net: Add GSO support for UDP tunnels with checksum
[deliverable/linux.git] / net / ipv4 / udp.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * The User Datagram Protocol (UDP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
13 *
14 * Fixes:
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
28 * does NOT close.
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
57 * for connect.
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
64 * datagrams.
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
72 *
73 *
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
78 */
79
80 #define pr_fmt(fmt) "UDP: " fmt
81
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/inet_hashtables.h>
107 #include <net/route.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <trace/events/udp.h>
111 #include <linux/static_key.h>
112 #include <trace/events/skb.h>
113 #include <net/busy_poll.h>
114 #include "udp_impl.h"
115
116 struct udp_table udp_table __read_mostly;
117 EXPORT_SYMBOL(udp_table);
118
119 long sysctl_udp_mem[3] __read_mostly;
120 EXPORT_SYMBOL(sysctl_udp_mem);
121
122 int sysctl_udp_rmem_min __read_mostly;
123 EXPORT_SYMBOL(sysctl_udp_rmem_min);
124
125 int sysctl_udp_wmem_min __read_mostly;
126 EXPORT_SYMBOL(sysctl_udp_wmem_min);
127
128 atomic_long_t udp_memory_allocated;
129 EXPORT_SYMBOL(udp_memory_allocated);
130
131 #define MAX_UDP_PORTS 65536
132 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
133
134 static int udp_lib_lport_inuse(struct net *net, __u16 num,
135 const struct udp_hslot *hslot,
136 unsigned long *bitmap,
137 struct sock *sk,
138 int (*saddr_comp)(const struct sock *sk1,
139 const struct sock *sk2),
140 unsigned int log)
141 {
142 struct sock *sk2;
143 struct hlist_nulls_node *node;
144 kuid_t uid = sock_i_uid(sk);
145
146 sk_nulls_for_each(sk2, node, &hslot->head)
147 if (net_eq(sock_net(sk2), net) &&
148 sk2 != sk &&
149 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
150 (!sk2->sk_reuse || !sk->sk_reuse) &&
151 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
152 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
153 (!sk2->sk_reuseport || !sk->sk_reuseport ||
154 !uid_eq(uid, sock_i_uid(sk2))) &&
155 (*saddr_comp)(sk, sk2)) {
156 if (bitmap)
157 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
158 bitmap);
159 else
160 return 1;
161 }
162 return 0;
163 }
164
165 /*
166 * Note: we still hold spinlock of primary hash chain, so no other writer
167 * can insert/delete a socket with local_port == num
168 */
169 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
170 struct udp_hslot *hslot2,
171 struct sock *sk,
172 int (*saddr_comp)(const struct sock *sk1,
173 const struct sock *sk2))
174 {
175 struct sock *sk2;
176 struct hlist_nulls_node *node;
177 kuid_t uid = sock_i_uid(sk);
178 int res = 0;
179
180 spin_lock(&hslot2->lock);
181 udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
182 if (net_eq(sock_net(sk2), net) &&
183 sk2 != sk &&
184 (udp_sk(sk2)->udp_port_hash == num) &&
185 (!sk2->sk_reuse || !sk->sk_reuse) &&
186 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
187 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
188 (!sk2->sk_reuseport || !sk->sk_reuseport ||
189 !uid_eq(uid, sock_i_uid(sk2))) &&
190 (*saddr_comp)(sk, sk2)) {
191 res = 1;
192 break;
193 }
194 spin_unlock(&hslot2->lock);
195 return res;
196 }
197
198 /**
199 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
200 *
201 * @sk: socket struct in question
202 * @snum: port number to look up
203 * @saddr_comp: AF-dependent comparison of bound local IP addresses
204 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
205 * with NULL address
206 */
207 int udp_lib_get_port(struct sock *sk, unsigned short snum,
208 int (*saddr_comp)(const struct sock *sk1,
209 const struct sock *sk2),
210 unsigned int hash2_nulladdr)
211 {
212 struct udp_hslot *hslot, *hslot2;
213 struct udp_table *udptable = sk->sk_prot->h.udp_table;
214 int error = 1;
215 struct net *net = sock_net(sk);
216
217 if (!snum) {
218 int low, high, remaining;
219 unsigned int rand;
220 unsigned short first, last;
221 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
222
223 inet_get_local_port_range(net, &low, &high);
224 remaining = (high - low) + 1;
225
226 rand = prandom_u32();
227 first = (((u64)rand * remaining) >> 32) + low;
228 /*
229 * force rand to be an odd multiple of UDP_HTABLE_SIZE
230 */
231 rand = (rand | 1) * (udptable->mask + 1);
232 last = first + udptable->mask + 1;
233 do {
234 hslot = udp_hashslot(udptable, net, first);
235 bitmap_zero(bitmap, PORTS_PER_CHAIN);
236 spin_lock_bh(&hslot->lock);
237 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
238 saddr_comp, udptable->log);
239
240 snum = first;
241 /*
242 * Iterate on all possible values of snum for this hash.
243 * Using steps of an odd multiple of UDP_HTABLE_SIZE
244 * give us randomization and full range coverage.
245 */
246 do {
247 if (low <= snum && snum <= high &&
248 !test_bit(snum >> udptable->log, bitmap) &&
249 !inet_is_local_reserved_port(net, snum))
250 goto found;
251 snum += rand;
252 } while (snum != first);
253 spin_unlock_bh(&hslot->lock);
254 } while (++first != last);
255 goto fail;
256 } else {
257 hslot = udp_hashslot(udptable, net, snum);
258 spin_lock_bh(&hslot->lock);
259 if (hslot->count > 10) {
260 int exist;
261 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
262
263 slot2 &= udptable->mask;
264 hash2_nulladdr &= udptable->mask;
265
266 hslot2 = udp_hashslot2(udptable, slot2);
267 if (hslot->count < hslot2->count)
268 goto scan_primary_hash;
269
270 exist = udp_lib_lport_inuse2(net, snum, hslot2,
271 sk, saddr_comp);
272 if (!exist && (hash2_nulladdr != slot2)) {
273 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
274 exist = udp_lib_lport_inuse2(net, snum, hslot2,
275 sk, saddr_comp);
276 }
277 if (exist)
278 goto fail_unlock;
279 else
280 goto found;
281 }
282 scan_primary_hash:
283 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
284 saddr_comp, 0))
285 goto fail_unlock;
286 }
287 found:
288 inet_sk(sk)->inet_num = snum;
289 udp_sk(sk)->udp_port_hash = snum;
290 udp_sk(sk)->udp_portaddr_hash ^= snum;
291 if (sk_unhashed(sk)) {
292 sk_nulls_add_node_rcu(sk, &hslot->head);
293 hslot->count++;
294 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
295
296 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
297 spin_lock(&hslot2->lock);
298 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
299 &hslot2->head);
300 hslot2->count++;
301 spin_unlock(&hslot2->lock);
302 }
303 error = 0;
304 fail_unlock:
305 spin_unlock_bh(&hslot->lock);
306 fail:
307 return error;
308 }
309 EXPORT_SYMBOL(udp_lib_get_port);
310
311 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
312 {
313 struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
314
315 return (!ipv6_only_sock(sk2) &&
316 (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
317 inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
318 }
319
320 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
321 unsigned int port)
322 {
323 return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
324 }
325
326 int udp_v4_get_port(struct sock *sk, unsigned short snum)
327 {
328 unsigned int hash2_nulladdr =
329 udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
330 unsigned int hash2_partial =
331 udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
332
333 /* precompute partial secondary hash */
334 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
335 return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
336 }
337
338 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
339 unsigned short hnum,
340 __be16 sport, __be32 daddr, __be16 dport, int dif)
341 {
342 int score = -1;
343
344 if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
345 !ipv6_only_sock(sk)) {
346 struct inet_sock *inet = inet_sk(sk);
347
348 score = (sk->sk_family == PF_INET ? 2 : 1);
349 if (inet->inet_rcv_saddr) {
350 if (inet->inet_rcv_saddr != daddr)
351 return -1;
352 score += 4;
353 }
354 if (inet->inet_daddr) {
355 if (inet->inet_daddr != saddr)
356 return -1;
357 score += 4;
358 }
359 if (inet->inet_dport) {
360 if (inet->inet_dport != sport)
361 return -1;
362 score += 4;
363 }
364 if (sk->sk_bound_dev_if) {
365 if (sk->sk_bound_dev_if != dif)
366 return -1;
367 score += 4;
368 }
369 }
370 return score;
371 }
372
373 /*
374 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
375 */
376 static inline int compute_score2(struct sock *sk, struct net *net,
377 __be32 saddr, __be16 sport,
378 __be32 daddr, unsigned int hnum, int dif)
379 {
380 int score = -1;
381
382 if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
383 struct inet_sock *inet = inet_sk(sk);
384
385 if (inet->inet_rcv_saddr != daddr)
386 return -1;
387 if (inet->inet_num != hnum)
388 return -1;
389
390 score = (sk->sk_family == PF_INET ? 2 : 1);
391 if (inet->inet_daddr) {
392 if (inet->inet_daddr != saddr)
393 return -1;
394 score += 4;
395 }
396 if (inet->inet_dport) {
397 if (inet->inet_dport != sport)
398 return -1;
399 score += 4;
400 }
401 if (sk->sk_bound_dev_if) {
402 if (sk->sk_bound_dev_if != dif)
403 return -1;
404 score += 4;
405 }
406 }
407 return score;
408 }
409
410 static unsigned int udp_ehashfn(struct net *net, const __be32 laddr,
411 const __u16 lport, const __be32 faddr,
412 const __be16 fport)
413 {
414 static u32 udp_ehash_secret __read_mostly;
415
416 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417
418 return __inet_ehashfn(laddr, lport, faddr, fport,
419 udp_ehash_secret + net_hash_mix(net));
420 }
421
422
423 /* called with read_rcu_lock() */
424 static struct sock *udp4_lib_lookup2(struct net *net,
425 __be32 saddr, __be16 sport,
426 __be32 daddr, unsigned int hnum, int dif,
427 struct udp_hslot *hslot2, unsigned int slot2)
428 {
429 struct sock *sk, *result;
430 struct hlist_nulls_node *node;
431 int score, badness, matches = 0, reuseport = 0;
432 u32 hash = 0;
433
434 begin:
435 result = NULL;
436 badness = 0;
437 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
438 score = compute_score2(sk, net, saddr, sport,
439 daddr, hnum, dif);
440 if (score > badness) {
441 result = sk;
442 badness = score;
443 reuseport = sk->sk_reuseport;
444 if (reuseport) {
445 hash = udp_ehashfn(net, daddr, hnum,
446 saddr, sport);
447 matches = 1;
448 }
449 } else if (score == badness && reuseport) {
450 matches++;
451 if (((u64)hash * matches) >> 32 == 0)
452 result = sk;
453 hash = next_pseudo_random32(hash);
454 }
455 }
456 /*
457 * if the nulls value we got at the end of this lookup is
458 * not the expected one, we must restart lookup.
