tcp: use tcp_v4_send_synack on first SYN-ACK
[deliverable/linux.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
70
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 int push_one, gfp_t gfp);
73
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 struct inet_connection_sock *icsk = inet_csk(sk);
78 struct tcp_sock *tp = tcp_sk(sk);
79 unsigned int prior_packets = tp->packets_out;
80
81 tcp_advance_send_head(sk, skb);
82 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
83
84 tp->packets_out += tcp_skb_pcount(skb);
85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
86 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
87 tcp_rearm_rto(sk);
88 }
89
90 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
91 tcp_skb_pcount(skb));
92 }
93
94 /* SND.NXT, if window was not shrunk.
95 * If window has been shrunk, what should we make? It is not clear at all.
96 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
97 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
98 * invalid. OK, let's make this for now:
99 */
100 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
101 {
102 const struct tcp_sock *tp = tcp_sk(sk);
103
104 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
105 return tp->snd_nxt;
106 else
107 return tcp_wnd_end(tp);
108 }
109
110 /* Calculate mss to advertise in SYN segment.
111 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
112 *
113 * 1. It is independent of path mtu.
114 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
115 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
116 * attached devices, because some buggy hosts are confused by
117 * large MSS.
118 * 4. We do not make 3, we advertise MSS, calculated from first
119 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
120 * This may be overridden via information stored in routing table.
121 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
122 * probably even Jumbo".
123 */
124 static __u16 tcp_advertise_mss(struct sock *sk)
125 {
126 struct tcp_sock *tp = tcp_sk(sk);
127 const struct dst_entry *dst = __sk_dst_get(sk);
128 int mss = tp->advmss;
129
130 if (dst) {
131 unsigned int metric = dst_metric_advmss(dst);
132
133 if (metric < mss) {
134 mss = metric;
135 tp->advmss = mss;
136 }
137 }
138
139 return (__u16)mss;
140 }
141
142 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
143 * This is the first part of cwnd validation mechanism. */
144 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
145 {
146 struct tcp_sock *tp = tcp_sk(sk);
147 s32 delta = tcp_time_stamp - tp->lsndtime;
148 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
149 u32 cwnd = tp->snd_cwnd;
150
151 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
152
153 tp->snd_ssthresh = tcp_current_ssthresh(sk);
154 restart_cwnd = min(restart_cwnd, cwnd);
155
156 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
157 cwnd >>= 1;
158 tp->snd_cwnd = max(cwnd, restart_cwnd);
159 tp->snd_cwnd_stamp = tcp_time_stamp;
160 tp->snd_cwnd_used = 0;
161 }
162
163 /* Congestion state accounting after a packet has been sent. */
164 static void tcp_event_data_sent(struct tcp_sock *tp,
165 struct sock *sk)
166 {
167 struct inet_connection_sock *icsk = inet_csk(sk);
168 const u32 now = tcp_time_stamp;
169 const struct dst_entry *dst = __sk_dst_get(sk);
170
171 if (sysctl_tcp_slow_start_after_idle &&
172 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
173 tcp_cwnd_restart(sk, __sk_dst_get(sk));
174
175 tp->lsndtime = now;
176
177 /* If it is a reply for ato after last received
178 * packet, enter pingpong mode.
179 */
180 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
181 (!dst || !dst_metric(dst, RTAX_QUICKACK)))
182 icsk->icsk_ack.pingpong = 1;
183 }
184
185 /* Account for an ACK we sent. */
186 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
187 {
188 tcp_dec_quickack_mode(sk, pkts);
189 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
190 }
191
192
193 u32 tcp_default_init_rwnd(u32 mss)
194 {
195 /* Initial receive window should be twice of TCP_INIT_CWND to
196 * enable proper sending of new unsent data during fast recovery
197 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
198 * limit when mss is larger than 1460.
199 */
200 u32 init_rwnd = TCP_INIT_CWND * 2;
201
202 if (mss > 1460)
203 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
204 return init_rwnd;
205 }
206
207 /* Determine a window scaling and initial window to offer.
208 * Based on the assumption that the given amount of space
209 * will be offered. Store the results in the tp structure.
210 * NOTE: for smooth operation initial space offering should
211 * be a multiple of mss if possible. We assume here that mss >= 1.
212 * This MUST be enforced by all callers.
213 */
214 void tcp_select_initial_window(int __space, __u32 mss,
215 __u32 *rcv_wnd, __u32 *window_clamp,
216 int wscale_ok, __u8 *rcv_wscale,
217 __u32 init_rcv_wnd)
218 {
219 unsigned int space = (__space < 0 ? 0 : __space);
220
221 /* If no clamp set the clamp to the max possible scaled window */
222 if (*window_clamp == 0)
223 (*window_clamp) = (65535 << 14);
224 space = min(*window_clamp, space);
225
226 /* Quantize space offering to a multiple of mss if possible. */
227 if (space > mss)
228 space = (space / mss) * mss;
229
230 /* NOTE: offering an initial window larger than 32767
231 * will break some buggy TCP stacks. If the admin tells us
232 * it is likely we could be speaking with such a buggy stack
233 * we will truncate our initial window offering to 32K-1
234 * unless the remote has sent us a window scaling option,
235 * which we interpret as a sign the remote TCP is not
236 * misinterpreting the window field as a signed quantity.
237 */
238 if (sysctl_tcp_workaround_signed_windows)
239 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
240 else
241 (*rcv_wnd) = space;
242
243 (*rcv_wscale) = 0;
244 if (wscale_ok) {
245 /* Set window scaling on max possible window
246 * See RFC1323 for an explanation of the limit to 14
247 */
248 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
249 space = min_t(u32, space, *window_clamp);
250 while (space > 65535 && (*rcv_wscale) < 14) {
251 space >>= 1;
252 (*rcv_wscale)++;
253 }
254 }
255
256 if (mss > (1 << *rcv_wscale)) {
257 if (!init_rcv_wnd) /* Use default unless specified otherwise */
258 init_rcv_wnd = tcp_default_init_rwnd(mss);
259 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
260 }
261
262 /* Set the clamp no higher than max representable value */
263 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
264 }
265 EXPORT_SYMBOL(tcp_select_initial_window);
266
267 /* Chose a new window to advertise, update state in tcp_sock for the
268 * socket, and return result with RFC1323 scaling applied. The return
269 * value can be stuffed directly into th->window for an outgoing
270 * frame.
271 */
272 static u16 tcp_select_window(struct sock *sk)
273 {
274 struct tcp_sock *tp = tcp_sk(sk);
275 u32 old_win = tp->rcv_wnd;
276 u32 cur_win = tcp_receive_window(tp);
277 u32 new_win = __tcp_select_window(sk);
278
279 /* Never shrink the offered window */
280 if (new_win < cur_win) {
281 /* Danger Will Robinson!
282 * Don't update rcv_wup/rcv_wnd here or else
283 * we will not be able to advertise a zero
284 * window in time. --DaveM
285 *
286 * Relax Will Robinson.
287 */
288 if (new_win == 0)
289 NET_INC_STATS(sock_net(sk),
290 LINUX_MIB_TCPWANTZEROWINDOWADV);
291 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
292 }
293 tp->rcv_wnd = new_win;
294 tp->rcv_wup = tp->rcv_nxt;
295
296 /* Make sure we do not exceed the maximum possible
297 * scaled window.
298 */
299 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
300 new_win = min(new_win, MAX_TCP_WINDOW);
301 else
302 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
303
304 /* RFC1323 scaling applied */
305 new_win >>= tp->rx_opt.rcv_wscale;
306
307 /* If we advertise zero window, disable fast path. */
308 if (new_win == 0) {
309 tp->pred_flags = 0;
310 if (old_win)
311 NET_INC_STATS(sock_net(sk),
312 LINUX_MIB_TCPTOZEROWINDOWADV);
313 } else if (old_win == 0) {
314 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
315 }
316
317 return new_win;
318 }
319
320 /* Packet ECN state for a SYN-ACK */
321 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
322 {
323 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
324 if (!(tp->ecn_flags & TCP_ECN_OK))
325 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
326 }
327
328 /* Packet ECN state for a SYN. */
329 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
330 {
331 struct tcp_sock *tp = tcp_sk(sk);
332
333 tp->ecn_flags = 0;
334 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
335 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
336 tp->ecn_flags = TCP_ECN_OK;
337 }
338 }
339
340 static __inline__ void
341 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
342 {
343 if (inet_rsk(req)->ecn_ok)
344 th->ece = 1;
345 }
346
347 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
348 * be sent.
349 */
350 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
351 int tcp_header_len)
352 {
353 struct tcp_sock *tp = tcp_sk(sk);
354
355 if (tp->ecn_flags & TCP_ECN_OK) {
356 /* Not-retransmitted data segment: set ECT and inject CWR. */
357 if (skb->len != tcp_header_len &&
358 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
359 INET_ECN_xmit(sk);
360 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
361 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
362 tcp_hdr(skb)->cwr = 1;
363 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
364 }
365 } else {
366 /* ACK or retransmitted segment: clear ECT|CE */
367 INET_ECN_dontxmit(sk);
368 }
369 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
370 tcp_hdr(skb)->ece = 1;
371 }
372 }
373
374 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
375 * auto increment end seqno.
376 */
377 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
378 {
379 struct skb_shared_info *shinfo = skb_shinfo(skb);
380
381 skb->ip_summed = CHECKSUM_PARTIAL;
382 skb->csum = 0;
383
384 TCP_SKB_CB(skb)->tcp_flags = flags;
385 TCP_SKB_CB(skb)->sacked = 0;
386
387 shinfo->gso_segs = 1;
388 shinfo->gso_size = 0;
389 shinfo->gso_type = 0;
390
391 TCP_SKB_CB(skb)->seq = seq;
392 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
393 seq++;
394 TCP_SKB_CB(skb)->end_seq = seq;
395 }
396
397 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
398 {
399 return tp->snd_una != tp->snd_up;
400 }
401
402 #define OPTION_SACK_ADVERTISE (1 << 0)
403 #define OPTION_TS (1 << 1)
404 #define OPTION_MD5 (1 << 2)
405 #define OPTION_WSCALE (1 << 3)
406 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
407
408 struct tcp_out_options {
409 u16 options; /* bit field of OPTION_* */
410 u16 mss; /* 0 to disable */
411 u8 ws; /* window scale, 0 to disable */
412 u8 num_sack_blocks; /* number of SACK blocks to include */
413 u8 hash_size; /* bytes in hash_location */
414 __u8 *hash_location; /* temporary pointer, overloaded */
415 __u32 tsval, tsecr; /* need to include OPTION_TS */
416 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
417 };
418
419 /* Write previously computed TCP options to the packet.
420 *
421 * Beware: Something in the Internet is very sensitive to the ordering of
422 * TCP options, we learned this through the hard way, so be careful here.
423 * Luckily we can at least blame others for their non-compliance but from
424 * inter-operability perspective it seems that we're somewhat stuck with
425 * the ordering which we have been using if we want to keep working with
426 * those broken things (not that it currently hurts anybody as there isn't
427 * particular reason why the ordering would need to be changed).
428 *
429 * At least SACK_PERM as the first option is known to lead to a disaster
430 * (but it may well be that other scenarios fail similarly).
431 */
432 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
433 struct tcp_out_options *opts)
434 {
435 u16 options = opts->options; /* mungable copy */
436
437 if (unlikely(OPTION_MD5 & options)) {
438 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
439 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
440 /* overload cookie hash location */
441 opts->hash_location = (__u8 *)ptr;
442 ptr += 4;
443 }
444
445 if (unlikely(opts->mss)) {
446 *ptr++ = htonl((TCPOPT_MSS << 24) |
447 (TCPOLEN_MSS << 16) |
448 opts->mss);
449 }
450
451 if (likely(OPTION_TS & options)) {
452 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
453 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
454 (TCPOLEN_SACK_PERM << 16) |
455 (TCPOPT_TIMESTAMP << 8) |
456 TCPOLEN_TIMESTAMP);
457 options &= ~OPTION_SACK_ADVERTISE;
458 } else {
459 *ptr++ = htonl((TCPOPT_NOP << 24) |
460 (TCPOPT_NOP << 16) |
461 (TCPOPT_TIMESTAMP << 8) |
462 TCPOLEN_TIMESTAMP);
463 }
464 *ptr++ = htonl(opts->tsval);
465 *ptr++ = htonl(opts->tsecr);
466 }
467
468 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
469 *ptr++ = htonl((TCPOPT_NOP << 24) |
470 (TCPOPT_NOP << 16) |
471 (TCPOPT_SACK_PERM << 8) |
472 TCPOLEN_SACK_PERM);
473 }
474
475 if (unlikely(OPTION_WSCALE & options)) {
476 *ptr++ = htonl((TCPOPT_NOP << 24) |
477 (TCPOPT_WINDOW << 16) |
478 (TCPOLEN_WINDOW << 8) |
479 opts->ws);
480 }
481
482 if (unlikely(opts->num_sack_blocks)) {
483 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
484 tp->duplicate_sack : tp->selective_acks;
485 int this_sack;
486
487 *ptr++ = htonl((TCPOPT_NOP << 24) |
488 (TCPOPT_NOP << 16) |
489 (TCPOPT_SACK << 8) |
490 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
491 TCPOLEN_SACK_PERBLOCK)));
492
493 for (this_sack = 0; this_sack < opts->num_sack_blocks;
494 ++this_sack) {
495 *ptr++ = htonl(sp[this_sack].start_seq);
496 *ptr++ = htonl(sp[this_sack].end_seq);
497 }
498
499 tp->rx_opt.dsack = 0;
500 }
501
502 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
503 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
504
505 *ptr++ = htonl((TCPOPT_EXP << 24) |
506 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
507 TCPOPT_FASTOPEN_MAGIC);
508
509 memcpy(ptr, foc->val, foc->len);
510 if ((foc->len & 3) == 2) {
511 u8 *align = ((u8 *)ptr) + foc->len;
512 align[0] = align[1] = TCPOPT_NOP;
513 }
514 ptr += (foc->len + 3) >> 2;
515 }
516 }
517
518 /* Compute TCP options for SYN packets. This is not the final
519 * network wire format yet.
