Merge branch 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelv...
[deliverable/linux.git] / net / ipv4 / tcp_output.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21 /*
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
26 *
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
34 *
35 */
36
37 #define pr_fmt(fmt) "TCP: " fmt
38
39 #include <net/tcp.h>
40
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse __read_mostly = 1;
47
48 /* People can turn this on to work with those rare, broken TCPs that
49 * interpret the window field as a signed quantity.
50 */
51 int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
52
53 /* Default TSQ limit of two TSO segments */
54 int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
55
56 /* This limits the percentage of the congestion window which we
57 * will allow a single TSO frame to consume. Building TSO frames
58 * which are too large can cause TCP streams to be bursty.
59 */
60 int sysctl_tcp_tso_win_divisor __read_mostly = 3;
61
62 int sysctl_tcp_mtu_probing __read_mostly = 0;
63 int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
64
65 /* By default, RFC2861 behavior. */
66 int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
67
68 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
69 int push_one, gfp_t gfp);
70
71 /* Account for new data that has been sent to the network. */
72 static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
73 {
74 struct inet_connection_sock *icsk = inet_csk(sk);
75 struct tcp_sock *tp = tcp_sk(sk);
76 unsigned int prior_packets = tp->packets_out;
77
78 tcp_advance_send_head(sk, skb);
79 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
80
81 tp->packets_out += tcp_skb_pcount(skb);
82 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
83 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
84 tcp_rearm_rto(sk);
85 }
86 }
87
88 /* SND.NXT, if window was not shrunk.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
93 */
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 const struct tcp_sock *tp = tcp_sk(sk);
97
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt))
99 return tp->snd_nxt;
100 else
101 return tcp_wnd_end(tp);
102 }
103
104 /* Calculate mss to advertise in SYN segment.
105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
106 *
107 * 1. It is independent of path mtu.
108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
110 * attached devices, because some buggy hosts are confused by
111 * large MSS.
112 * 4. We do not make 3, we advertise MSS, calculated from first
113 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
114 * This may be overridden via information stored in routing table.
115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
116 * probably even Jumbo".
117 */
118 static __u16 tcp_advertise_mss(struct sock *sk)
119 {
120 struct tcp_sock *tp = tcp_sk(sk);
121 const struct dst_entry *dst = __sk_dst_get(sk);
122 int mss = tp->advmss;
123
124 if (dst) {
125 unsigned int metric = dst_metric_advmss(dst);
126
127 if (metric < mss) {
128 mss = metric;
129 tp->advmss = mss;
130 }
131 }
132
133 return (__u16)mss;
134 }
135
136 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
137 * This is the first part of cwnd validation mechanism. */
138 static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
139 {
140 struct tcp_sock *tp = tcp_sk(sk);
141 s32 delta = tcp_time_stamp - tp->lsndtime;
142 u32 restart_cwnd = tcp_init_cwnd(tp, dst);
143 u32 cwnd = tp->snd_cwnd;
144
145 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
146
147 tp->snd_ssthresh = tcp_current_ssthresh(sk);
148 restart_cwnd = min(restart_cwnd, cwnd);
149
150 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
151 cwnd >>= 1;
152 tp->snd_cwnd = max(cwnd, restart_cwnd);
153 tp->snd_cwnd_stamp = tcp_time_stamp;
154 tp->snd_cwnd_used = 0;
155 }
156
157 /* Congestion state accounting after a packet has been sent. */
158 static void tcp_event_data_sent(struct tcp_sock *tp,
159 struct sock *sk)
160 {
161 struct inet_connection_sock *icsk = inet_csk(sk);
162 const u32 now = tcp_time_stamp;
163 const struct dst_entry *dst = __sk_dst_get(sk);
164
165 if (sysctl_tcp_slow_start_after_idle &&
166 (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
167 tcp_cwnd_restart(sk, __sk_dst_get(sk));
168
169 tp->lsndtime = now;
170
171 /* If it is a reply for ato after last received
172 * packet, enter pingpong mode.
173 */
174 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
175 (!dst || !dst_metric(dst, RTAX_QUICKACK)))
176 icsk->icsk_ack.pingpong = 1;
177 }
178
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
181 {
182 tcp_dec_quickack_mode(sk, pkts);
183 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
184 }
185
186
187 u32 tcp_default_init_rwnd(u32 mss)
188 {
189 /* Initial receive window should be twice of TCP_INIT_CWND to
190 * enable proper sending of new unsent data during fast recovery
191 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
192 * limit when mss is larger than 1460.
193 */
194 u32 init_rwnd = TCP_INIT_CWND * 2;
195
196 if (mss > 1460)
197 init_rwnd = max((1460 * init_rwnd) / mss, 2U);
198 return init_rwnd;
199 }
200
201 /* Determine a window scaling and initial window to offer.
202 * Based on the assumption that the given amount of space
203 * will be offered. Store the results in the tp structure.
204 * NOTE: for smooth operation initial space offering should
205 * be a multiple of mss if possible. We assume here that mss >= 1.
206 * This MUST be enforced by all callers.
207 */
208 void tcp_select_initial_window(int __space, __u32 mss,
209 __u32 *rcv_wnd, __u32 *window_clamp,
210 int wscale_ok, __u8 *rcv_wscale,
211 __u32 init_rcv_wnd)
212 {
213 unsigned int space = (__space < 0 ? 0 : __space);
214
215 /* If no clamp set the clamp to the max possible scaled window */
216 if (*window_clamp == 0)
217 (*window_clamp) = (65535 << 14);
218 space = min(*window_clamp, space);
219
220 /* Quantize space offering to a multiple of mss if possible. */
221 if (space > mss)
222 space = (space / mss) * mss;
223
224 /* NOTE: offering an initial window larger than 32767
225 * will break some buggy TCP stacks. If the admin tells us
226 * it is likely we could be speaking with such a buggy stack
227 * we will truncate our initial window offering to 32K-1
228 * unless the remote has sent us a window scaling option,
229 * which we interpret as a sign the remote TCP is not
230 * misinterpreting the window field as a signed quantity.
231 */
232 if (sysctl_tcp_workaround_signed_windows)
233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 else
235 (*rcv_wnd) = space;
236
237 (*rcv_wscale) = 0;
238 if (wscale_ok) {
239 /* Set window scaling on max possible window
240 * See RFC1323 for an explanation of the limit to 14
241 */
242 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
243 space = min_t(u32, space, *window_clamp);
244 while (space > 65535 && (*rcv_wscale) < 14) {
245 space >>= 1;
246 (*rcv_wscale)++;
247 }
248 }
249
250 if (mss > (1 << *rcv_wscale)) {
251 if (!init_rcv_wnd) /* Use default unless specified otherwise */
252 init_rcv_wnd = tcp_default_init_rwnd(mss);
253 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
254 }
255
256 /* Set the clamp no higher than max representable value */
257 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
258 }
259 EXPORT_SYMBOL(tcp_select_initial_window);
260
261 /* Chose a new window to advertise, update state in tcp_sock for the
262 * socket, and return result with RFC1323 scaling applied. The return
263 * value can be stuffed directly into th->window for an outgoing
264 * frame.
265 */
266 static u16 tcp_select_window(struct sock *sk)
267 {
268 struct tcp_sock *tp = tcp_sk(sk);
269 u32 cur_win = tcp_receive_window(tp);
270 u32 new_win = __tcp_select_window(sk);
271
272 /* Never shrink the offered window */
273 if (new_win < cur_win) {
274 /* Danger Will Robinson!
275 * Don't update rcv_wup/rcv_wnd here or else
276 * we will not be able to advertise a zero
277 * window in time. --DaveM
278 *
279 * Relax Will Robinson.
280 */
281 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
282 }
283 tp->rcv_wnd = new_win;
284 tp->rcv_wup = tp->rcv_nxt;
285
286 /* Make sure we do not exceed the maximum possible
287 * scaled window.
288 */
289 if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
290 new_win = min(new_win, MAX_TCP_WINDOW);
291 else
292 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
293
294 /* RFC1323 scaling applied */
295 new_win >>= tp->rx_opt.rcv_wscale;
296
297 /* If we advertise zero window, disable fast path. */
298 if (new_win == 0)
299 tp->pred_flags = 0;
300
301 return new_win;
302 }
303
304 /* Packet ECN state for a SYN-ACK */
305 static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
306 {
307 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
308 if (!(tp->ecn_flags & TCP_ECN_OK))
309 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
310 }
311
312 /* Packet ECN state for a SYN. */
313 static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
314 {
315 struct tcp_sock *tp = tcp_sk(sk);
316
317 tp->ecn_flags = 0;
318 if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
319 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
320 tp->ecn_flags = TCP_ECN_OK;
321 }
322 }
323
324 static __inline__ void
325 TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
326 {
327 if (inet_rsk(req)->ecn_ok)
328 th->ece = 1;
329 }
330
331 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
332 * be sent.
333 */
334 static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
335 int tcp_header_len)
336 {
337 struct tcp_sock *tp = tcp_sk(sk);
338
339 if (tp->ecn_flags & TCP_ECN_OK) {
340 /* Not-retransmitted data segment: set ECT and inject CWR. */
341 if (skb->len != tcp_header_len &&
342 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
343 INET_ECN_xmit(sk);
344 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
345 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
346 tcp_hdr(skb)->cwr = 1;
347 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
348 }
349 } else {
350 /* ACK or retransmitted segment: clear ECT|CE */
351 INET_ECN_dontxmit(sk);
352 }
353 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
354 tcp_hdr(skb)->ece = 1;
355 }
356 }
357
358 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
359 * auto increment end seqno.
360 */
361 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
362 {
363 skb->ip_summed = CHECKSUM_PARTIAL;
364 skb->csum = 0;
365
366 TCP_SKB_CB(skb)->tcp_flags = flags;
367 TCP_SKB_CB(skb)->sacked = 0;
368
369 skb_shinfo(skb)->gso_segs = 1;
370 skb_shinfo(skb)->gso_size = 0;
371 skb_shinfo(skb)->gso_type = 0;
372
373 TCP_SKB_CB(skb)->seq = seq;
374 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
375 seq++;
376 TCP_SKB_CB(skb)->end_seq = seq;
377 }
378
379 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
380 {
381 return tp->snd_una != tp->snd_up;
382 }
383
384 #define OPTION_SACK_ADVERTISE (1 << 0)
385 #define OPTION_TS (1 << 1)
386 #define OPTION_MD5 (1 << 2)
387 #define OPTION_WSCALE (1 << 3)
388 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
389
390 struct tcp_out_options {
391 u16 options; /* bit field of OPTION_* */
392 u16 mss; /* 0 to disable */
393 u8 ws; /* window scale, 0 to disable */
394 u8 num_sack_blocks; /* number of SACK blocks to include */
395 u8 hash_size; /* bytes in hash_location */
396 __u8 *hash_location; /* temporary pointer, overloaded */
397 __u32 tsval, tsecr; /* need to include OPTION_TS */
398 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
399 };
400
401 /* Write previously computed TCP options to the packet.
402 *
403 * Beware: Something in the Internet is very sensitive to the ordering of
404 * TCP options, we learned this through the hard way, so be careful here.
405 * Luckily we can at least blame others for their non-compliance but from
406 * inter-operatibility perspective it seems that we're somewhat stuck with
407 * the ordering which we have been using if we want to keep working with
408 * those broken things (not that it currently hurts anybody as there isn't
409 * particular reason why the ordering would need to be changed).
410 *
411 * At least SACK_PERM as the first option is known to lead to a disaster
412 * (but it may well be that other scenarios fail similarly).
