tcp: properly send new data in fast recovery in first RTT
[deliverable/linux.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 int push_one, gfp_t gfp);
70
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 struct inet_connection_sock *icsk = inet_csk(sk);
75 struct tcp_sock *tp = tcp_sk(sk);
76 unsigned int prior_packets = tp->packets_out;
77
78 tcp_advance_send_head(sk, skb);
79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 tcp_rearm_rto(sk);
85 }
86 }
87
88 /* SND.NXT, if window was not shrunk.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
93 */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 const struct tcp_sock *tp = tcp_sk(sk);
97
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 return tp->snd_nxt;
100 else
101 return tcp_wnd_end(tp);
102 }
103
104 /* Calculate mss to advertise in SYN segment.
105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106 *
107 * 1. It is independent of path mtu.
108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110 * attached devices, because some buggy hosts are confused by
111 * large MSS.
112 * 4. We do not make 3, we advertise MSS, calculated from first
113 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
114 * This may be overridden via information stored in routing table.
115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116 * probably even Jumbo".
117 */
118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 struct tcp_sock *tp = tcp_sk(sk);
121 const struct dst_entry *dst = __sk_dst_get(sk);
122 int mss = tp->advmss;
123
124 if (dst) {
125 unsigned int metric = dst_metric_advmss(dst);
126
127 if (metric < mss) {
128 mss = metric;
129 tp->advmss = mss;
130 }
131 }
132
133 return (__u16)mss;
134 }
135
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137 * This is the first part of cwnd validation mechanism. */
138 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
139 {
140 struct tcp_sock *tp = tcp_sk(sk);
141 s32 delta = tcp_time_stamp - tp->lsndtime;
142 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
143 u32 cwnd = tp->snd_cwnd;
144
145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146
147 tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 restart_cwnd = min(restart_cwnd, cwnd);
149
150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 cwnd >>= 1;
152 tp->snd_cwnd = max(cwnd, restart_cwnd);
153 tp->snd_cwnd_stamp = tcp_time_stamp;
154 tp->snd_cwnd_used = 0;
155 }
156
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 struct sock *sk)
160 {
161 struct inet_connection_sock *icsk = inet_csk(sk);
162 const u32 now = tcp_time_stamp;
163
164 if (sysctl_tcp_slow_start_after_idle &&
165 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
166 tcp_cwnd_restart(sk, __sk_dst_get(sk));
167
168 tp->lsndtime = now;
169
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
172 */
173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 icsk->icsk_ack.pingpong = 1;
175 }
176
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
179 {
180 tcp_dec_quickack_mode(sk, pkts);
181 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
182 }
183
184
185 u32 tcp_default_init_rwnd(u32 mss)
186 {
187 /* Initial receive window should be twice of TCP_INIT_CWND to
188 * enable proper sending of new unset data during fast recovery
189 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
190 * limit when mss is larger than 1460.
191 */
192 u32 init_rwnd = TCP_INIT_CWND * 2;
193
194 if (mss > 1460)
195 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
196 return init_rwnd;
197 }
198
199 /* Determine a window scaling and initial window to offer.
200 * Based on the assumption that the given amount of space
201 * will be offered. Store the results in the tp structure.
202 * NOTE: for smooth operation initial space offering should
203 * be a multiple of mss if possible. We assume here that mss >= 1.
204 * This MUST be enforced by all callers.
205 */
206 void tcp_select_initial_window(int __space, __u32 mss,
207 __u32 *rcv_wnd, __u32 *window_clamp,
208 int wscale_ok, __u8 *rcv_wscale,
209 __u32 init_rcv_wnd)
210 {
211 unsigned int space = (__space < 0 ? 0 : __space);
212
213 /* If no clamp set the clamp to the max possible scaled window */
214 if (*window_clamp == 0)
215 (*window_clamp) = (65535 << 14);
216 space = min(*window_clamp, space);
217
218 /* Quantize space offering to a multiple of mss if possible. */
219 if (space > mss)
220 space = (space / mss) * mss;
221
222 /* NOTE: offering an initial window larger than 32767
223 * will break some buggy TCP stacks. If the admin tells us
224 * it is likely we could be speaking with such a buggy stack
225 * we will truncate our initial window offering to 32K-1
226 * unless the remote has sent us a window scaling option,
227 * which we interpret as a sign the remote TCP is not
228 * misinterpreting the window field as a signed quantity.
229 */
230 if (sysctl_tcp_workaround_signed_windows)
231 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
232 else
233 (*rcv_wnd) = space;
234
235 (*rcv_wscale) = 0;
236 if (wscale_ok) {
237 /* Set window scaling on max possible window
238 * See RFC1323 for an explanation of the limit to 14
239 */
240 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
241 space = min_t(u32, space, *window_clamp);
242 while (space > 65535 && (*rcv_wscale) < 14) {
243 space >>= 1;
244 (*rcv_wscale)++;
245 }
246 }
247
248 if (mss > (1 << *rcv_wscale)) {
249 if (!init_rcv_wnd) /* Use default unless specified otherwise */
250 init_rcv_wnd = tcp_default_init_rwnd(mss);
251 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
252 }
253
254 /* Set the clamp no higher than max representable value */
255 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
256 }
257 EXPORT_SYMBOL(tcp_select_initial_window);
258
259 /* Chose a new window to advertise, update state in tcp_sock for the
260 * socket, and return result with RFC1323 scaling applied. The return
261 * value can be stuffed directly into th->window for an outgoing
262 * frame.
263 */
264 static u16 tcp_select_window(struct sock *sk)
265 {
266 struct tcp_sock *tp = tcp_sk(sk);
267 u32 cur_win = tcp_receive_window(tp);
268 u32 new_win = __tcp_select_window(sk);
269
270 /* Never shrink the offered window */
271 if (new_win < cur_win) {
272 /* Danger Will Robinson!
273 * Don't update rcv_wup/rcv_wnd here or else
274 * we will not be able to advertise a zero
275 * window in time. --DaveM
276 *
277 * Relax Will Robinson.
278 */
279 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
280 }
281 tp->rcv_wnd = new_win;
282 tp->rcv_wup = tp->rcv_nxt;
283
284 /* Make sure we do not exceed the maximum possible
285 * scaled window.
286 */
287 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
288 new_win = min(new_win, MAX_TCP_WINDOW);
289 else
290 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
291
292 /* RFC1323 scaling applied */
293 new_win >>= tp->rx_opt.rcv_wscale;
294
295 /* If we advertise zero window, disable fast path. */
296 if (new_win == 0)
297 tp->pred_flags = 0;
298
299 return new_win;
300 }
301
302 /* Packet ECN state for a SYN-ACK */
303 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
304 {
305 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
306 if (!(tp->ecn_flags & TCP_ECN_OK))
307 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
308 }
309
310 /* Packet ECN state for a SYN. */
311 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
312 {
313 struct tcp_sock *tp = tcp_sk(sk);
314
315 tp->ecn_flags = 0;
316 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
317 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
318 tp->ecn_flags = TCP_ECN_OK;
319 }
320 }
321
322 static __inline__ void
323 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
324 {
325 if (inet_rsk(req)->ecn_ok)
326 th->ece = 1;
327 }
328
329 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
330 * be sent.
331 */
332 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
333 int tcp_header_len)
334 {
335 struct tcp_sock *tp = tcp_sk(sk);
336
337 if (tp->ecn_flags & TCP_ECN_OK) {
338 /* Not-retransmitted data segment: set ECT and inject CWR. */
339 if (skb->len != tcp_header_len &&
340 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
341 INET_ECN_xmit(sk);
342 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
343 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
344 tcp_hdr(skb)->cwr = 1;
345 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
346 }
347 } else {
348 /* ACK or retransmitted segment: clear ECT|CE */
349 INET_ECN_dontxmit(sk);
350 }
351 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
352 tcp_hdr(skb)->ece = 1;
353 }
354 }
355
356 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
357 * auto increment end seqno.
358 */
359 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
360 {
361 skb->ip_summed = CHECKSUM_PARTIAL;
362 skb->csum = 0;
363
364 TCP_SKB_CB(skb)->tcp_flags = flags;
365 TCP_SKB_CB(skb)->sacked = 0;
366
367 skb_shinfo(skb)->gso_segs = 1;
368 skb_shinfo(skb)->gso_size = 0;
369 skb_shinfo(skb)->gso_type = 0;
370
371 TCP_SKB_CB(skb)->seq = seq;
372 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
373 seq++;
374 TCP_SKB_CB(skb)->end_seq = seq;
375 }
376
377 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
378 {
379 return tp->snd_una != tp->snd_up;
380 }
381
382 #define OPTION_SACK_ADVERTISE (1 << 0)
383 #define OPTION_TS (1 << 1)
384 #define OPTION_MD5 (1 << 2)
385 #define OPTION_WSCALE (1 << 3)
386 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
387
388 struct tcp_out_options {
389 u16 options; /* bit field of OPTION_* */
390 u16 mss; /* 0 to disable */
391 u8 ws; /* window scale, 0 to disable */
392 u8 num_sack_blocks; /* number of SACK blocks to include */
393 u8 hash_size; /* bytes in hash_location */
394 __u8 *hash_location; /* temporary pointer, overloaded */
395 __u32 tsval, tsecr; /* need to include OPTION_TS */
396 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
397 };
398
399 /* Write previously computed TCP options to the packet.
400 *
401 * Beware: Something in the Internet is very sensitive to the ordering of
402 * TCP options, we learned this through the hard way, so be careful here.
403 * Luckily we can at least blame others for their non-compliance but from
404 * inter-operatibility perspective it seems that we're somewhat stuck with
405 * the ordering which we have been using if we want to keep working with
406 * those broken things (not that it currently hurts anybody as there isn't
407 * particular reason why the ordering would need to be changed).
408 *
409 * At least SACK_PERM as the first option is known to lead to a disaster
410 * (but it may well be that other scenarios fail similarly).
411 */
412 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
413 struct tcp_out_options *opts)
414 {
415 u16 options = opts->options; /* mungable copy */
416
417 if (unlikely(OPTION_MD5 & options)) {
418 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
419 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
420 /* overload cookie hash location */
421 opts->hash_location = (__u8 *)ptr;
422 ptr += 4;
423 }
424
425 if (unlikely(opts->mss)) {
426 *ptr++ = htonl((TCPOPT_MSS << 24) |
427 (TCPOLEN_MSS << 16) |
428 opts->mss);
429 }
430
431 if (likely(OPTION_TS & options)) {
432 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
433 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
434 (TCPOLEN_SACK_PERM << 16) |
435 (TCPOPT_TIMESTAMP << 8) |
436 TCPOLEN_TIMESTAMP);
437 options &= ~OPTION_SACK_ADVERTISE;
438 } else {
439 *ptr++ = htonl((TCPOPT_NOP << 24) |
440 (TCPOPT_NOP << 16) |
441 (TCPOPT_TIMESTAMP << 8) |
442 TCPOLEN_TIMESTAMP);
443 }
444 *ptr++ = htonl(opts->tsval);
445 *ptr++ = htonl(opts->tsecr);
446 }
447
448 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
449 *ptr++ = htonl((TCPOPT_NOP << 24) |
450 (TCPOPT_NOP << 16) |
451 (TCPOPT_SACK_PERM << 8) |
452 TCPOLEN_SACK_PERM);
453 }
454
455 if (unlikely(OPTION_WSCALE & options)) {
456 *ptr++ = htonl((TCPOPT_NOP << 24) |
457 (TCPOPT_WINDOW << 16) |
458 (TCPOLEN_WINDOW << 8) |
459 opts->ws);
460 }
461
462 if (unlikely(opts->num_sack_blocks)) {
463 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
464 tp->duplicate_sack : tp->selective_acks;
465 int this_sack;
466
467 *ptr++ = htonl((TCPOPT_NOP << 24) |
468 (TCPOPT_NOP << 16) |
469 (TCPOPT_SACK << 8) |
470 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
471 TCPOLEN_SACK_PERBLOCK)));
472
473 for (this_sack = 0; this_sack < opts->num_sack_blocks;
474 ++this_sack) {
475 *ptr++ = htonl(sp[this_sack].start_seq);
476 *ptr++ = htonl(sp[this_sack].end_seq);
477 }
478
479 tp->rx_opt.dsack = 0;
480 }
481
482 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
483 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
484
485 *ptr++ = htonl((TCPOPT_EXP << 24) |
486 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
487 TCPOPT_FASTOPEN_MAGIC);
488
489 memcpy(ptr, foc->val, foc->len);
490 if ((foc->len & 3) == 2) {
491 u8 *align = ((u8 *)ptr) + foc->len;
492 align[0] = align[1] = TCPOPT_NOP;
493 }
494 ptr += (foc->len + 3) >> 2;
495 }
496 }
497
498 /* Compute TCP options for SYN packets. This is not the final
499 * network wire format yet.