459 * We probably met an item that was moved to another chain.
460 */
461 if (get_nulls_value(node) != slot2)
462 goto begin;
463 if (result) {
464 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
465 result = NULL;
466 else if (unlikely(compute_score2(result, net, saddr, sport,
467 daddr, hnum, dif) < badness)) {
468 sock_put(result);
469 goto begin;
470 }
471 }
472 return result;
473 }
474
475 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
476 * harder than this. -DaveM
477 */
478 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
479 __be16 sport, __be32 daddr, __be16 dport,
480 int dif, struct udp_table *udptable)
481 {
482 struct sock *sk, *result;
483 struct hlist_nulls_node *node;
484 unsigned short hnum = ntohs(dport);
485 unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
486 struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
487 int score, badness, matches = 0, reuseport = 0;
488 u32 hash = 0;
489
490 rcu_read_lock();
491 if (hslot->count > 10) {
492 hash2 = udp4_portaddr_hash(net, daddr, hnum);
493 slot2 = hash2 & udptable->mask;
494 hslot2 = &udptable->hash2[slot2];
495 if (hslot->count < hslot2->count)
496 goto begin;
497
498 result = udp4_lib_lookup2(net, saddr, sport,
499 daddr, hnum, dif,
500 hslot2, slot2);
501 if (!result) {
502 hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
503 slot2 = hash2 & udptable->mask;
504 hslot2 = &udptable->hash2[slot2];
505 if (hslot->count < hslot2->count)
506 goto begin;
507
508 result = udp4_lib_lookup2(net, saddr, sport,
509 htonl(INADDR_ANY), hnum, dif,
510 hslot2, slot2);
511 }
512 rcu_read_unlock();
513 return result;
514 }
515 begin:
516 result = NULL;
517 badness = 0;
518 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
519 score = compute_score(sk, net, saddr, hnum, sport,
520 daddr, dport, dif);
521 if (score > badness) {
522 result = sk;
523 badness = score;
524 reuseport = sk->sk_reuseport;
525 if (reuseport) {
526 hash = udp_ehashfn(net, daddr, hnum,
527 saddr, sport);
528 matches = 1;
529 }
530 } else if (score == badness && reuseport) {
531 matches++;
532 if (((u64)hash * matches) >> 32 == 0)
533 result = sk;
534 hash = next_pseudo_random32(hash);
535 }
536 }
537 /*
538 * if the nulls value we got at the end of this lookup is
539 * not the expected one, we must restart lookup.
540 * We probably met an item that was moved to another chain.
541 */
542 if (get_nulls_value(node) != slot)
543 goto begin;
544
545 if (result) {
546 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
547 result = NULL;
548 else if (unlikely(compute_score(result, net, saddr, hnum, sport,
549 daddr, dport, dif) < badness)) {
550 sock_put(result);
551 goto begin;
552 }
553 }
554 rcu_read_unlock();
555 return result;
556 }
557 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
558
559 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
560 __be16 sport, __be16 dport,
561 struct udp_table *udptable)
562 {
563 const struct iphdr *iph = ip_hdr(skb);
564
565 return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
566 iph->daddr, dport, inet_iif(skb),
567 udptable);
568 }
569
570 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
571 __be32 daddr, __be16 dport, int dif)
572 {
573 return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
574 }
575 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
576
577 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
578 __be16 loc_port, __be32 loc_addr,
579 __be16 rmt_port, __be32 rmt_addr,
580 int dif, unsigned short hnum)
581 {
582 struct inet_sock *inet = inet_sk(sk);
583
584 if (!net_eq(sock_net(sk), net) ||
585 udp_sk(sk)->udp_port_hash != hnum ||
586 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
587 (inet->inet_dport != rmt_port && inet->inet_dport) ||
588 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
589 ipv6_only_sock(sk) ||
590 (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif))
591 return false;
592 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif))
593 return false;
594 return true;
595 }
596
597 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
598 __be16 loc_port, __be32 loc_addr,
599 __be16 rmt_port, __be32 rmt_addr,
600 int dif)
601 {
602 struct hlist_nulls_node *node;
603 struct sock *s = sk;
604 unsigned short hnum = ntohs(loc_port);
605
606 sk_nulls_for_each_from(s, node) {
607 if (__udp_is_mcast_sock(net, s,
608 loc_port, loc_addr,
609 rmt_port, rmt_addr,
610 dif, hnum))
611 goto found;
612 }
613 s = NULL;
614 found:
615 return s;
616 }
617
618 /*
619 * This routine is called by the ICMP module when it gets some
620 * sort of error condition. If err < 0 then the socket should
621 * be closed and the error returned to the user. If err > 0
622 * it's just the icmp type << 8 | icmp code.
623 * Header points to the ip header of the error packet. We move
624 * on past this. Then (as it used to claim before adjustment)
625 * header points to the first 8 bytes of the udp header. We need
626 * to find the appropriate port.
627 */
628
629 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
630 {
631 struct inet_sock *inet;
632 const struct iphdr *iph = (const struct iphdr *)skb->data;
633 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
634 const int type = icmp_hdr(skb)->type;
635 const int code = icmp_hdr(skb)->code;
636 struct sock *sk;
637 int harderr;
638 int err;
639 struct net *net = dev_net(skb->dev);
640
641 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
642 iph->saddr, uh->source, skb->dev->ifindex, udptable);
643 if (sk == NULL) {
644 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
645 return; /* No socket for error */
646 }
647
648 err = 0;
649 harderr = 0;
650 inet = inet_sk(sk);
651
652 switch (type) {
653 default:
654 case ICMP_TIME_EXCEEDED:
655 err = EHOSTUNREACH;
656 break;
657 case ICMP_SOURCE_QUENCH:
658 goto out;
659 case ICMP_PARAMETERPROB:
660 err = EPROTO;
661 harderr = 1;
662 break;
663 case ICMP_DEST_UNREACH:
664 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
665 ipv4_sk_update_pmtu(skb, sk, info);
666 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
667 err = EMSGSIZE;
668 harderr = 1;
669 break;
670 }
671 goto out;
672 }
673 err = EHOSTUNREACH;
674 if (code <= NR_ICMP_UNREACH) {
675 harderr = icmp_err_convert[code].fatal;
676 err = icmp_err_convert[code].errno;
677 }
678 break;
679 case ICMP_REDIRECT:
680 ipv4_sk_redirect(skb, sk);
681 goto out;
682 }
683
684 /*
685 * RFC1122: OK. Passes ICMP errors back to application, as per
686 * 4.1.3.3.
687 */
688 if (!inet->recverr) {
689 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
690 goto out;
691 } else
692 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
693
694 sk->sk_err = err;
695 sk->sk_error_report(sk);
696 out:
697 sock_put(sk);
698 }
699
700 void udp_err(struct sk_buff *skb, u32 info)
701 {
702 __udp4_lib_err(skb, info, &udp_table);
703 }
704
705 /*
706 * Throw away all pending data and cancel the corking. Socket is locked.
707 */
708 void udp_flush_pending_frames(struct sock *sk)
709 {
710 struct udp_sock *up = udp_sk(sk);
711
712 if (up->pending) {
713 up->len = 0;
714 up->pending = 0;
715 ip_flush_pending_frames(sk);
716 }
717 }
718 EXPORT_SYMBOL(udp_flush_pending_frames);
719
720 /**
721 * udp4_hwcsum - handle outgoing HW checksumming
722 * @skb: sk_buff containing the filled-in UDP header
723 * (checksum field must be zeroed out)
724 * @src: source IP address
725 * @dst: destination IP address
726 */
727 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
728 {
729 struct udphdr *uh = udp_hdr(skb);
730 struct sk_buff *frags = skb_shinfo(skb)->frag_list;
731 int offset = skb_transport_offset(skb);
732 int len = skb->len - offset;
733 int hlen = len;
734 __wsum csum = 0;
735
736 if (!frags) {
737 /*
738 * Only one fragment on the socket.
