break;
2358
2359 tcp_collapse_retrans(sk, to);
2360 }
2361 }
2362
2363 /* This retransmits one SKB. Policy decisions and retransmit queue
2364 * state updates are done by the caller. Returns non-zero if an
2365 * error occurred which prevented the send.
2366 */
2367 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2368 {
2369 struct tcp_sock *tp = tcp_sk(sk);
2370 struct inet_connection_sock *icsk = inet_csk(sk);
2371 unsigned int cur_mss;
2372 int err;
2373
2374 /* Inconslusive MTU probe */
2375 if (icsk->icsk_mtup.probe_size) {
2376 icsk->icsk_mtup.probe_size = 0;
2377 }
2378
2379 /* Do not sent more than we queued. 1/4 is reserved for possible
2380 * copying overhead: fragmentation, tunneling, mangling etc.
2381 */
2382 if (atomic_read(&sk->sk_wmem_alloc) >
2383 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2384 return -EAGAIN;
2385
2386 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2387 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2388 BUG();
2389 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2390 return -ENOMEM;
2391 }
2392
2393 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2394 return -EHOSTUNREACH; /* Routing failure or similar. */
2395
2396 cur_mss = tcp_current_mss(sk);
2397
2398 /* If receiver has shrunk his window, and skb is out of
2399 * new window, do not retransmit it. The exception is the
2400 * case, when window is shrunk to zero. In this case
2401 * our retransmit serves as a zero window probe.
2402 */
2403 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2404 TCP_SKB_CB(skb)->seq != tp->snd_una)
2405 return -EAGAIN;
2406
2407 if (skb->len > cur_mss) {
2408 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2409 return -ENOMEM; /* We'll try again later. */
2410 } else {
2411 int oldpcount = tcp_skb_pcount(skb);
2412
2413 if (unlikely(oldpcount > 1)) {
2414 if (skb_unclone(skb, GFP_ATOMIC))
2415 return -ENOMEM;
2416 tcp_init_tso_segs(sk, skb, cur_mss);
2417 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2418 }
2419 }
2420
2421 tcp_retrans_try_collapse(sk, skb, cur_mss);
2422
2423 /* Make a copy, if the first transmission SKB clone we made
2424 * is still in somebody's hands, else make a clone.
2425 */
2426 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2427
2428 /* make sure skb->data is aligned on arches that require it
2429 * and check if ack-trimming & collapsing extended the headroom
2430 * beyond what csum_start can cover.
2431 */
2432 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2433 skb_headroom(skb) >= 0xFFFF)) {
2434 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2435 GFP_ATOMIC);
2436 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2437 -ENOBUFS;
2438 } else {
2439 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2440 }
2441
2442 if (likely(!err))
2443 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2444 return err;
2445 }
2446
2447 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2448 {
2449 struct tcp_sock *tp = tcp_sk(sk);
2450 int err = __tcp_retransmit_skb(sk, skb);
2451
2452 if (err == 0) {
2453 /* Update global TCP statistics. */
2454 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2455 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2456 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2457 tp->total_retrans++;
2458
2459 #if FASTRETRANS_DEBUG > 0
2460 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2461 net_dbg_ratelimited("retrans_out leaked\n");
2462 }
2463 #endif
2464 if (!tp->retrans_out)
2465 tp->lost_retrans_low = tp->snd_nxt;
2466 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2467 tp->retrans_out += tcp_skb_pcount(skb);
2468
2469 /* Save stamp of the first retransmit. */
2470 if (!tp->retrans_stamp)
2471 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2472
2473 tp->undo_retrans += tcp_skb_pcount(skb);
2474
2475 /* snd_nxt is stored to detect loss of retransmitted segment,
2476 * see tcp_input.c tcp_sacktag_write_queue().
2477 */
2478 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2479 } else {
2480 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2481 }
2482 return err;
2483 }
2484
2485 /* Check if we forward retransmits are possible in the current
2486 * window/congestion state.
2487 */
2488 static bool tcp_can_forward_retransmit(struct sock *sk)
2489 {
2490 const struct inet_connection_sock *icsk = inet_csk(sk);
2491 const struct tcp_sock *tp = tcp_sk(sk);
2492
2493 /* Forward retransmissions are possible only during Recovery. */
2494 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2495 return false;
2496
2497 /* No forward retransmissions in Reno are possible. */
2498 if (tcp_is_reno(tp))
2499 return false;
2500
2501 /* Yeah, we have to make difficult choice between forward transmission
2502 * and retransmission... Both ways have their merits...
