net: fec: remove QUIRK_HAS_RACC from i.mx25
[deliverable/linux.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of four TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 /* By default, RFC2861 behavior. */
63 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
64
65 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
66 int push_one, gfp_t gfp);
67
68 /* Account for new data that has been sent to the network. */
69 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
70 {
71 struct inet_connection_sock *icsk = inet_csk(sk);
72 struct tcp_sock *tp = tcp_sk(sk);
73 unsigned int prior_packets = tp->packets_out;
74
75 tcp_advance_send_head(sk, skb);
76 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
77
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
80 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
81 tcp_rearm_rto(sk);
82 }
83
84 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
85 tcp_skb_pcount(skb));
86 }
87
88 /* SND.NXT, if window was not shrunk.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
93 */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 const struct tcp_sock *tp = tcp_sk(sk);
97
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 return tp->snd_nxt;
100 else
101 return tcp_wnd_end(tp);
102 }
103
104 /* Calculate mss to advertise in SYN segment.
105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106 *
107 * 1. It is independent of path mtu.
108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110 * attached devices, because some buggy hosts are confused by
111 * large MSS.
112 * 4. We do not make 3, we advertise MSS, calculated from first
113 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
114 * This may be overridden via information stored in routing table.
115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116 * probably even Jumbo".
117 */
118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 struct tcp_sock *tp = tcp_sk(sk);
121 const struct dst_entry *dst = __sk_dst_get(sk);
122 int mss = tp->advmss;
123
124 if (dst) {
125 unsigned int metric = dst_metric_advmss(dst);
126
127 if (metric < mss) {
128 mss = metric;
129 tp->advmss = mss;
130 }
131 }
132
133 return (__u16)mss;
134 }
135
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137 * This is the first part of cwnd validation mechanism.
138 */
139 void tcp_cwnd_restart(struct sock *sk, s32 delta)
140 {
141 struct tcp_sock *tp = tcp_sk(sk);
142 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
143 u32 cwnd = tp->snd_cwnd;
144
145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146
147 tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 restart_cwnd = min(restart_cwnd, cwnd);
149
150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 cwnd >>= 1;
152 tp->snd_cwnd = max(cwnd, restart_cwnd);
153 tp->snd_cwnd_stamp = tcp_time_stamp;
154 tp->snd_cwnd_used = 0;
155 }
156
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 struct sock *sk)
160 {
161 struct inet_connection_sock *icsk = inet_csk(sk);
162 const u32 now = tcp_time_stamp;
163
164 if (tcp_packets_in_flight(tp) == 0)
165 tcp_ca_event(sk, CA_EVENT_TX_START);
166
167 tp->lsndtime = now;
168
169 /* If it is a reply for ato after last received
170 * packet, enter pingpong mode.
171 */
172 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
173 icsk->icsk_ack.pingpong = 1;
174 }
175
176 /* Account for an ACK we sent. */
177 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
178 {
179 tcp_dec_quickack_mode(sk, pkts);
180 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
181 }
182
183
184 u32 tcp_default_init_rwnd(u32 mss)
185 {
186 /* Initial receive window should be twice of TCP_INIT_CWND to
187 * enable proper sending of new unsent data during fast recovery
188 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
189 * limit when mss is larger than 1460.
190 */
191 u32 init_rwnd = TCP_INIT_CWND * 2;
192
193 if (mss > 1460)
194 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
195 return init_rwnd;
196 }
197
198 /* Determine a window scaling and initial window to offer.
199 * Based on the assumption that the given amount of space
200 * will be offered. Store the results in the tp structure.
201 * NOTE: for smooth operation initial space offering should
202 * be a multiple of mss if possible. We assume here that mss >= 1.
203 * This MUST be enforced by all callers.
204 */
205 void tcp_select_initial_window(int __space, __u32 mss,
206 __u32 *rcv_wnd, __u32 *window_clamp,
207 int wscale_ok, __u8 *rcv_wscale,
208 __u32 init_rcv_wnd)
209 {
210 unsigned int space = (__space < 0 ? 0 : __space);
211
212 /* If no clamp set the clamp to the max possible scaled window */
213 if (*window_clamp == 0)
214 (*window_clamp) = (65535 << 14);
215 space = min(*window_clamp, space);
216
217 /* Quantize space offering to a multiple of mss if possible. */
218 if (space > mss)
219 space = (space / mss) * mss;
220
221 /* NOTE: offering an initial window larger than 32767
222 * will break some buggy TCP stacks. If the admin tells us
223 * it is likely we could be speaking with such a buggy stack
224 * we will truncate our initial window offering to 32K-1
225 * unless the remote has sent us a window scaling option,
226 * which we interpret as a sign the remote TCP is not
227 * misinterpreting the window field as a signed quantity.
228 */
229 if (sysctl_tcp_workaround_signed_windows)
230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 else
232 (*rcv_wnd) = space;
233
234 (*rcv_wscale) = 0;
235 if (wscale_ok) {
236 /* Set window scaling on max possible window
237 * See RFC1323 for an explanation of the limit to 14
238 */
239 space = max_t(u32, space, sysctl_tcp_rmem[2]);
240 space = max_t(u32, space, sysctl_rmem_max);
241 space = min_t(u32, space, *window_clamp);
242 while (space > 65535 && (*rcv_wscale) < 14) {
243 space >>= 1;
244 (*rcv_wscale)++;
245 }
246 }
247
248 if (mss > (1 << *rcv_wscale)) {
249 if (!init_rcv_wnd) /* Use default unless specified otherwise */
250 init_rcv_wnd = tcp_default_init_rwnd(mss);
251 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
252 }
253
254 /* Set the clamp no higher than max representable value */
255 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
256 }
257 EXPORT_SYMBOL(tcp_select_initial_window);
258
259 /* Chose a new window to advertise, update state in tcp_sock for the
260 * socket, and return result with RFC1323 scaling applied. The return
261 * value can be stuffed directly into th->window for an outgoing
262 * frame.
263 */
264 static u16 tcp_select_window(struct sock *sk)
265 {
266 struct tcp_sock *tp = tcp_sk(sk);
267 u32 old_win = tp->rcv_wnd;
268 u32 cur_win = tcp_receive_window(tp);
269 u32 new_win = __tcp_select_window(sk);
270
271 /* Never shrink the offered window */
272 if (new_win < cur_win) {
273 /* Danger Will Robinson!
274 * Don't update rcv_wup/rcv_wnd here or else
275 * we will not be able to advertise a zero
276 * window in time. --DaveM
277 *
278 * Relax Will Robinson.
279 */
280 if (new_win == 0)
281 NET_INC_STATS(sock_net(sk),
282 LINUX_MIB_TCPWANTZEROWINDOWADV);
283 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
284 }
285 tp->rcv_wnd = new_win;
286 tp->rcv_wup = tp->rcv_nxt;
287
288 /* Make sure we do not exceed the maximum possible
289 * scaled window.
290 */
291 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
292 new_win = min(new_win, MAX_TCP_WINDOW);
293 else
294 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
295
296 /* RFC1323 scaling applied */
297 new_win >>= tp->rx_opt.rcv_wscale;
298
299 /* If we advertise zero window, disable fast path. */
300 if (new_win == 0) {
301 tp->pred_flags = 0;
302 if (old_win)
303 NET_INC_STATS(sock_net(sk),
304 LINUX_MIB_TCPTOZEROWINDOWADV);
305 } else if (old_win == 0) {
306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
307 }
308
309 return new_win;
310 }
311
312 /* Packet ECN state for a SYN-ACK */
313 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
314 {
315 const struct tcp_sock *tp = tcp_sk(sk);
316
317 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
318 if (!(tp->ecn_flags & TCP_ECN_OK))
319 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
320 else if (tcp_ca_needs_ecn(sk))
321 INET_ECN_xmit(sk);
322 }
323
324 /* Packet ECN state for a SYN. */
325 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
326 {
327 struct tcp_sock *tp = tcp_sk(sk);
328 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
329 tcp_ca_needs_ecn(sk);
330
331 if (!use_ecn) {
332 const struct dst_entry *dst = __sk_dst_get(sk);
333
334 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
335 use_ecn = true;
336 }
337
338 tp->ecn_flags = 0;
339
340 if (use_ecn) {
341 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
342 tp->ecn_flags = TCP_ECN_OK;
343 if (tcp_ca_needs_ecn(sk))
344 INET_ECN_xmit(sk);
345 }
346 }
347
348 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
349 {
350 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
351 /* tp->ecn_flags are cleared at a later point in time when
352 * SYN ACK is ultimatively being received.
353 */
354 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
355 }
356
357 static void
358 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
359 {
360 if (inet_rsk(req)->ecn_ok)
361 th->ece = 1;
362 }
363
364 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
365 * be sent.
366 */
367 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
368 struct tcphdr *th, int tcp_header_len)
369 {
370 struct tcp_sock *tp = tcp_sk(sk);
371
372 if (tp->ecn_flags & TCP_ECN_OK) {
373 /* Not-retransmitted data segment: set ECT and inject CWR. */
374 if (skb->len != tcp_header_len &&
375 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
376 INET_ECN_xmit(sk);
377 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
378 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
379 th->cwr = 1;
380 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
381 }
382 } else if (!tcp_ca_needs_ecn(sk)) {
383 /* ACK or retransmitted segment: clear ECT|CE */
384 INET_ECN_dontxmit(sk);
385 }
386 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
387 th->ece = 1;
388 }
389 }
390
391 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
392 * auto increment end seqno.
393 */
394 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
395 {
396 skb->ip_summed = CHECKSUM_PARTIAL;
397 skb->csum = 0;
398
399 TCP_SKB_CB(skb)->tcp_flags = flags;
400 TCP_SKB_CB(skb)->sacked = 0;
401
402 tcp_skb_pcount_set(skb, 1);
403
404 TCP_SKB_CB(skb)->seq = seq;
405 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
406 seq++;
407 TCP_SKB_CB(skb)->end_seq = seq;
408 }
409
410 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
411 {
412 return tp->snd_una != tp->snd_up;
413 }
414
415 #define OPTION_SACK_ADVERTISE (1 << 0)
416 #define OPTION_TS (1 << 1)
417 #define OPTION_MD5 (1 << 2)
418 #define OPTION_WSCALE (1 << 3)
419 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
420
421 struct tcp_out_options {
422 u16 options; /* bit field of OPTION_* */
423 u16 mss; /* 0 to disable */
424 u8 ws; /* window scale, 0 to disable */
425 u8 num_sack_blocks; /* number of SACK blocks to include */
426 u8 hash_size; /* bytes in hash_location */
427 __u8 *hash_location; /* temporary pointer, overloaded */
428 __u32 tsval, tsecr; /* need to include OPTION_TS */
429 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
430 };
431
432 /* Write previously computed TCP options to the packet.
433 *
434 * Beware: Something in the Internet is very sensitive to the ordering of
435 * TCP options, we learned this through the hard way, so be careful here.
436 * Luckily we can at least blame others for their non-compliance but from
437 * inter-operability perspective it seems that we're somewhat stuck with
438 * the ordering which we have been using if we want to keep working with
439 * those broken things (not that it currently hurts anybody as there isn't
440 * particular reason why the ordering would need to be changed).
441 *
442 * At least SACK_PERM as the first option is known to lead to a disaster
443 * (but it may well be that other scenarios fail similarly).
444 */
445 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
446 struct tcp_out_options *opts)
447 {
448 u16 options = opts->options; /* mungable copy */
449
450 if (unlikely(OPTION_MD5 & options)) {
451 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
452 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
453 /* overload cookie hash location */
454 opts->hash_location = (__u8 *)ptr;
455 ptr += 4;
456 }
457
458 if (unlikely(opts->mss)) {
459 *ptr++ = htonl((TCPOPT_MSS << 24) |
460 (TCPOLEN_MSS << 16) |
461 opts->mss);
462 }
463
464 if (likely(OPTION_TS & options)) {
465 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
466 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
467 (TCPOLEN_SACK_PERM << 16) |
468 (TCPOPT_TIMESTAMP << 8) |
469 TCPOLEN_TIMESTAMP);
470 options &= ~OPTION_SACK_ADVERTISE;
471 } else {
472 *ptr++ = htonl((TCPOPT_NOP << 24) |
473 (TCPOPT_NOP << 16) |
474 (TCPOPT_TIMESTAMP << 8) |
475 TCPOLEN_TIMESTAMP);
476 }
477 *ptr++ = htonl(opts->tsval);
478 *ptr++ = htonl(opts->tsecr);
479 }
480
481 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
482 *ptr++ = htonl((TCPOPT_NOP << 24) |
483 (TCPOPT_NOP << 16) |
484 (TCPOPT_SACK_PERM << 8) |
485 TCPOLEN_SACK_PERM);
486 }
487
488 if (unlikely(OPTION_WSCALE & options)) {
489 *ptr++ = htonl((TCPOPT_NOP << 24) |
490 (TCPOPT_WINDOW << 16) |
491 (TCPOLEN_WINDOW << 8) |
492 opts->ws);
493 }
494
495 if (unlikely(opts->num_sack_blocks)) {
496 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
497 tp->duplicate_sack : tp->selective_acks;
498 int this_sack;
499
500 *ptr++ = htonl((TCPOPT_NOP << 24) |
501 (TCPOPT_NOP << 16) |
502 (TCPOPT_SACK << 8) |
503 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
504 TCPOLEN_SACK_PERBLOCK)));
505
506 for (this_sack = 0; this_sack < opts->num_sack_blocks;
507 ++this_sack) {
508 *ptr++ = htonl(sp[this_sack].start_seq);
509 *ptr++ = htonl(sp[this_sack].end_seq);
510 }
511
512 tp->rx_opt.dsack = 0;
513 }
514
515 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
516 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
517 u8 *p = (u8 *)ptr;
518 u32 len; /* Fast Open option length */
519
520 if (foc->exp) {
521 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
522 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
523 TCPOPT_FASTOPEN_MAGIC);
524 p += TCPOLEN_EXP_FASTOPEN_BASE;
525 } else {
526 len = TCPOLEN_FASTOPEN_BASE + foc->len;
527 *p++ = TCPOPT_FASTOPEN;
528 *p++ = len;
529 }
530
531 memcpy(p, foc->val, foc->len);
532 if ((len & 3) == 2) {
533 p[foc->len] = TCPOPT_NOP;
534 p[foc->len + 1] = TCPOPT_NOP;
535 }
536 ptr += (len + 3) >> 2;
537 }
538 }
539
540 /* Compute TCP options for SYN packets. This is not the final
541 * network wire format yet.
