mac80211: update the channel context after channel switch
[deliverable/linux.git] / net / mac80211 / key.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/if_ether.h>
14 #include <linux/etherdevice.h>
15 #include <linux/list.h>
16 #include <linux/rcupdate.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <asm/unaligned.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "debugfs_key.h"
25 #include "aes_ccm.h"
26 #include "aes_cmac.h"
27
28
29 /**
30 * DOC: Key handling basics
31 *
32 * Key handling in mac80211 is done based on per-interface (sub_if_data)
33 * keys and per-station keys. Since each station belongs to an interface,
34 * each station key also belongs to that interface.
35 *
36 * Hardware acceleration is done on a best-effort basis for algorithms
37 * that are implemented in software, for each key the hardware is asked
38 * to enable that key for offloading but if it cannot do that the key is
39 * simply kept for software encryption (unless it is for an algorithm
40 * that isn't implemented in software).
41 * There is currently no way of knowing whether a key is handled in SW
42 * or HW except by looking into debugfs.
43 *
44 * All key management is internally protected by a mutex. Within all
45 * other parts of mac80211, key references are, just as STA structure
46 * references, protected by RCU. Note, however, that some things are
47 * unprotected, namely the key->sta dereferences within the hardware
48 * acceleration functions. This means that sta_info_destroy() must
49 * remove the key which waits for an RCU grace period.
50 */
51
52 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
53
54 static void assert_key_lock(struct ieee80211_local *local)
55 {
56 lockdep_assert_held(&local->key_mtx);
57 }
58
59 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
60 {
61 /*
62 * When this count is zero, SKB resizing for allocating tailroom
63 * for IV or MMIC is skipped. But, this check has created two race
64 * cases in xmit path while transiting from zero count to one:
65 *
66 * 1. SKB resize was skipped because no key was added but just before
67 * the xmit key is added and SW encryption kicks off.
68 *
69 * 2. SKB resize was skipped because all the keys were hw planted but
70 * just before xmit one of the key is deleted and SW encryption kicks
71 * off.
72 *
73 * In both the above case SW encryption will find not enough space for
74 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
75 *
76 * Solution has been explained at
77 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
78 */
79
80 if (!sdata->crypto_tx_tailroom_needed_cnt++) {
81 /*
82 * Flush all XMIT packets currently using HW encryption or no
83 * encryption at all if the count transition is from 0 -> 1.
84 */
85 synchronize_net();
86 }
87 }
88
89 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
90 {
91 struct ieee80211_sub_if_data *sdata;
92 struct sta_info *sta;
93 int ret;
94
95 might_sleep();
96
97 if (key->flags & KEY_FLAG_TAINTED) {
98 /* If we get here, it's during resume and the key is
99 * tainted so shouldn't be used/programmed any more.
100 * However, its flags may still indicate that it was
101 * programmed into the device (since we're in resume)
102 * so clear that flag now to avoid trying to remove
103 * it again later.
104 */
105 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
106 return -EINVAL;
107 }
108
109 if (!key->local->ops->set_key)
110 goto out_unsupported;
111
112 assert_key_lock(key->local);
113
114 sta = key->sta;
115
116 /*
117 * If this is a per-STA GTK, check if it
118 * is supported; if not, return.
119 */
120 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
121 !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK))
122 goto out_unsupported;
123
124 if (sta && !sta->uploaded)
125 goto out_unsupported;
126
127 sdata = key->sdata;
128 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
129 /*
130 * The driver doesn't know anything about VLAN interfaces.
131 * Hence, don't send GTKs for VLAN interfaces to the driver.