500 */
501 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
502 struct tcp_out_options *opts,
503 struct tcp_md5sig_key **md5)
504 {
505 struct tcp_sock *tp = tcp_sk(sk);
506 unsigned int remaining = MAX_TCP_OPTION_SPACE;
507 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
508
509 #ifdef CONFIG_TCP_MD5SIG
510 *md5 = tp->af_specific->md5_lookup(sk, sk);
511 if (*md5) {
512 opts->options |= OPTION_MD5;
513 remaining -= TCPOLEN_MD5SIG_ALIGNED;
514 }
515 #else
516 *md5 = NULL;
517 #endif
518
519 /* We always get an MSS option. The option bytes which will be seen in
520 * normal data packets should timestamps be used, must be in the MSS
521 * advertised. But we subtract them from tp->mss_cache so that
522 * calculations in tcp_sendmsg are simpler etc. So account for this
523 * fact here if necessary. If we don't do this correctly, as a
524 * receiver we won't recognize data packets as being full sized when we
525 * should, and thus we won't abide by the delayed ACK rules correctly.
526 * SACKs don't matter, we never delay an ACK when we have any of those
527 * going out. */
528 opts->mss = tcp_advertise_mss(sk);
529 remaining -= TCPOLEN_MSS_ALIGNED;
530
531 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
532 opts->options |= OPTION_TS;
533 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
534 opts->tsecr = tp->rx_opt.ts_recent;
535 remaining -= TCPOLEN_TSTAMP_ALIGNED;
536 }
537 if (likely(sysctl_tcp_window_scaling)) {
538 opts->ws = tp->rx_opt.rcv_wscale;
539 opts->options |= OPTION_WSCALE;
540 remaining -= TCPOLEN_WSCALE_ALIGNED;
541 }
542 if (likely(sysctl_tcp_sack)) {
543 opts->options |= OPTION_SACK_ADVERTISE;
544 if (unlikely(!(OPTION_TS & opts->options)))
545 remaining -= TCPOLEN_SACKPERM_ALIGNED;
546 }
547
548 if (fastopen && fastopen->cookie.len >= 0) {
549 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
550 need = (need + 3) & ~3U; /* Align to 32 bits */
551 if (remaining >= need) {
552 opts->options |= OPTION_FAST_OPEN_COOKIE;
553 opts->fastopen_cookie = &fastopen->cookie;
554 remaining -= need;
555 tp->syn_fastopen = 1;
556 }
557 }
558
559 return MAX_TCP_OPTION_SPACE - remaining;
560 }
561
562 /* Set up TCP options for SYN-ACKs. */
563 static unsigned int tcp_synack_options(struct sock *sk,
564 struct request_sock *req,
565 unsigned int mss, struct sk_buff *skb,
566 struct tcp_out_options *opts,
567 struct tcp_md5sig_key **md5,
568 struct tcp_fastopen_cookie *foc)
569 {
570 struct inet_request_sock *ireq = inet_rsk(req);
571 unsigned int remaining = MAX_TCP_OPTION_SPACE;
572
573 #ifdef CONFIG_TCP_MD5SIG
574 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
575 if (*md5) {
576 opts->options |= OPTION_MD5;
577 remaining -= TCPOLEN_MD5SIG_ALIGNED;
578
579 /* We can't fit any SACK blocks in a packet with MD5 + TS
580 * options. There was discussion about disabling SACK
581 * rather than TS in order to fit in better with old,
582 * buggy kernels, but that was deemed to be unnecessary.
583 */
584 ireq->tstamp_ok &= !ireq->sack_ok;
585 }
586 #else
587 *md5 = NULL;
588 #endif
589
590 /* We always send an MSS option. */
591 opts->mss = mss;
592 remaining -= TCPOLEN_MSS_ALIGNED;
593
594 if (likely(ireq->wscale_ok)) {
595 opts->ws = ireq->rcv_wscale;
596 opts->options |= OPTION_WSCALE;
597 remaining -= TCPOLEN_WSCALE_ALIGNED;
598 }
599 if (likely(ireq->tstamp_ok)) {
600 opts->options |= OPTION_TS;
601 opts->tsval = TCP_SKB_CB(skb)->when;
602 opts->tsecr = req->ts_recent;
603 remaining -= TCPOLEN_TSTAMP_ALIGNED;
604 }
605 if (likely(ireq->sack_ok)) {
606 opts->options |= OPTION_SACK_ADVERTISE;
607 if (unlikely(!ireq->tstamp_ok))
608 remaining -= TCPOLEN_SACKPERM_ALIGNED;
609 }
610 if (foc != NULL) {
611 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
612 need = (need + 3) & ~3U; /* Align to 32 bits */
613 if (remaining >= need) {
614 opts->options |= OPTION_FAST_OPEN_COOKIE;
615 opts->fastopen_cookie = foc;
616 remaining -= need;
617 }
618 }
619
620 return MAX_TCP_OPTION_SPACE - remaining;
621 }
622
623 /* Compute TCP options for ESTABLISHED sockets. This is not the
624 * final wire format yet.
625 */
626 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
627 struct tcp_out_options *opts,
628 struct tcp_md5sig_key **md5)
629 {
630 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
631 struct tcp_sock *tp = tcp_sk(sk);
632 unsigned int size = 0;
633 unsigned int eff_sacks;
634
635 #ifdef CONFIG_TCP_MD5SIG
636 *md5 = tp->af_specific->md5_lookup(sk, sk);
637 if (unlikely(*md5)) {
638 opts->options |= OPTION_MD5;
639 size += TCPOLEN_MD5SIG_ALIGNED;
640 }
641 #else
642 *md5 = NULL;
643 #endif
644
645 if (likely(tp->rx_opt.tstamp_ok)) {
646 opts->options |= OPTION_TS;
647 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
648 opts->tsecr = tp->rx_opt.ts_recent;
649 size += TCPOLEN_TSTAMP_ALIGNED;
650 }
651
652 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
653 if (unlikely(eff_sacks)) {
654 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
655 opts->num_sack_blocks =
656 min_t(unsigned int, eff_sacks,
657 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
658 TCPOLEN_SACK_PERBLOCK);
659 size += TCPOLEN_SACK_BASE_ALIGNED +
660 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
661 }
662
663 return size;
664 }
665
666
667 /* TCP SMALL QUEUES (TSQ)
668 *
669 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
670 * to reduce RTT and bufferbloat.
671 * We do this using a special skb destructor (tcp_wfree).
672 *
673 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
674 * needs to be reallocated in a driver.
675 * The invariant being skb->truesize substracted from sk->sk_wmem_alloc
676 *
677 * Since transmit from skb destructor is forbidden, we use a tasklet
678 * to process all sockets that eventually need to send more skbs.
679 * We use one tasklet per cpu, with its own queue of sockets.
680 */
681 struct tsq_tasklet {
682 struct tasklet_struct tasklet;
683 struct list_head head; /* queue of tcp sockets */
684 };
685 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
686
687 static void tcp_tsq_handler(struct sock *sk)
688 {
689 if ((1 << sk->sk_state) &
690 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
691 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
692 tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC);
693 }
694 /*
695 * One tasklest per cpu tries to send more skbs.
696 * We run in tasklet context but need to disable irqs when
697 * transfering tsq->head because tcp_wfree() might
698 * interrupt us (non NAPI drivers)
699 */
700 static void tcp_tasklet_func(unsigned long data)
701 {
702 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
703 LIST_HEAD(list);
704 unsigned long flags;
705 struct list_head *q, *n;
706 struct tcp_sock *tp;
707 struct sock *sk;
708
709 local_irq_save(flags);
710 list_splice_init(&tsq->head, &list);
711 local_irq_restore(flags);
712
713 list_for_each_safe(q, n, &list) {
714 tp = list_entry(q, struct tcp_sock, tsq_node);
715 list_del(&tp->tsq_node);
716
717 sk = (struct sock *)tp;
718 bh_lock_sock(sk);
719
720 if (!sock_owned_by_user(sk)) {
721 tcp_tsq_handler(sk);
722 } else {
723 /* defer the work to tcp_release_cb() */
724 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
725 }
726 bh_unlock_sock(sk);
727
728 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
729 sk_free(sk);
730 }
731 }
732
733 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
734 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
735 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
736 (1UL << TCP_MTU_REDUCED_DEFERRED))
737 /**
738 * tcp_release_cb - tcp release_sock() callback
739 * @sk: socket
740 *
741 * called from release_sock() to perform protocol dependent
742 * actions before socket release.
743 */
744 void tcp_release_cb(struct sock *sk)
745 {
746 struct tcp_sock *tp = tcp_sk(sk);
747 unsigned long flags, nflags;
748
749 /* perform an atomic operation only if at least one flag is set */
750 do {
751 flags = tp->tsq_flags;
752 if (!(flags & TCP_DEFERRED_ALL))
753 return;
754 nflags = flags & ~TCP_DEFERRED_ALL;
755 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
756
757 if (flags & (1UL << TCP_TSQ_DEFERRED))
758 tcp_tsq_handler(sk);
759
760 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
761 tcp_write_timer_handler(sk);
762 __sock_put(sk);
763 }
764 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
765 tcp_delack_timer_handler(sk);
766 __sock_put(sk);
767 }
768 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
769 sk->sk_prot->mtu_reduced(sk);
770 __sock_put(sk);
771 }
772 }
773 EXPORT_SYMBOL(tcp_release_cb);
774
775 void __init tcp_tasklet_init(void)
776 {
777 int i;
778
779 for_each_possible_cpu(i) {
780 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
781
782 INIT_LIST_HEAD(&tsq->head);
783 tasklet_init(&tsq->tasklet,
784 tcp_tasklet_func,
785 (unsigned long)tsq);
786 }
787 }
788
789 /*
790 * Write buffer destructor automatically called from kfree_skb.
791 * We cant xmit new skbs from this context, as we might already
792 * hold qdisc lock.
793 */
794 void tcp_wfree(struct sk_buff *skb)
795 {
796 struct sock *sk = skb->sk;
797 struct tcp_sock *tp = tcp_sk(sk);
798
799 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
800 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
801 unsigned long flags;
802 struct tsq_tasklet *tsq;
803
804 /* Keep a ref on socket.
805 * This last ref will be released in tcp_tasklet_func()
806 */
807 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
808
809 /* queue this socket to tasklet queue */
810 local_irq_save(flags);
811 tsq = &__get_cpu_var(tsq_tasklet);
812 list_add(&tp->tsq_node, &tsq->head);
813 tasklet_schedule(&tsq->tasklet);
814 local_irq_restore(flags);
815 } else {
816 sock_wfree(skb);
817 }
818 }
819
820 /* This routine actually transmits TCP packets queued in by
821 * tcp_do_sendmsg(). This is used by both the initial
822 * transmission and possible later retransmissions.
823 * All SKB's seen here are completely headerless. It is our
824 * job to build the TCP header, and pass the packet down to
825 * IP so it can do the same plus pass the packet off to the
826 * device.
827 *
828 * We are working here with either a clone of the original
829 * SKB, or a fresh unique copy made by the retransmit engine.
830 */
831 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
832 gfp_t gfp_mask)
833 {
834 const struct inet_connection_sock *icsk = inet_csk(sk);
835 struct inet_sock *inet;
836 struct tcp_sock *tp;
837 struct tcp_skb_cb *tcb;
838 struct tcp_out_options opts;
839 unsigned int tcp_options_size, tcp_header_size;
840 struct tcp_md5sig_key *md5;
841 struct tcphdr *th;
842 int err;
843
844 BUG_ON(!skb || !tcp_skb_pcount(skb));
845
846 /* If congestion control is doing timestamping, we must
847 * take such a timestamp before we potentially clone/copy.
