Merge remote-tracking branches 'regulator/topic/supply', 'regulator/topic/tps6105x...
[deliverable/linux.git] / net / ipv6 / ip6_fib.c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Changes:
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
16 * routing table.
17 * Ville Nuorvala: Fixed routing subtrees.
18 */
19
20 #define pr_fmt(fmt) "IPv6: " fmt
21
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
39
40 #define RT6_DEBUG 2
41
42 #if RT6_DEBUG >= 3
43 #define RT6_TRACE(x...) pr_debug(x)
44 #else
45 #define RT6_TRACE(x...) do { ; } while (0)
46 #endif
47
48 static struct kmem_cache *fib6_node_kmem __read_mostly;
49
50 struct fib6_cleaner {
51 struct fib6_walker w;
52 struct net *net;
53 int (*func)(struct rt6_info *, void *arg);
54 int sernum;
55 void *arg;
56 };
57
58 static DEFINE_RWLOCK(fib6_walker_lock);
59
60 #ifdef CONFIG_IPV6_SUBTREES
61 #define FWS_INIT FWS_S
62 #else
63 #define FWS_INIT FWS_L
64 #endif
65
66 static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
67 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
68 static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
69 static int fib6_walk(struct fib6_walker *w);
70 static int fib6_walk_continue(struct fib6_walker *w);
71
72 /*
73 * A routing update causes an increase of the serial number on the
74 * affected subtree. This allows for cached routes to be asynchronously
75 * tested when modifications are made to the destination cache as a
76 * result of redirects, path MTU changes, etc.
77 */
78
79 static void fib6_gc_timer_cb(unsigned long arg);
80
81 static LIST_HEAD(fib6_walkers);
82 #define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
83
84 static void fib6_walker_link(struct fib6_walker *w)
85 {
86 write_lock_bh(&fib6_walker_lock);
87 list_add(&w->lh, &fib6_walkers);
88 write_unlock_bh(&fib6_walker_lock);
89 }
90
91 static void fib6_walker_unlink(struct fib6_walker *w)
92 {
93 write_lock_bh(&fib6_walker_lock);
94 list_del(&w->lh);
95 write_unlock_bh(&fib6_walker_lock);
96 }
97
98 static int fib6_new_sernum(struct net *net)
99 {
100 int new, old;
101
102 do {
103 old = atomic_read(&net->ipv6.fib6_sernum);
104 new = old < INT_MAX ? old + 1 : 1;
105 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
106 old, new) != old);
107 return new;
108 }
109
110 enum {
111 FIB6_NO_SERNUM_CHANGE = 0,
112 };
113
114 /*
115 * Auxiliary address test functions for the radix tree.
116 *
117 * These assume a 32bit processor (although it will work on
118 * 64bit processors)
119 */
120
121 /*
122 * test bit
123 */
124 #if defined(__LITTLE_ENDIAN)
125 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
126 #else
127 # define BITOP_BE32_SWIZZLE 0
128 #endif
129
130 static __be32 addr_bit_set(const void *token, int fn_bit)
131 {
132 const __be32 *addr = token;
133 /*
134 * Here,
135 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
136 * is optimized version of
137 * htonl(1 << ((~fn_bit)&0x1F))
138 * See include/asm-generic/bitops/le.h.
139 */
140 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
141 addr[fn_bit >> 5];
142 }
143
144 static struct fib6_node *node_alloc(void)
145 {
146 struct fib6_node *fn;
147
148 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
149
150 return fn;
151 }
152
153 static void node_free(struct fib6_node *fn)
154 {
155 kmem_cache_free(fib6_node_kmem, fn);
156 }
157
158 static void rt6_rcu_free(struct rt6_info *rt)
159 {
160 call_rcu(&rt->dst.rcu_head, dst_rcu_free);
161 }
162
163 static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
164 {
165 int cpu;
166
167 if (!non_pcpu_rt->rt6i_pcpu)
168 return;
169
170 for_each_possible_cpu(cpu) {
171 struct rt6_info **ppcpu_rt;
172 struct rt6_info *pcpu_rt;
173
174 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
175 pcpu_rt = *ppcpu_rt;
176 if (pcpu_rt) {
177 rt6_rcu_free(pcpu_rt);
178 *ppcpu_rt = NULL;
179 }
180 }
181
182 non_pcpu_rt->rt6i_pcpu = NULL;
183 }
184
185 static void rt6_release(struct rt6_info *rt)
186 {
187 if (atomic_dec_and_test(&rt->rt6i_ref)) {
188 rt6_free_pcpu(rt);
189 rt6_rcu_free(rt);
190 }
191 }
192
193 static void fib6_link_table(struct net *net, struct fib6_table *tb)
194 {
195 unsigned int h;
196
197 /*
198 * Initialize table lock at a single place to give lockdep a key,
199 * tables aren't visible prior to being linked to the list.
200 */
201 rwlock_init(&tb->tb6_lock);
202
203 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
204
205 /*
206 * No protection necessary, this is the only list mutatation
207 * operation, tables never disappear once they exist.
208 */
209 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
210 }
211
212 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
213
214 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
215 {
216 struct fib6_table *table;
217
218 table = kzalloc(sizeof(*table), GFP_ATOMIC);
219 if (table) {
220 table->tb6_id = id;
221 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
222 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
223 inet_peer_base_init(&table->tb6_peers);
224 }
225
226 return table;
227 }
228
229 struct fib6_table *fib6_new_table(struct net *net, u32 id)
230 {
231 struct fib6_table *tb;
232
233 if (id == 0)
234 id = RT6_TABLE_MAIN;
235 tb = fib6_get_table(net, id);
236 if (tb)
237 return tb;
238
239 tb = fib6_alloc_table(net, id);
240 if (tb)
241 fib6_link_table(net, tb);
242
243 return tb;
244 }
245
246 struct fib6_table *fib6_get_table(struct net *net, u32 id)
247 {
248 struct fib6_table *tb;
249 struct hlist_head *head;
250 unsigned int h;
251
252 if (id == 0)
253 id = RT6_TABLE_MAIN;
254 h = id & (FIB6_TABLE_HASHSZ - 1);
255 rcu_read_lock();
256 head = &net->ipv6.fib_table_hash[h];
257 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
258 if (tb->tb6_id == id) {
259 rcu_read_unlock();
260 return tb;
261 }
262 }
263 rcu_read_unlock();
264
265 return NULL;
266 }
267
268 static void __net_init fib6_tables_init(struct net *net)
269 {
270 fib6_link_table(net, net->ipv6.fib6_main_tbl);
271 fib6_link_table(net, net->ipv6.fib6_local_tbl);
272 }
273 #else
274
275 struct fib6_table *fib6_new_table(struct net *net, u32 id)
276 {
277 return fib6_get_table(net, id);
278 }
279
280 struct fib6_table *fib6_get_table(struct net *net, u32 id)