132 */
133 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
134 goto out_unsupported;
135 }
136
137 ret = drv_set_key(key->local, SET_KEY, sdata,
138 sta ? &sta->sta : NULL, &key->conf);
139
140 if (!ret) {
141 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
142
143 if (!(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC))
144 sdata->crypto_tx_tailroom_needed_cnt--;
145
146 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
147 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
148
149 return 0;
150 }
151
152 if (ret != -ENOSPC && ret != -EOPNOTSUPP)
153 sdata_err(sdata,
154 "failed to set key (%d, %pM) to hardware (%d)\n",
155 key->conf.keyidx,
156 sta ? sta->sta.addr : bcast_addr, ret);
157
158 out_unsupported:
159 switch (key->conf.cipher) {
160 case WLAN_CIPHER_SUITE_WEP40:
161 case WLAN_CIPHER_SUITE_WEP104:
162 case WLAN_CIPHER_SUITE_TKIP:
163 case WLAN_CIPHER_SUITE_CCMP:
164 case WLAN_CIPHER_SUITE_AES_CMAC:
165 /* all of these we can do in software */
166 return 0;
167 default:
168 return -EINVAL;
169 }
170 }
171
172 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
173 {
174 struct ieee80211_sub_if_data *sdata;
175 struct sta_info *sta;
176 int ret;
177
178 might_sleep();
179
180 if (!key || !key->local->ops->set_key)
181 return;
182
183 assert_key_lock(key->local);
184
185 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
186 return;
187
188 sta = key->sta;
189 sdata = key->sdata;
190
191 if (!(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC))
192 increment_tailroom_need_count(sdata);
193
194 ret = drv_set_key(key->local, DISABLE_KEY, sdata,
195 sta ? &sta->sta : NULL, &key->conf);
196
197 if (ret)
198 sdata_err(sdata,
199 "failed to remove key (%d, %pM) from hardware (%d)\n",
200 key->conf.keyidx,
201 sta ? sta->sta.addr : bcast_addr, ret);
202
203 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
204 }
205
206 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
207 int idx, bool uni, bool multi)
208 {
209 struct ieee80211_key *key = NULL;
210
211 assert_key_lock(sdata->local);
212
213 if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
214 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
215
216 if (uni) {
217 rcu_assign_pointer(sdata->default_unicast_key, key);
218 drv_set_default_unicast_key(sdata->local, sdata, idx);
219 }
220
221 if (multi)
222 rcu_assign_pointer(sdata->default_multicast_key, key);
223
224 ieee80211_debugfs_key_update_default(sdata);
225 }
226
227 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
228 bool uni, bool multi)
229 {
230 mutex_lock(&sdata->local->key_mtx);
231 __ieee80211_set_default_key(sdata, idx, uni, multi);
232 mutex_unlock(&sdata->local->key_mtx);
233 }
234
235 static void
236 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
237 {
238 struct ieee80211_key *key = NULL;
239
240 assert_key_lock(sdata->local);
241
242 if (idx >= NUM_DEFAULT_KEYS &&
243 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
244 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
245
246 rcu_assign_pointer(sdata->default_mgmt_key, key);
247
248 ieee80211_debugfs_key_update_default(sdata);
249 }
250
251 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
252 int idx)
253 {
254 mutex_lock(&sdata->local->key_mtx);
255 __ieee80211_set_default_mgmt_key(sdata, idx);
256 mutex_unlock(&sdata->local->key_mtx);
257 }
258
259
260 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
261 struct sta_info *sta,
262 bool pairwise,
263 struct ieee80211_key *old,
264 struct ieee80211_key *new)
265 {
266 int idx;
267 bool defunikey, defmultikey, defmgmtkey;
268
269 /* caller must provide at least one old/new */
270 if (WARN_ON(!new && !old))
271 return;
272
273 if (new)
274 list_add_tail(&new->list, &sdata->key_list);
275
276 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
277
278 if (old)
279 idx = old->conf.keyidx;
280 else