739 */
740 skb->csum_start = skb_transport_header(skb) - skb->head;
741 skb->csum_offset = offsetof(struct udphdr, check);
742 uh->check = ~csum_tcpudp_magic(src, dst, len,
743 IPPROTO_UDP, 0);
744 } else {
745 /*
746 * HW-checksum won't work as there are two or more
747 * fragments on the socket so that all csums of sk_buffs
748 * should be together
749 */
750 do {
751 csum = csum_add(csum, frags->csum);
752 hlen -= frags->len;
753 } while ((frags = frags->next));
754
755 csum = skb_checksum(skb, offset, hlen, csum);
756 skb->ip_summed = CHECKSUM_NONE;
757
758 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
759 if (uh->check == 0)
760 uh->check = CSUM_MANGLED_0;
761 }
762 }
763 EXPORT_SYMBOL_GPL(udp4_hwcsum);
764
765 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
766 * for the simple case like when setting the checksum for a UDP tunnel.
767 */
768 void udp_set_csum(bool nocheck, struct sk_buff *skb,
769 __be32 saddr, __be32 daddr, int len)
770 {
771 struct udphdr *uh = udp_hdr(skb);
772
773 if (nocheck)
774 uh->check = 0;
775 else if (skb_is_gso(skb))
776 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
777 else if (skb_dst(skb) && skb_dst(skb)->dev &&
778 (skb_dst(skb)->dev->features & NETIF_F_V4_CSUM)) {
779
780 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
781
782 skb->ip_summed = CHECKSUM_PARTIAL;
783 skb->csum_start = skb_transport_header(skb) - skb->head;
784 skb->csum_offset = offsetof(struct udphdr, check);
785 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
786 } else {
787 __wsum csum;
788
789 BUG_ON(skb->ip_summed == CHECKSUM_PARTIAL);
790
791 uh->check = 0;
792 csum = skb_checksum(skb, 0, len, 0);
793 uh->check = udp_v4_check(len, saddr, daddr, csum);
794 if (uh->check == 0)
795 uh->check = CSUM_MANGLED_0;
796
797 skb->ip_summed = CHECKSUM_UNNECESSARY;
798 }
799 }
800 EXPORT_SYMBOL(udp_set_csum);
801
802 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
803 {
804 struct sock *sk = skb->sk;
805 struct inet_sock *inet = inet_sk(sk);
806 struct udphdr *uh;
807 int err = 0;
808 int is_udplite = IS_UDPLITE(sk);
809 int offset = skb_transport_offset(skb);
810 int len = skb->len - offset;
811 __wsum csum = 0;
812
813 /*
814 * Create a UDP header
815 */
816 uh = udp_hdr(skb);
817 uh->source = inet->inet_sport;
818 uh->dest = fl4->fl4_dport;
819 uh->len = htons(len);
820 uh->check = 0;
821
822 if (is_udplite) /* UDP-Lite */
823 csum = udplite_csum(skb);
824
825 else if (sk->sk_no_check_tx) { /* UDP csum disabled */
826
827 skb->ip_summed = CHECKSUM_NONE;
828 goto send;
829
830 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
831
832 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
833 goto send;
834
835 } else
836 csum = udp_csum(skb);
837
838 /* add protocol-dependent pseudo-header */
839 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
840 sk->sk_protocol, csum);
841 if (uh->check == 0)
842 uh->check = CSUM_MANGLED_0;
843
844 send:
845 err = ip_send_skb(sock_net(sk), skb);
846 if (err) {
847 if (err == -ENOBUFS && !inet->recverr) {
848 UDP_INC_STATS_USER(sock_net(sk),
849 UDP_MIB_SNDBUFERRORS, is_udplite);
850 err = 0;
851 }
852 } else
853 UDP_INC_STATS_USER(sock_net(sk),
854 UDP_MIB_OUTDATAGRAMS, is_udplite);
855 return err;
856 }
857
858 /*
859 * Push out all pending data as one UDP datagram. Socket is locked.
860 */
861 int udp_push_pending_frames(struct sock *sk)
862 {
863 struct udp_sock *up = udp_sk(sk);
864 struct inet_sock *inet = inet_sk(sk);
865 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
866 struct sk_buff *skb;
867 int err = 0;
868
869 skb = ip_finish_skb(sk, fl4);
870 if (!skb)
871 goto out;
872
873 err = udp_send_skb(skb, fl4);
874
875 out:
876 up->len = 0;
877 up->pending = 0;
878 return err;
879 }
880 EXPORT_SYMBOL(udp_push_pending_frames);
881
882 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
883 size_t len)
884 {
885 struct inet_sock *inet = inet_sk(sk);
886 struct udp_sock *up = udp_sk(sk);
887 struct flowi4 fl4_stack;
888 struct flowi4 *fl4;
889 int ulen = len;
890 struct ipcm_cookie ipc;
891 struct rtable *rt = NULL;
892 int free = 0;
893 int connected = 0;
894 __be32 daddr, faddr, saddr;
895 __be16 dport;
896 u8 tos;
897 int err, is_udplite = IS_UDPLITE(sk);
898 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
899 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
900 struct sk_buff *skb;
901 struct ip_options_data opt_copy;
902
903 if (len > 0xFFFF)
904 return -EMSGSIZE;
905
906 /*
907 * Check the flags.
908 */
909
910 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
911 return -EOPNOTSUPP;
912
913 ipc.opt = NULL;
914 ipc.tx_flags = 0;
915 ipc.ttl = 0;
916 ipc.tos = -1;
917
918 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
919
920 fl4 = &inet->cork.fl.u.ip4;
921 if (up->pending) {
922 /*
923 * There are pending frames.
924 * The socket lock must be held while it's corked.
925 */
926 lock_sock(sk);
927 if (likely(up->pending)) {
928 if (unlikely(up->pending != AF_INET)) {
929 release_sock(sk);
930 return -EINVAL;
931 }
932 goto do_append_data;
933 }
934 release_sock(sk);
935 }
936 ulen += sizeof(struct udphdr);
937
938 /*
939 * Get and verify the address.
940 */
941 if (msg->msg_name) {
942 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
943 if (msg->msg_namelen < sizeof(*usin))
944 return -EINVAL;
945 if (usin->sin_family != AF_INET) {
946 if (usin->sin_family != AF_UNSPEC)
947 return -EAFNOSUPPORT;
948 }
949
950 daddr = usin->sin_addr.s_addr;
951 dport = usin->sin_port;
952 if (dport == 0)
953 return -EINVAL;
954 } else {
955 if (sk->sk_state != TCP_ESTABLISHED)
956 return -EDESTADDRREQ;
957 daddr = inet->inet_daddr;
958 dport = inet->inet_dport;
959 /* Open fast path for connected socket.
960 Route will not be used, if at least one option is set.
961 */
962 connected = 1;
963 }
964 ipc.addr = inet->inet_saddr;
965
966 ipc.oif = sk->sk_bound_dev_if;
967
968 sock_tx_timestamp(sk, &ipc.tx_flags);
969
970 if (msg->msg_controllen) {
971 err = ip_cmsg_send(sock_net(sk), msg, &ipc,
972 sk->sk_family == AF_INET6);
973 if (err)
974 return err;
975 if (ipc.opt)
976 free = 1;
977 connected = 0;
978 }
979 if (!ipc.opt) {
980 struct ip_options_rcu *inet_opt;
981
982 rcu_read_lock();
983 inet_opt = rcu_dereference(inet->inet_opt);
984 if (inet_opt) {
985 memcpy(&opt_copy, inet_opt,
986 sizeof(*inet_opt) + inet_opt->opt.optlen);
987 ipc.opt = &opt_copy.opt;
988 }
989 rcu_read_unlock();
990 }
991
992 saddr = ipc.addr;
993 ipc.addr = faddr = daddr;
994
995 if (ipc.opt && ipc.opt->opt.srr) {
996 if (!daddr)
997 return -EINVAL;
998 faddr = ipc.opt->opt.faddr;
999 connected = 0;
1000 }
1001 tos = get_rttos(&ipc, inet);
1002 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1003 (msg->msg_flags & MSG_DONTROUTE) ||
1004 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1005 tos |= RTO_ONLINK;
1006 connected = 0;
1007 }
1008
1009 if (ipv4_is_multicast(daddr)) {
1010 if (!ipc.oif)
1011 ipc.oif = inet->mc_index;
1012 if (!saddr)
1013 saddr = inet->mc_addr;
1014 connected = 0;
1015 } else if (!ipc.oif)
1016 ipc.oif = inet->uc_index;
1017
1018 if (connected)
1019 rt = (struct rtable *)sk_dst_check(sk, 0);
1020
1021 if (rt == NULL) {
1022 struct net *net = sock_net(sk);
1023
1024 fl4 = &fl4_stack;
1025 flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1026 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1027 inet_sk_flowi_flags(sk),
1028 faddr, saddr, dport, inet->inet_sport);
1029
1030 security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1031 rt = ip_route_output_flow(net, fl4, sk);
1032 if (IS_ERR(rt)) {
1033 err = PTR_ERR(rt);
1034 rt = NULL;
1035 if (err == -ENETUNREACH)
1036 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1037 goto out;
1038 }
1039
1040 err = -EACCES;
1041 if ((rt->rt_flags & RTCF_BROADCAST) &&
1042 !sock_flag(sk, SOCK_BROADCAST))
1043 goto out;
1044 if (connected)
1045 sk_dst_set(sk, dst_clone(&rt->dst));
1046 }
1047
1048 if (msg->msg_flags&MSG_CONFIRM)
1049 goto do_confirm;
1050 back_from_confirm:
1051
1052 saddr = fl4->saddr;
1053 if (!ipc.addr)
1054 daddr = ipc.addr = fl4->daddr;
1055
1056 /* Lockless fast path for the non-corking case. */
1057 if (!corkreq) {
1058 skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
1059 sizeof(struct udphdr), &ipc, &rt,
1060 msg->msg_flags);
1061 err = PTR_ERR(skb);
1062 if (!IS_ERR_OR_NULL(skb))
1063 err = udp_send_skb(skb, fl4);
1064 goto out;
1065 }
1066
1067 lock_sock(sk);
1068 if (unlikely(up->pending)) {
1069 /* The socket is already corked while preparing it. */
1070 /* ... which is an evident application bug. --ANK */
1071 release_sock(sk);
1072
1073 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
1074 err = -EINVAL;
1075 goto out;
1076 }
1077 /*
1078 * Now cork the socket to pend data.