848 */
849 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
850 __net_timestamp(skb);
851
852 if (likely(clone_it)) {
853 const struct sk_buff *fclone = skb + 1;
854
855 if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
856 fclone->fclone == SKB_FCLONE_CLONE))
857 NET_INC_STATS_BH(sock_net(sk),
858 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
859
860 if (unlikely(skb_cloned(skb)))
861 skb = pskb_copy(skb, gfp_mask);
862 else
863 skb = skb_clone(skb, gfp_mask);
864 if (unlikely(!skb))
865 return -ENOBUFS;
866 }
867
868 inet = inet_sk(sk);
869 tp = tcp_sk(sk);
870 tcb = TCP_SKB_CB(skb);
871 memset(&opts, 0, sizeof(opts));
872
873 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
874 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
875 else
876 tcp_options_size = tcp_established_options(sk, skb, &opts,
877 &md5);
878 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
879
880 if (tcp_packets_in_flight(tp) == 0)
881 tcp_ca_event(sk, CA_EVENT_TX_START);
882
883 /* if no packet is in qdisc/device queue, then allow XPS to select
884 * another queue.
885 */
886 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
887
888 skb_push(skb, tcp_header_size);
889 skb_reset_transport_header(skb);
890
891 skb_orphan(skb);
892 skb->sk = sk;
893 skb->destructor = (sysctl_tcp_limit_output_bytes > 0) ?
894 tcp_wfree : sock_wfree;
895 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
896
897 /* Build TCP header and checksum it. */
898 th = tcp_hdr(skb);
899 th->source = inet->inet_sport;
900 th->dest = inet->inet_dport;
901 th->seq = htonl(tcb->seq);
902 th->ack_seq = htonl(tp->rcv_nxt);
903 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
904 tcb->tcp_flags);
905
906 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
907 /* RFC1323: The window in SYN & SYN/ACK segments
908 * is never scaled.
909 */
910 th->window = htons(min(tp->rcv_wnd, 65535U));
911 } else {
912 th->window = htons(tcp_select_window(sk));
913 }
914 th->check = 0;
915 th->urg_ptr = 0;
916
917 /* The urg_mode check is necessary during a below snd_una win probe */
918 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
919 if (before(tp->snd_up, tcb->seq + 0x10000)) {
920 th->urg_ptr = htons(tp->snd_up - tcb->seq);
921 th->urg = 1;
922 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
923 th->urg_ptr = htons(0xFFFF);
924 th->urg = 1;
925 }
926 }
927
928 tcp_options_write((__be32 *)(th + 1), tp, &opts);
929 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
930 TCP_ECN_send(sk, skb, tcp_header_size);
931
932 #ifdef CONFIG_TCP_MD5SIG
933 /* Calculate the MD5 hash, as we have all we need now */
934 if (md5) {
935 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
936 tp->af_specific->calc_md5_hash(opts.hash_location,
937 md5, sk, NULL, skb);
938 }
939 #endif
940
941 icsk->icsk_af_ops->send_check(sk, skb);
942
943 if (likely(tcb->tcp_flags & TCPHDR_ACK))
944 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
945
946 if (skb->len != tcp_header_size)
947 tcp_event_data_sent(tp, sk);
948
949 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
950 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
951 tcp_skb_pcount(skb));
952
953 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
954 if (likely(err <= 0))
955 return err;
956
957 tcp_enter_cwr(sk, 1);
958
959 return net_xmit_eval(err);
960 }
961
962 /* This routine just queues the buffer for sending.
963 *
964 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
965 * otherwise socket can stall.
966 */
967 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
968 {
969 struct tcp_sock *tp = tcp_sk(sk);
970
971 /* Advance write_seq and place onto the write_queue. */
972 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
973 skb_header_release(skb);
974 tcp_add_write_queue_tail(sk, skb);
975 sk->sk_wmem_queued += skb->truesize;
976 sk_mem_charge(sk, skb->truesize);
977 }
978
979 /* Initialize TSO segments for a packet. */
980 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
981 unsigned int mss_now)
982 {
983 if (skb->len <= mss_now || !sk_can_gso(sk) ||
984 skb->ip_summed == CHECKSUM_NONE) {
985 /* Avoid the costly divide in the normal
986 * non-TSO case.
987 */
988 skb_shinfo(skb)->gso_segs = 1;
989 skb_shinfo(skb)->gso_size = 0;
990 skb_shinfo(skb)->gso_type = 0;
991 } else {
992 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
993 skb_shinfo(skb)->gso_size = mss_now;
994 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
995 }
996 }
997
998 /* When a modification to fackets out becomes necessary, we need to check
999 * skb is counted to fackets_out or not.
1000 */
1001 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1002 int decr)
1003 {
1004 struct tcp_sock *tp = tcp_sk(sk);
1005
1006 if (!tp->sacked_out || tcp_is_reno(tp))
1007 return;
1008
1009 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1010 tp->fackets_out -= decr;
1011 }
1012
1013 /* Pcount in the middle of the write queue got changed, we need to do various
1014 * tweaks to fix counters
1015 */
1016 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1017 {
1018 struct tcp_sock *tp = tcp_sk(sk);
1019
1020 tp->packets_out -= decr;
1021
1022 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1023 tp->sacked_out -= decr;
1024 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1025 tp->retrans_out -= decr;
1026 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1027 tp->lost_out -= decr;
1028
1029 /* Reno case is special. Sigh... */
1030 if (tcp_is_reno(tp) && decr > 0)
1031 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1032
1033 tcp_adjust_fackets_out(sk, skb, decr);
1034
1035 if (tp->lost_skb_hint &&
1036 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1037 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1038 tp->lost_cnt_hint -= decr;
1039
1040 tcp_verify_left_out(tp);
1041 }
1042
1043 /* Function to create two new TCP segments. Shrinks the given segment
1044 * to the specified size and appends a new segment with the rest of the
1045 * packet to the list. This won't be called frequently, I hope.
1046 * Remember, these are still headerless SKBs at this point.
1047 */
1048 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1049 unsigned int mss_now)
1050 {
1051 struct tcp_sock *tp = tcp_sk(sk);
1052 struct sk_buff *buff;
1053 int nsize, old_factor;
1054 int nlen;
1055 u8 flags;
1056
1057 if (WARN_ON(len > skb->len))
1058 return -EINVAL;
1059
1060 nsize = skb_headlen(skb) - len;
1061 if (nsize < 0)
1062 nsize = 0;
1063
1064 if (skb_cloned(skb) &&
1065 skb_is_nonlinear(skb) &&
1066 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1067 return -ENOMEM;
1068
1069 /* Get a new skb... force flag on. */
1070 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1071 if (buff == NULL)
1072 return -ENOMEM; /* We'll just try again later. */
1073
1074 sk->sk_wmem_queued += buff->truesize;
1075 sk_mem_charge(sk, buff->truesize);
1076 nlen = skb->len - len - nsize;
1077 buff->truesize += nlen;
1078 skb->truesize -= nlen;
1079
1080 /* Correct the sequence numbers. */
1081 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1082 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1083 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1084
1085 /* PSH and FIN should only be set in the second packet. */
1086 flags = TCP_SKB_CB(skb)->tcp_flags;
1087 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1088 TCP_SKB_CB(buff)->tcp_flags = flags;
1089 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1090
1091 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1092 /* Copy and checksum data tail into the new buffer. */
1093 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1094 skb_put(buff, nsize),
1095 nsize, 0);
1096
1097 skb_trim(skb, len);
1098
1099 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1100 } else {
1101 skb->ip_summed = CHECKSUM_PARTIAL;
1102 skb_split(skb, buff, len);
1103 }
1104
1105 buff->ip_summed = skb->ip_summed;
1106
1107 /* Looks stupid, but our code really uses when of
1108 * skbs, which it never sent before. --ANK
1109 */
1110 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1111 buff->tstamp = skb->tstamp;
1112
1113 old_factor = tcp_skb_pcount(skb);
1114
1115 /* Fix up tso_factor for both original and new SKB. */
1116 tcp_set_skb_tso_segs(sk, skb, mss_now);
1117 tcp_set_skb_tso_segs(sk, buff, mss_now);
1118
1119 /* If this packet has been sent out already, we must
1120 * adjust the various packet counters.
1121 */
1122 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1123 int diff = old_factor - tcp_skb_pcount(skb) -
1124 tcp_skb_pcount(buff);
1125
1126 if (diff)
1127 tcp_adjust_pcount(sk, skb, diff);
1128 }
1129
1130 /* Link BUFF into the send queue. */
1131 skb_header_release(buff);
1132 tcp_insert_write_queue_after(skb, buff, sk);
1133
1134 return 0;
1135 }
1136
1137 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1138 * eventually). The difference is that pulled data not copied, but
1139 * immediately discarded.
1140 */
1141 static void __pskb_trim_head(struct sk_buff *skb, int len)
1142 {
1143 int i, k, eat;
1144
1145 eat = min_t(int, len, skb_headlen(skb));
1146 if (eat) {
1147 __skb_pull(skb, eat);
1148 len -= eat;
1149 if (!len)
1150 return;
1151 }
1152 eat = len;
1153 k = 0;
1154 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1155 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1156
1157 if (size <= eat) {
1158 skb_frag_unref(skb, i);
1159 eat -= size;
1160 } else {
1161 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1162 if (eat) {
1163 skb_shinfo(skb)->frags[k].page_offset += eat;
1164 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1165 eat = 0;
1166 }
1167 k++;
1168 }
1169 }
1170 skb_shinfo(skb)->nr_frags = k;
1171
1172 skb_reset_tail_pointer(skb);
1173 skb->data_len -= len;
1174 skb->len = skb->data_len;
1175 }
1176
1177 /* Remove acked data from a packet in the transmit queue. */
1178 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1179 {
1180 if (skb_unclone(skb, GFP_ATOMIC))
1181 return -ENOMEM;
1182
1183 __pskb_trim_head(skb, len);
1184
1185 TCP_SKB_CB(skb)->seq += len;
1186 skb->ip_summed = CHECKSUM_PARTIAL;
1187
1188 skb->truesize -= len;
1189 sk->sk_wmem_queued -= len;
1190 sk_mem_uncharge(sk, len);
1191 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1192
1193 /* Any change of skb->len requires recalculation of tso factor. */
1194 if (tcp_skb_pcount(skb) > 1)
1195 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1196
1197 return 0;
1198 }
1199
1200 /* Calculate MSS not accounting any TCP options. */
1201 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1202 {
1203 const struct tcp_sock *tp = tcp_sk(sk);
1204 const struct inet_connection_sock *icsk = inet_csk(sk);
1205 int mss_now;
1206
1207 /* Calculate base mss without TCP options:
1208 It is MMS_S - sizeof(tcphdr) of rfc1122
1209 */
1210 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1211
1212 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1213 if (icsk->icsk_af_ops->net_frag_header_len) {
1214 const struct dst_entry *dst = __sk_dst_get(sk);
1215
1216 if (dst && dst_allfrag(dst))
1217 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1218 }
1219
1220 /* Clamp it (mss_clamp does not include tcp options) */
1221 if (mss_now > tp->rx_opt.mss_clamp)
1222 mss_now = tp->rx_opt.mss_clamp;
1223
1224 /* Now subtract optional transport overhead */
1225 mss_now -= icsk->icsk_ext_hdr_len;
1226
1227 /* Then reserve room for full set of TCP options and 8 bytes of data */
1228 if (mss_now < 48)
1229 mss_now = 48;
1230 return mss_now;
1231 }
1232
1233 /* Calculate MSS. Not accounting for SACKs here. */
1234 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1235 {
1236 /* Subtract TCP options size, not including SACKs */
1237 return __tcp_mtu_to_mss(sk, pmtu) -
1238 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1239 }
1240
1241 /* Inverse of above */
1242 int tcp_mss_to_mtu(struct sock *sk, int mss)
1243 {
1244 const struct tcp_sock *tp = tcp_sk(sk);
1245 const struct inet_connection_sock *icsk = inet_csk(sk);
1246 int mtu;
1247
1248 mtu = mss +
1249 tp->tcp_header_len +
1250 icsk->icsk_ext_hdr_len +
1251 icsk->icsk_af_ops->net_header_len;
1252
1253 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1254 if (icsk->icsk_af_ops->net_frag_header_len) {
1255 const struct dst_entry *dst = __sk_dst_get(sk);
1256
1257 if (dst && dst_allfrag(dst))
1258 mtu += icsk->icsk_af_ops->net_frag_header_len;
1259 }
1260 return mtu;
1261 }
1262
1263 /* MTU probing init per socket */
1264 void tcp_mtup_init(struct sock *sk)
1265 {
1266 struct tcp_sock *tp = tcp_sk(sk);
1267 struct inet_connection_sock *icsk = inet_csk(sk);
1268
1269 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1270 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1271 icsk->icsk_af_ops->net_header_len;
1272 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1273 icsk->icsk_mtup.probe_size = 0;
1274 }
1275 EXPORT_SYMBOL(tcp_mtup_init);
1276
1277 /* This function synchronize snd mss to current pmtu/exthdr set.