413 */
414 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
415 struct tcp_out_options *opts)
416 {
417 u16 options = opts->options; /* mungable copy */
418
419 if (unlikely(OPTION_MD5 & options)) {
420 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
421 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
422 /* overload cookie hash location */
423 opts->hash_location = (__u8 *)ptr;
424 ptr += 4;
425 }
426
427 if (unlikely(opts->mss)) {
428 *ptr++ = htonl((TCPOPT_MSS << 24) |
429 (TCPOLEN_MSS << 16) |
430 opts->mss);
431 }
432
433 if (likely(OPTION_TS & options)) {
434 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
435 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
436 (TCPOLEN_SACK_PERM << 16) |
437 (TCPOPT_TIMESTAMP << 8) |
438 TCPOLEN_TIMESTAMP);
439 options &= ~OPTION_SACK_ADVERTISE;
440 } else {
441 *ptr++ = htonl((TCPOPT_NOP << 24) |
442 (TCPOPT_NOP << 16) |
443 (TCPOPT_TIMESTAMP << 8) |
444 TCPOLEN_TIMESTAMP);
445 }
446 *ptr++ = htonl(opts->tsval);
447 *ptr++ = htonl(opts->tsecr);
448 }
449
450 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
451 *ptr++ = htonl((TCPOPT_NOP << 24) |
452 (TCPOPT_NOP << 16) |
453 (TCPOPT_SACK_PERM << 8) |
454 TCPOLEN_SACK_PERM);
455 }
456
457 if (unlikely(OPTION_WSCALE & options)) {
458 *ptr++ = htonl((TCPOPT_NOP << 24) |
459 (TCPOPT_WINDOW << 16) |
460 (TCPOLEN_WINDOW << 8) |
461 opts->ws);
462 }
463
464 if (unlikely(opts->num_sack_blocks)) {
465 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
466 tp->duplicate_sack : tp->selective_acks;
467 int this_sack;
468
469 *ptr++ = htonl((TCPOPT_NOP << 24) |
470 (TCPOPT_NOP << 16) |
471 (TCPOPT_SACK << 8) |
472 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
473 TCPOLEN_SACK_PERBLOCK)));
474
475 for (this_sack = 0; this_sack < opts->num_sack_blocks;
476 ++this_sack) {
477 *ptr++ = htonl(sp[this_sack].start_seq);
478 *ptr++ = htonl(sp[this_sack].end_seq);
479 }
480
481 tp->rx_opt.dsack = 0;
482 }
483
484 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
485 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
486
487 *ptr++ = htonl((TCPOPT_EXP << 24) |
488 ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
489 TCPOPT_FASTOPEN_MAGIC);
490
491 memcpy(ptr, foc->val, foc->len);
492 if ((foc->len & 3) == 2) {
493 u8 *align = ((u8 *)ptr) + foc->len;
494 align[0] = align[1] = TCPOPT_NOP;
495 }
496 ptr += (foc->len + 3) >> 2;
497 }
498 }
499
500 /* Compute TCP options for SYN packets. This is not the final
501 * network wire format yet.
502 */
503 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
504 struct tcp_out_options *opts,
505 struct tcp_md5sig_key **md5)
506 {
507 struct tcp_sock *tp = tcp_sk(sk);
508 unsigned int remaining = MAX_TCP_OPTION_SPACE;
509 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
510
511 #ifdef CONFIG_TCP_MD5SIG
512 *md5 = tp->af_specific->md5_lookup(sk, sk);
513 if (*md5) {
514 opts->options |= OPTION_MD5;
515 remaining -= TCPOLEN_MD5SIG_ALIGNED;
516 }
517 #else
518 *md5 = NULL;
519 #endif
520
521 /* We always get an MSS option. The option bytes which will be seen in
522 * normal data packets should timestamps be used, must be in the MSS
523 * advertised. But we subtract them from tp->mss_cache so that
524 * calculations in tcp_sendmsg are simpler etc. So account for this
525 * fact here if necessary. If we don't do this correctly, as a
526 * receiver we won't recognize data packets as being full sized when we
527 * should, and thus we won't abide by the delayed ACK rules correctly.
528 * SACKs don't matter, we never delay an ACK when we have any of those
529 * going out. */
530 opts->mss = tcp_advertise_mss(sk);
531 remaining -= TCPOLEN_MSS_ALIGNED;
532
533 if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
534 opts->options |= OPTION_TS;
535 opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
536 opts->tsecr = tp->rx_opt.ts_recent;
537 remaining -= TCPOLEN_TSTAMP_ALIGNED;
538 }
539 if (likely(sysctl_tcp_window_scaling)) {
540 opts->ws = tp->rx_opt.rcv_wscale;
541 opts->options |= OPTION_WSCALE;
542 remaining -= TCPOLEN_WSCALE_ALIGNED;
543 }
544 if (likely(sysctl_tcp_sack)) {
545 opts->options |= OPTION_SACK_ADVERTISE;
546 if (unlikely(!(OPTION_TS & opts->options)))
547 remaining -= TCPOLEN_SACKPERM_ALIGNED;
548 }
549
550 if (fastopen && fastopen->cookie.len >= 0) {
551 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
552 need = (need + 3) & ~3U; /* Align to 32 bits */
553 if (remaining >= need) {
554 opts->options |= OPTION_FAST_OPEN_COOKIE;
555 opts->fastopen_cookie = &fastopen->cookie;
556 remaining -= need;
557 tp->syn_fastopen = 1;
558 }
559 }
560
561 return MAX_TCP_OPTION_SPACE - remaining;
562 }
563
564 /* Set up TCP options for SYN-ACKs. */
565 static unsigned int tcp_synack_options(struct sock *sk,
566 struct request_sock *req,
567 unsigned int mss, struct sk_buff *skb,
568 struct tcp_out_options *opts,
569 struct tcp_md5sig_key **md5,
570 struct tcp_fastopen_cookie *foc)
571 {
572 struct inet_request_sock *ireq = inet_rsk(req);
573 unsigned int remaining = MAX_TCP_OPTION_SPACE;
574
575 #ifdef CONFIG_TCP_MD5SIG
576 *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
577 if (*md5) {
578 opts->options |= OPTION_MD5;
579 remaining -= TCPOLEN_MD5SIG_ALIGNED;
580
581 /* We can't fit any SACK blocks in a packet with MD5 + TS
582 * options. There was discussion about disabling SACK
583 * rather than TS in order to fit in better with old,
584 * buggy kernels, but that was deemed to be unnecessary.
585 */
586 ireq->tstamp_ok &= !ireq->sack_ok;
587 }
588 #else
589 *md5 = NULL;
590 #endif
591
592 /* We always send an MSS option. */
593 opts->mss = mss;
594 remaining -= TCPOLEN_MSS_ALIGNED;
595
596 if (likely(ireq->wscale_ok)) {
597 opts->ws = ireq->rcv_wscale;
598 opts->options |= OPTION_WSCALE;
599 remaining -= TCPOLEN_WSCALE_ALIGNED;
600 }
601 if (likely(ireq->tstamp_ok)) {
602 opts->options |= OPTION_TS;
603 opts->tsval = TCP_SKB_CB(skb)->when;
604 opts->tsecr = req->ts_recent;
605 remaining -= TCPOLEN_TSTAMP_ALIGNED;
606 }
607 if (likely(ireq->sack_ok)) {
608 opts->options |= OPTION_SACK_ADVERTISE;
609 if (unlikely(!ireq->tstamp_ok))
610 remaining -= TCPOLEN_SACKPERM_ALIGNED;
611 }
612 if (foc != NULL) {
613 u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
614 need = (need + 3) & ~3U; /* Align to 32 bits */
615 if (remaining >= need) {
616 opts->options |= OPTION_FAST_OPEN_COOKIE;
617 opts->fastopen_cookie = foc;
618 remaining -= need;
619 }
620 }
621
622 return MAX_TCP_OPTION_SPACE - remaining;
623 }
624
625 /* Compute TCP options for ESTABLISHED sockets. This is not the
626 * final wire format yet.
627 */
628 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
629 struct tcp_out_options *opts,
630 struct tcp_md5sig_key **md5)
631 {
632 struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
633 struct tcp_sock *tp = tcp_sk(sk);
634 unsigned int size = 0;
635 unsigned int eff_sacks;
636
637 #ifdef CONFIG_TCP_MD5SIG
638 *md5 = tp->af_specific->md5_lookup(sk, sk);
639 if (unlikely(*md5)) {
640 opts->options |= OPTION_MD5;
641 size += TCPOLEN_MD5SIG_ALIGNED;
642 }
643 #else
644 *md5 = NULL;
645 #endif
646
647 if (likely(tp->rx_opt.tstamp_ok)) {
648 opts->options |= OPTION_TS;
649 opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
650 opts->tsecr = tp->rx_opt.ts_recent;
651 size += TCPOLEN_TSTAMP_ALIGNED;
652 }
653
654 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
655 if (unlikely(eff_sacks)) {
656 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
657 opts->num_sack_blocks =
658 min_t(unsigned int, eff_sacks,
659 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
660 TCPOLEN_SACK_PERBLOCK);
661 size += TCPOLEN_SACK_BASE_ALIGNED +
662 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
663 }
664
665 return size;
666 }
667
668
669 /* TCP SMALL QUEUES (TSQ)
670 *
671 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
672 * to reduce RTT and bufferbloat.
673 * We do this using a special skb destructor (tcp_wfree).
674 *
675 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
676 * needs to be reallocated in a driver.
677 * The invariant being skb->truesize substracted from sk->sk_wmem_alloc
678 *
679 * Since transmit from skb destructor is forbidden, we use a tasklet
680 * to process all sockets that eventually need to send more skbs.
681 * We use one tasklet per cpu, with its own queue of sockets.
682 */
683 struct tsq_tasklet {
684 struct tasklet_struct tasklet;
685 struct list_head head; /* queue of tcp sockets */
686 };
687 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
688
689 static void tcp_tsq_handler(struct sock *sk)
690 {
691 if ((1 << sk->sk_state) &
692 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
693 TCPF_CLOSE_WAIT | TCPF_LAST_ACK))
694 tcp_write_xmit(sk, tcp_current_mss(sk), 0, 0, GFP_ATOMIC);
695 }
696 /*
697 * One tasklest per cpu tries to send more skbs.
698 * We run in tasklet context but need to disable irqs when
699 * transfering tsq->head because tcp_wfree() might
700 * interrupt us (non NAPI drivers)
701 */
702 static void tcp_tasklet_func(unsigned long data)
703 {
704 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
705 LIST_HEAD(list);
706 unsigned long flags;
707 struct list_head *q, *n;
708 struct tcp_sock *tp;
709 struct sock *sk;
710
711 local_irq_save(flags);
712 list_splice_init(&tsq->head, &list);
713 local_irq_restore(flags);
714
715 list_for_each_safe(q, n, &list) {
716 tp = list_entry(q, struct tcp_sock, tsq_node);
717 list_del(&tp->tsq_node);
718
719 sk = (struct sock *)tp;
720 bh_lock_sock(sk);
721
722 if (!sock_owned_by_user(sk)) {
723 tcp_tsq_handler(sk);
724 } else {
725 /* defer the work to tcp_release_cb() */
726 set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
727 }
728 bh_unlock_sock(sk);
729
730 clear_bit(TSQ_QUEUED, &tp->tsq_flags);
731 sk_free(sk);
732 }
733 }
734
735 #define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) | \
736 (1UL << TCP_WRITE_TIMER_DEFERRED) | \
737 (1UL << TCP_DELACK_TIMER_DEFERRED) | \
738 (1UL << TCP_MTU_REDUCED_DEFERRED))
739 /**
740 * tcp_release_cb - tcp release_sock() callback
741 * @sk: socket
742 *
743 * called from release_sock() to perform protocol dependent
744 * actions before socket release.
745 */
746 void tcp_release_cb(struct sock *sk)
747 {
748 struct tcp_sock *tp = tcp_sk(sk);
749 unsigned long flags, nflags;
750
751 /* perform an atomic operation only if at least one flag is set */
752 do {
753 flags = tp->tsq_flags;
754 if (!(flags & TCP_DEFERRED_ALL))
755 return;
756 nflags = flags & ~TCP_DEFERRED_ALL;
757 } while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
758
759 if (flags & (1UL << TCP_TSQ_DEFERRED))
760 tcp_tsq_handler(sk);
761
762 if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
763 tcp_write_timer_handler(sk);
764 __sock_put(sk);
765 }
766 if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
767 tcp_delack_timer_handler(sk);
768 __sock_put(sk);
769 }
770 if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
771 sk->sk_prot->mtu_reduced(sk);
772 __sock_put(sk);
773 }
774 }
775 EXPORT_SYMBOL(tcp_release_cb);
776
777 void __init tcp_tasklet_init(void)
778 {
779 int i;
780
781 for_each_possible_cpu(i) {
782 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
783
784 INIT_LIST_HEAD(&tsq->head);
785 tasklet_init(&tsq->tasklet,
786 tcp_tasklet_func,
787 (unsigned long)tsq);
788 }
789 }
790
791 /*
792 * Write buffer destructor automatically called from kfree_skb.
793 * We cant xmit new skbs from this context, as we might already
794 * hold qdisc lock.
795 */
796 void tcp_wfree(struct sk_buff *skb)
797 {
798 struct sock *sk = skb->sk;
799 struct tcp_sock *tp = tcp_sk(sk);
800
801 if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
802 !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
803 unsigned long flags;
804 struct tsq_tasklet *tsq;
805
806 /* Keep a ref on socket.