281 {
282 return net->ipv6.fib6_main_tbl;
283 }
284
285 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
286 int flags, pol_lookup_t lookup)
287 {
288 struct rt6_info *rt;
289
290 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
291 if (rt->rt6i_flags & RTF_REJECT &&
292 rt->dst.error == -EAGAIN) {
293 ip6_rt_put(rt);
294 rt = net->ipv6.ip6_null_entry;
295 dst_hold(&rt->dst);
296 }
297
298 return &rt->dst;
299 }
300
301 static void __net_init fib6_tables_init(struct net *net)
302 {
303 fib6_link_table(net, net->ipv6.fib6_main_tbl);
304 }
305
306 #endif
307
308 static int fib6_dump_node(struct fib6_walker *w)
309 {
310 int res;
311 struct rt6_info *rt;
312
313 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
314 res = rt6_dump_route(rt, w->args);
315 if (res < 0) {
316 /* Frame is full, suspend walking */
317 w->leaf = rt;
318 return 1;
319 }
320 }
321 w->leaf = NULL;
322 return 0;
323 }
324
325 static void fib6_dump_end(struct netlink_callback *cb)
326 {
327 struct fib6_walker *w = (void *)cb->args[2];
328
329 if (w) {
330 if (cb->args[4]) {
331 cb->args[4] = 0;
332 fib6_walker_unlink(w);
333 }
334 cb->args[2] = 0;
335 kfree(w);
336 }
337 cb->done = (void *)cb->args[3];
338 cb->args[1] = 3;
339 }
340
341 static int fib6_dump_done(struct netlink_callback *cb)
342 {
343 fib6_dump_end(cb);
344 return cb->done ? cb->done(cb) : 0;
345 }
346
347 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
348 struct netlink_callback *cb)
349 {
350 struct fib6_walker *w;
351 int res;
352
353 w = (void *)cb->args[2];
354 w->root = &table->tb6_root;
355
356 if (cb->args[4] == 0) {
357 w->count = 0;
358 w->skip = 0;
359
360 read_lock_bh(&table->tb6_lock);
361 res = fib6_walk(w);
362 read_unlock_bh(&table->tb6_lock);
363 if (res > 0) {
364 cb->args[4] = 1;
365 cb->args[5] = w->root->fn_sernum;
366 }
367 } else {
368 if (cb->args[5] != w->root->fn_sernum) {
369 /* Begin at the root if the tree changed */
370 cb->args[5] = w->root->fn_sernum;
371 w->state = FWS_INIT;
372 w->node = w->root;
373 w->skip = w->count;
374 } else
375 w->skip = 0;
376
377 read_lock_bh(&table->tb6_lock);
378 res = fib6_walk_continue(w);
379 read_unlock_bh(&table->tb6_lock);
380 if (res <= 0) {
381 fib6_walker_unlink(w);
382 cb->args[4] = 0;
383 }
384 }
385
386 return res;
387 }
388
389 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
390 {
391 struct net *net = sock_net(skb->sk);
392 unsigned int h, s_h;
393 unsigned int e = 0, s_e;
394 struct rt6_rtnl_dump_arg arg;
395 struct fib6_walker *w;
396 struct fib6_table *tb;
397 struct hlist_head *head;
398 int res = 0;
399
400 s_h = cb->args[0];
401 s_e = cb->args[1];
402
403 w = (void *)cb->args[2];
404 if (!w) {
405 /* New dump:
406 *
407 * 1. hook callback destructor.
408 */
409 cb->args[3] = (long)cb->done;
410 cb->done = fib6_dump_done;
411
412 /*
413 * 2. allocate and initialize walker.
414 */
415 w = kzalloc(sizeof(*w), GFP_ATOMIC);
416 if (!w)
417 return -ENOMEM;
418 w->func = fib6_dump_node;
419 cb->args[2] = (long)w;
420 }
421
422 arg.skb = skb;
423 arg.cb = cb;
424 arg.net = net;
425 w->args = &arg;
426
427 rcu_read_lock();
428 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
429 e = 0;
430 head = &net->ipv6.fib_table_hash[h];
431 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
432 if (e < s_e)
433 goto next;
434 res = fib6_dump_table(tb, skb, cb);
435 if (res != 0)
436 goto out;
437 next:
438 e++;
439 }
440 }
441 out:
442 rcu_read_unlock();
443 cb->args[1] = e;
444 cb->args[0] = h;
445
446 res = res < 0 ? res : skb->len;
447 if (res <= 0)
448 fib6_dump_end(cb);
449 return res;
450 }
451
452 /*
453 * Routing Table
454 *
455 * return the appropriate node for a routing tree "add" operation
456 * by either creating and inserting or by returning an existing
457 * node.
458 */
459
460 static struct fib6_node *fib6_add_1(struct fib6_node *root,
461 struct in6_addr *addr, int plen,
462 int offset, int allow_create,
463 int replace_required, int sernum)
464 {
465 struct fib6_node *fn, *in, *ln;
466 struct fib6_node *pn = NULL;
467 struct rt6key *key;
468 int bit;
469 __be32 dir = 0;
470
471 RT6_TRACE("fib6_add_1\n");
472
473 /* insert node in tree */
474
475 fn = root;
476
477 do {
478 key = (struct rt6key *)((u8 *)fn->leaf + offset);
479
480 /*
481 * Prefix match
482 */
483 if (plen < fn->fn_bit ||
484 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
485 if (!allow_create) {
486 if (replace_required) {
487 pr_warn("Can't replace route, no match found\n");
488 return ERR_PTR(-ENOENT);
489 }
490 pr_warn("NLM_F_CREATE should be set when creating new route\n");
491 }
492 goto insert_above;
493 }
494
495 /*
496 * Exact match ?
497 */
498
499 if (plen == fn->fn_bit) {
500 /* clean up an intermediate node */
501 if (!(fn->fn_flags & RTN_RTINFO)) {
502 rt6_release(fn->leaf);
503 fn->leaf = NULL;
504 }
505
506 fn->fn_sernum = sernum;
507
508 return fn;
509 }
510
511 /*
512 * We have more bits to go
513 */
514
515 /* Try to walk down on tree. */
516 fn->fn_sernum = sernum;
517 dir = addr_bit_set(addr, fn->fn_bit);
518 pn = fn;
519 fn = dir ? fn->right : fn->left;
520 } while (fn);
521
522 if (!allow_create) {
523 /* We should not create new node because
524 * NLM_F_REPLACE was specified without NLM_F_CREATE
525 * I assume it is safe to require NLM_F_CREATE when
526 * REPLACE flag is used! Later we may want to remove the
527 * check for replace_required, because according
528 * to netlink specification, NLM_F_CREATE
529 * MUST be specified if new route is created.
530 * That would keep IPv6 consistent with IPv4
531 */
532 if (replace_required) {
533 pr_warn("Can't replace route, no match found\n");
534 return ERR_PTR(-ENOENT);
535 }
536 pr_warn("NLM_F_CREATE should be set when creating new route\n");
537 }
538 /*
539 * We walked to the bottom of tree.
540 * Create new leaf node without children.
541 */
542
543 ln = node_alloc();
544
545 if (!ln)
546 return ERR_PTR(-ENOMEM);
547 ln->fn_bit = plen;
548
549 ln->parent = pn;
550 ln->fn_sernum = sernum;
551
552 if (dir)
553 pn->right = ln;
554 else
555 pn->left = ln;
556
557 return ln;
558
559
560 insert_above:
561 /*
562 * split since we don't have a common prefix anymore or
563 * we have a less significant route.