2503 *
2504 * For now we do not retransmit anything, while we have some new
2505 * segments to send. In the other cases, follow rule 3 for
2506 * NextSeg() specified in RFC3517.
2507 */
2508
2509 if (tcp_may_send_now(sk))
2510 return false;
2511
2512 return true;
2513 }
2514
2515 /* This gets called after a retransmit timeout, and the initially
2516 * retransmitted data is acknowledged. It tries to continue
2517 * resending the rest of the retransmit queue, until either
2518 * we've sent it all or the congestion window limit is reached.
2519 * If doing SACK, the first ACK which comes back for a timeout
2520 * based retransmit packet might feed us FACK information again.
2521 * If so, we use it to avoid unnecessarily retransmissions.
2522 */
2523 void tcp_xmit_retransmit_queue(struct sock *sk)
2524 {
2525 const struct inet_connection_sock *icsk = inet_csk(sk);
2526 struct tcp_sock *tp = tcp_sk(sk);
2527 struct sk_buff *skb;
2528 struct sk_buff *hole = NULL;
2529 u32 last_lost;
2530 int mib_idx;
2531 int fwd_rexmitting = 0;
2532
2533 if (!tp->packets_out)
2534 return;
2535
2536 if (!tp->lost_out)
2537 tp->retransmit_high = tp->snd_una;
2538
2539 if (tp->retransmit_skb_hint) {
2540 skb = tp->retransmit_skb_hint;
2541 last_lost = TCP_SKB_CB(skb)->end_seq;
2542 if (after(last_lost, tp->retransmit_high))
2543 last_lost = tp->retransmit_high;
2544 } else {
2545 skb = tcp_write_queue_head(sk);
2546 last_lost = tp->snd_una;
2547 }
2548
2549 tcp_for_write_queue_from(skb, sk) {
2550 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2551
2552 if (skb == tcp_send_head(sk))
2553 break;
2554 /* we could do better than to assign each time */
2555 if (hole == NULL)
2556 tp->retransmit_skb_hint = skb;
2557
2558 /* Assume this retransmit will generate
2559 * only one packet for congestion window
2560 * calculation purposes. This works because
2561 * tcp_retransmit_skb() will chop up the
2562 * packet to be MSS sized and all the
2563 * packet counting works out.
2564 */
2565 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2566 return;
2567
2568 if (fwd_rexmitting) {
2569 begin_fwd:
2570 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2571 break;
2572 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2573
2574 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2575 tp->retransmit_high = last_lost;
2576 if (!tcp_can_forward_retransmit(sk))
2577 break;
2578 /* Backtrack if necessary to non-L'ed skb */
2579 if (hole != NULL) {
2580 skb = hole;
2581 hole = NULL;
2582 }
2583 fwd_rexmitting = 1;
2584 goto begin_fwd;
2585
2586 } else if (!(sacked & TCPCB_LOST)) {
2587 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2588 hole = skb;
2589 continue;
2590
2591 } else {
2592 last_lost = TCP_SKB_CB(skb)->end_seq;
2593 if (icsk->icsk_ca_state != TCP_CA_Loss)
2594 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2595 else
2596 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2597 }
2598
2599 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2600 continue;
2601
2602 if (tcp_retransmit_skb(sk, skb))
2603 return;
2604
2605 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2606
2607 if (tcp_in_cwnd_reduction(sk))
2608 tp->prr_out += tcp_skb_pcount(skb);
2609
2610 if (skb == tcp_write_queue_head(sk))
2611 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2612 inet_csk(sk)->icsk_rto,
2613 TCP_RTO_MAX);
2614 }
2615 }
2616
2617 /* Send a fin. The caller locks the socket for us. This cannot be
2618 * allowed to fail queueing a FIN frame under any circumstances.
