Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mattst88...
[deliverable/linux.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67
68 unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
69 EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
70
71 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
72 int push_one, gfp_t gfp);
73
74 /* Account for new data that has been sent to the network. */
75 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
76 {
77 struct inet_connection_sock *icsk = inet_csk(sk);
78 struct tcp_sock *tp = tcp_sk(sk);
79 unsigned int prior_packets = tp->packets_out;
80
81 tcp_advance_send_head(sk, skb);
82 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
83
84 tp->packets_out += tcp_skb_pcount(skb);
85 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
86 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
87 tcp_rearm_rto(sk);
88 }
89 }
90
91 /* SND.NXT, if window was not shrunk.
92 * If window has been shrunk, what should we make? It is not clear at all.
93 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
94 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
95 * invalid. OK, let's make this for now:
96 */
97 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
98 {
99 const struct tcp_sock *tp = tcp_sk(sk);
100
101 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
105 }
106
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
120 */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
126
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
129
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
133 }
134 }
135
136 return (__u16)mss;
137 }
138
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism. */
141 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
142 {
143 struct tcp_sock *tp = tcp_sk(sk);
144 s32 delta = tcp_time_stamp - tp->lsndtime;
145 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
146 u32 cwnd = tp->snd_cwnd;
147
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
152
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tp->snd_cwnd = max(cwnd, restart_cwnd);
156 tp->snd_cwnd_stamp = tcp_time_stamp;
157 tp->snd_cwnd_used = 0;
158 }
159
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_time_stamp;
166 const struct dst_entry *dst = __sk_dst_get(sk);
167
168 if (sysctl_tcp_slow_start_after_idle &&
169 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
170 tcp_cwnd_restart(sk, __sk_dst_get(sk));
171
172 tp->lsndtime = now;
173
174 /* If it is a reply for ato after last received
175 * packet, enter pingpong mode.
176 */
177 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
178 (!dst || !dst_metric(dst, RTAX_QUICKACK)))
179 icsk->icsk_ack.pingpong = 1;
180 }
181
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
184 {
185 tcp_dec_quickack_mode(sk, pkts);
186 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
187 }
188
189
190 u32 tcp_default_init_rwnd(u32 mss)
191 {
192 /* Initial receive window should be twice of TCP_INIT_CWND to
193 * enable proper sending of new unsent data during fast recovery
194 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
195 * limit when mss is larger than 1460.
196 */
197 u32 init_rwnd = TCP_INIT_CWND * 2;
198
199 if (mss > 1460)
200 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
201 return init_rwnd;
202 }
203
204 /* Determine a window scaling and initial window to offer.
205 * Based on the assumption that the given amount of space
206 * will be offered. Store the results in the tp structure.
207 * NOTE: for smooth operation initial space offering should
208 * be a multiple of mss if possible. We assume here that mss >= 1.
209 * This MUST be enforced by all callers.
210 */
211 void tcp_select_initial_window(int __space, __u32 mss,
212 __u32 *rcv_wnd, __u32 *window_clamp,
213 int wscale_ok, __u8 *rcv_wscale,
214 __u32 init_rcv_wnd)
215 {
216 unsigned int space = (__space < 0 ? 0 : __space);
217
218 /* If no clamp set the clamp to the max possible scaled window */
219 if (*window_clamp == 0)
220 (*window_clamp) = (65535 << 14);
221 space = min(*window_clamp, space);
222
223 /* Quantize space offering to a multiple of mss if possible. */
224 if (space > mss)
225 space = (space / mss) * mss;
226
227 /* NOTE: offering an initial window larger than 32767
228 * will break some buggy TCP stacks. If the admin tells us
229 * it is likely we could be speaking with such a buggy stack
230 * we will truncate our initial window offering to 32K-1
231 * unless the remote has sent us a window scaling option,
232 * which we interpret as a sign the remote TCP is not
233 * misinterpreting the window field as a signed quantity.
234 */
235 if (sysctl_tcp_workaround_signed_windows)
236 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
237 else
238 (*rcv_wnd) = space;
239
240 (*rcv_wscale) = 0;
241 if (wscale_ok) {
242 /* Set window scaling on max possible window
243 * See RFC1323 for an explanation of the limit to 14
244 */
245 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
246 space = min_t(u32, space, *window_clamp);
247 while (space > 65535 && (*rcv_wscale) < 14) {
248 space >>= 1;
249 (*rcv_wscale)++;
250 }
251 }
252
253 if (mss > (1 << *rcv_wscale)) {
254 if (!init_rcv_wnd) /* Use default unless specified otherwise */
255 init_rcv_wnd = tcp_default_init_rwnd(mss);
256 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
257 }
258
259 /* Set the clamp no higher than max representable value */
260 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
261 }
262 EXPORT_SYMBOL(tcp_select_initial_window);
263
264 /* Chose a new window to advertise, update state in tcp_sock for the
265 * socket, and return result with RFC1323 scaling applied. The return
266 * value can be stuffed directly into th->window for an outgoing
267 * frame.
268 */
269 static u16 tcp_select_window(struct sock *sk)
270 {
271 struct tcp_sock *tp = tcp_sk(sk);
272 u32 cur_win = tcp_receive_window(tp);
273 u32 new_win = __tcp_select_window(sk);
274
275 /* Never shrink the offered window */
276 if (new_win < cur_win) {
277 /* Danger Will Robinson!
278 * Don't update rcv_wup/rcv_wnd here or else
279 * we will not be able to advertise a zero
280 * window in time. --DaveM
281 *
282 * Relax Will Robinson.
283 */
284 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
285 }
286 tp->rcv_wnd = new_win;
287 tp->rcv_wup = tp->rcv_nxt;
288
289 /* Make sure we do not exceed the maximum possible
290 * scaled window.
291 */
292 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
293 new_win = min(new_win, MAX_TCP_WINDOW);
294 else
295 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
296
297 /* RFC1323 scaling applied */
298 new_win >>= tp->rx_opt.rcv_wscale;
299
300 /* If we advertise zero window, disable fast path. */
301 if (new_win == 0)
302 tp->pred_flags = 0;
303
304 return new_win;
305 }
306
307 /* Packet ECN state for a SYN-ACK */
308 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
309 {
310 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
311 if (!(tp->ecn_flags & TCP_ECN_OK))
312 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
313 }
314
315 /* Packet ECN state for a SYN. */
316 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
317 {
318 struct tcp_sock *tp = tcp_sk(sk);
319
320 tp->ecn_flags = 0;
321 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
322 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
323 tp->ecn_flags = TCP_ECN_OK;
324 }
325 }
326
327 static __inline__ void
328 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
329 {
330 if (inet_rsk(req)->ecn_ok)
331 th->ece = 1;
332 }
333
334 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
335 * be sent.
336 */
337 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
338 int tcp_header_len)
339 {
340 struct tcp_sock *tp = tcp_sk(sk);
341
342 if (tp->ecn_flags & TCP_ECN_OK) {
343 /* Not-retransmitted data segment: set ECT and inject CWR. */
344 if (skb->len != tcp_header_len &&
345 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
346 INET_ECN_xmit(sk);
347 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
348 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
349 tcp_hdr(skb)->cwr = 1;
350 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
351 }
352 } else {
353 /* ACK or retransmitted segment: clear ECT|CE */
354 INET_ECN_dontxmit(sk);
355 }
356 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
357 tcp_hdr(skb)->ece = 1;
358 }
359 }
360
361 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
362 * auto increment end seqno.
363 */
364 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
365 {
366 skb->ip_summed = CHECKSUM_PARTIAL;
367 skb->csum = 0;
368
369 TCP_SKB_CB(skb)->tcp_flags = flags;
370 TCP_SKB_CB(skb)->sacked = 0;
371
372 skb_shinfo(skb)->gso_segs = 1;
373 skb_shinfo(skb)->gso_size = 0;
374 skb_shinfo(skb)->gso_type = 0;
375
376 TCP_SKB_CB(skb)->seq = seq;
377 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
378 seq++;
379 TCP_SKB_CB(skb)->end_seq = seq;
380 }
381
382 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
383 {
384 return tp->snd_una != tp->snd_up;
385 }
386
387 #define OPTION_SACK_ADVERTISE (1 << 0)
388 #define OPTION_TS (1 << 1)
389 #define OPTION_MD5 (1 << 2)
390 #define OPTION_WSCALE (1 << 3)
391 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
392
393 struct tcp_out_options {
394 u16 options; /* bit field of OPTION_* */
395 u16 mss; /* 0 to disable */
396 u8 ws; /* window scale, 0 to disable */
397 u8 num_sack_blocks; /* number of SACK blocks to include */
398 u8 hash_size; /* bytes in hash_location */
399 __u8 *hash_location; /* temporary pointer, overloaded */
400 __u32 tsval, tsecr; /* need to include OPTION_TS */
401 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
402 };
403
404 /* Write previously computed TCP options to the packet.
405 *
406 * Beware: Something in the Internet is very sensitive to the ordering of
407 * TCP options, we learned this through the hard way, so be careful here.
408 * Luckily we can at least blame others for their non-compliance but from
409 * inter-operatibility perspective it seems that we're somewhat stuck with
410 * the ordering which we have been using if we want to keep working with
411 * those broken things (not that it currently hurts anybody as there isn't
412 * particular reason why the ordering would need to be changed).
413 *
414 * At least SACK_PERM as the first option is known to lead to a disaster
415 * (but it may well be that other scenarios fail similarly).
416 */
417 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
418 struct tcp_out_options *opts)
419 {
420 u16 options = opts->options; /* mungable copy */
421
422 if (unlikely(OPTION_MD5 & options)) {
423 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
424 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
425 /* overload cookie hash location */
426 opts->hash_location = (__u8 *)ptr;
427 ptr += 4;
428 }
429
430 if (unlikely(opts->mss)) {
431 *ptr++ = htonl((TCPOPT_MSS << 24) |
432 (TCPOLEN_MSS << 16) |
433 opts->mss);
434 }
435
436 if (likely(OPTION_TS & options)) {
437 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
438 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
439 (TCPOLEN_SACK_PERM << 16) |
440 (TCPOPT_TIMESTAMP << 8) |
441 TCPOLEN_TIMESTAMP);
442 options &= ~OPTION_SACK_ADVERTISE;
443 } else {
444 *ptr++ = htonl((TCPOPT_NOP << 24) |
445 (TCPOPT_NOP << 16) |
446 (TCPOPT_TIMESTAMP << 8) |
447 TCPOLEN_TIMESTAMP);
448 }
449 *ptr++ = htonl(opts->tsval);
450 *ptr++ = htonl(opts->tsecr);
451 }
452
453 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
454 *ptr++ = htonl((TCPOPT_NOP << 24) |
455 (TCPOPT_NOP << 16) |
456 (TCPOPT_SACK_PERM << 8) |
457 TCPOLEN_SACK_PERM);
458 }
459
460 if (unlikely(OPTION_WSCALE & options)) {
461 *ptr++ = htonl((TCPOPT_NOP << 24) |
462 (TCPOPT_WINDOW << 16) |
463 (TCPOLEN_WINDOW << 8) |
464 opts->ws);
465 }
466
467 if (unlikely(opts->num_sack_blocks)) {
468 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
469 tp->duplicate_sack : tp->selective_acks;
470 int this_sack;
471
472 *ptr++ = htonl((TCPOPT_NOP << 24) |
473 (TCPOPT_NOP << 16) |
474 (TCPOPT_SACK << 8) |
475 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
476 TCPOLEN_SACK_PERBLOCK)));
477
478 for (this_sack = 0; this_sack < opts->num_sack_blocks;
479 ++this_sack) {
480 *ptr++ = htonl(sp[this_sack].start_seq);
481 *ptr++ = htonl(sp[this_sack].end_seq);
482 }
483
484 tp->rx_opt.dsack = 0;
485 }
486
487 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
488 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
489
490 *ptr++ = htonl((TCPOPT_EXP << 24) |
491 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
492 TCPOPT_FASTOPEN_MAGIC);
493
494 memcpy(ptr, foc->val, foc->len);
495 if ((foc->len & 3) == 2) {
496 u8 *align = ((u8 *)ptr) + foc->len;
497 align[0] = align[1] = TCPOPT_NOP;
498 }
499 ptr += (foc->len + 3) >> 2;
500 }
501 }
502
503 /* Compute TCP options for SYN packets. This is not the final
504 * network wire format yet.