281 idx = new->conf.keyidx;
282
283 if (sta) {
284 if (pairwise) {
285 rcu_assign_pointer(sta->ptk[idx], new);
286 sta->ptk_idx = idx;
287 } else {
288 rcu_assign_pointer(sta->gtk[idx], new);
289 sta->gtk_idx = idx;
290 }
291 } else {
292 defunikey = old &&
293 old == key_mtx_dereference(sdata->local,
294 sdata->default_unicast_key);
295 defmultikey = old &&
296 old == key_mtx_dereference(sdata->local,
297 sdata->default_multicast_key);
298 defmgmtkey = old &&
299 old == key_mtx_dereference(sdata->local,
300 sdata->default_mgmt_key);
301
302 if (defunikey && !new)
303 __ieee80211_set_default_key(sdata, -1, true, false);
304 if (defmultikey && !new)
305 __ieee80211_set_default_key(sdata, -1, false, true);
306 if (defmgmtkey && !new)
307 __ieee80211_set_default_mgmt_key(sdata, -1);
308
309 rcu_assign_pointer(sdata->keys[idx], new);
310 if (defunikey && new)
311 __ieee80211_set_default_key(sdata, new->conf.keyidx,
312 true, false);
313 if (defmultikey && new)
314 __ieee80211_set_default_key(sdata, new->conf.keyidx,
315 false, true);
316 if (defmgmtkey && new)
317 __ieee80211_set_default_mgmt_key(sdata,
318 new->conf.keyidx);
319 }
320
321 if (old)
322 list_del(&old->list);
323 }
324
325 struct ieee80211_key *
326 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
327 const u8 *key_data,
328 size_t seq_len, const u8 *seq,
329 const struct ieee80211_cipher_scheme *cs)
330 {
331 struct ieee80211_key *key;
332 int i, j, err;
333
334 if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
335 return ERR_PTR(-EINVAL);
336
337 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
338 if (!key)
339 return ERR_PTR(-ENOMEM);
340
341 /*
342 * Default to software encryption; we'll later upload the
343 * key to the hardware if possible.
344 */
345 key->conf.flags = 0;
346 key->flags = 0;
347
348 key->conf.cipher = cipher;
349 key->conf.keyidx = idx;
350 key->conf.keylen = key_len;
351 switch (cipher) {
352 case WLAN_CIPHER_SUITE_WEP40:
353 case WLAN_CIPHER_SUITE_WEP104:
354 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
355 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
356 break;
357 case WLAN_CIPHER_SUITE_TKIP:
358 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
359 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
360 if (seq) {
361 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
362 key->u.tkip.rx[i].iv32 =
363 get_unaligned_le32(&seq[2]);
364 key->u.tkip.rx[i].iv16 =
365 get_unaligned_le16(seq);
366 }
367 }
368 spin_lock_init(&key->u.tkip.txlock);
369 break;
370 case WLAN_CIPHER_SUITE_CCMP:
371 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
372 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
373 if (seq) {
374 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
375 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
376 key->u.ccmp.rx_pn[i][j] =
377 seq[IEEE80211_CCMP_PN_LEN - j - 1];
378 }
379 /*
380 * Initialize AES key state here as an optimization so that
381 * it does not need to be initialized for every packet.
382 */
383 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(key_data);
384 if (IS_ERR(key->u.ccmp.tfm)) {
385 err = PTR_ERR(key->u.ccmp.tfm);
386 kfree(key);
387 return ERR_PTR(err);
388 }
389 break;
390 case WLAN_CIPHER_SUITE_AES_CMAC:
391 key->conf.iv_len = 0;
392 key->conf.icv_len = sizeof(struct ieee80211_mmie);
393 if (seq)
394 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
395 key->u.aes_cmac.rx_pn[j] =
396 seq[IEEE80211_CMAC_PN_LEN - j - 1];
397 /*
398 * Initialize AES key state here as an optimization so that
399 * it does not need to be initialized for every packet.
400 */
401 key->u.aes_cmac.tfm =
402 ieee80211_aes_cmac_key_setup(key_data);
403 if (IS_ERR(key->u.aes_cmac.tfm)) {
404 err = PTR_ERR(key->u.aes_cmac.tfm);
405 kfree(key);
406 return ERR_PTR(err);
407 }
408 break;
409 default:
410 if (cs) {
411 size_t len = (seq_len > MAX_PN_LEN) ?