1278
1279 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1280 for TCP options, but includes only bare TCP header.
1281
1282 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1283 It is minimum of user_mss and mss received with SYN.
1284 It also does not include TCP options.
1285
1286 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1287
1288 tp->mss_cache is current effective sending mss, including
1289 all tcp options except for SACKs. It is evaluated,
1290 taking into account current pmtu, but never exceeds
1291 tp->rx_opt.mss_clamp.
1292
1293 NOTE1. rfc1122 clearly states that advertised MSS
1294 DOES NOT include either tcp or ip options.
1295
1296 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1297 are READ ONLY outside this function. --ANK (980731)
1298 */
1299 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1300 {
1301 struct tcp_sock *tp = tcp_sk(sk);
1302 struct inet_connection_sock *icsk = inet_csk(sk);
1303 int mss_now;
1304
1305 if (icsk->icsk_mtup.search_high > pmtu)
1306 icsk->icsk_mtup.search_high = pmtu;
1307
1308 mss_now = tcp_mtu_to_mss(sk, pmtu);
1309 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1310
1311 /* And store cached results */
1312 icsk->icsk_pmtu_cookie = pmtu;
1313 if (icsk->icsk_mtup.enabled)
1314 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1315 tp->mss_cache = mss_now;
1316
1317 return mss_now;
1318 }
1319 EXPORT_SYMBOL(tcp_sync_mss);
1320
1321 /* Compute the current effective MSS, taking SACKs and IP options,
1322 * and even PMTU discovery events into account.
1323 */
1324 unsigned int tcp_current_mss(struct sock *sk)
1325 {
1326 const struct tcp_sock *tp = tcp_sk(sk);
1327 const struct dst_entry *dst = __sk_dst_get(sk);
1328 u32 mss_now;
1329 unsigned int header_len;
1330 struct tcp_out_options opts;
1331 struct tcp_md5sig_key *md5;
1332
1333 mss_now = tp->mss_cache;
1334
1335 if (dst) {
1336 u32 mtu = dst_mtu(dst);
1337 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1338 mss_now = tcp_sync_mss(sk, mtu);
1339 }
1340
1341 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1342 sizeof(struct tcphdr);
1343 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1344 * some common options. If this is an odd packet (because we have SACK
1345 * blocks etc) then our calculated header_len will be different, and
1346 * we have to adjust mss_now correspondingly */
1347 if (header_len != tp->tcp_header_len) {
1348 int delta = (int) header_len - tp->tcp_header_len;
1349 mss_now -= delta;
1350 }
1351
1352 return mss_now;
1353 }
1354
1355 /* Congestion window validation. (RFC2861) */
1356 static void tcp_cwnd_validate(struct sock *sk)
1357 {
1358 struct tcp_sock *tp = tcp_sk(sk);
1359
1360 if (tp->packets_out >= tp->snd_cwnd) {
1361 /* Network is feed fully. */
1362 tp->snd_cwnd_used = 0;
1363 tp->snd_cwnd_stamp = tcp_time_stamp;
1364 } else {
1365 /* Network starves. */
1366 if (tp->packets_out > tp->snd_cwnd_used)
1367 tp->snd_cwnd_used = tp->packets_out;
1368
1369 if (sysctl_tcp_slow_start_after_idle &&
1370 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1371 tcp_cwnd_application_limited(sk);
1372 }
1373 }
1374
1375 /* Returns the portion of skb which can be sent right away without
1376 * introducing MSS oddities to segment boundaries. In rare cases where
1377 * mss_now != mss_cache, we will request caller to create a small skb
1378 * per input skb which could be mostly avoided here (if desired).
1379 *
1380 * We explicitly want to create a request for splitting write queue tail
1381 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1382 * thus all the complexity (cwnd_len is always MSS multiple which we
1383 * return whenever allowed by the other factors). Basically we need the
1384 * modulo only when the receiver window alone is the limiting factor or
1385 * when we would be allowed to send the split-due-to-Nagle skb fully.
1386 */
1387 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
1388 unsigned int mss_now, unsigned int max_segs)
1389 {
1390 const struct tcp_sock *tp = tcp_sk(sk);
1391 u32 needed, window, max_len;
1392
1393 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1394 max_len = mss_now * max_segs;
1395
1396 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1397 return max_len;
1398
1399 needed = min(skb->len, window);
1400
1401 if (max_len <= needed)
1402 return max_len;
1403
1404 return needed - needed % mss_now;
1405 }
1406
1407 /* Can at least one segment of SKB be sent right now, according to the
1408 * congestion window rules? If so, return how many segments are allowed.
1409 */
1410 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1411 const struct sk_buff *skb)
1412 {
1413 u32 in_flight, cwnd;
1414
1415 /* Don't be strict about the congestion window for the final FIN. */
1416 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1417 tcp_skb_pcount(skb) == 1)
1418 return 1;
1419
1420 in_flight = tcp_packets_in_flight(tp);
1421 cwnd = tp->snd_cwnd;
1422 if (in_flight < cwnd)
1423 return (cwnd - in_flight);
1424
1425 return 0;
1426 }
1427
1428 /* Initialize TSO state of a skb.
1429 * This must be invoked the first time we consider transmitting
1430 * SKB onto the wire.
1431 */
1432 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1433 unsigned int mss_now)
1434 {
1435 int tso_segs = tcp_skb_pcount(skb);
1436
1437 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1438 tcp_set_skb_tso_segs(sk, skb, mss_now);
1439 tso_segs = tcp_skb_pcount(skb);
1440 }
1441 return tso_segs;
1442 }
1443
1444 /* Minshall's variant of the Nagle send check. */
1445 static inline bool tcp_minshall_check(const struct tcp_sock *tp)
1446 {
1447 return after(tp->snd_sml, tp->snd_una) &&
1448 !after(tp->snd_sml, tp->snd_nxt);
1449 }
1450
1451 /* Return false, if packet can be sent now without violation Nagle's rules:
1452 * 1. It is full sized.
1453 * 2. Or it contains FIN. (already checked by caller)
1454 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1455 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1456 * With Minshall's modification: all sent small packets are ACKed.
1457 */
1458 static inline bool tcp_nagle_check(const struct tcp_sock *tp,
1459 const struct sk_buff *skb,
1460 unsigned int mss_now, int nonagle)
1461 {
1462 return skb->len < mss_now &&
1463 ((nonagle & TCP_NAGLE_CORK) ||
1464 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1465 }
1466
1467 /* Return true if the Nagle test allows this packet to be
1468 * sent now.
1469 */
1470 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1471 unsigned int cur_mss, int nonagle)
1472 {
1473 /* Nagle rule does not apply to frames, which sit in the middle of the
1474 * write_queue (they have no chances to get new data).
1475 *
1476 * This is implemented in the callers, where they modify the 'nonagle'
1477 * argument based upon the location of SKB in the send queue.
1478 */
1479 if (nonagle & TCP_NAGLE_PUSH)
1480 return true;
1481
1482 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1483 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1484 return true;
1485
1486 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1487 return true;
1488
1489 return false;
1490 }
1491
1492 /* Does at least the first segment of SKB fit into the send window? */
1493 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1494 const struct sk_buff *skb,
1495 unsigned int cur_mss)
1496 {
1497 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1498
1499 if (skb->len > cur_mss)
1500 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1501
1502 return !after(end_seq, tcp_wnd_end(tp));
1503 }
1504
1505 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1506 * should be put on the wire right now. If so, it returns the number of
1507 * packets allowed by the congestion window.
1508 */
1509 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1510 unsigned int cur_mss, int nonagle)
1511 {
1512 const struct tcp_sock *tp = tcp_sk(sk);
1513 unsigned int cwnd_quota;
1514
1515 tcp_init_tso_segs(sk, skb, cur_mss);
1516
1517 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1518 return 0;
1519
1520 cwnd_quota = tcp_cwnd_test(tp, skb);
1521 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1522 cwnd_quota = 0;
1523
1524 return cwnd_quota;
1525 }
1526
1527 /* Test if sending is allowed right now. */
1528 bool tcp_may_send_now(struct sock *sk)
1529 {
1530 const struct tcp_sock *tp = tcp_sk(sk);
1531 struct sk_buff *skb = tcp_send_head(sk);
1532
1533 return skb &&
1534 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1535 (tcp_skb_is_last(sk, skb) ?
1536 tp->nonagle : TCP_NAGLE_PUSH));
1537 }
1538
1539 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1540 * which is put after SKB on the list. It is very much like
1541 * tcp_fragment() except that it may make several kinds of assumptions
1542 * in order to speed up the splitting operation. In particular, we
1543 * know that all the data is in scatter-gather pages, and that the
1544 * packet has never been sent out before (and thus is not cloned).
1545 */
1546 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1547 unsigned int mss_now, gfp_t gfp)
1548 {
1549 struct sk_buff *buff;
1550 int nlen = skb->len - len;
1551 u8 flags;
1552
1553 /* All of a TSO frame must be composed of paged data. */
1554 if (skb->len != skb->data_len)
1555 return tcp_fragment(sk, skb, len, mss_now);
1556
1557 buff = sk_stream_alloc_skb(sk, 0, gfp);
1558 if (unlikely(buff == NULL))
1559 return -ENOMEM;
1560
1561 sk->sk_wmem_queued += buff->truesize;
1562 sk_mem_charge(sk, buff->truesize);
1563 buff->truesize += nlen;
1564 skb->truesize -= nlen;
1565
1566 /* Correct the sequence numbers. */
1567 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1568 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1569 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1570
1571 /* PSH and FIN should only be set in the second packet. */
1572 flags = TCP_SKB_CB(skb)->tcp_flags;
1573 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1574 TCP_SKB_CB(buff)->tcp_flags = flags;
1575
1576 /* This packet was never sent out yet, so no SACK bits. */
1577 TCP_SKB_CB(buff)->sacked = 0;
1578
1579 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1580 skb_split(skb, buff, len);
1581
1582 /* Fix up tso_factor for both original and new SKB. */
1583 tcp_set_skb_tso_segs(sk, skb, mss_now);
1584 tcp_set_skb_tso_segs(sk, buff, mss_now);
1585
1586 /* Link BUFF into the send queue. */
1587 skb_header_release(buff);
1588 tcp_insert_write_queue_after(skb, buff, sk);
1589
1590 return 0;
1591 }
1592
1593 /* Try to defer sending, if possible, in order to minimize the amount
1594 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1595 *
1596 * This algorithm is from John Heffner.
1597 */
1598 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1599 {
1600 struct tcp_sock *tp = tcp_sk(sk);
1601 const struct inet_connection_sock *icsk = inet_csk(sk);
1602 u32 send_win, cong_win, limit, in_flight;
1603 int win_divisor;
1604
1605 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1606 goto send_now;
1607
1608 if (icsk->icsk_ca_state != TCP_CA_Open)
1609 goto send_now;
1610
1611 /* Defer for less than two clock ticks. */
1612 if (tp->tso_deferred &&
1613 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1614 goto send_now;
1615
1616 in_flight = tcp_packets_in_flight(tp);
1617
1618 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1619
1620 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1621
1622 /* From in_flight test above, we know that cwnd > in_flight. */
1623 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1624
1625 limit = min(send_win, cong_win);
1626
1627 /* If a full-sized TSO skb can be sent, do it. */
1628 if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1629 sk->sk_gso_max_segs * tp->mss_cache))
1630 goto send_now;
1631
1632 /* Middle in queue won't get any more data, full sendable already? */
1633 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1634 goto send_now;
1635
1636 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1637 if (win_divisor) {
1638 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1639
1640 /* If at least some fraction of a window is available,
1641 * just use it.