542 */
543 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
544 struct tcp_out_options *opts,
545 struct tcp_md5sig_key **md5)
546 {
547 struct tcp_sock *tp = tcp_sk(sk);
548 unsigned int remaining = MAX_TCP_OPTION_SPACE;
549 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
550
551 #ifdef CONFIG_TCP_MD5SIG
552 *md5 = tp->af_specific->md5_lookup(sk, sk);
553 if (*md5) {
554 opts->options |= OPTION_MD5;
555 remaining -= TCPOLEN_MD5SIG_ALIGNED;
556 }
557 #else
558 *md5 = NULL;
559 #endif
560
561 /* We always get an MSS option. The option bytes which will be seen in
562 * normal data packets should timestamps be used, must be in the MSS
563 * advertised. But we subtract them from tp->mss_cache so that
564 * calculations in tcp_sendmsg are simpler etc. So account for this
565 * fact here if necessary. If we don't do this correctly, as a
566 * receiver we won't recognize data packets as being full sized when we
567 * should, and thus we won't abide by the delayed ACK rules correctly.
568 * SACKs don't matter, we never delay an ACK when we have any of those
569 * going out. */
570 opts->mss = tcp_advertise_mss(sk);
571 remaining -= TCPOLEN_MSS_ALIGNED;
572
573 if (likely(sysctl_tcp_timestamps && !*md5)) {
574 opts->options |= OPTION_TS;
575 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
576 opts->tsecr = tp->rx_opt.ts_recent;
577 remaining -= TCPOLEN_TSTAMP_ALIGNED;
578 }
579 if (likely(sysctl_tcp_window_scaling)) {
580 opts->ws = tp->rx_opt.rcv_wscale;
581 opts->options |= OPTION_WSCALE;
582 remaining -= TCPOLEN_WSCALE_ALIGNED;
583 }
584 if (likely(sysctl_tcp_sack)) {
585 opts->options |= OPTION_SACK_ADVERTISE;
586 if (unlikely(!(OPTION_TS & opts->options)))
587 remaining -= TCPOLEN_SACKPERM_ALIGNED;
588 }
589
590 if (fastopen && fastopen->cookie.len >= 0) {
591 u32 need = fastopen->cookie.len;
592
593 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
594 TCPOLEN_FASTOPEN_BASE;
595 need = (need + 3) & ~3U; /* Align to 32 bits */
596 if (remaining >= need) {
597 opts->options |= OPTION_FAST_OPEN_COOKIE;
598 opts->fastopen_cookie = &fastopen->cookie;
599 remaining -= need;
600 tp->syn_fastopen = 1;
601 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
602 }
603 }
604
605 return MAX_TCP_OPTION_SPACE - remaining;
606 }
607
608 /* Set up TCP options for SYN-ACKs. */
609 static unsigned int tcp_synack_options(struct request_sock *req,
610 unsigned int mss, struct sk_buff *skb,
611 struct tcp_out_options *opts,
612 const struct tcp_md5sig_key *md5,
613 struct tcp_fastopen_cookie *foc)
614 {
615 struct inet_request_sock *ireq = inet_rsk(req);
616 unsigned int remaining = MAX_TCP_OPTION_SPACE;
617
618 #ifdef CONFIG_TCP_MD5SIG
619 if (md5) {
620 opts->options |= OPTION_MD5;
621 remaining -= TCPOLEN_MD5SIG_ALIGNED;
622
623 /* We can't fit any SACK blocks in a packet with MD5 + TS
624 * options. There was discussion about disabling SACK
625 * rather than TS in order to fit in better with old,
626 * buggy kernels, but that was deemed to be unnecessary.
627 */
628 ireq->tstamp_ok &= !ireq->sack_ok;
629 }
630 #endif
631
632 /* We always send an MSS option. */
633 opts->mss = mss;
634 remaining -= TCPOLEN_MSS_ALIGNED;
635
636 if (likely(ireq->wscale_ok)) {
637 opts->ws = ireq->rcv_wscale;
638 opts->options |= OPTION_WSCALE;
639 remaining -= TCPOLEN_WSCALE_ALIGNED;
640 }
641 if (likely(ireq->tstamp_ok)) {
642 opts->options |= OPTION_TS;
643 opts->tsval = tcp_skb_timestamp(skb);
644 opts->tsecr = req->ts_recent;
645 remaining -= TCPOLEN_TSTAMP_ALIGNED;
646 }
647 if (likely(ireq->sack_ok)) {
648 opts->options |= OPTION_SACK_ADVERTISE;
649 if (unlikely(!ireq->tstamp_ok))
650 remaining -= TCPOLEN_SACKPERM_ALIGNED;
651 }
652 if (foc != NULL && foc->len >= 0) {
653 u32 need = foc->len;
654
655 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
656 TCPOLEN_FASTOPEN_BASE;
657 need = (need + 3) & ~3U; /* Align to 32 bits */
658 if (remaining >= need) {
659 opts->options |= OPTION_FAST_OPEN_COOKIE;
660 opts->fastopen_cookie = foc;
661 remaining -= need;
662 }
663 }
664
665 return MAX_TCP_OPTION_SPACE - remaining;
666 }
667
668 /* Compute TCP options for ESTABLISHED sockets. This is not the
669 * final wire format yet.
670 */
671 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
672 struct tcp_out_options *opts,
673 struct tcp_md5sig_key **md5)
674 {
675 struct tcp_sock *tp = tcp_sk(sk);
676 unsigned int size = 0;
677 unsigned int eff_sacks;
678
679 opts->options = 0;
680
681 #ifdef CONFIG_TCP_MD5SIG
682 *md5 = tp->af_specific->md5_lookup(sk, sk);
683 if (unlikely(*md5)) {
684 opts->options |= OPTION_MD5;
685 size += TCPOLEN_MD5SIG_ALIGNED;
686 }
687 #else
688 *md5 = NULL;
689 #endif
690
691 if (likely(tp->rx_opt.tstamp_ok)) {
692 opts->options |= OPTION_TS;
693 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
694 opts->tsecr = tp->rx_opt.ts_recent;
695 size += TCPOLEN_TSTAMP_ALIGNED;
696 }
697
698 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
699 if (unlikely(eff_sacks)) {
700 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
701 opts->num_sack_blocks =
702 min_t(unsigned int, eff_sacks,
703 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
704 TCPOLEN_SACK_PERBLOCK);
705 size += TCPOLEN_SACK_BASE_ALIGNED +
706 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
707 }
708
709 return size;
710 }
711
712
713 /* TCP SMALL QUEUES (TSQ)
714 *
715 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
716 * to reduce RTT and bufferbloat.
717 * We do this using a special skb destructor (tcp_wfree).
718 *
719 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
720 * needs to be reallocated in a driver.
721 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
722 *
723 * Since transmit from skb destructor is forbidden, we use a tasklet
724 * to process all sockets that eventually need to send more skbs.
725 * We use one tasklet per cpu, with its own queue of sockets.
726 */
727 struct tsq_tasklet {
728 struct tasklet_struct tasklet;
729 struct list_head head; /* queue of tcp sockets */
730 };
731 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
732
733 static void tcp_tsq_handler(struct sock *sk)
734 {
735 if ((1 << sk->sk_state) &
736 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
737 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
738 tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
739 0, GFP_ATOMIC);
740 }
741 /*
742 * One tasklet per cpu tries to send more skbs.
743 * We run in tasklet context but need to disable irqs when
744 * transferring tsq->head because tcp_wfree() might
745 * interrupt us (non NAPI drivers)
746 */
747 static void tcp_tasklet_func(unsigned long data)
748 {
749 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
750 LIST_HEAD(list);
751 unsigned long flags;
752 struct list_head *q, *n;
753 struct tcp_sock *tp;
754 struct sock *sk;
755
756 local_irq_save(flags);
757 list_splice_init(&tsq->head, &list);
758 local_irq_restore(flags);
759
760 list_for_each_safe(q, n, &list) {
761 tp = list_entry(q, struct tcp_sock, tsq_node);
762 list_del(&tp->tsq_node);
763
764 sk = (struct sock *)tp;
765 bh_lock_sock(sk);
766
767 if (!sock_owned_by_user(sk)) {
768 tcp_tsq_handler(sk);
769 } else {
770 /* defer the work to tcp_release_cb() */
771 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
772 }
773 bh_unlock_sock(sk);
774
775 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
776 sk_free(sk);
777 }
778 }
779
780 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
781 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
782 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
783 (1UL << TCP_MTU_REDUCED_DEFERRED))
784 /**
785 * tcp_release_cb - tcp release_sock() callback
786 * @sk: socket
787 *
788 * called from release_sock() to perform protocol dependent
789 * actions before socket release.
790 */
791 void tcp_release_cb(struct sock *sk)
792 {
793 struct tcp_sock *tp = tcp_sk(sk);
794 unsigned long flags, nflags;
795
796 /* perform an atomic operation only if at least one flag is set */
797 do {
798 flags = tp->tsq_flags;
799 if (!(flags & TCP_DEFERRED_ALL))
800 return;
801 nflags = flags & ~TCP_DEFERRED_ALL;
802 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
803
804 if (flags & (1UL << TCP_TSQ_DEFERRED))
805 tcp_tsq_handler(sk);
806
807 /* Here begins the tricky part :
808 * We are called from release_sock() with :
809 * 1) BH disabled
810 * 2) sk_lock.slock spinlock held
811 * 3) socket owned by us (sk->sk_lock.owned == 1)
812 *
813 * But following code is meant to be called from BH handlers,
814 * so we should keep BH disabled, but early release socket ownership
815 */
816 sock_release_ownership(sk);
817
818 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
819 tcp_write_timer_handler(sk);
820 __sock_put(sk);
821 }
822 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
823 tcp_delack_timer_handler(sk);
824 __sock_put(sk);
825 }
826 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
827 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
828 __sock_put(sk);
829 }
830 }
831 EXPORT_SYMBOL(tcp_release_cb);
832
833 void __init tcp_tasklet_init(void)
834 {
835 int i;
836
837 for_each_possible_cpu(i) {
838 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
839
840 INIT_LIST_HEAD(&tsq->head);
841 tasklet_init(&tsq->tasklet,
842 tcp_tasklet_func,
843 (unsigned long)tsq);
844 }
845 }
846
847 /*
848 * Write buffer destructor automatically called from kfree_skb.
849 * We can't xmit new skbs from this context, as we might already
850 * hold qdisc lock.
851 */
852 void tcp_wfree(struct sk_buff *skb)
853 {
854 struct sock *sk = skb->sk;
855 struct tcp_sock *tp = tcp_sk(sk);
856 int wmem;
857
858 /* Keep one reference on sk_wmem_alloc.
859 * Will be released by sk_free() from here or tcp_tasklet_func()
860 */
861 wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
862
863 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
864 * Wait until our queues (qdisc + devices) are drained.
865 * This gives :
866 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
867 * - chance for incoming ACK (processed by another cpu maybe)
868 * to migrate this flow (skb->ooo_okay will be eventually set)
869 */
870 if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
871 goto out;
872
873 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
874 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
875 unsigned long flags;
876 struct tsq_tasklet *tsq;
877
878 /* queue this socket to tasklet queue */
879 local_irq_save(flags);
880 tsq = this_cpu_ptr(&tsq_tasklet);
881 list_add(&tp->tsq_node, &tsq->head);
882 tasklet_schedule(&tsq->tasklet);
883 local_irq_restore(flags);
884 return;
885 }
886 out:
887 sk_free(sk);
888 }
889
890 /* This routine actually transmits TCP packets queued in by
891 * tcp_do_sendmsg(). This is used by both the initial
892 * transmission and possible later retransmissions.
893 * All SKB's seen here are completely headerless. It is our
894 * job to build the TCP header, and pass the packet down to
895 * IP so it can do the same plus pass the packet off to the
896 * device.
897 *
898 * We are working here with either a clone of the original
899 * SKB, or a fresh unique copy made by the retransmit engine.
900 */
901 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
902 gfp_t gfp_mask)
903 {
904 const struct inet_connection_sock *icsk = inet_csk(sk);
905 struct inet_sock *inet;
906 struct tcp_sock *tp;
907 struct tcp_skb_cb *tcb;
908 struct tcp_out_options opts;
909 unsigned int tcp_options_size, tcp_header_size;
910 struct tcp_md5sig_key *md5;
911 struct tcphdr *th;
912 int err;
913
914 BUG_ON(!skb || !tcp_skb_pcount(skb));
915 tp = tcp_sk(sk);
916
917 if (clone_it) {
918 skb_mstamp_get(&skb->skb_mstamp);
919 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
920 - tp->snd_una;
921
922 if (unlikely(skb_cloned(skb)))
923 skb = pskb_copy(skb, gfp_mask);
924 else
925 skb = skb_clone(skb, gfp_mask);
926 if (unlikely(!skb))
927 return -ENOBUFS;
928 }
929
930 inet = inet_sk(sk);
931 tcb = TCP_SKB_CB(skb);
932 memset(&opts, 0, sizeof(opts));
933
934 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
935 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
936 else
937 tcp_options_size = tcp_established_options(sk, skb, &opts,
938 &md5);
939 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
940
941 /* if no packet is in qdisc/device queue, then allow XPS to select
942 * another queue. We can be called from tcp_tsq_handler()
943 * which holds one reference to sk_wmem_alloc.