412 MAX_PN_LEN : seq_len;
413
414 key->conf.iv_len = cs->hdr_len;
415 key->conf.icv_len = cs->mic_len;
416 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
417 for (j = 0; j < len; j++)
418 key->u.gen.rx_pn[i][j] =
419 seq[len - j - 1];
420 }
421 }
422 memcpy(key->conf.key, key_data, key_len);
423 INIT_LIST_HEAD(&key->list);
424
425 return key;
426 }
427
428 static void ieee80211_key_free_common(struct ieee80211_key *key)
429 {
430 if (key->conf.cipher == WLAN_CIPHER_SUITE_CCMP)
431 ieee80211_aes_key_free(key->u.ccmp.tfm);
432 if (key->conf.cipher == WLAN_CIPHER_SUITE_AES_CMAC)
433 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
434 kzfree(key);
435 }
436
437 static void __ieee80211_key_destroy(struct ieee80211_key *key,
438 bool delay_tailroom)
439 {
440 if (key->local)
441 ieee80211_key_disable_hw_accel(key);
442
443 if (key->local) {
444 struct ieee80211_sub_if_data *sdata = key->sdata;
445
446 ieee80211_debugfs_key_remove(key);
447
448 if (delay_tailroom) {
449 /* see ieee80211_delayed_tailroom_dec */
450 sdata->crypto_tx_tailroom_pending_dec++;
451 schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
452 HZ/2);
453 } else {
454 sdata->crypto_tx_tailroom_needed_cnt--;
455 }
456 }
457
458 ieee80211_key_free_common(key);
459 }
460
461 static void ieee80211_key_destroy(struct ieee80211_key *key,
462 bool delay_tailroom)
463 {
464 if (!key)
465 return;
466
467 /*
468 * Synchronize so the TX path can no longer be using
469 * this key before we free/remove it.
470 */
471 synchronize_net();
472
473 __ieee80211_key_destroy(key, delay_tailroom);
474 }
475
476 void ieee80211_key_free_unused(struct ieee80211_key *key)
477 {
478 WARN_ON(key->sdata || key->local);
479 ieee80211_key_free_common(key);
480 }
481
482 int ieee80211_key_link(struct ieee80211_key *key,
483 struct ieee80211_sub_if_data *sdata,
484 struct sta_info *sta)
485 {
486 struct ieee80211_local *local = sdata->local;
487 struct ieee80211_key *old_key;
488 int idx, ret;
489 bool pairwise;
490
491 pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
492 idx = key->conf.keyidx;
493 key->local = sdata->local;
494 key->sdata = sdata;
495 key->sta = sta;
496
497 mutex_lock(&sdata->local->key_mtx);
498
499 if (sta && pairwise)
500 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
501 else if (sta)
502 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
503 else
504 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
505
506 increment_tailroom_need_count(sdata);
507
508 ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
509 ieee80211_key_destroy(old_key, true);
510
511 ieee80211_debugfs_key_add(key);
512
513 if (!local->wowlan) {
514 ret = ieee80211_key_enable_hw_accel(key);
515 if (ret)
516 ieee80211_key_free(key, true);
517 } else {
518 ret = 0;
519 }
520
521 mutex_unlock(&sdata->local->key_mtx);
522
523 return ret;
524 }
525
526 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
527 {
528 if (!key)
529 return;
530
531 /*
532 * Replace key with nothingness if it was ever used.