520 */
521 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
522 struct tcp_out_options *opts,
523 struct tcp_md5sig_key **md5)
524 {
525 struct tcp_sock *tp = tcp_sk(sk);
526 unsigned int remaining = MAX_TCP_OPTION_SPACE;
527 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
528
529 #ifdef CONFIG_TCP_MD5SIG
530 *md5 = tp->af_specific->md5_lookup(sk, sk);
531 if (*md5) {
532 opts->options |= OPTION_MD5;
533 remaining -= TCPOLEN_MD5SIG_ALIGNED;
534 }
535 #else
536 *md5 = NULL;
537 #endif
538
539 /* We always get an MSS option. The option bytes which will be seen in
540 * normal data packets should timestamps be used, must be in the MSS
541 * advertised. But we subtract them from tp->mss_cache so that
542 * calculations in tcp_sendmsg are simpler etc. So account for this
543 * fact here if necessary. If we don't do this correctly, as a
544 * receiver we won't recognize data packets as being full sized when we
545 * should, and thus we won't abide by the delayed ACK rules correctly.
546 * SACKs don't matter, we never delay an ACK when we have any of those
547 * going out. */
548 opts->mss = tcp_advertise_mss(sk);
549 remaining -= TCPOLEN_MSS_ALIGNED;
550
551 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
552 opts->options |= OPTION_TS;
553 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
554 opts->tsecr = tp->rx_opt.ts_recent;
555 remaining -= TCPOLEN_TSTAMP_ALIGNED;
556 }
557 if (likely(sysctl_tcp_window_scaling)) {
558 opts->ws = tp->rx_opt.rcv_wscale;
559 opts->options |= OPTION_WSCALE;
560 remaining -= TCPOLEN_WSCALE_ALIGNED;
561 }
562 if (likely(sysctl_tcp_sack)) {
563 opts->options |= OPTION_SACK_ADVERTISE;
564 if (unlikely(!(OPTION_TS & opts->options)))
565 remaining -= TCPOLEN_SACKPERM_ALIGNED;
566 }
567
568 if (fastopen && fastopen->cookie.len >= 0) {
569 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
570 need = (need + 3) & ~3U; /* Align to 32 bits */
571 if (remaining >= need) {
572 opts->options |= OPTION_FAST_OPEN_COOKIE;
573 opts->fastopen_cookie = &fastopen->cookie;
574 remaining -= need;
575 tp->syn_fastopen = 1;
576 }
577 }
578
579 return MAX_TCP_OPTION_SPACE - remaining;
580 }
581
582 /* Set up TCP options for SYN-ACKs. */
583 static unsigned int tcp_synack_options(struct sock *sk,
584 struct request_sock *req,
585 unsigned int mss, struct sk_buff *skb,
586 struct tcp_out_options *opts,
587 struct tcp_md5sig_key **md5,
588 struct tcp_fastopen_cookie *foc)
589 {
590 struct inet_request_sock *ireq = inet_rsk(req);
591 unsigned int remaining = MAX_TCP_OPTION_SPACE;
592
593 #ifdef CONFIG_TCP_MD5SIG
594 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
595 if (*md5) {
596 opts->options |= OPTION_MD5;
597 remaining -= TCPOLEN_MD5SIG_ALIGNED;
598
599 /* We can't fit any SACK blocks in a packet with MD5 + TS
600 * options. There was discussion about disabling SACK
601 * rather than TS in order to fit in better with old,
602 * buggy kernels, but that was deemed to be unnecessary.
603 */
604 ireq->tstamp_ok &= !ireq->sack_ok;
605 }
606 #else
607 *md5 = NULL;
608 #endif
609
610 /* We always send an MSS option. */
611 opts->mss = mss;
612 remaining -= TCPOLEN_MSS_ALIGNED;
613
614 if (likely(ireq->wscale_ok)) {
615 opts->ws = ireq->rcv_wscale;
616 opts->options |= OPTION_WSCALE;
617 remaining -= TCPOLEN_WSCALE_ALIGNED;
618 }
619 if (likely(ireq->tstamp_ok)) {
620 opts->options |= OPTION_TS;
621 opts->tsval = TCP_SKB_CB(skb)->when;
622 opts->tsecr = req->ts_recent;
623 remaining -= TCPOLEN_TSTAMP_ALIGNED;
624 }
625 if (likely(ireq->sack_ok)) {
626 opts->options |= OPTION_SACK_ADVERTISE;
627 if (unlikely(!ireq->tstamp_ok))
628 remaining -= TCPOLEN_SACKPERM_ALIGNED;
629 }
630 if (foc != NULL && foc->len >= 0) {
631 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
632 need = (need + 3) & ~3U; /* Align to 32 bits */
633 if (remaining >= need) {
634 opts->options |= OPTION_FAST_OPEN_COOKIE;
635 opts->fastopen_cookie = foc;
636 remaining -= need;
637 }
638 }
639
640 return MAX_TCP_OPTION_SPACE - remaining;
641 }
642
643 /* Compute TCP options for ESTABLISHED sockets. This is not the
644 * final wire format yet.
645 */
646 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
647 struct tcp_out_options *opts,
648 struct tcp_md5sig_key **md5)
649 {
650 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
651 struct tcp_sock *tp = tcp_sk(sk);
652 unsigned int size = 0;
653 unsigned int eff_sacks;
654
655 opts->options = 0;
656
657 #ifdef CONFIG_TCP_MD5SIG
658 *md5 = tp->af_specific->md5_lookup(sk, sk);
659 if (unlikely(*md5)) {
660 opts->options |= OPTION_MD5;
661 size += TCPOLEN_MD5SIG_ALIGNED;
662 }
663 #else
664 *md5 = NULL;
665 #endif
666
667 if (likely(tp->rx_opt.tstamp_ok)) {
668 opts->options |= OPTION_TS;
669 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
670 opts->tsecr = tp->rx_opt.ts_recent;
671 size += TCPOLEN_TSTAMP_ALIGNED;
672 }
673
674 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
675 if (unlikely(eff_sacks)) {
676 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
677 opts->num_sack_blocks =
678 min_t(unsigned int, eff_sacks,
679 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
680 TCPOLEN_SACK_PERBLOCK);
681 size += TCPOLEN_SACK_BASE_ALIGNED +
682 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
683 }
684
685 return size;
686 }
687
688
689 /* TCP SMALL QUEUES (TSQ)
690 *
691 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
692 * to reduce RTT and bufferbloat.
693 * We do this using a special skb destructor (tcp_wfree).
694 *
695 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
696 * needs to be reallocated in a driver.
697 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
698 *
699 * Since transmit from skb destructor is forbidden, we use a tasklet
700 * to process all sockets that eventually need to send more skbs.
701 * We use one tasklet per cpu, with its own queue of sockets.
702 */
703 struct tsq_tasklet {
704 struct tasklet_struct tasklet;
705 struct list_head head; /* queue of tcp sockets */
706 };
707 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
708
709 static void tcp_tsq_handler(struct sock *sk)
710 {
711 if ((1 << sk->sk_state) &
712 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
713 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
714 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
715 0, GFP_ATOMIC);
716 }
717 /*
718 * One tasklet per cpu tries to send more skbs.
719 * We run in tasklet context but need to disable irqs when
720 * transferring tsq->head because tcp_wfree() might
721 * interrupt us (non NAPI drivers)
722 */
723 static void tcp_tasklet_func(unsigned long data)
724 {
725 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
726 LIST_HEAD(list);
727 unsigned long flags;
728 struct list_head *q, *n;
729 struct tcp_sock *tp;
730 struct sock *sk;
731
732 local_irq_save(flags);
733 list_splice_init(&tsq->head, &list);
734 local_irq_restore(flags);
735
736 list_for_each_safe(q, n, &list) {
737 tp = list_entry(q, struct tcp_sock, tsq_node);
738 list_del(&tp->tsq_node);
739
740 sk = (struct sock *)tp;
741 bh_lock_sock(sk);
742
743 if (!sock_owned_by_user(sk)) {
744 tcp_tsq_handler(sk);
745 } else {
746 /* defer the work to tcp_release_cb() */
747 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
748 }
749 bh_unlock_sock(sk);
750
751 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
752 sk_free(sk);
753 }
754 }
755
756 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
757 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
758 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
759 (1UL << TCP_MTU_REDUCED_DEFERRED))
760 /**
761 * tcp_release_cb - tcp release_sock() callback
762 * @sk: socket
763 *
764 * called from release_sock() to perform protocol dependent
765 * actions before socket release.
766 */
767 void tcp_release_cb(struct sock *sk)
768 {
769 struct tcp_sock *tp = tcp_sk(sk);
770 unsigned long flags, nflags;
771
772 /* perform an atomic operation only if at least one flag is set */
773 do {
774 flags = tp->tsq_flags;
775 if (!(flags & TCP_DEFERRED_ALL))
776 return;
777 nflags = flags & ~TCP_DEFERRED_ALL;
778 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
779
780 if (flags & (1UL << TCP_TSQ_DEFERRED))
781 tcp_tsq_handler(sk);
782
783 /* Here begins the tricky part :
784 * We are called from release_sock() with :
785 * 1) BH disabled
786 * 2) sk_lock.slock spinlock held
787 * 3) socket owned by us (sk->sk_lock.owned == 1)
788 *
789 * But following code is meant to be called from BH handlers,
790 * so we should keep BH disabled, but early release socket ownership
791 */
792 sock_release_ownership(sk);
793
794 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
795 tcp_write_timer_handler(sk);
796 __sock_put(sk);
797 }
798 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
799 tcp_delack_timer_handler(sk);
800 __sock_put(sk);
801 }
802 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
803 sk->sk_prot->mtu_reduced(sk);
804 __sock_put(sk);
805 }
806 }
807 EXPORT_SYMBOL(tcp_release_cb);
808
809 void __init tcp_tasklet_init(void)
810 {
811 int i;
812
813 for_each_possible_cpu(i) {
814 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
815
816 INIT_LIST_HEAD(&tsq->head);
817 tasklet_init(&tsq->tasklet,
818 tcp_tasklet_func,
819 (unsigned long)tsq);
820 }
821 }
822
823 /*
824 * Write buffer destructor automatically called from kfree_skb.
825 * We can't xmit new skbs from this context, as we might already
826 * hold qdisc lock.
827 */
828 void tcp_wfree(struct sk_buff *skb)
829 {
830 struct sock *sk = skb->sk;
831 struct tcp_sock *tp = tcp_sk(sk);
832
833 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
834 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
835 unsigned long flags;
836 struct tsq_tasklet *tsq;
837
838 /* Keep a ref on socket.
839 * This last ref will be released in tcp_tasklet_func()
840 */
841 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
842
843 /* queue this socket to tasklet queue */
844 local_irq_save(flags);
845 tsq = &__get_cpu_var(tsq_tasklet);
846 list_add(&tp->tsq_node, &tsq->head);
847 tasklet_schedule(&tsq->tasklet);
848 local_irq_restore(flags);
849 } else {
850 sock_wfree(skb);
851 }
852 }
853
854 /* This routine actually transmits TCP packets queued in by
855 * tcp_do_sendmsg(). This is used by both the initial
856 * transmission and possible later retransmissions.
857 * All SKB's seen here are completely headerless. It is our
858 * job to build the TCP header, and pass the packet down to
859 * IP so it can do the same plus pass the packet off to the
860 * device.