944 *
945 * TODO: Ideally, in-flight pure ACK packets should not matter here.
946 * One way to get this would be to set skb->truesize = 2 on them.
947 */
948 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
949
950 skb_push(skb, tcp_header_size);
951 skb_reset_transport_header(skb);
952
953 skb_orphan(skb);
954 skb->sk = sk;
955 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
956 skb_set_hash_from_sk(skb, sk);
957 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
958
959 /* Build TCP header and checksum it. */
960 th = (struct tcphdr *)skb->data;
961 th->source = inet->inet_sport;
962 th->dest = inet->inet_dport;
963 th->seq = htonl(tcb->seq);
964 th->ack_seq = htonl(tp->rcv_nxt);
965 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
966 tcb->tcp_flags);
967
968 th->check = 0;
969 th->urg_ptr = 0;
970
971 /* The urg_mode check is necessary during a below snd_una win probe */
972 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
973 if (before(tp->snd_up, tcb->seq + 0x10000)) {
974 th->urg_ptr = htons(tp->snd_up - tcb->seq);
975 th->urg = 1;
976 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
977 th->urg_ptr = htons(0xFFFF);
978 th->urg = 1;
979 }
980 }
981
982 tcp_options_write((__be32 *)(th + 1), tp, &opts);
983 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
984 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
985 th->window = htons(tcp_select_window(sk));
986 tcp_ecn_send(sk, skb, th, tcp_header_size);
987 } else {
988 /* RFC1323: The window in SYN & SYN/ACK segments
989 * is never scaled.
990 */
991 th->window = htons(min(tp->rcv_wnd, 65535U));
992 }
993 #ifdef CONFIG_TCP_MD5SIG
994 /* Calculate the MD5 hash, as we have all we need now */
995 if (md5) {
996 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
997 tp->af_specific->calc_md5_hash(opts.hash_location,
998 md5, sk, skb);
999 }
1000 #endif
1001
1002 icsk->icsk_af_ops->send_check(sk, skb);
1003
1004 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1005 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1006
1007 if (skb->len != tcp_header_size) {
1008 tcp_event_data_sent(tp, sk);
1009 tp->data_segs_out += tcp_skb_pcount(skb);
1010 }
1011
1012 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1013 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1014 tcp_skb_pcount(skb));
1015
1016 tp->segs_out += tcp_skb_pcount(skb);
1017 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1018 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1019 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1020
1021 /* Our usage of tstamp should remain private */
1022 skb->tstamp.tv64 = 0;
1023
1024 /* Cleanup our debris for IP stacks */
1025 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1026 sizeof(struct inet6_skb_parm)));
1027
1028 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1029
1030 if (likely(err <= 0))
1031 return err;
1032
1033 tcp_enter_cwr(sk);
1034
1035 return net_xmit_eval(err);
1036 }
1037
1038 /* This routine just queues the buffer for sending.
1039 *
1040 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1041 * otherwise socket can stall.
1042 */
1043 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1044 {
1045 struct tcp_sock *tp = tcp_sk(sk);
1046
1047 /* Advance write_seq and place onto the write_queue. */
1048 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1049 __skb_header_release(skb);
1050 tcp_add_write_queue_tail(sk, skb);
1051 sk->sk_wmem_queued += skb->truesize;
1052 sk_mem_charge(sk, skb->truesize);
1053 }
1054
1055 /* Initialize TSO segments for a packet. */
1056 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1057 {
1058 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1059 /* Avoid the costly divide in the normal
1060 * non-TSO case.
1061 */
1062 tcp_skb_pcount_set(skb, 1);
1063 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1064 } else {
1065 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1066 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1067 }
1068 }
1069
1070 /* When a modification to fackets out becomes necessary, we need to check
1071 * skb is counted to fackets_out or not.
1072 */
1073 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1074 int decr)
1075 {
1076 struct tcp_sock *tp = tcp_sk(sk);
1077
1078 if (!tp->sacked_out || tcp_is_reno(tp))
1079 return;
1080
1081 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1082 tp->fackets_out -= decr;
1083 }
1084
1085 /* Pcount in the middle of the write queue got changed, we need to do various
1086 * tweaks to fix counters
1087 */
1088 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1089 {
1090 struct tcp_sock *tp = tcp_sk(sk);
1091
1092 tp->packets_out -= decr;
1093
1094 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1095 tp->sacked_out -= decr;
1096 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1097 tp->retrans_out -= decr;
1098 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1099 tp->lost_out -= decr;
1100
1101 /* Reno case is special. Sigh... */
1102 if (tcp_is_reno(tp) && decr > 0)
1103 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1104
1105 tcp_adjust_fackets_out(sk, skb, decr);
1106
1107 if (tp->lost_skb_hint &&
1108 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1109 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1110 tp->lost_cnt_hint -= decr;
1111
1112 tcp_verify_left_out(tp);
1113 }
1114
1115 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1116 {
1117 return TCP_SKB_CB(skb)->txstamp_ack ||
1118 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1119 }
1120
1121 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1122 {
1123 struct skb_shared_info *shinfo = skb_shinfo(skb);
1124
1125 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1126 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1127 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1128 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1129
1130 shinfo->tx_flags &= ~tsflags;
1131 shinfo2->tx_flags |= tsflags;
1132 swap(shinfo->tskey, shinfo2->tskey);
1133 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1134 TCP_SKB_CB(skb)->txstamp_ack = 0;
1135 }
1136 }
1137
1138 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1139 {
1140 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1141 TCP_SKB_CB(skb)->eor = 0;
1142 }
1143
1144 /* Function to create two new TCP segments. Shrinks the given segment
1145 * to the specified size and appends a new segment with the rest of the
1146 * packet to the list. This won't be called frequently, I hope.
1147 * Remember, these are still headerless SKBs at this point.
1148 */
1149 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1150 unsigned int mss_now, gfp_t gfp)
1151 {
1152 struct tcp_sock *tp = tcp_sk(sk);
1153 struct sk_buff *buff;
1154 int nsize, old_factor;
1155 int nlen;
1156 u8 flags;
1157
1158 if (WARN_ON(len > skb->len))
1159 return -EINVAL;
1160
1161 nsize = skb_headlen(skb) - len;
1162 if (nsize < 0)
1163 nsize = 0;
1164
1165 if (skb_unclone(skb, gfp))
1166 return -ENOMEM;
1167
1168 /* Get a new skb... force flag on. */
1169 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1170 if (!buff)
1171 return -ENOMEM; /* We'll just try again later. */
1172
1173 sk->sk_wmem_queued += buff->truesize;
1174 sk_mem_charge(sk, buff->truesize);
1175 nlen = skb->len - len - nsize;
1176 buff->truesize += nlen;
1177 skb->truesize -= nlen;
1178
1179 /* Correct the sequence numbers. */
1180 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1181 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1182 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1183
1184 /* PSH and FIN should only be set in the second packet. */
1185 flags = TCP_SKB_CB(skb)->tcp_flags;
1186 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1187 TCP_SKB_CB(buff)->tcp_flags = flags;
1188 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1189 tcp_skb_fragment_eor(skb, buff);
1190
1191 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1192 /* Copy and checksum data tail into the new buffer. */
1193 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1194 skb_put(buff, nsize),
1195 nsize, 0);
1196
1197 skb_trim(skb, len);
1198
1199 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1200 } else {
1201 skb->ip_summed = CHECKSUM_PARTIAL;
1202 skb_split(skb, buff, len);
1203 }
1204
1205 buff->ip_summed = skb->ip_summed;
1206
1207 buff->tstamp = skb->tstamp;
1208 tcp_fragment_tstamp(skb, buff);
1209
1210 old_factor = tcp_skb_pcount(skb);
1211
1212 /* Fix up tso_factor for both original and new SKB. */
1213 tcp_set_skb_tso_segs(skb, mss_now);
1214 tcp_set_skb_tso_segs(buff, mss_now);
1215
1216 /* If this packet has been sent out already, we must
1217 * adjust the various packet counters.
1218 */
1219 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1220 int diff = old_factor - tcp_skb_pcount(skb) -
1221 tcp_skb_pcount(buff);
1222
1223 if (diff)
1224 tcp_adjust_pcount(sk, skb, diff);
1225 }
1226
1227 /* Link BUFF into the send queue. */
1228 __skb_header_release(buff);
1229 tcp_insert_write_queue_after(skb, buff, sk);
1230
1231 return 0;
1232 }
1233
1234 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1235 * eventually). The difference is that pulled data not copied, but
1236 * immediately discarded.
1237 */
1238 static void __pskb_trim_head(struct sk_buff *skb, int len)
1239 {
1240 struct skb_shared_info *shinfo;
1241 int i, k, eat;
1242
1243 eat = min_t(int, len, skb_headlen(skb));
1244 if (eat) {
1245 __skb_pull(skb, eat);
1246 len -= eat;
1247 if (!len)
1248 return;
1249 }
1250 eat = len;
1251 k = 0;
1252 shinfo = skb_shinfo(skb);
1253 for (i = 0; i < shinfo->nr_frags; i++) {
1254 int size = skb_frag_size(&shinfo->frags[i]);
1255
1256 if (size <= eat) {
1257 skb_frag_unref(skb, i);
1258 eat -= size;
1259 } else {
1260 shinfo->frags[k] = shinfo->frags[i];
1261 if (eat) {
1262 shinfo->frags[k].page_offset += eat;
1263 skb_frag_size_sub(&shinfo->frags[k], eat);
1264 eat = 0;
1265 }
1266 k++;
1267 }
1268 }
1269 shinfo->nr_frags = k;
1270
1271 skb_reset_tail_pointer(skb);
1272 skb->data_len -= len;
1273 skb->len = skb->data_len;
1274 }
1275
1276 /* Remove acked data from a packet in the transmit queue. */
1277 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1278 {
1279 if (skb_unclone(skb, GFP_ATOMIC))
1280 return -ENOMEM;
1281
1282 __pskb_trim_head(skb, len);
1283
1284 TCP_SKB_CB(skb)->seq += len;
1285 skb->ip_summed = CHECKSUM_PARTIAL;
1286
1287 skb->truesize -= len;
1288 sk->sk_wmem_queued -= len;
1289 sk_mem_uncharge(sk, len);
1290 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1291
1292 /* Any change of skb->len requires recalculation of tso factor. */
1293 if (tcp_skb_pcount(skb) > 1)
1294 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1295
1296 return 0;
1297 }
1298
1299 /* Calculate MSS not accounting any TCP options. */
1300 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1301 {
1302 const struct tcp_sock *tp = tcp_sk(sk);
1303 const struct inet_connection_sock *icsk = inet_csk(sk);
1304 int mss_now;
1305
1306 /* Calculate base mss without TCP options:
1307 It is MMS_S - sizeof(tcphdr) of rfc1122
1308 */
1309 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1310
1311 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1312 if (icsk->icsk_af_ops->net_frag_header_len) {
1313 const struct dst_entry *dst = __sk_dst_get(sk);
1314
1315 if (dst && dst_allfrag(dst))
1316 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1317 }
1318
1319 /* Clamp it (mss_clamp does not include tcp options) */
1320 if (mss_now > tp->rx_opt.mss_clamp)
1321 mss_now = tp->rx_opt.mss_clamp;
1322
1323 /* Now subtract optional transport overhead */
1324 mss_now -= icsk->icsk_ext_hdr_len;
1325
1326 /* Then reserve room for full set of TCP options and 8 bytes of data */
1327 if (mss_now < 48)
1328 mss_now = 48;
1329 return mss_now;
1330 }
1331
1332 /* Calculate MSS. Not accounting for SACKs here. */
1333 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1334 {
1335 /* Subtract TCP options size, not including SACKs */
1336 return __tcp_mtu_to_mss(sk, pmtu) -
1337 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1338 }
1339
1340 /* Inverse of above */
1341 int tcp_mss_to_mtu(struct sock *sk, int mss)
1342 {
1343 const struct tcp_sock *tp = tcp_sk(sk);
1344 const struct inet_connection_sock *icsk = inet_csk(sk);
1345 int mtu;
1346
1347 mtu = mss +
1348 tp->tcp_header_len +
1349 icsk->icsk_ext_hdr_len +
1350 icsk->icsk_af_ops->net_header_len;
1351
1352 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1353 if (icsk->icsk_af_ops->net_frag_header_len) {
1354 const struct dst_entry *dst = __sk_dst_get(sk);
1355
1356 if (dst && dst_allfrag(dst))
1357 mtu += icsk->icsk_af_ops->net_frag_header_len;
1358 }
1359 return mtu;
1360 }
1361
1362 /* MTU probing init per socket */
1363 void tcp_mtup_init(struct sock *sk)
1364 {
1365 struct tcp_sock *tp = tcp_sk(sk);
1366 struct inet_connection_sock *icsk = inet_csk(sk);
1367 struct net *net = sock_net(sk);
1368
1369 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1370 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1371 icsk->icsk_af_ops->net_header_len;
1372 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1373 icsk->icsk_mtup.probe_size = 0;
1374 if (icsk->icsk_mtup.enabled)
1375 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1376 }
1377 EXPORT_SYMBOL(tcp_mtup_init);
1378
1379 /* This function synchronize snd mss to current pmtu/exthdr set.
1380
1381 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1382 for TCP options, but includes only bare TCP header.
1383
1384 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1385 It is minimum of user_mss and mss received with SYN.
1386 It also does not include TCP options.
1387
1388 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1389
1390 tp->mss_cache is current effective sending mss, including
1391 all tcp options except for SACKs. It is evaluated,
1392 taking into account current pmtu, but never exceeds
1393 tp->rx_opt.mss_clamp.