533 */
534 if (key->sdata)
535 ieee80211_key_replace(key->sdata, key->sta,
536 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
537 key, NULL);
538 ieee80211_key_destroy(key, delay_tailroom);
539 }
540
541 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
542 {
543 struct ieee80211_key *key;
544
545 ASSERT_RTNL();
546
547 if (WARN_ON(!ieee80211_sdata_running(sdata)))
548 return;
549
550 mutex_lock(&sdata->local->key_mtx);
551
552 sdata->crypto_tx_tailroom_needed_cnt = 0;
553
554 list_for_each_entry(key, &sdata->key_list, list) {
555 increment_tailroom_need_count(sdata);
556 ieee80211_key_enable_hw_accel(key);
557 }
558
559 mutex_unlock(&sdata->local->key_mtx);
560 }
561
562 void ieee80211_iter_keys(struct ieee80211_hw *hw,
563 struct ieee80211_vif *vif,
564 void (*iter)(struct ieee80211_hw *hw,
565 struct ieee80211_vif *vif,
566 struct ieee80211_sta *sta,
567 struct ieee80211_key_conf *key,
568 void *data),
569 void *iter_data)
570 {
571 struct ieee80211_local *local = hw_to_local(hw);
572 struct ieee80211_key *key, *tmp;
573 struct ieee80211_sub_if_data *sdata;
574
575 ASSERT_RTNL();
576
577 mutex_lock(&local->key_mtx);
578 if (vif) {
579 sdata = vif_to_sdata(vif);
580 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
581 iter(hw, &sdata->vif,
582 key->sta ? &key->sta->sta : NULL,
583 &key->conf, iter_data);
584 } else {
585 list_for_each_entry(sdata, &local->interfaces, list)
586 list_for_each_entry_safe(key, tmp,
587 &sdata->key_list, list)
588 iter(hw, &sdata->vif,
589 key->sta ? &key->sta->sta : NULL,
590 &key->conf, iter_data);
591 }
592 mutex_unlock(&local->key_mtx);
593 }
594 EXPORT_SYMBOL(ieee80211_iter_keys);
595
596 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
597 struct list_head *keys)
598 {
599 struct ieee80211_key *key, *tmp;
600
601 sdata->crypto_tx_tailroom_needed_cnt -=
602 sdata->crypto_tx_tailroom_pending_dec;
603 sdata->crypto_tx_tailroom_pending_dec = 0;
604
605 ieee80211_debugfs_key_remove_mgmt_default(sdata);
606
607 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
608 ieee80211_key_replace(key->sdata, key->sta,
609 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
610 key, NULL);
611 list_add_tail(&key->list, keys);
612 }
613
614 ieee80211_debugfs_key_update_default(sdata);
615 }
616
617 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
618 bool force_synchronize)
619 {
620 struct ieee80211_local *local = sdata->local;
621 struct ieee80211_sub_if_data *vlan;
622 struct ieee80211_key *key, *tmp;
623 LIST_HEAD(keys);
624
625 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
626
627 mutex_lock(&local->key_mtx);
628
629 ieee80211_free_keys_iface(sdata, &keys);
630
631 if (sdata->vif.type == NL80211_IFTYPE_AP) {
632 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
633 ieee80211_free_keys_iface(vlan, &keys);
634 }
635
636 if (!list_empty(&keys) || force_synchronize)
637 synchronize_net();
638 list_for_each_entry_safe(key, tmp, &keys, list)
639 __ieee80211_key_destroy(key, false);
640
641 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
642 sdata->crypto_tx_tailroom_pending_dec);
643 if (sdata->vif.type == NL80211_IFTYPE_AP) {
644 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
645 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
646 vlan->crypto_tx_tailroom_pending_dec);
647 }
648
649 mutex_unlock(&local->key_mtx);
650 }
651
652 void ieee80211_free_sta_keys(struct ieee80211_local *local,
653 struct sta_info *sta)
654 {
655 struct ieee80211_key *key;
656 int i;
657
658 mutex_lock(&local->key_mtx);
659 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
660 key = key_mtx_dereference(local, sta->gtk[i]);
661 if (!key)
662 continue;
663 ieee80211_key_replace(key->sdata, key->sta,
664 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
665 key, NULL);
666 __ieee80211_key_destroy(key, true);
667 }
668
669 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
670 key = key_mtx_dereference(local, sta->ptk[i]);
671 if (!key)
672 continue;
673 ieee80211_key_replace(key->sdata, key->sta,
674 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
675 key, NULL);
676 __ieee80211_key_destroy(key, true);
677 }
678
679 mutex_unlock(&local->key_mtx);
680 }
681
682 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
683 {
684 struct ieee80211_sub_if_data *sdata;
685
686 sdata = container_of(wk, struct ieee80211_sub_if_data,
687 dec_tailroom_needed_wk.work);
688
689 /*
690 * The reason for the delayed tailroom needed decrementing is to
691 * make roaming faster: during roaming, all keys are first deleted
692 * and then new keys are installed. The first new key causes the
693 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
694 * the cost of synchronize_net() (which can be slow). Avoid this
695 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
696 * key removal for a while, so if we roam the value is larger than
697 * zero and no 0->1 transition happens.