1642 */
1643 chunk /= win_divisor;
1644 if (limit >= chunk)
1645 goto send_now;
1646 } else {
1647 /* Different approach, try not to defer past a single
1648 * ACK. Receiver should ACK every other full sized
1649 * frame, so if we have space for more than 3 frames
1650 * then send now.
1651 */
1652 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1653 goto send_now;
1654 }
1655
1656 /* Ok, it looks like it is advisable to defer.
1657 * Do not rearm the timer if already set to not break TCP ACK clocking.
1658 */
1659 if (!tp->tso_deferred)
1660 tp->tso_deferred = 1 | (jiffies << 1);
1661
1662 return true;
1663
1664 send_now:
1665 tp->tso_deferred = 0;
1666 return false;
1667 }
1668
1669 /* Create a new MTU probe if we are ready.
1670 * MTU probe is regularly attempting to increase the path MTU by
1671 * deliberately sending larger packets. This discovers routing
1672 * changes resulting in larger path MTUs.
1673 *
1674 * Returns 0 if we should wait to probe (no cwnd available),
1675 * 1 if a probe was sent,
1676 * -1 otherwise
1677 */
1678 static int tcp_mtu_probe(struct sock *sk)
1679 {
1680 struct tcp_sock *tp = tcp_sk(sk);
1681 struct inet_connection_sock *icsk = inet_csk(sk);
1682 struct sk_buff *skb, *nskb, *next;
1683 int len;
1684 int probe_size;
1685 int size_needed;
1686 int copy;
1687 int mss_now;
1688
1689 /* Not currently probing/verifying,
1690 * not in recovery,
1691 * have enough cwnd, and
1692 * not SACKing (the variable headers throw things off) */
1693 if (!icsk->icsk_mtup.enabled ||
1694 icsk->icsk_mtup.probe_size ||
1695 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1696 tp->snd_cwnd < 11 ||
1697 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1698 return -1;
1699
1700 /* Very simple search strategy: just double the MSS. */
1701 mss_now = tcp_current_mss(sk);
1702 probe_size = 2 * tp->mss_cache;
1703 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1704 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1705 /* TODO: set timer for probe_converge_event */
1706 return -1;
1707 }
1708
1709 /* Have enough data in the send queue to probe? */
1710 if (tp->write_seq - tp->snd_nxt < size_needed)
1711 return -1;
1712
1713 if (tp->snd_wnd < size_needed)
1714 return -1;
1715 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1716 return 0;
1717
1718 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1719 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1720 if (!tcp_packets_in_flight(tp))
1721 return -1;
1722 else
1723 return 0;
1724 }
1725
1726 /* We're allowed to probe. Build it now. */
1727 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1728 return -1;
1729 sk->sk_wmem_queued += nskb->truesize;
1730 sk_mem_charge(sk, nskb->truesize);
1731
1732 skb = tcp_send_head(sk);
1733
1734 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1735 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1736 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1737 TCP_SKB_CB(nskb)->sacked = 0;
1738 nskb->csum = 0;
1739 nskb->ip_summed = skb->ip_summed;
1740
1741 tcp_insert_write_queue_before(nskb, skb, sk);
1742
1743 len = 0;
1744 tcp_for_write_queue_from_safe(skb, next, sk) {
1745 copy = min_t(int, skb->len, probe_size - len);
1746 if (nskb->ip_summed)
1747 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1748 else
1749 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1750 skb_put(nskb, copy),
1751 copy, nskb->csum);
1752
1753 if (skb->len <= copy) {
1754 /* We've eaten all the data from this skb.
1755 * Throw it away. */
1756 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1757 tcp_unlink_write_queue(skb, sk);
1758 sk_wmem_free_skb(sk, skb);
1759 } else {
1760 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1761 ~(TCPHDR_FIN|TCPHDR_PSH);
1762 if (!skb_shinfo(skb)->nr_frags) {
1763 skb_pull(skb, copy);
1764 if (skb->ip_summed != CHECKSUM_PARTIAL)
1765 skb->csum = csum_partial(skb->data,
1766 skb->len, 0);
1767 } else {
1768 __pskb_trim_head(skb, copy);
1769 tcp_set_skb_tso_segs(sk, skb, mss_now);
1770 }
1771 TCP_SKB_CB(skb)->seq += copy;
1772 }
1773
1774 len += copy;
1775
1776 if (len >= probe_size)
1777 break;
1778 }
1779 tcp_init_tso_segs(sk, nskb, nskb->len);
1780
1781 /* We're ready to send. If this fails, the probe will
1782 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1783 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1784 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1785 /* Decrement cwnd here because we are sending
1786 * effectively two packets. */
1787 tp->snd_cwnd--;
1788 tcp_event_new_data_sent(sk, nskb);
1789
1790 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1791 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1792 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1793
1794 return 1;
1795 }
1796
1797 return -1;
1798 }
1799
1800 /* This routine writes packets to the network. It advances the
1801 * send_head. This happens as incoming acks open up the remote
1802 * window for us.
1803 *
1804 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1805 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1806 * account rare use of URG, this is not a big flaw.
1807 *
1808 * Send at most one packet when push_one > 0. Temporarily ignore
1809 * cwnd limit to force at most one packet out when push_one == 2.
1810
1811 * Returns true, if no segments are in flight and we have queued segments,
1812 * but cannot send anything now because of SWS or another problem.
1813 */
1814 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1815 int push_one, gfp_t gfp)
1816 {
1817 struct tcp_sock *tp = tcp_sk(sk);
1818 struct sk_buff *skb;
1819 unsigned int tso_segs, sent_pkts;
1820 int cwnd_quota;
1821 int result;
1822
1823 sent_pkts = 0;
1824
1825 if (!push_one) {
1826 /* Do MTU probing. */
1827 result = tcp_mtu_probe(sk);
1828 if (!result) {
1829 return false;
1830 } else if (result > 0) {
1831 sent_pkts = 1;
1832 }
1833 }
1834
1835 while ((skb = tcp_send_head(sk))) {
1836 unsigned int limit;
1837
1838
1839 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1840 BUG_ON(!tso_segs);
1841
1842 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1843 goto repair; /* Skip network transmission */
1844
1845 cwnd_quota = tcp_cwnd_test(tp, skb);
1846 if (!cwnd_quota) {
1847 if (push_one == 2)
1848 /* Force out a loss probe pkt. */
1849 cwnd_quota = 1;
1850 else
1851 break;
1852 }
1853
1854 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1855 break;
1856
1857 if (tso_segs == 1) {
1858 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1859 (tcp_skb_is_last(sk, skb) ?
1860 nonagle : TCP_NAGLE_PUSH))))
1861 break;
1862 } else {
1863 if (!push_one && tcp_tso_should_defer(sk, skb))
1864 break;
1865 }
1866
1867 /* TSQ : sk_wmem_alloc accounts skb truesize,
1868 * including skb overhead. But thats OK.
1869 */
1870 if (atomic_read(&sk->sk_wmem_alloc) >= sysctl_tcp_limit_output_bytes) {
1871 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1872 break;
1873 }
1874 limit = mss_now;
1875 if (tso_segs > 1 && !tcp_urg_mode(tp))
1876 limit = tcp_mss_split_point(sk, skb, mss_now,
1877 min_t(unsigned int,
1878 cwnd_quota,
1879 sk->sk_gso_max_segs));
1880
1881 if (skb->len > limit &&
1882 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1883 break;
1884
1885 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1886
1887 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1888 break;
1889
1890 repair:
1891 /* Advance the send_head. This one is sent out.
1892 * This call will increment packets_out.
1893 */
1894 tcp_event_new_data_sent(sk, skb);
1895
1896 tcp_minshall_update(tp, mss_now, skb);
1897 sent_pkts += tcp_skb_pcount(skb);
1898
1899 if (push_one)
1900 break;
1901 }
1902
1903 if (likely(sent_pkts)) {
1904 if (tcp_in_cwnd_reduction(sk))
1905 tp->prr_out += sent_pkts;
1906
1907 /* Send one loss probe per tail loss episode. */
1908 if (push_one != 2)
1909 tcp_schedule_loss_probe(sk);
1910 tcp_cwnd_validate(sk);
1911 return false;
1912 }
1913 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
1914 }
1915
1916 bool tcp_schedule_loss_probe(struct sock *sk)
1917 {
1918 struct inet_connection_sock *icsk = inet_csk(sk);
1919 struct tcp_sock *tp = tcp_sk(sk);
1920 u32 timeout, tlp_time_stamp, rto_time_stamp;
1921 u32 rtt = tp->srtt >> 3;
1922
1923 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
1924 return false;
1925 /* No consecutive loss probes. */
1926 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
1927 tcp_rearm_rto(sk);
1928 return false;
1929 }
1930 /* Don't do any loss probe on a Fast Open connection before 3WHS
1931 * finishes.
1932 */
1933 if (sk->sk_state == TCP_SYN_RECV)
1934 return false;
1935
1936 /* TLP is only scheduled when next timer event is RTO. */
1937 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
1938 return false;
1939
1940 /* Schedule a loss probe in 2*RTT for SACK capable connections
1941 * in Open state, that are either limited by cwnd or application.
1942 */
1943 if (sysctl_tcp_early_retrans < 3 || !rtt || !tp->packets_out ||
1944 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
1945 return false;
1946
1947 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
1948 tcp_send_head(sk))
1949 return false;
1950
1951 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
1952 * for delayed ack when there's one outstanding packet.
1953 */
1954 timeout = rtt << 1;
1955 if (tp->packets_out == 1)
1956 timeout = max_t(u32, timeout,
1957 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
1958 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
1959
1960 /* If RTO is shorter, just schedule TLP in its place. */
1961 tlp_time_stamp = tcp_time_stamp + timeout;
1962 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
1963 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
1964 s32 delta = rto_time_stamp - tcp_time_stamp;
1965 if (delta > 0)
1966 timeout = delta;
1967 }
1968
1969 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
1970 TCP_RTO_MAX);
1971 return true;
1972 }
1973
1974 /* When probe timeout (PTO) fires, send a new segment if one exists, else
1975 * retransmit the last segment.
1976 */
1977 void tcp_send_loss_probe(struct sock *sk)
1978 {
1979 struct tcp_sock *tp = tcp_sk(sk);
1980 struct sk_buff *skb;
1981 int pcount;
1982 int mss = tcp_current_mss(sk);
1983 int err = -1;
1984
1985 if (tcp_send_head(sk) != NULL) {
1986 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
1987 goto rearm_timer;
1988 }
1989
1990 /* At most one outstanding TLP retransmission. */
1991 if (tp->tlp_high_seq)
1992 goto rearm_timer;
1993
1994 /* Retransmit last segment. */
1995 skb = tcp_write_queue_tail(sk);
1996 if (WARN_ON(!skb))
1997 goto rearm_timer;
1998
1999 pcount = tcp_skb_pcount(skb);
2000 if (WARN_ON(!pcount))
2001 goto rearm_timer;
2002
2003 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2004 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss)))
2005 goto rearm_timer;
2006 skb = tcp_write_queue_tail(sk);
2007 }
2008
2009 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2010 goto rearm_timer;
2011
2012 /* Probe with zero data doesn't trigger fast recovery. */
2013 if (skb->len > 0)
2014 err = __tcp_retransmit_skb(sk, skb);
2015
2016 /* Record snd_nxt for loss detection. */
2017 if (likely(!err))
2018 tp->tlp_high_seq = tp->snd_nxt;
2019
2020 rearm_timer:
2021 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2022 inet_csk(sk)->icsk_rto,
2023 TCP_RTO_MAX);
2024
2025 if (likely(!err))
2026 NET_INC_STATS_BH(sock_net(sk),
2027 LINUX_MIB_TCPLOSSPROBES);
2028 return;
2029 }
2030
2031 /* Push out any pending frames which were held back due to
2032 * TCP_CORK or attempt at coalescing tiny packets.