1394
1395 NOTE1. rfc1122 clearly states that advertised MSS
1396 DOES NOT include either tcp or ip options.
1397
1398 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1399 are READ ONLY outside this function. --ANK (980731)
1400 */
1401 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1402 {
1403 struct tcp_sock *tp = tcp_sk(sk);
1404 struct inet_connection_sock *icsk = inet_csk(sk);
1405 int mss_now;
1406
1407 if (icsk->icsk_mtup.search_high > pmtu)
1408 icsk->icsk_mtup.search_high = pmtu;
1409
1410 mss_now = tcp_mtu_to_mss(sk, pmtu);
1411 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1412
1413 /* And store cached results */
1414 icsk->icsk_pmtu_cookie = pmtu;
1415 if (icsk->icsk_mtup.enabled)
1416 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1417 tp->mss_cache = mss_now;
1418
1419 return mss_now;
1420 }
1421 EXPORT_SYMBOL(tcp_sync_mss);
1422
1423 /* Compute the current effective MSS, taking SACKs and IP options,
1424 * and even PMTU discovery events into account.
1425 */
1426 unsigned int tcp_current_mss(struct sock *sk)
1427 {
1428 const struct tcp_sock *tp = tcp_sk(sk);
1429 const struct dst_entry *dst = __sk_dst_get(sk);
1430 u32 mss_now;
1431 unsigned int header_len;
1432 struct tcp_out_options opts;
1433 struct tcp_md5sig_key *md5;
1434
1435 mss_now = tp->mss_cache;
1436
1437 if (dst) {
1438 u32 mtu = dst_mtu(dst);
1439 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1440 mss_now = tcp_sync_mss(sk, mtu);
1441 }
1442
1443 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1444 sizeof(struct tcphdr);
1445 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1446 * some common options. If this is an odd packet (because we have SACK
1447 * blocks etc) then our calculated header_len will be different, and
1448 * we have to adjust mss_now correspondingly */
1449 if (header_len != tp->tcp_header_len) {
1450 int delta = (int) header_len - tp->tcp_header_len;
1451 mss_now -= delta;
1452 }
1453
1454 return mss_now;
1455 }
1456
1457 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1458 * As additional protections, we do not touch cwnd in retransmission phases,
1459 * and if application hit its sndbuf limit recently.
1460 */
1461 static void tcp_cwnd_application_limited(struct sock *sk)
1462 {
1463 struct tcp_sock *tp = tcp_sk(sk);
1464
1465 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1466 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1467 /* Limited by application or receiver window. */
1468 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1469 u32 win_used = max(tp->snd_cwnd_used, init_win);
1470 if (win_used < tp->snd_cwnd) {
1471 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1472 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1473 }
1474 tp->snd_cwnd_used = 0;
1475 }
1476 tp->snd_cwnd_stamp = tcp_time_stamp;
1477 }
1478
1479 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1480 {
1481 struct tcp_sock *tp = tcp_sk(sk);
1482
1483 /* Track the maximum number of outstanding packets in each
1484 * window, and remember whether we were cwnd-limited then.
1485 */
1486 if (!before(tp->snd_una, tp->max_packets_seq) ||
1487 tp->packets_out > tp->max_packets_out) {
1488 tp->max_packets_out = tp->packets_out;
1489 tp->max_packets_seq = tp->snd_nxt;
1490 tp->is_cwnd_limited = is_cwnd_limited;
1491 }
1492
1493 if (tcp_is_cwnd_limited(sk)) {
1494 /* Network is feed fully. */
1495 tp->snd_cwnd_used = 0;
1496 tp->snd_cwnd_stamp = tcp_time_stamp;
1497 } else {
1498 /* Network starves. */
1499 if (tp->packets_out > tp->snd_cwnd_used)
1500 tp->snd_cwnd_used = tp->packets_out;
1501
1502 if (sysctl_tcp_slow_start_after_idle &&
1503 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1504 tcp_cwnd_application_limited(sk);
1505 }
1506 }
1507
1508 /* Minshall's variant of the Nagle send check. */
1509 static bool tcp_minshall_check(const struct tcp_sock *tp)
1510 {
1511 return after(tp->snd_sml, tp->snd_una) &&
1512 !after(tp->snd_sml, tp->snd_nxt);
1513 }
1514
1515 /* Update snd_sml if this skb is under mss
1516 * Note that a TSO packet might end with a sub-mss segment
1517 * The test is really :
1518 * if ((skb->len % mss) != 0)
1519 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1520 * But we can avoid doing the divide again given we already have
1521 * skb_pcount = skb->len / mss_now
1522 */
1523 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1524 const struct sk_buff *skb)
1525 {
1526 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1527 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1528 }
1529
1530 /* Return false, if packet can be sent now without violation Nagle's rules:
1531 * 1. It is full sized. (provided by caller in %partial bool)
1532 * 2. Or it contains FIN. (already checked by caller)
1533 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1534 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1535 * With Minshall's modification: all sent small packets are ACKed.
1536 */
1537 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1538 int nonagle)
1539 {
1540 return partial &&
1541 ((nonagle & TCP_NAGLE_CORK) ||
1542 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1543 }
1544
1545 /* Return how many segs we'd like on a TSO packet,
1546 * to send one TSO packet per ms
1547 */
1548 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1549 {
1550 u32 bytes, segs;
1551
1552 bytes = min(sk->sk_pacing_rate >> 10,
1553 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1554
1555 /* Goal is to send at least one packet per ms,
1556 * not one big TSO packet every 100 ms.
1557 * This preserves ACK clocking and is consistent
1558 * with tcp_tso_should_defer() heuristic.
1559 */
1560 segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1561
1562 return min_t(u32, segs, sk->sk_gso_max_segs);
1563 }
1564
1565 /* Returns the portion of skb which can be sent right away */
1566 static unsigned int tcp_mss_split_point(const struct sock *sk,
1567 const struct sk_buff *skb,
1568 unsigned int mss_now,
1569 unsigned int max_segs,
1570 int nonagle)
1571 {
1572 const struct tcp_sock *tp = tcp_sk(sk);
1573 u32 partial, needed, window, max_len;
1574
1575 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1576 max_len = mss_now * max_segs;
1577
1578 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1579 return max_len;
1580
1581 needed = min(skb->len, window);
1582
1583 if (max_len <= needed)
1584 return max_len;
1585
1586 partial = needed % mss_now;
1587 /* If last segment is not a full MSS, check if Nagle rules allow us
1588 * to include this last segment in this skb.
1589 * Otherwise, we'll split the skb at last MSS boundary
1590 */
1591 if (tcp_nagle_check(partial != 0, tp, nonagle))
1592 return needed - partial;
1593
1594 return needed;
1595 }
1596
1597 /* Can at least one segment of SKB be sent right now, according to the
1598 * congestion window rules? If so, return how many segments are allowed.
1599 */
1600 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1601 const struct sk_buff *skb)
1602 {
1603 u32 in_flight, cwnd, halfcwnd;
1604
1605 /* Don't be strict about the congestion window for the final FIN. */
1606 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1607 tcp_skb_pcount(skb) == 1)
1608 return 1;
1609
1610 in_flight = tcp_packets_in_flight(tp);
1611 cwnd = tp->snd_cwnd;
1612 if (in_flight >= cwnd)
1613 return 0;
1614
1615 /* For better scheduling, ensure we have at least
1616 * 2 GSO packets in flight.
1617 */
1618 halfcwnd = max(cwnd >> 1, 1U);
1619 return min(halfcwnd, cwnd - in_flight);
1620 }
1621
1622 /* Initialize TSO state of a skb.
1623 * This must be invoked the first time we consider transmitting
1624 * SKB onto the wire.
1625 */
1626 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1627 {
1628 int tso_segs = tcp_skb_pcount(skb);
1629
1630 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1631 tcp_set_skb_tso_segs(skb, mss_now);
1632 tso_segs = tcp_skb_pcount(skb);
1633 }
1634 return tso_segs;
1635 }
1636
1637
1638 /* Return true if the Nagle test allows this packet to be
1639 * sent now.
1640 */
1641 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1642 unsigned int cur_mss, int nonagle)
1643 {
1644 /* Nagle rule does not apply to frames, which sit in the middle of the
1645 * write_queue (they have no chances to get new data).
1646 *
1647 * This is implemented in the callers, where they modify the 'nonagle'
1648 * argument based upon the location of SKB in the send queue.
1649 */
1650 if (nonagle & TCP_NAGLE_PUSH)
1651 return true;
1652
1653 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1654 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1655 return true;
1656
1657 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1658 return true;
1659
1660 return false;
1661 }
1662
1663 /* Does at least the first segment of SKB fit into the send window? */
1664 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1665 const struct sk_buff *skb,
1666 unsigned int cur_mss)
1667 {
1668 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1669
1670 if (skb->len > cur_mss)
1671 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1672
1673 return !after(end_seq, tcp_wnd_end(tp));
1674 }
1675
1676 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1677 * should be put on the wire right now. If so, it returns the number of
1678 * packets allowed by the congestion window.
1679 */
1680 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1681 unsigned int cur_mss, int nonagle)
1682 {
1683 const struct tcp_sock *tp = tcp_sk(sk);
1684 unsigned int cwnd_quota;
1685
1686 tcp_init_tso_segs(skb, cur_mss);
1687
1688 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1689 return 0;
1690
1691 cwnd_quota = tcp_cwnd_test(tp, skb);
1692 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1693 cwnd_quota = 0;
1694
1695 return cwnd_quota;
1696 }
1697
1698 /* Test if sending is allowed right now. */
1699 bool tcp_may_send_now(struct sock *sk)
1700 {
1701 const struct tcp_sock *tp = tcp_sk(sk);
1702 struct sk_buff *skb = tcp_send_head(sk);
1703
1704 return skb &&
1705 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1706 (tcp_skb_is_last(sk, skb) ?
1707 tp->nonagle : TCP_NAGLE_PUSH));
1708 }
1709
1710 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1711 * which is put after SKB on the list. It is very much like
1712 * tcp_fragment() except that it may make several kinds of assumptions
1713 * in order to speed up the splitting operation. In particular, we
1714 * know that all the data is in scatter-gather pages, and that the
1715 * packet has never been sent out before (and thus is not cloned).
1716 */
1717 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1718 unsigned int mss_now, gfp_t gfp)
1719 {
1720 struct sk_buff *buff;
1721 int nlen = skb->len - len;
1722 u8 flags;
1723
1724 /* All of a TSO frame must be composed of paged data. */
1725 if (skb->len != skb->data_len)
1726 return tcp_fragment(sk, skb, len, mss_now, gfp);
1727
1728 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1729 if (unlikely(!buff))
1730 return -ENOMEM;
1731
1732 sk->sk_wmem_queued += buff->truesize;
1733 sk_mem_charge(sk, buff->truesize);
1734 buff->truesize += nlen;
1735 skb->truesize -= nlen;
1736
1737 /* Correct the sequence numbers. */
1738 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1739 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1740 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1741
1742 /* PSH and FIN should only be set in the second packet. */
1743 flags = TCP_SKB_CB(skb)->tcp_flags;
1744 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1745 TCP_SKB_CB(buff)->tcp_flags = flags;
1746
1747 /* This packet was never sent out yet, so no SACK bits. */
1748 TCP_SKB_CB(buff)->sacked = 0;
1749
1750 tcp_skb_fragment_eor(skb, buff);
1751
1752 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1753 skb_split(skb, buff, len);
1754 tcp_fragment_tstamp(skb, buff);
1755
1756 /* Fix up tso_factor for both original and new SKB. */
1757 tcp_set_skb_tso_segs(skb, mss_now);
1758 tcp_set_skb_tso_segs(buff, mss_now);
1759
1760 /* Link BUFF into the send queue. */
1761 __skb_header_release(buff);
1762 tcp_insert_write_queue_after(skb, buff, sk);
1763
1764 return 0;
1765 }
1766
1767 /* Try to defer sending, if possible, in order to minimize the amount
1768 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1769 *
1770 * This algorithm is from John Heffner.
1771 */
1772 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1773 bool *is_cwnd_limited, u32 max_segs)
1774 {
1775 const struct inet_connection_sock *icsk = inet_csk(sk);
1776 u32 age, send_win, cong_win, limit, in_flight;
1777 struct tcp_sock *tp = tcp_sk(sk);
1778 struct skb_mstamp now;
1779 struct sk_buff *head;
1780 int win_divisor;
1781
1782 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1783 goto send_now;
1784
1785 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1786 goto send_now;
1787
1788 /* Avoid bursty behavior by allowing defer
1789 * only if the last write was recent.
1790 */
1791 if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1792 goto send_now;
1793
1794 in_flight = tcp_packets_in_flight(tp);
1795
1796 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1797
1798 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1799
1800 /* From in_flight test above, we know that cwnd > in_flight. */
1801 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1802
1803 limit = min(send_win, cong_win);
1804
1805 /* If a full-sized TSO skb can be sent, do it. */
1806 if (limit >= max_segs * tp->mss_cache)
1807 goto send_now;
1808
1809 /* Middle in queue won't get any more data, full sendable already? */
1810 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1811 goto send_now;
1812
1813 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1814 if (win_divisor) {
1815 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1816
1817 /* If at least some fraction of a window is available,
1818 * just use it.
1819 */
1820 chunk /= win_divisor;
1821 if (limit >= chunk)
1822 goto send_now;
1823 } else {
1824 /* Different approach, try not to defer past a single
1825 * ACK. Receiver should ACK every other full sized
1826 * frame, so if we have space for more than 3 frames
1827 * then send now.