2619 */
2620 void tcp_send_fin(struct sock *sk)
2621 {
2622 struct tcp_sock *tp = tcp_sk(sk);
2623 struct sk_buff *skb = tcp_write_queue_tail(sk);
2624 int mss_now;
2625
2626 /* Optimization, tack on the FIN if we have a queue of
2627 * unsent frames. But be careful about outgoing SACKS
2628 * and IP options.
2629 */
2630 mss_now = tcp_current_mss(sk);
2631
2632 if (tcp_send_head(sk) != NULL) {
2633 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2634 TCP_SKB_CB(skb)->end_seq++;
2635 tp->write_seq++;
2636 } else {
2637 /* Socket is locked, keep trying until memory is available. */
2638 for (;;) {
2639 skb = alloc_skb_fclone(MAX_TCP_HEADER,
2640 sk->sk_allocation);
2641 if (skb)
2642 break;
2643 yield();
2644 }
2645
2646 /* Reserve space for headers and prepare control bits. */
2647 skb_reserve(skb, MAX_TCP_HEADER);
2648 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2649 tcp_init_nondata_skb(skb, tp->write_seq,
2650 TCPHDR_ACK | TCPHDR_FIN);
2651 tcp_queue_skb(sk, skb);
2652 }
2653 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2654 }
2655
2656 /* We get here when a process closes a file descriptor (either due to
2657 * an explicit close() or as a byproduct of exit()'ing) and there
2658 * was unread data in the receive queue. This behavior is recommended
2659 * by RFC 2525, section 2.17. -DaveM
2660 */
2661 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2662 {
2663 struct sk_buff *skb;
2664
2665 /* NOTE: No TCP options attached and we never retransmit this. */
2666 skb = alloc_skb(MAX_TCP_HEADER, priority);
2667 if (!skb) {
2668 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2669 return;
2670 }
2671
2672 /* Reserve space for headers and prepare control bits. */
2673 skb_reserve(skb, MAX_TCP_HEADER);
2674 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2675 TCPHDR_ACK | TCPHDR_RST);
2676 /* Send it off. */
2677 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2678 if (tcp_transmit_skb(sk, skb, 0, priority))
2679 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2680
2681 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2682 }
2683
2684 /* Send a crossed SYN-ACK during socket establishment.
2685 * WARNING: This routine must only be called when we have already sent
2686 * a SYN packet that crossed the incoming SYN that caused this routine
2687 * to get called. If this assumption fails then the initial rcv_wnd
2688 * and rcv_wscale values will not be correct.
2689 */
2690 int tcp_send_synack(struct sock *sk)
2691 {
2692 struct sk_buff *skb;
2693
2694 skb = tcp_write_queue_head(sk);
2695 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2696 pr_debug("%s: wrong queue state\n", __func__);
2697 return -EFAULT;
2698 }
2699 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2700 if (skb_cloned(skb)) {
2701 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2702 if (nskb == NULL)
2703 return -ENOMEM;
2704 tcp_unlink_write_queue(skb, sk);
2705 skb_header_release(nskb);
2706 __tcp_add_write_queue_head(sk, nskb);
2707 sk_wmem_free_skb(sk, skb);
2708 sk->sk_wmem_queued += nskb->truesize;
2709 sk_mem_charge(sk, nskb->truesize);
2710 skb = nskb;
2711 }
2712
2713 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2714 TCP_ECN_send_synack(tcp_sk(sk), skb);
2715 }
2716 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2717 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2718 }
2719
2720 /**
2721 * tcp_make_synack - Prepare a SYN-ACK.
2722 * sk: listener socket
2723 * dst: dst entry attached to the SYNACK
2724 * req: request_sock pointer
2725 *
2726 * Allocate one skb and build a SYNACK packet.
2727 * @dst is consumed : Caller should not use it again.