1079 */
1080 fl4 = &inet->cork.fl.u.ip4;
1081 fl4->daddr = daddr;
1082 fl4->saddr = saddr;
1083 fl4->fl4_dport = dport;
1084 fl4->fl4_sport = inet->inet_sport;
1085 up->pending = AF_INET;
1086
1087 do_append_data:
1088 up->len += ulen;
1089 err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1090 sizeof(struct udphdr), &ipc, &rt,
1091 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1092 if (err)
1093 udp_flush_pending_frames(sk);
1094 else if (!corkreq)
1095 err = udp_push_pending_frames(sk);
1096 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1097 up->pending = 0;
1098 release_sock(sk);
1099
1100 out:
1101 ip_rt_put(rt);
1102 if (free)
1103 kfree(ipc.opt);
1104 if (!err)
1105 return len;
1106 /*
1107 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1108 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1109 * we don't have a good statistic (IpOutDiscards but it can be too many
1110 * things). We could add another new stat but at least for now that
1111 * seems like overkill.
1112 */
1113 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1114 UDP_INC_STATS_USER(sock_net(sk),
1115 UDP_MIB_SNDBUFERRORS, is_udplite);
1116 }
1117 return err;
1118
1119 do_confirm:
1120 dst_confirm(&rt->dst);
1121 if (!(msg->msg_flags&MSG_PROBE) || len)
1122 goto back_from_confirm;
1123 err = 0;
1124 goto out;
1125 }
1126 EXPORT_SYMBOL(udp_sendmsg);
1127
1128 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1129 size_t size, int flags)
1130 {
1131 struct inet_sock *inet = inet_sk(sk);
1132 struct udp_sock *up = udp_sk(sk);
1133 int ret;
1134
1135 if (flags & MSG_SENDPAGE_NOTLAST)
1136 flags |= MSG_MORE;
1137
1138 if (!up->pending) {
1139 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1140
1141 /* Call udp_sendmsg to specify destination address which
1142 * sendpage interface can't pass.
1143 * This will succeed only when the socket is connected.
1144 */
1145 ret = udp_sendmsg(NULL, sk, &msg, 0);
1146 if (ret < 0)
1147 return ret;
1148 }
1149
1150 lock_sock(sk);
1151
1152 if (unlikely(!up->pending)) {
1153 release_sock(sk);
1154
1155 LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1156 return -EINVAL;
1157 }
1158
1159 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1160 page, offset, size, flags);
1161 if (ret == -EOPNOTSUPP) {
1162 release_sock(sk);
1163 return sock_no_sendpage(sk->sk_socket, page, offset,
1164 size, flags);
1165 }
1166 if (ret < 0) {
1167 udp_flush_pending_frames(sk);
1168 goto out;
1169 }
1170
1171 up->len += size;
1172 if (!(up->corkflag || (flags&MSG_MORE)))
1173 ret = udp_push_pending_frames(sk);
1174 if (!ret)
1175 ret = size;
1176 out:
1177 release_sock(sk);
1178 return ret;
1179 }
1180
1181
1182 /**
1183 * first_packet_length - return length of first packet in receive queue
1184 * @sk: socket
1185 *
1186 * Drops all bad checksum frames, until a valid one is found.
1187 * Returns the length of found skb, or 0 if none is found.
1188 */
1189 static unsigned int first_packet_length(struct sock *sk)
1190 {
1191 struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1192 struct sk_buff *skb;
1193 unsigned int res;
1194
1195 __skb_queue_head_init(&list_kill);
1196
1197 spin_lock_bh(&rcvq->lock);
1198 while ((skb = skb_peek(rcvq)) != NULL &&
1199 udp_lib_checksum_complete(skb)) {
1200 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS,
1201 IS_UDPLITE(sk));
1202 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1203 IS_UDPLITE(sk));
1204 atomic_inc(&sk->sk_drops);
1205 __skb_unlink(skb, rcvq);
1206 __skb_queue_tail(&list_kill, skb);
1207 }
1208 res = skb ? skb->len : 0;
1209 spin_unlock_bh(&rcvq->lock);
1210
1211 if (!skb_queue_empty(&list_kill)) {
1212 bool slow = lock_sock_fast(sk);
1213
1214 __skb_queue_purge(&list_kill);
1215 sk_mem_reclaim_partial(sk);
1216 unlock_sock_fast(sk, slow);
1217 }
1218 return res;
1219 }
1220
1221 /*
1222 * IOCTL requests applicable to the UDP protocol
1223 */
1224
1225 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1226 {
1227 switch (cmd) {
1228 case SIOCOUTQ:
1229 {
1230 int amount = sk_wmem_alloc_get(sk);
1231
1232 return put_user(amount, (int __user *)arg);
1233 }
1234
1235 case SIOCINQ:
1236 {
1237 unsigned int amount = first_packet_length(sk);
1238
1239 if (amount)
1240 /*
1241 * We will only return the amount
1242 * of this packet since that is all
1243 * that will be read.
1244 */
1245 amount -= sizeof(struct udphdr);
1246
1247 return put_user(amount, (int __user *)arg);
1248 }
1249
1250 default:
1251 return -ENOIOCTLCMD;
1252 }
1253
1254 return 0;
1255 }
1256 EXPORT_SYMBOL(udp_ioctl);
1257
1258 /*
1259 * This should be easy, if there is something there we
1260 * return it, otherwise we block.
1261 */
1262
1263 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1264 size_t len, int noblock, int flags, int *addr_len)
1265 {
1266 struct inet_sock *inet = inet_sk(sk);
1267 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1268 struct sk_buff *skb;
1269 unsigned int ulen, copied;
1270 int peeked, off = 0;
1271 int err;
1272 int is_udplite = IS_UDPLITE(sk);
1273 bool slow;
1274
1275 if (flags & MSG_ERRQUEUE)
1276 return ip_recv_error(sk, msg, len, addr_len);
1277
1278 try_again:
1279 skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1280 &peeked, &off, &err);
1281 if (!skb)
1282 goto out;
1283
1284 ulen = skb->len - sizeof(struct udphdr);
1285 copied = len;
1286 if (copied > ulen)
1287 copied = ulen;
1288 else if (copied < ulen)
1289 msg->msg_flags |= MSG_TRUNC;
1290
1291 /*
1292 * If checksum is needed at all, try to do it while copying the
1293 * data. If the data is truncated, or if we only want a partial
1294 * coverage checksum (UDP-Lite), do it before the copy.
1295 */
1296
1297 if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1298 if (udp_lib_checksum_complete(skb))
1299 goto csum_copy_err;
1300 }
1301
1302 if (skb_csum_unnecessary(skb))
1303 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1304 msg->msg_iov, copied);
1305 else {
1306 err = skb_copy_and_csum_datagram_iovec(skb,
1307 sizeof(struct udphdr),
1308 msg->msg_iov);
1309
1310 if (err == -EINVAL)
1311 goto csum_copy_err;
1312 }
1313
1314 if (unlikely(err)) {
1315 trace_kfree_skb(skb, udp_recvmsg);
1316 if (!peeked) {
1317 atomic_inc(&sk->sk_drops);
1318 UDP_INC_STATS_USER(sock_net(sk),
1319 UDP_MIB_INERRORS, is_udplite);
1320 }
1321 goto out_free;
1322 }
1323
1324 if (!peeked)
1325 UDP_INC_STATS_USER(sock_net(sk),
1326 UDP_MIB_INDATAGRAMS, is_udplite);
1327
1328 sock_recv_ts_and_drops(msg, sk, skb);
1329
1330 /* Copy the address. */
1331 if (sin) {
1332 sin->sin_family = AF_INET;
1333 sin->sin_port = udp_hdr(skb)->source;
1334 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1335 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1336 *addr_len = sizeof(*sin);
1337 }
1338 if (inet->cmsg_flags)
1339 ip_cmsg_recv(msg, skb);
1340
1341 err = copied;
1342 if (flags & MSG_TRUNC)
1343 err = ulen;
1344
1345 out_free:
1346 skb_free_datagram_locked(sk, skb);
1347 out:
1348 return err;
1349
1350 csum_copy_err:
1351 slow = lock_sock_fast(sk);
1352 if (!skb_kill_datagram(sk, skb, flags)) {
1353 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1354 UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1355 }
1356 unlock_sock_fast(sk, slow);
1357
1358 if (noblock)
1359 return -EAGAIN;
1360
1361 /* starting over for a new packet */
1362 msg->msg_flags &= ~MSG_TRUNC;
1363 goto try_again;
1364 }
1365
1366
1367 int udp_disconnect(struct sock *sk, int flags)
1368 {
1369 struct inet_sock *inet = inet_sk(sk);
1370 /*
1371 * 1003.1g - break association.