1828 */
1829 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1830 goto send_now;
1831 }
1832
1833 head = tcp_write_queue_head(sk);
1834 skb_mstamp_get(&now);
1835 age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1836 /* If next ACK is likely to come too late (half srtt), do not defer */
1837 if (age < (tp->srtt_us >> 4))
1838 goto send_now;
1839
1840 /* Ok, it looks like it is advisable to defer. */
1841
1842 if (cong_win < send_win && cong_win <= skb->len)
1843 *is_cwnd_limited = true;
1844
1845 return true;
1846
1847 send_now:
1848 return false;
1849 }
1850
1851 static inline void tcp_mtu_check_reprobe(struct sock *sk)
1852 {
1853 struct inet_connection_sock *icsk = inet_csk(sk);
1854 struct tcp_sock *tp = tcp_sk(sk);
1855 struct net *net = sock_net(sk);
1856 u32 interval;
1857 s32 delta;
1858
1859 interval = net->ipv4.sysctl_tcp_probe_interval;
1860 delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1861 if (unlikely(delta >= interval * HZ)) {
1862 int mss = tcp_current_mss(sk);
1863
1864 /* Update current search range */
1865 icsk->icsk_mtup.probe_size = 0;
1866 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1867 sizeof(struct tcphdr) +
1868 icsk->icsk_af_ops->net_header_len;
1869 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1870
1871 /* Update probe time stamp */
1872 icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1873 }
1874 }
1875
1876 /* Create a new MTU probe if we are ready.
1877 * MTU probe is regularly attempting to increase the path MTU by
1878 * deliberately sending larger packets. This discovers routing
1879 * changes resulting in larger path MTUs.
1880 *
1881 * Returns 0 if we should wait to probe (no cwnd available),
1882 * 1 if a probe was sent,
1883 * -1 otherwise
1884 */
1885 static int tcp_mtu_probe(struct sock *sk)
1886 {
1887 struct tcp_sock *tp = tcp_sk(sk);
1888 struct inet_connection_sock *icsk = inet_csk(sk);
1889 struct sk_buff *skb, *nskb, *next;
1890 struct net *net = sock_net(sk);
1891 int len;
1892 int probe_size;
1893 int size_needed;
1894 int copy;
1895 int mss_now;
1896 int interval;
1897
1898 /* Not currently probing/verifying,
1899 * not in recovery,
1900 * have enough cwnd, and
1901 * not SACKing (the variable headers throw things off) */
1902 if (!icsk->icsk_mtup.enabled ||
1903 icsk->icsk_mtup.probe_size ||
1904 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1905 tp->snd_cwnd < 11 ||
1906 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1907 return -1;
1908
1909 /* Use binary search for probe_size between tcp_mss_base,
1910 * and current mss_clamp. if (search_high - search_low)
1911 * smaller than a threshold, backoff from probing.
1912 */
1913 mss_now = tcp_current_mss(sk);
1914 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1915 icsk->icsk_mtup.search_low) >> 1);
1916 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1917 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1918 /* When misfortune happens, we are reprobing actively,
1919 * and then reprobe timer has expired. We stick with current
1920 * probing process by not resetting search range to its orignal.
1921 */
1922 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1923 interval < net->ipv4.sysctl_tcp_probe_threshold) {
1924 /* Check whether enough time has elaplased for
1925 * another round of probing.
1926 */
1927 tcp_mtu_check_reprobe(sk);
1928 return -1;
1929 }
1930
1931 /* Have enough data in the send queue to probe? */
1932 if (tp->write_seq - tp->snd_nxt < size_needed)
1933 return -1;
1934
1935 if (tp->snd_wnd < size_needed)
1936 return -1;
1937 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1938 return 0;
1939
1940 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1941 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1942 if (!tcp_packets_in_flight(tp))
1943 return -1;
1944 else
1945 return 0;
1946 }
1947
1948 /* We're allowed to probe. Build it now. */
1949 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1950 if (!nskb)
1951 return -1;
1952 sk->sk_wmem_queued += nskb->truesize;
1953 sk_mem_charge(sk, nskb->truesize);
1954
1955 skb = tcp_send_head(sk);
1956
1957 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1958 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1959 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1960 TCP_SKB_CB(nskb)->sacked = 0;
1961 nskb->csum = 0;
1962 nskb->ip_summed = skb->ip_summed;
1963
1964 tcp_insert_write_queue_before(nskb, skb, sk);
1965
1966 len = 0;
1967 tcp_for_write_queue_from_safe(skb, next, sk) {
1968 copy = min_t(int, skb->len, probe_size - len);
1969 if (nskb->ip_summed) {
1970 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1971 } else {
1972 __wsum csum = skb_copy_and_csum_bits(skb, 0,
1973 skb_put(nskb, copy),
1974 copy, 0);
1975 nskb->csum = csum_block_add(nskb->csum, csum, len);
1976 }
1977
1978 if (skb->len <= copy) {
1979 /* We've eaten all the data from this skb.
1980 * Throw it away. */
1981 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1982 tcp_unlink_write_queue(skb, sk);
1983 sk_wmem_free_skb(sk, skb);
1984 } else {
1985 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1986 ~(TCPHDR_FIN|TCPHDR_PSH);
1987 if (!skb_shinfo(skb)->nr_frags) {
1988 skb_pull(skb, copy);
1989 if (skb->ip_summed != CHECKSUM_PARTIAL)
1990 skb->csum = csum_partial(skb->data,
1991 skb->len, 0);
1992 } else {
1993 __pskb_trim_head(skb, copy);
1994 tcp_set_skb_tso_segs(skb, mss_now);
1995 }
1996 TCP_SKB_CB(skb)->seq += copy;
1997 }
1998
1999 len += copy;
2000
2001 if (len >= probe_size)
2002 break;
2003 }
2004 tcp_init_tso_segs(nskb, nskb->len);
2005
2006 /* We're ready to send. If this fails, the probe will
2007 * be resegmented into mss-sized pieces by tcp_write_xmit().
2008 */
2009 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2010 /* Decrement cwnd here because we are sending
2011 * effectively two packets. */
2012 tp->snd_cwnd--;
2013 tcp_event_new_data_sent(sk, nskb);
2014
2015 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2016 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2017 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2018
2019 return 1;
2020 }
2021
2022 return -1;
2023 }
2024
2025 /* This routine writes packets to the network. It advances the
2026 * send_head. This happens as incoming acks open up the remote
2027 * window for us.
2028 *
2029 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2030 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2031 * account rare use of URG, this is not a big flaw.
2032 *
2033 * Send at most one packet when push_one > 0. Temporarily ignore
2034 * cwnd limit to force at most one packet out when push_one == 2.
2035
2036 * Returns true, if no segments are in flight and we have queued segments,
2037 * but cannot send anything now because of SWS or another problem.
2038 */
2039 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2040 int push_one, gfp_t gfp)
2041 {
2042 struct tcp_sock *tp = tcp_sk(sk);
2043 struct sk_buff *skb;
2044 unsigned int tso_segs, sent_pkts;
2045 int cwnd_quota;
2046 int result;
2047 bool is_cwnd_limited = false;
2048 u32 max_segs;
2049
2050 sent_pkts = 0;
2051
2052 if (!push_one) {
2053 /* Do MTU probing. */
2054 result = tcp_mtu_probe(sk);
2055 if (!result) {
2056 return false;
2057 } else if (result > 0) {
2058 sent_pkts = 1;
2059 }
2060 }
2061
2062 max_segs = tcp_tso_autosize(sk, mss_now);
2063 while ((skb = tcp_send_head(sk))) {
2064 unsigned int limit;
2065
2066 tso_segs = tcp_init_tso_segs(skb, mss_now);
2067 BUG_ON(!tso_segs);
2068
2069 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2070 /* "skb_mstamp" is used as a start point for the retransmit timer */
2071 skb_mstamp_get(&skb->skb_mstamp);
2072 goto repair; /* Skip network transmission */
2073 }
2074
2075 cwnd_quota = tcp_cwnd_test(tp, skb);
2076 if (!cwnd_quota) {
2077 if (push_one == 2)
2078 /* Force out a loss probe pkt. */
2079 cwnd_quota = 1;
2080 else
2081 break;
2082 }
2083
2084 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2085 break;
2086
2087 if (tso_segs == 1) {
2088 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2089 (tcp_skb_is_last(sk, skb) ?
2090 nonagle : TCP_NAGLE_PUSH))))
2091 break;
2092 } else {
2093 if (!push_one &&
2094 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2095 max_segs))
2096 break;
2097 }
2098
2099 limit = mss_now;
2100 if (tso_segs > 1 && !tcp_urg_mode(tp))
2101 limit = tcp_mss_split_point(sk, skb, mss_now,
2102 min_t(unsigned int,
2103 cwnd_quota,
2104 max_segs),
2105 nonagle);
2106
2107 if (skb->len > limit &&
2108 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2109 break;
2110
2111 /* TCP Small Queues :
2112 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2113 * This allows for :
2114 * - better RTT estimation and ACK scheduling
2115 * - faster recovery
2116 * - high rates
2117 * Alas, some drivers / subsystems require a fair amount
2118 * of queued bytes to ensure line rate.
2119 * One example is wifi aggregation (802.11 AMPDU)
2120 */
2121 limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2122 limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2123
2124 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2125 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2126 /* It is possible TX completion already happened
2127 * before we set TSQ_THROTTLED, so we must
2128 * test again the condition.
2129 */
2130 smp_mb__after_atomic();
2131 if (atomic_read(&sk->sk_wmem_alloc) > limit)
2132 break;
2133 }
2134
2135 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2136 break;
2137
2138 repair:
2139 /* Advance the send_head. This one is sent out.
2140 * This call will increment packets_out.
2141 */
2142 tcp_event_new_data_sent(sk, skb);
2143
2144 tcp_minshall_update(tp, mss_now, skb);
2145 sent_pkts += tcp_skb_pcount(skb);
2146
2147 if (push_one)
2148 break;
2149 }
2150
2151 if (likely(sent_pkts)) {
2152 if (tcp_in_cwnd_reduction(sk))
2153 tp->prr_out += sent_pkts;
2154
2155 /* Send one loss probe per tail loss episode. */
2156 if (push_one != 2)
2157 tcp_schedule_loss_probe(sk);
2158 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2159 tcp_cwnd_validate(sk, is_cwnd_limited);
2160 return false;
2161 }
2162 return !tp->packets_out && tcp_send_head(sk);
2163 }
2164
2165 bool tcp_schedule_loss_probe(struct sock *sk)
2166 {
2167 struct inet_connection_sock *icsk = inet_csk(sk);
2168 struct tcp_sock *tp = tcp_sk(sk);
2169 u32 timeout, tlp_time_stamp, rto_time_stamp;
2170 u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2171
2172 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2173 return false;
2174 /* No consecutive loss probes. */
2175 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2176 tcp_rearm_rto(sk);
2177 return false;
2178 }
2179 /* Don't do any loss probe on a Fast Open connection before 3WHS
2180 * finishes.
2181 */
2182 if (tp->fastopen_rsk)
2183 return false;
2184
2185 /* TLP is only scheduled when next timer event is RTO. */
2186 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2187 return false;
2188
2189 /* Schedule a loss probe in 2*RTT for SACK capable connections
2190 * in Open state, that are either limited by cwnd or application.
2191 */
2192 if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2193 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2194 return false;
2195
2196 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2197 tcp_send_head(sk))
2198 return false;
2199
2200 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2201 * for delayed ack when there's one outstanding packet. If no RTT
2202 * sample is available then probe after TCP_TIMEOUT_INIT.
2203 */
2204 timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2205 if (tp->packets_out == 1)
2206 timeout = max_t(u32, timeout,
2207 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
2208 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2209
2210 /* If RTO is shorter, just schedule TLP in its place. */
2211 tlp_time_stamp = tcp_time_stamp + timeout;
2212 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2213 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2214 s32 delta = rto_time_stamp - tcp_time_stamp;
2215 if (delta > 0)
2216 timeout = delta;
2217 }
2218
2219 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2220 TCP_RTO_MAX);
2221 return true;
2222 }
2223
2224 /* Thanks to skb fast clones, we can detect if a prior transmit of
2225 * a packet is still in a qdisc or driver queue.
2226 * In this case, there is very little point doing a retransmit !
2227 */
2228 static bool skb_still_in_host_queue(const struct sock *sk,
2229 const struct sk_buff *skb)
2230 {
2231 if (unlikely(skb_fclone_busy(sk, skb))) {
2232 NET_INC_STATS(sock_net(sk),
2233 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2234 return true;
2235 }
2236 return false;
2237 }
2238
2239 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2240 * retransmit the last segment.
2241 */
2242 void tcp_send_loss_probe(struct sock *sk)
2243 {
2244 struct tcp_sock *tp = tcp_sk(sk);
2245 struct sk_buff *skb;
2246 int pcount;
2247 int mss = tcp_current_mss(sk);
2248
2249 skb = tcp_send_head(sk);
2250 if (skb) {
2251 if (tcp_snd_wnd_test(tp, skb, mss)) {
2252 pcount = tp->packets_out;
2253 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2254 if (tp->packets_out > pcount)
2255 goto probe_sent;
2256 goto rearm_timer;
2257 }
2258 skb = tcp_write_queue_prev(sk, skb);
2259 } else {
2260 skb = tcp_write_queue_tail(sk);
2261 }
2262
2263 /* At most one outstanding TLP retransmission. */
2264 if (tp->tlp_high_seq)
2265 goto rearm_timer;
2266
2267 /* Retransmit last segment. */
2268 if (WARN_ON(!skb))
2269 goto rearm_timer;
2270
2271 if (skb_still_in_host_queue(sk, skb))
2272 goto rearm_timer;
2273
2274 pcount = tcp_skb_pcount(skb);
2275 if (WARN_ON(!pcount))
2276 goto rearm_timer;
2277
2278 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2279 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2280 GFP_ATOMIC)))
2281 goto rearm_timer;
2282 skb = tcp_write_queue_next(sk, skb);
2283 }
2284
2285 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2286 goto rearm_timer;
2287
2288 if (__tcp_retransmit_skb(sk, skb, 1))
2289 goto rearm_timer;
2290
2291 /* Record snd_nxt for loss detection. */
2292 tp->tlp_high_seq = tp->snd_nxt;
2293
2294 probe_sent:
2295 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2296 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2297 inet_csk(sk)->icsk_pending = 0;
2298 rearm_timer:
2299 tcp_rearm_rto(sk);
2300 }
2301
2302 /* Push out any pending frames which were held back due to
2303 * TCP_CORK or attempt at coalescing tiny packets.