2728 */
2729 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2730 struct request_sock *req,
2731 struct tcp_fastopen_cookie *foc)
2732 {
2733 struct tcp_out_options opts;
2734 struct inet_request_sock *ireq = inet_rsk(req);
2735 struct tcp_sock *tp = tcp_sk(sk);
2736 struct tcphdr *th;
2737 struct sk_buff *skb;
2738 struct tcp_md5sig_key *md5;
2739 int tcp_header_size;
2740 int mss;
2741
2742 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2743 if (unlikely(!skb)) {
2744 dst_release(dst);
2745 return NULL;
2746 }
2747 /* Reserve space for headers. */
2748 skb_reserve(skb, MAX_TCP_HEADER);
2749
2750 skb_dst_set(skb, dst);
2751 security_skb_owned_by(skb, sk);
2752
2753 mss = dst_metric_advmss(dst);
2754 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2755 mss = tp->rx_opt.user_mss;
2756
2757 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2758 __u8 rcv_wscale;
2759 /* Set this up on the first call only */
2760 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2761
2762 /* limit the window selection if the user enforce a smaller rx buffer */
2763 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2764 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2765 req->window_clamp = tcp_full_space(sk);
2766
2767 /* tcp_full_space because it is guaranteed to be the first packet */
2768 tcp_select_initial_window(tcp_full_space(sk),
2769 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2770 &req->rcv_wnd,
2771 &req->window_clamp,
2772 ireq->wscale_ok,
2773 &rcv_wscale,
2774 dst_metric(dst, RTAX_INITRWND));
2775 ireq->rcv_wscale = rcv_wscale;
2776 }
2777
2778 memset(&opts, 0, sizeof(opts));
2779 #ifdef CONFIG_SYN_COOKIES
2780 if (unlikely(req->cookie_ts))
2781 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2782 else
2783 #endif
2784 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2785 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2786 foc) + sizeof(*th);
2787
2788 skb_push(skb, tcp_header_size);
2789 skb_reset_transport_header(skb);
2790
2791 th = tcp_hdr(skb);
2792 memset(th, 0, sizeof(struct tcphdr));
2793 th->syn = 1;
2794 th->ack = 1;
2795 TCP_ECN_make_synack(req, th);
2796 th->source = htons(ireq->ir_num);
2797 th->dest = ireq->ir_rmt_port;
2798 /* Setting of flags are superfluous here for callers (and ECE is
2799 * not even correctly set)
2800 */
2801 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2802 TCPHDR_SYN | TCPHDR_ACK);
2803
2804 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2805 /* XXX data is queued and acked as is. No buffer/window check */
2806 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2807
2808 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2809 th->window = htons(min(req->rcv_wnd, 65535U));
2810 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2811 th->doff = (tcp_header_size >> 2);
2812 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
2813
2814 #ifdef CONFIG_TCP_MD5SIG
2815 /* Okay, we have all we need - do the md5 hash if needed */
2816 if (md5) {
2817 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2818 md5, NULL, req, skb);
2819 }
2820 #endif
2821
2822 return skb;
2823 }
2824 EXPORT_SYMBOL(tcp_make_synack);
2825
2826 /* Do all connect socket setups that can be done AF independent. */
2827 static void tcp_connect_init(struct sock *sk)
2828 {
2829 const struct dst_entry *dst = __sk_dst_get(sk);
2830 struct tcp_sock *tp = tcp_sk(sk);
2831 __u8 rcv_wscale;
2832
2833 /* We'll fix this up when we get a response from the other end.
2834 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2835 */
2836 tp->tcp_header_len = sizeof(struct tcphdr) +
2837 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2838
2839 #ifdef CONFIG_TCP_MD5SIG
2840 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2841 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2842 #endif
2843
2844 /* If user gave his TCP_MAXSEG, record it to clamp */
2845 if (tp->rx_opt.user_mss)
2846 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2847 tp->max_window = 0;
2848 tcp_mtup_init(sk);
2849 tcp_sync_mss(sk, dst_mtu(dst));
2850
2851 if (!tp->window_clamp)
2852 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2853 tp->advmss = dst_metric_advmss(dst);
2854 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2855 tp->advmss = tp->rx_opt.user_mss;
2856
2857 tcp_initialize_rcv_mss(sk);
2858
2859 /* limit the window selection if the user enforce a smaller rx buffer */
2860 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2861 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2862 tp->window_clamp = tcp_full_space(sk);