807 * This last ref will be released in tcp_tasklet_func()
808 */
809 atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
810
811 /* queue this socket to tasklet queue */
812 local_irq_save(flags);
813 tsq = &__get_cpu_var(tsq_tasklet);
814 list_add(&tp->tsq_node, &tsq->head);
815 tasklet_schedule(&tsq->tasklet);
816 local_irq_restore(flags);
817 } else {
818 sock_wfree(skb);
819 }
820 }
821
822 /* This routine actually transmits TCP packets queued in by
823 * tcp_do_sendmsg(). This is used by both the initial
824 * transmission and possible later retransmissions.
825 * All SKB's seen here are completely headerless. It is our
826 * job to build the TCP header, and pass the packet down to
827 * IP so it can do the same plus pass the packet off to the
828 * device.
829 *
830 * We are working here with either a clone of the original
831 * SKB, or a fresh unique copy made by the retransmit engine.
832 */
833 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
834 gfp_t gfp_mask)
835 {
836 const struct inet_connection_sock *icsk = inet_csk(sk);
837 struct inet_sock *inet;
838 struct tcp_sock *tp;
839 struct tcp_skb_cb *tcb;
840 struct tcp_out_options opts;
841 unsigned int tcp_options_size, tcp_header_size;
842 struct tcp_md5sig_key *md5;
843 struct tcphdr *th;
844 int err;
845
846 BUG_ON(!skb || !tcp_skb_pcount(skb));
847
848 /* If congestion control is doing timestamping, we must
849 * take such a timestamp before we potentially clone/copy.
850 */
851 if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
852 __net_timestamp(skb);
853
854 if (likely(clone_it)) {
855 const struct sk_buff *fclone = skb + 1;
856
857 if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
858 fclone->fclone == SKB_FCLONE_CLONE))
859 NET_INC_STATS_BH(sock_net(sk),
860 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
861
862 if (unlikely(skb_cloned(skb)))
863 skb = pskb_copy(skb, gfp_mask);
864 else
865 skb = skb_clone(skb, gfp_mask);
866 if (unlikely(!skb))
867 return -ENOBUFS;
868 }
869
870 inet = inet_sk(sk);
871 tp = tcp_sk(sk);
872 tcb = TCP_SKB_CB(skb);
873 memset(&opts, 0, sizeof(opts));
874
875 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
876 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
877 else
878 tcp_options_size = tcp_established_options(sk, skb, &opts,
879 &md5);
880 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
881
882 if (tcp_packets_in_flight(tp) == 0)
883 tcp_ca_event(sk, CA_EVENT_TX_START);
884
885 /* if no packet is in qdisc/device queue, then allow XPS to select
886 * another queue.
887 */
888 skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
889
890 skb_push(skb, tcp_header_size);
891 skb_reset_transport_header(skb);
892
893 skb_orphan(skb);
894 skb->sk = sk;
895 skb->destructor = (sysctl_tcp_limit_output_bytes > 0) ?
896 tcp_wfree : sock_wfree;
897 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
898
899 /* Build TCP header and checksum it. */
900 th = tcp_hdr(skb);
901 th->source = inet->inet_sport;
902 th->dest = inet->inet_dport;
903 th->seq = htonl(tcb->seq);
904 th->ack_seq = htonl(tp->rcv_nxt);
905 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
906 tcb->tcp_flags);
907
908 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
909 /* RFC1323: The window in SYN & SYN/ACK segments
910 * is never scaled.
911 */
912 th->window = htons(min(tp->rcv_wnd, 65535U));
913 } else {
914 th->window = htons(tcp_select_window(sk));
915 }
916 th->check = 0;
917 th->urg_ptr = 0;
918
919 /* The urg_mode check is necessary during a below snd_una win probe */
920 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
921 if (before(tp->snd_up, tcb->seq + 0x10000)) {
922 th->urg_ptr = htons(tp->snd_up - tcb->seq);
923 th->urg = 1;
924 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
925 th->urg_ptr = htons(0xFFFF);
926 th->urg = 1;
927 }
928 }
929
930 tcp_options_write((__be32 *)(th + 1), tp, &opts);
931 if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
932 TCP_ECN_send(sk, skb, tcp_header_size);
933
934 #ifdef CONFIG_TCP_MD5SIG
935 /* Calculate the MD5 hash, as we have all we need now */
936 if (md5) {
937 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
938 tp->af_specific->calc_md5_hash(opts.hash_location,
939 md5, sk, NULL, skb);
940 }
941 #endif
942
943 icsk->icsk_af_ops->send_check(sk, skb);
944
945 if (likely(tcb->tcp_flags & TCPHDR_ACK))
946 tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
947
948 if (skb->len != tcp_header_size)
949 tcp_event_data_sent(tp, sk);
950
951 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
952 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
953 tcp_skb_pcount(skb));
954
955 err = icsk->icsk_af_ops->queue_xmit(skb, &inet->cork.fl);
956 if (likely(err <= 0))
957 return err;
958
959 tcp_enter_cwr(sk, 1);
960
961 return net_xmit_eval(err);
962 }
963
964 /* This routine just queues the buffer for sending.
965 *
966 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
967 * otherwise socket can stall.
968 */
969 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
970 {
971 struct tcp_sock *tp = tcp_sk(sk);
972
973 /* Advance write_seq and place onto the write_queue. */
974 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
975 skb_header_release(skb);
976 tcp_add_write_queue_tail(sk, skb);
977 sk->sk_wmem_queued += skb->truesize;
978 sk_mem_charge(sk, skb->truesize);
979 }
980
981 /* Initialize TSO segments for a packet. */
982 static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
983 unsigned int mss_now)
984 {
985 if (skb->len <= mss_now || !sk_can_gso(sk) ||
986 skb->ip_summed == CHECKSUM_NONE) {
987 /* Avoid the costly divide in the normal
988 * non-TSO case.
989 */
990 skb_shinfo(skb)->gso_segs = 1;
991 skb_shinfo(skb)->gso_size = 0;
992 skb_shinfo(skb)->gso_type = 0;
993 } else {
994 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
995 skb_shinfo(skb)->gso_size = mss_now;
996 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
997 }
998 }
999
1000 /* When a modification to fackets out becomes necessary, we need to check
1001 * skb is counted to fackets_out or not.
1002 */
1003 static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1004 int decr)
1005 {
1006 struct tcp_sock *tp = tcp_sk(sk);
1007
1008 if (!tp->sacked_out || tcp_is_reno(tp))
1009 return;
1010
1011 if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1012 tp->fackets_out -= decr;
1013 }
1014
1015 /* Pcount in the middle of the write queue got changed, we need to do various
1016 * tweaks to fix counters
1017 */
1018 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1019 {
1020 struct tcp_sock *tp = tcp_sk(sk);
1021
1022 tp->packets_out -= decr;
1023
1024 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1025 tp->sacked_out -= decr;
1026 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1027 tp->retrans_out -= decr;
1028 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1029 tp->lost_out -= decr;
1030
1031 /* Reno case is special. Sigh... */
1032 if (tcp_is_reno(tp) && decr > 0)
1033 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1034
1035 tcp_adjust_fackets_out(sk, skb, decr);
1036
1037 if (tp->lost_skb_hint &&
1038 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1039 (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1040 tp->lost_cnt_hint -= decr;
1041
1042 tcp_verify_left_out(tp);
1043 }
1044
1045 /* Function to create two new TCP segments. Shrinks the given segment
1046 * to the specified size and appends a new segment with the rest of the
1047 * packet to the list. This won't be called frequently, I hope.
1048 * Remember, these are still headerless SKBs at this point.
1049 */
1050 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1051 unsigned int mss_now)
1052 {
1053 struct tcp_sock *tp = tcp_sk(sk);
1054 struct sk_buff *buff;
1055 int nsize, old_factor;
1056 int nlen;
1057 u8 flags;
1058
1059 if (WARN_ON(len > skb->len))
1060 return -EINVAL;
1061
1062 nsize = skb_headlen(skb) - len;
1063 if (nsize < 0)
1064 nsize = 0;
1065
1066 if (skb_cloned(skb) &&
1067 skb_is_nonlinear(skb) &&
1068 pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1069 return -ENOMEM;
1070
1071 /* Get a new skb... force flag on. */
1072 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1073 if (buff == NULL)
1074 return -ENOMEM; /* We'll just try again later. */
1075
1076 sk->sk_wmem_queued += buff->truesize;
1077 sk_mem_charge(sk, buff->truesize);
1078 nlen = skb->len - len - nsize;
1079 buff->truesize += nlen;
1080 skb->truesize -= nlen;
1081
1082 /* Correct the sequence numbers. */
1083 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1084 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1085 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1086
1087 /* PSH and FIN should only be set in the second packet. */
1088 flags = TCP_SKB_CB(skb)->tcp_flags;
1089 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1090 TCP_SKB_CB(buff)->tcp_flags = flags;
1091 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1092
1093 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1094 /* Copy and checksum data tail into the new buffer. */
1095 buff->csum = csum_partial_copy_nocheck(skb->data + len,
1096 skb_put(buff, nsize),
1097 nsize, 0);
1098
1099 skb_trim(skb, len);
1100
1101 skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1102 } else {
1103 skb->ip_summed = CHECKSUM_PARTIAL;
1104 skb_split(skb, buff, len);
1105 }
1106
1107 buff->ip_summed = skb->ip_summed;
1108
1109 /* Looks stupid, but our code really uses when of
1110 * skbs, which it never sent before. --ANK
1111 */
1112 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1113 buff->tstamp = skb->tstamp;
1114
1115 old_factor = tcp_skb_pcount(skb);
1116
1117 /* Fix up tso_factor for both original and new SKB. */
1118 tcp_set_skb_tso_segs(sk, skb, mss_now);
1119 tcp_set_skb_tso_segs(sk, buff, mss_now);
1120
1121 /* If this packet has been sent out already, we must
1122 * adjust the various packet counters.
1123 */
1124 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1125 int diff = old_factor - tcp_skb_pcount(skb) -
1126 tcp_skb_pcount(buff);
1127
1128 if (diff)
1129 tcp_adjust_pcount(sk, skb, diff);
1130 }
1131
1132 /* Link BUFF into the send queue. */
1133 skb_header_release(buff);
1134 tcp_insert_write_queue_after(skb, buff, sk);
1135
1136 return 0;
1137 }
1138
1139 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1140 * eventually). The difference is that pulled data not copied, but
1141 * immediately discarded.
1142 */
1143 static void __pskb_trim_head(struct sk_buff *skb, int len)
1144 {
1145 int i, k, eat;
1146
1147 eat = min_t(int, len, skb_headlen(skb));
1148 if (eat) {
1149 __skb_pull(skb, eat);
1150 len -= eat;
1151 if (!len)
1152 return;
1153 }
1154 eat = len;
1155 k = 0;
1156 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1157 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1158
1159 if (size <= eat) {
1160 skb_frag_unref(skb, i);
1161 eat -= size;
1162 } else {
1163 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1164 if (eat) {
1165 skb_shinfo(skb)->frags[k].page_offset += eat;
1166 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1167 eat = 0;
1168 }
1169 k++;
1170 }
1171 }
1172 skb_shinfo(skb)->nr_frags = k;
1173
1174 skb_reset_tail_pointer(skb);
1175 skb->data_len -= len;
1176 skb->len = skb->data_len;
1177 }
1178
1179 /* Remove acked data from a packet in the transmit queue. */
1180 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1181 {
1182 if (skb_unclone(skb, GFP_ATOMIC))
1183 return -ENOMEM;
1184
1185 __pskb_trim_head(skb, len);
1186
1187 TCP_SKB_CB(skb)->seq += len;
1188 skb->ip_summed = CHECKSUM_PARTIAL;
1189
1190 skb->truesize -= len;
1191 sk->sk_wmem_queued -= len;
1192 sk_mem_uncharge(sk, len);
1193 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1194
1195 /* Any change of skb->len requires recalculation of tso factor. */
1196 if (tcp_skb_pcount(skb) > 1)
1197 tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1198
1199 return 0;
1200 }
1201
1202 /* Calculate MSS not accounting any TCP options. */
1203 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1204 {
1205 const struct tcp_sock *tp = tcp_sk(sk);
1206 const struct inet_connection_sock *icsk = inet_csk(sk);
1207 int mss_now;
1208
1209 /* Calculate base mss without TCP options:
1210 It is MMS_S - sizeof(tcphdr) of rfc1122
1211 */
1212 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1213
1214 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1215 if (icsk->icsk_af_ops->net_frag_header_len) {
1216 const struct dst_entry *dst = __sk_dst_get(sk);
1217
1218 if (dst && dst_allfrag(dst))
1219 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1220 }
1221
1222 /* Clamp it (mss_clamp does not include tcp options) */
1223 if (mss_now > tp->rx_opt.mss_clamp)
1224 mss_now = tp->rx_opt.mss_clamp;
1225
1226 /* Now subtract optional transport overhead */
1227 mss_now -= icsk->icsk_ext_hdr_len;
1228
1229 /* Then reserve room for full set of TCP options and 8 bytes of data */
1230 if (mss_now < 48)
1231 mss_now = 48;
1232 return mss_now;
1233 }
1234
1235 /* Calculate MSS. Not accounting for SACKs here. */
1236 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1237 {
1238 /* Subtract TCP options size, not including SACKs */
1239 return __tcp_mtu_to_mss(sk, pmtu) -
1240 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1241 }
1242
1243 /* Inverse of above */
1244 int tcp_mss_to_mtu(struct sock *sk, int mss)
1245 {
1246 const struct tcp_sock *tp = tcp_sk(sk);
1247 const struct inet_connection_sock *icsk = inet_csk(sk);
1248 int mtu;
1249
1250 mtu = mss +
1251 tp->tcp_header_len +
1252 icsk->icsk_ext_hdr_len +
1253 icsk->icsk_af_ops->net_header_len;
1254
1255 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1256 if (icsk->icsk_af_ops->net_frag_header_len) {
1257 const struct dst_entry *dst = __sk_dst_get(sk);
1258
1259 if (dst && dst_allfrag(dst))
1260 mtu += icsk->icsk_af_ops->net_frag_header_len;
1261 }
1262 return mtu;
1263 }
1264
1265 /* MTU probing init per socket */
1266 void tcp_mtup_init(struct sock *sk)
1267 {
1268 struct tcp_sock *tp = tcp_sk(sk);
1269 struct inet_connection_sock *icsk = inet_csk(sk);
1270
1271 icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1272 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1273 icsk->icsk_af_ops->net_header_len;
1274 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1275 icsk->icsk_mtup.probe_size = 0;
1276 }
1277 EXPORT_SYMBOL(tcp_mtup_init);
1278
1279 /* This function synchronize snd mss to current pmtu/exthdr set.