564 * we've to insert an intermediate node on the list
565 * this new node will point to the one we need to create
566 * and the current
567 */
568
569 pn = fn->parent;
570
571 /* find 1st bit in difference between the 2 addrs.
572
573 See comment in __ipv6_addr_diff: bit may be an invalid value,
574 but if it is >= plen, the value is ignored in any case.
575 */
576
577 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
578
579 /*
580 * (intermediate)[in]
581 * / \
582 * (new leaf node)[ln] (old node)[fn]
583 */
584 if (plen > bit) {
585 in = node_alloc();
586 ln = node_alloc();
587
588 if (!in || !ln) {
589 if (in)
590 node_free(in);
591 if (ln)
592 node_free(ln);
593 return ERR_PTR(-ENOMEM);
594 }
595
596 /*
597 * new intermediate node.
598 * RTN_RTINFO will
599 * be off since that an address that chooses one of
600 * the branches would not match less specific routes
601 * in the other branch
602 */
603
604 in->fn_bit = bit;
605
606 in->parent = pn;
607 in->leaf = fn->leaf;
608 atomic_inc(&in->leaf->rt6i_ref);
609
610 in->fn_sernum = sernum;
611
612 /* update parent pointer */
613 if (dir)
614 pn->right = in;
615 else
616 pn->left = in;
617
618 ln->fn_bit = plen;
619
620 ln->parent = in;
621 fn->parent = in;
622
623 ln->fn_sernum = sernum;
624
625 if (addr_bit_set(addr, bit)) {
626 in->right = ln;
627 in->left = fn;
628 } else {
629 in->left = ln;
630 in->right = fn;
631 }
632 } else { /* plen <= bit */
633
634 /*
635 * (new leaf node)[ln]
636 * / \
637 * (old node)[fn] NULL
638 */
639
640 ln = node_alloc();
641
642 if (!ln)
643 return ERR_PTR(-ENOMEM);
644
645 ln->fn_bit = plen;
646
647 ln->parent = pn;
648
649 ln->fn_sernum = sernum;
650
651 if (dir)
652 pn->right = ln;
653 else
654 pn->left = ln;
655
656 if (addr_bit_set(&key->addr, plen))
657 ln->right = fn;
658 else
659 ln->left = fn;
660
661 fn->parent = ln;
662 }
663 return ln;
664 }
665
666 static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
667 {
668 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
669 RTF_GATEWAY;
670 }
671
672 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
673 {
674 int i;
675
676 for (i = 0; i < RTAX_MAX; i++) {
677 if (test_bit(i, mxc->mx_valid))
678 mp[i] = mxc->mx[i];
679 }
680 }
681
682 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
683 {
684 if (!mxc->mx)
685 return 0;
686
687 if (dst->flags & DST_HOST) {
688 u32 *mp = dst_metrics_write_ptr(dst);
689
690 if (unlikely(!mp))
691 return -ENOMEM;
692
693 fib6_copy_metrics(mp, mxc);
694 } else {
695 dst_init_metrics(dst, mxc->mx, false);
696
697 /* We've stolen mx now. */
698 mxc->mx = NULL;
699 }
700
701 return 0;
702 }
703
704 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
705 struct net *net)
706 {
707 if (atomic_read(&rt->rt6i_ref) != 1) {
708 /* This route is used as dummy address holder in some split
709 * nodes. It is not leaked, but it still holds other resources,
710 * which must be released in time. So, scan ascendant nodes
711 * and replace dummy references to this route with references
712 * to still alive ones.
713 */
714 while (fn) {
715 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
716 fn->leaf = fib6_find_prefix(net, fn);
717 atomic_inc(&fn->leaf->rt6i_ref);
718 rt6_release(rt);
719 }
720 fn = fn->parent;
721 }
722 /* No more references are possible at this point. */
723 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
724 }
725 }
726
727 /*
728 * Insert routing information in a node.
729 */
730
731 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
732 struct nl_info *info, struct mx6_config *mxc)
733 {
734 struct rt6_info *iter = NULL;
735 struct rt6_info **ins;
736 struct rt6_info **fallback_ins = NULL;
737 int replace = (info->nlh &&
738 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
739 int add = (!info->nlh ||
740 (info->nlh->nlmsg_flags & NLM_F_CREATE));
741 int found = 0;
742 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
743 int err;
744
745 ins = &fn->leaf;
746
747 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
748 /*
749 * Search for duplicates
750 */
751
752 if (iter->rt6i_metric == rt->rt6i_metric) {
753 /*
754 * Same priority level
755 */
756 if (info->nlh &&
757 (info->nlh->nlmsg_flags & NLM_F_EXCL))
758 return -EEXIST;
759 if (replace) {
760 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
761 found++;
762 break;
763 }
764 if (rt_can_ecmp)
765 fallback_ins = fallback_ins ?: ins;
766 goto next_iter;
767 }
768
769 if (iter->dst.dev == rt->dst.dev &&
770 iter->rt6i_idev == rt->rt6i_idev &&
771 ipv6_addr_equal(&iter->rt6i_gateway,
772 &rt->rt6i_gateway)) {
773 if (rt->rt6i_nsiblings)
774 rt->rt6i_nsiblings = 0;
775 if (!(iter->rt6i_flags & RTF_EXPIRES))
776 return -EEXIST;
777 if (!(rt->rt6i_flags & RTF_EXPIRES))
778 rt6_clean_expires(iter);
779 else
780 rt6_set_expires(iter, rt->dst.expires);
781 iter->rt6i_pmtu = rt->rt6i_pmtu;
782 return -EEXIST;
783 }
784 /* If we have the same destination and the same metric,
785 * but not the same gateway, then the route we try to
786 * add is sibling to this route, increment our counter
787 * of siblings, and later we will add our route to the
788 * list.
789 * Only static routes (which don't have flag
790 * RTF_EXPIRES) are used for ECMPv6.
791 *
792 * To avoid long list, we only had siblings if the
793 * route have a gateway.
794 */
795 if (rt_can_ecmp &&
796 rt6_qualify_for_ecmp(iter))
797 rt->rt6i_nsiblings++;
798 }
799
800 if (iter->rt6i_metric > rt->rt6i_metric)
801 break;
802
803 next_iter:
804 ins = &iter->dst.rt6_next;
805 }
806
807 if (fallback_ins && !found) {
808 /* No ECMP-able route found, replace first non-ECMP one */
809 ins = fallback_ins;
810 iter = *ins;
811 found++;
812 }
813
814 /* Reset round-robin state, if necessary */
815 if (ins == &fn->leaf)
816 fn->rr_ptr = NULL;
817
818 /* Link this route to others same route. */
819 if (rt->rt6i_nsiblings) {
820 unsigned int rt6i_nsiblings;
821 struct rt6_info *sibling, *temp_sibling;
822
823 /* Find the first route that have the same metric */
824 sibling = fn->leaf;
825 while (sibling) {
826 if (sibling->rt6i_metric == rt->rt6i_metric &&
827 rt6_qualify_for_ecmp(sibling)) {
828 list_add_tail(&rt->rt6i_siblings,
829 &sibling->rt6i_siblings);
830 break;
831 }
832 sibling = sibling->dst.rt6_next;
833 }
834 /* For each sibling in the list, increment the counter of
835 * siblings. BUG() if counters does not match, list of siblings
836 * is broken!