1372 */
1373
1374 sk->sk_state = TCP_CLOSE;
1375 inet->inet_daddr = 0;
1376 inet->inet_dport = 0;
1377 sock_rps_reset_rxhash(sk);
1378 sk->sk_bound_dev_if = 0;
1379 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1380 inet_reset_saddr(sk);
1381
1382 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1383 sk->sk_prot->unhash(sk);
1384 inet->inet_sport = 0;
1385 }
1386 sk_dst_reset(sk);
1387 return 0;
1388 }
1389 EXPORT_SYMBOL(udp_disconnect);
1390
1391 void udp_lib_unhash(struct sock *sk)
1392 {
1393 if (sk_hashed(sk)) {
1394 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1395 struct udp_hslot *hslot, *hslot2;
1396
1397 hslot = udp_hashslot(udptable, sock_net(sk),
1398 udp_sk(sk)->udp_port_hash);
1399 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1400
1401 spin_lock_bh(&hslot->lock);
1402 if (sk_nulls_del_node_init_rcu(sk)) {
1403 hslot->count--;
1404 inet_sk(sk)->inet_num = 0;
1405 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1406
1407 spin_lock(&hslot2->lock);
1408 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1409 hslot2->count--;
1410 spin_unlock(&hslot2->lock);
1411 }
1412 spin_unlock_bh(&hslot->lock);
1413 }
1414 }
1415 EXPORT_SYMBOL(udp_lib_unhash);
1416
1417 /*
1418 * inet_rcv_saddr was changed, we must rehash secondary hash
1419 */
1420 void udp_lib_rehash(struct sock *sk, u16 newhash)
1421 {
1422 if (sk_hashed(sk)) {
1423 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1424 struct udp_hslot *hslot, *hslot2, *nhslot2;
1425
1426 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1427 nhslot2 = udp_hashslot2(udptable, newhash);
1428 udp_sk(sk)->udp_portaddr_hash = newhash;
1429 if (hslot2 != nhslot2) {
1430 hslot = udp_hashslot(udptable, sock_net(sk),
1431 udp_sk(sk)->udp_port_hash);
1432 /* we must lock primary chain too */
1433 spin_lock_bh(&hslot->lock);
1434
1435 spin_lock(&hslot2->lock);
1436 hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1437 hslot2->count--;
1438 spin_unlock(&hslot2->lock);
1439
1440 spin_lock(&nhslot2->lock);
1441 hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1442 &nhslot2->head);
1443 nhslot2->count++;
1444 spin_unlock(&nhslot2->lock);
1445
1446 spin_unlock_bh(&hslot->lock);
1447 }
1448 }
1449 }
1450 EXPORT_SYMBOL(udp_lib_rehash);
1451
1452 static void udp_v4_rehash(struct sock *sk)
1453 {
1454 u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1455 inet_sk(sk)->inet_rcv_saddr,
1456 inet_sk(sk)->inet_num);
1457 udp_lib_rehash(sk, new_hash);
1458 }
1459
1460 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1461 {
1462 int rc;
1463
1464 if (inet_sk(sk)->inet_daddr) {
1465 sock_rps_save_rxhash(sk, skb);
1466 sk_mark_napi_id(sk, skb);
1467 }
1468
1469 rc = sock_queue_rcv_skb(sk, skb);
1470 if (rc < 0) {
1471 int is_udplite = IS_UDPLITE(sk);
1472
1473 /* Note that an ENOMEM error is charged twice */
1474 if (rc == -ENOMEM)
1475 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1476 is_udplite);
1477 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1478 kfree_skb(skb);
1479 trace_udp_fail_queue_rcv_skb(rc, sk);
1480 return -1;
1481 }
1482
1483 return 0;
1484
1485 }
1486
1487 static struct static_key udp_encap_needed __read_mostly;
1488 void udp_encap_enable(void)
1489 {
1490 if (!static_key_enabled(&udp_encap_needed))
1491 static_key_slow_inc(&udp_encap_needed);
1492 }
1493 EXPORT_SYMBOL(udp_encap_enable);
1494
1495 /* returns:
1496 * -1: error
1497 * 0: success
1498 * >0: "udp encap" protocol resubmission
1499 *
1500 * Note that in the success and error cases, the skb is assumed to
1501 * have either been requeued or freed.
1502 */
1503 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1504 {
1505 struct udp_sock *up = udp_sk(sk);
1506 int rc;
1507 int is_udplite = IS_UDPLITE(sk);
1508
1509 /*
1510 * Charge it to the socket, dropping if the queue is full.
1511 */
1512 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1513 goto drop;
1514 nf_reset(skb);
1515
1516 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1517 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1518
1519 /*
1520 * This is an encapsulation socket so pass the skb to
1521 * the socket's udp_encap_rcv() hook. Otherwise, just
1522 * fall through and pass this up the UDP socket.
1523 * up->encap_rcv() returns the following value:
1524 * =0 if skb was successfully passed to the encap
1525 * handler or was discarded by it.
1526 * >0 if skb should be passed on to UDP.
1527 * <0 if skb should be resubmitted as proto -N
1528 */
1529
1530 /* if we're overly short, let UDP handle it */
1531 encap_rcv = ACCESS_ONCE(up->encap_rcv);
1532 if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1533 int ret;
1534
1535 /* Verify checksum before giving to encap */
1536 if (udp_lib_checksum_complete(skb))
1537 goto csum_error;
1538
1539 ret = encap_rcv(sk, skb);
1540 if (ret <= 0) {
1541 UDP_INC_STATS_BH(sock_net(sk),
1542 UDP_MIB_INDATAGRAMS,
1543 is_udplite);
1544 return -ret;
1545 }
1546 }
1547
1548 /* FALLTHROUGH -- it's a UDP Packet */
1549 }
1550
1551 /*
1552 * UDP-Lite specific tests, ignored on UDP sockets
1553 */
1554 if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1555
1556 /*
1557 * MIB statistics other than incrementing the error count are
1558 * disabled for the following two types of errors: these depend
1559 * on the application settings, not on the functioning of the
1560 * protocol stack as such.
1561 *
1562 * RFC 3828 here recommends (sec 3.3): "There should also be a
1563 * way ... to ... at least let the receiving application block
1564 * delivery of packets with coverage values less than a value
1565 * provided by the application."
1566 */
1567 if (up->pcrlen == 0) { /* full coverage was set */
1568 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1569 UDP_SKB_CB(skb)->cscov, skb->len);
1570 goto drop;
1571 }
1572 /* The next case involves violating the min. coverage requested
1573 * by the receiver. This is subtle: if receiver wants x and x is
1574 * greater than the buffersize/MTU then receiver will complain
1575 * that it wants x while sender emits packets of smaller size y.
1576 * Therefore the above ...()->partial_cov statement is essential.
1577 */
1578 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1579 LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1580 UDP_SKB_CB(skb)->cscov, up->pcrlen);
1581 goto drop;
1582 }
1583 }
1584
1585 if (rcu_access_pointer(sk->sk_filter) &&
1586 udp_lib_checksum_complete(skb))
1587 goto csum_error;
1588
1589
1590 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
1591 goto drop;
1592
1593 rc = 0;
1594
1595 ipv4_pktinfo_prepare(sk, skb);
1596 bh_lock_sock(sk);
1597 if (!sock_owned_by_user(sk))
1598 rc = __udp_queue_rcv_skb(sk, skb);
1599 else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1600 bh_unlock_sock(sk);
1601 goto drop;
1602 }
1603 bh_unlock_sock(sk);
1604
1605 return rc;
1606
1607 csum_error:
1608 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1609 drop:
1610 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1611 atomic_inc(&sk->sk_drops);
1612 kfree_skb(skb);
1613 return -1;
1614 }
1615
1616
1617 static void flush_stack(struct sock **stack, unsigned int count,
1618 struct sk_buff *skb, unsigned int final)
1619 {
1620 unsigned int i;
1621 struct sk_buff *skb1 = NULL;
1622 struct sock *sk;
1623
1624 for (i = 0; i < count; i++) {
1625 sk = stack[i];
1626 if (likely(skb1 == NULL))
1627 skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1628
1629 if (!skb1) {
1630 atomic_inc(&sk->sk_drops);
1631 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1632 IS_UDPLITE(sk));
1633 UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1634 IS_UDPLITE(sk));
1635 }
1636
1637 if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1638 skb1 = NULL;
1639 }
1640 if (unlikely(skb1))
1641 kfree_skb(skb1);
1642 }
1643
1644 /* For TCP sockets, sk_rx_dst is protected by socket lock
1645 * For UDP, we use xchg() to guard against concurrent changes.
1646 */
1647 static void udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1648 {
1649 struct dst_entry *old;
1650
1651 dst_hold(dst);
1652 old = xchg(&sk->sk_rx_dst, dst);
1653 dst_release(old);
1654 }
1655
1656 /*
1657 * Multicasts and broadcasts go to each listener.
1658 *
1659 * Note: called only from the BH handler context.
1660 */
1661 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1662 struct udphdr *uh,
1663 __be32 saddr, __be32 daddr,
1664 struct udp_table *udptable)
1665 {
1666 struct sock *sk, *stack[256 / sizeof(struct sock *)];
1667 struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1668 int dif;
1669 unsigned int i, count = 0;
1670
1671 spin_lock(&hslot->lock);
1672 sk = sk_nulls_head(&hslot->head);
1673 dif = skb->dev->ifindex;
1674 sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1675 while (sk) {
1676 stack[count++] = sk;
1677 sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1678 daddr, uh->source, saddr, dif);
1679 if (unlikely(count == ARRAY_SIZE(stack))) {
1680 if (!sk)
1681 break;
1682 flush_stack(stack, count, skb, ~0);
1683 count = 0;
1684 }
1685 }
1686 /*
1687 * before releasing chain lock, we must take a reference on sockets
1688 */
1689 for (i = 0; i < count; i++)
1690 sock_hold(stack[i]);
1691
1692 spin_unlock(&hslot->lock);
1693
1694 /*
1695 * do the slow work with no lock held
1696 */
1697 if (count) {
1698 flush_stack(stack, count, skb, count - 1);
1699
1700 for (i = 0; i < count; i++)
1701 sock_put(stack[i]);
1702 } else {
1703 kfree_skb(skb);
1704 }
1705 return 0;
1706 }
1707
1708 /* Initialize UDP checksum. If exited with zero value (success),
1709 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1710 * Otherwise, csum completion requires chacksumming packet body,
1711 * including udp header and folding it to skb->csum.