1280
1281 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1282 for TCP options, but includes only bare TCP header.
1283
1284 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1285 It is minimum of user_mss and mss received with SYN.
1286 It also does not include TCP options.
1287
1288 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1289
1290 tp->mss_cache is current effective sending mss, including
1291 all tcp options except for SACKs. It is evaluated,
1292 taking into account current pmtu, but never exceeds
1293 tp->rx_opt.mss_clamp.
1294
1295 NOTE1. rfc1122 clearly states that advertised MSS
1296 DOES NOT include either tcp or ip options.
1297
1298 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1299 are READ ONLY outside this function. --ANK (980731)
1300 */
1301 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1302 {
1303 struct tcp_sock *tp = tcp_sk(sk);
1304 struct inet_connection_sock *icsk = inet_csk(sk);
1305 int mss_now;
1306
1307 if (icsk->icsk_mtup.search_high > pmtu)
1308 icsk->icsk_mtup.search_high = pmtu;
1309
1310 mss_now = tcp_mtu_to_mss(sk, pmtu);
1311 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1312
1313 /* And store cached results */
1314 icsk->icsk_pmtu_cookie = pmtu;
1315 if (icsk->icsk_mtup.enabled)
1316 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1317 tp->mss_cache = mss_now;
1318
1319 return mss_now;
1320 }
1321 EXPORT_SYMBOL(tcp_sync_mss);
1322
1323 /* Compute the current effective MSS, taking SACKs and IP options,
1324 * and even PMTU discovery events into account.
1325 */
1326 unsigned int tcp_current_mss(struct sock *sk)
1327 {
1328 const struct tcp_sock *tp = tcp_sk(sk);
1329 const struct dst_entry *dst = __sk_dst_get(sk);
1330 u32 mss_now;
1331 unsigned int header_len;
1332 struct tcp_out_options opts;
1333 struct tcp_md5sig_key *md5;
1334
1335 mss_now = tp->mss_cache;
1336
1337 if (dst) {
1338 u32 mtu = dst_mtu(dst);
1339 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1340 mss_now = tcp_sync_mss(sk, mtu);
1341 }
1342
1343 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1344 sizeof(struct tcphdr);
1345 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1346 * some common options. If this is an odd packet (because we have SACK
1347 * blocks etc) then our calculated header_len will be different, and
1348 * we have to adjust mss_now correspondingly */
1349 if (header_len != tp->tcp_header_len) {
1350 int delta = (int) header_len - tp->tcp_header_len;
1351 mss_now -= delta;
1352 }
1353
1354 return mss_now;
1355 }
1356
1357 /* Congestion window validation. (RFC2861) */
1358 static void tcp_cwnd_validate(struct sock *sk)
1359 {
1360 struct tcp_sock *tp = tcp_sk(sk);
1361
1362 if (tp->packets_out >= tp->snd_cwnd) {
1363 /* Network is feed fully. */
1364 tp->snd_cwnd_used = 0;
1365 tp->snd_cwnd_stamp = tcp_time_stamp;
1366 } else {
1367 /* Network starves. */
1368 if (tp->packets_out > tp->snd_cwnd_used)
1369 tp->snd_cwnd_used = tp->packets_out;
1370
1371 if (sysctl_tcp_slow_start_after_idle &&
1372 (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1373 tcp_cwnd_application_limited(sk);
1374 }
1375 }
1376
1377 /* Returns the portion of skb which can be sent right away without
1378 * introducing MSS oddities to segment boundaries. In rare cases where
1379 * mss_now != mss_cache, we will request caller to create a small skb
1380 * per input skb which could be mostly avoided here (if desired).
1381 *
1382 * We explicitly want to create a request for splitting write queue tail
1383 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1384 * thus all the complexity (cwnd_len is always MSS multiple which we
1385 * return whenever allowed by the other factors). Basically we need the
1386 * modulo only when the receiver window alone is the limiting factor or
1387 * when we would be allowed to send the split-due-to-Nagle skb fully.
1388 */
1389 static unsigned int tcp_mss_split_point(const struct sock *sk, const struct sk_buff *skb,
1390 unsigned int mss_now, unsigned int max_segs)
1391 {
1392 const struct tcp_sock *tp = tcp_sk(sk);
1393 u32 needed, window, max_len;
1394
1395 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1396 max_len = mss_now * max_segs;
1397
1398 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1399 return max_len;
1400
1401 needed = min(skb->len, window);
1402
1403 if (max_len <= needed)
1404 return max_len;
1405
1406 return needed - needed % mss_now;
1407 }
1408
1409 /* Can at least one segment of SKB be sent right now, according to the
1410 * congestion window rules? If so, return how many segments are allowed.
1411 */
1412 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1413 const struct sk_buff *skb)
1414 {
1415 u32 in_flight, cwnd;
1416
1417 /* Don't be strict about the congestion window for the final FIN. */
1418 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1419 tcp_skb_pcount(skb) == 1)
1420 return 1;
1421
1422 in_flight = tcp_packets_in_flight(tp);
1423 cwnd = tp->snd_cwnd;
1424 if (in_flight < cwnd)
1425 return (cwnd - in_flight);
1426
1427 return 0;
1428 }
1429
1430 /* Initialize TSO state of a skb.
1431 * This must be invoked the first time we consider transmitting
1432 * SKB onto the wire.
1433 */
1434 static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1435 unsigned int mss_now)
1436 {
1437 int tso_segs = tcp_skb_pcount(skb);
1438
1439 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1440 tcp_set_skb_tso_segs(sk, skb, mss_now);
1441 tso_segs = tcp_skb_pcount(skb);
1442 }
1443 return tso_segs;
1444 }
1445
1446 /* Minshall's variant of the Nagle send check. */
1447 static inline bool tcp_minshall_check(const struct tcp_sock *tp)
1448 {
1449 return after(tp->snd_sml, tp->snd_una) &&
1450 !after(tp->snd_sml, tp->snd_nxt);
1451 }
1452
1453 /* Return false, if packet can be sent now without violation Nagle's rules:
1454 * 1. It is full sized.
1455 * 2. Or it contains FIN. (already checked by caller)
1456 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1457 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1458 * With Minshall's modification: all sent small packets are ACKed.
1459 */
1460 static inline bool tcp_nagle_check(const struct tcp_sock *tp,
1461 const struct sk_buff *skb,
1462 unsigned int mss_now, int nonagle)
1463 {
1464 return skb->len < mss_now &&
1465 ((nonagle & TCP_NAGLE_CORK) ||
1466 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1467 }
1468
1469 /* Return true if the Nagle test allows this packet to be
1470 * sent now.
1471 */
1472 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1473 unsigned int cur_mss, int nonagle)
1474 {
1475 /* Nagle rule does not apply to frames, which sit in the middle of the
1476 * write_queue (they have no chances to get new data).
1477 *
1478 * This is implemented in the callers, where they modify the 'nonagle'
1479 * argument based upon the location of SKB in the send queue.
1480 */
1481 if (nonagle & TCP_NAGLE_PUSH)
1482 return true;
1483
1484 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1485 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1486 return true;
1487
1488 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
1489 return true;
1490
1491 return false;
1492 }
1493
1494 /* Does at least the first segment of SKB fit into the send window? */
1495 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1496 const struct sk_buff *skb,
1497 unsigned int cur_mss)
1498 {
1499 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1500
1501 if (skb->len > cur_mss)
1502 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1503
1504 return !after(end_seq, tcp_wnd_end(tp));
1505 }
1506
1507 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1508 * should be put on the wire right now. If so, it returns the number of
1509 * packets allowed by the congestion window.
1510 */
1511 static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1512 unsigned int cur_mss, int nonagle)
1513 {
1514 const struct tcp_sock *tp = tcp_sk(sk);
1515 unsigned int cwnd_quota;
1516
1517 tcp_init_tso_segs(sk, skb, cur_mss);
1518
1519 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1520 return 0;
1521
1522 cwnd_quota = tcp_cwnd_test(tp, skb);
1523 if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1524 cwnd_quota = 0;
1525
1526 return cwnd_quota;
1527 }
1528
1529 /* Test if sending is allowed right now. */
1530 bool tcp_may_send_now(struct sock *sk)
1531 {
1532 const struct tcp_sock *tp = tcp_sk(sk);
1533 struct sk_buff *skb = tcp_send_head(sk);
1534
1535 return skb &&
1536 tcp_snd_test(sk, skb, tcp_current_mss(sk),
1537 (tcp_skb_is_last(sk, skb) ?
1538 tp->nonagle : TCP_NAGLE_PUSH));
1539 }
1540
1541 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1542 * which is put after SKB on the list. It is very much like
1543 * tcp_fragment() except that it may make several kinds of assumptions
1544 * in order to speed up the splitting operation. In particular, we
1545 * know that all the data is in scatter-gather pages, and that the
1546 * packet has never been sent out before (and thus is not cloned).
1547 */
1548 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1549 unsigned int mss_now, gfp_t gfp)
1550 {
1551 struct sk_buff *buff;
1552 int nlen = skb->len - len;
1553 u8 flags;
1554
1555 /* All of a TSO frame must be composed of paged data. */
1556 if (skb->len != skb->data_len)
1557 return tcp_fragment(sk, skb, len, mss_now);
1558
1559 buff = sk_stream_alloc_skb(sk, 0, gfp);
1560 if (unlikely(buff == NULL))
1561 return -ENOMEM;
1562
1563 sk->sk_wmem_queued += buff->truesize;
1564 sk_mem_charge(sk, buff->truesize);
1565 buff->truesize += nlen;
1566 skb->truesize -= nlen;
1567
1568 /* Correct the sequence numbers. */
1569 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1570 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1571 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1572
1573 /* PSH and FIN should only be set in the second packet. */
1574 flags = TCP_SKB_CB(skb)->tcp_flags;
1575 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1576 TCP_SKB_CB(buff)->tcp_flags = flags;
1577
1578 /* This packet was never sent out yet, so no SACK bits. */
1579 TCP_SKB_CB(buff)->sacked = 0;
1580
1581 buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1582 skb_split(skb, buff, len);
1583
1584 /* Fix up tso_factor for both original and new SKB. */
1585 tcp_set_skb_tso_segs(sk, skb, mss_now);
1586 tcp_set_skb_tso_segs(sk, buff, mss_now);
1587
1588 /* Link BUFF into the send queue. */
1589 skb_header_release(buff);
1590 tcp_insert_write_queue_after(skb, buff, sk);
1591
1592 return 0;
1593 }
1594
1595 /* Try to defer sending, if possible, in order to minimize the amount
1596 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1597 *
1598 * This algorithm is from John Heffner.