505 */
506 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
507 struct tcp_out_options *opts,
508 struct tcp_md5sig_key **md5)
509 {
510 struct tcp_sock *tp = tcp_sk(sk);
511 unsigned int remaining = MAX_TCP_OPTION_SPACE;
512 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
513
514 #ifdef CONFIG_TCP_MD5SIG
515 *md5 = tp->af_specific->md5_lookup(sk, sk);
516 if (*md5) {
517 opts->options |= OPTION_MD5;
518 remaining -= TCPOLEN_MD5SIG_ALIGNED;
519 }
520 #else
521 *md5 = NULL;
522 #endif
523
524 /* We always get an MSS option. The option bytes which will be seen in
525 * normal data packets should timestamps be used, must be in the MSS
526 * advertised. But we subtract them from tp->mss_cache so that
527 * calculations in tcp_sendmsg are simpler etc. So account for this
528 * fact here if necessary. If we don't do this correctly, as a
529 * receiver we won't recognize data packets as being full sized when we
530 * should, and thus we won't abide by the delayed ACK rules correctly.
531 * SACKs don't matter, we never delay an ACK when we have any of those
532 * going out. */
533 opts->mss = tcp_advertise_mss(sk);
534 remaining -= TCPOLEN_MSS_ALIGNED;
535
536 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
537 opts->options |= OPTION_TS;
538 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
539 opts->tsecr = tp->rx_opt.ts_recent;
540 remaining -= TCPOLEN_TSTAMP_ALIGNED;
541 }
542 if (likely(sysctl_tcp_window_scaling)) {
543 opts->ws = tp->rx_opt.rcv_wscale;
544 opts->options |= OPTION_WSCALE;
545 remaining -= TCPOLEN_WSCALE_ALIGNED;
546 }
547 if (likely(sysctl_tcp_sack)) {
548 opts->options |= OPTION_SACK_ADVERTISE;
549 if (unlikely(!(OPTION_TS & opts->options)))
550 remaining -= TCPOLEN_SACKPERM_ALIGNED;
551 }
552
553 if (fastopen && fastopen->cookie.len >= 0) {
554 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
555 need = (need + 3) & ~3U; /* Align to 32 bits */
556 if (remaining >= need) {
557 opts->options |= OPTION_FAST_OPEN_COOKIE;
558 opts->fastopen_cookie = &fastopen->cookie;
559 remaining -= need;
560 tp->syn_fastopen = 1;
561 }
562 }
563
564 return MAX_TCP_OPTION_SPACE - remaining;
565 }
566
567 /* Set up TCP options for SYN-ACKs. */
568 static unsigned int tcp_synack_options(struct sock *sk,
569 struct request_sock *req,
570 unsigned int mss, struct sk_buff *skb,
571 struct tcp_out_options *opts,
572 struct tcp_md5sig_key **md5,
573 struct tcp_fastopen_cookie *foc)
574 {
575 struct inet_request_sock *ireq = inet_rsk(req);
576 unsigned int remaining = MAX_TCP_OPTION_SPACE;
577
578 #ifdef CONFIG_TCP_MD5SIG
579 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
580 if (*md5) {
581 opts->options |= OPTION_MD5;
582 remaining -= TCPOLEN_MD5SIG_ALIGNED;
583
584 /* We can't fit any SACK blocks in a packet with MD5 + TS
585 * options. There was discussion about disabling SACK
586 * rather than TS in order to fit in better with old,
587 * buggy kernels, but that was deemed to be unnecessary.
588 */
589 ireq->tstamp_ok &= !ireq->sack_ok;
590 }
591 #else
592 *md5 = NULL;
593 #endif
594
595 /* We always send an MSS option. */
596 opts->mss = mss;
597 remaining -= TCPOLEN_MSS_ALIGNED;
598
599 if (likely(ireq->wscale_ok)) {
600 opts->ws = ireq->rcv_wscale;
601 opts->options |= OPTION_WSCALE;
602 remaining -= TCPOLEN_WSCALE_ALIGNED;
603 }
604 if (likely(ireq->tstamp_ok)) {
605 opts->options |= OPTION_TS;
606 opts->tsval = TCP_SKB_CB(skb)->when;
607 opts->tsecr = req->ts_recent;
608 remaining -= TCPOLEN_TSTAMP_ALIGNED;
609 }
610 if (likely(ireq->sack_ok)) {
611 opts->options |= OPTION_SACK_ADVERTISE;
612 if (unlikely(!ireq->tstamp_ok))
613 remaining -= TCPOLEN_SACKPERM_ALIGNED;
614 }
615 if (foc != NULL) {
616 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
617 need = (need + 3) & ~3U; /* Align to 32 bits */
618 if (remaining >= need) {
619 opts->options |= OPTION_FAST_OPEN_COOKIE;
620 opts->fastopen_cookie = foc;
621 remaining -= need;
622 }
623 }
624
625 return MAX_TCP_OPTION_SPACE - remaining;
626 }
627
628 /* Compute TCP options for ESTABLISHED sockets. This is not the
629 * final wire format yet.
630 */
631 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
632 struct tcp_out_options *opts,
633 struct tcp_md5sig_key **md5)
634 {
635 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
636 struct tcp_sock *tp = tcp_sk(sk);
637 unsigned int size = 0;
638 unsigned int eff_sacks;
639
640 opts->options = 0;
641
642 #ifdef CONFIG_TCP_MD5SIG
643 *md5 = tp->af_specific->md5_lookup(sk, sk);
644 if (unlikely(*md5)) {
645 opts->options |= OPTION_MD5;
646 size += TCPOLEN_MD5SIG_ALIGNED;
647 }
648 #else
649 *md5 = NULL;
650 #endif
651
652 if (likely(tp->rx_opt.tstamp_ok)) {
653 opts->options |= OPTION_TS;
654 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
655 opts->tsecr = tp->rx_opt.ts_recent;
656 size += TCPOLEN_TSTAMP_ALIGNED;
657 }
658
659 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
660 if (unlikely(eff_sacks)) {
661 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
662 opts->num_sack_blocks =
663 min_t(unsigned int, eff_sacks,
664 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
665 TCPOLEN_SACK_PERBLOCK);
666 size += TCPOLEN_SACK_BASE_ALIGNED +
667 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
668 }
669
670 return size;
671 }
672
673
674 /* TCP SMALL QUEUES (TSQ)
675 *
676 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
677 * to reduce RTT and bufferbloat.
678 * We do this using a special skb destructor (tcp_wfree).
679 *
680 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
681 * needs to be reallocated in a driver.
682 * The invariant being skb->truesize substracted from sk->sk_wmem_alloc
683 *
684 * Since transmit from skb destructor is forbidden, we use a tasklet
685 * to process all sockets that eventually need to send more skbs.
686 * We use one tasklet per cpu, with its own queue of sockets.
687 */
688 struct tsq_tasklet {
689 struct tasklet_struct tasklet;
690 struct list_head head; /* queue of tcp sockets */
691 };
692 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
693
694 static void tcp_tsq_handler(struct sock *sk)
695 {
696 if ((1 << sk->sk_state) &
697 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
698 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
699 tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC);
700 }
701 /*
702 * One tasklest per cpu tries to send more skbs.
703 * We run in tasklet context but need to disable irqs when
704 * transfering tsq->head because tcp_wfree() might
705 * interrupt us (non NAPI drivers)
706 */
707 static void tcp_tasklet_func(unsigned long data)
708 {
709 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
710 LIST_HEAD(list);
711 unsigned long flags;
712 struct list_head *q, *n;
713 struct tcp_sock *tp;
714 struct sock *sk;
715
716 local_irq_save(flags);
717 list_splice_init(&tsq->head, &list);
718 local_irq_restore(flags);
719
720 list_for_each_safe(q, n, &list) {
721 tp = list_entry(q, struct tcp_sock, tsq_node);
722 list_del(&tp->tsq_node);
723
724 sk = (struct sock *)tp;
725 bh_lock_sock(sk);
726
727 if (!sock_owned_by_user(sk)) {
728 tcp_tsq_handler(sk);
729 } else {
730 /* defer the work to tcp_release_cb() */
731 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
732 }
733 bh_unlock_sock(sk);
734
735 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
736 sk_free(sk);
737 }
738 }
739
740 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
741 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
742 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
743 (1UL << TCP_MTU_REDUCED_DEFERRED))
744 /**
745 * tcp_release_cb - tcp release_sock() callback
746 * @sk: socket
747 *
748 * called from release_sock() to perform protocol dependent
749 * actions before socket release.
750 */
751 void tcp_release_cb(struct sock *sk)
752 {
753 struct tcp_sock *tp = tcp_sk(sk);
754 unsigned long flags, nflags;
755
756 /* perform an atomic operation only if at least one flag is set */
757 do {
758 flags = tp->tsq_flags;
759 if (!(flags & TCP_DEFERRED_ALL))
760 return;
761 nflags = flags & ~TCP_DEFERRED_ALL;
762 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
763
764 if (flags & (1UL << TCP_TSQ_DEFERRED))
765 tcp_tsq_handler(sk);
766
767 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
768 tcp_write_timer_handler(sk);
769 __sock_put(sk);
770 }
771 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
772 tcp_delack_timer_handler(sk);
773 __sock_put(sk);
774 }
775 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
776 sk->sk_prot->mtu_reduced(sk);
777 __sock_put(sk);
778 }
779 }
780 EXPORT_SYMBOL(tcp_release_cb);
781
782 void __init tcp_tasklet_init(void)
783 {
784 int i;
785
786 for_each_possible_cpu(i) {
787 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
788
789 INIT_LIST_HEAD(&tsq->head);
790 tasklet_init(&tsq->tasklet,
791 tcp_tasklet_func,
792 (unsigned long)tsq);
793 }
794 }
795
796 /*
797 * Write buffer destructor automatically called from kfree_skb.
798 * We cant xmit new skbs from this context, as we might already
799 * hold qdisc lock.
800 */
801 void tcp_wfree(struct sk_buff *skb)
802 {
803 struct sock *sk = skb->sk;
804 struct tcp_sock *tp = tcp_sk(sk);
805
806 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
807 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
808 unsigned long flags;
809 struct tsq_tasklet *tsq;
810
811 /* Keep a ref on socket.
812 * This last ref will be released in tcp_tasklet_func()
813 */
814 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
815
816 /* queue this socket to tasklet queue */
817 local_irq_save(flags);
818 tsq = &__get_cpu_var(tsq_tasklet);
819 list_add(&tp->tsq_node, &tsq->head);
820 tasklet_schedule(&tsq->tasklet);
821 local_irq_restore(flags);
822 } else {
823 sock_wfree(skb);
824 }
825 }
826
827 /* This routine actually transmits TCP packets queued in by
828 * tcp_do_sendmsg(). This is used by both the initial
829 * transmission and possible later retransmissions.
830 * All SKB's seen here are completely headerless. It is our
831 * job to build the TCP header, and pass the packet down to
832 * IP so it can do the same plus pass the packet off to the
833 * device.
834 *
835 * We are working here with either a clone of the original
836 * SKB, or a fresh unique copy made by the retransmit engine.
837 */
838 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
839 gfp_t gfp_mask)
840 {
841 const struct inet_connection_sock *icsk = inet_csk(sk);
842 struct inet_sock *inet;
843 struct tcp_sock *tp;
844 struct tcp_skb_cb *tcb;
845 struct tcp_out_options opts;
846 unsigned int tcp_options_size, tcp_header_size;
847 struct tcp_md5sig_key *md5;
848 struct tcphdr *th;
849 int err;
850
851 BUG_ON(!skb || !tcp_skb_pcount(skb));
852
853 if (clone_it) {
854 const struct sk_buff *fclone = skb + 1;
855
856 /* If congestion control is doing timestamping, we must
857 * take such a timestamp before we potentially clone/copy.