861 *
862 * We are working here with either a clone of the original
863 * SKB, or a fresh unique copy made by the retransmit engine.
864 */
865 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
866 gfp_t gfp_mask)
867 {
868 const struct inet_connection_sock *icsk = inet_csk(sk);
869 struct inet_sock *inet;
870 struct tcp_sock *tp;
871 struct tcp_skb_cb *tcb;
872 struct tcp_out_options opts;
873 unsigned int tcp_options_size, tcp_header_size;
874 struct tcp_md5sig_key *md5;
875 struct tcphdr *th;
876 int err;
877
878 BUG_ON(!skb || !tcp_skb_pcount(skb));
879
880 if (clone_it) {
881 skb_mstamp_get(&skb->skb_mstamp);
882
883 if (unlikely(skb_cloned(skb)))
884 skb = pskb_copy(skb, gfp_mask);
885 else
886 skb = skb_clone(skb, gfp_mask);
887 if (unlikely(!skb))
888 return -ENOBUFS;
889 /* Our usage of tstamp should remain private */
890 skb->tstamp.tv64 = 0;
891 }
892
893 inet = inet_sk(sk);
894 tp = tcp_sk(sk);
895 tcb = TCP_SKB_CB(skb);
896 memset(&opts, 0, sizeof(opts));
897
898 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
899 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
900 else
901 tcp_options_size = tcp_established_options(sk, skb, &opts,
902 &md5);
903 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
904
905 if (tcp_packets_in_flight(tp) == 0)
906 tcp_ca_event(sk, CA_EVENT_TX_START);
907
908 /* if no packet is in qdisc/device queue, then allow XPS to select
909 * another queue.
910 */
911 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
912
913 skb_push(skb, tcp_header_size);
914 skb_reset_transport_header(skb);
915
916 skb_orphan(skb);
917 skb->sk = sk;
918 skb->destructor = tcp_wfree;
919 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
920
921 /* Build TCP header and checksum it. */
922 th = tcp_hdr(skb);
923 th->source = inet->inet_sport;
924 th->dest = inet->inet_dport;
925 th->seq = htonl(tcb->seq);
926 th->ack_seq = htonl(tp->rcv_nxt);
927 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
928 tcb->tcp_flags);
929
930 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
931 /* RFC1323: The window in SYN & SYN/ACK segments
932 * is never scaled.
933 */
934 th->window = htons(min(tp->rcv_wnd, 65535U));
935 } else {
936 th->window = htons(tcp_select_window(sk));
937 }
938 th->check = 0;
939 th->urg_ptr = 0;
940
941 /* The urg_mode check is necessary during a below snd_una win probe */
942 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
943 if (before(tp->snd_up, tcb->seq + 0x10000)) {
944 th->urg_ptr = htons(tp->snd_up - tcb->seq);
945 th->urg = 1;
946 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
947 th->urg_ptr = htons(0xFFFF);
948 th->urg = 1;
949 }
950 }
951
952 tcp_options_write((__be32 *)(th + 1), tp, &opts);
953 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
954 TCP_ECN_send(sk, skb, tcp_header_size);
955
956 #ifdef CONFIG_TCP_MD5SIG
957 /* Calculate the MD5 hash, as we have all we need now */
958 if (md5) {
959 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
960 tp->af_specific->calc_md5_hash(opts.hash_location,
961 md5, sk, NULL, skb);
962 }
963 #endif
964
965 icsk->icsk_af_ops->send_check(sk, skb);
966
967 if (likely(tcb->tcp_flags & TCPHDR_ACK))
968 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
969
970 if (skb->len != tcp_header_size)
971 tcp_event_data_sent(tp, sk);
972
973 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
974 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
975 tcp_skb_pcount(skb));
976
977 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
978 if (likely(err <= 0))
979 return err;
980
981 tcp_enter_cwr(sk, 1);
982
983 return net_xmit_eval(err);
984 }
985
986 /* This routine just queues the buffer for sending.
987 *
988 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
989 * otherwise socket can stall.
990 */
991 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
992 {
993 struct tcp_sock *tp = tcp_sk(sk);
994
995 /* Advance write_seq and place onto the write_queue. */
996 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
997 skb_header_release(skb);
998 tcp_add_write_queue_tail(sk, skb);
999 sk->sk_wmem_queued += skb->truesize;
1000 sk_mem_charge(sk, skb->truesize);
1001 }
1002
1003 /* Initialize TSO segments for a packet. */
1004 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1005 unsigned int mss_now)
1006 {
1007 struct skb_shared_info *shinfo = skb_shinfo(skb);
1008
1009 /* Make sure we own this skb before messing gso_size/gso_segs */
1010 WARN_ON_ONCE(skb_cloned(skb));
1011
1012 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1013 /* Avoid the costly divide in the normal
1014 * non-TSO case.
1015 */
1016 shinfo->gso_segs = 1;
1017 shinfo->gso_size = 0;
1018 shinfo->gso_type = 0;
1019 } else {
1020 shinfo->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1021 shinfo->gso_size = mss_now;
1022 shinfo->gso_type = sk->sk_gso_type;
1023 }
1024 }
1025
1026 /* When a modification to fackets out becomes necessary, we need to check
1027 * skb is counted to fackets_out or not.
1028 */
1029 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1030 int decr)
1031 {
1032 struct tcp_sock *tp = tcp_sk(sk);
1033
1034 if (!tp->sacked_out || tcp_is_reno(tp))
1035 return;
1036
1037 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1038 tp->fackets_out -= decr;
1039 }
1040
1041 /* Pcount in the middle of the write queue got changed, we need to do various
1042 * tweaks to fix counters
1043 */
1044 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1045 {
1046 struct tcp_sock *tp = tcp_sk(sk);
1047
1048 tp->packets_out -= decr;
1049
1050 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1051 tp->sacked_out -= decr;
1052 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1053 tp->retrans_out -= decr;
1054 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1055 tp->lost_out -= decr;
1056
1057 /* Reno case is special. Sigh... */
1058 if (tcp_is_reno(tp) && decr > 0)
1059 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1060
1061 tcp_adjust_fackets_out(sk, skb, decr);
1062
1063 if (tp->lost_skb_hint &&
1064 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1065 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1066 tp->lost_cnt_hint -= decr;
1067
1068 tcp_verify_left_out(tp);
1069 }
1070
1071 /* Function to create two new TCP segments. Shrinks the given segment
1072 * to the specified size and appends a new segment with the rest of the
1073 * packet to the list. This won't be called frequently, I hope.
1074 * Remember, these are still headerless SKBs at this point.
1075 */
1076 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1077 unsigned int mss_now)
1078 {
1079 struct tcp_sock *tp = tcp_sk(sk);
1080 struct sk_buff *buff;
1081 int nsize, old_factor;
1082 int nlen;
1083 u8 flags;
1084
1085 if (WARN_ON(len > skb->len))
1086 return -EINVAL;
1087
1088 nsize = skb_headlen(skb) - len;
1089 if (nsize < 0)
1090 nsize = 0;
1091
1092 if (skb_unclone(skb, GFP_ATOMIC))
1093 return -ENOMEM;
1094
1095 /* Get a new skb... force flag on. */
1096 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1097 if (buff == NULL)
1098 return -ENOMEM; /* We'll just try again later. */
1099
1100 sk->sk_wmem_queued += buff->truesize;
1101 sk_mem_charge(sk, buff->truesize);
1102 nlen = skb->len - len - nsize;
1103 buff->truesize += nlen;
1104 skb->truesize -= nlen;
1105
1106 /* Correct the sequence numbers. */
1107 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1108 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1109 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1110
1111 /* PSH and FIN should only be set in the second packet. */
1112 flags = TCP_SKB_CB(skb)->tcp_flags;
1113 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1114 TCP_SKB_CB(buff)->tcp_flags = flags;
1115 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1116
1117 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1118 /* Copy and checksum data tail into the new buffer. */
1119 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1120 skb_put(buff, nsize),
1121 nsize, 0);
1122
1123 skb_trim(skb, len);
1124
1125 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1126 } else {
1127 skb->ip_summed = CHECKSUM_PARTIAL;
1128 skb_split(skb, buff, len);
1129 }
1130
1131 buff->ip_summed = skb->ip_summed;
1132
1133 /* Looks stupid, but our code really uses when of
1134 * skbs, which it never sent before. --ANK
1135 */
1136 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1137 buff->tstamp = skb->tstamp;
1138
1139 old_factor = tcp_skb_pcount(skb);
1140
1141 /* Fix up tso_factor for both original and new SKB. */
1142 tcp_set_skb_tso_segs(sk, skb, mss_now);
1143 tcp_set_skb_tso_segs(sk, buff, mss_now);
1144
1145 /* If this packet has been sent out already, we must
1146 * adjust the various packet counters.
1147 */
1148 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1149 int diff = old_factor - tcp_skb_pcount(skb) -
1150 tcp_skb_pcount(buff);
1151
1152 if (diff)
1153 tcp_adjust_pcount(sk, skb, diff);
1154 }
1155
1156 /* Link BUFF into the send queue. */
1157 skb_header_release(buff);
1158 tcp_insert_write_queue_after(skb, buff, sk);
1159
1160 return 0;
1161 }
1162
1163 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1164 * eventually). The difference is that pulled data not copied, but
1165 * immediately discarded.
1166 */
1167 static void __pskb_trim_head(struct sk_buff *skb, int len)
1168 {
1169 struct skb_shared_info *shinfo;
1170 int i, k, eat;
1171
1172 eat = min_t(int, len, skb_headlen(skb));
1173 if (eat) {
1174 __skb_pull(skb, eat);
1175 len -= eat;
1176 if (!len)
1177 return;
1178 }
1179 eat = len;
1180 k = 0;
1181 shinfo = skb_shinfo(skb);
1182 for (i = 0; i < shinfo->nr_frags; i++) {
1183 int size = skb_frag_size(&shinfo->frags[i]);
1184
1185 if (size <= eat) {
1186 skb_frag_unref(skb, i);
1187 eat -= size;
1188 } else {
1189 shinfo->frags[k] = shinfo->frags[i];
1190 if (eat) {
1191 shinfo->frags[k].page_offset += eat;
1192 skb_frag_size_sub(&shinfo->frags[k], eat);
1193 eat = 0;
1194 }
1195 k++;
1196 }
1197 }
1198 shinfo->nr_frags = k;
1199
1200 skb_reset_tail_pointer(skb);
1201 skb->data_len -= len;
1202 skb->len = skb->data_len;
1203 }
1204
1205 /* Remove acked data from a packet in the transmit queue. */
1206 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1207 {
1208 if (skb_unclone(skb, GFP_ATOMIC))
1209 return -ENOMEM;
1210
1211 __pskb_trim_head(skb, len);
1212
1213 TCP_SKB_CB(skb)->seq += len;
1214 skb->ip_summed = CHECKSUM_PARTIAL;
1215
1216 skb->truesize -= len;
1217 sk->sk_wmem_queued -= len;
1218 sk_mem_uncharge(sk, len);
1219 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1220
1221 /* Any change of skb->len requires recalculation of tso factor. */
1222 if (tcp_skb_pcount(skb) > 1)
1223 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1224
1225 return 0;
1226 }
1227
1228 /* Calculate MSS not accounting any TCP options. */
1229 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1230 {
1231 const struct tcp_sock *tp = tcp_sk(sk);
1232 const struct inet_connection_sock *icsk = inet_csk(sk);
1233 int mss_now;
1234
1235 /* Calculate base mss without TCP options:
1236 It is MMS_S - sizeof(tcphdr) of rfc1122
1237 */
1238 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1239
1240 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1241 if (icsk->icsk_af_ops->net_frag_header_len) {
1242 const struct dst_entry *dst = __sk_dst_get(sk);
1243
1244 if (dst && dst_allfrag(dst))
1245 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1246 }
1247
1248 /* Clamp it (mss_clamp does not include tcp options) */
1249 if (mss_now > tp->rx_opt.mss_clamp)
1250 mss_now = tp->rx_opt.mss_clamp;
1251
1252 /* Now subtract optional transport overhead */
1253 mss_now -= icsk->icsk_ext_hdr_len;
1254
1255 /* Then reserve room for full set of TCP options and 8 bytes of data */
1256 if (mss_now < 48)
1257 mss_now = 48;
1258 return mss_now;
1259 }
1260
1261 /* Calculate MSS. Not accounting for SACKs here. */
1262 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1263 {
1264 /* Subtract TCP options size, not including SACKs */
1265 return __tcp_mtu_to_mss(sk, pmtu) -
1266 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1267 }
1268
1269 /* Inverse of above */
1270 int tcp_mss_to_mtu(struct sock *sk, int mss)
1271 {
1272 const struct tcp_sock *tp = tcp_sk(sk);
1273 const struct inet_connection_sock *icsk = inet_csk(sk);
1274 int mtu;
1275
1276 mtu = mss +
1277 tp->tcp_header_len +
1278 icsk->icsk_ext_hdr_len +
1279 icsk->icsk_af_ops->net_header_len;
1280
1281 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1282 if (icsk->icsk_af_ops->net_frag_header_len) {
1283 const struct dst_entry *dst = __sk_dst_get(sk);
1284
1285 if (dst && dst_allfrag(dst))
1286 mtu += icsk->icsk_af_ops->net_frag_header_len;
1287 }
1288 return mtu;
1289 }
1290
1291 /* MTU probing init per socket */
1292 void tcp_mtup_init(struct sock *sk)
1293 {
1294 struct tcp_sock *tp = tcp_sk(sk);
1295 struct inet_connection_sock *icsk = inet_csk(sk);
1296
1297 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1298 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1299 icsk->icsk_af_ops->net_header_len;
1300 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1301 icsk->icsk_mtup.probe_size = 0;
1302 }
1303 EXPORT_SYMBOL(tcp_mtup_init);
1304
1305 /* This function synchronize snd mss to current pmtu/exthdr set.