1599 */
1600 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
1601 {
1602 struct tcp_sock *tp = tcp_sk(sk);
1603 const struct inet_connection_sock *icsk = inet_csk(sk);
1604 u32 send_win, cong_win, limit, in_flight;
1605 int win_divisor;
1606
1607 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1608 goto send_now;
1609
1610 if (icsk->icsk_ca_state != TCP_CA_Open)
1611 goto send_now;
1612
1613 /* Defer for less than two clock ticks. */
1614 if (tp->tso_deferred &&
1615 (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
1616 goto send_now;
1617
1618 in_flight = tcp_packets_in_flight(tp);
1619
1620 BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1621
1622 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1623
1624 /* From in_flight test above, we know that cwnd > in_flight. */
1625 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1626
1627 limit = min(send_win, cong_win);
1628
1629 /* If a full-sized TSO skb can be sent, do it. */
1630 if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1631 sk->sk_gso_max_segs * tp->mss_cache))
1632 goto send_now;
1633
1634 /* Middle in queue won't get any more data, full sendable already? */
1635 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1636 goto send_now;
1637
1638 win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1639 if (win_divisor) {
1640 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1641
1642 /* If at least some fraction of a window is available,
1643 * just use it.
1644 */
1645 chunk /= win_divisor;
1646 if (limit >= chunk)
1647 goto send_now;
1648 } else {
1649 /* Different approach, try not to defer past a single
1650 * ACK. Receiver should ACK every other full sized
1651 * frame, so if we have space for more than 3 frames
1652 * then send now.
1653 */
1654 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1655 goto send_now;
1656 }
1657
1658 /* Ok, it looks like it is advisable to defer.
1659 * Do not rearm the timer if already set to not break TCP ACK clocking.
1660 */
1661 if (!tp->tso_deferred)
1662 tp->tso_deferred = 1 | (jiffies << 1);
1663
1664 return true;
1665
1666 send_now:
1667 tp->tso_deferred = 0;
1668 return false;
1669 }
1670
1671 /* Create a new MTU probe if we are ready.
1672 * MTU probe is regularly attempting to increase the path MTU by
1673 * deliberately sending larger packets. This discovers routing
1674 * changes resulting in larger path MTUs.
1675 *
1676 * Returns 0 if we should wait to probe (no cwnd available),
1677 * 1 if a probe was sent,
1678 * -1 otherwise
1679 */
1680 static int tcp_mtu_probe(struct sock *sk)
1681 {
1682 struct tcp_sock *tp = tcp_sk(sk);
1683 struct inet_connection_sock *icsk = inet_csk(sk);
1684 struct sk_buff *skb, *nskb, *next;
1685 int len;
1686 int probe_size;
1687 int size_needed;
1688 int copy;
1689 int mss_now;
1690
1691 /* Not currently probing/verifying,
1692 * not in recovery,
1693 * have enough cwnd, and
1694 * not SACKing (the variable headers throw things off) */
1695 if (!icsk->icsk_mtup.enabled ||
1696 icsk->icsk_mtup.probe_size ||
1697 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1698 tp->snd_cwnd < 11 ||
1699 tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1700 return -1;
1701
1702 /* Very simple search strategy: just double the MSS. */
1703 mss_now = tcp_current_mss(sk);
1704 probe_size = 2 * tp->mss_cache;
1705 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1706 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1707 /* TODO: set timer for probe_converge_event */
1708 return -1;
1709 }
1710
1711 /* Have enough data in the send queue to probe? */
1712 if (tp->write_seq - tp->snd_nxt < size_needed)
1713 return -1;
1714
1715 if (tp->snd_wnd < size_needed)
1716 return -1;
1717 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1718 return 0;
1719
1720 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1721 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1722 if (!tcp_packets_in_flight(tp))
1723 return -1;
1724 else
1725 return 0;
1726 }
1727
1728 /* We're allowed to probe. Build it now. */
1729 if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
1730 return -1;
1731 sk->sk_wmem_queued += nskb->truesize;
1732 sk_mem_charge(sk, nskb->truesize);
1733
1734 skb = tcp_send_head(sk);
1735
1736 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1737 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1738 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1739 TCP_SKB_CB(nskb)->sacked = 0;
1740 nskb->csum = 0;
1741 nskb->ip_summed = skb->ip_summed;
1742
1743 tcp_insert_write_queue_before(nskb, skb, sk);
1744
1745 len = 0;
1746 tcp_for_write_queue_from_safe(skb, next, sk) {
1747 copy = min_t(int, skb->len, probe_size - len);
1748 if (nskb->ip_summed)
1749 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1750 else
1751 nskb->csum = skb_copy_and_csum_bits(skb, 0,
1752 skb_put(nskb, copy),
1753 copy, nskb->csum);
1754
1755 if (skb->len <= copy) {
1756 /* We've eaten all the data from this skb.
1757 * Throw it away. */
1758 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1759 tcp_unlink_write_queue(skb, sk);
1760 sk_wmem_free_skb(sk, skb);
1761 } else {
1762 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1763 ~(TCPHDR_FIN|TCPHDR_PSH);
1764 if (!skb_shinfo(skb)->nr_frags) {
1765 skb_pull(skb, copy);
1766 if (skb->ip_summed != CHECKSUM_PARTIAL)
1767 skb->csum = csum_partial(skb->data,
1768 skb->len, 0);
1769 } else {
1770 __pskb_trim_head(skb, copy);
1771 tcp_set_skb_tso_segs(sk, skb, mss_now);
1772 }
1773 TCP_SKB_CB(skb)->seq += copy;
1774 }
1775
1776 len += copy;
1777
1778 if (len >= probe_size)
1779 break;
1780 }
1781 tcp_init_tso_segs(sk, nskb, nskb->len);
1782
1783 /* We're ready to send. If this fails, the probe will
1784 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1785 TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1786 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1787 /* Decrement cwnd here because we are sending
1788 * effectively two packets. */
1789 tp->snd_cwnd--;
1790 tcp_event_new_data_sent(sk, nskb);
1791
1792 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1793 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1794 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1795
1796 return 1;
1797 }
1798
1799 return -1;
1800 }
1801
1802 /* This routine writes packets to the network. It advances the
1803 * send_head. This happens as incoming acks open up the remote
1804 * window for us.
1805 *
1806 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1807 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1808 * account rare use of URG, this is not a big flaw.
1809 *
1810 * Send at most one packet when push_one > 0. Temporarily ignore
1811 * cwnd limit to force at most one packet out when push_one == 2.
1812
1813 * Returns true, if no segments are in flight and we have queued segments,
1814 * but cannot send anything now because of SWS or another problem.
1815 */
1816 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1817 int push_one, gfp_t gfp)
1818 {
1819 struct tcp_sock *tp = tcp_sk(sk);
1820 struct sk_buff *skb;
1821 unsigned int tso_segs, sent_pkts;
1822 int cwnd_quota;
1823 int result;
1824
1825 sent_pkts = 0;
1826
1827 if (!push_one) {
1828 /* Do MTU probing. */
1829 result = tcp_mtu_probe(sk);
1830 if (!result) {
1831 return false;
1832 } else if (result > 0) {
1833 sent_pkts = 1;
1834 }
1835 }
1836
1837 while ((skb = tcp_send_head(sk))) {
1838 unsigned int limit;
1839
1840
1841 tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1842 BUG_ON(!tso_segs);
1843
1844 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
1845 goto repair; /* Skip network transmission */
1846
1847 cwnd_quota = tcp_cwnd_test(tp, skb);
1848 if (!cwnd_quota) {
1849 if (push_one == 2)
1850 /* Force out a loss probe pkt. */
1851 cwnd_quota = 1;
1852 else
1853 break;
1854 }
1855
1856 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1857 break;
1858
1859 if (tso_segs == 1) {
1860 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1861 (tcp_skb_is_last(sk, skb) ?
1862 nonagle : TCP_NAGLE_PUSH))))
1863 break;
1864 } else {
1865 if (!push_one && tcp_tso_should_defer(sk, skb))
1866 break;
1867 }
1868
1869 /* TSQ : sk_wmem_alloc accounts skb truesize,
1870 * including skb overhead. But thats OK.
1871 */
1872 if (atomic_read(&sk->sk_wmem_alloc) >= sysctl_tcp_limit_output_bytes) {
1873 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1874 break;
1875 }
1876 limit = mss_now;
1877 if (tso_segs > 1 && !tcp_urg_mode(tp))
1878 limit = tcp_mss_split_point(sk, skb, mss_now,
1879 min_t(unsigned int,
1880 cwnd_quota,
1881 sk->sk_gso_max_segs));
1882
1883 if (skb->len > limit &&
1884 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1885 break;
1886
1887 TCP_SKB_CB(skb)->when = tcp_time_stamp;
1888
1889 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1890 break;
1891
1892 repair:
1893 /* Advance the send_head. This one is sent out.
1894 * This call will increment packets_out.
1895 */
1896 tcp_event_new_data_sent(sk, skb);
1897
1898 tcp_minshall_update(tp, mss_now, skb);
1899 sent_pkts += tcp_skb_pcount(skb);
1900
1901 if (push_one)
1902 break;
1903 }
1904
1905 if (likely(sent_pkts)) {
1906 if (tcp_in_cwnd_reduction(sk))
1907 tp->prr_out += sent_pkts;
1908
1909 /* Send one loss probe per tail loss episode. */
1910 if (push_one != 2)
1911 tcp_schedule_loss_probe(sk);
1912 tcp_cwnd_validate(sk);
1913 return false;
1914 }
1915 return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
1916 }
1917
1918 bool tcp_schedule_loss_probe(struct sock *sk)
1919 {
1920 struct inet_connection_sock *icsk = inet_csk(sk);
1921 struct tcp_sock *tp = tcp_sk(sk);
1922 u32 timeout, tlp_time_stamp, rto_time_stamp;
1923 u32 rtt = tp->srtt >> 3;
1924
1925 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
1926 return false;
1927 /* No consecutive loss probes. */
1928 if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
1929 tcp_rearm_rto(sk);
1930 return false;
1931 }
1932 /* Don't do any loss probe on a Fast Open connection before 3WHS
1933 * finishes.
1934 */
1935 if (sk->sk_state == TCP_SYN_RECV)
1936 return false;
1937
1938 /* TLP is only scheduled when next timer event is RTO. */
1939 if (icsk->icsk_pending != ICSK_TIME_RETRANS)
1940 return false;
1941
1942 /* Schedule a loss probe in 2*RTT for SACK capable connections
1943 * in Open state, that are either limited by cwnd or application.
1944 */
1945 if (sysctl_tcp_early_retrans < 3 || !rtt || !tp->packets_out ||
1946 !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
1947 return false;
1948
1949 if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
1950 tcp_send_head(sk))
1951 return false;
1952
1953 /* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
1954 * for delayed ack when there's one outstanding packet.
1955 */
1956 timeout = rtt << 1;
1957 if (tp->packets_out == 1)
1958 timeout = max_t(u32, timeout,
1959 (rtt + (rtt >> 1) + TCP_DELACK_MAX));
1960 timeout = max_t(u32, timeout, msecs_to_jiffies(10));
1961
1962 /* If RTO is shorter, just schedule TLP in its place. */
1963 tlp_time_stamp = tcp_time_stamp + timeout;
1964 rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
1965 if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
1966 s32 delta = rto_time_stamp - tcp_time_stamp;
1967 if (delta > 0)
1968 timeout = delta;
1969 }
1970
1971 inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
1972 TCP_RTO_MAX);
1973 return true;
1974 }
1975
1976 /* When probe timeout (PTO) fires, send a new segment if one exists, else
1977 * retransmit the last segment.
1978 */
1979 void tcp_send_loss_probe(struct sock *sk)
1980 {
1981 struct tcp_sock *tp = tcp_sk(sk);
1982 struct sk_buff *skb;
1983 int pcount;
1984 int mss = tcp_current_mss(sk);
1985 int err = -1;
1986
1987 if (tcp_send_head(sk) != NULL) {
1988 err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
1989 goto rearm_timer;
1990 }
1991
1992 /* At most one outstanding TLP retransmission. */
1993 if (tp->tlp_high_seq)
1994 goto rearm_timer;
1995
1996 /* Retransmit last segment. */
1997 skb = tcp_write_queue_tail(sk);
1998 if (WARN_ON(!skb))
1999 goto rearm_timer;
2000
2001 pcount = tcp_skb_pcount(skb);
2002 if (WARN_ON(!pcount))
2003 goto rearm_timer;
2004
2005 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2006 if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss)))
2007 goto rearm_timer;
2008 skb = tcp_write_queue_tail(sk);
2009 }
2010
2011 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2012 goto rearm_timer;
2013
2014 /* Probe with zero data doesn't trigger fast recovery. */
2015 if (skb->len > 0)
2016 err = __tcp_retransmit_skb(sk, skb);
2017
2018 /* Record snd_nxt for loss detection. */
2019 if (likely(!err))
2020 tp->tlp_high_seq = tp->snd_nxt;
2021
2022 rearm_timer:
2023 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2024 inet_csk(sk)->icsk_rto,
2025 TCP_RTO_MAX);
2026
2027 if (likely(!err))
2028 NET_INC_STATS_BH(sock_net(sk),
2029 LINUX_MIB_TCPLOSSPROBES);
2030 return;
2031 }
2032
2033 /* Push out any pending frames which were held back due to
2034 * TCP_CORK or attempt at coalescing tiny packets.