2304 * The socket must be locked by the caller.
2305 */
2306 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2307 int nonagle)
2308 {
2309 /* If we are closed, the bytes will have to remain here.
2310 * In time closedown will finish, we empty the write queue and
2311 * all will be happy.
2312 */
2313 if (unlikely(sk->sk_state == TCP_CLOSE))
2314 return;
2315
2316 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2317 sk_gfp_mask(sk, GFP_ATOMIC)))
2318 tcp_check_probe_timer(sk);
2319 }
2320
2321 /* Send _single_ skb sitting at the send head. This function requires
2322 * true push pending frames to setup probe timer etc.
2323 */
2324 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2325 {
2326 struct sk_buff *skb = tcp_send_head(sk);
2327
2328 BUG_ON(!skb || skb->len < mss_now);
2329
2330 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2331 }
2332
2333 /* This function returns the amount that we can raise the
2334 * usable window based on the following constraints
2335 *
2336 * 1. The window can never be shrunk once it is offered (RFC 793)
2337 * 2. We limit memory per socket
2338 *
2339 * RFC 1122:
2340 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2341 * RECV.NEXT + RCV.WIN fixed until:
2342 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2343 *
2344 * i.e. don't raise the right edge of the window until you can raise
2345 * it at least MSS bytes.
2346 *
2347 * Unfortunately, the recommended algorithm breaks header prediction,
2348 * since header prediction assumes th->window stays fixed.
2349 *
2350 * Strictly speaking, keeping th->window fixed violates the receiver
2351 * side SWS prevention criteria. The problem is that under this rule
2352 * a stream of single byte packets will cause the right side of the
2353 * window to always advance by a single byte.
2354 *
2355 * Of course, if the sender implements sender side SWS prevention
2356 * then this will not be a problem.
2357 *
2358 * BSD seems to make the following compromise:
2359 *
2360 * If the free space is less than the 1/4 of the maximum
2361 * space available and the free space is less than 1/2 mss,
2362 * then set the window to 0.
2363 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2364 * Otherwise, just prevent the window from shrinking
2365 * and from being larger than the largest representable value.
2366 *
2367 * This prevents incremental opening of the window in the regime
2368 * where TCP is limited by the speed of the reader side taking
2369 * data out of the TCP receive queue. It does nothing about
2370 * those cases where the window is constrained on the sender side
2371 * because the pipeline is full.
2372 *
2373 * BSD also seems to "accidentally" limit itself to windows that are a
2374 * multiple of MSS, at least until the free space gets quite small.
2375 * This would appear to be a side effect of the mbuf implementation.
2376 * Combining these two algorithms results in the observed behavior
2377 * of having a fixed window size at almost all times.
2378 *
2379 * Below we obtain similar behavior by forcing the offered window to
2380 * a multiple of the mss when it is feasible to do so.
2381 *
2382 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2383 * Regular options like TIMESTAMP are taken into account.
2384 */
2385 u32 __tcp_select_window(struct sock *sk)
2386 {
2387 struct inet_connection_sock *icsk = inet_csk(sk);
2388 struct tcp_sock *tp = tcp_sk(sk);
2389 /* MSS for the peer's data. Previous versions used mss_clamp
2390 * here. I don't know if the value based on our guesses
2391 * of peer's MSS is better for the performance. It's more correct
2392 * but may be worse for the performance because of rcv_mss
2393 * fluctuations. --SAW 1998/11/1
2394 */
2395 int mss = icsk->icsk_ack.rcv_mss;
2396 int free_space = tcp_space(sk);
2397 int allowed_space = tcp_full_space(sk);
2398 int full_space = min_t(int, tp->window_clamp, allowed_space);
2399 int window;
2400
2401 if (mss > full_space)
2402 mss = full_space;
2403
2404 if (free_space < (full_space >> 1)) {
2405 icsk->icsk_ack.quick = 0;
2406
2407 if (tcp_under_memory_pressure(sk))
2408 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2409 4U * tp->advmss);
2410
2411 /* free_space might become our new window, make sure we don't
2412 * increase it due to wscale.
2413 */
2414 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2415
2416 /* if free space is less than mss estimate, or is below 1/16th
2417 * of the maximum allowed, try to move to zero-window, else
2418 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2419 * new incoming data is dropped due to memory limits.
2420 * With large window, mss test triggers way too late in order
2421 * to announce zero window in time before rmem limit kicks in.
2422 */
2423 if (free_space < (allowed_space >> 4) || free_space < mss)
2424 return 0;
2425 }
2426
2427 if (free_space > tp->rcv_ssthresh)
2428 free_space = tp->rcv_ssthresh;
2429
2430 /* Don't do rounding if we are using window scaling, since the
2431 * scaled window will not line up with the MSS boundary anyway.
2432 */
2433 window = tp->rcv_wnd;
2434 if (tp->rx_opt.rcv_wscale) {
2435 window = free_space;
2436
2437 /* Advertise enough space so that it won't get scaled away.
2438 * Import case: prevent zero window announcement if
2439 * 1<<rcv_wscale > mss.
2440 */
2441 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2442 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2443 << tp->rx_opt.rcv_wscale);
2444 } else {
2445 /* Get the largest window that is a nice multiple of mss.
2446 * Window clamp already applied above.
2447 * If our current window offering is within 1 mss of the
2448 * free space we just keep it. This prevents the divide
2449 * and multiply from happening most of the time.
2450 * We also don't do any window rounding when the free space
2451 * is too small.
2452 */
2453 if (window <= free_space - mss || window > free_space)
2454 window = (free_space / mss) * mss;
2455 else if (mss == full_space &&
2456 free_space > window + (full_space >> 1))
2457 window = free_space;
2458 }
2459
2460 return window;
2461 }
2462
2463 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2464 const struct sk_buff *next_skb)
2465 {
2466 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2467 const struct skb_shared_info *next_shinfo =
2468 skb_shinfo(next_skb);
2469 struct skb_shared_info *shinfo = skb_shinfo(skb);
2470
2471 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2472 shinfo->tskey = next_shinfo->tskey;
2473 TCP_SKB_CB(skb)->txstamp_ack |=
2474 TCP_SKB_CB(next_skb)->txstamp_ack;
2475 }
2476 }
2477
2478 /* Collapses two adjacent SKB's during retransmission. */
2479 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2480 {
2481 struct tcp_sock *tp = tcp_sk(sk);
2482 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2483 int skb_size, next_skb_size;
2484
2485 skb_size = skb->len;
2486 next_skb_size = next_skb->len;
2487
2488 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2489
2490 tcp_highest_sack_combine(sk, next_skb, skb);
2491
2492 tcp_unlink_write_queue(next_skb, sk);
2493
2494 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2495 next_skb_size);
2496
2497 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2498 skb->ip_summed = CHECKSUM_PARTIAL;
2499
2500 if (skb->ip_summed != CHECKSUM_PARTIAL)
2501 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2502
2503 /* Update sequence range on original skb. */
2504 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2505
2506 /* Merge over control information. This moves PSH/FIN etc. over */
2507 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2508
2509 /* All done, get rid of second SKB and account for it so
2510 * packet counting does not break.
2511 */
2512 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2513 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2514
2515 /* changed transmit queue under us so clear hints */
2516 tcp_clear_retrans_hints_partial(tp);
2517 if (next_skb == tp->retransmit_skb_hint)
2518 tp->retransmit_skb_hint = skb;
2519
2520 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2521
2522 tcp_skb_collapse_tstamp(skb, next_skb);
2523
2524 sk_wmem_free_skb(sk, next_skb);
2525 }
2526
2527 /* Check if coalescing SKBs is legal. */
2528 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2529 {
2530 if (tcp_skb_pcount(skb) > 1)
2531 return false;
2532 /* TODO: SACK collapsing could be used to remove this condition */
2533 if (skb_shinfo(skb)->nr_frags != 0)
2534 return false;
2535 if (skb_cloned(skb))
2536 return false;
2537 if (skb == tcp_send_head(sk))
2538 return false;
2539 /* Some heurestics for collapsing over SACK'd could be invented */
2540 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2541 return false;
2542
2543 return true;
2544 }
2545
2546 /* Collapse packets in the retransmit queue to make to create
2547 * less packets on the wire. This is only done on retransmission.
2548 */
2549 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2550 int space)
2551 {
2552 struct tcp_sock *tp = tcp_sk(sk);
2553 struct sk_buff *skb = to, *tmp;
2554 bool first = true;
2555
2556 if (!sysctl_tcp_retrans_collapse)
2557 return;
2558 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2559 return;
2560
2561 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2562 if (!tcp_can_collapse(sk, skb))
2563 break;
2564
2565 if (!tcp_skb_can_collapse_to(to))
2566 break;
2567
2568 space -= skb->len;
2569
2570 if (first) {
2571 first = false;
2572 continue;
2573 }
2574
2575 if (space < 0)
2576 break;
2577 /* Punt if not enough space exists in the first SKB for
2578 * the data in the second
2579 */
2580 if (skb->len > skb_availroom(to))
2581 break;
2582
2583 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2584 break;
2585
2586 tcp_collapse_retrans(sk, to);
2587 }
2588 }
2589
2590 /* This retransmits one SKB. Policy decisions and retransmit queue
2591 * state updates are done by the caller. Returns non-zero if an
2592 * error occurred which prevented the send.
2593 */
2594 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2595 {
2596 struct inet_connection_sock *icsk = inet_csk(sk);
2597 struct tcp_sock *tp = tcp_sk(sk);
2598 unsigned int cur_mss;
2599 int diff, len, err;
2600
2601
2602 /* Inconclusive MTU probe */
2603 if (icsk->icsk_mtup.probe_size)
2604 icsk->icsk_mtup.probe_size = 0;
2605
2606 /* Do not sent more than we queued. 1/4 is reserved for possible
2607 * copying overhead: fragmentation, tunneling, mangling etc.
2608 */
2609 if (atomic_read(&sk->sk_wmem_alloc) >
2610 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2611 sk->sk_sndbuf))
2612 return -EAGAIN;
2613
2614 if (skb_still_in_host_queue(sk, skb))
2615 return -EBUSY;
2616
2617 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2618 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2619 BUG();
2620 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2621 return -ENOMEM;
2622 }
2623
2624 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2625 return -EHOSTUNREACH; /* Routing failure or similar. */
2626
2627 cur_mss = tcp_current_mss(sk);
2628
2629 /* If receiver has shrunk his window, and skb is out of
2630 * new window, do not retransmit it. The exception is the
2631 * case, when window is shrunk to zero. In this case
2632 * our retransmit serves as a zero window probe.
2633 */
2634 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2635 TCP_SKB_CB(skb)->seq != tp->snd_una)
2636 return -EAGAIN;
2637
2638 len = cur_mss * segs;
2639 if (skb->len > len) {
2640 if (tcp_fragment(sk, skb, len, cur_mss, GFP_ATOMIC))
2641 return -ENOMEM; /* We'll try again later. */
2642 } else {
2643 if (skb_unclone(skb, GFP_ATOMIC))
2644 return -ENOMEM;
2645
2646 diff = tcp_skb_pcount(skb);
2647 tcp_set_skb_tso_segs(skb, cur_mss);
2648 diff -= tcp_skb_pcount(skb);
2649 if (diff)
2650 tcp_adjust_pcount(sk, skb, diff);
2651 if (skb->len < cur_mss)
2652 tcp_retrans_try_collapse(sk, skb, cur_mss);
2653 }
2654
2655 /* RFC3168, section 6.1.1.1. ECN fallback */
2656 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2657 tcp_ecn_clear_syn(sk, skb);
2658
2659 /* make sure skb->data is aligned on arches that require it
2660 * and check if ack-trimming & collapsing extended the headroom
2661 * beyond what csum_start can cover.
2662 */
2663 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2664 skb_headroom(skb) >= 0xFFFF)) {
2665 struct sk_buff *nskb;
2666
2667 skb_mstamp_get(&skb->skb_mstamp);
2668 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2669 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2670 -ENOBUFS;
2671 } else {
2672 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2673 }
2674
2675 if (likely(!err)) {
2676 segs = tcp_skb_pcount(skb);
2677
2678 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2679 /* Update global TCP statistics. */
2680 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2681 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2682 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2683 tp->total_retrans += segs;
2684 }
2685 return err;
2686 }
2687
2688 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2689 {
2690 struct tcp_sock *tp = tcp_sk(sk);
2691 int err = __tcp_retransmit_skb(sk, skb, segs);
2692
2693 if (err == 0) {
2694 #if FASTRETRANS_DEBUG > 0
2695 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2696 net_dbg_ratelimited("retrans_out leaked\n");
2697 }
2698 #endif
2699 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2700 tp->retrans_out += tcp_skb_pcount(skb);
2701
2702 /* Save stamp of the first retransmit. */
2703 if (!tp->retrans_stamp)
2704 tp->retrans_stamp = tcp_skb_timestamp(skb);
2705
2706 } else if (err != -EBUSY) {
2707 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2708 }
2709
2710 if (tp->undo_retrans < 0)
2711 tp->undo_retrans = 0;
2712 tp->undo_retrans += tcp_skb_pcount(skb);
2713 return err;
2714 }
2715
2716 /* Check if we forward retransmits are possible in the current
2717 * window/congestion state.