2033 * The socket must be locked by the caller.
2034 */
2035 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2036 int nonagle)
2037 {
2038 /* If we are closed, the bytes will have to remain here.
2039 * In time closedown will finish, we empty the write queue and
2040 * all will be happy.
2041 */
2042 if (unlikely(sk->sk_state == TCP_CLOSE))
2043 return;
2044
2045 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2046 sk_gfp_atomic(sk, GFP_ATOMIC)))
2047 tcp_check_probe_timer(sk);
2048 }
2049
2050 /* Send _single_ skb sitting at the send head. This function requires
2051 * true push pending frames to setup probe timer etc.
2052 */
2053 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2054 {
2055 struct sk_buff *skb = tcp_send_head(sk);
2056
2057 BUG_ON(!skb || skb->len < mss_now);
2058
2059 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2060 }
2061
2062 /* This function returns the amount that we can raise the
2063 * usable window based on the following constraints
2064 *
2065 * 1. The window can never be shrunk once it is offered (RFC 793)
2066 * 2. We limit memory per socket
2067 *
2068 * RFC 1122:
2069 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2070 * RECV.NEXT + RCV.WIN fixed until:
2071 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2072 *
2073 * i.e. don't raise the right edge of the window until you can raise
2074 * it at least MSS bytes.
2075 *
2076 * Unfortunately, the recommended algorithm breaks header prediction,
2077 * since header prediction assumes th->window stays fixed.
2078 *
2079 * Strictly speaking, keeping th->window fixed violates the receiver
2080 * side SWS prevention criteria. The problem is that under this rule
2081 * a stream of single byte packets will cause the right side of the
2082 * window to always advance by a single byte.
2083 *
2084 * Of course, if the sender implements sender side SWS prevention
2085 * then this will not be a problem.
2086 *
2087 * BSD seems to make the following compromise:
2088 *
2089 * If the free space is less than the 1/4 of the maximum
2090 * space available and the free space is less than 1/2 mss,
2091 * then set the window to 0.
2092 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2093 * Otherwise, just prevent the window from shrinking
2094 * and from being larger than the largest representable value.
2095 *
2096 * This prevents incremental opening of the window in the regime
2097 * where TCP is limited by the speed of the reader side taking
2098 * data out of the TCP receive queue. It does nothing about
2099 * those cases where the window is constrained on the sender side
2100 * because the pipeline is full.
2101 *
2102 * BSD also seems to "accidentally" limit itself to windows that are a
2103 * multiple of MSS, at least until the free space gets quite small.
2104 * This would appear to be a side effect of the mbuf implementation.
2105 * Combining these two algorithms results in the observed behavior
2106 * of having a fixed window size at almost all times.
2107 *
2108 * Below we obtain similar behavior by forcing the offered window to
2109 * a multiple of the mss when it is feasible to do so.
2110 *
2111 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2112 * Regular options like TIMESTAMP are taken into account.
2113 */
2114 u32 __tcp_select_window(struct sock *sk)
2115 {
2116 struct inet_connection_sock *icsk = inet_csk(sk);
2117 struct tcp_sock *tp = tcp_sk(sk);
2118 /* MSS for the peer's data. Previous versions used mss_clamp
2119 * here. I don't know if the value based on our guesses
2120 * of peer's MSS is better for the performance. It's more correct
2121 * but may be worse for the performance because of rcv_mss
2122 * fluctuations. --SAW 1998/11/1
2123 */
2124 int mss = icsk->icsk_ack.rcv_mss;
2125 int free_space = tcp_space(sk);
2126 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2127 int window;
2128
2129 if (mss > full_space)
2130 mss = full_space;
2131
2132 if (free_space < (full_space >> 1)) {
2133 icsk->icsk_ack.quick = 0;
2134
2135 if (sk_under_memory_pressure(sk))
2136 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2137 4U * tp->advmss);
2138
2139 if (free_space < mss)
2140 return 0;
2141 }
2142
2143 if (free_space > tp->rcv_ssthresh)
2144 free_space = tp->rcv_ssthresh;
2145
2146 /* Don't do rounding if we are using window scaling, since the
2147 * scaled window will not line up with the MSS boundary anyway.
2148 */
2149 window = tp->rcv_wnd;
2150 if (tp->rx_opt.rcv_wscale) {
2151 window = free_space;
2152
2153 /* Advertise enough space so that it won't get scaled away.
2154 * Import case: prevent zero window announcement if
2155 * 1<<rcv_wscale > mss.
2156 */
2157 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2158 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2159 << tp->rx_opt.rcv_wscale);
2160 } else {
2161 /* Get the largest window that is a nice multiple of mss.
2162 * Window clamp already applied above.
2163 * If our current window offering is within 1 mss of the
2164 * free space we just keep it. This prevents the divide
2165 * and multiply from happening most of the time.
2166 * We also don't do any window rounding when the free space
2167 * is too small.
2168 */
2169 if (window <= free_space - mss || window > free_space)
2170 window = (free_space / mss) * mss;
2171 else if (mss == full_space &&
2172 free_space > window + (full_space >> 1))
2173 window = free_space;
2174 }
2175
2176 return window;
2177 }
2178
2179 /* Collapses two adjacent SKB's during retransmission. */
2180 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2181 {
2182 struct tcp_sock *tp = tcp_sk(sk);
2183 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2184 int skb_size, next_skb_size;
2185
2186 skb_size = skb->len;
2187 next_skb_size = next_skb->len;
2188
2189 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2190
2191 tcp_highest_sack_combine(sk, next_skb, skb);
2192
2193 tcp_unlink_write_queue(next_skb, sk);
2194
2195 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2196 next_skb_size);
2197
2198 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2199 skb->ip_summed = CHECKSUM_PARTIAL;
2200
2201 if (skb->ip_summed != CHECKSUM_PARTIAL)
2202 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2203
2204 /* Update sequence range on original skb. */
2205 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2206
2207 /* Merge over control information. This moves PSH/FIN etc. over */
2208 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2209
2210 /* All done, get rid of second SKB and account for it so
2211 * packet counting does not break.
2212 */
2213 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2214
2215 /* changed transmit queue under us so clear hints */
2216 tcp_clear_retrans_hints_partial(tp);
2217 if (next_skb == tp->retransmit_skb_hint)
2218 tp->retransmit_skb_hint = skb;
2219
2220 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2221
2222 sk_wmem_free_skb(sk, next_skb);
2223 }
2224
2225 /* Check if coalescing SKBs is legal. */
2226 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2227 {
2228 if (tcp_skb_pcount(skb) > 1)
2229 return false;
2230 /* TODO: SACK collapsing could be used to remove this condition */
2231 if (skb_shinfo(skb)->nr_frags != 0)
2232 return false;
2233 if (skb_cloned(skb))
2234 return false;
2235 if (skb == tcp_send_head(sk))
2236 return false;
2237 /* Some heurestics for collapsing over SACK'd could be invented */
2238 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2239 return false;
2240
2241 return true;
2242 }
2243
2244 /* Collapse packets in the retransmit queue to make to create
2245 * less packets on the wire. This is only done on retransmission.
2246 */
2247 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2248 int space)
2249 {
2250 struct tcp_sock *tp = tcp_sk(sk);
2251 struct sk_buff *skb = to, *tmp;
2252 bool first = true;
2253
2254 if (!sysctl_tcp_retrans_collapse)
2255 return;
2256 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2257 return;
2258
2259 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2260 if (!tcp_can_collapse(sk, skb))
2261 break;
2262
2263 space -= skb->len;
2264
2265 if (first) {
2266 first = false;
2267 continue;
2268 }
2269
2270 if (space < 0)
2271 break;
2272 /* Punt if not enough space exists in the first SKB for
2273 * the data in the second
2274 */
2275 if (skb->len > skb_availroom(to))
2276 break;
2277
2278 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2279 break;
2280
2281 tcp_collapse_retrans(sk, to);
2282 }
2283 }
2284
2285 /* This retransmits one SKB. Policy decisions and retransmit queue
2286 * state updates are done by the caller. Returns non-zero if an
2287 * error occurred which prevented the send.
2288 */
2289 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2290 {
2291 struct tcp_sock *tp = tcp_sk(sk);
2292 struct inet_connection_sock *icsk = inet_csk(sk);
2293 unsigned int cur_mss;
2294
2295 /* Inconslusive MTU probe */
2296 if (icsk->icsk_mtup.probe_size) {
2297 icsk->icsk_mtup.probe_size = 0;
2298 }
2299
2300 /* Do not sent more than we queued. 1/4 is reserved for possible
2301 * copying overhead: fragmentation, tunneling, mangling etc.
2302 */
2303 if (atomic_read(&sk->sk_wmem_alloc) >
2304 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2305 return -EAGAIN;
2306
2307 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2308 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2309 BUG();
2310 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2311 return -ENOMEM;
2312 }
2313
2314 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2315 return -EHOSTUNREACH; /* Routing failure or similar. */
2316
2317 cur_mss = tcp_current_mss(sk);
2318
2319 /* If receiver has shrunk his window, and skb is out of
2320 * new window, do not retransmit it. The exception is the
2321 * case, when window is shrunk to zero. In this case
2322 * our retransmit serves as a zero window probe.
2323 */
2324 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2325 TCP_SKB_CB(skb)->seq != tp->snd_una)
2326 return -EAGAIN;
2327
2328 if (skb->len > cur_mss) {
2329 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2330 return -ENOMEM; /* We'll try again later. */
2331 } else {
2332 int oldpcount = tcp_skb_pcount(skb);
2333
2334 if (unlikely(oldpcount > 1)) {
2335 tcp_init_tso_segs(sk, skb, cur_mss);
2336 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2337 }
2338 }
2339
2340 tcp_retrans_try_collapse(sk, skb, cur_mss);
2341
2342 /* Some Solaris stacks overoptimize and ignore the FIN on a
2343 * retransmit when old data is attached. So strip it off
2344 * since it is cheap to do so and saves bytes on the network.
2345 */
2346 if (skb->len > 0 &&
2347 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2348 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
2349 if (!pskb_trim(skb, 0)) {
2350 /* Reuse, even though it does some unnecessary work */
2351 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
2352 TCP_SKB_CB(skb)->tcp_flags);
2353 skb->ip_summed = CHECKSUM_NONE;
2354 }
2355 }
2356
2357 /* Make a copy, if the first transmission SKB clone we made
2358 * is still in somebody's hands, else make a clone.
2359 */
2360 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2361
2362 /* make sure skb->data is aligned on arches that require it
2363 * and check if ack-trimming & collapsing extended the headroom
2364 * beyond what csum_start can cover.
2365 */
2366 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2367 skb_headroom(skb) >= 0xFFFF)) {
2368 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2369 GFP_ATOMIC);
2370 return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2371 -ENOBUFS;
2372 } else {
2373 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2374 }
2375 }
2376
2377 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2378 {
2379 struct tcp_sock *tp = tcp_sk(sk);
2380 int err = __tcp_retransmit_skb(sk, skb);
2381
2382 if (err == 0) {
2383 /* Update global TCP statistics. */
2384 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2385
2386 tp->total_retrans++;
2387
2388 #if FASTRETRANS_DEBUG > 0
2389 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2390 net_dbg_ratelimited("retrans_out leaked\n");
2391 }
2392 #endif
2393 if (!tp->retrans_out)
2394 tp->lost_retrans_low = tp->snd_nxt;
2395 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2396 tp->retrans_out += tcp_skb_pcount(skb);
2397
2398 /* Save stamp of the first retransmit. */
2399 if (!tp->retrans_stamp)
2400 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2401
2402 tp->undo_retrans += tcp_skb_pcount(skb);
2403
2404 /* snd_nxt is stored to detect loss of retransmitted segment,
2405 * see tcp_input.c tcp_sacktag_write_queue().
2406 */
2407 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2408 }
2409 return err;
2410 }
2411
2412 /* Check if we forward retransmits are possible in the current
2413 * window/congestion state.
2414 */
2415 static bool tcp_can_forward_retransmit(struct sock *sk)
2416 {
2417 const struct inet_connection_sock *icsk = inet_csk(sk);
2418 const struct tcp_sock *tp = tcp_sk(sk);
2419
2420 /* Forward retransmissions are possible only during Recovery. */
2421 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2422 return false;
2423
2424 /* No forward retransmissions in Reno are possible. */
2425 if (tcp_is_reno(tp))
2426 return false;
2427
2428 /* Yeah, we have to make difficult choice between forward transmission
2429 * and retransmission... Both ways have their merits...