2863
2864 tcp_select_initial_window(tcp_full_space(sk),
2865 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2866 &tp->rcv_wnd,
2867 &tp->window_clamp,
2868 sysctl_tcp_window_scaling,
2869 &rcv_wscale,
2870 dst_metric(dst, RTAX_INITRWND));
2871
2872 tp->rx_opt.rcv_wscale = rcv_wscale;
2873 tp->rcv_ssthresh = tp->rcv_wnd;
2874
2875 sk->sk_err = 0;
2876 sock_reset_flag(sk, SOCK_DONE);
2877 tp->snd_wnd = 0;
2878 tcp_init_wl(tp, 0);
2879 tp->snd_una = tp->write_seq;
2880 tp->snd_sml = tp->write_seq;
2881 tp->snd_up = tp->write_seq;
2882 tp->snd_nxt = tp->write_seq;
2883
2884 if (likely(!tp->repair))
2885 tp->rcv_nxt = 0;
2886 else
2887 tp->rcv_tstamp = tcp_time_stamp;
2888 tp->rcv_wup = tp->rcv_nxt;
2889 tp->copied_seq = tp->rcv_nxt;
2890
2891 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2892 inet_csk(sk)->icsk_retransmits = 0;
2893 tcp_clear_retrans(tp);
2894 }
2895
2896 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2897 {
2898 struct tcp_sock *tp = tcp_sk(sk);
2899 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2900
2901 tcb->end_seq += skb->len;
2902 skb_header_release(skb);
2903 __tcp_add_write_queue_tail(sk, skb);
2904 sk->sk_wmem_queued += skb->truesize;
2905 sk_mem_charge(sk, skb->truesize);
2906 tp->write_seq = tcb->end_seq;
2907 tp->packets_out += tcp_skb_pcount(skb);
2908 }
2909
2910 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2911 * queue a data-only packet after the regular SYN, such that regular SYNs
2912 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2913 * only the SYN sequence, the data are retransmitted in the first ACK.
2914 * If cookie is not cached or other error occurs, falls back to send a
2915 * regular SYN with Fast Open cookie request option.
2916 */
2917 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2918 {
2919 struct tcp_sock *tp = tcp_sk(sk);
2920 struct tcp_fastopen_request *fo = tp->fastopen_req;
2921 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2922 struct sk_buff *syn_data = NULL, *data;
2923 unsigned long last_syn_loss = 0;
2924
2925 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
2926 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2927 &syn_loss, &last_syn_loss);
2928 /* Recurring FO SYN losses: revert to regular handshake temporarily */
2929 if (syn_loss > 1 &&
2930 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2931 fo->cookie.len = -1;
2932 goto fallback;
2933 }
2934
2935 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2936 fo->cookie.len = -1;
2937 else if (fo->cookie.len <= 0)
2938 goto fallback;
2939
2940 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2941 * user-MSS. Reserve maximum option space for middleboxes that add
2942 * private TCP options. The cost is reduced data space in SYN :(
2943 */
2944 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2945 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2946 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2947 MAX_TCP_OPTION_SPACE;
2948
2949 space = min_t(size_t, space, fo->size);
2950
2951 /* limit to order-0 allocations */
2952 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
2953
2954 syn_data = skb_copy_expand(syn, MAX_TCP_HEADER, space,
2955 sk->sk_allocation);
2956 if (syn_data == NULL)
2957 goto fallback;
2958
2959 for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2960 struct iovec *iov = &fo->data->msg_iov[i];
2961 unsigned char __user *from = iov->iov_base;
2962 int len = iov->iov_len;
2963
2964 if (syn_data->len + len > space)
2965 len = space - syn_data->len;
2966 else if (i + 1 == iovlen)
2967 /* No more data pending in inet_wait_for_connect() */
2968 fo->data = NULL;
2969
2970 if (skb_add_data(syn_data, from, len))
2971 goto fallback;
2972 }
2973
2974 /* Queue a data-only packet after the regular SYN for retransmission */
2975 data = pskb_copy(syn_data, sk->sk_allocation);
2976 if (data == NULL)
2977 goto fallback;
2978 TCP_SKB_CB(data)->seq++;
2979 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2980 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2981 tcp_connect_queue_skb(sk, data);
2982 fo->copied = data->len;
2983
2984 /* syn_data is about to be sent, we need to take current time stamps
2985 * for the packets that are in write queue : SYN packet and DATA
2986 */
2987 skb_mstamp_get(&syn->skb_mstamp);
2988 data->skb_mstamp = syn->skb_mstamp;
2989
2990 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2991 tp->syn_data = (fo->copied > 0);
2992 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
2993 goto done;
2994 }
2995 syn_data = NULL;
2996
2997 fallback:
2998 /* Send a regular SYN with Fast Open cookie request option */
2999 if (fo->cookie.len > 0)
3000 fo->cookie.len = 0;
3001 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3002 if (err)
3003 tp->syn_fastopen = 0;
3004 kfree_skb(syn_data);
3005 done:
3006 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3007 return err;
3008 }
3009
3010 /* Build a SYN and send it off. */
3011 int tcp_connect(struct sock *sk)
3012 {
3013 struct tcp_sock *tp = tcp_sk(sk);
3014 struct sk_buff *buff;
3015 int err;
3016
3017 tcp_connect_init(sk);
3018
3019 if (unlikely(tp->repair)) {
3020 tcp_finish_connect(sk, NULL);
3021 return 0;
3022 }
3023
3024 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
3025 if (unlikely(buff == NULL))
3026 return -ENOBUFS;
3027
3028 /* Reserve space for headers. */
3029 skb_reserve(buff, MAX_TCP_HEADER);
3030
3031 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3032 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
3033 tcp_connect_queue_skb(sk, buff);
3034 TCP_ECN_send_syn(sk, buff);
3035
3036 /* Send off SYN; include data in Fast Open. */
3037 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3038 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3039 if (err == -ECONNREFUSED)
3040 return err;
3041
3042 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3043 * in order to make this packet get counted in tcpOutSegs.
3044 */
3045 tp->snd_nxt = tp->write_seq;
3046 tp->pushed_seq = tp->write_seq;
3047 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3048
3049 /* Timer for repeating the SYN until an answer. */
3050 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3051 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3052 return 0;
3053 }
3054 EXPORT_SYMBOL(tcp_connect);
3055
3056 /* Send out a delayed ack, the caller does the policy checking
3057 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3058 * for details.
3059 */
3060 void tcp_send_delayed_ack(struct sock *sk)
3061 {
3062 struct inet_connection_sock *icsk = inet_csk(sk);
3063 int ato = icsk->icsk_ack.ato;
3064 unsigned long timeout;
3065
3066 if (ato > TCP_DELACK_MIN) {
3067 const struct tcp_sock *tp = tcp_sk(sk);
3068 int max_ato = HZ / 2;
3069
3070 if (icsk->icsk_ack.pingpong ||
3071 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3072 max_ato = TCP_DELACK_MAX;
3073
3074 /* Slow path, intersegment interval is "high". */
3075
3076 /* If some rtt estimate is known, use it to bound delayed ack.
3077 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3078 * directly.
3079 */
3080 if (tp->srtt_us) {
3081 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3082 TCP_DELACK_MIN);
3083
3084 if (rtt < max_ato)
3085 max_ato = rtt;
3086 }
3087
3088 ato = min(ato, max_ato);
3089 }
3090
3091 /* Stay within the limit we were given */
3092 timeout = jiffies + ato;
3093
3094 /* Use new timeout only if there wasn't a older one earlier. */
3095 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3096 /* If delack timer was blocked or is about to expire,
3097 * send ACK now.
3098 */
3099 if (icsk->icsk_ack.blocked ||
3100 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3101 tcp_send_ack(sk);
3102 return;
3103 }
3104
3105 if (!time_before(timeout, icsk->icsk_ack.timeout))
3106 timeout = icsk->icsk_ack.timeout;
3107 }
3108 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3109 icsk->icsk_ack.timeout = timeout;
3110 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3111 }
3112
3113 /* This routine sends an ack and also updates the window. */
3114 void tcp_send_ack(struct sock *sk)
3115 {
3116 struct sk_buff *buff;
3117
3118 /* If we have been reset, we may not send again. */
3119 if (sk->sk_state == TCP_CLOSE)
3120 return;
3121
3122 /* We are not putting this on the write queue, so
3123 * tcp_transmit_skb() will set the ownership to this
3124 * sock.
3125 */
3126 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3127 if (buff == NULL) {
3128 inet_csk_schedule_ack(sk);
3129 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3130 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3131 TCP_DELACK_MAX, TCP_RTO_MAX);
3132 return;
3133 }
3134
3135 /* Reserve space for headers and prepare control bits. */
3136 skb_reserve(buff, MAX_TCP_HEADER);
3137 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3138
3139 /* Send it off, this clears delayed acks for us. */
3140 TCP_SKB_CB(buff)->when = tcp_time_stamp;
3141 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3142 }
3143
3144 /* This routine sends a packet with an out of date sequence
3145 * number. It assumes the other end will try to ack it.