1306
1307 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1308 for TCP options, but includes only bare TCP header.
1309
1310 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1311 It is minimum of user_mss and mss received with SYN.
1312 It also does not include TCP options.
1313
1314 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1315
1316 tp->mss_cache is current effective sending mss, including
1317 all tcp options except for SACKs. It is evaluated,
1318 taking into account current pmtu, but never exceeds
1319 tp->rx_opt.mss_clamp.
1320
1321 NOTE1. rfc1122 clearly states that advertised MSS
1322 DOES NOT include either tcp or ip options.
1323
1324 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1325 are READ ONLY outside this function. --ANK (980731)
1326 */
1327 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1328 {
1329 struct tcp_sock *tp = tcp_sk(sk);
1330 struct inet_connection_sock *icsk = inet_csk(sk);
1331 int mss_now;
1332
1333 if (icsk->icsk_mtup.search_high > pmtu)
1334 icsk->icsk_mtup.search_high = pmtu;
1335
1336 mss_now = tcp_mtu_to_mss(sk, pmtu);
1337 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1338
1339 /* And store cached results */
1340 icsk->icsk_pmtu_cookie = pmtu;
1341 if (icsk->icsk_mtup.enabled)
1342 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1343 tp->mss_cache = mss_now;
1344
1345 return mss_now;
1346 }
1347 EXPORT_SYMBOL(tcp_sync_mss);
1348
1349 /* Compute the current effective MSS, taking SACKs and IP options,
1350 * and even PMTU discovery events into account.
1351 */
1352 unsigned int tcp_current_mss(struct sock *sk)
1353 {
1354 const struct tcp_sock *tp = tcp_sk(sk);
1355 const struct dst_entry *dst = __sk_dst_get(sk);
1356 u32 mss_now;
1357 unsigned int header_len;
1358 struct tcp_out_options opts;
1359 struct tcp_md5sig_key *md5;
1360
1361 mss_now = tp->mss_cache;
1362
1363 if (dst) {
1364 u32 mtu = dst_mtu(dst);
1365 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1366 mss_now = tcp_sync_mss(sk, mtu);
1367 }
1368
1369 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1370 sizeof(struct tcphdr);
1371 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1372 * some common options. If this is an odd packet (because we have SACK
1373 * blocks etc) then our calculated header_len will be different, and
1374 * we have to adjust mss_now correspondingly */
1375 if (header_len != tp->tcp_header_len) {
1376 int delta = (int) header_len - tp->tcp_header_len;
1377 mss_now -= delta;
1378 }
1379
1380 return mss_now;
1381 }
1382
1383 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1384 * As additional protections, we do not touch cwnd in retransmission phases,
1385 * and if application hit its sndbuf limit recently.
1386 */
1387 static void tcp_cwnd_application_limited(struct sock *sk)
1388 {
1389 struct tcp_sock *tp = tcp_sk(sk);
1390
1391 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1392 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1393 /* Limited by application or receiver window. */
1394 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1395 u32 win_used = max(tp->snd_cwnd_used, init_win);
1396 if (win_used < tp->snd_cwnd) {
1397 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1398 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1399 }
1400 tp->snd_cwnd_used = 0;
1401 }
1402 tp->snd_cwnd_stamp = tcp_time_stamp;
1403 }
1404
1405 static void tcp_cwnd_validate(struct sock *sk, u32 unsent_segs)
1406 {
1407 struct tcp_sock *tp = tcp_sk(sk);
1408
1409 tp->lsnd_pending = tp->packets_out + unsent_segs;
1410
1411 if (tcp_is_cwnd_limited(sk)) {
1412 /* Network is feed fully. */
1413 tp->snd_cwnd_used = 0;
1414 tp->snd_cwnd_stamp = tcp_time_stamp;
1415 } else {
1416 /* Network starves. */
1417 if (tp->packets_out > tp->snd_cwnd_used)
1418 tp->snd_cwnd_used = tp->packets_out;
1419
1420 if (sysctl_tcp_slow_start_after_idle &&
1421 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1422 tcp_cwnd_application_limited(sk);
1423 }
1424 }
1425
1426 /* Minshall's variant of the Nagle send check. */
1427 static bool tcp_minshall_check(const struct tcp_sock *tp)
1428 {
1429 return after(tp->snd_sml, tp->snd_una) &&
1430 !after(tp->snd_sml, tp->snd_nxt);
1431 }
1432
1433 /* Update snd_sml if this skb is under mss
1434 * Note that a TSO packet might end with a sub-mss segment
1435 * The test is really :
1436 * if ((skb->len % mss) != 0)
1437 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1438 * But we can avoid doing the divide again given we already have
1439 * skb_pcount = skb->len / mss_now
1440 */
1441 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1442 const struct sk_buff *skb)
1443 {
1444 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1445 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1446 }
1447
1448 /* Return false, if packet can be sent now without violation Nagle's rules:
1449 * 1. It is full sized. (provided by caller in %partial bool)
1450 * 2. Or it contains FIN. (already checked by caller)
1451 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1452 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1453 * With Minshall's modification: all sent small packets are ACKed.
1454 */
1455 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1456 int nonagle)
1457 {
1458 return partial &&
1459 ((nonagle & TCP_NAGLE_CORK) ||
1460 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1461 }
1462 /* Returns the portion of skb which can be sent right away */
1463 static unsigned int tcp_mss_split_point(const struct sock *sk,
1464 const struct sk_buff *skb,
1465 unsigned int mss_now,
1466 unsigned int max_segs,
1467 int nonagle)
1468 {
1469 const struct tcp_sock *tp = tcp_sk(sk);
1470 u32 partial, needed, window, max_len;
1471
1472 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1473 max_len = mss_now * max_segs;
1474
1475 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1476 return max_len;
1477
1478 needed = min(skb->len, window);
1479
1480 if (max_len <= needed)
1481 return max_len;
1482
1483 partial = needed % mss_now;
1484 /* If last segment is not a full MSS, check if Nagle rules allow us
1485 * to include this last segment in this skb.
1486 * Otherwise, we'll split the skb at last MSS boundary
1487 */
1488 if (tcp_nagle_check(partial != 0, tp, nonagle))
1489 return needed - partial;
1490
1491 return needed;
1492 }
1493
1494 /* Can at least one segment of SKB be sent right now, according to the
1495 * congestion window rules? If so, return how many segments are allowed.
1496 */
1497 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1498 const struct sk_buff *skb)
1499 {
1500 u32 in_flight, cwnd;
1501
1502 /* Don't be strict about the congestion window for the final FIN. */
1503 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1504 tcp_skb_pcount(skb) == 1)
1505 return 1;
1506
1507 in_flight = tcp_packets_in_flight(tp);
1508 cwnd = tp->snd_cwnd;
1509 if (in_flight < cwnd)
1510 return (cwnd - in_flight);
1511
1512 return 0;
1513 }
1514
1515 /* Initialize TSO state of a skb.
1516 * This must be invoked the first time we consider transmitting
1517 * SKB onto the wire.
1518 */
1519 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1520 unsigned int mss_now)
1521 {
1522 int tso_segs = tcp_skb_pcount(skb);
1523
1524 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1525 tcp_set_skb_tso_segs(sk, skb, mss_now);
1526 tso_segs = tcp_skb_pcount(skb);
1527 }
1528 return tso_segs;
1529 }
1530
1531
1532 /* Return true if the Nagle test allows this packet to be
1533 * sent now.
1534 */
1535 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1536 unsigned int cur_mss, int nonagle)
1537 {
1538 /* Nagle rule does not apply to frames, which sit in the middle of the
1539 * write_queue (they have no chances to get new data).
1540 *
1541 * This is implemented in the callers, where they modify the 'nonagle'
1542 * argument based upon the location of SKB in the send queue.
1543 */
1544 if (nonagle & TCP_NAGLE_PUSH)
1545 return true;
1546
1547 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1548 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1549 return true;
1550
1551 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1552 return true;
1553
1554 return false;
1555 }
1556
1557 /* Does at least the first segment of SKB fit into the send window? */
1558 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1559 const struct sk_buff *skb,
1560 unsigned int cur_mss)
1561 {
1562 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1563
1564 if (skb->len > cur_mss)
1565 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1566
1567 return !after(end_seq, tcp_wnd_end(tp));
1568 }
1569
1570 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1571 * should be put on the wire right now. If so, it returns the number of
1572 * packets allowed by the congestion window.
1573 */
1574 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1575 unsigned int cur_mss, int nonagle)
1576 {
1577 const struct tcp_sock *tp = tcp_sk(sk);
1578 unsigned int cwnd_quota;
1579
1580 tcp_init_tso_segs(sk, skb, cur_mss);
1581
1582 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1583 return 0;
1584
1585 cwnd_quota = tcp_cwnd_test(tp, skb);
1586 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1587 cwnd_quota = 0;
1588
1589 return cwnd_quota;
1590 }
1591
1592 /* Test if sending is allowed right now. */
1593 bool tcp_may_send_now(struct sock *sk)
1594 {
1595 const struct tcp_sock *tp = tcp_sk(sk);
1596 struct sk_buff *skb = tcp_send_head(sk);
1597
1598 return skb &&
1599 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1600 (tcp_skb_is_last(sk, skb) ?
1601 tp->nonagle : TCP_NAGLE_PUSH));
1602 }
1603
1604 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1605 * which is put after SKB on the list. It is very much like
1606 * tcp_fragment() except that it may make several kinds of assumptions
1607 * in order to speed up the splitting operation. In particular, we
1608 * know that all the data is in scatter-gather pages, and that the
1609 * packet has never been sent out before (and thus is not cloned).
1610 */
1611 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1612 unsigned int mss_now, gfp_t gfp)
1613 {
1614 struct sk_buff *buff;
1615 int nlen = skb->len - len;
1616 u8 flags;
1617
1618 /* All of a TSO frame must be composed of paged data. */
1619 if (skb->len != skb->data_len)
1620 return tcp_fragment(sk, skb, len, mss_now);
1621
1622 buff = sk_stream_alloc_skb(sk, 0, gfp);
1623 if (unlikely(buff == NULL))
1624 return -ENOMEM;
1625
1626 sk->sk_wmem_queued += buff->truesize;
1627 sk_mem_charge(sk, buff->truesize);
1628 buff->truesize += nlen;
1629 skb->truesize -= nlen;
1630
1631 /* Correct the sequence numbers. */
1632 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1633 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1634 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1635
1636 /* PSH and FIN should only be set in the second packet. */
1637 flags = TCP_SKB_CB(skb)->tcp_flags;
1638 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1639 TCP_SKB_CB(buff)->tcp_flags = flags;
1640
1641 /* This packet was never sent out yet, so no SACK bits. */
1642 TCP_SKB_CB(buff)->sacked = 0;
1643
1644 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1645 skb_split(skb, buff, len);
1646
1647 /* Fix up tso_factor for both original and new SKB. */
1648 tcp_set_skb_tso_segs(sk, skb, mss_now);
1649 tcp_set_skb_tso_segs(sk, buff, mss_now);
1650
1651 /* Link BUFF into the send queue. */
1652 skb_header_release(buff);
1653 tcp_insert_write_queue_after(skb, buff, sk);
1654
1655 return 0;
1656 }
1657
1658 /* Try to defer sending, if possible, in order to minimize the amount
1659 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1660 *
1661 * This algorithm is from John Heffner.