1712 */
1713 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1714 int proto)
1715 {
1716 int err;
1717
1718 UDP_SKB_CB(skb)->partial_cov = 0;
1719 UDP_SKB_CB(skb)->cscov = skb->len;
1720
1721 if (proto == IPPROTO_UDPLITE) {
1722 err = udplite_checksum_init(skb, uh);
1723 if (err)
1724 return err;
1725 }
1726
1727 return skb_checksum_init_zero_check(skb, proto, uh->check,
1728 inet_compute_pseudo);
1729 }
1730
1731 /*
1732 * All we need to do is get the socket, and then do a checksum.
1733 */
1734
1735 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1736 int proto)
1737 {
1738 struct sock *sk;
1739 struct udphdr *uh;
1740 unsigned short ulen;
1741 struct rtable *rt = skb_rtable(skb);
1742 __be32 saddr, daddr;
1743 struct net *net = dev_net(skb->dev);
1744
1745 /*
1746 * Validate the packet.
1747 */
1748 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1749 goto drop; /* No space for header. */
1750
1751 uh = udp_hdr(skb);
1752 ulen = ntohs(uh->len);
1753 saddr = ip_hdr(skb)->saddr;
1754 daddr = ip_hdr(skb)->daddr;
1755
1756 if (ulen > skb->len)
1757 goto short_packet;
1758
1759 if (proto == IPPROTO_UDP) {
1760 /* UDP validates ulen. */
1761 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1762 goto short_packet;
1763 uh = udp_hdr(skb);
1764 }
1765
1766 if (udp4_csum_init(skb, uh, proto))
1767 goto csum_error;
1768
1769 sk = skb_steal_sock(skb);
1770 if (sk) {
1771 struct dst_entry *dst = skb_dst(skb);
1772 int ret;
1773
1774 if (unlikely(sk->sk_rx_dst != dst))
1775 udp_sk_rx_dst_set(sk, dst);
1776
1777 ret = udp_queue_rcv_skb(sk, skb);
1778 sock_put(sk);
1779 /* a return value > 0 means to resubmit the input, but
1780 * it wants the return to be -protocol, or 0
1781 */
1782 if (ret > 0)
1783 return -ret;
1784 return 0;
1785 } else {
1786 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
1787 return __udp4_lib_mcast_deliver(net, skb, uh,
1788 saddr, daddr, udptable);
1789
1790 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1791 }
1792
1793 if (sk != NULL) {
1794 int ret;
1795
1796 ret = udp_queue_rcv_skb(sk, skb);
1797 sock_put(sk);
1798
1799 /* a return value > 0 means to resubmit the input, but
1800 * it wants the return to be -protocol, or 0
1801 */
1802 if (ret > 0)
1803 return -ret;
1804 return 0;
1805 }
1806
1807 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1808 goto drop;
1809 nf_reset(skb);
1810
1811 /* No socket. Drop packet silently, if checksum is wrong */
1812 if (udp_lib_checksum_complete(skb))
1813 goto csum_error;
1814
1815 UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
1816 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
1817
1818 /*
1819 * Hmm. We got an UDP packet to a port to which we
1820 * don't wanna listen. Ignore it.
1821 */
1822 kfree_skb(skb);
1823 return 0;
1824
1825 short_packet:
1826 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1827 proto == IPPROTO_UDPLITE ? "Lite" : "",
1828 &saddr, ntohs(uh->source),
1829 ulen, skb->len,
1830 &daddr, ntohs(uh->dest));
1831 goto drop;
1832
1833 csum_error:
1834 /*
1835 * RFC1122: OK. Discards the bad packet silently (as far as
1836 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1837 */
1838 LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1839 proto == IPPROTO_UDPLITE ? "Lite" : "",
1840 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1841 ulen);
1842 UDP_INC_STATS_BH(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
1843 drop:
1844 UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
1845 kfree_skb(skb);
1846 return 0;
1847 }
1848
1849 /* We can only early demux multicast if there is a single matching socket.
1850 * If more than one socket found returns NULL
1851 */
1852 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
1853 __be16 loc_port, __be32 loc_addr,
1854 __be16 rmt_port, __be32 rmt_addr,
1855 int dif)
1856 {
1857 struct sock *sk, *result;
1858 struct hlist_nulls_node *node;
1859 unsigned short hnum = ntohs(loc_port);
1860 unsigned int count, slot = udp_hashfn(net, hnum, udp_table.mask);
1861 struct udp_hslot *hslot = &udp_table.hash[slot];
1862
1863 rcu_read_lock();
1864 begin:
1865 count = 0;
1866 result = NULL;
1867 sk_nulls_for_each_rcu(sk, node, &hslot->head) {
1868 if (__udp_is_mcast_sock(net, sk,
1869 loc_port, loc_addr,
1870 rmt_port, rmt_addr,
1871 dif, hnum)) {
1872 result = sk;
1873 ++count;
1874 }
1875 }
1876 /*
1877 * if the nulls value we got at the end of this lookup is
1878 * not the expected one, we must restart lookup.
1879 * We probably met an item that was moved to another chain.
1880 */
1881 if (get_nulls_value(node) != slot)
1882 goto begin;
1883
1884 if (result) {
1885 if (count != 1 ||
1886 unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1887 result = NULL;
1888 else if (unlikely(!__udp_is_mcast_sock(net, result,
1889 loc_port, loc_addr,
1890 rmt_port, rmt_addr,
1891 dif, hnum))) {
1892 sock_put(result);
1893 result = NULL;
1894 }
1895 }
1896 rcu_read_unlock();
1897 return result;
1898 }
1899
1900 /* For unicast we should only early demux connected sockets or we can
1901 * break forwarding setups. The chains here can be long so only check
1902 * if the first socket is an exact match and if not move on.
1903 */
1904 static struct sock *__udp4_lib_demux_lookup(struct net *net,
1905 __be16 loc_port, __be32 loc_addr,
1906 __be16 rmt_port, __be32 rmt_addr,
1907 int dif)
1908 {
1909 struct sock *sk, *result;
1910 struct hlist_nulls_node *node;
1911 unsigned short hnum = ntohs(loc_port);
1912 unsigned int hash2 = udp4_portaddr_hash(net, loc_addr, hnum);
1913 unsigned int slot2 = hash2 & udp_table.mask;
1914 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
1915 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
1916 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
1917
1918 rcu_read_lock();
1919 result = NULL;
1920 udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
1921 if (INET_MATCH(sk, net, acookie,
1922 rmt_addr, loc_addr, ports, dif))
1923 result = sk;
1924 /* Only check first socket in chain */
1925 break;
1926 }
1927
1928 if (result) {
1929 if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
1930 result = NULL;
1931 else if (unlikely(!INET_MATCH(sk, net, acookie,
1932 rmt_addr, loc_addr,
1933 ports, dif))) {
1934 sock_put(result);
1935 result = NULL;
1936 }
1937 }
1938 rcu_read_unlock();
1939 return result;
1940 }
1941
1942 void udp_v4_early_demux(struct sk_buff *skb)
1943 {
1944 struct net *net = dev_net(skb->dev);
1945 const struct iphdr *iph;
1946 const struct udphdr *uh;
1947 struct sock *sk;
1948 struct dst_entry *dst;
1949 int dif = skb->dev->ifindex;
1950
1951 /* validate the packet */
1952 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
1953 return;
1954
1955 iph = ip_hdr(skb);
1956 uh = udp_hdr(skb);
1957
1958 if (skb->pkt_type == PACKET_BROADCAST ||
1959 skb->pkt_type == PACKET_MULTICAST)
1960 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
1961 uh->source, iph->saddr, dif);
1962 else if (skb->pkt_type == PACKET_HOST)
1963 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
1964 uh->source, iph->saddr, dif);
1965 else
1966 return;
1967
1968 if (!sk)
1969 return;
1970
1971 skb->sk = sk;
1972 skb->destructor = sock_edemux;
1973 dst = sk->sk_rx_dst;
1974
1975 if (dst)
1976 dst = dst_check(dst, 0);
1977 if (dst)
1978 skb_dst_set_noref(skb, dst);
1979 }
1980
1981 int udp_rcv(struct sk_buff *skb)
1982 {
1983 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1984 }
1985
1986 void udp_destroy_sock(struct sock *sk)
1987 {
1988 struct udp_sock *up = udp_sk(sk);
1989 bool slow = lock_sock_fast(sk);
1990 udp_flush_pending_frames(sk);
1991 unlock_sock_fast(sk, slow);
1992 if (static_key_false(&udp_encap_needed) && up->encap_type) {
1993 void (*encap_destroy)(struct sock *sk);
1994 encap_destroy = ACCESS_ONCE(up->encap_destroy);
1995 if (encap_destroy)
1996 encap_destroy(sk);
1997 }
1998 }
1999
2000 /*
2001 * Socket option code for UDP
2002 */
2003 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2004 char __user *optval, unsigned int optlen,
2005 int (*push_pending_frames)(struct sock *))
2006 {
2007 struct udp_sock *up = udp_sk(sk);
2008 int val, valbool;
2009 int err = 0;
2010 int is_udplite = IS_UDPLITE(sk);
2011
2012 if (optlen < sizeof(int))
2013 return -EINVAL;
2014
2015 if (get_user(val, (int __user *)optval))
2016 return -EFAULT;
2017
2018 valbool = val ? 1 : 0;
2019
2020 switch (optname) {
2021 case UDP_CORK:
2022 if (val != 0) {
2023 up->corkflag = 1;
2024 } else {
2025 up->corkflag = 0;
2026 lock_sock(sk);
2027 (*push_pending_frames)(sk);
2028 release_sock(sk);
2029 }
2030 break;
2031
2032 case UDP_ENCAP:
2033 switch (val) {
2034 case 0:
2035 case UDP_ENCAP_ESPINUDP:
2036 case UDP_ENCAP_ESPINUDP_NON_IKE:
2037 up->encap_rcv = xfrm4_udp_encap_rcv;
2038 /* FALLTHROUGH */
2039 case UDP_ENCAP_L2TPINUDP:
2040 up->encap_type = val;
2041 udp_encap_enable();
2042 break;
2043 default:
2044 err = -ENOPROTOOPT;
2045 break;
2046 }
2047 break;
2048
2049 case UDP_NO_CHECK6_TX:
2050 up->no_check6_tx = valbool;
2051 break;
2052
2053 case UDP_NO_CHECK6_RX:
2054 up->no_check6_rx = valbool;
2055 break;
2056
2057 /*
2058 * UDP-Lite's partial checksum coverage (RFC 3828).
