ping: Fix race in free in receive path
[deliverable/linux.git] / net / mac80211 / key.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/if_ether.h>
14 #include <linux/etherdevice.h>
15 #include <linux/list.h>
16 #include <linux/rcupdate.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/slab.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <asm/unaligned.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "debugfs_key.h"
25 #include "aes_ccm.h"
26 #include "aes_cmac.h"
27
28
29 /**
30 * DOC: Key handling basics
31 *
32 * Key handling in mac80211 is done based on per-interface (sub_if_data)
33 * keys and per-station keys. Since each station belongs to an interface,
34 * each station key also belongs to that interface.
35 *
36 * Hardware acceleration is done on a best-effort basis for algorithms
37 * that are implemented in software, for each key the hardware is asked
38 * to enable that key for offloading but if it cannot do that the key is
39 * simply kept for software encryption (unless it is for an algorithm
40 * that isn't implemented in software).
41 * There is currently no way of knowing whether a key is handled in SW
42 * or HW except by looking into debugfs.
43 *
44 * All key management is internally protected by a mutex. Within all
45 * other parts of mac80211, key references are, just as STA structure
46 * references, protected by RCU. Note, however, that some things are
47 * unprotected, namely the key->sta dereferences within the hardware
48 * acceleration functions. This means that sta_info_destroy() must
49 * remove the key which waits for an RCU grace period.
50 */
51
52 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
53
54 static void assert_key_lock(struct ieee80211_local *local)
55 {
56 lockdep_assert_held(&local->key_mtx);
57 }
58
59 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
60 {
61 /*
62 * When this count is zero, SKB resizing for allocating tailroom
63 * for IV or MMIC is skipped. But, this check has created two race
64 * cases in xmit path while transiting from zero count to one:
65 *
66 * 1. SKB resize was skipped because no key was added but just before
67 * the xmit key is added and SW encryption kicks off.
68 *
69 * 2. SKB resize was skipped because all the keys were hw planted but
70 * just before xmit one of the key is deleted and SW encryption kicks
71 * off.
72 *
73 * In both the above case SW encryption will find not enough space for
74 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
75 *
76 * Solution has been explained at
77 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
78 */
79
80 if (!sdata->crypto_tx_tailroom_needed_cnt++) {
81 /*
82 * Flush all XMIT packets currently using HW encryption or no
83 * encryption at all if the count transition is from 0 -> 1.
84 */
85 synchronize_net();
86 }
87 }
88
89 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
90 {
91 struct ieee80211_sub_if_data *sdata;
92 struct sta_info *sta;
93 int ret;
94
95 might_sleep();
96
97 if (key->flags & KEY_FLAG_TAINTED) {
98 /* If we get here, it's during resume and the key is
99 * tainted so shouldn't be used/programmed any more.
100 * However, its flags may still indicate that it was
101 * programmed into the device (since we're in resume)
102 * so clear that flag now to avoid trying to remove
103 * it again later.
104 */
105 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
106 return -EINVAL;
107 }
108
109 if (!key->local->ops->set_key)
110 goto out_unsupported;
111
112 assert_key_lock(key->local);
113
114 sta = key->sta;
115
116 /*
117 * If this is a per-STA GTK, check if it
118 * is supported; if not, return.
119 */
120 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
121 !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK))
122 goto out_unsupported;
123
124 if (sta && !sta->uploaded)
125 goto out_unsupported;
126
127 sdata = key->sdata;
128 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
129 /*
130 * The driver doesn't know anything about VLAN interfaces.
131 * Hence, don't send GTKs for VLAN interfaces to the driver.