858 */
859 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
860 __net_timestamp(skb);
861
862 if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
863 fclone->fclone == SKB_FCLONE_CLONE))
864 NET_INC_STATS_BH(sock_net(sk),
865 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
866
867 if (unlikely(skb_cloned(skb)))
868 skb = pskb_copy(skb, gfp_mask);
869 else
870 skb = skb_clone(skb, gfp_mask);
871 if (unlikely(!skb))
872 return -ENOBUFS;
873 }
874
875 inet = inet_sk(sk);
876 tp = tcp_sk(sk);
877 tcb = TCP_SKB_CB(skb);
878 memset(&opts, 0, sizeof(opts));
879
880 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
881 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
882 else
883 tcp_options_size = tcp_established_options(sk, skb, &opts,
884 &md5);
885 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
886
887 if (tcp_packets_in_flight(tp) == 0)
888 tcp_ca_event(sk, CA_EVENT_TX_START);
889
890 /* if no packet is in qdisc/device queue, then allow XPS to select
891 * another queue.
892 */
893 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
894
895 skb_push(skb, tcp_header_size);
896 skb_reset_transport_header(skb);
897
898 skb_orphan(skb);
899 skb->sk = sk;
900 skb->destructor = tcp_wfree;
901 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
902
903 /* Build TCP header and checksum it. */
904 th = tcp_hdr(skb);
905 th->source = inet->inet_sport;
906 th->dest = inet->inet_dport;
907 th->seq = htonl(tcb->seq);
908 th->ack_seq = htonl(tp->rcv_nxt);
909 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
910 tcb->tcp_flags);
911
912 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
913 /* RFC1323: The window in SYN & SYN/ACK segments
914 * is never scaled.
915 */
916 th->window = htons(min(tp->rcv_wnd, 65535U));
917 } else {
918 th->window = htons(tcp_select_window(sk));
919 }
920 th->check = 0;
921 th->urg_ptr = 0;
922
923 /* The urg_mode check is necessary during a below snd_una win probe */
924 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
925 if (before(tp->snd_up, tcb->seq + 0x10000)) {
926 th->urg_ptr = htons(tp->snd_up - tcb->seq);
927 th->urg = 1;
928 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
929 th->urg_ptr = htons(0xFFFF);
930 th->urg = 1;
931 }
932 }
933
934 tcp_options_write((__be32 *)(th + 1), tp, &opts);
935 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
936 TCP_ECN_send(sk, skb, tcp_header_size);
937
938 #ifdef CONFIG_TCP_MD5SIG
939 /* Calculate the MD5 hash, as we have all we need now */
940 if (md5) {
941 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
942 tp->af_specific->calc_md5_hash(opts.hash_location,
943 md5, sk, NULL, skb);
944 }
945 #endif
946
947 icsk->icsk_af_ops->send_check(sk, skb);
948
949 if (likely(tcb->tcp_flags & TCPHDR_ACK))
950 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
951
952 if (skb->len != tcp_header_size)
953 tcp_event_data_sent(tp, sk);
954
955 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
956 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
957 tcp_skb_pcount(skb));
958
959 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
960 if (likely(err <= 0))
961 return err;
962
963 tcp_enter_cwr(sk, 1);
964
965 return net_xmit_eval(err);
966 }
967
968 /* This routine just queues the buffer for sending.
969 *
970 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
971 * otherwise socket can stall.
972 */
973 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
974 {
975 struct tcp_sock *tp = tcp_sk(sk);
976
977 /* Advance write_seq and place onto the write_queue. */
978 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
979 skb_header_release(skb);
980 tcp_add_write_queue_tail(sk, skb);
981 sk->sk_wmem_queued += skb->truesize;
982 sk_mem_charge(sk, skb->truesize);
983 }
984
985 /* Initialize TSO segments for a packet. */
986 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
987 unsigned int mss_now)
988 {
989 /* Make sure we own this skb before messing gso_size/gso_segs */
990 WARN_ON_ONCE(skb_cloned(skb));
991
992 if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
993 /* Avoid the costly divide in the normal
994 * non-TSO case.
995 */
996 skb_shinfo(skb)->gso_segs = 1;
997 skb_shinfo(skb)->gso_size = 0;
998 skb_shinfo(skb)->gso_type = 0;
999 } else {
1000 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1001 skb_shinfo(skb)->gso_size = mss_now;
1002 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1003 }
1004 }
1005
1006 /* When a modification to fackets out becomes necessary, we need to check
1007 * skb is counted to fackets_out or not.
1008 */
1009 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1010 int decr)
1011 {
1012 struct tcp_sock *tp = tcp_sk(sk);
1013
1014 if (!tp->sacked_out || tcp_is_reno(tp))
1015 return;
1016
1017 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1018 tp->fackets_out -= decr;
1019 }
1020
1021 /* Pcount in the middle of the write queue got changed, we need to do various
1022 * tweaks to fix counters
1023 */
1024 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1025 {
1026 struct tcp_sock *tp = tcp_sk(sk);
1027
1028 tp->packets_out -= decr;
1029
1030 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1031 tp->sacked_out -= decr;
1032 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1033 tp->retrans_out -= decr;
1034 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1035 tp->lost_out -= decr;
1036
1037 /* Reno case is special. Sigh... */
1038 if (tcp_is_reno(tp) && decr > 0)
1039 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1040
1041 tcp_adjust_fackets_out(sk, skb, decr);
1042
1043 if (tp->lost_skb_hint &&
1044 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1045 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1046 tp->lost_cnt_hint -= decr;
1047
1048 tcp_verify_left_out(tp);
1049 }
1050
1051 /* Function to create two new TCP segments. Shrinks the given segment
1052 * to the specified size and appends a new segment with the rest of the
1053 * packet to the list. This won't be called frequently, I hope.
1054 * Remember, these are still headerless SKBs at this point.
1055 */
1056 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1057 unsigned int mss_now)
1058 {
1059 struct tcp_sock *tp = tcp_sk(sk);
1060 struct sk_buff *buff;
1061 int nsize, old_factor;
1062 int nlen;
1063 u8 flags;
1064
1065 if (WARN_ON(len > skb->len))
1066 return -EINVAL;
1067
1068 nsize = skb_headlen(skb) - len;
1069 if (nsize < 0)
1070 nsize = 0;
1071
1072 if (skb_unclone(skb, GFP_ATOMIC))
1073 return -ENOMEM;
1074
1075 /* Get a new skb... force flag on. */
1076 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1077 if (buff == NULL)
1078 return -ENOMEM; /* We'll just try again later. */
1079
1080 sk->sk_wmem_queued += buff->truesize;
1081 sk_mem_charge(sk, buff->truesize);
1082 nlen = skb->len - len - nsize;
1083 buff->truesize += nlen;
1084 skb->truesize -= nlen;
1085
1086 /* Correct the sequence numbers. */
1087 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1088 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1089 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1090
1091 /* PSH and FIN should only be set in the second packet. */
1092 flags = TCP_SKB_CB(skb)->tcp_flags;
1093 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1094 TCP_SKB_CB(buff)->tcp_flags = flags;
1095 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1096
1097 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1098 /* Copy and checksum data tail into the new buffer. */
1099 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1100 skb_put(buff, nsize),
1101 nsize, 0);
1102
1103 skb_trim(skb, len);
1104
1105 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1106 } else {
1107 skb->ip_summed = CHECKSUM_PARTIAL;
1108 skb_split(skb, buff, len);
1109 }
1110
1111 buff->ip_summed = skb->ip_summed;
1112
1113 /* Looks stupid, but our code really uses when of
1114 * skbs, which it never sent before. --ANK
1115 */
1116 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1117 buff->tstamp = skb->tstamp;
1118
1119 old_factor = tcp_skb_pcount(skb);
1120
1121 /* Fix up tso_factor for both original and new SKB. */
1122 tcp_set_skb_tso_segs(sk, skb, mss_now);
1123 tcp_set_skb_tso_segs(sk, buff, mss_now);
1124
1125 /* If this packet has been sent out already, we must
1126 * adjust the various packet counters.
1127 */
1128 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1129 int diff = old_factor - tcp_skb_pcount(skb) -
1130 tcp_skb_pcount(buff);
1131
1132 if (diff)
1133 tcp_adjust_pcount(sk, skb, diff);
1134 }
1135
1136 /* Link BUFF into the send queue. */
1137 skb_header_release(buff);
1138 tcp_insert_write_queue_after(skb, buff, sk);
1139
1140 return 0;
1141 }
1142
1143 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1144 * eventually). The difference is that pulled data not copied, but
1145 * immediately discarded.
1146 */
1147 static void __pskb_trim_head(struct sk_buff *skb, int len)
1148 {
1149 int i, k, eat;
1150
1151 eat = min_t(int, len, skb_headlen(skb));
1152 if (eat) {
1153 __skb_pull(skb, eat);
1154 len -= eat;
1155 if (!len)
1156 return;
1157 }
1158 eat = len;
1159 k = 0;
1160 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1161 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1162
1163 if (size <= eat) {
1164 skb_frag_unref(skb, i);
1165 eat -= size;
1166 } else {
1167 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1168 if (eat) {
1169 skb_shinfo(skb)->frags[k].page_offset += eat;
1170 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1171 eat = 0;
1172 }
1173 k++;
1174 }
1175 }
1176 skb_shinfo(skb)->nr_frags = k;
1177
1178 skb_reset_tail_pointer(skb);
1179 skb->data_len -= len;
1180 skb->len = skb->data_len;
1181 }
1182
1183 /* Remove acked data from a packet in the transmit queue. */
1184 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1185 {
1186 if (skb_unclone(skb, GFP_ATOMIC))
1187 return -ENOMEM;
1188
1189 __pskb_trim_head(skb, len);
1190
1191 TCP_SKB_CB(skb)->seq += len;
1192 skb->ip_summed = CHECKSUM_PARTIAL;
1193
1194 skb->truesize -= len;
1195 sk->sk_wmem_queued -= len;
1196 sk_mem_uncharge(sk, len);
1197 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1198
1199 /* Any change of skb->len requires recalculation of tso factor. */
1200 if (tcp_skb_pcount(skb) > 1)
1201 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1202
1203 return 0;
1204 }
1205
1206 /* Calculate MSS not accounting any TCP options. */
1207 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1208 {
1209 const struct tcp_sock *tp = tcp_sk(sk);
1210 const struct inet_connection_sock *icsk = inet_csk(sk);
1211 int mss_now;
1212
1213 /* Calculate base mss without TCP options:
1214 It is MMS_S - sizeof(tcphdr) of rfc1122
1215 */
1216 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1217
1218 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1219 if (icsk->icsk_af_ops->net_frag_header_len) {
1220 const struct dst_entry *dst = __sk_dst_get(sk);
1221
1222 if (dst && dst_allfrag(dst))
1223 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1224 }
1225
1226 /* Clamp it (mss_clamp does not include tcp options) */
1227 if (mss_now > tp->rx_opt.mss_clamp)
1228 mss_now = tp->rx_opt.mss_clamp;
1229
1230 /* Now subtract optional transport overhead */
1231 mss_now -= icsk->icsk_ext_hdr_len;
1232
1233 /* Then reserve room for full set of TCP options and 8 bytes of data */
1234 if (mss_now < 48)
1235 mss_now = 48;
1236 return mss_now;
1237 }
1238
1239 /* Calculate MSS. Not accounting for SACKs here. */
1240 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1241 {
1242 /* Subtract TCP options size, not including SACKs */
1243 return __tcp_mtu_to_mss(sk, pmtu) -
1244 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1245 }
1246
1247 /* Inverse of above */
1248 int tcp_mss_to_mtu(struct sock *sk, int mss)
1249 {
1250 const struct tcp_sock *tp = tcp_sk(sk);
1251 const struct inet_connection_sock *icsk = inet_csk(sk);
1252 int mtu;
1253
1254 mtu = mss +
1255 tp->tcp_header_len +
1256 icsk->icsk_ext_hdr_len +
1257 icsk->icsk_af_ops->net_header_len;
1258
1259 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1260 if (icsk->icsk_af_ops->net_frag_header_len) {
1261 const struct dst_entry *dst = __sk_dst_get(sk);
1262
1263 if (dst && dst_allfrag(dst))
1264 mtu += icsk->icsk_af_ops->net_frag_header_len;
1265 }
1266 return mtu;
1267 }
1268
1269 /* MTU probing init per socket */
1270 void tcp_mtup_init(struct sock *sk)
1271 {
1272 struct tcp_sock *tp = tcp_sk(sk);
1273 struct inet_connection_sock *icsk = inet_csk(sk);
1274
1275 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1276 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1277 icsk->icsk_af_ops->net_header_len;
1278 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1279 icsk->icsk_mtup.probe_size = 0;
1280 }
1281 EXPORT_SYMBOL(tcp_mtup_init);
1282
1283 /* This function synchronize snd mss to current pmtu/exthdr set.