2059 */
2060 /* The sender sets actual checksum coverage length via this option.
2061 * The case coverage > packet length is handled by send module. */
2062 case UDPLITE_SEND_CSCOV:
2063 if (!is_udplite) /* Disable the option on UDP sockets */
2064 return -ENOPROTOOPT;
2065 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2066 val = 8;
2067 else if (val > USHRT_MAX)
2068 val = USHRT_MAX;
2069 up->pcslen = val;
2070 up->pcflag |= UDPLITE_SEND_CC;
2071 break;
2072
2073 /* The receiver specifies a minimum checksum coverage value. To make
2074 * sense, this should be set to at least 8 (as done below). If zero is
2075 * used, this again means full checksum coverage. */
2076 case UDPLITE_RECV_CSCOV:
2077 if (!is_udplite) /* Disable the option on UDP sockets */
2078 return -ENOPROTOOPT;
2079 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2080 val = 8;
2081 else if (val > USHRT_MAX)
2082 val = USHRT_MAX;
2083 up->pcrlen = val;
2084 up->pcflag |= UDPLITE_RECV_CC;
2085 break;
2086
2087 default:
2088 err = -ENOPROTOOPT;
2089 break;
2090 }
2091
2092 return err;
2093 }
2094 EXPORT_SYMBOL(udp_lib_setsockopt);
2095
2096 int udp_setsockopt(struct sock *sk, int level, int optname,
2097 char __user *optval, unsigned int optlen)
2098 {
2099 if (level == SOL_UDP || level == SOL_UDPLITE)
2100 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2101 udp_push_pending_frames);
2102 return ip_setsockopt(sk, level, optname, optval, optlen);
2103 }
2104
2105 #ifdef CONFIG_COMPAT
2106 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2107 char __user *optval, unsigned int optlen)
2108 {
2109 if (level == SOL_UDP || level == SOL_UDPLITE)
2110 return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2111 udp_push_pending_frames);
2112 return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2113 }
2114 #endif
2115
2116 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2117 char __user *optval, int __user *optlen)
2118 {
2119 struct udp_sock *up = udp_sk(sk);
2120 int val, len;
2121
2122 if (get_user(len, optlen))
2123 return -EFAULT;
2124
2125 len = min_t(unsigned int, len, sizeof(int));
2126
2127 if (len < 0)
2128 return -EINVAL;
2129
2130 switch (optname) {
2131 case UDP_CORK:
2132 val = up->corkflag;
2133 break;
2134
2135 case UDP_ENCAP:
2136 val = up->encap_type;
2137 break;
2138
2139 case UDP_NO_CHECK6_TX:
2140 val = up->no_check6_tx;
2141 break;
2142
2143 case UDP_NO_CHECK6_RX:
2144 val = up->no_check6_rx;
2145 break;
2146
2147 /* The following two cannot be changed on UDP sockets, the return is
2148 * always 0 (which corresponds to the full checksum coverage of UDP). */
2149 case UDPLITE_SEND_CSCOV:
2150 val = up->pcslen;
2151 break;
2152
2153 case UDPLITE_RECV_CSCOV:
2154 val = up->pcrlen;
2155 break;
2156
2157 default:
2158 return -ENOPROTOOPT;
2159 }
2160
2161 if (put_user(len, optlen))
2162 return -EFAULT;
2163 if (copy_to_user(optval, &val, len))
2164 return -EFAULT;
2165 return 0;
2166 }
2167 EXPORT_SYMBOL(udp_lib_getsockopt);
2168
2169 int udp_getsockopt(struct sock *sk, int level, int optname,
2170 char __user *optval, int __user *optlen)
2171 {
2172 if (level == SOL_UDP || level == SOL_UDPLITE)
2173 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2174 return ip_getsockopt(sk, level, optname, optval, optlen);
2175 }
2176
2177 #ifdef CONFIG_COMPAT
2178 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2179 char __user *optval, int __user *optlen)
2180 {
2181 if (level == SOL_UDP || level == SOL_UDPLITE)
2182 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2183 return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2184 }
2185 #endif
2186 /**
2187 * udp_poll - wait for a UDP event.
2188 * @file - file struct
2189 * @sock - socket
2190 * @wait - poll table
2191 *
2192 * This is same as datagram poll, except for the special case of
2193 * blocking sockets. If application is using a blocking fd
2194 * and a packet with checksum error is in the queue;
2195 * then it could get return from select indicating data available
2196 * but then block when reading it. Add special case code
2197 * to work around these arguably broken applications.
2198 */
2199 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2200 {
2201 unsigned int mask = datagram_poll(file, sock, wait);
2202 struct sock *sk = sock->sk;
2203
2204 sock_rps_record_flow(sk);
2205
2206 /* Check for false positives due to checksum errors */
2207 if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2208 !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
2209 mask &= ~(POLLIN | POLLRDNORM);
2210
2211 return mask;
2212
2213 }
2214 EXPORT_SYMBOL(udp_poll);
2215
2216 struct proto udp_prot = {
2217 .name = "UDP",
2218 .owner = THIS_MODULE,
2219 .close = udp_lib_close,
2220 .connect = ip4_datagram_connect,
2221 .disconnect = udp_disconnect,
2222 .ioctl = udp_ioctl,
2223 .destroy = udp_destroy_sock,
2224 .setsockopt = udp_setsockopt,
2225 .getsockopt = udp_getsockopt,
2226 .sendmsg = udp_sendmsg,
2227 .recvmsg = udp_recvmsg,
2228 .sendpage = udp_sendpage,
2229 .backlog_rcv = __udp_queue_rcv_skb,
2230 .release_cb = ip4_datagram_release_cb,
2231 .hash = udp_lib_hash,
2232 .unhash = udp_lib_unhash,
2233 .rehash = udp_v4_rehash,
2234 .get_port = udp_v4_get_port,
2235 .memory_allocated = &udp_memory_allocated,
2236 .sysctl_mem = sysctl_udp_mem,
2237 .sysctl_wmem = &sysctl_udp_wmem_min,
2238 .sysctl_rmem = &sysctl_udp_rmem_min,
2239 .obj_size = sizeof(struct udp_sock),
2240 .slab_flags = SLAB_DESTROY_BY_RCU,
2241 .h.udp_table = &udp_table,
2242 #ifdef CONFIG_COMPAT
2243 .compat_setsockopt = compat_udp_setsockopt,
2244 .compat_getsockopt = compat_udp_getsockopt,
2245 #endif
2246 .clear_sk = sk_prot_clear_portaddr_nulls,
2247 };
2248 EXPORT_SYMBOL(udp_prot);
2249
2250 /* ------------------------------------------------------------------------ */
2251 #ifdef CONFIG_PROC_FS
2252
2253 static struct sock *udp_get_first(struct seq_file *seq, int start)
2254 {
2255 struct sock *sk;
2256 struct udp_iter_state *state = seq->private;
2257 struct net *net = seq_file_net(seq);
2258
2259 for (state->bucket = start; state->bucket <= state->udp_table->mask;
2260 ++state->bucket) {
2261 struct hlist_nulls_node *node;
2262 struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2263
2264 if (hlist_nulls_empty(&hslot->head))
2265 continue;
2266
2267 spin_lock_bh(&hslot->lock);
2268 sk_nulls_for_each(sk, node, &hslot->head) {
2269 if (!net_eq(sock_net(sk), net))
2270 continue;
2271 if (sk->sk_family == state->family)
2272 goto found;
2273 }
2274 spin_unlock_bh(&hslot->lock);
2275 }
2276 sk = NULL;
2277 found:
2278 return sk;
2279 }
2280
2281 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2282 {
2283 struct udp_iter_state *state = seq->private;
2284 struct net *net = seq_file_net(seq);
2285
2286 do {
2287 sk = sk_nulls_next(sk);
2288 } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2289
2290 if (!sk) {
2291 if (state->bucket <= state->udp_table->mask)
2292 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2293 return udp_get_first(seq, state->bucket + 1);
2294 }
2295 return sk;
2296 }
2297
2298 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2299 {
2300 struct sock *sk = udp_get_first(seq, 0);
2301
2302 if (sk)
2303 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2304 --pos;
2305 return pos ? NULL : sk;
2306 }
2307
2308 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2309 {
2310 struct udp_iter_state *state = seq->private;
2311 state->bucket = MAX_UDP_PORTS;
2312
2313 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2314 }
2315
2316 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2317 {
2318 struct sock *sk;
2319
2320 if (v == SEQ_START_TOKEN)
2321 sk = udp_get_idx(seq, 0);
2322 else
2323 sk = udp_get_next(seq, v);