1662 */
1663 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1664 {
1665 struct tcp_sock *tp = tcp_sk(sk);
1666 const struct inet_connection_sock *icsk = inet_csk(sk);
1667 u32 send_win, cong_win, limit, in_flight;
1668 int win_divisor;
1669
1670 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1671 goto send_now;
1672
1673 if (icsk->icsk_ca_state != TCP_CA_Open)
1674 goto send_now;
1675
1676 /* Defer for less than two clock ticks. */
1677 if (tp->tso_deferred &&
1678 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1679 goto send_now;
1680
1681 in_flight = tcp_packets_in_flight(tp);
1682
1683 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1684
1685 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1686
1687 /* From in_flight test above, we know that cwnd > in_flight. */
1688 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1689
1690 limit = min(send_win, cong_win);
1691
1692 /* If a full-sized TSO skb can be sent, do it. */
1693 if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1694 tp->xmit_size_goal_segs * tp->mss_cache))
1695 goto send_now;
1696
1697 /* Middle in queue won't get any more data, full sendable already? */
1698 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1699 goto send_now;
1700
1701 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1702 if (win_divisor) {
1703 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1704
1705 /* If at least some fraction of a window is available,
1706 * just use it.
1707 */
1708 chunk /= win_divisor;
1709 if (limit >= chunk)
1710 goto send_now;
1711 } else {
1712 /* Different approach, try not to defer past a single
1713 * ACK. Receiver should ACK every other full sized
1714 * frame, so if we have space for more than 3 frames
1715 * then send now.
1716 */
1717 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1718 goto send_now;
1719 }
1720
1721 /* Ok, it looks like it is advisable to defer.
1722 * Do not rearm the timer if already set to not break TCP ACK clocking.
1723 */
1724 if (!tp->tso_deferred)
1725 tp->tso_deferred = 1 | (jiffies << 1);
1726
1727 return true;
1728
1729 send_now:
1730 tp->tso_deferred = 0;
1731 return false;
1732 }
1733
1734 /* Create a new MTU probe if we are ready.
1735 * MTU probe is regularly attempting to increase the path MTU by
1736 * deliberately sending larger packets. This discovers routing
1737 * changes resulting in larger path MTUs.
1738 *
1739 * Returns 0 if we should wait to probe (no cwnd available),
1740 * 1 if a probe was sent,
1741 * -1 otherwise
1742 */
1743 static int tcp_mtu_probe(struct sock *sk)
1744 {
1745 struct tcp_sock *tp = tcp_sk(sk);
1746 struct inet_connection_sock *icsk = inet_csk(sk);
1747 struct sk_buff *skb, *nskb, *next;
1748 int len;
1749 int probe_size;
1750 int size_needed;
1751 int copy;
1752 int mss_now;
1753
1754 /* Not currently probing/verifying,
1755 * not in recovery,
1756 * have enough cwnd, and
1757 * not SACKing (the variable headers throw things off) */
1758 if (!icsk->icsk_mtup.enabled ||
1759 icsk->icsk_mtup.probe_size ||
1760 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1761 tp->snd_cwnd < 11 ||
1762 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1763 return -1;
1764
1765 /* Very simple search strategy: just double the MSS. */
1766 mss_now = tcp_current_mss(sk);
1767 probe_size = 2 * tp->mss_cache;
1768 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1769 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1770 /* TODO: set timer for probe_converge_event */
1771 return -1;
1772 }
1773
1774 /* Have enough data in the send queue to probe? */
1775 if (tp->write_seq - tp->snd_nxt < size_needed)
1776 return -1;
1777
1778 if (tp->snd_wnd < size_needed)
1779 return -1;
1780 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1781 return 0;
1782
1783 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1784 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1785 if (!tcp_packets_in_flight(tp))
1786 return -1;
1787 else
1788 return 0;
1789 }
1790
1791 /* We're allowed to probe. Build it now. */
1792 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1793 return -1;
1794 sk->sk_wmem_queued += nskb->truesize;
1795 sk_mem_charge(sk, nskb->truesize);
1796
1797 skb = tcp_send_head(sk);
1798
1799 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1800 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1801 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1802 TCP_SKB_CB(nskb)->sacked = 0;
1803 nskb->csum = 0;
1804 nskb->ip_summed = skb->ip_summed;
1805
1806 tcp_insert_write_queue_before(nskb, skb, sk);
1807
1808 len = 0;
1809 tcp_for_write_queue_from_safe(skb, next, sk) {
1810 copy = min_t(int, skb->len, probe_size - len);
1811 if (nskb->ip_summed)
1812 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1813 else
1814 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1815 skb_put(nskb, copy),
1816 copy, nskb->csum);
1817
1818 if (skb->len <= copy) {
1819 /* We've eaten all the data from this skb.
1820 * Throw it away. */
1821 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1822 tcp_unlink_write_queue(skb, sk);
1823 sk_wmem_free_skb(sk, skb);
1824 } else {
1825 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1826 ~(TCPHDR_FIN|TCPHDR_PSH);
1827 if (!skb_shinfo(skb)->nr_frags) {
1828 skb_pull(skb, copy);
1829 if (skb->ip_summed != CHECKSUM_PARTIAL)
1830 skb->csum = csum_partial(skb->data,
1831 skb->len, 0);
1832 } else {
1833 __pskb_trim_head(skb, copy);
1834 tcp_set_skb_tso_segs(sk, skb, mss_now);
1835 }
1836 TCP_SKB_CB(skb)->seq += copy;
1837 }
1838
1839 len += copy;
1840
1841 if (len >= probe_size)
1842 break;
1843 }
1844 tcp_init_tso_segs(sk, nskb, nskb->len);
1845
1846 /* We're ready to send. If this fails, the probe will
1847 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1848 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1849 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1850 /* Decrement cwnd here because we are sending
1851 * effectively two packets. */
1852 tp->snd_cwnd--;
1853 tcp_event_new_data_sent(sk, nskb);
1854
1855 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1856 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1857 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1858
1859 return 1;
1860 }
1861
1862 return -1;
1863 }
1864
1865 /* This routine writes packets to the network. It advances the
1866 * send_head. This happens as incoming acks open up the remote
1867 * window for us.
1868 *
1869 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1870 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1871 * account rare use of URG, this is not a big flaw.
1872 *
1873 * Send at most one packet when push_one > 0. Temporarily ignore
1874 * cwnd limit to force at most one packet out when push_one == 2.
1875
1876 * Returns true, if no segments are in flight and we have queued segments,
1877 * but cannot send anything now because of SWS or another problem.
1878 */
1879 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1880 int push_one, gfp_t gfp)
1881 {
1882 struct tcp_sock *tp = tcp_sk(sk);
1883 struct sk_buff *skb;
1884 unsigned int tso_segs, sent_pkts, unsent_segs = 0;
1885 int cwnd_quota;
1886 int result;
1887
1888 sent_pkts = 0;
1889
1890 if (!push_one) {
1891 /* Do MTU probing. */
1892 result = tcp_mtu_probe(sk);
1893 if (!result) {
1894 return false;
1895 } else if (result > 0) {
1896 sent_pkts = 1;
1897 }
1898 }
1899
1900 while ((skb = tcp_send_head(sk))) {
1901 unsigned int limit;
1902
1903 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1904 BUG_ON(!tso_segs);
1905
1906 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1907 goto repair; /* Skip network transmission */
1908
1909 cwnd_quota = tcp_cwnd_test(tp, skb);
1910 if (!cwnd_quota) {
1911 if (push_one == 2)
1912 /* Force out a loss probe pkt. */
1913 cwnd_quota = 1;
1914 else
1915 break;
1916 }
1917
1918 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1919 break;
1920
1921 if (tso_segs == 1) {
1922 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1923 (tcp_skb_is_last(sk, skb) ?
1924 nonagle : TCP_NAGLE_PUSH))))
1925 break;
1926 } else {
1927 if (!push_one && tcp_tso_should_defer(sk, skb))
1928 goto compute_unsent_segs;
1929 }
1930
1931 /* TCP Small Queues :
1932 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
1933 * This allows for :
1934 * - better RTT estimation and ACK scheduling
1935 * - faster recovery
1936 * - high rates
1937 * Alas, some drivers / subsystems require a fair amount
1938 * of queued bytes to ensure line rate.
1939 * One example is wifi aggregation (802.11 AMPDU)
1940 */
1941 limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
1942 sk->sk_pacing_rate >> 10);
1943
1944 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
1945 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1946 /* It is possible TX completion already happened
1947 * before we set TSQ_THROTTLED, so we must
1948 * test again the condition.
1949 * We abuse smp_mb__after_clear_bit() because
1950 * there is no smp_mb__after_set_bit() yet
1951 */
1952 smp_mb__after_clear_bit();
1953 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
1954 u32 unsent_bytes;
1955
1956 compute_unsent_segs:
1957 unsent_bytes = tp->write_seq - tp->snd_nxt;
1958 unsent_segs = DIV_ROUND_UP(unsent_bytes, mss_now);
1959 break;
1960 }
1961 }
1962
1963 limit = mss_now;
1964 if (tso_segs > 1 && !tcp_urg_mode(tp))
1965 limit = tcp_mss_split_point(sk, skb, mss_now,
1966 min_t(unsigned int,
1967 cwnd_quota,
1968 sk->sk_gso_max_segs),
1969 nonagle);
1970
1971 if (skb->len > limit &&
1972 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1973 break;
1974
1975 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1976
1977 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1978 break;
1979
1980 repair:
1981 /* Advance the send_head. This one is sent out.
1982 * This call will increment packets_out.
1983 */
1984 tcp_event_new_data_sent(sk, skb);
1985
1986 tcp_minshall_update(tp, mss_now, skb);
1987 sent_pkts += tcp_skb_pcount(skb);
1988
1989 if (push_one)
1990 break;
1991 }
1992
1993 if (likely(sent_pkts)) {
1994 if (tcp_in_cwnd_reduction(sk))
1995 tp->prr_out += sent_pkts;
1996
1997 /* Send one loss probe per tail loss episode. */
1998 if (push_one != 2)
1999 tcp_schedule_loss_probe(sk);
2000 tcp_cwnd_validate(sk, unsent_segs);
2001 return false;
2002 }
2003 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
2004 }
2005
2006 bool tcp_schedule_loss_probe(struct sock *sk)
2007 {
2008 struct inet_connection_sock *icsk = inet_csk(sk);
2009 struct tcp_sock *tp = tcp_sk(sk);
2010 u32 timeout, tlp_time_stamp, rto_time_stamp;
2011 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2012
2013 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2014 return false;
2015 /* No consecutive loss probes. */
2016 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2017 tcp_rearm_rto(sk);
2018 return false;
2019 }
2020 /* Don't do any loss probe on a Fast Open connection before 3WHS
2021 * finishes.
2022 */
2023 if (sk->sk_state == TCP_SYN_RECV)
2024 return false;
2025
2026 /* TLP is only scheduled when next timer event is RTO. */
2027 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2028 return false;
2029
2030 /* Schedule a loss probe in 2*RTT for SACK capable connections
2031 * in Open state, that are either limited by cwnd or application.
2032 */
2033 if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2034 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2035 return false;
2036
2037 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2038 tcp_send_head(sk))
2039 return false;
2040
2041 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2042 * for delayed ack when there's one outstanding packet.
2043 */
2044 timeout = rtt << 1;
2045 if (tp->packets_out == 1)
2046 timeout = max_t(u32, timeout,
2047 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2048 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2049
2050 /* If RTO is shorter, just schedule TLP in its place. */
2051 tlp_time_stamp = tcp_time_stamp + timeout;
2052 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2053 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2054 s32 delta = rto_time_stamp - tcp_time_stamp;
2055 if (delta > 0)
2056 timeout = delta;
2057 }
2058
2059 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2060 TCP_RTO_MAX);
2061 return true;
2062 }
2063
2064 /* Thanks to skb fast clones, we can detect if a prior transmit of
2065 * a packet is still in a qdisc or driver queue.
2066 * In this case, there is very little point doing a retransmit !
2067 * Note: This is called from BH context only.
2068 */
2069 static bool skb_still_in_host_queue(const struct sock *sk,
2070 const struct sk_buff *skb)
2071 {
2072 const struct sk_buff *fclone = skb + 1;
2073
2074 if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
2075 fclone->fclone == SKB_FCLONE_CLONE)) {
2076 NET_INC_STATS_BH(sock_net(sk),
2077 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2078 return true;
2079 }
2080 return false;
2081 }
2082
2083 /* When probe timeout (PTO) fires, send a new segment if one exists, else
2084 * retransmit the last segment.