1284
1285 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1286 for TCP options, but includes only bare TCP header.
1287
1288 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1289 It is minimum of user_mss and mss received with SYN.
1290 It also does not include TCP options.
1291
1292 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1293
1294 tp->mss_cache is current effective sending mss, including
1295 all tcp options except for SACKs. It is evaluated,
1296 taking into account current pmtu, but never exceeds
1297 tp->rx_opt.mss_clamp.
1298
1299 NOTE1. rfc1122 clearly states that advertised MSS
1300 DOES NOT include either tcp or ip options.
1301
1302 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1303 are READ ONLY outside this function. --ANK (980731)
1304 */
1305 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1306 {
1307 struct tcp_sock *tp = tcp_sk(sk);
1308 struct inet_connection_sock *icsk = inet_csk(sk);
1309 int mss_now;
1310
1311 if (icsk->icsk_mtup.search_high > pmtu)
1312 icsk->icsk_mtup.search_high = pmtu;
1313
1314 mss_now = tcp_mtu_to_mss(sk, pmtu);
1315 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1316
1317 /* And store cached results */
1318 icsk->icsk_pmtu_cookie = pmtu;
1319 if (icsk->icsk_mtup.enabled)
1320 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1321 tp->mss_cache = mss_now;
1322
1323 return mss_now;
1324 }
1325 EXPORT_SYMBOL(tcp_sync_mss);
1326
1327 /* Compute the current effective MSS, taking SACKs and IP options,
1328 * and even PMTU discovery events into account.
1329 */
1330 unsigned int tcp_current_mss(struct sock *sk)
1331 {
1332 const struct tcp_sock *tp = tcp_sk(sk);
1333 const struct dst_entry *dst = __sk_dst_get(sk);
1334 u32 mss_now;
1335 unsigned int header_len;
1336 struct tcp_out_options opts;
1337 struct tcp_md5sig_key *md5;
1338
1339 mss_now = tp->mss_cache;
1340
1341 if (dst) {
1342 u32 mtu = dst_mtu(dst);
1343 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1344 mss_now = tcp_sync_mss(sk, mtu);
1345 }
1346
1347 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1348 sizeof(struct tcphdr);
1349 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1350 * some common options. If this is an odd packet (because we have SACK
1351 * blocks etc) then our calculated header_len will be different, and
1352 * we have to adjust mss_now correspondingly */
1353 if (header_len != tp->tcp_header_len) {
1354 int delta = (int) header_len - tp->tcp_header_len;
1355 mss_now -= delta;
1356 }
1357
1358 return mss_now;
1359 }
1360
1361 /* Congestion window validation. (RFC2861) */
1362 static void tcp_cwnd_validate(struct sock *sk)
1363 {
1364 struct tcp_sock *tp = tcp_sk(sk);
1365
1366 if (tp->packets_out >= tp->snd_cwnd) {
1367 /* Network is feed fully. */
1368 tp->snd_cwnd_used = 0;
1369 tp->snd_cwnd_stamp = tcp_time_stamp;
1370 } else {
1371 /* Network starves. */
1372 if (tp->packets_out > tp->snd_cwnd_used)
1373 tp->snd_cwnd_used = tp->packets_out;
1374
1375 if (sysctl_tcp_slow_start_after_idle &&
1376 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1377 tcp_cwnd_application_limited(sk);
1378 }
1379 }
1380
1381 /* Returns the portion of skb which can be sent right away without
1382 * introducing MSS oddities to segment boundaries. In rare cases where
1383 * mss_now != mss_cache, we will request caller to create a small skb
1384 * per input skb which could be mostly avoided here (if desired).
1385 *
1386 * We explicitly want to create a request for splitting write queue tail
1387 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1388 * thus all the complexity (cwnd_len is always MSS multiple which we
1389 * return whenever allowed by the other factors). Basically we need the
1390 * modulo only when the receiver window alone is the limiting factor or
1391 * when we would be allowed to send the split-due-to-Nagle skb fully.
1392 */
1393 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
1394 unsigned int mss_now, unsigned int max_segs)
1395 {
1396 const struct tcp_sock *tp = tcp_sk(sk);
1397 u32 needed, window, max_len;
1398
1399 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1400 max_len = mss_now * max_segs;
1401
1402 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1403 return max_len;
1404
1405 needed = min(skb->len, window);
1406
1407 if (max_len <= needed)
1408 return max_len;
1409
1410 return needed - needed % mss_now;
1411 }
1412
1413 /* Can at least one segment of SKB be sent right now, according to the
1414 * congestion window rules? If so, return how many segments are allowed.
1415 */
1416 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1417 const struct sk_buff *skb)
1418 {
1419 u32 in_flight, cwnd;
1420
1421 /* Don't be strict about the congestion window for the final FIN. */
1422 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1423 tcp_skb_pcount(skb) == 1)
1424 return 1;
1425
1426 in_flight = tcp_packets_in_flight(tp);
1427 cwnd = tp->snd_cwnd;
1428 if (in_flight < cwnd)
1429 return (cwnd - in_flight);
1430
1431 return 0;
1432 }
1433
1434 /* Initialize TSO state of a skb.
1435 * This must be invoked the first time we consider transmitting
1436 * SKB onto the wire.
1437 */
1438 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1439 unsigned int mss_now)
1440 {
1441 int tso_segs = tcp_skb_pcount(skb);
1442
1443 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1444 tcp_set_skb_tso_segs(sk, skb, mss_now);
1445 tso_segs = tcp_skb_pcount(skb);
1446 }
1447 return tso_segs;
1448 }
1449
1450 /* Minshall's variant of the Nagle send check. */
1451 static inline bool tcp_minshall_check(const struct tcp_sock *tp)
1452 {
1453 return after(tp->snd_sml, tp->snd_una) &&
1454 !after(tp->snd_sml, tp->snd_nxt);
1455 }
1456
1457 /* Return false, if packet can be sent now without violation Nagle's rules:
1458 * 1. It is full sized.
1459 * 2. Or it contains FIN. (already checked by caller)
1460 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1461 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1462 * With Minshall's modification: all sent small packets are ACKed.
1463 */
1464 static inline bool tcp_nagle_check(const struct tcp_sock *tp,
1465 const struct sk_buff *skb,
1466 unsigned int mss_now, int nonagle)
1467 {
1468 return skb->len < mss_now &&
1469 ((nonagle & TCP_NAGLE_CORK) ||
1470 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1471 }
1472
1473 /* Return true if the Nagle test allows this packet to be
1474 * sent now.
1475 */
1476 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1477 unsigned int cur_mss, int nonagle)
1478 {
1479 /* Nagle rule does not apply to frames, which sit in the middle of the
1480 * write_queue (they have no chances to get new data).
1481 *
1482 * This is implemented in the callers, where they modify the 'nonagle'
1483 * argument based upon the location of SKB in the send queue.
1484 */
1485 if (nonagle & TCP_NAGLE_PUSH)
1486 return true;
1487
1488 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1489 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1490 return true;
1491
1492 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1493 return true;
1494
1495 return false;
1496 }
1497
1498 /* Does at least the first segment of SKB fit into the send window? */
1499 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1500 const struct sk_buff *skb,
1501 unsigned int cur_mss)
1502 {
1503 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1504
1505 if (skb->len > cur_mss)
1506 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1507
1508 return !after(end_seq, tcp_wnd_end(tp));
1509 }
1510
1511 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1512 * should be put on the wire right now. If so, it returns the number of
1513 * packets allowed by the congestion window.
1514 */
1515 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1516 unsigned int cur_mss, int nonagle)
1517 {
1518 const struct tcp_sock *tp = tcp_sk(sk);
1519 unsigned int cwnd_quota;
1520
1521 tcp_init_tso_segs(sk, skb, cur_mss);
1522
1523 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1524 return 0;
1525
1526 cwnd_quota = tcp_cwnd_test(tp, skb);
1527 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1528 cwnd_quota = 0;
1529
1530 return cwnd_quota;
1531 }
1532
1533 /* Test if sending is allowed right now. */
1534 bool tcp_may_send_now(struct sock *sk)
1535 {
1536 const struct tcp_sock *tp = tcp_sk(sk);
1537 struct sk_buff *skb = tcp_send_head(sk);
1538
1539 return skb &&
1540 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1541 (tcp_skb_is_last(sk, skb) ?
1542 tp->nonagle : TCP_NAGLE_PUSH));
1543 }
1544
1545 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1546 * which is put after SKB on the list. It is very much like
1547 * tcp_fragment() except that it may make several kinds of assumptions
1548 * in order to speed up the splitting operation. In particular, we
1549 * know that all the data is in scatter-gather pages, and that the
1550 * packet has never been sent out before (and thus is not cloned).
1551 */
1552 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1553 unsigned int mss_now, gfp_t gfp)
1554 {
1555 struct sk_buff *buff;
1556 int nlen = skb->len - len;
1557 u8 flags;
1558
1559 /* All of a TSO frame must be composed of paged data. */
1560 if (skb->len != skb->data_len)
1561 return tcp_fragment(sk, skb, len, mss_now);
1562
1563 buff = sk_stream_alloc_skb(sk, 0, gfp);
1564 if (unlikely(buff == NULL))
1565 return -ENOMEM;
1566
1567 sk->sk_wmem_queued += buff->truesize;
1568 sk_mem_charge(sk, buff->truesize);
1569 buff->truesize += nlen;
1570 skb->truesize -= nlen;
1571
1572 /* Correct the sequence numbers. */
1573 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1574 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1575 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1576
1577 /* PSH and FIN should only be set in the second packet. */
1578 flags = TCP_SKB_CB(skb)->tcp_flags;
1579 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1580 TCP_SKB_CB(buff)->tcp_flags = flags;
1581
1582 /* This packet was never sent out yet, so no SACK bits. */
1583 TCP_SKB_CB(buff)->sacked = 0;
1584
1585 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1586 skb_split(skb, buff, len);
1587
1588 /* Fix up tso_factor for both original and new SKB. */
1589 tcp_set_skb_tso_segs(sk, skb, mss_now);
1590 tcp_set_skb_tso_segs(sk, buff, mss_now);
1591
1592 /* Link BUFF into the send queue. */
1593 skb_header_release(buff);
1594 tcp_insert_write_queue_after(skb, buff, sk);
1595
1596 return 0;
1597 }
1598
1599 /* Try to defer sending, if possible, in order to minimize the amount
1600 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1601 *
1602 * This algorithm is from John Heffner.
1603 */
1604 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1605 {
1606 struct tcp_sock *tp = tcp_sk(sk);
1607 const struct inet_connection_sock *icsk = inet_csk(sk);
1608 u32 send_win, cong_win, limit, in_flight;
1609 int win_divisor;
1610
1611 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1612 goto send_now;
1613
1614 if (icsk->icsk_ca_state != TCP_CA_Open)
1615 goto send_now;
1616
1617 /* Defer for less than two clock ticks. */
1618 if (tp->tso_deferred &&
1619 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1620 goto send_now;
1621
1622 in_flight = tcp_packets_in_flight(tp);
1623
1624 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1625
1626 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1627
1628 /* From in_flight test above, we know that cwnd > in_flight. */
1629 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1630
1631 limit = min(send_win, cong_win);
1632
1633 /* If a full-sized TSO skb can be sent, do it. */
1634 if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1635 tp->xmit_size_goal_segs * tp->mss_cache))
1636 goto send_now;
1637
1638 /* Middle in queue won't get any more data, full sendable already? */
1639 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1640 goto send_now;
1641
1642 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1643 if (win_divisor) {
1644 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1645
1646 /* If at least some fraction of a window is available,
1647 * just use it.