837 */
838 rt6i_nsiblings = 0;
839 list_for_each_entry_safe(sibling, temp_sibling,
840 &rt->rt6i_siblings, rt6i_siblings) {
841 sibling->rt6i_nsiblings++;
842 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
843 rt6i_nsiblings++;
844 }
845 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
846 }
847
848 /*
849 * insert node
850 */
851 if (!replace) {
852 if (!add)
853 pr_warn("NLM_F_CREATE should be set when creating new route\n");
854
855 add:
856 err = fib6_commit_metrics(&rt->dst, mxc);
857 if (err)
858 return err;
859
860 rt->dst.rt6_next = iter;
861 *ins = rt;
862 rt->rt6i_node = fn;
863 atomic_inc(&rt->rt6i_ref);
864 inet6_rt_notify(RTM_NEWROUTE, rt, info, 0);
865 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
866
867 if (!(fn->fn_flags & RTN_RTINFO)) {
868 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
869 fn->fn_flags |= RTN_RTINFO;
870 }
871
872 } else {
873 int nsiblings;
874
875 if (!found) {
876 if (add)
877 goto add;
878 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
879 return -ENOENT;
880 }
881
882 err = fib6_commit_metrics(&rt->dst, mxc);
883 if (err)
884 return err;
885
886 *ins = rt;
887 rt->rt6i_node = fn;
888 rt->dst.rt6_next = iter->dst.rt6_next;
889 atomic_inc(&rt->rt6i_ref);
890 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
891 if (!(fn->fn_flags & RTN_RTINFO)) {
892 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
893 fn->fn_flags |= RTN_RTINFO;
894 }
895 nsiblings = iter->rt6i_nsiblings;
896 fib6_purge_rt(iter, fn, info->nl_net);
897 rt6_release(iter);
898
899 if (nsiblings) {
900 /* Replacing an ECMP route, remove all siblings */
901 ins = &rt->dst.rt6_next;
902 iter = *ins;
903 while (iter) {
904 if (rt6_qualify_for_ecmp(iter)) {
905 *ins = iter->dst.rt6_next;
906 fib6_purge_rt(iter, fn, info->nl_net);
907 rt6_release(iter);
908 nsiblings--;
909 } else {
910 ins = &iter->dst.rt6_next;
911 }
912 iter = *ins;
913 }
914 WARN_ON(nsiblings != 0);
915 }
916 }
917
918 return 0;
919 }
920
921 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
922 {
923 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
924 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
925 mod_timer(&net->ipv6.ip6_fib_timer,
926 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
927 }
928
929 void fib6_force_start_gc(struct net *net)
930 {
931 if (!timer_pending(&net->ipv6.ip6_fib_timer))
932 mod_timer(&net->ipv6.ip6_fib_timer,
933 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
934 }
935
936 /*
937 * Add routing information to the routing tree.
938 * <destination addr>/<source addr>
939 * with source addr info in sub-trees
940 */
941
942 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
943 struct nl_info *info, struct mx6_config *mxc)
944 {
945 struct fib6_node *fn, *pn = NULL;
946 int err = -ENOMEM;
947 int allow_create = 1;
948 int replace_required = 0;
949 int sernum = fib6_new_sernum(info->nl_net);
950
951 if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
952 !atomic_read(&rt->dst.__refcnt)))
953 return -EINVAL;
954
955 if (info->nlh) {
956 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
957 allow_create = 0;
958 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
959 replace_required = 1;
960 }
961 if (!allow_create && !replace_required)
962 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
963
964 fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
965 offsetof(struct rt6_info, rt6i_dst), allow_create,
966 replace_required, sernum);
967 if (IS_ERR(fn)) {
968 err = PTR_ERR(fn);
969 fn = NULL;
970 goto out;
971 }
972
973 pn = fn;
974
975 #ifdef CONFIG_IPV6_SUBTREES
976 if (rt->rt6i_src.plen) {
977 struct fib6_node *sn;
978
979 if (!fn->subtree) {
980 struct fib6_node *sfn;
981
982 /*
983 * Create subtree.
984 *
985 * fn[main tree]
986 * |
987 * sfn[subtree root]
988 * \
989 * sn[new leaf node]
990 */
991
992 /* Create subtree root node */
993 sfn = node_alloc();
994 if (!sfn)
995 goto st_failure;
996
997 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
998 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
999 sfn->fn_flags = RTN_ROOT;
1000 sfn->fn_sernum = sernum;
1001
1002 /* Now add the first leaf node to new subtree */
1003
1004 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1005 rt->rt6i_src.plen,
1006 offsetof(struct rt6_info, rt6i_src),
1007 allow_create, replace_required, sernum);
1008
1009 if (IS_ERR(sn)) {
1010 /* If it is failed, discard just allocated
1011 root, and then (in st_failure) stale node
1012 in main tree.
1013 */
1014 node_free(sfn);
1015 err = PTR_ERR(sn);
1016 goto st_failure;
1017 }
1018
1019 /* Now link new subtree to main tree */
1020 sfn->parent = fn;
1021 fn->subtree = sfn;
1022 } else {
1023 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1024 rt->rt6i_src.plen,
1025 offsetof(struct rt6_info, rt6i_src),
1026 allow_create, replace_required, sernum);
1027
1028 if (IS_ERR(sn)) {
1029 err = PTR_ERR(sn);
1030 goto st_failure;
1031 }
1032 }
1033
1034 if (!fn->leaf) {
1035 fn->leaf = rt;
1036 atomic_inc(&rt->rt6i_ref);
1037 }
1038 fn = sn;
1039 }
1040 #endif
1041
1042 err = fib6_add_rt2node(fn, rt, info, mxc);
1043 if (!err) {
1044 fib6_start_gc(info->nl_net, rt);
1045 if (!(rt->rt6i_flags & RTF_CACHE))
1046 fib6_prune_clones(info->nl_net, pn);
1047 rt->dst.flags &= ~DST_NOCACHE;
1048 }
1049
1050 out:
1051 if (err) {
1052 #ifdef CONFIG_IPV6_SUBTREES
1053 /*
1054 * If fib6_add_1 has cleared the old leaf pointer in the
1055 * super-tree leaf node we have to find a new one for it.
1056 */
1057 if (pn != fn && pn->leaf == rt) {
1058 pn->leaf = NULL;
1059 atomic_dec(&rt->rt6i_ref);
1060 }
1061 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1062 pn->leaf = fib6_find_prefix(info->nl_net, pn);
1063 #if RT6_DEBUG >= 2
1064 if (!pn->leaf) {
1065 WARN_ON(pn->leaf == NULL);
1066 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1067 }
1068 #endif
1069 atomic_inc(&pn->leaf->rt6i_ref);
1070 }
1071 #endif
1072 if (!(rt->dst.flags & DST_NOCACHE))
1073 dst_free(&rt->dst);
1074 }
1075 return err;
1076
1077 #ifdef CONFIG_IPV6_SUBTREES
1078 /* Subtree creation failed, probably main tree node
1079 is orphan. If it is, shoot it.