2718 */
2719 static bool tcp_can_forward_retransmit(struct sock *sk)
2720 {
2721 const struct inet_connection_sock *icsk = inet_csk(sk);
2722 const struct tcp_sock *tp = tcp_sk(sk);
2723
2724 /* Forward retransmissions are possible only during Recovery. */
2725 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2726 return false;
2727
2728 /* No forward retransmissions in Reno are possible. */
2729 if (tcp_is_reno(tp))
2730 return false;
2731
2732 /* Yeah, we have to make difficult choice between forward transmission
2733 * and retransmission... Both ways have their merits...
2734 *
2735 * For now we do not retransmit anything, while we have some new
2736 * segments to send. In the other cases, follow rule 3 for
2737 * NextSeg() specified in RFC3517.
2738 */
2739
2740 if (tcp_may_send_now(sk))
2741 return false;
2742
2743 return true;
2744 }
2745
2746 /* This gets called after a retransmit timeout, and the initially
2747 * retransmitted data is acknowledged. It tries to continue
2748 * resending the rest of the retransmit queue, until either
2749 * we've sent it all or the congestion window limit is reached.
2750 * If doing SACK, the first ACK which comes back for a timeout
2751 * based retransmit packet might feed us FACK information again.
2752 * If so, we use it to avoid unnecessarily retransmissions.
2753 */
2754 void tcp_xmit_retransmit_queue(struct sock *sk)
2755 {
2756 const struct inet_connection_sock *icsk = inet_csk(sk);
2757 struct tcp_sock *tp = tcp_sk(sk);
2758 struct sk_buff *skb;
2759 struct sk_buff *hole = NULL;
2760 u32 max_segs, last_lost;
2761 int mib_idx;
2762 int fwd_rexmitting = 0;
2763
2764 if (!tp->packets_out)
2765 return;
2766
2767 if (!tp->lost_out)
2768 tp->retransmit_high = tp->snd_una;
2769
2770 if (tp->retransmit_skb_hint) {
2771 skb = tp->retransmit_skb_hint;
2772 last_lost = TCP_SKB_CB(skb)->end_seq;
2773 if (after(last_lost, tp->retransmit_high))
2774 last_lost = tp->retransmit_high;
2775 } else {
2776 skb = tcp_write_queue_head(sk);
2777 last_lost = tp->snd_una;
2778 }
2779
2780 max_segs = tcp_tso_autosize(sk, tcp_current_mss(sk));
2781 tcp_for_write_queue_from(skb, sk) {
2782 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2783 int segs;
2784
2785 if (skb == tcp_send_head(sk))
2786 break;
2787 /* we could do better than to assign each time */
2788 if (!hole)
2789 tp->retransmit_skb_hint = skb;
2790
2791 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
2792 if (segs <= 0)
2793 return;
2794 /* In case tcp_shift_skb_data() have aggregated large skbs,
2795 * we need to make sure not sending too bigs TSO packets
2796 */
2797 segs = min_t(int, segs, max_segs);
2798
2799 if (fwd_rexmitting) {
2800 begin_fwd:
2801 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2802 break;
2803 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2804
2805 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2806 tp->retransmit_high = last_lost;
2807 if (!tcp_can_forward_retransmit(sk))
2808 break;
2809 /* Backtrack if necessary to non-L'ed skb */
2810 if (hole) {
2811 skb = hole;
2812 hole = NULL;
2813 }
2814 fwd_rexmitting = 1;
2815 goto begin_fwd;
2816
2817 } else if (!(sacked & TCPCB_LOST)) {
2818 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2819 hole = skb;
2820 continue;
2821
2822 } else {
2823 last_lost = TCP_SKB_CB(skb)->end_seq;
2824 if (icsk->icsk_ca_state != TCP_CA_Loss)
2825 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2826 else
2827 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2828 }
2829
2830 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2831 continue;
2832
2833 if (tcp_retransmit_skb(sk, skb, segs))
2834 return;
2835
2836 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
2837
2838 if (tcp_in_cwnd_reduction(sk))
2839 tp->prr_out += tcp_skb_pcount(skb);
2840
2841 if (skb == tcp_write_queue_head(sk))
2842 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2843 inet_csk(sk)->icsk_rto,
2844 TCP_RTO_MAX);
2845 }
2846 }
2847
2848 /* We allow to exceed memory limits for FIN packets to expedite
2849 * connection tear down and (memory) recovery.
2850 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2851 * or even be forced to close flow without any FIN.
2852 * In general, we want to allow one skb per socket to avoid hangs
2853 * with edge trigger epoll()
2854 */
2855 void sk_forced_mem_schedule(struct sock *sk, int size)
2856 {
2857 int amt;
2858
2859 if (size <= sk->sk_forward_alloc)
2860 return;
2861 amt = sk_mem_pages(size);
2862 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2863 sk_memory_allocated_add(sk, amt);
2864
2865 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2866 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2867 }
2868
2869 /* Send a FIN. The caller locks the socket for us.
2870 * We should try to send a FIN packet really hard, but eventually give up.
2871 */
2872 void tcp_send_fin(struct sock *sk)
2873 {
2874 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2875 struct tcp_sock *tp = tcp_sk(sk);
2876
2877 /* Optimization, tack on the FIN if we have one skb in write queue and
2878 * this skb was not yet sent, or we are under memory pressure.
2879 * Note: in the latter case, FIN packet will be sent after a timeout,
2880 * as TCP stack thinks it has already been transmitted.
2881 */
2882 if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2883 coalesce:
2884 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2885 TCP_SKB_CB(tskb)->end_seq++;
2886 tp->write_seq++;
2887 if (!tcp_send_head(sk)) {
2888 /* This means tskb was already sent.
2889 * Pretend we included the FIN on previous transmit.
2890 * We need to set tp->snd_nxt to the value it would have
2891 * if FIN had been sent. This is because retransmit path
2892 * does not change tp->snd_nxt.
2893 */
2894 tp->snd_nxt++;
2895 return;
2896 }
2897 } else {
2898 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2899 if (unlikely(!skb)) {
2900 if (tskb)
2901 goto coalesce;
2902 return;
2903 }
2904 skb_reserve(skb, MAX_TCP_HEADER);
2905 sk_forced_mem_schedule(sk, skb->truesize);
2906 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2907 tcp_init_nondata_skb(skb, tp->write_seq,
2908 TCPHDR_ACK | TCPHDR_FIN);
2909 tcp_queue_skb(sk, skb);
2910 }
2911 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2912 }
2913
2914 /* We get here when a process closes a file descriptor (either due to
2915 * an explicit close() or as a byproduct of exit()'ing) and there
2916 * was unread data in the receive queue. This behavior is recommended
2917 * by RFC 2525, section 2.17. -DaveM
2918 */
2919 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2920 {
2921 struct sk_buff *skb;
2922
2923 /* NOTE: No TCP options attached and we never retransmit this. */
2924 skb = alloc_skb(MAX_TCP_HEADER, priority);
2925 if (!skb) {
2926 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2927 return;
2928 }
2929
2930 /* Reserve space for headers and prepare control bits. */
2931 skb_reserve(skb, MAX_TCP_HEADER);
2932 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2933 TCPHDR_ACK | TCPHDR_RST);
2934 skb_mstamp_get(&skb->skb_mstamp);
2935 /* Send it off. */
2936 if (tcp_transmit_skb(sk, skb, 0, priority))
2937 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2938
2939 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2940 }
2941
2942 /* Send a crossed SYN-ACK during socket establishment.
2943 * WARNING: This routine must only be called when we have already sent
2944 * a SYN packet that crossed the incoming SYN that caused this routine
2945 * to get called. If this assumption fails then the initial rcv_wnd
2946 * and rcv_wscale values will not be correct.
2947 */
2948 int tcp_send_synack(struct sock *sk)
2949 {
2950 struct sk_buff *skb;
2951
2952 skb = tcp_write_queue_head(sk);
2953 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2954 pr_debug("%s: wrong queue state\n", __func__);
2955 return -EFAULT;
2956 }
2957 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2958 if (skb_cloned(skb)) {
2959 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2960 if (!nskb)
2961 return -ENOMEM;
2962 tcp_unlink_write_queue(skb, sk);
2963 __skb_header_release(nskb);
2964 __tcp_add_write_queue_head(sk, nskb);
2965 sk_wmem_free_skb(sk, skb);
2966 sk->sk_wmem_queued += nskb->truesize;
2967 sk_mem_charge(sk, nskb->truesize);
2968 skb = nskb;
2969 }
2970
2971 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2972 tcp_ecn_send_synack(sk, skb);
2973 }
2974 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2975 }
2976
2977 /**
2978 * tcp_make_synack - Prepare a SYN-ACK.
2979 * sk: listener socket
2980 * dst: dst entry attached to the SYNACK
2981 * req: request_sock pointer
2982 *
2983 * Allocate one skb and build a SYNACK packet.
2984 * @dst is consumed : Caller should not use it again.
2985 */
2986 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
2987 struct request_sock *req,
2988 struct tcp_fastopen_cookie *foc,
2989 enum tcp_synack_type synack_type)
2990 {
2991 struct inet_request_sock *ireq = inet_rsk(req);
2992 const struct tcp_sock *tp = tcp_sk(sk);
2993 struct tcp_md5sig_key *md5 = NULL;
2994 struct tcp_out_options opts;
2995 struct sk_buff *skb;
2996 int tcp_header_size;
2997 struct tcphdr *th;
2998 u16 user_mss;
2999 int mss;
3000
3001 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3002 if (unlikely(!skb)) {
3003 dst_release(dst);
3004 return NULL;
3005 }
3006 /* Reserve space for headers. */
3007 skb_reserve(skb, MAX_TCP_HEADER);
3008
3009 switch (synack_type) {
3010 case TCP_SYNACK_NORMAL:
3011 skb_set_owner_w(skb, req_to_sk(req));
3012 break;
3013 case TCP_SYNACK_COOKIE:
3014 /* Under synflood, we do not attach skb to a socket,
3015 * to avoid false sharing.
3016 */
3017 break;
3018 case TCP_SYNACK_FASTOPEN:
3019 /* sk is a const pointer, because we want to express multiple
3020 * cpu might call us concurrently.
3021 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3022 */
3023 skb_set_owner_w(skb, (struct sock *)sk);
3024 break;
3025 }
3026 skb_dst_set(skb, dst);
3027
3028 mss = dst_metric_advmss(dst);
3029 user_mss = READ_ONCE(tp->rx_opt.user_mss);
3030 if (user_mss && user_mss < mss)
3031 mss = user_mss;
3032
3033 memset(&opts, 0, sizeof(opts));
3034 #ifdef CONFIG_SYN_COOKIES
3035 if (unlikely(req->cookie_ts))
3036 skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3037 else
3038 #endif
3039 skb_mstamp_get(&skb->skb_mstamp);
3040
3041 #ifdef CONFIG_TCP_MD5SIG
3042 rcu_read_lock();
3043 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3044 #endif
3045 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3046 tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3047 sizeof(*th);
3048
3049 skb_push(skb, tcp_header_size);
3050 skb_reset_transport_header(skb);
3051
3052 th = (struct tcphdr *)skb->data;
3053 memset(th, 0, sizeof(struct tcphdr));
3054 th->syn = 1;
3055 th->ack = 1;
3056 tcp_ecn_make_synack(req, th);
3057 th->source = htons(ireq->ir_num);
3058 th->dest = ireq->ir_rmt_port;
3059 /* Setting of flags are superfluous here for callers (and ECE is
3060 * not even correctly set)
3061 */
3062 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3063 TCPHDR_SYN | TCPHDR_ACK);
3064
3065 th->seq = htonl(TCP_SKB_CB(skb)->seq);
3066 /* XXX data is queued and acked as is. No buffer/window check */
3067 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3068
3069 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3070 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3071 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3072 th->doff = (tcp_header_size >> 2);
3073 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3074
3075 #ifdef CONFIG_TCP_MD5SIG
3076 /* Okay, we have all we need - do the md5 hash if needed */
3077 if (md5)
3078 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3079 md5, req_to_sk(req), skb);
3080 rcu_read_unlock();
3081 #endif
3082
3083 /* Do not fool tcpdump (if any), clean our debris */
3084 skb->tstamp.tv64 = 0;
3085 return skb;
3086 }
3087 EXPORT_SYMBOL(tcp_make_synack);
3088
3089 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3090 {
3091 struct inet_connection_sock *icsk = inet_csk(sk);
3092 const struct tcp_congestion_ops *ca;
3093 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3094
3095 if (ca_key == TCP_CA_UNSPEC)
3096 return;
3097
3098 rcu_read_lock();
3099 ca = tcp_ca_find_key(ca_key);
3100 if (likely(ca && try_module_get(ca->owner))) {
3101 module_put(icsk->icsk_ca_ops->owner);
3102 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3103 icsk->icsk_ca_ops = ca;
3104 }
3105 rcu_read_unlock();
3106 }
3107
3108 /* Do all connect socket setups that can be done AF independent. */
3109 static void tcp_connect_init(struct sock *sk)
3110 {
3111 const struct dst_entry *dst = __sk_dst_get(sk);
3112 struct tcp_sock *tp = tcp_sk(sk);
3113 __u8 rcv_wscale;
3114
3115 /* We'll fix this up when we get a response from the other end.