1648 */
1649 chunk /= win_divisor;
1650 if (limit >= chunk)
1651 goto send_now;
1652 } else {
1653 /* Different approach, try not to defer past a single
1654 * ACK. Receiver should ACK every other full sized
1655 * frame, so if we have space for more than 3 frames
1656 * then send now.
1657 */
1658 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1659 goto send_now;
1660 }
1661
1662 /* Ok, it looks like it is advisable to defer.
1663 * Do not rearm the timer if already set to not break TCP ACK clocking.
1664 */
1665 if (!tp->tso_deferred)
1666 tp->tso_deferred = 1 | (jiffies << 1);
1667
1668 return true;
1669
1670 send_now:
1671 tp->tso_deferred = 0;
1672 return false;
1673 }
1674
1675 /* Create a new MTU probe if we are ready.
1676 * MTU probe is regularly attempting to increase the path MTU by
1677 * deliberately sending larger packets. This discovers routing
1678 * changes resulting in larger path MTUs.
1679 *
1680 * Returns 0 if we should wait to probe (no cwnd available),
1681 * 1 if a probe was sent,
1682 * -1 otherwise
1683 */
1684 static int tcp_mtu_probe(struct sock *sk)
1685 {
1686 struct tcp_sock *tp = tcp_sk(sk);
1687 struct inet_connection_sock *icsk = inet_csk(sk);
1688 struct sk_buff *skb, *nskb, *next;
1689 int len;
1690 int probe_size;
1691 int size_needed;
1692 int copy;
1693 int mss_now;
1694
1695 /* Not currently probing/verifying,
1696 * not in recovery,
1697 * have enough cwnd, and
1698 * not SACKing (the variable headers throw things off) */
1699 if (!icsk->icsk_mtup.enabled ||
1700 icsk->icsk_mtup.probe_size ||
1701 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1702 tp->snd_cwnd < 11 ||
1703 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1704 return -1;
1705
1706 /* Very simple search strategy: just double the MSS. */
1707 mss_now = tcp_current_mss(sk);
1708 probe_size = 2 * tp->mss_cache;
1709 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1710 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1711 /* TODO: set timer for probe_converge_event */
1712 return -1;
1713 }
1714
1715 /* Have enough data in the send queue to probe? */
1716 if (tp->write_seq - tp->snd_nxt < size_needed)
1717 return -1;
1718
1719 if (tp->snd_wnd < size_needed)
1720 return -1;
1721 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1722 return 0;
1723
1724 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1725 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1726 if (!tcp_packets_in_flight(tp))
1727 return -1;
1728 else
1729 return 0;
1730 }
1731
1732 /* We're allowed to probe. Build it now. */
1733 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1734 return -1;
1735 sk->sk_wmem_queued += nskb->truesize;
1736 sk_mem_charge(sk, nskb->truesize);
1737
1738 skb = tcp_send_head(sk);
1739
1740 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1741 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1742 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1743 TCP_SKB_CB(nskb)->sacked = 0;
1744 nskb->csum = 0;
1745 nskb->ip_summed = skb->ip_summed;
1746
1747 tcp_insert_write_queue_before(nskb, skb, sk);
1748
1749 len = 0;
1750 tcp_for_write_queue_from_safe(skb, next, sk) {
1751 copy = min_t(int, skb->len, probe_size - len);
1752 if (nskb->ip_summed)
1753 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1754 else
1755 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1756 skb_put(nskb, copy),
1757 copy, nskb->csum);
1758
1759 if (skb->len <= copy) {
1760 /* We've eaten all the data from this skb.
1761 * Throw it away. */
1762 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1763 tcp_unlink_write_queue(skb, sk);
1764 sk_wmem_free_skb(sk, skb);
1765 } else {
1766 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1767 ~(TCPHDR_FIN|TCPHDR_PSH);
1768 if (!skb_shinfo(skb)->nr_frags) {
1769 skb_pull(skb, copy);
1770 if (skb->ip_summed != CHECKSUM_PARTIAL)
1771 skb->csum = csum_partial(skb->data,
1772 skb->len, 0);
1773 } else {
1774 __pskb_trim_head(skb, copy);
1775 tcp_set_skb_tso_segs(sk, skb, mss_now);
1776 }
1777 TCP_SKB_CB(skb)->seq += copy;
1778 }
1779
1780 len += copy;
1781
1782 if (len >= probe_size)
1783 break;
1784 }
1785 tcp_init_tso_segs(sk, nskb, nskb->len);
1786
1787 /* We're ready to send. If this fails, the probe will
1788 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1789 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1790 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1791 /* Decrement cwnd here because we are sending
1792 * effectively two packets. */
1793 tp->snd_cwnd--;
1794 tcp_event_new_data_sent(sk, nskb);
1795
1796 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1797 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1798 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1799
1800 return 1;
1801 }
1802
1803 return -1;
1804 }
1805
1806 /* This routine writes packets to the network. It advances the
1807 * send_head. This happens as incoming acks open up the remote
1808 * window for us.
1809 *
1810 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1811 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1812 * account rare use of URG, this is not a big flaw.
1813 *
1814 * Send at most one packet when push_one > 0. Temporarily ignore
1815 * cwnd limit to force at most one packet out when push_one == 2.
1816
1817 * Returns true, if no segments are in flight and we have queued segments,
1818 * but cannot send anything now because of SWS or another problem.
1819 */
1820 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1821 int push_one, gfp_t gfp)
1822 {
1823 struct tcp_sock *tp = tcp_sk(sk);
1824 struct sk_buff *skb;
1825 unsigned int tso_segs, sent_pkts;
1826 int cwnd_quota;
1827 int result;
1828
1829 sent_pkts = 0;
1830
1831 if (!push_one) {
1832 /* Do MTU probing. */
1833 result = tcp_mtu_probe(sk);
1834 if (!result) {
1835 return false;
1836 } else if (result > 0) {
1837 sent_pkts = 1;
1838 }
1839 }
1840
1841 while ((skb = tcp_send_head(sk))) {
1842 unsigned int limit;
1843
1844 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1845 BUG_ON(!tso_segs);
1846
1847 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1848 goto repair; /* Skip network transmission */
1849
1850 cwnd_quota = tcp_cwnd_test(tp, skb);
1851 if (!cwnd_quota) {
1852 if (push_one == 2)
1853 /* Force out a loss probe pkt. */
1854 cwnd_quota = 1;
1855 else
1856 break;
1857 }
1858
1859 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1860 break;
1861
1862 if (tso_segs == 1) {
1863 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1864 (tcp_skb_is_last(sk, skb) ?
1865 nonagle : TCP_NAGLE_PUSH))))
1866 break;
1867 } else {
1868 if (!push_one && tcp_tso_should_defer(sk, skb))
1869 break;
1870 }
1871
1872 /* TCP Small Queues :
1873 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
1874 * This allows for :
1875 * - better RTT estimation and ACK scheduling
1876 * - faster recovery
1877 * - high rates
1878 * Alas, some drivers / subsystems require a fair amount
1879 * of queued bytes to ensure line rate.
1880 * One example is wifi aggregation (802.11 AMPDU)
1881 */
1882 limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
1883 sk->sk_pacing_rate >> 10);
1884
1885 if (atomic_read(&sk->sk_wmem_alloc) > limit) {
1886 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1887 break;
1888 }
1889
1890 limit = mss_now;
1891 if (tso_segs > 1 && !tcp_urg_mode(tp))
1892 limit = tcp_mss_split_point(sk, skb, mss_now,
1893 min_t(unsigned int,
1894 cwnd_quota,
1895 sk->sk_gso_max_segs));
1896
1897 if (skb->len > limit &&
1898 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1899 break;
1900
1901 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1902
1903 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1904 break;
1905
1906 repair:
1907 /* Advance the send_head. This one is sent out.
1908 * This call will increment packets_out.
1909 */
1910 tcp_event_new_data_sent(sk, skb);
1911
1912 tcp_minshall_update(tp, mss_now, skb);
1913 sent_pkts += tcp_skb_pcount(skb);
1914
1915 if (push_one)
1916 break;
1917 }
1918
1919 if (likely(sent_pkts)) {
1920 if (tcp_in_cwnd_reduction(sk))
1921 tp->prr_out += sent_pkts;
1922
1923 /* Send one loss probe per tail loss episode. */
1924 if (push_one != 2)
1925 tcp_schedule_loss_probe(sk);
1926 tcp_cwnd_validate(sk);
1927 return false;
1928 }
1929 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
1930 }
1931
1932 bool tcp_schedule_loss_probe(struct sock *sk)
1933 {
1934 struct inet_connection_sock *icsk = inet_csk(sk);
1935 struct tcp_sock *tp = tcp_sk(sk);
1936 u32 timeout, tlp_time_stamp, rto_time_stamp;
1937 u32 rtt = tp->srtt >> 3;
1938
1939 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
1940 return false;
1941 /* No consecutive loss probes. */
1942 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
1943 tcp_rearm_rto(sk);
1944 return false;
1945 }
1946 /* Don't do any loss probe on a Fast Open connection before 3WHS
1947 * finishes.
1948 */
1949 if (sk->sk_state == TCP_SYN_RECV)
1950 return false;
1951
1952 /* TLP is only scheduled when next timer event is RTO. */
1953 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
1954 return false;
1955
1956 /* Schedule a loss probe in 2*RTT for SACK capable connections
1957 * in Open state, that are either limited by cwnd or application.
1958 */
1959 if (sysctl_tcp_early_retrans < 3 || !rtt || !tp->packets_out ||
1960 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
1961 return false;
1962
1963 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
1964 tcp_send_head(sk))
1965 return false;
1966
1967 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
1968 * for delayed ack when there's one outstanding packet.
1969 */
1970 timeout = rtt << 1;
1971 if (tp->packets_out == 1)
1972 timeout = max_t(u32, timeout,
1973 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
1974 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
1975
1976 /* If RTO is shorter, just schedule TLP in its place. */
1977 tlp_time_stamp = tcp_time_stamp + timeout;
1978 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
1979 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
1980 s32 delta = rto_time_stamp - tcp_time_stamp;
1981 if (delta > 0)
1982 timeout = delta;
1983 }
1984
1985 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
1986 TCP_RTO_MAX);
1987 return true;
1988 }
1989
1990 /* When probe timeout (PTO) fires, send a new segment if one exists, else
1991 * retransmit the last segment.
1992 */
1993 void tcp_send_loss_probe(struct sock *sk)
1994 {
1995 struct tcp_sock *tp = tcp_sk(sk);
1996 struct sk_buff *skb;
1997 int pcount;
1998 int mss = tcp_current_mss(sk);
1999 int err = -1;
2000
2001 if (tcp_send_head(sk) != NULL) {
2002 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2003 goto rearm_timer;
2004 }
2005
2006 /* At most one outstanding TLP retransmission. */
2007 if (tp->tlp_high_seq)
2008 goto rearm_timer;
2009
2010 /* Retransmit last segment. */
2011 skb = tcp_write_queue_tail(sk);
2012 if (WARN_ON(!skb))
2013 goto rearm_timer;
2014
2015 pcount = tcp_skb_pcount(skb);
2016 if (WARN_ON(!pcount))
2017 goto rearm_timer;
2018
2019 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2020 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss)))
2021 goto rearm_timer;
2022 skb = tcp_write_queue_tail(sk);
2023 }
2024
2025 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2026 goto rearm_timer;
2027
2028 /* Probe with zero data doesn't trigger fast recovery. */
2029 if (skb->len > 0)
2030 err = __tcp_retransmit_skb(sk, skb);
2031
2032 /* Record snd_nxt for loss detection. */
2033 if (likely(!err))
2034 tp->tlp_high_seq = tp->snd_nxt;
2035
2036 rearm_timer:
2037 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2038 inet_csk(sk)->icsk_rto,
2039 TCP_RTO_MAX);
2040
2041 if (likely(!err))
2042 NET_INC_STATS_BH(sock_net(sk),
2043 LINUX_MIB_TCPLOSSPROBES);
2044 return;
2045 }
2046
2047 /* Push out any pending frames which were held back due to
2048 * TCP_CORK or attempt at coalescing tiny packets.