2430 *
2431 * For now we do not retransmit anything, while we have some new
2432 * segments to send. In the other cases, follow rule 3 for
2433 * NextSeg() specified in RFC3517.
2434 */
2435
2436 if (tcp_may_send_now(sk))
2437 return false;
2438
2439 return true;
2440 }
2441
2442 /* This gets called after a retransmit timeout, and the initially
2443 * retransmitted data is acknowledged. It tries to continue
2444 * resending the rest of the retransmit queue, until either
2445 * we've sent it all or the congestion window limit is reached.
2446 * If doing SACK, the first ACK which comes back for a timeout
2447 * based retransmit packet might feed us FACK information again.
2448 * If so, we use it to avoid unnecessarily retransmissions.
2449 */
2450 void tcp_xmit_retransmit_queue(struct sock *sk)
2451 {
2452 const struct inet_connection_sock *icsk = inet_csk(sk);
2453 struct tcp_sock *tp = tcp_sk(sk);
2454 struct sk_buff *skb;
2455 struct sk_buff *hole = NULL;
2456 u32 last_lost;
2457 int mib_idx;
2458 int fwd_rexmitting = 0;
2459
2460 if (!tp->packets_out)
2461 return;
2462
2463 if (!tp->lost_out)
2464 tp->retransmit_high = tp->snd_una;
2465
2466 if (tp->retransmit_skb_hint) {
2467 skb = tp->retransmit_skb_hint;
2468 last_lost = TCP_SKB_CB(skb)->end_seq;
2469 if (after(last_lost, tp->retransmit_high))
2470 last_lost = tp->retransmit_high;
2471 } else {
2472 skb = tcp_write_queue_head(sk);
2473 last_lost = tp->snd_una;
2474 }
2475
2476 tcp_for_write_queue_from(skb, sk) {
2477 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2478
2479 if (skb == tcp_send_head(sk))
2480 break;
2481 /* we could do better than to assign each time */
2482 if (hole == NULL)
2483 tp->retransmit_skb_hint = skb;
2484
2485 /* Assume this retransmit will generate
2486 * only one packet for congestion window
2487 * calculation purposes. This works because
2488 * tcp_retransmit_skb() will chop up the
2489 * packet to be MSS sized and all the
2490 * packet counting works out.
2491 */
2492 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2493 return;
2494
2495 if (fwd_rexmitting) {
2496 begin_fwd:
2497 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2498 break;
2499 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2500
2501 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2502 tp->retransmit_high = last_lost;
2503 if (!tcp_can_forward_retransmit(sk))
2504 break;
2505 /* Backtrack if necessary to non-L'ed skb */
2506 if (hole != NULL) {
2507 skb = hole;
2508 hole = NULL;
2509 }
2510 fwd_rexmitting = 1;
2511 goto begin_fwd;
2512
2513 } else if (!(sacked & TCPCB_LOST)) {
2514 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2515 hole = skb;
2516 continue;
2517
2518 } else {
2519 last_lost = TCP_SKB_CB(skb)->end_seq;
2520 if (icsk->icsk_ca_state != TCP_CA_Loss)
2521 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2522 else
2523 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2524 }
2525
2526 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2527 continue;
2528
2529 if (tcp_retransmit_skb(sk, skb)) {
2530 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2531 return;
2532 }
2533 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2534
2535 if (tcp_in_cwnd_reduction(sk))
2536 tp->prr_out += tcp_skb_pcount(skb);
2537
2538 if (skb == tcp_write_queue_head(sk))
2539 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2540 inet_csk(sk)->icsk_rto,
2541 TCP_RTO_MAX);
2542 }
2543 }
2544
2545 /* Send a fin. The caller locks the socket for us. This cannot be
2546 * allowed to fail queueing a FIN frame under any circumstances.
2547 */
2548 void tcp_send_fin(struct sock *sk)
2549 {
2550 struct tcp_sock *tp = tcp_sk(sk);
2551 struct sk_buff *skb = tcp_write_queue_tail(sk);
2552 int mss_now;
2553
2554 /* Optimization, tack on the FIN if we have a queue of
2555 * unsent frames. But be careful about outgoing SACKS
2556 * and IP options.
2557 */
2558 mss_now = tcp_current_mss(sk);
2559
2560 if (tcp_send_head(sk) != NULL) {
2561 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2562 TCP_SKB_CB(skb)->end_seq++;
2563 tp->write_seq++;
2564 } else {
2565 /* Socket is locked, keep trying until memory is available. */
2566 for (;;) {
2567 skb = alloc_skb_fclone(MAX_TCP_HEADER,
2568 sk->sk_allocation);
2569 if (skb)
2570 break;
2571 yield();
2572 }
2573
2574 /* Reserve space for headers and prepare control bits. */
2575 skb_reserve(skb, MAX_TCP_HEADER);
2576 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2577 tcp_init_nondata_skb(skb, tp->write_seq,
2578 TCPHDR_ACK | TCPHDR_FIN);
2579 tcp_queue_skb(sk, skb);
2580 }
2581 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2582 }
2583
2584 /* We get here when a process closes a file descriptor (either due to
2585 * an explicit close() or as a byproduct of exit()'ing) and there
2586 * was unread data in the receive queue. This behavior is recommended
2587 * by RFC 2525, section 2.17. -DaveM
2588 */
2589 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2590 {
2591 struct sk_buff *skb;
2592
2593 /* NOTE: No TCP options attached and we never retransmit this. */
2594 skb = alloc_skb(MAX_TCP_HEADER, priority);
2595 if (!skb) {
2596 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2597 return;
2598 }
2599
2600 /* Reserve space for headers and prepare control bits. */
2601 skb_reserve(skb, MAX_TCP_HEADER);
2602 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2603 TCPHDR_ACK | TCPHDR_RST);
2604 /* Send it off. */
2605 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2606 if (tcp_transmit_skb(sk, skb, 0, priority))
2607 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2608
2609 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2610 }
2611
2612 /* Send a crossed SYN-ACK during socket establishment.
2613 * WARNING: This routine must only be called when we have already sent
2614 * a SYN packet that crossed the incoming SYN that caused this routine
2615 * to get called. If this assumption fails then the initial rcv_wnd
2616 * and rcv_wscale values will not be correct.
2617 */
2618 int tcp_send_synack(struct sock *sk)
2619 {
2620 struct sk_buff *skb;
2621
2622 skb = tcp_write_queue_head(sk);
2623 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2624 pr_debug("%s: wrong queue state\n", __func__);
2625 return -EFAULT;
2626 }
2627 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2628 if (skb_cloned(skb)) {
2629 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2630 if (nskb == NULL)
2631 return -ENOMEM;
2632 tcp_unlink_write_queue(skb, sk);
2633 skb_header_release(nskb);
2634 __tcp_add_write_queue_head(sk, nskb);
2635 sk_wmem_free_skb(sk, skb);
2636 sk->sk_wmem_queued += nskb->truesize;
2637 sk_mem_charge(sk, nskb->truesize);
2638 skb = nskb;
2639 }
2640
2641 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2642 TCP_ECN_send_synack(tcp_sk(sk), skb);
2643 }
2644 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2645 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2646 }
2647
2648 /**
2649 * tcp_make_synack - Prepare a SYN-ACK.
2650 * sk: listener socket
2651 * dst: dst entry attached to the SYNACK
2652 * req: request_sock pointer
2653 *
2654 * Allocate one skb and build a SYNACK packet.
2655 * @dst is consumed : Caller should not use it again.
2656 */
2657 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2658 struct request_sock *req,
2659 struct tcp_fastopen_cookie *foc)
2660 {
2661 struct tcp_out_options opts;
2662 struct inet_request_sock *ireq = inet_rsk(req);
2663 struct tcp_sock *tp = tcp_sk(sk);
2664 struct tcphdr *th;
2665 struct sk_buff *skb;
2666 struct tcp_md5sig_key *md5;
2667 int tcp_header_size;
2668 int mss;
2669
2670 skb = alloc_skb(MAX_TCP_HEADER + 15, sk_gfp_atomic(sk, GFP_ATOMIC));
2671 if (unlikely(!skb)) {
2672 dst_release(dst);
2673 return NULL;
2674 }
2675 /* Reserve space for headers. */
2676 skb_reserve(skb, MAX_TCP_HEADER);
2677
2678 skb_dst_set(skb, dst);
2679 security_skb_owned_by(skb, sk);
2680
2681 mss = dst_metric_advmss(dst);
2682 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2683 mss = tp->rx_opt.user_mss;
2684
2685 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2686 __u8 rcv_wscale;
2687 /* Set this up on the first call only */
2688 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2689
2690 /* limit the window selection if the user enforce a smaller rx buffer */
2691 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2692 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2693 req->window_clamp = tcp_full_space(sk);
2694
2695 /* tcp_full_space because it is guaranteed to be the first packet */
2696 tcp_select_initial_window(tcp_full_space(sk),
2697 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2698 &req->rcv_wnd,
2699 &req->window_clamp,
2700 ireq->wscale_ok,
2701 &rcv_wscale,
2702 dst_metric(dst, RTAX_INITRWND));
2703 ireq->rcv_wscale = rcv_wscale;
2704 }
2705
2706 memset(&opts, 0, sizeof(opts));
2707 #ifdef CONFIG_SYN_COOKIES
2708 if (unlikely(req->cookie_ts))
2709 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2710 else
2711 #endif
2712 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2713 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2714 foc) + sizeof(*th);
2715
2716 skb_push(skb, tcp_header_size);
2717 skb_reset_transport_header(skb);
2718
2719 th = tcp_hdr(skb);
2720 memset(th, 0, sizeof(struct tcphdr));
2721 th->syn = 1;
2722 th->ack = 1;
2723 TCP_ECN_make_synack(req, th);
2724 th->source = ireq->loc_port;
2725 th->dest = ireq->rmt_port;
2726 /* Setting of flags are superfluous here for callers (and ECE is
2727 * not even correctly set)
2728 */
2729 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2730 TCPHDR_SYN | TCPHDR_ACK);
2731
2732 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2733 /* XXX data is queued and acked as is. No buffer/window check */
2734 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2735
2736 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2737 th->window = htons(min(req->rcv_wnd, 65535U));
2738 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2739 th->doff = (tcp_header_size >> 2);
2740 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2741
2742 #ifdef CONFIG_TCP_MD5SIG
2743 /* Okay, we have all we need - do the md5 hash if needed */
2744 if (md5) {
2745 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2746 md5, NULL, req, skb);
2747 }
2748 #endif
2749
2750 return skb;
2751 }
2752 EXPORT_SYMBOL(tcp_make_synack);
2753
2754 /* Do all connect socket setups that can be done AF independent. */
2755 void tcp_connect_init(struct sock *sk)
2756 {
2757 const struct dst_entry *dst = __sk_dst_get(sk);
2758 struct tcp_sock *tp = tcp_sk(sk);
2759 __u8 rcv_wscale;
2760
2761 /* We'll fix this up when we get a response from the other end.