1080 */
1081 st_failure:
1082 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1083 fib6_repair_tree(info->nl_net, fn);
1084 if (!(rt->dst.flags & DST_NOCACHE))
1085 dst_free(&rt->dst);
1086 return err;
1087 #endif
1088 }
1089
1090 /*
1091 * Routing tree lookup
1092 *
1093 */
1094
1095 struct lookup_args {
1096 int offset; /* key offset on rt6_info */
1097 const struct in6_addr *addr; /* search key */
1098 };
1099
1100 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1101 struct lookup_args *args)
1102 {
1103 struct fib6_node *fn;
1104 __be32 dir;
1105
1106 if (unlikely(args->offset == 0))
1107 return NULL;
1108
1109 /*
1110 * Descend on a tree
1111 */
1112
1113 fn = root;
1114
1115 for (;;) {
1116 struct fib6_node *next;
1117
1118 dir = addr_bit_set(args->addr, fn->fn_bit);
1119
1120 next = dir ? fn->right : fn->left;
1121
1122 if (next) {
1123 fn = next;
1124 continue;
1125 }
1126 break;
1127 }
1128
1129 while (fn) {
1130 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1131 struct rt6key *key;
1132
1133 key = (struct rt6key *) ((u8 *) fn->leaf +
1134 args->offset);
1135
1136 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1137 #ifdef CONFIG_IPV6_SUBTREES
1138 if (fn->subtree) {
1139 struct fib6_node *sfn;
1140 sfn = fib6_lookup_1(fn->subtree,
1141 args + 1);
1142 if (!sfn)
1143 goto backtrack;
1144 fn = sfn;
1145 }
1146 #endif
1147 if (fn->fn_flags & RTN_RTINFO)
1148 return fn;
1149 }
1150 }
1151 #ifdef CONFIG_IPV6_SUBTREES
1152 backtrack:
1153 #endif
1154 if (fn->fn_flags & RTN_ROOT)
1155 break;
1156
1157 fn = fn->parent;
1158 }
1159
1160 return NULL;
1161 }
1162
1163 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1164 const struct in6_addr *saddr)
1165 {
1166 struct fib6_node *fn;
1167 struct lookup_args args[] = {
1168 {
1169 .offset = offsetof(struct rt6_info, rt6i_dst),
1170 .addr = daddr,
1171 },
1172 #ifdef CONFIG_IPV6_SUBTREES
1173 {
1174 .offset = offsetof(struct rt6_info, rt6i_src),
1175 .addr = saddr,
1176 },
1177 #endif
1178 {
1179 .offset = 0, /* sentinel */
1180 }
1181 };
1182
1183 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1184 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1185 fn = root;
1186
1187 return fn;
1188 }
1189
1190 /*
1191 * Get node with specified destination prefix (and source prefix,
1192 * if subtrees are used)
1193 */
1194
1195
1196 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1197 const struct in6_addr *addr,
1198 int plen, int offset)
1199 {
1200 struct fib6_node *fn;
1201
1202 for (fn = root; fn ; ) {
1203 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1204
1205 /*
1206 * Prefix match
1207 */
1208 if (plen < fn->fn_bit ||
1209 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1210 return NULL;
1211
1212 if (plen == fn->fn_bit)
1213 return fn;
1214
1215 /*
1216 * We have more bits to go
1217 */
1218 if (addr_bit_set(addr, fn->fn_bit))
1219 fn = fn->right;
1220 else
1221 fn = fn->left;
1222 }
1223 return NULL;
1224 }
1225
1226 struct fib6_node *fib6_locate(struct fib6_node *root,
1227 const struct in6_addr *daddr, int dst_len,
1228 const struct in6_addr *saddr, int src_len)
1229 {
1230 struct fib6_node *fn;
1231
1232 fn = fib6_locate_1(root, daddr, dst_len,
1233 offsetof(struct rt6_info, rt6i_dst));
1234
1235 #ifdef CONFIG_IPV6_SUBTREES
1236 if (src_len) {
1237 WARN_ON(saddr == NULL);
1238 if (fn && fn->subtree)
1239 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1240 offsetof(struct rt6_info, rt6i_src));
1241 }
1242 #endif
1243
1244 if (fn && fn->fn_flags & RTN_RTINFO)
1245 return fn;
1246
1247 return NULL;
1248 }
1249
1250
1251 /*
1252 * Deletion
1253 *
1254 */
1255
1256 static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1257 {
1258 if (fn->fn_flags & RTN_ROOT)
1259 return net->ipv6.ip6_null_entry;
1260
1261 while (fn) {
1262 if (fn->left)
1263 return fn->left->leaf;
1264 if (fn->right)
1265 return fn->right->leaf;
1266
1267 fn = FIB6_SUBTREE(fn);
1268 }
1269 return NULL;
1270 }
1271
1272 /*
1273 * Called to trim the tree of intermediate nodes when possible. "fn"
1274 * is the node we want to try and remove.
1275 */
1276
1277 static struct fib6_node *fib6_repair_tree(struct net *net,
1278 struct fib6_node *fn)
1279 {
1280 int children;
1281 int nstate;
1282 struct fib6_node *child, *pn;
1283 struct fib6_walker *w;
1284 int iter = 0;
1285
1286 for (;;) {
1287 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1288 iter++;
1289
1290 WARN_ON(fn->fn_flags & RTN_RTINFO);
1291 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1292 WARN_ON(fn->leaf);
1293
1294 children = 0;
1295 child = NULL;
1296 if (fn->right)
1297 child = fn->right, children |= 1;
1298 if (fn->left)
1299 child = fn->left, children |= 2;
1300
1301 if (children == 3 || FIB6_SUBTREE(fn)
1302 #ifdef CONFIG_IPV6_SUBTREES
1303 /* Subtree root (i.e. fn) may have one child */
1304 || (children && fn->fn_flags & RTN_ROOT)
1305 #endif
1306 ) {
1307 fn->leaf = fib6_find_prefix(net, fn);
1308 #if RT6_DEBUG >= 2
1309 if (!fn->leaf) {
1310 WARN_ON(!fn->leaf);
1311 fn->leaf = net->ipv6.ip6_null_entry;
1312 }
1313 #endif
1314 atomic_inc(&fn->leaf->rt6i_ref);
1315 return fn->parent;
1316 }
1317
1318 pn = fn->parent;
1319 #ifdef CONFIG_IPV6_SUBTREES
1320 if (FIB6_SUBTREE(pn) == fn) {
1321 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1322 FIB6_SUBTREE(pn) = NULL;
1323 nstate = FWS_L;
1324 } else {
1325 WARN_ON(fn->fn_flags & RTN_ROOT);
1326 #endif
1327 if (pn->right == fn)
1328 pn->right = child;
1329 else if (pn->left == fn)
1330 pn->left = child;
1331 #if RT6_DEBUG >= 2
1332 else
1333 WARN_ON(1);
1334 #endif
1335 if (child)
1336 child->parent = pn;
1337 nstate = FWS_R;
1338 #ifdef CONFIG_IPV6_SUBTREES
1339 }
1340 #endif
1341
1342 read_lock(&fib6_walker_lock);
1343 FOR_WALKERS(w) {
1344 if (!child) {
1345 if (w->root == fn) {
1346 w->root = w->node = NULL;
1347 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1348 } else if (w->node == fn) {
1349 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1350 w->node = pn;
1351 w->state = nstate;
1352 }
1353 } else {
1354 if (w->root == fn) {
1355 w->root = child;
1356 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1357 }
1358 if (w->node == fn) {
1359 w->node = child;
1360 if (children&2) {
1361 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1362 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1363 } else {
1364 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1365 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1366 }
1367 }
1368 }
1369 }
1370 read_unlock(&fib6_walker_lock);