2049 * The socket must be locked by the caller.
2050 */
2051 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2052 int nonagle)
2053 {
2054 /* If we are closed, the bytes will have to remain here.
2055 * In time closedown will finish, we empty the write queue and
2056 * all will be happy.
2057 */
2058 if (unlikely(sk->sk_state == TCP_CLOSE))
2059 return;
2060
2061 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2062 sk_gfp_atomic(sk, GFP_ATOMIC)))
2063 tcp_check_probe_timer(sk);
2064 }
2065
2066 /* Send _single_ skb sitting at the send head. This function requires
2067 * true push pending frames to setup probe timer etc.
2068 */
2069 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2070 {
2071 struct sk_buff *skb = tcp_send_head(sk);
2072
2073 BUG_ON(!skb || skb->len < mss_now);
2074
2075 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2076 }
2077
2078 /* This function returns the amount that we can raise the
2079 * usable window based on the following constraints
2080 *
2081 * 1. The window can never be shrunk once it is offered (RFC 793)
2082 * 2. We limit memory per socket
2083 *
2084 * RFC 1122:
2085 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2086 * RECV.NEXT + RCV.WIN fixed until:
2087 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2088 *
2089 * i.e. don't raise the right edge of the window until you can raise
2090 * it at least MSS bytes.
2091 *
2092 * Unfortunately, the recommended algorithm breaks header prediction,
2093 * since header prediction assumes th->window stays fixed.
2094 *
2095 * Strictly speaking, keeping th->window fixed violates the receiver
2096 * side SWS prevention criteria. The problem is that under this rule
2097 * a stream of single byte packets will cause the right side of the
2098 * window to always advance by a single byte.
2099 *
2100 * Of course, if the sender implements sender side SWS prevention
2101 * then this will not be a problem.
2102 *
2103 * BSD seems to make the following compromise:
2104 *
2105 * If the free space is less than the 1/4 of the maximum
2106 * space available and the free space is less than 1/2 mss,
2107 * then set the window to 0.
2108 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2109 * Otherwise, just prevent the window from shrinking
2110 * and from being larger than the largest representable value.
2111 *
2112 * This prevents incremental opening of the window in the regime
2113 * where TCP is limited by the speed of the reader side taking
2114 * data out of the TCP receive queue. It does nothing about
2115 * those cases where the window is constrained on the sender side
2116 * because the pipeline is full.
2117 *
2118 * BSD also seems to "accidentally" limit itself to windows that are a
2119 * multiple of MSS, at least until the free space gets quite small.
2120 * This would appear to be a side effect of the mbuf implementation.
2121 * Combining these two algorithms results in the observed behavior
2122 * of having a fixed window size at almost all times.
2123 *
2124 * Below we obtain similar behavior by forcing the offered window to
2125 * a multiple of the mss when it is feasible to do so.
2126 *
2127 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2128 * Regular options like TIMESTAMP are taken into account.
2129 */
2130 u32 __tcp_select_window(struct sock *sk)
2131 {
2132 struct inet_connection_sock *icsk = inet_csk(sk);
2133 struct tcp_sock *tp = tcp_sk(sk);
2134 /* MSS for the peer's data. Previous versions used mss_clamp
2135 * here. I don't know if the value based on our guesses
2136 * of peer's MSS is better for the performance. It's more correct
2137 * but may be worse for the performance because of rcv_mss
2138 * fluctuations. --SAW 1998/11/1
2139 */
2140 int mss = icsk->icsk_ack.rcv_mss;
2141 int free_space = tcp_space(sk);
2142 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2143 int window;
2144
2145 if (mss > full_space)
2146 mss = full_space;
2147
2148 if (free_space < (full_space >> 1)) {
2149 icsk->icsk_ack.quick = 0;
2150
2151 if (sk_under_memory_pressure(sk))
2152 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2153 4U * tp->advmss);
2154
2155 if (free_space < mss)
2156 return 0;
2157 }
2158
2159 if (free_space > tp->rcv_ssthresh)
2160 free_space = tp->rcv_ssthresh;
2161
2162 /* Don't do rounding if we are using window scaling, since the
2163 * scaled window will not line up with the MSS boundary anyway.
2164 */
2165 window = tp->rcv_wnd;
2166 if (tp->rx_opt.rcv_wscale) {
2167 window = free_space;
2168
2169 /* Advertise enough space so that it won't get scaled away.
2170 * Import case: prevent zero window announcement if
2171 * 1<<rcv_wscale > mss.
2172 */
2173 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2174 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2175 << tp->rx_opt.rcv_wscale);
2176 } else {
2177 /* Get the largest window that is a nice multiple of mss.
2178 * Window clamp already applied above.
2179 * If our current window offering is within 1 mss of the
2180 * free space we just keep it. This prevents the divide
2181 * and multiply from happening most of the time.
2182 * We also don't do any window rounding when the free space
2183 * is too small.
2184 */
2185 if (window <= free_space - mss || window > free_space)
2186 window = (free_space / mss) * mss;
2187 else if (mss == full_space &&
2188 free_space > window + (full_space >> 1))
2189 window = free_space;
2190 }
2191
2192 return window;
2193 }
2194
2195 /* Collapses two adjacent SKB's during retransmission. */
2196 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2197 {
2198 struct tcp_sock *tp = tcp_sk(sk);
2199 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2200 int skb_size, next_skb_size;
2201
2202 skb_size = skb->len;
2203 next_skb_size = next_skb->len;
2204
2205 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2206
2207 tcp_highest_sack_combine(sk, next_skb, skb);
2208
2209 tcp_unlink_write_queue(next_skb, sk);
2210
2211 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2212 next_skb_size);
2213
2214 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2215 skb->ip_summed = CHECKSUM_PARTIAL;
2216
2217 if (skb->ip_summed != CHECKSUM_PARTIAL)
2218 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2219
2220 /* Update sequence range on original skb. */
2221 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2222
2223 /* Merge over control information. This moves PSH/FIN etc. over */
2224 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2225
2226 /* All done, get rid of second SKB and account for it so
2227 * packet counting does not break.
2228 */
2229 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2230
2231 /* changed transmit queue under us so clear hints */
2232 tcp_clear_retrans_hints_partial(tp);
2233 if (next_skb == tp->retransmit_skb_hint)
2234 tp->retransmit_skb_hint = skb;
2235
2236 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2237
2238 sk_wmem_free_skb(sk, next_skb);
2239 }
2240
2241 /* Check if coalescing SKBs is legal. */
2242 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2243 {
2244 if (tcp_skb_pcount(skb) > 1)
2245 return false;
2246 /* TODO: SACK collapsing could be used to remove this condition */
2247 if (skb_shinfo(skb)->nr_frags != 0)
2248 return false;
2249 if (skb_cloned(skb))
2250 return false;
2251 if (skb == tcp_send_head(sk))
2252 return false;
2253 /* Some heurestics for collapsing over SACK'd could be invented */
2254 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2255 return false;
2256
2257 return true;
2258 }
2259
2260 /* Collapse packets in the retransmit queue to make to create
2261 * less packets on the wire. This is only done on retransmission.
2262 */
2263 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2264 int space)
2265 {
2266 struct tcp_sock *tp = tcp_sk(sk);
2267 struct sk_buff *skb = to, *tmp;
2268 bool first = true;
2269
2270 if (!sysctl_tcp_retrans_collapse)
2271 return;
2272 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2273 return;
2274
2275 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2276 if (!tcp_can_collapse(sk, skb))
2277 break;
2278
2279 space -= skb->len;
2280
2281 if (first) {
2282 first = false;
2283 continue;
2284 }
2285
2286 if (space < 0)
2287 break;
2288 /* Punt if not enough space exists in the first SKB for
2289 * the data in the second
2290 */
2291 if (skb->len > skb_availroom(to))
2292 break;
2293
2294 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2295 break;
2296
2297 tcp_collapse_retrans(sk, to);
2298 }
2299 }
2300
2301 /* This retransmits one SKB. Policy decisions and retransmit queue
2302 * state updates are done by the caller. Returns non-zero if an
2303 * error occurred which prevented the send.
2304 */
2305 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2306 {
2307 struct tcp_sock *tp = tcp_sk(sk);
2308 struct inet_connection_sock *icsk = inet_csk(sk);
2309 unsigned int cur_mss;
2310
2311 /* Inconslusive MTU probe */
2312 if (icsk->icsk_mtup.probe_size) {
2313 icsk->icsk_mtup.probe_size = 0;
2314 }
2315
2316 /* Do not sent more than we queued. 1/4 is reserved for possible
2317 * copying overhead: fragmentation, tunneling, mangling etc.
2318 */
2319 if (atomic_read(&sk->sk_wmem_alloc) >
2320 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2321 return -EAGAIN;
2322
2323 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2324 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2325 BUG();
2326 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2327 return -ENOMEM;
2328 }
2329
2330 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2331 return -EHOSTUNREACH; /* Routing failure or similar. */
2332
2333 cur_mss = tcp_current_mss(sk);
2334
2335 /* If receiver has shrunk his window, and skb is out of
2336 * new window, do not retransmit it. The exception is the
2337 * case, when window is shrunk to zero. In this case
2338 * our retransmit serves as a zero window probe.
2339 */
2340 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2341 TCP_SKB_CB(skb)->seq != tp->snd_una)
2342 return -EAGAIN;
2343
2344 if (skb->len > cur_mss) {
2345 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2346 return -ENOMEM; /* We'll try again later. */
2347 } else {
2348 int oldpcount = tcp_skb_pcount(skb);
2349
2350 if (unlikely(oldpcount > 1)) {
2351 if (skb_unclone(skb, GFP_ATOMIC))
2352 return -ENOMEM;
2353 tcp_init_tso_segs(sk, skb, cur_mss);
2354 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2355 }
2356 }
2357
2358 tcp_retrans_try_collapse(sk, skb, cur_mss);
2359
2360 /* Make a copy, if the first transmission SKB clone we made
2361 * is still in somebody's hands, else make a clone.
2362 */
2363 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2364
2365 /* make sure skb->data is aligned on arches that require it
2366 * and check if ack-trimming & collapsing extended the headroom
2367 * beyond what csum_start can cover.
2368 */
2369 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2370 skb_headroom(skb) >= 0xFFFF)) {
2371 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2372 GFP_ATOMIC);
2373 return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2374 -ENOBUFS;
2375 } else {
2376 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2377 }
2378 }
2379
2380 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2381 {
2382 struct tcp_sock *tp = tcp_sk(sk);
2383 int err = __tcp_retransmit_skb(sk, skb);
2384
2385 if (err == 0) {
2386 /* Update global TCP statistics. */
2387 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2388
2389 tp->total_retrans++;
2390
2391 #if FASTRETRANS_DEBUG > 0
2392 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2393 net_dbg_ratelimited("retrans_out leaked\n");
2394 }
2395 #endif
2396 if (!tp->retrans_out)
2397 tp->lost_retrans_low = tp->snd_nxt;
2398 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2399 tp->retrans_out += tcp_skb_pcount(skb);
2400
2401 /* Save stamp of the first retransmit. */
2402 if (!tp->retrans_stamp)
2403 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2404
2405 tp->undo_retrans += tcp_skb_pcount(skb);
2406
2407 /* snd_nxt is stored to detect loss of retransmitted segment,
2408 * see tcp_input.c tcp_sacktag_write_queue().
2409 */
2410 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2411 } else {
2412 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2413 }
2414 return err;
2415 }
2416
2417 /* Check if we forward retransmits are possible in the current
2418 * window/congestion state.
2419 */
2420 static bool tcp_can_forward_retransmit(struct sock *sk)
2421 {
2422 const struct inet_connection_sock *icsk = inet_csk(sk);
2423 const struct tcp_sock *tp = tcp_sk(sk);
2424
2425 /* Forward retransmissions are possible only during Recovery. */
2426 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2427 return false;
2428
2429 /* No forward retransmissions in Reno are possible. */
2430 if (tcp_is_reno(tp))
2431 return false;
2432
2433 /* Yeah, we have to make difficult choice between forward transmission
2434 * and retransmission... Both ways have their merits...