2762 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2763 */
2764 tp->tcp_header_len = sizeof(struct tcphdr) +
2765 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2766
2767 #ifdef CONFIG_TCP_MD5SIG
2768 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2769 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2770 #endif
2771
2772 /* If user gave his TCP_MAXSEG, record it to clamp */
2773 if (tp->rx_opt.user_mss)
2774 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2775 tp->max_window = 0;
2776 tcp_mtup_init(sk);
2777 tcp_sync_mss(sk, dst_mtu(dst));
2778
2779 if (!tp->window_clamp)
2780 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2781 tp->advmss = dst_metric_advmss(dst);
2782 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2783 tp->advmss = tp->rx_opt.user_mss;
2784
2785 tcp_initialize_rcv_mss(sk);
2786
2787 /* limit the window selection if the user enforce a smaller rx buffer */
2788 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2789 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2790 tp->window_clamp = tcp_full_space(sk);
2791
2792 tcp_select_initial_window(tcp_full_space(sk),
2793 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2794 &tp->rcv_wnd,
2795 &tp->window_clamp,
2796 sysctl_tcp_window_scaling,
2797 &rcv_wscale,
2798 dst_metric(dst, RTAX_INITRWND));
2799
2800 tp->rx_opt.rcv_wscale = rcv_wscale;
2801 tp->rcv_ssthresh = tp->rcv_wnd;
2802
2803 sk->sk_err = 0;
2804 sock_reset_flag(sk, SOCK_DONE);
2805 tp->snd_wnd = 0;
2806 tcp_init_wl(tp, 0);
2807 tp->snd_una = tp->write_seq;
2808 tp->snd_sml = tp->write_seq;
2809 tp->snd_up = tp->write_seq;
2810 tp->snd_nxt = tp->write_seq;
2811
2812 if (likely(!tp->repair))
2813 tp->rcv_nxt = 0;
2814 tp->rcv_wup = tp->rcv_nxt;
2815 tp->copied_seq = tp->rcv_nxt;
2816
2817 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2818 inet_csk(sk)->icsk_retransmits = 0;
2819 tcp_clear_retrans(tp);
2820 }
2821
2822 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2823 {
2824 struct tcp_sock *tp = tcp_sk(sk);
2825 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2826
2827 tcb->end_seq += skb->len;
2828 skb_header_release(skb);
2829 __tcp_add_write_queue_tail(sk, skb);
2830 sk->sk_wmem_queued += skb->truesize;
2831 sk_mem_charge(sk, skb->truesize);
2832 tp->write_seq = tcb->end_seq;
2833 tp->packets_out += tcp_skb_pcount(skb);
2834 }
2835
2836 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2837 * queue a data-only packet after the regular SYN, such that regular SYNs
2838 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2839 * only the SYN sequence, the data are retransmitted in the first ACK.
2840 * If cookie is not cached or other error occurs, falls back to send a
2841 * regular SYN with Fast Open cookie request option.
2842 */
2843 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2844 {
2845 struct tcp_sock *tp = tcp_sk(sk);
2846 struct tcp_fastopen_request *fo = tp->fastopen_req;
2847 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2848 struct sk_buff *syn_data = NULL, *data;
2849 unsigned long last_syn_loss = 0;
2850
2851 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
2852 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2853 &syn_loss, &last_syn_loss);
2854 /* Recurring FO SYN losses: revert to regular handshake temporarily */
2855 if (syn_loss > 1 &&
2856 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2857 fo->cookie.len = -1;
2858 goto fallback;
2859 }
2860
2861 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2862 fo->cookie.len = -1;
2863 else if (fo->cookie.len <= 0)
2864 goto fallback;
2865
2866 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2867 * user-MSS. Reserve maximum option space for middleboxes that add
2868 * private TCP options. The cost is reduced data space in SYN :(
2869 */
2870 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2871 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2872 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2873 MAX_TCP_OPTION_SPACE;
2874
2875 syn_data = skb_copy_expand(syn, skb_headroom(syn), space,
2876 sk->sk_allocation);
2877 if (syn_data == NULL)
2878 goto fallback;
2879
2880 for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2881 struct iovec *iov = &fo->data->msg_iov[i];
2882 unsigned char __user *from = iov->iov_base;
2883 int len = iov->iov_len;
2884
2885 if (syn_data->len + len > space)
2886 len = space - syn_data->len;
2887 else if (i + 1 == iovlen)
2888 /* No more data pending in inet_wait_for_connect() */
2889 fo->data = NULL;
2890
2891 if (skb_add_data(syn_data, from, len))
2892 goto fallback;
2893 }
2894
2895 /* Queue a data-only packet after the regular SYN for retransmission */
2896 data = pskb_copy(syn_data, sk->sk_allocation);
2897 if (data == NULL)
2898 goto fallback;
2899 TCP_SKB_CB(data)->seq++;
2900 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2901 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2902 tcp_connect_queue_skb(sk, data);
2903 fo->copied = data->len;
2904
2905 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2906 tp->syn_data = (fo->copied > 0);
2907 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
2908 goto done;
2909 }
2910 syn_data = NULL;
2911
2912 fallback:
2913 /* Send a regular SYN with Fast Open cookie request option */
2914 if (fo->cookie.len > 0)
2915 fo->cookie.len = 0;
2916 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2917 if (err)
2918 tp->syn_fastopen = 0;
2919 kfree_skb(syn_data);
2920 done:
2921 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
2922 return err;
2923 }
2924
2925 /* Build a SYN and send it off. */
2926 int tcp_connect(struct sock *sk)
2927 {
2928 struct tcp_sock *tp = tcp_sk(sk);
2929 struct sk_buff *buff;
2930 int err;
2931
2932 tcp_connect_init(sk);
2933
2934 if (unlikely(tp->repair)) {
2935 tcp_finish_connect(sk, NULL);
2936 return 0;
2937 }
2938
2939 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2940 if (unlikely(buff == NULL))
2941 return -ENOBUFS;
2942
2943 /* Reserve space for headers. */
2944 skb_reserve(buff, MAX_TCP_HEADER);
2945
2946 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
2947 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
2948 tcp_connect_queue_skb(sk, buff);
2949 TCP_ECN_send_syn(sk, buff);
2950
2951 /* Send off SYN; include data in Fast Open. */
2952 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
2953 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
2954 if (err == -ECONNREFUSED)
2955 return err;
2956
2957 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2958 * in order to make this packet get counted in tcpOutSegs.
2959 */
2960 tp->snd_nxt = tp->write_seq;
2961 tp->pushed_seq = tp->write_seq;
2962 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2963
2964 /* Timer for repeating the SYN until an answer. */
2965 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2966 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2967 return 0;
2968 }
2969 EXPORT_SYMBOL(tcp_connect);
2970
2971 /* Send out a delayed ack, the caller does the policy checking
2972 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2973 * for details.
2974 */
2975 void tcp_send_delayed_ack(struct sock *sk)
2976 {
2977 struct inet_connection_sock *icsk = inet_csk(sk);
2978 int ato = icsk->icsk_ack.ato;
2979 unsigned long timeout;
2980
2981 if (ato > TCP_DELACK_MIN) {
2982 const struct tcp_sock *tp = tcp_sk(sk);
2983 int max_ato = HZ / 2;
2984
2985 if (icsk->icsk_ack.pingpong ||
2986 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2987 max_ato = TCP_DELACK_MAX;
2988
2989 /* Slow path, intersegment interval is "high". */
2990
2991 /* If some rtt estimate is known, use it to bound delayed ack.
2992 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2993 * directly.
2994 */
2995 if (tp->srtt) {
2996 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
2997
2998 if (rtt < max_ato)
2999 max_ato = rtt;
3000 }
3001
3002 ato = min(ato, max_ato);
3003 }
3004
3005 /* Stay within the limit we were given */
3006 timeout = jiffies + ato;
3007
3008 /* Use new timeout only if there wasn't a older one earlier. */
3009 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3010 /* If delack timer was blocked or is about to expire,
3011 * send ACK now.
3012 */
3013 if (icsk->icsk_ack.blocked ||
3014 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3015 tcp_send_ack(sk);
3016 return;
3017 }
3018
3019 if (!time_before(timeout, icsk->icsk_ack.timeout))
3020 timeout = icsk->icsk_ack.timeout;
3021 }
3022 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3023 icsk->icsk_ack.timeout = timeout;
3024 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3025 }
3026
3027 /* This routine sends an ack and also updates the window. */
3028 void tcp_send_ack(struct sock *sk)
3029 {
3030 struct sk_buff *buff;
3031
3032 /* If we have been reset, we may not send again. */
3033 if (sk->sk_state == TCP_CLOSE)
3034 return;
3035
3036 /* We are not putting this on the write queue, so
3037 * tcp_transmit_skb() will set the ownership to this
3038 * sock.
3039 */
3040 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3041 if (buff == NULL) {
3042 inet_csk_schedule_ack(sk);
3043 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3044 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3045 TCP_DELACK_MAX, TCP_RTO_MAX);
3046 return;
3047 }
3048
3049 /* Reserve space for headers and prepare control bits. */
3050 skb_reserve(buff, MAX_TCP_HEADER);
3051 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3052
3053 /* Send it off, this clears delayed acks for us. */
3054 TCP_SKB_CB(buff)->when = tcp_time_stamp;
3055 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3056 }
3057
3058 /* This routine sends a packet with an out of date sequence
3059 * number. It assumes the other end will try to ack it.
3060 *
3061 * Question: what should we make while urgent mode?
3062 * 4.4BSD forces sending single byte of data. We cannot send
3063 * out of window data, because we have SND.NXT==SND.MAX...
3064 *
3065 * Current solution: to send TWO zero-length segments in urgent mode:
3066 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3067 * out-of-date with SND.UNA-1 to probe window.
3068 */
3069 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3070 {
3071 struct tcp_sock *tp = tcp_sk(sk);
3072 struct sk_buff *skb;
3073
3074 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3075 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3076 if (skb == NULL)
3077 return -1;
3078
3079 /* Reserve space for headers and set control bits. */
3080 skb_reserve(skb, MAX_TCP_HEADER);
3081 /* Use a previous sequence. This should cause the other
3082 * end to send an ack. Don't queue or clone SKB, just
3083 * send it.
3084 */
3085 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3086 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3087 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3088 }
3089
3090 void tcp_send_window_probe(struct sock *sk)
3091 {
3092 if (sk->sk_state == TCP_ESTABLISHED) {
3093 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3094 tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq;
3095 tcp_xmit_probe_skb(sk, 0);
3096 }
3097 }
3098
3099 /* Initiate keepalive or window probe from timer. */
3100 int tcp_write_wakeup(struct sock *sk)
3101 {
3102 struct tcp_sock *tp = tcp_sk(sk);
3103 struct sk_buff *skb;
3104
3105 if (sk->sk_state == TCP_CLOSE)
3106 return -1;
3107
3108 if ((skb = tcp_send_head(sk)) != NULL &&
3109 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3110 int err;
3111 unsigned int mss = tcp_current_mss(sk);
3112 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3113
3114 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3115 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3116
3117 /* We are probing the opening of a window
3118 * but the window size is != 0
3119 * must have been a result SWS avoidance ( sender )
3120 */
3121 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3122 skb->len > mss) {
3123 seg_size = min(seg_size, mss);
3124 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3125 if (tcp_fragment(sk, skb, seg_size, mss))
3126 return -1;
3127 } else if (!tcp_skb_pcount(skb))
3128 tcp_set_skb_tso_segs(sk, skb, mss);
3129
3130 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3131 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3132 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3133 if (!err)
3134 tcp_event_new_data_sent(sk, skb);
3135 return err;
3136 } else {
3137 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3138 tcp_xmit_probe_skb(sk, 1);
3139 return tcp_xmit_probe_skb(sk, 0);
3140 }
3141 }
3142
3143 /* A window probe timeout has occurred. If window is not closed send
3144 * a partial packet else a zero probe.
3145 */
3146 void tcp_send_probe0(struct sock *sk)
3147 {
3148 struct inet_connection_sock *icsk = inet_csk(sk);
3149 struct tcp_sock *tp = tcp_sk(sk);
3150 int err;
3151
3152 err = tcp_write_wakeup(sk);
3153
3154 if (tp->packets_out || !tcp_send_head(sk)) {
3155 /* Cancel probe timer, if it is not required. */
3156 icsk->icsk_probes_out = 0;
3157 icsk->icsk_backoff = 0;
3158 return;
3159 }
3160
3161 if (err <= 0) {
3162 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3163 icsk->icsk_backoff++;
3164 icsk->icsk_probes_out++;
3165 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3166 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3167 TCP_RTO_MAX);
3168 } else {
3169 /* If packet was not sent due to local congestion,
3170 * do not backoff and do not remember icsk_probes_out.
3171 * Let local senders to fight for local resources.
3172 *
3173 * Use accumulated backoff yet.
3174 */
3175 if (!icsk->icsk_probes_out)
3176 icsk->icsk_probes_out = 1;
3177 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3178 min(icsk->icsk_rto << icsk->icsk_backoff,
3179 TCP_RESOURCE_PROBE_INTERVAL),
3180 TCP_RTO_MAX);
3181 }
3182 }
This page took 0.098346 seconds and 5 git commands to generate.