1371
1372 node_free(fn);
1373 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1374 return pn;
1375
1376 rt6_release(pn->leaf);
1377 pn->leaf = NULL;
1378 fn = pn;
1379 }
1380 }
1381
1382 static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1383 struct nl_info *info)
1384 {
1385 struct fib6_walker *w;
1386 struct rt6_info *rt = *rtp;
1387 struct net *net = info->nl_net;
1388
1389 RT6_TRACE("fib6_del_route\n");
1390
1391 /* Unlink it */
1392 *rtp = rt->dst.rt6_next;
1393 rt->rt6i_node = NULL;
1394 net->ipv6.rt6_stats->fib_rt_entries--;
1395 net->ipv6.rt6_stats->fib_discarded_routes++;
1396
1397 /* Reset round-robin state, if necessary */
1398 if (fn->rr_ptr == rt)
1399 fn->rr_ptr = NULL;
1400
1401 /* Remove this entry from other siblings */
1402 if (rt->rt6i_nsiblings) {
1403 struct rt6_info *sibling, *next_sibling;
1404
1405 list_for_each_entry_safe(sibling, next_sibling,
1406 &rt->rt6i_siblings, rt6i_siblings)
1407 sibling->rt6i_nsiblings--;
1408 rt->rt6i_nsiblings = 0;
1409 list_del_init(&rt->rt6i_siblings);
1410 }
1411
1412 /* Adjust walkers */
1413 read_lock(&fib6_walker_lock);
1414 FOR_WALKERS(w) {
1415 if (w->state == FWS_C && w->leaf == rt) {
1416 RT6_TRACE("walker %p adjusted by delroute\n", w);
1417 w->leaf = rt->dst.rt6_next;
1418 if (!w->leaf)
1419 w->state = FWS_U;
1420 }
1421 }
1422 read_unlock(&fib6_walker_lock);
1423
1424 rt->dst.rt6_next = NULL;
1425
1426 /* If it was last route, expunge its radix tree node */
1427 if (!fn->leaf) {
1428 fn->fn_flags &= ~RTN_RTINFO;
1429 net->ipv6.rt6_stats->fib_route_nodes--;
1430 fn = fib6_repair_tree(net, fn);
1431 }
1432
1433 fib6_purge_rt(rt, fn, net);
1434
1435 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1436 rt6_release(rt);
1437 }
1438
1439 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1440 {
1441 struct net *net = info->nl_net;
1442 struct fib6_node *fn = rt->rt6i_node;
1443 struct rt6_info **rtp;
1444
1445 #if RT6_DEBUG >= 2
1446 if (rt->dst.obsolete > 0) {
1447 WARN_ON(fn);
1448 return -ENOENT;
1449 }
1450 #endif
1451 if (!fn || rt == net->ipv6.ip6_null_entry)
1452 return -ENOENT;
1453
1454 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1455
1456 if (!(rt->rt6i_flags & RTF_CACHE)) {
1457 struct fib6_node *pn = fn;
1458 #ifdef CONFIG_IPV6_SUBTREES
1459 /* clones of this route might be in another subtree */
1460 if (rt->rt6i_src.plen) {
1461 while (!(pn->fn_flags & RTN_ROOT))
1462 pn = pn->parent;
1463 pn = pn->parent;
1464 }
1465 #endif
1466 fib6_prune_clones(info->nl_net, pn);
1467 }
1468
1469 /*
1470 * Walk the leaf entries looking for ourself
1471 */
1472
1473 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1474 if (*rtp == rt) {
1475 fib6_del_route(fn, rtp, info);
1476 return 0;
1477 }
1478 }
1479 return -ENOENT;
1480 }
1481
1482 /*
1483 * Tree traversal function.
1484 *
1485 * Certainly, it is not interrupt safe.
1486 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1487 * It means, that we can modify tree during walking
1488 * and use this function for garbage collection, clone pruning,
1489 * cleaning tree when a device goes down etc. etc.
1490 *
1491 * It guarantees that every node will be traversed,
1492 * and that it will be traversed only once.
1493 *
1494 * Callback function w->func may return:
1495 * 0 -> continue walking.
1496 * positive value -> walking is suspended (used by tree dumps,
1497 * and probably by gc, if it will be split to several slices)
1498 * negative value -> terminate walking.
1499 *
1500 * The function itself returns:
1501 * 0 -> walk is complete.
1502 * >0 -> walk is incomplete (i.e. suspended)
1503 * <0 -> walk is terminated by an error.
1504 */
1505
1506 static int fib6_walk_continue(struct fib6_walker *w)
1507 {
1508 struct fib6_node *fn, *pn;
1509
1510 for (;;) {
1511 fn = w->node;
1512 if (!fn)
1513 return 0;
1514
1515 if (w->prune && fn != w->root &&
1516 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1517 w->state = FWS_C;
1518 w->leaf = fn->leaf;
1519 }
1520 switch (w->state) {
1521 #ifdef CONFIG_IPV6_SUBTREES
1522 case FWS_S:
1523 if (FIB6_SUBTREE(fn)) {
1524 w->node = FIB6_SUBTREE(fn);
1525 continue;
1526 }
1527 w->state = FWS_L;
1528 #endif
1529 case FWS_L:
1530 if (fn->left) {
1531 w->node = fn->left;
1532 w->state = FWS_INIT;
1533 continue;
1534 }
1535 w->state = FWS_R;
1536 case FWS_R:
1537 if (fn->right) {
1538 w->node = fn->right;
1539 w->state = FWS_INIT;
1540 continue;
1541 }
1542 w->state = FWS_C;
1543 w->leaf = fn->leaf;
1544 case FWS_C:
1545 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1546 int err;
1547
1548 if (w->skip) {
1549 w->skip--;
1550 goto skip;
1551 }
1552
1553 err = w->func(w);
1554 if (err)
1555 return err;
1556
1557 w->count++;
1558 continue;
1559 }
1560 skip:
1561 w->state = FWS_U;
1562 case FWS_U:
1563 if (fn == w->root)
1564 return 0;
1565 pn = fn->parent;
1566 w->node = pn;
1567 #ifdef CONFIG_IPV6_SUBTREES
1568 if (FIB6_SUBTREE(pn) == fn) {
1569 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1570 w->state = FWS_L;
1571 continue;
1572 }
1573 #endif
1574 if (pn->left == fn) {
1575 w->state = FWS_R;
1576 continue;
1577 }
1578 if (pn->right == fn) {
1579 w->state = FWS_C;
1580 w->leaf = w->node->leaf;
1581 continue;
1582 }
1583 #if RT6_DEBUG >= 2
1584 WARN_ON(1);
1585 #endif
1586 }
1587 }
1588 }
1589
1590 static int fib6_walk(struct fib6_walker *w)
1591 {
1592 int res;
1593
1594 w->state = FWS_INIT;
1595 w->node = w->root;
1596
1597 fib6_walker_link(w);
1598 res = fib6_walk_continue(w);
1599 if (res <= 0)
1600 fib6_walker_unlink(w);
1601 return res;
1602 }
1603
1604 static int fib6_clean_node(struct fib6_walker *w)
1605 {
1606 int res;
1607 struct rt6_info *rt;
1608 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1609 struct nl_info info = {
1610 .nl_net = c->net,
1611 };
1612
1613 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1614 w->node->fn_sernum != c->sernum)
1615 w->node->fn_sernum = c->sernum;
1616
1617 if (!c->func) {
1618 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1619 w->leaf = NULL;
1620 return 0;
1621 }
1622
1623 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1624 res = c->func(rt, c->arg);
1625 if (res < 0) {
1626 w->leaf = rt;
1627 res = fib6_del(rt, &info);
1628 if (res) {
1629 #if RT6_DEBUG >= 2
1630 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1631 __func__, rt, rt->rt6i_node, res);
1632 #endif
1633 continue;
1634 }
1635 return 0;
1636 }
1637 WARN_ON(res != 0);
1638 }
1639 w->leaf = rt;
1640 return 0;
1641 }
1642
1643 /*
1644 * Convenient frontend to tree walker.