2435 *
2436 * For now we do not retransmit anything, while we have some new
2437 * segments to send. In the other cases, follow rule 3 for
2438 * NextSeg() specified in RFC3517.
2439 */
2440
2441 if (tcp_may_send_now(sk))
2442 return false;
2443
2444 return true;
2445 }
2446
2447 /* This gets called after a retransmit timeout, and the initially
2448 * retransmitted data is acknowledged. It tries to continue
2449 * resending the rest of the retransmit queue, until either
2450 * we've sent it all or the congestion window limit is reached.
2451 * If doing SACK, the first ACK which comes back for a timeout
2452 * based retransmit packet might feed us FACK information again.
2453 * If so, we use it to avoid unnecessarily retransmissions.
2454 */
2455 void tcp_xmit_retransmit_queue(struct sock *sk)
2456 {
2457 const struct inet_connection_sock *icsk = inet_csk(sk);
2458 struct tcp_sock *tp = tcp_sk(sk);
2459 struct sk_buff *skb;
2460 struct sk_buff *hole = NULL;
2461 u32 last_lost;
2462 int mib_idx;
2463 int fwd_rexmitting = 0;
2464
2465 if (!tp->packets_out)
2466 return;
2467
2468 if (!tp->lost_out)
2469 tp->retransmit_high = tp->snd_una;
2470
2471 if (tp->retransmit_skb_hint) {
2472 skb = tp->retransmit_skb_hint;
2473 last_lost = TCP_SKB_CB(skb)->end_seq;
2474 if (after(last_lost, tp->retransmit_high))
2475 last_lost = tp->retransmit_high;
2476 } else {
2477 skb = tcp_write_queue_head(sk);
2478 last_lost = tp->snd_una;
2479 }
2480
2481 tcp_for_write_queue_from(skb, sk) {
2482 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2483
2484 if (skb == tcp_send_head(sk))
2485 break;
2486 /* we could do better than to assign each time */
2487 if (hole == NULL)
2488 tp->retransmit_skb_hint = skb;
2489
2490 /* Assume this retransmit will generate
2491 * only one packet for congestion window
2492 * calculation purposes. This works because
2493 * tcp_retransmit_skb() will chop up the
2494 * packet to be MSS sized and all the
2495 * packet counting works out.
2496 */
2497 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2498 return;
2499
2500 if (fwd_rexmitting) {
2501 begin_fwd:
2502 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2503 break;
2504 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2505
2506 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2507 tp->retransmit_high = last_lost;
2508 if (!tcp_can_forward_retransmit(sk))
2509 break;
2510 /* Backtrack if necessary to non-L'ed skb */
2511 if (hole != NULL) {
2512 skb = hole;
2513 hole = NULL;
2514 }
2515 fwd_rexmitting = 1;
2516 goto begin_fwd;
2517
2518 } else if (!(sacked & TCPCB_LOST)) {
2519 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2520 hole = skb;
2521 continue;
2522
2523 } else {
2524 last_lost = TCP_SKB_CB(skb)->end_seq;
2525 if (icsk->icsk_ca_state != TCP_CA_Loss)
2526 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2527 else
2528 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2529 }
2530
2531 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2532 continue;
2533
2534 if (tcp_retransmit_skb(sk, skb))
2535 return;
2536
2537 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2538
2539 if (tcp_in_cwnd_reduction(sk))
2540 tp->prr_out += tcp_skb_pcount(skb);
2541
2542 if (skb == tcp_write_queue_head(sk))
2543 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2544 inet_csk(sk)->icsk_rto,
2545 TCP_RTO_MAX);
2546 }
2547 }
2548
2549 /* Send a fin. The caller locks the socket for us. This cannot be
2550 * allowed to fail queueing a FIN frame under any circumstances.
2551 */
2552 void tcp_send_fin(struct sock *sk)
2553 {
2554 struct tcp_sock *tp = tcp_sk(sk);
2555 struct sk_buff *skb = tcp_write_queue_tail(sk);
2556 int mss_now;
2557
2558 /* Optimization, tack on the FIN if we have a queue of
2559 * unsent frames. But be careful about outgoing SACKS
2560 * and IP options.
2561 */
2562 mss_now = tcp_current_mss(sk);
2563
2564 if (tcp_send_head(sk) != NULL) {
2565 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2566 TCP_SKB_CB(skb)->end_seq++;
2567 tp->write_seq++;
2568 } else {
2569 /* Socket is locked, keep trying until memory is available. */
2570 for (;;) {
2571 skb = alloc_skb_fclone(MAX_TCP_HEADER,
2572 sk->sk_allocation);
2573 if (skb)
2574 break;
2575 yield();
2576 }
2577
2578 /* Reserve space for headers and prepare control bits. */
2579 skb_reserve(skb, MAX_TCP_HEADER);
2580 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2581 tcp_init_nondata_skb(skb, tp->write_seq,
2582 TCPHDR_ACK | TCPHDR_FIN);
2583 tcp_queue_skb(sk, skb);
2584 }
2585 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2586 }
2587
2588 /* We get here when a process closes a file descriptor (either due to
2589 * an explicit close() or as a byproduct of exit()'ing) and there
2590 * was unread data in the receive queue. This behavior is recommended
2591 * by RFC 2525, section 2.17. -DaveM
2592 */
2593 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2594 {
2595 struct sk_buff *skb;
2596
2597 /* NOTE: No TCP options attached and we never retransmit this. */
2598 skb = alloc_skb(MAX_TCP_HEADER, priority);
2599 if (!skb) {
2600 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2601 return;
2602 }
2603
2604 /* Reserve space for headers and prepare control bits. */
2605 skb_reserve(skb, MAX_TCP_HEADER);
2606 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2607 TCPHDR_ACK | TCPHDR_RST);
2608 /* Send it off. */
2609 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2610 if (tcp_transmit_skb(sk, skb, 0, priority))
2611 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2612
2613 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2614 }
2615
2616 /* Send a crossed SYN-ACK during socket establishment.
2617 * WARNING: This routine must only be called when we have already sent
2618 * a SYN packet that crossed the incoming SYN that caused this routine
2619 * to get called. If this assumption fails then the initial rcv_wnd
2620 * and rcv_wscale values will not be correct.
2621 */
2622 int tcp_send_synack(struct sock *sk)
2623 {
2624 struct sk_buff *skb;
2625
2626 skb = tcp_write_queue_head(sk);
2627 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2628 pr_debug("%s: wrong queue state\n", __func__);
2629 return -EFAULT;
2630 }
2631 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2632 if (skb_cloned(skb)) {
2633 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2634 if (nskb == NULL)
2635 return -ENOMEM;
2636 tcp_unlink_write_queue(skb, sk);
2637 skb_header_release(nskb);
2638 __tcp_add_write_queue_head(sk, nskb);
2639 sk_wmem_free_skb(sk, skb);
2640 sk->sk_wmem_queued += nskb->truesize;
2641 sk_mem_charge(sk, nskb->truesize);
2642 skb = nskb;
2643 }
2644
2645 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2646 TCP_ECN_send_synack(tcp_sk(sk), skb);
2647 }
2648 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2649 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2650 }
2651
2652 /**
2653 * tcp_make_synack - Prepare a SYN-ACK.
2654 * sk: listener socket
2655 * dst: dst entry attached to the SYNACK
2656 * req: request_sock pointer
2657 *
2658 * Allocate one skb and build a SYNACK packet.
2659 * @dst is consumed : Caller should not use it again.
2660 */
2661 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2662 struct request_sock *req,
2663 struct tcp_fastopen_cookie *foc)
2664 {
2665 struct tcp_out_options opts;
2666 struct inet_request_sock *ireq = inet_rsk(req);
2667 struct tcp_sock *tp = tcp_sk(sk);
2668 struct tcphdr *th;
2669 struct sk_buff *skb;
2670 struct tcp_md5sig_key *md5;
2671 int tcp_header_size;
2672 int mss;
2673
2674 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
2675 if (unlikely(!skb)) {
2676 dst_release(dst);
2677 return NULL;
2678 }
2679 /* Reserve space for headers. */
2680 skb_reserve(skb, MAX_TCP_HEADER);
2681
2682 skb_dst_set(skb, dst);
2683 security_skb_owned_by(skb, sk);
2684
2685 mss = dst_metric_advmss(dst);
2686 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2687 mss = tp->rx_opt.user_mss;
2688
2689 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2690 __u8 rcv_wscale;
2691 /* Set this up on the first call only */
2692 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2693
2694 /* limit the window selection if the user enforce a smaller rx buffer */
2695 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2696 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2697 req->window_clamp = tcp_full_space(sk);
2698
2699 /* tcp_full_space because it is guaranteed to be the first packet */
2700 tcp_select_initial_window(tcp_full_space(sk),
2701 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2702 &req->rcv_wnd,
2703 &req->window_clamp,
2704 ireq->wscale_ok,
2705 &rcv_wscale,
2706 dst_metric(dst, RTAX_INITRWND));
2707 ireq->rcv_wscale = rcv_wscale;
2708 }
2709
2710 memset(&opts, 0, sizeof(opts));
2711 #ifdef CONFIG_SYN_COOKIES
2712 if (unlikely(req->cookie_ts))
2713 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2714 else
2715 #endif
2716 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2717 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2718 foc) + sizeof(*th);
2719
2720 skb_push(skb, tcp_header_size);
2721 skb_reset_transport_header(skb);
2722
2723 th = tcp_hdr(skb);
2724 memset(th, 0, sizeof(struct tcphdr));
2725 th->syn = 1;
2726 th->ack = 1;
2727 TCP_ECN_make_synack(req, th);
2728 th->source = htons(ireq->ir_num);
2729 th->dest = ireq->ir_rmt_port;
2730 /* Setting of flags are superfluous here for callers (and ECE is
2731 * not even correctly set)
2732 */
2733 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2734 TCPHDR_SYN | TCPHDR_ACK);
2735
2736 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2737 /* XXX data is queued and acked as is. No buffer/window check */
2738 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2739
2740 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2741 th->window = htons(min(req->rcv_wnd, 65535U));
2742 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2743 th->doff = (tcp_header_size >> 2);
2744 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2745
2746 #ifdef CONFIG_TCP_MD5SIG
2747 /* Okay, we have all we need - do the md5 hash if needed */
2748 if (md5) {
2749 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2750 md5, NULL, req, skb);
2751 }
2752 #endif
2753
2754 return skb;
2755 }
2756 EXPORT_SYMBOL(tcp_make_synack);
2757
2758 /* Do all connect socket setups that can be done AF independent. */
2759 void tcp_connect_init(struct sock *sk)
2760 {
2761 const struct dst_entry *dst = __sk_dst_get(sk);
2762 struct tcp_sock *tp = tcp_sk(sk);
2763 __u8 rcv_wscale;
2764
2765 /* We'll fix this up when we get a response from the other end.