3146 *
3147 * Question: what should we make while urgent mode?
3148 * 4.4BSD forces sending single byte of data. We cannot send
3149 * out of window data, because we have SND.NXT==SND.MAX...
3150 *
3151 * Current solution: to send TWO zero-length segments in urgent mode:
3152 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3153 * out-of-date with SND.UNA-1 to probe window.
3154 */
3155 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3156 {
3157 struct tcp_sock *tp = tcp_sk(sk);
3158 struct sk_buff *skb;
3159
3160 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3161 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3162 if (skb == NULL)
3163 return -1;
3164
3165 /* Reserve space for headers and set control bits. */
3166 skb_reserve(skb, MAX_TCP_HEADER);
3167 /* Use a previous sequence. This should cause the other
3168 * end to send an ack. Don't queue or clone SKB, just
3169 * send it.
3170 */
3171 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3172 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3173 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3174 }
3175
3176 void tcp_send_window_probe(struct sock *sk)
3177 {
3178 if (sk->sk_state == TCP_ESTABLISHED) {
3179 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3180 tcp_xmit_probe_skb(sk, 0);
3181 }
3182 }
3183
3184 /* Initiate keepalive or window probe from timer. */
3185 int tcp_write_wakeup(struct sock *sk)
3186 {
3187 struct tcp_sock *tp = tcp_sk(sk);
3188 struct sk_buff *skb;
3189
3190 if (sk->sk_state == TCP_CLOSE)
3191 return -1;
3192
3193 if ((skb = tcp_send_head(sk)) != NULL &&
3194 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3195 int err;
3196 unsigned int mss = tcp_current_mss(sk);
3197 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3198
3199 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3200 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3201
3202 /* We are probing the opening of a window
3203 * but the window size is != 0
3204 * must have been a result SWS avoidance ( sender )
3205 */
3206 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3207 skb->len > mss) {
3208 seg_size = min(seg_size, mss);
3209 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3210 if (tcp_fragment(sk, skb, seg_size, mss))
3211 return -1;
3212 } else if (!tcp_skb_pcount(skb))
3213 tcp_set_skb_tso_segs(sk, skb, mss);
3214
3215 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3216 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3217 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3218 if (!err)
3219 tcp_event_new_data_sent(sk, skb);
3220 return err;
3221 } else {
3222 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3223 tcp_xmit_probe_skb(sk, 1);
3224 return tcp_xmit_probe_skb(sk, 0);
3225 }
3226 }
3227
3228 /* A window probe timeout has occurred. If window is not closed send
3229 * a partial packet else a zero probe.
3230 */
3231 void tcp_send_probe0(struct sock *sk)
3232 {
3233 struct inet_connection_sock *icsk = inet_csk(sk);
3234 struct tcp_sock *tp = tcp_sk(sk);
3235 int err;
3236
3237 err = tcp_write_wakeup(sk);
3238
3239 if (tp->packets_out || !tcp_send_head(sk)) {
3240 /* Cancel probe timer, if it is not required. */
3241 icsk->icsk_probes_out = 0;
3242 icsk->icsk_backoff = 0;
3243 return;
3244 }
3245
3246 if (err <= 0) {
3247 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3248 icsk->icsk_backoff++;
3249 icsk->icsk_probes_out++;
3250 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3251 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3252 TCP_RTO_MAX);
3253 } else {
3254 /* If packet was not sent due to local congestion,
3255 * do not backoff and do not remember icsk_probes_out.
3256 * Let local senders to fight for local resources.
3257 *
3258 * Use accumulated backoff yet.
3259 */
3260 if (!icsk->icsk_probes_out)
3261 icsk->icsk_probes_out = 1;
3262 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3263 min(icsk->icsk_rto << icsk->icsk_backoff,
3264 TCP_RESOURCE_PROBE_INTERVAL),
3265 TCP_RTO_MAX);
3266 }
3267 }
This page took 0.098537 seconds and 5 git commands to generate.