1645 *
1646 * func is called on each route.
1647 * It may return -1 -> delete this route.
1648 * 0 -> continue walking
1649 *
1650 * prune==1 -> only immediate children of node (certainly,
1651 * ignoring pure split nodes) will be scanned.
1652 */
1653
1654 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1655 int (*func)(struct rt6_info *, void *arg),
1656 bool prune, int sernum, void *arg)
1657 {
1658 struct fib6_cleaner c;
1659
1660 c.w.root = root;
1661 c.w.func = fib6_clean_node;
1662 c.w.prune = prune;
1663 c.w.count = 0;
1664 c.w.skip = 0;
1665 c.func = func;
1666 c.sernum = sernum;
1667 c.arg = arg;
1668 c.net = net;
1669
1670 fib6_walk(&c.w);
1671 }
1672
1673 static void __fib6_clean_all(struct net *net,
1674 int (*func)(struct rt6_info *, void *),
1675 int sernum, void *arg)
1676 {
1677 struct fib6_table *table;
1678 struct hlist_head *head;
1679 unsigned int h;
1680
1681 rcu_read_lock();
1682 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1683 head = &net->ipv6.fib_table_hash[h];
1684 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1685 write_lock_bh(&table->tb6_lock);
1686 fib6_clean_tree(net, &table->tb6_root,
1687 func, false, sernum, arg);
1688 write_unlock_bh(&table->tb6_lock);
1689 }
1690 }
1691 rcu_read_unlock();
1692 }
1693
1694 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1695 void *arg)
1696 {
1697 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1698 }
1699
1700 static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1701 {
1702 if (rt->rt6i_flags & RTF_CACHE) {
1703 RT6_TRACE("pruning clone %p\n", rt);
1704 return -1;
1705 }
1706
1707 return 0;
1708 }
1709
1710 static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1711 {
1712 fib6_clean_tree(net, fn, fib6_prune_clone, true,
1713 FIB6_NO_SERNUM_CHANGE, NULL);
1714 }
1715
1716 static void fib6_flush_trees(struct net *net)
1717 {
1718 int new_sernum = fib6_new_sernum(net);
1719
1720 __fib6_clean_all(net, NULL, new_sernum, NULL);
1721 }
1722
1723 /*
1724 * Garbage collection
1725 */
1726
1727 static struct fib6_gc_args
1728 {
1729 int timeout;
1730 int more;
1731 } gc_args;
1732
1733 static int fib6_age(struct rt6_info *rt, void *arg)
1734 {
1735 unsigned long now = jiffies;
1736
1737 /*
1738 * check addrconf expiration here.
1739 * Routes are expired even if they are in use.
1740 *
1741 * Also age clones. Note, that clones are aged out
1742 * only if they are not in use now.
1743 */
1744
1745 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1746 if (time_after(now, rt->dst.expires)) {
1747 RT6_TRACE("expiring %p\n", rt);
1748 return -1;
1749 }
1750 gc_args.more++;
1751 } else if (rt->rt6i_flags & RTF_CACHE) {
1752 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1753 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1754 RT6_TRACE("aging clone %p\n", rt);
1755 return -1;
1756 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1757 struct neighbour *neigh;
1758 __u8 neigh_flags = 0;
1759
1760 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1761 if (neigh) {
1762 neigh_flags = neigh->flags;
1763 neigh_release(neigh);
1764 }
1765 if (!(neigh_flags & NTF_ROUTER)) {
1766 RT6_TRACE("purging route %p via non-router but gateway\n",
1767 rt);
1768 return -1;
1769 }
1770 }
1771 gc_args.more++;
1772 }
1773
1774 return 0;
1775 }
1776
1777 static DEFINE_SPINLOCK(fib6_gc_lock);
1778
1779 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1780 {
1781 unsigned long now;
1782
1783 if (force) {
1784 spin_lock_bh(&fib6_gc_lock);
1785 } else if (!spin_trylock_bh(&fib6_gc_lock)) {
1786 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1787 return;
1788 }
1789 gc_args.timeout = expires ? (int)expires :
1790 net->ipv6.sysctl.ip6_rt_gc_interval;
1791
1792 gc_args.more = icmp6_dst_gc();
1793
1794 fib6_clean_all(net, fib6_age, NULL);
1795 now = jiffies;
1796 net->ipv6.ip6_rt_last_gc = now;
1797
1798 if (gc_args.more)
1799 mod_timer(&net->ipv6.ip6_fib_timer,
1800 round_jiffies(now
1801 + net->ipv6.sysctl.ip6_rt_gc_interval));
1802 else
1803 del_timer(&net->ipv6.ip6_fib_timer);
1804 spin_unlock_bh(&fib6_gc_lock);
1805 }
1806
1807 static void fib6_gc_timer_cb(unsigned long arg)
1808 {
1809 fib6_run_gc(0, (struct net *)arg, true);
1810 }
1811
1812 static int __net_init fib6_net_init(struct net *net)
1813 {
1814 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1815
1816 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1817
1818 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1819 if (!net->ipv6.rt6_stats)
1820 goto out_timer;
1821
1822 /* Avoid false sharing : Use at least a full cache line */
1823 size = max_t(size_t, size, L1_CACHE_BYTES);
1824
1825 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1826 if (!net->ipv6.fib_table_hash)
1827 goto out_rt6_stats;
1828
1829 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1830 GFP_KERNEL);
1831 if (!net->ipv6.fib6_main_tbl)
1832 goto out_fib_table_hash;
1833
1834 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1835 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1836 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1837 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1838 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1839
1840 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1841 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1842 GFP_KERNEL);
1843 if (!net->ipv6.fib6_local_tbl)
1844 goto out_fib6_main_tbl;
1845 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1846 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1847 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1848 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1849 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1850 #endif
1851 fib6_tables_init(net);
1852
1853 return 0;
1854
1855 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1856 out_fib6_main_tbl:
1857 kfree(net->ipv6.fib6_main_tbl);
1858 #endif
1859 out_fib_table_hash:
1860 kfree(net->ipv6.fib_table_hash);
1861 out_rt6_stats:
1862 kfree(net->ipv6.rt6_stats);
1863 out_timer:
1864 return -ENOMEM;
1865 }
1866
1867 static void fib6_net_exit(struct net *net)
1868 {
1869 rt6_ifdown(net, NULL);
1870 del_timer_sync(&net->ipv6.ip6_fib_timer);
1871