2035 * The socket must be locked by the caller.
2036 */
2037 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2038 int nonagle)
2039 {
2040 /* If we are closed, the bytes will have to remain here.
2041 * In time closedown will finish, we empty the write queue and
2042 * all will be happy.
2043 */
2044 if (unlikely(sk->sk_state == TCP_CLOSE))
2045 return;
2046
2047 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2048 sk_gfp_atomic(sk, GFP_ATOMIC)))
2049 tcp_check_probe_timer(sk);
2050 }
2051
2052 /* Send _single_ skb sitting at the send head. This function requires
2053 * true push pending frames to setup probe timer etc.
2054 */
2055 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2056 {
2057 struct sk_buff *skb = tcp_send_head(sk);
2058
2059 BUG_ON(!skb || skb->len < mss_now);
2060
2061 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2062 }
2063
2064 /* This function returns the amount that we can raise the
2065 * usable window based on the following constraints
2066 *
2067 * 1. The window can never be shrunk once it is offered (RFC 793)
2068 * 2. We limit memory per socket
2069 *
2070 * RFC 1122:
2071 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2072 * RECV.NEXT + RCV.WIN fixed until:
2073 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2074 *
2075 * i.e. don't raise the right edge of the window until you can raise
2076 * it at least MSS bytes.
2077 *
2078 * Unfortunately, the recommended algorithm breaks header prediction,
2079 * since header prediction assumes th->window stays fixed.
2080 *
2081 * Strictly speaking, keeping th->window fixed violates the receiver
2082 * side SWS prevention criteria. The problem is that under this rule
2083 * a stream of single byte packets will cause the right side of the
2084 * window to always advance by a single byte.
2085 *
2086 * Of course, if the sender implements sender side SWS prevention
2087 * then this will not be a problem.
2088 *
2089 * BSD seems to make the following compromise:
2090 *
2091 * If the free space is less than the 1/4 of the maximum
2092 * space available and the free space is less than 1/2 mss,
2093 * then set the window to 0.
2094 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2095 * Otherwise, just prevent the window from shrinking
2096 * and from being larger than the largest representable value.
2097 *
2098 * This prevents incremental opening of the window in the regime
2099 * where TCP is limited by the speed of the reader side taking
2100 * data out of the TCP receive queue. It does nothing about
2101 * those cases where the window is constrained on the sender side
2102 * because the pipeline is full.
2103 *
2104 * BSD also seems to "accidentally" limit itself to windows that are a
2105 * multiple of MSS, at least until the free space gets quite small.
2106 * This would appear to be a side effect of the mbuf implementation.
2107 * Combining these two algorithms results in the observed behavior
2108 * of having a fixed window size at almost all times.
2109 *
2110 * Below we obtain similar behavior by forcing the offered window to
2111 * a multiple of the mss when it is feasible to do so.
2112 *
2113 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2114 * Regular options like TIMESTAMP are taken into account.
2115 */
2116 u32 __tcp_select_window(struct sock *sk)
2117 {
2118 struct inet_connection_sock *icsk = inet_csk(sk);
2119 struct tcp_sock *tp = tcp_sk(sk);
2120 /* MSS for the peer's data. Previous versions used mss_clamp
2121 * here. I don't know if the value based on our guesses
2122 * of peer's MSS is better for the performance. It's more correct
2123 * but may be worse for the performance because of rcv_mss
2124 * fluctuations. --SAW 1998/11/1
2125 */
2126 int mss = icsk->icsk_ack.rcv_mss;
2127 int free_space = tcp_space(sk);
2128 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
2129 int window;
2130
2131 if (mss > full_space)
2132 mss = full_space;
2133
2134 if (free_space < (full_space >> 1)) {
2135 icsk->icsk_ack.quick = 0;
2136
2137 if (sk_under_memory_pressure(sk))
2138 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2139 4U * tp->advmss);
2140
2141 if (free_space < mss)
2142 return 0;
2143 }
2144
2145 if (free_space > tp->rcv_ssthresh)
2146 free_space = tp->rcv_ssthresh;
2147
2148 /* Don't do rounding if we are using window scaling, since the
2149 * scaled window will not line up with the MSS boundary anyway.
2150 */
2151 window = tp->rcv_wnd;
2152 if (tp->rx_opt.rcv_wscale) {
2153 window = free_space;
2154
2155 /* Advertise enough space so that it won't get scaled away.
2156 * Import case: prevent zero window announcement if
2157 * 1<<rcv_wscale > mss.
2158 */
2159 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2160 window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2161 << tp->rx_opt.rcv_wscale);
2162 } else {
2163 /* Get the largest window that is a nice multiple of mss.
2164 * Window clamp already applied above.
2165 * If our current window offering is within 1 mss of the
2166 * free space we just keep it. This prevents the divide
2167 * and multiply from happening most of the time.
2168 * We also don't do any window rounding when the free space
2169 * is too small.
2170 */
2171 if (window <= free_space - mss || window > free_space)
2172 window = (free_space / mss) * mss;
2173 else if (mss == full_space &&
2174 free_space > window + (full_space >> 1))
2175 window = free_space;
2176 }
2177
2178 return window;
2179 }
2180
2181 /* Collapses two adjacent SKB's during retransmission. */
2182 static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2183 {
2184 struct tcp_sock *tp = tcp_sk(sk);
2185 struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2186 int skb_size, next_skb_size;
2187
2188 skb_size = skb->len;
2189 next_skb_size = next_skb->len;
2190
2191 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2192
2193 tcp_highest_sack_combine(sk, next_skb, skb);
2194
2195 tcp_unlink_write_queue(next_skb, sk);
2196
2197 skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2198 next_skb_size);
2199
2200 if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2201 skb->ip_summed = CHECKSUM_PARTIAL;
2202
2203 if (skb->ip_summed != CHECKSUM_PARTIAL)
2204 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2205
2206 /* Update sequence range on original skb. */
2207 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2208
2209 /* Merge over control information. This moves PSH/FIN etc. over */
2210 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2211
2212 /* All done, get rid of second SKB and account for it so
2213 * packet counting does not break.
2214 */
2215 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2216
2217 /* changed transmit queue under us so clear hints */
2218 tcp_clear_retrans_hints_partial(tp);
2219 if (next_skb == tp->retransmit_skb_hint)
2220 tp->retransmit_skb_hint = skb;
2221
2222 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2223
2224 sk_wmem_free_skb(sk, next_skb);
2225 }
2226
2227 /* Check if coalescing SKBs is legal. */
2228 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2229 {
2230 if (tcp_skb_pcount(skb) > 1)
2231 return false;
2232 /* TODO: SACK collapsing could be used to remove this condition */
2233 if (skb_shinfo(skb)->nr_frags != 0)
2234 return false;
2235 if (skb_cloned(skb))
2236 return false;
2237 if (skb == tcp_send_head(sk))
2238 return false;
2239 /* Some heurestics for collapsing over SACK'd could be invented */
2240 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2241 return false;
2242
2243 return true;
2244 }
2245
2246 /* Collapse packets in the retransmit queue to make to create
2247 * less packets on the wire. This is only done on retransmission.
2248 */
2249 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2250 int space)
2251 {
2252 struct tcp_sock *tp = tcp_sk(sk);
2253 struct sk_buff *skb = to, *tmp;
2254 bool first = true;
2255
2256 if (!sysctl_tcp_retrans_collapse)
2257 return;
2258 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2259 return;
2260
2261 tcp_for_write_queue_from_safe(skb, tmp, sk) {
2262 if (!tcp_can_collapse(sk, skb))
2263 break;
2264
2265 space -= skb->len;
2266
2267 if (first) {
2268 first = false;
2269 continue;
2270 }
2271
2272 if (space < 0)
2273 break;
2274 /* Punt if not enough space exists in the first SKB for
2275 * the data in the second
2276 */
2277 if (skb->len > skb_availroom(to))
2278 break;
2279
2280 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2281 break;
2282
2283 tcp_collapse_retrans(sk, to);
2284 }
2285 }
2286
2287 /* This retransmits one SKB. Policy decisions and retransmit queue
2288 * state updates are done by the caller. Returns non-zero if an
2289 * error occurred which prevented the send.
2290 */
2291 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2292 {
2293 struct tcp_sock *tp = tcp_sk(sk);
2294 struct inet_connection_sock *icsk = inet_csk(sk);
2295 unsigned int cur_mss;
2296
2297 /* Inconslusive MTU probe */
2298 if (icsk->icsk_mtup.probe_size) {
2299 icsk->icsk_mtup.probe_size = 0;
2300 }
2301
2302 /* Do not sent more than we queued. 1/4 is reserved for possible
2303 * copying overhead: fragmentation, tunneling, mangling etc.
2304 */
2305 if (atomic_read(&sk->sk_wmem_alloc) >
2306 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2307 return -EAGAIN;
2308
2309 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2310 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2311 BUG();
2312 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2313 return -ENOMEM;
2314 }
2315
2316 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2317 return -EHOSTUNREACH; /* Routing failure or similar. */
2318
2319 cur_mss = tcp_current_mss(sk);
2320
2321 /* If receiver has shrunk his window, and skb is out of
2322 * new window, do not retransmit it. The exception is the
2323 * case, when window is shrunk to zero. In this case
2324 * our retransmit serves as a zero window probe.
2325 */
2326 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2327 TCP_SKB_CB(skb)->seq != tp->snd_una)
2328 return -EAGAIN;
2329
2330 if (skb->len > cur_mss) {
2331 if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2332 return -ENOMEM; /* We'll try again later. */
2333 } else {
2334 int oldpcount = tcp_skb_pcount(skb);
2335
2336 if (unlikely(oldpcount > 1)) {
2337 tcp_init_tso_segs(sk, skb, cur_mss);
2338 tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2339 }
2340 }
2341
2342 tcp_retrans_try_collapse(sk, skb, cur_mss);
2343
2344 /* Some Solaris stacks overoptimize and ignore the FIN on a
2345 * retransmit when old data is attached. So strip it off
2346 * since it is cheap to do so and saves bytes on the network.
2347 */
2348 if (skb->len > 0 &&
2349 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2350 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
2351 if (!pskb_trim(skb, 0)) {
2352 /* Reuse, even though it does some unnecessary work */
2353 tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
2354 TCP_SKB_CB(skb)->tcp_flags);
2355 skb->ip_summed = CHECKSUM_NONE;
2356 }
2357 }
2358
2359 /* Make a copy, if the first transmission SKB clone we made
2360 * is still in somebody's hands, else make a clone.
2361 */
2362 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2363
2364 /* make sure skb->data is aligned on arches that require it
2365 * and check if ack-trimming & collapsing extended the headroom
2366 * beyond what csum_start can cover.
2367 */
2368 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2369 skb_headroom(skb) >= 0xFFFF)) {
2370 struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2371 GFP_ATOMIC);
2372 return nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2373 -ENOBUFS;
2374 } else {
2375 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2376 }
2377 }
2378
2379 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2380 {
2381 struct tcp_sock *tp = tcp_sk(sk);
2382 int err = __tcp_retransmit_skb(sk, skb);
2383
2384 if (err == 0) {
2385 /* Update global TCP statistics. */
2386 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2387
2388 tp->total_retrans++;
2389
2390 #if FASTRETRANS_DEBUG > 0
2391 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2392 net_dbg_ratelimited("retrans_out leaked\n");
2393 }
2394 #endif
2395 if (!tp->retrans_out)
2396 tp->lost_retrans_low = tp->snd_nxt;
2397 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2398 tp->retrans_out += tcp_skb_pcount(skb);
2399
2400 /* Save stamp of the first retransmit. */
2401 if (!tp->retrans_stamp)
2402 tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2403
2404 tp->undo_retrans += tcp_skb_pcount(skb);
2405
2406 /* snd_nxt is stored to detect loss of retransmitted segment,
2407 * see tcp_input.c tcp_sacktag_write_queue().
2408 */
2409 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2410 }
2411 return err;
2412 }
2413
2414 /* Check if we forward retransmits are possible in the current
2415 * window/congestion state.