2085 */
2086 void tcp_send_loss_probe(struct sock *sk)
2087 {
2088 struct tcp_sock *tp = tcp_sk(sk);
2089 struct sk_buff *skb;
2090 int pcount;
2091 int mss = tcp_current_mss(sk);
2092 int err = -1;
2093
2094 if (tcp_send_head(sk) != NULL) {
2095 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2096 goto rearm_timer;
2097 }
2098
2099 /* At most one outstanding TLP retransmission. */
2100 if (tp->tlp_high_seq)
2101 goto rearm_timer;
2102
2103 /* Retransmit last segment. */
2104 skb = tcp_write_queue_tail(sk);
2105 if (WARN_ON(!skb))
2106 goto rearm_timer;
2107
2108 if (skb_still_in_host_queue(sk, skb))
2109 goto rearm_timer;
2110
2111 pcount = tcp_skb_pcount(skb);
2112 if (WARN_ON(!pcount))
2113 goto rearm_timer;
2114
2115 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2116 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss)))
2117 goto rearm_timer;
2118 skb = tcp_write_queue_tail(sk);
2119 }
2120
2121 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2122 goto rearm_timer;
2123
2124 /* Probe with zero data doesn't trigger fast recovery. */
2125 if (skb->len > 0)
2126 err = __tcp_retransmit_skb(sk, skb);
2127
2128 /* Record snd_nxt for loss detection. */
2129 if (likely(!err))
2130 tp->tlp_high_seq = tp->snd_nxt;
2131
2132 rearm_timer:
2133 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2134 inet_csk(sk)->icsk_rto,
2135 TCP_RTO_MAX);
2136
2137 if (likely(!err))
2138 NET_INC_STATS_BH(sock_net(sk),
2139 LINUX_MIB_TCPLOSSPROBES);
2140 }
2141
2142 /* Push out any pending frames which were held back due to
2143 * TCP_CORK or attempt at coalescing tiny packets.
2144 * The socket must be locked by the caller.
2145 */
2146 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2147 int nonagle)
2148 {
2149 /* If we are closed, the bytes will have to remain here.
2150 * In time closedown will finish, we empty the write queue and
2151 * all will be happy.
2152 */
2153 if (unlikely(sk->sk_state == TCP_CLOSE))
2154 return;
2155
2156 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2157 sk_gfp_atomic(sk, GFP_ATOMIC)))
2158 tcp_check_probe_timer(sk);
2159 }
2160
2161 /* Send _single_ skb sitting at the send head. This function requires
2162 * true push pending frames to setup probe timer etc.
2163 */
2164 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2165 {
2166 struct sk_buff *skb = tcp_send_head(sk);
2167
2168 BUG_ON(!skb || skb->len < mss_now);
2169
2170 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2171 }
2172
2173 /* This function returns the amount that we can raise the
2174 * usable window based on the following constraints
2175 *
2176 * 1. The window can never be shrunk once it is offered (RFC 793)
2177 * 2. We limit memory per socket
2178 *
2179 * RFC 1122:
2180 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2181 * RECV.NEXT + RCV.WIN fixed until:
2182 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2183 *
2184 * i.e. don't raise the right edge of the window until you can raise
2185 * it at least MSS bytes.
2186 *
2187 * Unfortunately, the recommended algorithm breaks header prediction,
2188 * since header prediction assumes th->window stays fixed.
2189 *
2190 * Strictly speaking, keeping th->window fixed violates the receiver
2191 * side SWS prevention criteria. The problem is that under this rule
2192 * a stream of single byte packets will cause the right side of the
2193 * window to always advance by a single byte.
2194 *
2195 * Of course, if the sender implements sender side SWS prevention
2196 * then this will not be a problem.
2197 *
2198 * BSD seems to make the following compromise:
2199 *
2200 * If the free space is less than the 1/4 of the maximum
2201 * space available and the free space is less than 1/2 mss,
2202 * then set the window to 0.
2203 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2204 * Otherwise, just prevent the window from shrinking
2205 * and from being larger than the largest representable value.
2206 *
2207 * This prevents incremental opening of the window in the regime
2208 * where TCP is limited by the speed of the reader side taking
2209 * data out of the TCP receive queue. It does nothing about
2210 * those cases where the window is constrained on the sender side
2211 * because the pipeline is full.
2212 *
2213 * BSD also seems to "accidentally" limit itself to windows that are a
2214 * multiple of MSS, at least until the free space gets quite small.
2215 * This would appear to be a side effect of the mbuf implementation.
2216 * Combining these two algorithms results in the observed behavior
2217 * of having a fixed window size at almost all times.
2218 *
2219 * Below we obtain similar behavior by forcing the offered window to
2220 * a multiple of the mss when it is feasible to do so.
2221 *
2222 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2223 * Regular options like TIMESTAMP are taken into account.
2224 */
2225 u32 __tcp_select_window(struct sock *sk)
2226 {
2227 struct inet_connection_sock *icsk = inet_csk(sk);
2228 struct tcp_sock *tp = tcp_sk(sk);
2229 /* MSS for the peer's data. Previous versions used mss_clamp
2230 * here. I don't know if the value based on our guesses
2231 * of peer's MSS is better for the performance. It's more correct
2232 * but may be worse for the performance because of rcv_mss
2233 * fluctuations. --SAW 1998/11/1
2234 */
2235 int mss = icsk->icsk_ack.rcv_mss;
2236 int free_space = tcp_space(sk);
2237 int allowed_space = tcp_full_space(sk);
2238 int full_space = min_t(int, tp->window_clamp, allowed_space);
2239 int window;
2240
2241 if (mss > full_space)
2242 mss = full_space;
2243
2244 if (free_space < (full_space >> 1)) {
2245 icsk->icsk_ack.quick = 0;
2246
2247 if (sk_under_memory_pressure(sk))
2248 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2249 4U * tp->advmss);
2250
2251 /* free_space might become our new window, make sure we don't
2252 * increase it due to wscale.
2253 */
2254 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2255
2256 /* if free space is less than mss estimate, or is below 1/16th
2257 * of the maximum allowed, try to move to zero-window, else
2258 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2259 * new incoming data is dropped due to memory limits.
2260 * With large window, mss test triggers way too late in order
2261 * to announce zero window in time before rmem limit kicks in.
2262 */
2263 if (free_space < (allowed_space >> 4) || free_space < mss)
2264 return 0;
2265 }
2266
2267 if (free_space > tp->rcv_ssthresh)
2268 free_space = tp->rcv_ssthresh;
2269
2270 /* Don't do rounding if we are using window scaling, since the
2271 * scaled window will not line up with the MSS boundary anyway.
2272 */
2273 window = tp->rcv_wnd;
2274 if (tp->rx_opt.rcv_wscale) {
2275 window = free_space;
2276
2277 /* Advertise enough space so that it won't get scaled away.
2278 * Import case: prevent zero window announcement if
2279 * 1<<rcv_wscale > mss.
2280 */
2281 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2282 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2283 << tp->rx_opt.rcv_wscale);
2284 } else {
2285 /* Get the largest window that is a nice multiple of mss.
2286 * Window clamp already applied above.
2287 * If our current window offering is within 1 mss of the
2288 * free space we just keep it. This prevents the divide
2289 * and multiply from happening most of the time.
2290 * We also don't do any window rounding when the free space
2291 * is too small.
2292 */
2293 if (window <= free_space - mss || window > free_space)
2294 window = (free_space / mss) * mss;
2295 else if (mss == full_space &&
2296 free_space > window + (full_space >> 1))
2297 window = free_space;
2298 }
2299
2300 return window;
2301 }
2302
2303 /* Collapses two adjacent SKB's during retransmission. */
2304 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2305 {
2306 struct tcp_sock *tp = tcp_sk(sk);
2307 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2308 int skb_size, next_skb_size;
2309
2310 skb_size = skb->len;
2311 next_skb_size = next_skb->len;
2312
2313 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2314
2315 tcp_highest_sack_combine(sk, next_skb, skb);
2316
2317 tcp_unlink_write_queue(next_skb, sk);
2318
2319 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2320 next_skb_size);
2321
2322 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2323 skb->ip_summed = CHECKSUM_PARTIAL;
2324
2325 if (skb->ip_summed != CHECKSUM_PARTIAL)
2326 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2327
2328 /* Update sequence range on original skb. */
2329 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2330
2331 /* Merge over control information. This moves PSH/FIN etc. over */
2332 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2333
2334 /* All done, get rid of second SKB and account for it so
2335 * packet counting does not break.
2336 */
2337 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2338
2339 /* changed transmit queue under us so clear hints */
2340 tcp_clear_retrans_hints_partial(tp);
2341 if (next_skb == tp->retransmit_skb_hint)
2342 tp->retransmit_skb_hint = skb;
2343
2344 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2345
2346 sk_wmem_free_skb(sk, next_skb);
2347 }
2348
2349 /* Check if coalescing SKBs is legal. */
2350 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2351 {
2352 if (tcp_skb_pcount(skb) > 1)
2353 return false;
2354 /* TODO: SACK collapsing could be used to remove this condition */
2355 if (skb_shinfo(skb)->nr_frags != 0)
2356 return false;
2357 if (skb_cloned(skb))
2358 return false;
2359 if (skb == tcp_send_head(sk))
2360 return false;
2361 /* Some heurestics for collapsing over SACK'd could be invented */
2362 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2363 return false;
2364
2365 return true;
2366 }
2367
2368 /* Collapse packets in the retransmit queue to make to create
2369 * less packets on the wire. This is only done on retransmission.
2370 */
2371 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2372 int space)
2373 {
2374 struct tcp_sock *tp = tcp_sk(sk);
2375 struct sk_buff *skb = to, *tmp;
2376 bool first = true;
2377
2378 if (!sysctl_tcp_retrans_collapse)
2379 return;
2380 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2381 return;
2382
2383 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2384 if (!tcp_can_collapse(sk, skb))
2385 break;
2386
2387 space -= skb->len;
2388
2389 if (first) {
2390 first = false;
2391 continue;
2392 }
2393
2394 if (space < 0)
2395 break;
2396 /* Punt if not enough space exists in the first SKB for
2397 * the data in the second
2398 */
2399 if (skb->len > skb_availroom(to))
2400 break;
2401
2402 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2403 break;
2404
2405 tcp_collapse_retrans(sk, to);
2406 }
2407 }
2408
2409 /* This retransmits one SKB. Policy decisions and retransmit queue
2410 * state updates are done by the caller. Returns non-zero if an
2411 * error occurred which prevented the send.
2412 */
2413 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2414 {
2415 struct tcp_sock *tp = tcp_sk(sk);
2416 struct inet_connection_sock *icsk = inet_csk(sk);
2417 unsigned int cur_mss;
2418 int err;
2419
2420 /* Inconslusive MTU probe */
2421 if (icsk->icsk_mtup.probe_size) {
2422 icsk->icsk_mtup.probe_size = 0;
2423 }
2424
2425 /* Do not sent more than we queued. 1/4 is reserved for possible
2426 * copying overhead: fragmentation, tunneling, mangling etc.
2427 */
2428 if (atomic_read(&sk->sk_wmem_alloc) >
2429 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2430 return -EAGAIN;
2431
2432 if (skb_still_in_host_queue(sk, skb))
2433 return -EBUSY;
2434
2435 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2436 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2437 BUG();
2438 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2439 return -ENOMEM;
2440 }
2441
2442 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2443 return -EHOSTUNREACH; /* Routing failure or similar. */
2444
2445 cur_mss = tcp_current_mss(sk);
2446
2447 /* If receiver has shrunk his window, and skb is out of
2448 * new window, do not retransmit it. The exception is the
2449 * case, when window is shrunk to zero. In this case
2450 * our retransmit serves as a zero window probe.
2451 */
2452 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2453 TCP_SKB_CB(skb)->seq != tp->snd_una)
2454 return -EAGAIN;
2455
2456 if (skb->len > cur_mss) {
2457 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2458 return -ENOMEM; /* We'll try again later. */
2459 } else {
2460 int oldpcount = tcp_skb_pcount(skb);
2461
2462 if (unlikely(oldpcount > 1)) {
2463 if (skb_unclone(skb, GFP_ATOMIC))
2464 return -ENOMEM;
2465 tcp_init_tso_segs(sk, skb, cur_mss);
2466 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2467 }
2468 }
2469
2470 tcp_retrans_try_collapse(sk, skb, cur_mss);
2471
2472 /* Make a copy, if the first transmission SKB clone we made
2473 * is still in somebody's hands, else make a clone.
2474 */
2475 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2476
2477 /* make sure skb->data is aligned on arches that require it
2478 * and check if ack-trimming & collapsing extended the headroom
2479 * beyond what csum_start can cover.