2766 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2767 */
2768 tp->tcp_header_len = sizeof(struct tcphdr) +
2769 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2770
2771 #ifdef CONFIG_TCP_MD5SIG
2772 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2773 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2774 #endif
2775
2776 /* If user gave his TCP_MAXSEG, record it to clamp */
2777 if (tp->rx_opt.user_mss)
2778 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2779 tp->max_window = 0;
2780 tcp_mtup_init(sk);
2781 tcp_sync_mss(sk, dst_mtu(dst));
2782
2783 if (!tp->window_clamp)
2784 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2785 tp->advmss = dst_metric_advmss(dst);
2786 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2787 tp->advmss = tp->rx_opt.user_mss;
2788
2789 tcp_initialize_rcv_mss(sk);
2790
2791 /* limit the window selection if the user enforce a smaller rx buffer */
2792 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2793 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2794 tp->window_clamp = tcp_full_space(sk);
2795
2796 tcp_select_initial_window(tcp_full_space(sk),
2797 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2798 &tp->rcv_wnd,
2799 &tp->window_clamp,
2800 sysctl_tcp_window_scaling,
2801 &rcv_wscale,
2802 dst_metric(dst, RTAX_INITRWND));
2803
2804 tp->rx_opt.rcv_wscale = rcv_wscale;
2805 tp->rcv_ssthresh = tp->rcv_wnd;
2806
2807 sk->sk_err = 0;
2808 sock_reset_flag(sk, SOCK_DONE);
2809 tp->snd_wnd = 0;
2810 tcp_init_wl(tp, 0);
2811 tp->snd_una = tp->write_seq;
2812 tp->snd_sml = tp->write_seq;
2813 tp->snd_up = tp->write_seq;
2814 tp->snd_nxt = tp->write_seq;
2815
2816 if (likely(!tp->repair))
2817 tp->rcv_nxt = 0;
2818 else
2819 tp->rcv_tstamp = tcp_time_stamp;
2820 tp->rcv_wup = tp->rcv_nxt;
2821 tp->copied_seq = tp->rcv_nxt;
2822
2823 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2824 inet_csk(sk)->icsk_retransmits = 0;
2825 tcp_clear_retrans(tp);
2826 }
2827
2828 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2829 {
2830 struct tcp_sock *tp = tcp_sk(sk);
2831 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2832
2833 tcb->end_seq += skb->len;
2834 skb_header_release(skb);
2835 __tcp_add_write_queue_tail(sk, skb);
2836 sk->sk_wmem_queued += skb->truesize;
2837 sk_mem_charge(sk, skb->truesize);
2838 tp->write_seq = tcb->end_seq;
2839 tp->packets_out += tcp_skb_pcount(skb);
2840 }
2841
2842 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2843 * queue a data-only packet after the regular SYN, such that regular SYNs
2844 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2845 * only the SYN sequence, the data are retransmitted in the first ACK.
2846 * If cookie is not cached or other error occurs, falls back to send a
2847 * regular SYN with Fast Open cookie request option.
2848 */
2849 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2850 {
2851 struct tcp_sock *tp = tcp_sk(sk);
2852 struct tcp_fastopen_request *fo = tp->fastopen_req;
2853 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2854 struct sk_buff *syn_data = NULL, *data;
2855 unsigned long last_syn_loss = 0;
2856
2857 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
2858 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2859 &syn_loss, &last_syn_loss);
2860 /* Recurring FO SYN losses: revert to regular handshake temporarily */
2861 if (syn_loss > 1 &&
2862 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2863 fo->cookie.len = -1;
2864 goto fallback;
2865 }
2866
2867 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2868 fo->cookie.len = -1;
2869 else if (fo->cookie.len <= 0)
2870 goto fallback;
2871
2872 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2873 * user-MSS. Reserve maximum option space for middleboxes that add
2874 * private TCP options. The cost is reduced data space in SYN :(
2875 */
2876 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2877 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2878 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2879 MAX_TCP_OPTION_SPACE;
2880
2881 syn_data = skb_copy_expand(syn, skb_headroom(syn), space,
2882 sk->sk_allocation);
2883 if (syn_data == NULL)
2884 goto fallback;
2885
2886 for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2887 struct iovec *iov = &fo->data->msg_iov[i];
2888 unsigned char __user *from = iov->iov_base;
2889 int len = iov->iov_len;
2890
2891 if (syn_data->len + len > space)
2892 len = space - syn_data->len;
2893 else if (i + 1 == iovlen)
2894 /* No more data pending in inet_wait_for_connect() */
2895 fo->data = NULL;
2896
2897 if (skb_add_data(syn_data, from, len))
2898 goto fallback;
2899 }
2900
2901 /* Queue a data-only packet after the regular SYN for retransmission */
2902 data = pskb_copy(syn_data, sk->sk_allocation);
2903 if (data == NULL)
2904 goto fallback;
2905 TCP_SKB_CB(data)->seq++;
2906 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2907 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2908 tcp_connect_queue_skb(sk, data);
2909 fo->copied = data->len;
2910
2911 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2912 tp->syn_data = (fo->copied > 0);
2913 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
2914 goto done;
2915 }
2916 syn_data = NULL;
2917
2918 fallback:
2919 /* Send a regular SYN with Fast Open cookie request option */
2920 if (fo->cookie.len > 0)
2921 fo->cookie.len = 0;
2922 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2923 if (err)
2924 tp->syn_fastopen = 0;
2925 kfree_skb(syn_data);
2926 done:
2927 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
2928 return err;
2929 }
2930
2931 /* Build a SYN and send it off. */
2932 int tcp_connect(struct sock *sk)
2933 {
2934 struct tcp_sock *tp = tcp_sk(sk);
2935 struct sk_buff *buff;
2936 int err;
2937
2938 tcp_connect_init(sk);
2939
2940 if (unlikely(tp->repair)) {
2941 tcp_finish_connect(sk, NULL);
2942 return 0;
2943 }
2944
2945 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2946 if (unlikely(buff == NULL))
2947 return -ENOBUFS;
2948
2949 /* Reserve space for headers. */
2950 skb_reserve(buff, MAX_TCP_HEADER);
2951
2952 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
2953 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
2954 tcp_connect_queue_skb(sk, buff);
2955 TCP_ECN_send_syn(sk, buff);
2956
2957 /* Send off SYN; include data in Fast Open. */
2958 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
2959 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
2960 if (err == -ECONNREFUSED)
2961 return err;
2962
2963 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2964 * in order to make this packet get counted in tcpOutSegs.
2965 */
2966 tp->snd_nxt = tp->write_seq;
2967 tp->pushed_seq = tp->write_seq;
2968 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2969
2970 /* Timer for repeating the SYN until an answer. */
2971 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2972 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2973 return 0;
2974 }
2975 EXPORT_SYMBOL(tcp_connect);
2976
2977 /* Send out a delayed ack, the caller does the policy checking
2978 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2979 * for details.
2980 */
2981 void tcp_send_delayed_ack(struct sock *sk)
2982 {
2983 struct inet_connection_sock *icsk = inet_csk(sk);
2984 int ato = icsk->icsk_ack.ato;
2985 unsigned long timeout;
2986
2987 if (ato > TCP_DELACK_MIN) {
2988 const struct tcp_sock *tp = tcp_sk(sk);
2989 int max_ato = HZ / 2;
2990
2991 if (icsk->icsk_ack.pingpong ||
2992 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2993 max_ato = TCP_DELACK_MAX;
2994
2995 /* Slow path, intersegment interval is "high". */
2996
2997 /* If some rtt estimate is known, use it to bound delayed ack.
2998 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2999 * directly.
3000 */
3001 if (tp->srtt) {
3002 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
3003
3004 if (rtt < max_ato)
3005 max_ato = rtt;
3006 }
3007
3008 ato = min(ato, max_ato);
3009 }
3010
3011 /* Stay within the limit we were given */
3012 timeout = jiffies + ato;
3013
3014 /* Use new timeout only if there wasn't a older one earlier. */
3015 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3016 /* If delack timer was blocked or is about to expire,
3017 * send ACK now.
3018 */
3019 if (icsk->icsk_ack.blocked ||
3020 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3021 tcp_send_ack(sk);
3022 return;
3023 }
3024
3025 if (!time_before(timeout, icsk->icsk_ack.timeout))
3026 timeout = icsk->icsk_ack.timeout;
3027 }
3028 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3029 icsk->icsk_ack.timeout = timeout;
3030 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3031 }
3032
3033 /* This routine sends an ack and also updates the window. */
3034 void tcp_send_ack(struct sock *sk)
3035 {
3036 struct sk_buff *buff;
3037
3038 /* If we have been reset, we may not send again. */
3039 if (sk->sk_state == TCP_CLOSE)
3040 return;
3041
3042 /* We are not putting this on the write queue, so
3043 * tcp_transmit_skb() will set the ownership to this
3044 * sock.
3045 */
3046 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3047 if (buff == NULL) {
3048 inet_csk_schedule_ack(sk);
3049 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3050 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3051 TCP_DELACK_MAX, TCP_RTO_MAX);
3052 return;
3053 }
3054
3055 /* Reserve space for headers and prepare control bits. */
3056 skb_reserve(buff, MAX_TCP_HEADER);
3057 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3058
3059 /* Send it off, this clears delayed acks for us. */
3060 TCP_SKB_CB(buff)->when = tcp_time_stamp;
3061 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3062 }
3063
3064 /* This routine sends a packet with an out of date sequence
3065 * number. It assumes the other end will try to ack it.
3066 *
3067 * Question: what should we make while urgent mode?
3068 * 4.4BSD forces sending single byte of data. We cannot send
3069 * out of window data, because we have SND.NXT==SND.MAX...
3070 *
3071 * Current solution: to send TWO zero-length segments in urgent mode:
3072 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3073 * out-of-date with SND.UNA-1 to probe window.
3074 */
3075 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3076 {
3077 struct tcp_sock *tp = tcp_sk(sk);
3078 struct sk_buff *skb;
3079
3080 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3081 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3082 if (skb == NULL)
3083 return -1;
3084
3085 /* Reserve space for headers and set control bits. */
3086 skb_reserve(skb, MAX_TCP_HEADER);
3087 /* Use a previous sequence. This should cause the other
3088 * end to send an ack. Don't queue or clone SKB, just
3089 * send it.
3090 */
3091 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3092 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3093 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3094 }
3095
3096 void tcp_send_window_probe(struct sock *sk)
3097 {
3098 if (sk->sk_state == TCP_ESTABLISHED) {
3099 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3100 tcp_xmit_probe_skb(sk, 0);
3101 }
3102 }
3103
3104 /* Initiate keepalive or window probe from timer. */
3105 int tcp_write_wakeup(struct sock *sk)
3106 {
3107 struct tcp_sock *tp = tcp_sk(sk);
3108 struct sk_buff *skb;
3109
3110 if (sk->sk_state == TCP_CLOSE)
3111 return -1;
3112
3113 if ((skb = tcp_send_head(sk)) != NULL &&
3114 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3115 int err;
3116 unsigned int mss = tcp_current_mss(sk);
3117 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3118
3119 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3120 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3121
3122 /* We are probing the opening of a window
3123 * but the window size is != 0
3124 * must have been a result SWS avoidance ( sender )
3125 */
3126 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3127 skb->len > mss) {
3128 seg_size = min(seg_size, mss);
3129 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3130 if (tcp_fragment(sk, skb, seg_size, mss))
3131 return -1;
3132 } else if (!tcp_skb_pcount(skb))
3133 tcp_set_skb_tso_segs(sk, skb, mss);
3134
3135 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3136 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3137 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3138 if (!err)
3139 tcp_event_new_data_sent(sk, skb);
3140 return err;
3141 } else {
3142 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3143 tcp_xmit_probe_skb(sk, 1);
3144 return tcp_xmit_probe_skb(sk, 0);
3145 }
3146 }
3147
3148 /* A window probe timeout has occurred. If window is not closed send
3149 * a partial packet else a zero probe.
3150 */
3151 void tcp_send_probe0(struct sock *sk)
3152 {
3153 struct inet_connection_sock *icsk = inet_csk(sk);
3154 struct tcp_sock *tp = tcp_sk(sk);
3155 int err;
3156
3157 err = tcp_write_wakeup(sk);
3158
3159 if (tp->packets_out || !tcp_send_head(sk)) {
3160 /* Cancel probe timer, if it is not required. */
3161 icsk->icsk_probes_out = 0;
3162 icsk->icsk_backoff = 0;
3163 return;
3164 }
3165
3166 if (err <= 0) {
3167 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3168 icsk->icsk_backoff++;
3169 icsk->icsk_probes_out++;
3170 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3171 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3172 TCP_RTO_MAX);
3173 } else {
3174 /* If packet was not sent due to local congestion,
3175 * do not backoff and do not remember icsk_probes_out.
3176 * Let local senders to fight for local resources.
3177 *
3178 * Use accumulated backoff yet.
3179 */
3180 if (!icsk->icsk_probes_out)
3181 icsk->icsk_probes_out = 1;
3182 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3183 min(icsk->icsk_rto << icsk->icsk_backoff,
3184 TCP_RESOURCE_PROBE_INTERVAL),
3185 TCP_RTO_MAX);
3186 }
3187 }
This page took 0.116323 seconds and 6 git commands to generate.