2324
2325 ++*pos;
2326 return sk;
2327 }
2328
2329 static void udp_seq_stop(struct seq_file *seq, void *v)
2330 {
2331 struct udp_iter_state *state = seq->private;
2332
2333 if (state->bucket <= state->udp_table->mask)
2334 spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2335 }
2336
2337 int udp_seq_open(struct inode *inode, struct file *file)
2338 {
2339 struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2340 struct udp_iter_state *s;
2341 int err;
2342
2343 err = seq_open_net(inode, file, &afinfo->seq_ops,
2344 sizeof(struct udp_iter_state));
2345 if (err < 0)
2346 return err;
2347
2348 s = ((struct seq_file *)file->private_data)->private;
2349 s->family = afinfo->family;
2350 s->udp_table = afinfo->udp_table;
2351 return err;
2352 }
2353 EXPORT_SYMBOL(udp_seq_open);
2354
2355 /* ------------------------------------------------------------------------ */
2356 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2357 {
2358 struct proc_dir_entry *p;
2359 int rc = 0;
2360
2361 afinfo->seq_ops.start = udp_seq_start;
2362 afinfo->seq_ops.next = udp_seq_next;
2363 afinfo->seq_ops.stop = udp_seq_stop;
2364
2365 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2366 afinfo->seq_fops, afinfo);
2367 if (!p)
2368 rc = -ENOMEM;
2369 return rc;
2370 }
2371 EXPORT_SYMBOL(udp_proc_register);
2372
2373 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2374 {
2375 remove_proc_entry(afinfo->name, net->proc_net);
2376 }
2377 EXPORT_SYMBOL(udp_proc_unregister);
2378
2379 /* ------------------------------------------------------------------------ */
2380 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2381 int bucket)
2382 {
2383 struct inet_sock *inet = inet_sk(sp);
2384 __be32 dest = inet->inet_daddr;
2385 __be32 src = inet->inet_rcv_saddr;
2386 __u16 destp = ntohs(inet->inet_dport);
2387 __u16 srcp = ntohs(inet->inet_sport);
2388
2389 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2390 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2391 bucket, src, srcp, dest, destp, sp->sk_state,
2392 sk_wmem_alloc_get(sp),
2393 sk_rmem_alloc_get(sp),
2394 0, 0L, 0,
2395 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2396 0, sock_i_ino(sp),
2397 atomic_read(&sp->sk_refcnt), sp,
2398 atomic_read(&sp->sk_drops));
2399 }
2400
2401 int udp4_seq_show(struct seq_file *seq, void *v)
2402 {
2403 seq_setwidth(seq, 127);
2404 if (v == SEQ_START_TOKEN)
2405 seq_puts(seq, " sl local_address rem_address st tx_queue "
2406 "rx_queue tr tm->when retrnsmt uid timeout "
2407 "inode ref pointer drops");
2408 else {
2409 struct udp_iter_state *state = seq->private;
2410
2411 udp4_format_sock(v, seq, state->bucket);
2412 }
2413 seq_pad(seq, '\n');
2414 return 0;
2415 }
2416
2417 static const struct file_operations udp_afinfo_seq_fops = {
2418 .owner = THIS_MODULE,
2419 .open = udp_seq_open,
2420 .read = seq_read,
2421 .llseek = seq_lseek,
2422 .release = seq_release_net
2423 };
2424
2425 /* ------------------------------------------------------------------------ */
2426 static struct udp_seq_afinfo udp4_seq_afinfo = {
2427 .name = "udp",
2428 .family = AF_INET,
2429 .udp_table = &udp_table,
2430 .seq_fops = &udp_afinfo_seq_fops,
2431 .seq_ops = {
2432 .show = udp4_seq_show,
2433 },
2434 };
2435
2436 static int __net_init udp4_proc_init_net(struct net *net)
2437 {
2438 return udp_proc_register(net, &udp4_seq_afinfo);
2439 }
2440
2441 static void __net_exit udp4_proc_exit_net(struct net *net)
2442 {
2443 udp_proc_unregister(net, &udp4_seq_afinfo);
2444 }
2445
2446 static struct pernet_operations udp4_net_ops = {
2447 .init = udp4_proc_init_net,
2448 .exit = udp4_proc_exit_net,
2449 };
2450
2451 int __init udp4_proc_init(void)
2452 {
2453 return register_pernet_subsys(&udp4_net_ops);
2454 }
2455
2456 void udp4_proc_exit(void)
2457 {
2458 unregister_pernet_subsys(&udp4_net_ops);
2459 }
2460 #endif /* CONFIG_PROC_FS */
2461
2462 static __initdata unsigned long uhash_entries;
2463 static int __init set_uhash_entries(char *str)
2464 {
2465 ssize_t ret;
2466
2467 if (!str)
2468 return 0;
2469
2470 ret = kstrtoul(str, 0, &uhash_entries);
2471 if (ret)
2472 return 0;
2473
2474 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2475 uhash_entries = UDP_HTABLE_SIZE_MIN;
2476 return 1;
2477 }
2478 __setup("uhash_entries=", set_uhash_entries);
2479
2480 void __init udp_table_init(struct udp_table *table, const char *name)
2481 {
2482 unsigned int i;
2483
2484 table->hash = alloc_large_system_hash(name,
2485 2 * sizeof(struct udp_hslot),
2486 uhash_entries,
2487 21, /* one slot per 2 MB */
2488 0,
2489 &table->log,
2490 &table->mask,
2491 UDP_HTABLE_SIZE_MIN,
2492 64 * 1024);
2493
2494 table->hash2 = table->hash + (table->mask + 1);
2495 for (i = 0; i <= table->mask; i++) {
2496 INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2497 table->hash[i].count = 0;
2498 spin_lock_init(&table->hash[i].lock);
2499 }
2500 for (i = 0; i <= table->mask; i++) {
2501 INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2502 table->hash2[i].count = 0;
2503 spin_lock_init(&table->hash2[i].lock);
2504 }
2505 }
2506
2507 void __init udp_init(void)
2508 {
2509 unsigned long limit;
2510
2511 udp_table_init(&udp_table, "UDP");
2512 limit = nr_free_buffer_pages() / 8;
2513 limit = max(limit, 128UL);
2514 sysctl_udp_mem[0] = limit / 4 * 3;
2515 sysctl_udp_mem[1] = limit;
2516 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2517
2518 sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2519 sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2520 }
2521
2522 struct sk_buff *skb_udp_tunnel_segment(struct sk_buff *skb,
2523 netdev_features_t features)
2524 {
2525 struct sk_buff *segs = ERR_PTR(-EINVAL);
2526 u16 mac_offset = skb->mac_header;
2527 int mac_len = skb->mac_len;
2528 int tnl_hlen = skb_inner_mac_header(skb) - skb_transport_header(skb);
2529 __be16 protocol = skb->protocol;
2530 netdev_features_t enc_features;
2531 int udp_offset, outer_hlen;
2532 unsigned int oldlen;
2533 bool need_csum;
2534
2535 oldlen = (u16)~skb->len;
2536
2537 if (unlikely(!pskb_may_pull(skb, tnl_hlen)))
2538 goto out;
2539
2540 skb->encapsulation = 0;
2541 __skb_pull(skb, tnl_hlen);
2542 skb_reset_mac_header(skb);
2543 skb_set_network_header(skb, skb_inner_network_offset(skb));
2544 skb->mac_len = skb_inner_network_offset(skb);
2545 skb->protocol = htons(ETH_P_TEB);
2546
2547 need_csum = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM);
2548 if (need_csum)
2549 skb->encap_hdr_csum = 1;
2550
2551 /* segment inner packet. */
2552 enc_features = skb->dev->hw_enc_features & netif_skb_features(skb);
2553 segs = skb_mac_gso_segment(skb, enc_features);
2554 if (!segs || IS_ERR(segs)) {
2555 skb_gso_error_unwind(skb, protocol, tnl_hlen, mac_offset,
2556 mac_len);
2557 goto out;
2558 }
2559
2560 outer_hlen = skb_tnl_header_len(skb);
2561 udp_offset = outer_hlen - tnl_hlen;
2562 skb = segs;
2563 do {
2564 struct udphdr *uh;
2565 int len;
2566
2567 skb_reset_inner_headers(skb);
2568 skb->encapsulation = 1;
2569
2570 skb->mac_len = mac_len;
2571
2572 skb_push(skb, outer_hlen);
2573 skb_reset_mac_header(skb);
2574 skb_set_network_header(skb, mac_len);
2575 skb_set_transport_header(skb, udp_offset);
2576 len = skb->len - udp_offset;
2577 uh = udp_hdr(skb);
2578 uh->len = htons(len);
2579
2580 if (need_csum) {
2581 __be32 delta = htonl(oldlen + len);
2582
2583 uh->check = ~csum_fold((__force __wsum)
2584 ((__force u32)uh->check +
2585 (__force u32)delta));
2586 uh->check = gso_make_checksum(skb, ~uh->check);
2587
2588 if (uh->check == 0)
2589 uh->check = CSUM_MANGLED_0;
2590 }
2591
2592 skb->protocol = protocol;
2593 } while ((skb = skb->next));
2594 out:
2595 return segs;
2596 }
This page took 0.084024 seconds and 5 git commands to generate.