2480 */
2481 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2482 skb_headroom(skb) >= 0xFFFF)) {
2483 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2484 GFP_ATOMIC);
2485 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2486 -ENOBUFS;
2487 } else {
2488 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2489 }
2490
2491 if (likely(!err)) {
2492 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2493 /* Update global TCP statistics. */
2494 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2495 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2496 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2497 tp->total_retrans++;
2498 }
2499 return err;
2500 }
2501
2502 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2503 {
2504 struct tcp_sock *tp = tcp_sk(sk);
2505 int err = __tcp_retransmit_skb(sk, skb);
2506
2507 if (err == 0) {
2508 #if FASTRETRANS_DEBUG > 0
2509 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2510 net_dbg_ratelimited("retrans_out leaked\n");
2511 }
2512 #endif
2513 if (!tp->retrans_out)
2514 tp->lost_retrans_low = tp->snd_nxt;
2515 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2516 tp->retrans_out += tcp_skb_pcount(skb);
2517
2518 /* Save stamp of the first retransmit. */
2519 if (!tp->retrans_stamp)
2520 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2521
2522 tp->undo_retrans += tcp_skb_pcount(skb);
2523
2524 /* snd_nxt is stored to detect loss of retransmitted segment,
2525 * see tcp_input.c tcp_sacktag_write_queue().
2526 */
2527 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2528 } else if (err != -EBUSY) {
2529 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2530 }
2531 return err;
2532 }
2533
2534 /* Check if we forward retransmits are possible in the current
2535 * window/congestion state.
2536 */
2537 static bool tcp_can_forward_retransmit(struct sock *sk)
2538 {
2539 const struct inet_connection_sock *icsk = inet_csk(sk);
2540 const struct tcp_sock *tp = tcp_sk(sk);
2541
2542 /* Forward retransmissions are possible only during Recovery. */
2543 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2544 return false;
2545
2546 /* No forward retransmissions in Reno are possible. */
2547 if (tcp_is_reno(tp))
2548 return false;
2549
2550 /* Yeah, we have to make difficult choice between forward transmission
2551 * and retransmission... Both ways have their merits...
2552 *
2553 * For now we do not retransmit anything, while we have some new
2554 * segments to send. In the other cases, follow rule 3 for
2555 * NextSeg() specified in RFC3517.
2556 */
2557
2558 if (tcp_may_send_now(sk))
2559 return false;
2560
2561 return true;
2562 }
2563
2564 /* This gets called after a retransmit timeout, and the initially
2565 * retransmitted data is acknowledged. It tries to continue
2566 * resending the rest of the retransmit queue, until either
2567 * we've sent it all or the congestion window limit is reached.
2568 * If doing SACK, the first ACK which comes back for a timeout
2569 * based retransmit packet might feed us FACK information again.
2570 * If so, we use it to avoid unnecessarily retransmissions.
2571 */
2572 void tcp_xmit_retransmit_queue(struct sock *sk)
2573 {
2574 const struct inet_connection_sock *icsk = inet_csk(sk);
2575 struct tcp_sock *tp = tcp_sk(sk);
2576 struct sk_buff *skb;
2577 struct sk_buff *hole = NULL;
2578 u32 last_lost;
2579 int mib_idx;
2580 int fwd_rexmitting = 0;
2581
2582 if (!tp->packets_out)
2583 return;
2584
2585 if (!tp->lost_out)
2586 tp->retransmit_high = tp->snd_una;
2587
2588 if (tp->retransmit_skb_hint) {
2589 skb = tp->retransmit_skb_hint;
2590 last_lost = TCP_SKB_CB(skb)->end_seq;
2591 if (after(last_lost, tp->retransmit_high))
2592 last_lost = tp->retransmit_high;
2593 } else {
2594 skb = tcp_write_queue_head(sk);
2595 last_lost = tp->snd_una;
2596 }
2597
2598 tcp_for_write_queue_from(skb, sk) {
2599 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2600
2601 if (skb == tcp_send_head(sk))
2602 break;
2603 /* we could do better than to assign each time */
2604 if (hole == NULL)
2605 tp->retransmit_skb_hint = skb;
2606
2607 /* Assume this retransmit will generate
2608 * only one packet for congestion window
2609 * calculation purposes. This works because
2610 * tcp_retransmit_skb() will chop up the
2611 * packet to be MSS sized and all the
2612 * packet counting works out.
2613 */
2614 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2615 return;
2616
2617 if (fwd_rexmitting) {
2618 begin_fwd:
2619 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2620 break;
2621 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2622
2623 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2624 tp->retransmit_high = last_lost;
2625 if (!tcp_can_forward_retransmit(sk))
2626 break;
2627 /* Backtrack if necessary to non-L'ed skb */
2628 if (hole != NULL) {
2629 skb = hole;
2630 hole = NULL;
2631 }
2632 fwd_rexmitting = 1;
2633 goto begin_fwd;
2634
2635 } else if (!(sacked & TCPCB_LOST)) {
2636 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2637 hole = skb;
2638 continue;
2639
2640 } else {
2641 last_lost = TCP_SKB_CB(skb)->end_seq;
2642 if (icsk->icsk_ca_state != TCP_CA_Loss)
2643 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2644 else
2645 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2646 }
2647
2648 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2649 continue;
2650
2651 if (tcp_retransmit_skb(sk, skb))
2652 return;
2653
2654 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2655
2656 if (tcp_in_cwnd_reduction(sk))
2657 tp->prr_out += tcp_skb_pcount(skb);
2658
2659 if (skb == tcp_write_queue_head(sk))
2660 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2661 inet_csk(sk)->icsk_rto,
2662 TCP_RTO_MAX);
2663 }
2664 }
2665
2666 /* Send a fin. The caller locks the socket for us. This cannot be
2667 * allowed to fail queueing a FIN frame under any circumstances.
2668 */
2669 void tcp_send_fin(struct sock *sk)
2670 {
2671 struct tcp_sock *tp = tcp_sk(sk);
2672 struct sk_buff *skb = tcp_write_queue_tail(sk);
2673 int mss_now;
2674
2675 /* Optimization, tack on the FIN if we have a queue of
2676 * unsent frames. But be careful about outgoing SACKS
2677 * and IP options.
2678 */
2679 mss_now = tcp_current_mss(sk);
2680
2681 if (tcp_send_head(sk) != NULL) {
2682 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2683 TCP_SKB_CB(skb)->end_seq++;
2684 tp->write_seq++;
2685 } else {
2686 /* Socket is locked, keep trying until memory is available. */
2687 for (;;) {
2688 skb = alloc_skb_fclone(MAX_TCP_HEADER,
2689 sk->sk_allocation);
2690 if (skb)
2691 break;
2692 yield();
2693 }
2694
2695 /* Reserve space for headers and prepare control bits. */
2696 skb_reserve(skb, MAX_TCP_HEADER);
2697 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2698 tcp_init_nondata_skb(skb, tp->write_seq,
2699 TCPHDR_ACK | TCPHDR_FIN);
2700 tcp_queue_skb(sk, skb);
2701 }
2702 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2703 }
2704
2705 /* We get here when a process closes a file descriptor (either due to
2706 * an explicit close() or as a byproduct of exit()'ing) and there
2707 * was unread data in the receive queue. This behavior is recommended
2708 * by RFC 2525, section 2.17. -DaveM
2709 */
2710 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2711 {
2712 struct sk_buff *skb;
2713
2714 /* NOTE: No TCP options attached and we never retransmit this. */
2715 skb = alloc_skb(MAX_TCP_HEADER, priority);
2716 if (!skb) {
2717 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2718 return;
2719 }
2720
2721 /* Reserve space for headers and prepare control bits. */
2722 skb_reserve(skb, MAX_TCP_HEADER);
2723 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2724 TCPHDR_ACK | TCPHDR_RST);
2725 /* Send it off. */
2726 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2727 if (tcp_transmit_skb(sk, skb, 0, priority))
2728 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2729
2730 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2731 }
2732
2733 /* Send a crossed SYN-ACK during socket establishment.
2734 * WARNING: This routine must only be called when we have already sent
2735 * a SYN packet that crossed the incoming SYN that caused this routine
2736 * to get called. If this assumption fails then the initial rcv_wnd
2737 * and rcv_wscale values will not be correct.
2738 */
2739 int tcp_send_synack(struct sock *sk)
2740 {
2741 struct sk_buff *skb;
2742
2743 skb = tcp_write_queue_head(sk);
2744 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2745 pr_debug("%s: wrong queue state\n", __func__);
2746 return -EFAULT;
2747 }
2748 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2749 if (skb_cloned(skb)) {
2750 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2751 if (nskb == NULL)
2752 return -ENOMEM;
2753 tcp_unlink_write_queue(skb, sk);
2754 skb_header_release(nskb);
2755 __tcp_add_write_queue_head(sk, nskb);
2756 sk_wmem_free_skb(sk, skb);
2757 sk->sk_wmem_queued += nskb->truesize;
2758 sk_mem_charge(sk, nskb->truesize);
2759 skb = nskb;
2760 }
2761
2762 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2763 TCP_ECN_send_synack(tcp_sk(sk), skb);
2764 }
2765 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2766 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2767 }
2768
2769 /**
2770 * tcp_make_synack - Prepare a SYN-ACK.
2771 * sk: listener socket
2772 * dst: dst entry attached to the SYNACK
2773 * req: request_sock pointer
2774 *
2775 * Allocate one skb and build a SYNACK packet.
2776 * @dst is consumed : Caller should not use it again.
2777 */
2778 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2779 struct request_sock *req,
2780 struct tcp_fastopen_cookie *foc)
2781 {
2782 struct tcp_out_options opts;
2783 struct inet_request_sock *ireq = inet_rsk(req);
2784 struct tcp_sock *tp = tcp_sk(sk);
2785 struct tcphdr *th;
2786 struct sk_buff *skb;
2787 struct tcp_md5sig_key *md5;
2788 int tcp_header_size;
2789 int mss;
2790
2791 skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2792 if (unlikely(!skb)) {
2793 dst_release(dst);
2794 return NULL;
2795 }
2796 /* Reserve space for headers. */
2797 skb_reserve(skb, MAX_TCP_HEADER);
2798
2799 skb_dst_set(skb, dst);
2800 security_skb_owned_by(skb, sk);
2801
2802 mss = dst_metric_advmss(dst);
2803 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2804 mss = tp->rx_opt.user_mss;
2805
2806 memset(&opts, 0, sizeof(opts));
2807 #ifdef CONFIG_SYN_COOKIES
2808 if (unlikely(req->cookie_ts))
2809 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2810 else
2811 #endif
2812 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2813 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2814 foc) + sizeof(*th);
2815
2816 skb_push(skb, tcp_header_size);
2817 skb_reset_transport_header(skb);
2818
2819 th = tcp_hdr(skb);
2820 memset(th, 0, sizeof(struct tcphdr));
2821 th->syn = 1;
2822 th->ack = 1;
2823 TCP_ECN_make_synack(req, th);
2824 th->source = htons(ireq->ir_num);
2825 th->dest = ireq->ir_rmt_port;
2826 /* Setting of flags are superfluous here for callers (and ECE is
2827 * not even correctly set)
2828 */
2829 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2830 TCPHDR_SYN | TCPHDR_ACK);
2831
2832 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2833 /* XXX data is queued and acked as is. No buffer/window check */
2834 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2835
2836 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2837 th->window = htons(min(req->rcv_wnd, 65535U));
2838 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2839 th->doff = (tcp_header_size >> 2);
2840 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
2841
2842 #ifdef CONFIG_TCP_MD5SIG
2843 /* Okay, we have all we need - do the md5 hash if needed */
2844 if (md5) {
2845 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2846 md5, NULL, req, skb);
2847 }
2848 #endif
2849
2850 return skb;
2851 }
2852 EXPORT_SYMBOL(tcp_make_synack);
2853
2854 /* Do all connect socket setups that can be done AF independent. */
2855 static void tcp_connect_init(struct sock *sk)
2856 {
2857 const struct dst_entry *dst = __sk_dst_get(sk);
2858 struct tcp_sock *tp = tcp_sk(sk);
2859 __u8 rcv_wscale;
2860
2861 /* We'll fix this up when we get a response from the other end.