1872 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
1873 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1874 kfree(net->ipv6.fib6_local_tbl);
1875 #endif
1876 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1877 kfree(net->ipv6.fib6_main_tbl);
1878 kfree(net->ipv6.fib_table_hash);
1879 kfree(net->ipv6.rt6_stats);
1880 }
1881
1882 static struct pernet_operations fib6_net_ops = {
1883 .init = fib6_net_init,
1884 .exit = fib6_net_exit,
1885 };
1886
1887 int __init fib6_init(void)
1888 {
1889 int ret = -ENOMEM;
1890
1891 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1892 sizeof(struct fib6_node),
1893 0, SLAB_HWCACHE_ALIGN,
1894 NULL);
1895 if (!fib6_node_kmem)
1896 goto out;
1897
1898 ret = register_pernet_subsys(&fib6_net_ops);
1899 if (ret)
1900 goto out_kmem_cache_create;
1901
1902 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1903 NULL);
1904 if (ret)
1905 goto out_unregister_subsys;
1906
1907 __fib6_flush_trees = fib6_flush_trees;
1908 out:
1909 return ret;
1910
1911 out_unregister_subsys:
1912 unregister_pernet_subsys(&fib6_net_ops);
1913 out_kmem_cache_create:
1914 kmem_cache_destroy(fib6_node_kmem);
1915 goto out;
1916 }
1917
1918 void fib6_gc_cleanup(void)
1919 {
1920 unregister_pernet_subsys(&fib6_net_ops);
1921 kmem_cache_destroy(fib6_node_kmem);
1922 }
1923
1924 #ifdef CONFIG_PROC_FS
1925
1926 struct ipv6_route_iter {
1927 struct seq_net_private p;
1928 struct fib6_walker w;
1929 loff_t skip;
1930 struct fib6_table *tbl;
1931 int sernum;
1932 };
1933
1934 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1935 {
1936 struct rt6_info *rt = v;
1937 struct ipv6_route_iter *iter = seq->private;
1938
1939 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1940
1941 #ifdef CONFIG_IPV6_SUBTREES
1942 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1943 #else
1944 seq_puts(seq, "00000000000000000000000000000000 00 ");
1945 #endif
1946 if (rt->rt6i_flags & RTF_GATEWAY)
1947 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1948 else
1949 seq_puts(seq, "00000000000000000000000000000000");
1950
1951 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1952 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1953 rt->dst.__use, rt->rt6i_flags,
1954 rt->dst.dev ? rt->dst.dev->name : "");
1955 iter->w.leaf = NULL;
1956 return 0;
1957 }
1958
1959 static int ipv6_route_yield(struct fib6_walker *w)
1960 {
1961 struct ipv6_route_iter *iter = w->args;
1962
1963 if (!iter->skip)
1964 return 1;
1965
1966 do {
1967 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1968 iter->skip--;
1969 if (!iter->skip && iter->w.leaf)
1970 return 1;
1971 } while (iter->w.leaf);
1972
1973 return 0;
1974 }
1975
1976 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter)
1977 {
1978 memset(&iter->w, 0, sizeof(iter->w));
1979 iter->w.func = ipv6_route_yield;
1980 iter->w.root = &iter->tbl->tb6_root;
1981 iter->w.state = FWS_INIT;
1982 iter->w.node = iter->w.root;
1983 iter->w.args = iter;
1984 iter->sernum = iter->w.root->fn_sernum;
1985 INIT_LIST_HEAD(&iter->w.lh);
1986 fib6_walker_link(&iter->w);
1987 }
1988
1989 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1990 struct net *net)
1991 {
1992 unsigned int h;
1993 struct hlist_node *node;
1994
1995 if (tbl) {
1996 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
1997 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
1998 } else {
1999 h = 0;
2000 node = NULL;
2001 }
2002
2003 while (!node && h < FIB6_TABLE_HASHSZ) {
2004 node = rcu_dereference_bh(
2005 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2006 }
2007 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2008 }
2009
2010 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2011 {
2012 if (iter->sernum != iter->w.root->fn_sernum) {
2013 iter->sernum = iter->w.root->fn_sernum;
2014 iter->w.state = FWS_INIT;
2015 iter->w.node = iter->w.root;
2016 WARN_ON(iter->w.skip);
2017 iter->w.skip = iter->w.count;
2018 }
2019 }
2020
2021 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2022 {
2023 int r;
2024 struct rt6_info *n;
2025 struct net *net = seq_file_net(seq);
2026 struct ipv6_route_iter *iter = seq->private;
2027
2028 if (!v)
2029 goto iter_table;
2030
2031 n = ((struct rt6_info *)v)->dst.rt6_next;
2032 if (n) {
2033 ++*pos;
2034 return n;
2035 }
2036
2037 iter_table:
2038 ipv6_route_check_sernum(iter);
2039 read_lock(&iter->tbl->tb6_lock);
2040 r = fib6_walk_continue(&iter->w);
2041 read_unlock(&iter->tbl->tb6_lock);
2042 if (r > 0) {
2043 if (v)
2044 ++*pos;
2045 return iter->w.leaf;
2046 } else if (r < 0) {
2047 fib6_walker_unlink(&iter->w);
2048 return NULL;
2049 }
2050 fib6_walker_unlink(&iter->w);
2051
2052 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2053 if (!iter->tbl)
2054 return NULL;
2055
2056 ipv6_route_seq_setup_walk(iter);
2057 goto iter_table;
2058 }
2059
2060 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2061 __acquires(RCU_BH)
2062 {
2063 struct net *net = seq_file_net(seq);
2064 struct ipv6_route_iter *iter = seq->private;
2065
2066 rcu_read_lock_bh();
2067 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2068 iter->skip = *pos;
2069
2070 if (iter->tbl) {
2071 ipv6_route_seq_setup_walk(iter);
2072 return ipv6_route_seq_next(seq, NULL, pos);
2073 } else {
2074 return NULL;
2075 }
2076 }
2077
2078 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2079 {
2080 struct fib6_walker *w = &iter->w;
2081 return w->node && !(w->state == FWS_U && w->node == w->root);
2082 }
2083
2084 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2085 __releases(RCU_BH)
2086 {
2087 struct ipv6_route_iter *iter = seq->private;
2088
2089 if (ipv6_route_iter_active(iter))
2090 fib6_walker_unlink(&iter->w);
2091
2092 rcu_read_unlock_bh();
2093 }
2094
2095 static const struct seq_operations ipv6_route_seq_ops = {
2096 .start = ipv6_route_seq_start,
2097 .next = ipv6_route_seq_next,
2098 .stop = ipv6_route_seq_stop,
2099 .show = ipv6_route_seq_show
2100 };
2101
2102 int ipv6_route_open(struct inode *inode, struct file *file)
2103 {
2104 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2105 sizeof(struct ipv6_route_iter));
2106 }
2107
2108 #endif /* CONFIG_PROC_FS */
This page took 0.071748 seconds and 6 git commands to generate.