3116 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3117 */
3118 tp->tcp_header_len = sizeof(struct tcphdr) +
3119 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3120
3121 #ifdef CONFIG_TCP_MD5SIG
3122 if (tp->af_specific->md5_lookup(sk, sk))
3123 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3124 #endif
3125
3126 /* If user gave his TCP_MAXSEG, record it to clamp */
3127 if (tp->rx_opt.user_mss)
3128 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3129 tp->max_window = 0;
3130 tcp_mtup_init(sk);
3131 tcp_sync_mss(sk, dst_mtu(dst));
3132
3133 tcp_ca_dst_init(sk, dst);
3134
3135 if (!tp->window_clamp)
3136 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3137 tp->advmss = dst_metric_advmss(dst);
3138 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3139 tp->advmss = tp->rx_opt.user_mss;
3140
3141 tcp_initialize_rcv_mss(sk);
3142
3143 /* limit the window selection if the user enforce a smaller rx buffer */
3144 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3145 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3146 tp->window_clamp = tcp_full_space(sk);
3147
3148 tcp_select_initial_window(tcp_full_space(sk),
3149 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3150 &tp->rcv_wnd,
3151 &tp->window_clamp,
3152 sysctl_tcp_window_scaling,
3153 &rcv_wscale,
3154 dst_metric(dst, RTAX_INITRWND));
3155
3156 tp->rx_opt.rcv_wscale = rcv_wscale;
3157 tp->rcv_ssthresh = tp->rcv_wnd;
3158
3159 sk->sk_err = 0;
3160 sock_reset_flag(sk, SOCK_DONE);
3161 tp->snd_wnd = 0;
3162 tcp_init_wl(tp, 0);
3163 tp->snd_una = tp->write_seq;
3164 tp->snd_sml = tp->write_seq;
3165 tp->snd_up = tp->write_seq;
3166 tp->snd_nxt = tp->write_seq;
3167
3168 if (likely(!tp->repair))
3169 tp->rcv_nxt = 0;
3170 else
3171 tp->rcv_tstamp = tcp_time_stamp;
3172 tp->rcv_wup = tp->rcv_nxt;
3173 tp->copied_seq = tp->rcv_nxt;
3174
3175 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3176 inet_csk(sk)->icsk_retransmits = 0;
3177 tcp_clear_retrans(tp);
3178 }
3179
3180 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3181 {
3182 struct tcp_sock *tp = tcp_sk(sk);
3183 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3184
3185 tcb->end_seq += skb->len;
3186 __skb_header_release(skb);
3187 __tcp_add_write_queue_tail(sk, skb);
3188 sk->sk_wmem_queued += skb->truesize;
3189 sk_mem_charge(sk, skb->truesize);
3190 tp->write_seq = tcb->end_seq;
3191 tp->packets_out += tcp_skb_pcount(skb);
3192 }
3193
3194 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3195 * queue a data-only packet after the regular SYN, such that regular SYNs
3196 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3197 * only the SYN sequence, the data are retransmitted in the first ACK.
3198 * If cookie is not cached or other error occurs, falls back to send a
3199 * regular SYN with Fast Open cookie request option.
3200 */
3201 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3202 {
3203 struct tcp_sock *tp = tcp_sk(sk);
3204 struct tcp_fastopen_request *fo = tp->fastopen_req;
3205 int syn_loss = 0, space, err = 0;
3206 unsigned long last_syn_loss = 0;
3207 struct sk_buff *syn_data;
3208
3209 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3210 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3211 &syn_loss, &last_syn_loss);
3212 /* Recurring FO SYN losses: revert to regular handshake temporarily */
3213 if (syn_loss > 1 &&
3214 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3215 fo->cookie.len = -1;
3216 goto fallback;
3217 }
3218
3219 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3220 fo->cookie.len = -1;
3221 else if (fo->cookie.len <= 0)
3222 goto fallback;
3223
3224 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3225 * user-MSS. Reserve maximum option space for middleboxes that add
3226 * private TCP options. The cost is reduced data space in SYN :(
3227 */
3228 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3229 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3230 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3231 MAX_TCP_OPTION_SPACE;
3232
3233 space = min_t(size_t, space, fo->size);
3234
3235 /* limit to order-0 allocations */
3236 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3237
3238 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3239 if (!syn_data)
3240 goto fallback;
3241 syn_data->ip_summed = CHECKSUM_PARTIAL;
3242 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3243 if (space) {
3244 int copied = copy_from_iter(skb_put(syn_data, space), space,
3245 &fo->data->msg_iter);
3246 if (unlikely(!copied)) {
3247 kfree_skb(syn_data);
3248 goto fallback;
3249 }
3250 if (copied != space) {
3251 skb_trim(syn_data, copied);
3252 space = copied;
3253 }
3254 }
3255 /* No more data pending in inet_wait_for_connect() */
3256 if (space == fo->size)
3257 fo->data = NULL;
3258 fo->copied = space;
3259
3260 tcp_connect_queue_skb(sk, syn_data);
3261
3262 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3263
3264 syn->skb_mstamp = syn_data->skb_mstamp;
3265
3266 /* Now full SYN+DATA was cloned and sent (or not),
3267 * remove the SYN from the original skb (syn_data)
3268 * we keep in write queue in case of a retransmit, as we
3269 * also have the SYN packet (with no data) in the same queue.
3270 */
3271 TCP_SKB_CB(syn_data)->seq++;
3272 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3273 if (!err) {
3274 tp->syn_data = (fo->copied > 0);
3275 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3276 goto done;
3277 }
3278
3279 fallback:
3280 /* Send a regular SYN with Fast Open cookie request option */
3281 if (fo->cookie.len > 0)
3282 fo->cookie.len = 0;
3283 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3284 if (err)
3285 tp->syn_fastopen = 0;
3286 done:
3287 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3288 return err;
3289 }
3290
3291 /* Build a SYN and send it off. */
3292 int tcp_connect(struct sock *sk)
3293 {
3294 struct tcp_sock *tp = tcp_sk(sk);
3295 struct sk_buff *buff;
3296 int err;
3297
3298 tcp_connect_init(sk);
3299
3300 if (unlikely(tp->repair)) {
3301 tcp_finish_connect(sk, NULL);
3302 return 0;
3303 }
3304
3305 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3306 if (unlikely(!buff))
3307 return -ENOBUFS;
3308
3309 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3310 tp->retrans_stamp = tcp_time_stamp;
3311 tcp_connect_queue_skb(sk, buff);
3312 tcp_ecn_send_syn(sk, buff);
3313
3314 /* Send off SYN; include data in Fast Open. */
3315 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3316 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3317 if (err == -ECONNREFUSED)
3318 return err;
3319
3320 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3321 * in order to make this packet get counted in tcpOutSegs.
3322 */
3323 tp->snd_nxt = tp->write_seq;
3324 tp->pushed_seq = tp->write_seq;
3325 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3326
3327 /* Timer for repeating the SYN until an answer. */
3328 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3329 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3330 return 0;
3331 }
3332 EXPORT_SYMBOL(tcp_connect);
3333
3334 /* Send out a delayed ack, the caller does the policy checking
3335 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3336 * for details.
3337 */
3338 void tcp_send_delayed_ack(struct sock *sk)
3339 {
3340 struct inet_connection_sock *icsk = inet_csk(sk);
3341 int ato = icsk->icsk_ack.ato;
3342 unsigned long timeout;
3343
3344 tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3345
3346 if (ato > TCP_DELACK_MIN) {
3347 const struct tcp_sock *tp = tcp_sk(sk);
3348 int max_ato = HZ / 2;
3349
3350 if (icsk->icsk_ack.pingpong ||
3351 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3352 max_ato = TCP_DELACK_MAX;
3353
3354 /* Slow path, intersegment interval is "high". */
3355
3356 /* If some rtt estimate is known, use it to bound delayed ack.
3357 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3358 * directly.
3359 */
3360 if (tp->srtt_us) {
3361 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3362 TCP_DELACK_MIN);
3363
3364 if (rtt < max_ato)
3365 max_ato = rtt;
3366 }
3367
3368 ato = min(ato, max_ato);
3369 }
3370
3371 /* Stay within the limit we were given */
3372 timeout = jiffies + ato;
3373
3374 /* Use new timeout only if there wasn't a older one earlier. */
3375 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3376 /* If delack timer was blocked or is about to expire,
3377 * send ACK now.
3378 */
3379 if (icsk->icsk_ack.blocked ||
3380 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3381 tcp_send_ack(sk);
3382 return;
3383 }
3384
3385 if (!time_before(timeout, icsk->icsk_ack.timeout))
3386 timeout = icsk->icsk_ack.timeout;
3387 }
3388 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3389 icsk->icsk_ack.timeout = timeout;
3390 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3391 }
3392
3393 /* This routine sends an ack and also updates the window. */
3394 void tcp_send_ack(struct sock *sk)
3395 {
3396 struct sk_buff *buff;
3397
3398 /* If we have been reset, we may not send again. */
3399 if (sk->sk_state == TCP_CLOSE)
3400 return;
3401
3402 tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3403
3404 /* We are not putting this on the write queue, so
3405 * tcp_transmit_skb() will set the ownership to this
3406 * sock.
3407 */
3408 buff = alloc_skb(MAX_TCP_HEADER,
3409 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3410 if (unlikely(!buff)) {
3411 inet_csk_schedule_ack(sk);
3412 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3413 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3414 TCP_DELACK_MAX, TCP_RTO_MAX);
3415 return;
3416 }
3417
3418 /* Reserve space for headers and prepare control bits. */
3419 skb_reserve(buff, MAX_TCP_HEADER);
3420 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3421
3422 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3423 * too much.
3424 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3425 * We also avoid tcp_wfree() overhead (cache line miss accessing
3426 * tp->tsq_flags) by using regular sock_wfree()
3427 */
3428 skb_set_tcp_pure_ack(buff);
3429
3430 /* Send it off, this clears delayed acks for us. */
3431 skb_mstamp_get(&buff->skb_mstamp);
3432 tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3433 }
3434 EXPORT_SYMBOL_GPL(tcp_send_ack);
3435
3436 /* This routine sends a packet with an out of date sequence
3437 * number. It assumes the other end will try to ack it.
3438 *
3439 * Question: what should we make while urgent mode?
3440 * 4.4BSD forces sending single byte of data. We cannot send
3441 * out of window data, because we have SND.NXT==SND.MAX...
3442 *
3443 * Current solution: to send TWO zero-length segments in urgent mode:
3444 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3445 * out-of-date with SND.UNA-1 to probe window.
3446 */
3447 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3448 {
3449 struct tcp_sock *tp = tcp_sk(sk);
3450 struct sk_buff *skb;
3451
3452 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3453 skb = alloc_skb(MAX_TCP_HEADER,
3454 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3455 if (!skb)
3456 return -1;
3457
3458 /* Reserve space for headers and set control bits. */
3459 skb_reserve(skb, MAX_TCP_HEADER);
3460 /* Use a previous sequence. This should cause the other
3461 * end to send an ack. Don't queue or clone SKB, just
3462 * send it.
3463 */
3464 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3465 skb_mstamp_get(&skb->skb_mstamp);
3466 NET_INC_STATS(sock_net(sk), mib);
3467 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3468 }
3469
3470 void tcp_send_window_probe(struct sock *sk)
3471 {
3472 if (sk->sk_state == TCP_ESTABLISHED) {
3473 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3474 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3475 }
3476 }
3477
3478 /* Initiate keepalive or window probe from timer. */
3479 int tcp_write_wakeup(struct sock *sk, int mib)
3480 {
3481 struct tcp_sock *tp = tcp_sk(sk);
3482 struct sk_buff *skb;
3483
3484 if (sk->sk_state == TCP_CLOSE)
3485 return -1;
3486
3487 skb = tcp_send_head(sk);
3488 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3489 int err;
3490 unsigned int mss = tcp_current_mss(sk);
3491 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3492
3493 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3494 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3495
3496 /* We are probing the opening of a window
3497 * but the window size is != 0
3498 * must have been a result SWS avoidance ( sender )
3499 */
3500 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3501 skb->len > mss) {
3502 seg_size = min(seg_size, mss);
3503 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3504 if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3505 return -1;
3506 } else if (!tcp_skb_pcount(skb))
3507 tcp_set_skb_tso_segs(skb, mss);
3508
3509 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3510 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3511 if (!err)
3512 tcp_event_new_data_sent(sk, skb);
3513 return err;
3514 } else {
3515 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3516 tcp_xmit_probe_skb(sk, 1, mib);
3517 return tcp_xmit_probe_skb(sk, 0, mib);
3518 }
3519 }
3520
3521 /* A window probe timeout has occurred. If window is not closed send
3522 * a partial packet else a zero probe.
3523 */
3524 void tcp_send_probe0(struct sock *sk)
3525 {
3526 struct inet_connection_sock *icsk = inet_csk(sk);
3527 struct tcp_sock *tp = tcp_sk(sk);
3528 struct net *net = sock_net(sk);
3529 unsigned long probe_max;
3530 int err;
3531
3532 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3533
3534 if (tp->packets_out || !tcp_send_head(sk)) {
3535 /* Cancel probe timer, if it is not required. */
3536 icsk->icsk_probes_out = 0;
3537 icsk->icsk_backoff = 0;
3538 return;
3539 }
3540
3541 if (err <= 0) {
3542 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3543 icsk->icsk_backoff++;
3544 icsk->icsk_probes_out++;
3545 probe_max = TCP_RTO_MAX;
3546 } else {
3547 /* If packet was not sent due to local congestion,
3548 * do not backoff and do not remember icsk_probes_out.
3549 * Let local senders to fight for local resources.
3550 *
3551 * Use accumulated backoff yet.
3552 */
3553 if (!icsk->icsk_probes_out)
3554 icsk->icsk_probes_out = 1;
3555 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3556 }
3557 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3558 tcp_probe0_when(sk, probe_max),
3559 TCP_RTO_MAX);
3560 }
3561
3562 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3563 {
3564 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3565 struct flowi fl;
3566 int res;
3567
3568 tcp_rsk(req)->txhash = net_tx_rndhash();
3569 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3570 if (!res) {
3571 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3572 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3573 if (unlikely(tcp_passive_fastopen(sk)))
3574 tcp_sk(sk)->total_retrans++;
3575 }
3576 return res;
3577 }
3578 EXPORT_SYMBOL(tcp_rtx_synack);
This page took 0.143409 seconds and 5 git commands to generate.