2862 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2863 */
2864 tp->tcp_header_len = sizeof(struct tcphdr) +
2865 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2866
2867 #ifdef CONFIG_TCP_MD5SIG
2868 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2869 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2870 #endif
2871
2872 /* If user gave his TCP_MAXSEG, record it to clamp */
2873 if (tp->rx_opt.user_mss)
2874 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2875 tp->max_window = 0;
2876 tcp_mtup_init(sk);
2877 tcp_sync_mss(sk, dst_mtu(dst));
2878
2879 if (!tp->window_clamp)
2880 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2881 tp->advmss = dst_metric_advmss(dst);
2882 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2883 tp->advmss = tp->rx_opt.user_mss;
2884
2885 tcp_initialize_rcv_mss(sk);
2886
2887 /* limit the window selection if the user enforce a smaller rx buffer */
2888 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2889 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2890 tp->window_clamp = tcp_full_space(sk);
2891
2892 tcp_select_initial_window(tcp_full_space(sk),
2893 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2894 &tp->rcv_wnd,
2895 &tp->window_clamp,
2896 sysctl_tcp_window_scaling,
2897 &rcv_wscale,
2898 dst_metric(dst, RTAX_INITRWND));
2899
2900 tp->rx_opt.rcv_wscale = rcv_wscale;
2901 tp->rcv_ssthresh = tp->rcv_wnd;
2902
2903 sk->sk_err = 0;
2904 sock_reset_flag(sk, SOCK_DONE);
2905 tp->snd_wnd = 0;
2906 tcp_init_wl(tp, 0);
2907 tp->snd_una = tp->write_seq;
2908 tp->snd_sml = tp->write_seq;
2909 tp->snd_up = tp->write_seq;
2910 tp->snd_nxt = tp->write_seq;
2911
2912 if (likely(!tp->repair))
2913 tp->rcv_nxt = 0;
2914 else
2915 tp->rcv_tstamp = tcp_time_stamp;
2916 tp->rcv_wup = tp->rcv_nxt;
2917 tp->copied_seq = tp->rcv_nxt;
2918
2919 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2920 inet_csk(sk)->icsk_retransmits = 0;
2921 tcp_clear_retrans(tp);
2922 }
2923
2924 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2925 {
2926 struct tcp_sock *tp = tcp_sk(sk);
2927 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2928
2929 tcb->end_seq += skb->len;
2930 skb_header_release(skb);
2931 __tcp_add_write_queue_tail(sk, skb);
2932 sk->sk_wmem_queued += skb->truesize;
2933 sk_mem_charge(sk, skb->truesize);
2934 tp->write_seq = tcb->end_seq;
2935 tp->packets_out += tcp_skb_pcount(skb);
2936 }
2937
2938 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2939 * queue a data-only packet after the regular SYN, such that regular SYNs
2940 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2941 * only the SYN sequence, the data are retransmitted in the first ACK.
2942 * If cookie is not cached or other error occurs, falls back to send a
2943 * regular SYN with Fast Open cookie request option.
2944 */
2945 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2946 {
2947 struct tcp_sock *tp = tcp_sk(sk);
2948 struct tcp_fastopen_request *fo = tp->fastopen_req;
2949 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2950 struct sk_buff *syn_data = NULL, *data;
2951 unsigned long last_syn_loss = 0;
2952
2953 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
2954 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2955 &syn_loss, &last_syn_loss);
2956 /* Recurring FO SYN losses: revert to regular handshake temporarily */
2957 if (syn_loss > 1 &&
2958 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2959 fo->cookie.len = -1;
2960 goto fallback;
2961 }
2962
2963 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2964 fo->cookie.len = -1;
2965 else if (fo->cookie.len <= 0)
2966 goto fallback;
2967
2968 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2969 * user-MSS. Reserve maximum option space for middleboxes that add
2970 * private TCP options. The cost is reduced data space in SYN :(
2971 */
2972 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2973 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2974 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2975 MAX_TCP_OPTION_SPACE;
2976
2977 space = min_t(size_t, space, fo->size);
2978
2979 /* limit to order-0 allocations */
2980 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
2981
2982 syn_data = skb_copy_expand(syn, MAX_TCP_HEADER, space,
2983 sk->sk_allocation);
2984 if (syn_data == NULL)
2985 goto fallback;
2986
2987 for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2988 struct iovec *iov = &fo->data->msg_iov[i];
2989 unsigned char __user *from = iov->iov_base;
2990 int len = iov->iov_len;
2991
2992 if (syn_data->len + len > space)
2993 len = space - syn_data->len;
2994 else if (i + 1 == iovlen)
2995 /* No more data pending in inet_wait_for_connect() */
2996 fo->data = NULL;
2997
2998 if (skb_add_data(syn_data, from, len))
2999 goto fallback;
3000 }
3001
3002 /* Queue a data-only packet after the regular SYN for retransmission */
3003 data = pskb_copy(syn_data, sk->sk_allocation);
3004 if (data == NULL)
3005 goto fallback;
3006 TCP_SKB_CB(data)->seq++;
3007 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
3008 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
3009 tcp_connect_queue_skb(sk, data);
3010 fo->copied = data->len;
3011
3012 /* syn_data is about to be sent, we need to take current time stamps
3013 * for the packets that are in write queue : SYN packet and DATA
3014 */
3015 skb_mstamp_get(&syn->skb_mstamp);
3016 data->skb_mstamp = syn->skb_mstamp;
3017
3018 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
3019 tp->syn_data = (fo->copied > 0);
3020 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3021 goto done;
3022 }
3023 syn_data = NULL;
3024
3025 fallback:
3026 /* Send a regular SYN with Fast Open cookie request option */
3027 if (fo->cookie.len > 0)
3028 fo->cookie.len = 0;
3029 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3030 if (err)
3031 tp->syn_fastopen = 0;
3032 kfree_skb(syn_data);
3033 done:
3034 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3035 return err;
3036 }
3037
3038 /* Build a SYN and send it off. */
3039 int tcp_connect(struct sock *sk)
3040 {
3041 struct tcp_sock *tp = tcp_sk(sk);
3042 struct sk_buff *buff;
3043 int err;
3044
3045 tcp_connect_init(sk);
3046
3047 if (unlikely(tp->repair)) {
3048 tcp_finish_connect(sk, NULL);
3049 return 0;
3050 }
3051
3052 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
3053 if (unlikely(buff == NULL))
3054 return -ENOBUFS;
3055
3056 /* Reserve space for headers. */
3057 skb_reserve(buff, MAX_TCP_HEADER);
3058
3059 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3060 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
3061 tcp_connect_queue_skb(sk, buff);
3062 TCP_ECN_send_syn(sk, buff);
3063
3064 /* Send off SYN; include data in Fast Open. */
3065 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3066 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3067 if (err == -ECONNREFUSED)
3068 return err;
3069
3070 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3071 * in order to make this packet get counted in tcpOutSegs.
3072 */
3073 tp->snd_nxt = tp->write_seq;
3074 tp->pushed_seq = tp->write_seq;
3075 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3076
3077 /* Timer for repeating the SYN until an answer. */
3078 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3079 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3080 return 0;
3081 }
3082 EXPORT_SYMBOL(tcp_connect);
3083
3084 /* Send out a delayed ack, the caller does the policy checking
3085 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3086 * for details.
3087 */
3088 void tcp_send_delayed_ack(struct sock *sk)
3089 {
3090 struct inet_connection_sock *icsk = inet_csk(sk);
3091 int ato = icsk->icsk_ack.ato;
3092 unsigned long timeout;
3093
3094 if (ato > TCP_DELACK_MIN) {
3095 const struct tcp_sock *tp = tcp_sk(sk);
3096 int max_ato = HZ / 2;
3097
3098 if (icsk->icsk_ack.pingpong ||
3099 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3100 max_ato = TCP_DELACK_MAX;
3101
3102 /* Slow path, intersegment interval is "high". */
3103
3104 /* If some rtt estimate is known, use it to bound delayed ack.
3105 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3106 * directly.
3107 */
3108 if (tp->srtt_us) {
3109 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3110 TCP_DELACK_MIN);
3111
3112 if (rtt < max_ato)
3113 max_ato = rtt;
3114 }
3115
3116 ato = min(ato, max_ato);
3117 }
3118
3119 /* Stay within the limit we were given */
3120 timeout = jiffies + ato;
3121
3122 /* Use new timeout only if there wasn't a older one earlier. */
3123 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3124 /* If delack timer was blocked or is about to expire,
3125 * send ACK now.
3126 */
3127 if (icsk->icsk_ack.blocked ||
3128 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3129 tcp_send_ack(sk);
3130 return;
3131 }
3132
3133 if (!time_before(timeout, icsk->icsk_ack.timeout))
3134 timeout = icsk->icsk_ack.timeout;
3135 }
3136 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3137 icsk->icsk_ack.timeout = timeout;
3138 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3139 }
3140
3141 /* This routine sends an ack and also updates the window. */
3142 void tcp_send_ack(struct sock *sk)
3143 {
3144 struct sk_buff *buff;
3145
3146 /* If we have been reset, we may not send again. */
3147 if (sk->sk_state == TCP_CLOSE)
3148 return;
3149
3150 /* We are not putting this on the write queue, so
3151 * tcp_transmit_skb() will set the ownership to this
3152 * sock.
3153 */
3154 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3155 if (buff == NULL) {
3156 inet_csk_schedule_ack(sk);
3157 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3158 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3159 TCP_DELACK_MAX, TCP_RTO_MAX);
3160 return;
3161 }
3162
3163 /* Reserve space for headers and prepare control bits. */
3164 skb_reserve(buff, MAX_TCP_HEADER);
3165 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3166
3167 /* Send it off, this clears delayed acks for us. */
3168 TCP_SKB_CB(buff)->when = tcp_time_stamp;
3169 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3170 }
3171
3172 /* This routine sends a packet with an out of date sequence
3173 * number. It assumes the other end will try to ack it.
3174 *
3175 * Question: what should we make while urgent mode?
3176 * 4.4BSD forces sending single byte of data. We cannot send
3177 * out of window data, because we have SND.NXT==SND.MAX...
3178 *
3179 * Current solution: to send TWO zero-length segments in urgent mode:
3180 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3181 * out-of-date with SND.UNA-1 to probe window.
3182 */
3183 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3184 {
3185 struct tcp_sock *tp = tcp_sk(sk);
3186 struct sk_buff *skb;
3187
3188 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3189 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3190 if (skb == NULL)
3191 return -1;
3192
3193 /* Reserve space for headers and set control bits. */
3194 skb_reserve(skb, MAX_TCP_HEADER);
3195 /* Use a previous sequence. This should cause the other
3196 * end to send an ack. Don't queue or clone SKB, just
3197 * send it.
3198 */
3199 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3200 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3201 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3202 }
3203
3204 void tcp_send_window_probe(struct sock *sk)
3205 {
3206 if (sk->sk_state == TCP_ESTABLISHED) {
3207 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3208 tcp_xmit_probe_skb(sk, 0);
3209 }
3210 }
3211
3212 /* Initiate keepalive or window probe from timer. */
3213 int tcp_write_wakeup(struct sock *sk)
3214 {
3215 struct tcp_sock *tp = tcp_sk(sk);
3216 struct sk_buff *skb;
3217
3218 if (sk->sk_state == TCP_CLOSE)
3219 return -1;
3220
3221 if ((skb = tcp_send_head(sk)) != NULL &&
3222 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3223 int err;
3224 unsigned int mss = tcp_current_mss(sk);
3225 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3226
3227 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3228 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3229
3230 /* We are probing the opening of a window
3231 * but the window size is != 0
3232 * must have been a result SWS avoidance ( sender )
3233 */
3234 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3235 skb->len > mss) {
3236 seg_size = min(seg_size, mss);
3237 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3238 if (tcp_fragment(sk, skb, seg_size, mss))
3239 return -1;
3240 } else if (!tcp_skb_pcount(skb))
3241 tcp_set_skb_tso_segs(sk, skb, mss);
3242
3243 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3244 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3245 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3246 if (!err)
3247 tcp_event_new_data_sent(sk, skb);
3248 return err;
3249 } else {
3250 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3251 tcp_xmit_probe_skb(sk, 1);
3252 return tcp_xmit_probe_skb(sk, 0);
3253 }
3254 }
3255
3256 /* A window probe timeout has occurred. If window is not closed send
3257 * a partial packet else a zero probe.
3258 */
3259 void tcp_send_probe0(struct sock *sk)
3260 {
3261 struct inet_connection_sock *icsk = inet_csk(sk);
3262 struct tcp_sock *tp = tcp_sk(sk);
3263 int err;
3264
3265 err = tcp_write_wakeup(sk);
3266
3267 if (tp->packets_out || !tcp_send_head(sk)) {
3268 /* Cancel probe timer, if it is not required. */
3269 icsk->icsk_probes_out = 0;
3270 icsk->icsk_backoff = 0;
3271 return;
3272 }
3273
3274 if (err <= 0) {
3275 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3276 icsk->icsk_backoff++;
3277 icsk->icsk_probes_out++;
3278 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3279 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3280 TCP_RTO_MAX);
3281 } else {
3282 /* If packet was not sent due to local congestion,
3283 * do not backoff and do not remember icsk_probes_out.
3284 * Let local senders to fight for local resources.
3285 *
3286 * Use accumulated backoff yet.
3287 */
3288 if (!icsk->icsk_probes_out)
3289 icsk->icsk_probes_out = 1;
3290 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3291 min(icsk->icsk_rto << icsk->icsk_backoff,
3292 TCP_RESOURCE_PROBE_INTERVAL),
3293 TCP_RTO_MAX);
3294 }
3295 }
This page took 0.136554 seconds and 5 git commands to generate.