2416 */
2417 static bool tcp_can_forward_retransmit(struct sock *sk)
2418 {
2419 const struct inet_connection_sock *icsk = inet_csk(sk);
2420 const struct tcp_sock *tp = tcp_sk(sk);
2421
2422 /* Forward retransmissions are possible only during Recovery. */
2423 if (icsk->icsk_ca_state != TCP_CA_Recovery)
2424 return false;
2425
2426 /* No forward retransmissions in Reno are possible. */
2427 if (tcp_is_reno(tp))
2428 return false;
2429
2430 /* Yeah, we have to make difficult choice between forward transmission
2431 * and retransmission... Both ways have their merits...
2432 *
2433 * For now we do not retransmit anything, while we have some new
2434 * segments to send. In the other cases, follow rule 3 for
2435 * NextSeg() specified in RFC3517.
2436 */
2437
2438 if (tcp_may_send_now(sk))
2439 return false;
2440
2441 return true;
2442 }
2443
2444 /* This gets called after a retransmit timeout, and the initially
2445 * retransmitted data is acknowledged. It tries to continue
2446 * resending the rest of the retransmit queue, until either
2447 * we've sent it all or the congestion window limit is reached.
2448 * If doing SACK, the first ACK which comes back for a timeout
2449 * based retransmit packet might feed us FACK information again.
2450 * If so, we use it to avoid unnecessarily retransmissions.
2451 */
2452 void tcp_xmit_retransmit_queue(struct sock *sk)
2453 {
2454 const struct inet_connection_sock *icsk = inet_csk(sk);
2455 struct tcp_sock *tp = tcp_sk(sk);
2456 struct sk_buff *skb;
2457 struct sk_buff *hole = NULL;
2458 u32 last_lost;
2459 int mib_idx;
2460 int fwd_rexmitting = 0;
2461
2462 if (!tp->packets_out)
2463 return;
2464
2465 if (!tp->lost_out)
2466 tp->retransmit_high = tp->snd_una;
2467
2468 if (tp->retransmit_skb_hint) {
2469 skb = tp->retransmit_skb_hint;
2470 last_lost = TCP_SKB_CB(skb)->end_seq;
2471 if (after(last_lost, tp->retransmit_high))
2472 last_lost = tp->retransmit_high;
2473 } else {
2474 skb = tcp_write_queue_head(sk);
2475 last_lost = tp->snd_una;
2476 }
2477
2478 tcp_for_write_queue_from(skb, sk) {
2479 __u8 sacked = TCP_SKB_CB(skb)->sacked;
2480
2481 if (skb == tcp_send_head(sk))
2482 break;
2483 /* we could do better than to assign each time */
2484 if (hole == NULL)
2485 tp->retransmit_skb_hint = skb;
2486
2487 /* Assume this retransmit will generate
2488 * only one packet for congestion window
2489 * calculation purposes. This works because
2490 * tcp_retransmit_skb() will chop up the
2491 * packet to be MSS sized and all the
2492 * packet counting works out.
2493 */
2494 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2495 return;
2496
2497 if (fwd_rexmitting) {
2498 begin_fwd:
2499 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2500 break;
2501 mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2502
2503 } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2504 tp->retransmit_high = last_lost;
2505 if (!tcp_can_forward_retransmit(sk))
2506 break;
2507 /* Backtrack if necessary to non-L'ed skb */
2508 if (hole != NULL) {
2509 skb = hole;
2510 hole = NULL;
2511 }
2512 fwd_rexmitting = 1;
2513 goto begin_fwd;
2514
2515 } else if (!(sacked & TCPCB_LOST)) {
2516 if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2517 hole = skb;
2518 continue;
2519
2520 } else {
2521 last_lost = TCP_SKB_CB(skb)->end_seq;
2522 if (icsk->icsk_ca_state != TCP_CA_Loss)
2523 mib_idx = LINUX_MIB_TCPFASTRETRANS;
2524 else
2525 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2526 }
2527
2528 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2529 continue;
2530
2531 if (tcp_retransmit_skb(sk, skb)) {
2532 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2533 return;
2534 }
2535 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2536
2537 if (tcp_in_cwnd_reduction(sk))
2538 tp->prr_out += tcp_skb_pcount(skb);
2539
2540 if (skb == tcp_write_queue_head(sk))
2541 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2542 inet_csk(sk)->icsk_rto,
2543 TCP_RTO_MAX);
2544 }
2545 }
2546
2547 /* Send a fin. The caller locks the socket for us. This cannot be
2548 * allowed to fail queueing a FIN frame under any circumstances.
2549 */
2550 void tcp_send_fin(struct sock *sk)
2551 {
2552 struct tcp_sock *tp = tcp_sk(sk);
2553 struct sk_buff *skb = tcp_write_queue_tail(sk);
2554 int mss_now;
2555
2556 /* Optimization, tack on the FIN if we have a queue of
2557 * unsent frames. But be careful about outgoing SACKS
2558 * and IP options.
2559 */
2560 mss_now = tcp_current_mss(sk);
2561
2562 if (tcp_send_head(sk) != NULL) {
2563 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2564 TCP_SKB_CB(skb)->end_seq++;
2565 tp->write_seq++;
2566 } else {
2567 /* Socket is locked, keep trying until memory is available. */
2568 for (;;) {
2569 skb = alloc_skb_fclone(MAX_TCP_HEADER,
2570 sk->sk_allocation);
2571 if (skb)
2572 break;
2573 yield();
2574 }
2575
2576 /* Reserve space for headers and prepare control bits. */
2577 skb_reserve(skb, MAX_TCP_HEADER);
2578 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2579 tcp_init_nondata_skb(skb, tp->write_seq,
2580 TCPHDR_ACK | TCPHDR_FIN);
2581 tcp_queue_skb(sk, skb);
2582 }
2583 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2584 }
2585
2586 /* We get here when a process closes a file descriptor (either due to
2587 * an explicit close() or as a byproduct of exit()'ing) and there
2588 * was unread data in the receive queue. This behavior is recommended
2589 * by RFC 2525, section 2.17. -DaveM
2590 */
2591 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2592 {
2593 struct sk_buff *skb;
2594
2595 /* NOTE: No TCP options attached and we never retransmit this. */
2596 skb = alloc_skb(MAX_TCP_HEADER, priority);
2597 if (!skb) {
2598 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2599 return;
2600 }
2601
2602 /* Reserve space for headers and prepare control bits. */
2603 skb_reserve(skb, MAX_TCP_HEADER);
2604 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2605 TCPHDR_ACK | TCPHDR_RST);
2606 /* Send it off. */
2607 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2608 if (tcp_transmit_skb(sk, skb, 0, priority))
2609 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2610
2611 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2612 }
2613
2614 /* Send a crossed SYN-ACK during socket establishment.
2615 * WARNING: This routine must only be called when we have already sent
2616 * a SYN packet that crossed the incoming SYN that caused this routine
2617 * to get called. If this assumption fails then the initial rcv_wnd
2618 * and rcv_wscale values will not be correct.
2619 */
2620 int tcp_send_synack(struct sock *sk)
2621 {
2622 struct sk_buff *skb;
2623
2624 skb = tcp_write_queue_head(sk);
2625 if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2626 pr_debug("%s: wrong queue state\n", __func__);
2627 return -EFAULT;
2628 }
2629 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2630 if (skb_cloned(skb)) {
2631 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2632 if (nskb == NULL)
2633 return -ENOMEM;
2634 tcp_unlink_write_queue(skb, sk);
2635 skb_header_release(nskb);
2636 __tcp_add_write_queue_head(sk, nskb);
2637 sk_wmem_free_skb(sk, skb);
2638 sk->sk_wmem_queued += nskb->truesize;
2639 sk_mem_charge(sk, nskb->truesize);
2640 skb = nskb;
2641 }
2642
2643 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2644 TCP_ECN_send_synack(tcp_sk(sk), skb);
2645 }
2646 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2647 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2648 }
2649
2650 /**
2651 * tcp_make_synack - Prepare a SYN-ACK.
2652 * sk: listener socket
2653 * dst: dst entry attached to the SYNACK
2654 * req: request_sock pointer
2655 *
2656 * Allocate one skb and build a SYNACK packet.
2657 * @dst is consumed : Caller should not use it again.
2658 */
2659 struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2660 struct request_sock *req,
2661 struct tcp_fastopen_cookie *foc)
2662 {
2663 struct tcp_out_options opts;
2664 struct inet_request_sock *ireq = inet_rsk(req);
2665 struct tcp_sock *tp = tcp_sk(sk);
2666 struct tcphdr *th;
2667 struct sk_buff *skb;
2668 struct tcp_md5sig_key *md5;
2669 int tcp_header_size;
2670 int mss;
2671
2672 skb = alloc_skb(MAX_TCP_HEADER + 15, sk_gfp_atomic(sk, GFP_ATOMIC));
2673 if (unlikely(!skb)) {
2674 dst_release(dst);
2675 return NULL;
2676 }
2677 /* Reserve space for headers. */
2678 skb_reserve(skb, MAX_TCP_HEADER);
2679
2680 skb_dst_set(skb, dst);
2681 security_skb_owned_by(skb, sk);
2682
2683 mss = dst_metric_advmss(dst);
2684 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2685 mss = tp->rx_opt.user_mss;
2686
2687 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2688 __u8 rcv_wscale;
2689 /* Set this up on the first call only */
2690 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2691
2692 /* limit the window selection if the user enforce a smaller rx buffer */
2693 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2694 (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2695 req->window_clamp = tcp_full_space(sk);
2696
2697 /* tcp_full_space because it is guaranteed to be the first packet */
2698 tcp_select_initial_window(tcp_full_space(sk),
2699 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2700 &req->rcv_wnd,
2701 &req->window_clamp,
2702 ireq->wscale_ok,
2703 &rcv_wscale,
2704 dst_metric(dst, RTAX_INITRWND));
2705 ireq->rcv_wscale = rcv_wscale;
2706 }
2707
2708 memset(&opts, 0, sizeof(opts));
2709 #ifdef CONFIG_SYN_COOKIES
2710 if (unlikely(req->cookie_ts))
2711 TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2712 else
2713 #endif
2714 TCP_SKB_CB(skb)->when = tcp_time_stamp;
2715 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2716 foc) + sizeof(*th);
2717
2718 skb_push(skb, tcp_header_size);
2719 skb_reset_transport_header(skb);
2720
2721 th = tcp_hdr(skb);
2722 memset(th, 0, sizeof(struct tcphdr));
2723 th->syn = 1;
2724 th->ack = 1;
2725 TCP_ECN_make_synack(req, th);
2726 th->source = ireq->loc_port;
2727 th->dest = ireq->rmt_port;
2728 /* Setting of flags are superfluous here for callers (and ECE is
2729 * not even correctly set)
2730 */
2731 tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2732 TCPHDR_SYN | TCPHDR_ACK);
2733
2734 th->seq = htonl(TCP_SKB_CB(skb)->seq);
2735 /* XXX data is queued and acked as is. No buffer/window check */
2736 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2737
2738 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2739 th->window = htons(min(req->rcv_wnd, 65535U));
2740 tcp_options_write((__be32 *)(th + 1), tp, &opts);
2741 th->doff = (tcp_header_size >> 2);
2742 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS, tcp_skb_pcount(skb));
2743
2744 #ifdef CONFIG_TCP_MD5SIG
2745 /* Okay, we have all we need - do the md5 hash if needed */
2746 if (md5) {
2747 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2748 md5, NULL, req, skb);
2749 }
2750 #endif
2751
2752 return skb;
2753 }
2754 EXPORT_SYMBOL(tcp_make_synack);
2755
2756 /* Do all connect socket setups that can be done AF independent. */
2757 void tcp_connect_init(struct sock *sk)
2758 {
2759 const struct dst_entry *dst = __sk_dst_get(sk);
2760 struct tcp_sock *tp = tcp_sk(sk);
2761 __u8 rcv_wscale;
2762
2763 /* We'll fix this up when we get a response from the other end.