698 *
699 * The cost is that if the AP switching was from an AP with keys
700 * to one without, we still allocate tailroom while it would no
701 * longer be needed. However, in the typical (fast) roaming case
702 * within an ESS this usually won't happen.
703 */
704
705 mutex_lock(&sdata->local->key_mtx);
706 sdata->crypto_tx_tailroom_needed_cnt -=
707 sdata->crypto_tx_tailroom_pending_dec;
708 sdata->crypto_tx_tailroom_pending_dec = 0;
709 mutex_unlock(&sdata->local->key_mtx);
710 }
711
712 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
713 const u8 *replay_ctr, gfp_t gfp)
714 {
715 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
716
717 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
718
719 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
720 }
721 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
722
723 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
724 struct ieee80211_key_seq *seq)
725 {
726 struct ieee80211_key *key;
727 u64 pn64;
728
729 if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
730 return;
731
732 key = container_of(keyconf, struct ieee80211_key, conf);
733
734 switch (key->conf.cipher) {
735 case WLAN_CIPHER_SUITE_TKIP:
736 seq->tkip.iv32 = key->u.tkip.tx.iv32;
737 seq->tkip.iv16 = key->u.tkip.tx.iv16;
738 break;
739 case WLAN_CIPHER_SUITE_CCMP:
740 pn64 = atomic64_read(&key->u.ccmp.tx_pn);
741 seq->ccmp.pn[5] = pn64;
742 seq->ccmp.pn[4] = pn64 >> 8;
743 seq->ccmp.pn[3] = pn64 >> 16;
744 seq->ccmp.pn[2] = pn64 >> 24;
745 seq->ccmp.pn[1] = pn64 >> 32;
746 seq->ccmp.pn[0] = pn64 >> 40;
747 break;
748 case WLAN_CIPHER_SUITE_AES_CMAC:
749 pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
750 seq->ccmp.pn[5] = pn64;
751 seq->ccmp.pn[4] = pn64 >> 8;
752 seq->ccmp.pn[3] = pn64 >> 16;
753 seq->ccmp.pn[2] = pn64 >> 24;
754 seq->ccmp.pn[1] = pn64 >> 32;
755 seq->ccmp.pn[0] = pn64 >> 40;
756 break;
757 default:
758 WARN_ON(1);
759 }
760 }
761 EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
762
763 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
764 int tid, struct ieee80211_key_seq *seq)
765 {
766 struct ieee80211_key *key;
767 const u8 *pn;
768
769 key = container_of(keyconf, struct ieee80211_key, conf);
770
771 switch (key->conf.cipher) {
772 case WLAN_CIPHER_SUITE_TKIP:
773 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
774 return;
775 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
776 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
777 break;
778 case WLAN_CIPHER_SUITE_CCMP:
779 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
780 return;
781 if (tid < 0)
782 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
783 else
784 pn = key->u.ccmp.rx_pn[tid];
785 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
786 break;
787 case WLAN_CIPHER_SUITE_AES_CMAC:
788 if (WARN_ON(tid != 0))
789 return;
790 pn = key->u.aes_cmac.rx_pn;
791 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
792 break;
793 }
794 }
795 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
796
797 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
798 struct ieee80211_key_seq *seq)
799 {
800 struct ieee80211_key *key;
801 u64 pn64;
802
803 key = container_of(keyconf, struct ieee80211_key, conf);
804
805 switch (key->conf.cipher) {
806 case WLAN_CIPHER_SUITE_TKIP:
807 key->u.tkip.tx.iv32 = seq->tkip.iv32;
808 key->u.tkip.tx.iv16 = seq->tkip.iv16;
809 break;
810 case WLAN_CIPHER_SUITE_CCMP:
811 pn64 = (u64)seq->ccmp.pn[5] |
812 ((u64)seq->ccmp.pn[4] << 8) |
813 ((u64)seq->ccmp.pn[3] << 16) |
814 ((u64)seq->ccmp.pn[2] << 24) |
815 ((u64)seq->ccmp.pn[1] << 32) |
816 ((u64)seq->ccmp.pn[0] << 40);
817 atomic64_set(&key->u.ccmp.tx_pn, pn64);
818 break;
819 case WLAN_CIPHER_SUITE_AES_CMAC:
820 pn64 = (u64)seq->aes_cmac.pn[5] |
821 ((u64)seq->aes_cmac.pn[4] << 8) |
822 ((u64)seq->aes_cmac.pn[3] << 16) |
823 ((u64)seq->aes_cmac.pn[2] << 24) |
824 ((u64)seq->aes_cmac.pn[1] << 32) |
825 ((u64)seq->aes_cmac.pn[0] << 40);
826 atomic64_set(&key->u.aes_cmac.tx_pn, pn64);
827 break;
828 default:
829 WARN_ON(1);
830 break;
831 }
832 }
833 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
834
835 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
836 int tid, struct ieee80211_key_seq *seq)
837 {
838 struct ieee80211_key *key;
839 u8 *pn;
840
841 key = container_of(keyconf, struct ieee80211_key, conf);
842
843 switch (key->conf.cipher) {
844 case WLAN_CIPHER_SUITE_TKIP:
845 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
846 return;
847 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
848 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
849 break;
850 case WLAN_CIPHER_SUITE_CCMP:
851 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
852 return;
853 if (tid < 0)
854 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
855 else
856 pn = key->u.ccmp.rx_pn[tid];
857 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
858 break;
859 case WLAN_CIPHER_SUITE_AES_CMAC:
860 if (WARN_ON(tid != 0))
861 return;
862 pn = key->u.aes_cmac.rx_pn;
863 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
864 break;
865 default:
866 WARN_ON(1);
867 break;
868 }
869 }
870 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
871
872 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
873 {
874 struct ieee80211_key *key;
875
876 key = container_of(keyconf, struct ieee80211_key, conf);
877
878 assert_key_lock(key->local);
879
880 /*
881 * if key was uploaded, we assume the driver will/has remove(d)
882 * it, so adjust bookkeeping accordingly
883 */
884 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
885 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
886
887 if (!(key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC))
888 increment_tailroom_need_count(key->sdata);
889 }
890
891 ieee80211_key_free(key, false);
892 }
893 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
894
895 struct ieee80211_key_conf *
896 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
897 struct ieee80211_key_conf *keyconf)
898 {
899 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
900 struct ieee80211_local *local = sdata->local;
901 struct ieee80211_key *key;
902 int err;
903
904 if (WARN_ON(!local->wowlan))
905 return ERR_PTR(-EINVAL);
906
907 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
908 return ERR_PTR(-EINVAL);
909
910 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
911 keyconf->keylen, keyconf->key,
912 0, NULL, NULL);
913 if (IS_ERR(key))
914 return ERR_CAST(key);
915
916 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
917 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
918
919 err = ieee80211_key_link(key, sdata, NULL);
920 if (err)
921 return ERR_PTR(err);
922
923 return &key->conf;
924 }
925 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);
This page took 0.049995 seconds and 5 git commands to generate.