2764 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2765 */
2766 tp->tcp_header_len = sizeof(struct tcphdr) +
2767 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2768
2769 #ifdef CONFIG_TCP_MD5SIG
2770 if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2771 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2772 #endif
2773
2774 /* If user gave his TCP_MAXSEG, record it to clamp */
2775 if (tp->rx_opt.user_mss)
2776 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2777 tp->max_window = 0;
2778 tcp_mtup_init(sk);
2779 tcp_sync_mss(sk, dst_mtu(dst));
2780
2781 if (!tp->window_clamp)
2782 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2783 tp->advmss = dst_metric_advmss(dst);
2784 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2785 tp->advmss = tp->rx_opt.user_mss;
2786
2787 tcp_initialize_rcv_mss(sk);
2788
2789 /* limit the window selection if the user enforce a smaller rx buffer */
2790 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2791 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2792 tp->window_clamp = tcp_full_space(sk);
2793
2794 tcp_select_initial_window(tcp_full_space(sk),
2795 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2796 &tp->rcv_wnd,
2797 &tp->window_clamp,
2798 sysctl_tcp_window_scaling,
2799 &rcv_wscale,
2800 dst_metric(dst, RTAX_INITRWND));
2801
2802 tp->rx_opt.rcv_wscale = rcv_wscale;
2803 tp->rcv_ssthresh = tp->rcv_wnd;
2804
2805 sk->sk_err = 0;
2806 sock_reset_flag(sk, SOCK_DONE);
2807 tp->snd_wnd = 0;
2808 tcp_init_wl(tp, 0);
2809 tp->snd_una = tp->write_seq;
2810 tp->snd_sml = tp->write_seq;
2811 tp->snd_up = tp->write_seq;
2812 tp->snd_nxt = tp->write_seq;
2813
2814 if (likely(!tp->repair))
2815 tp->rcv_nxt = 0;
2816 tp->rcv_wup = tp->rcv_nxt;
2817 tp->copied_seq = tp->rcv_nxt;
2818
2819 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2820 inet_csk(sk)->icsk_retransmits = 0;
2821 tcp_clear_retrans(tp);
2822 }
2823
2824 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2825 {
2826 struct tcp_sock *tp = tcp_sk(sk);
2827 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2828
2829 tcb->end_seq += skb->len;
2830 skb_header_release(skb);
2831 __tcp_add_write_queue_tail(sk, skb);
2832 sk->sk_wmem_queued += skb->truesize;
2833 sk_mem_charge(sk, skb->truesize);
2834 tp->write_seq = tcb->end_seq;
2835 tp->packets_out += tcp_skb_pcount(skb);
2836 }
2837
2838 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
2839 * queue a data-only packet after the regular SYN, such that regular SYNs
2840 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2841 * only the SYN sequence, the data are retransmitted in the first ACK.
2842 * If cookie is not cached or other error occurs, falls back to send a
2843 * regular SYN with Fast Open cookie request option.
2844 */
2845 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2846 {
2847 struct tcp_sock *tp = tcp_sk(sk);
2848 struct tcp_fastopen_request *fo = tp->fastopen_req;
2849 int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2850 struct sk_buff *syn_data = NULL, *data;
2851 unsigned long last_syn_loss = 0;
2852
2853 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
2854 tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2855 &syn_loss, &last_syn_loss);
2856 /* Recurring FO SYN losses: revert to regular handshake temporarily */
2857 if (syn_loss > 1 &&
2858 time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2859 fo->cookie.len = -1;
2860 goto fallback;
2861 }
2862
2863 if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2864 fo->cookie.len = -1;
2865 else if (fo->cookie.len <= 0)
2866 goto fallback;
2867
2868 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2869 * user-MSS. Reserve maximum option space for middleboxes that add
2870 * private TCP options. The cost is reduced data space in SYN :(
2871 */
2872 if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2873 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2874 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2875 MAX_TCP_OPTION_SPACE;
2876
2877 syn_data = skb_copy_expand(syn, skb_headroom(syn), space,
2878 sk->sk_allocation);
2879 if (syn_data == NULL)
2880 goto fallback;
2881
2882 for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2883 struct iovec *iov = &fo->data->msg_iov[i];
2884 unsigned char __user *from = iov->iov_base;
2885 int len = iov->iov_len;
2886
2887 if (syn_data->len + len > space)
2888 len = space - syn_data->len;
2889 else if (i + 1 == iovlen)
2890 /* No more data pending in inet_wait_for_connect() */
2891 fo->data = NULL;
2892
2893 if (skb_add_data(syn_data, from, len))
2894 goto fallback;
2895 }
2896
2897 /* Queue a data-only packet after the regular SYN for retransmission */
2898 data = pskb_copy(syn_data, sk->sk_allocation);
2899 if (data == NULL)
2900 goto fallback;
2901 TCP_SKB_CB(data)->seq++;
2902 TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2903 TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2904 tcp_connect_queue_skb(sk, data);
2905 fo->copied = data->len;
2906
2907 if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2908 tp->syn_data = (fo->copied > 0);
2909 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
2910 goto done;
2911 }
2912 syn_data = NULL;
2913
2914 fallback:
2915 /* Send a regular SYN with Fast Open cookie request option */
2916 if (fo->cookie.len > 0)
2917 fo->cookie.len = 0;
2918 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
2919 if (err)
2920 tp->syn_fastopen = 0;
2921 kfree_skb(syn_data);
2922 done:
2923 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
2924 return err;
2925 }
2926
2927 /* Build a SYN and send it off. */
2928 int tcp_connect(struct sock *sk)
2929 {
2930 struct tcp_sock *tp = tcp_sk(sk);
2931 struct sk_buff *buff;
2932 int err;
2933
2934 tcp_connect_init(sk);
2935
2936 if (unlikely(tp->repair)) {
2937 tcp_finish_connect(sk, NULL);
2938 return 0;
2939 }
2940
2941 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
2942 if (unlikely(buff == NULL))
2943 return -ENOBUFS;
2944
2945 /* Reserve space for headers. */
2946 skb_reserve(buff, MAX_TCP_HEADER);
2947
2948 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
2949 tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
2950 tcp_connect_queue_skb(sk, buff);
2951 TCP_ECN_send_syn(sk, buff);
2952
2953 /* Send off SYN; include data in Fast Open. */
2954 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
2955 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
2956 if (err == -ECONNREFUSED)
2957 return err;
2958
2959 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2960 * in order to make this packet get counted in tcpOutSegs.
2961 */
2962 tp->snd_nxt = tp->write_seq;
2963 tp->pushed_seq = tp->write_seq;
2964 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
2965
2966 /* Timer for repeating the SYN until an answer. */
2967 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2968 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2969 return 0;
2970 }
2971 EXPORT_SYMBOL(tcp_connect);
2972
2973 /* Send out a delayed ack, the caller does the policy checking
2974 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2975 * for details.
2976 */
2977 void tcp_send_delayed_ack(struct sock *sk)
2978 {
2979 struct inet_connection_sock *icsk = inet_csk(sk);
2980 int ato = icsk->icsk_ack.ato;
2981 unsigned long timeout;
2982
2983 if (ato > TCP_DELACK_MIN) {
2984 const struct tcp_sock *tp = tcp_sk(sk);
2985 int max_ato = HZ / 2;
2986
2987 if (icsk->icsk_ack.pingpong ||
2988 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
2989 max_ato = TCP_DELACK_MAX;
2990
2991 /* Slow path, intersegment interval is "high". */
2992
2993 /* If some rtt estimate is known, use it to bound delayed ack.
2994 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2995 * directly.
2996 */
2997 if (tp->srtt) {
2998 int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);
2999
3000 if (rtt < max_ato)
3001 max_ato = rtt;
3002 }
3003
3004 ato = min(ato, max_ato);
3005 }
3006
3007 /* Stay within the limit we were given */
3008 timeout = jiffies + ato;
3009
3010 /* Use new timeout only if there wasn't a older one earlier. */
3011 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3012 /* If delack timer was blocked or is about to expire,
3013 * send ACK now.
3014 */
3015 if (icsk->icsk_ack.blocked ||
3016 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3017 tcp_send_ack(sk);
3018 return;
3019 }
3020
3021 if (!time_before(timeout, icsk->icsk_ack.timeout))
3022 timeout = icsk->icsk_ack.timeout;
3023 }
3024 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3025 icsk->icsk_ack.timeout = timeout;
3026 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3027 }
3028
3029 /* This routine sends an ack and also updates the window. */
3030 void tcp_send_ack(struct sock *sk)
3031 {
3032 struct sk_buff *buff;
3033
3034 /* If we have been reset, we may not send again. */
3035 if (sk->sk_state == TCP_CLOSE)
3036 return;
3037
3038 /* We are not putting this on the write queue, so
3039 * tcp_transmit_skb() will set the ownership to this
3040 * sock.
3041 */
3042 buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3043 if (buff == NULL) {
3044 inet_csk_schedule_ack(sk);
3045 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3046 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3047 TCP_DELACK_MAX, TCP_RTO_MAX);
3048 return;
3049 }
3050
3051 /* Reserve space for headers and prepare control bits. */
3052 skb_reserve(buff, MAX_TCP_HEADER);
3053 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3054
3055 /* Send it off, this clears delayed acks for us. */
3056 TCP_SKB_CB(buff)->when = tcp_time_stamp;
3057 tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3058 }
3059
3060 /* This routine sends a packet with an out of date sequence
3061 * number. It assumes the other end will try to ack it.
3062 *
3063 * Question: what should we make while urgent mode?
3064 * 4.4BSD forces sending single byte of data. We cannot send
3065 * out of window data, because we have SND.NXT==SND.MAX...
3066 *
3067 * Current solution: to send TWO zero-length segments in urgent mode:
3068 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3069 * out-of-date with SND.UNA-1 to probe window.
3070 */
3071 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3072 {
3073 struct tcp_sock *tp = tcp_sk(sk);
3074 struct sk_buff *skb;
3075
3076 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3077 skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3078 if (skb == NULL)
3079 return -1;
3080
3081 /* Reserve space for headers and set control bits. */
3082 skb_reserve(skb, MAX_TCP_HEADER);
3083 /* Use a previous sequence. This should cause the other
3084 * end to send an ack. Don't queue or clone SKB, just
3085 * send it.
3086 */
3087 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3088 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3089 return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
3090 }
3091
3092 void tcp_send_window_probe(struct sock *sk)
3093 {
3094 if (sk->sk_state == TCP_ESTABLISHED) {
3095 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3096 tcp_sk(sk)->snd_nxt = tcp_sk(sk)->write_seq;
3097 tcp_xmit_probe_skb(sk, 0);
3098 }
3099 }
3100
3101 /* Initiate keepalive or window probe from timer. */
3102 int tcp_write_wakeup(struct sock *sk)
3103 {
3104 struct tcp_sock *tp = tcp_sk(sk);
3105 struct sk_buff *skb;
3106
3107 if (sk->sk_state == TCP_CLOSE)
3108 return -1;
3109
3110 if ((skb = tcp_send_head(sk)) != NULL &&
3111 before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3112 int err;
3113 unsigned int mss = tcp_current_mss(sk);
3114 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3115
3116 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3117 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3118
3119 /* We are probing the opening of a window
3120 * but the window size is != 0
3121 * must have been a result SWS avoidance ( sender )
3122 */
3123 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3124 skb->len > mss) {
3125 seg_size = min(seg_size, mss);
3126 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3127 if (tcp_fragment(sk, skb, seg_size, mss))
3128 return -1;
3129 } else if (!tcp_skb_pcount(skb))
3130 tcp_set_skb_tso_segs(sk, skb, mss);
3131
3132 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3133 TCP_SKB_CB(skb)->when = tcp_time_stamp;
3134 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3135 if (!err)
3136 tcp_event_new_data_sent(sk, skb);
3137 return err;
3138 } else {
3139 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3140 tcp_xmit_probe_skb(sk, 1);
3141 return tcp_xmit_probe_skb(sk, 0);
3142 }
3143 }
3144
3145 /* A window probe timeout has occurred. If window is not closed send
3146 * a partial packet else a zero probe.
3147 */
3148 void tcp_send_probe0(struct sock *sk)
3149 {
3150 struct inet_connection_sock *icsk = inet_csk(sk);
3151 struct tcp_sock *tp = tcp_sk(sk);
3152 int err;
3153
3154 err = tcp_write_wakeup(sk);
3155
3156 if (tp->packets_out || !tcp_send_head(sk)) {
3157 /* Cancel probe timer, if it is not required. */
3158 icsk->icsk_probes_out = 0;
3159 icsk->icsk_backoff = 0;
3160 return;
3161 }
3162
3163 if (err <= 0) {
3164 if (icsk->icsk_backoff < sysctl_tcp_retries2)
3165 icsk->icsk_backoff++;
3166 icsk->icsk_probes_out++;
3167 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3168 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3169 TCP_RTO_MAX);
3170 } else {
3171 /* If packet was not sent due to local congestion,
3172 * do not backoff and do not remember icsk_probes_out.
3173 * Let local senders to fight for local resources.
3174 *
3175 * Use accumulated backoff yet.
3176 */
3177 if (!icsk->icsk_probes_out)
3178 icsk->icsk_probes_out = 1;
3179 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3180 min(icsk->icsk_rto << icsk->icsk_backoff,
3181 TCP_RESOURCE_PROBE_INTERVAL),
3182 TCP_RTO_MAX);
3183 }
3184 }
This page took 0.104212 seconds and 6 git commands to generate.