132 */
133 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
134 goto out_unsupported;
135 }
136
137 ret = drv_set_key(key->local, SET_KEY, sdata,
138 sta ? &sta->sta : NULL, &key->conf);
139
140 if (!ret) {
141 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
142
143 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
144 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
145 (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
146 sdata->crypto_tx_tailroom_needed_cnt--;
147
148 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
149 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
150
151 return 0;
152 }
153
154 if (ret != -ENOSPC && ret != -EOPNOTSUPP)
155 sdata_err(sdata,
156 "failed to set key (%d, %pM) to hardware (%d)\n",
157 key->conf.keyidx,
158 sta ? sta->sta.addr : bcast_addr, ret);
159
160 out_unsupported:
161 switch (key->conf.cipher) {
162 case WLAN_CIPHER_SUITE_WEP40:
163 case WLAN_CIPHER_SUITE_WEP104:
164 case WLAN_CIPHER_SUITE_TKIP:
165 case WLAN_CIPHER_SUITE_CCMP:
166 case WLAN_CIPHER_SUITE_AES_CMAC:
167 /* all of these we can do in software */
168 return 0;
169 default:
170 return -EINVAL;
171 }
172 }
173
174 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
175 {
176 struct ieee80211_sub_if_data *sdata;
177 struct sta_info *sta;
178 int ret;
179
180 might_sleep();
181
182 if (!key || !key->local->ops->set_key)
183 return;
184
185 assert_key_lock(key->local);
186
187 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
188 return;
189
190 sta = key->sta;
191 sdata = key->sdata;
192
193 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
194 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
195 (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
196 increment_tailroom_need_count(sdata);
197
198 ret = drv_set_key(key->local, DISABLE_KEY, sdata,
199 sta ? &sta->sta : NULL, &key->conf);
200
201 if (ret)
202 sdata_err(sdata,
203 "failed to remove key (%d, %pM) from hardware (%d)\n",
204 key->conf.keyidx,
205 sta ? sta->sta.addr : bcast_addr, ret);
206
207 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
208 }
209
210 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
211 int idx, bool uni, bool multi)
212 {
213 struct ieee80211_key *key = NULL;
214
215 assert_key_lock(sdata->local);
216
217 if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
218 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
219
220 if (uni) {
221 rcu_assign_pointer(sdata->default_unicast_key, key);
222 drv_set_default_unicast_key(sdata->local, sdata, idx);
223 }
224
225 if (multi)
226 rcu_assign_pointer(sdata->default_multicast_key, key);
227
228 ieee80211_debugfs_key_update_default(sdata);
229 }
230
231 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
232 bool uni, bool multi)
233 {
234 mutex_lock(&sdata->local->key_mtx);
235 __ieee80211_set_default_key(sdata, idx, uni, multi);
236 mutex_unlock(&sdata->local->key_mtx);
237 }
238
239 static void
240 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
241 {
242 struct ieee80211_key *key = NULL;
243
244 assert_key_lock(sdata->local);
245
246 if (idx >= NUM_DEFAULT_KEYS &&
247 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
248 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
249
250 rcu_assign_pointer(sdata->default_mgmt_key, key);
251
252 ieee80211_debugfs_key_update_default(sdata);
253 }
254
255 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
256 int idx)
257 {
258 mutex_lock(&sdata->local->key_mtx);
259 __ieee80211_set_default_mgmt_key(sdata, idx);
260 mutex_unlock(&sdata->local->key_mtx);
261 }
262
263
264 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
265 struct sta_info *sta,
266 bool pairwise,
267 struct ieee80211_key *old,
268 struct ieee80211_key *new)
269 {
270 int idx;
271 bool defunikey, defmultikey, defmgmtkey;
272
273 /* caller must provide at least one old/new */
274 if (WARN_ON(!new && !old))
275 return;
276
277 if (new)
278 list_add_tail(&new->list, &sdata->key_list);
279
280 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
281
282 if (old)
283 idx = old->conf.keyidx;
284 else
285 idx = new->conf.keyidx;
286
287 if (sta) {
288 if (pairwise) {
289 rcu_assign_pointer(sta->ptk[idx], new);
290 sta->ptk_idx = idx;
291 } else {
292 rcu_assign_pointer(sta->gtk[idx], new);
293 sta->gtk_idx = idx;
294 }
295 } else {
296 defunikey = old &&
297 old == key_mtx_dereference(sdata->local,
298 sdata->default_unicast_key);
299 defmultikey = old &&
300 old == key_mtx_dereference(sdata->local,
301 sdata->default_multicast_key);
302 defmgmtkey = old &&
303 old == key_mtx_dereference(sdata->local,
304 sdata->default_mgmt_key);
305
306 if (defunikey && !new)
307 __ieee80211_set_default_key(sdata, -1, true, false);
308 if (defmultikey && !new)
309 __ieee80211_set_default_key(sdata, -1, false, true);
310 if (defmgmtkey && !new)
311 __ieee80211_set_default_mgmt_key(sdata, -1);
312
313 rcu_assign_pointer(sdata->keys[idx], new);
314 if (defunikey && new)
315 __ieee80211_set_default_key(sdata, new->conf.keyidx,
316 true, false);
317 if (defmultikey && new)
318 __ieee80211_set_default_key(sdata, new->conf.keyidx,
319 false, true);
320 if (defmgmtkey && new)
321 __ieee80211_set_default_mgmt_key(sdata,
322 new->conf.keyidx);
323 }
324
325 if (old)
326 list_del(&old->list);
327 }
328
329 struct ieee80211_key *
330 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
331 const u8 *key_data,
332 size_t seq_len, const u8 *seq,
333 const struct ieee80211_cipher_scheme *cs)
334 {
335 struct ieee80211_key *key;
336 int i, j, err;
337
338 if (WARN_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS))
339 return ERR_PTR(-EINVAL);
340
341 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
342 if (!key)
343 return ERR_PTR(-ENOMEM);
344
345 /*
346 * Default to software encryption; we'll later upload the
347 * key to the hardware if possible.
348 */
349 key->conf.flags = 0;
350 key->flags = 0;
351
352 key->conf.cipher = cipher;
353 key->conf.keyidx = idx;
354 key->conf.keylen = key_len;
355 switch (cipher) {
356 case WLAN_CIPHER_SUITE_WEP40:
357 case WLAN_CIPHER_SUITE_WEP104:
358 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
359 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
360 break;
361 case WLAN_CIPHER_SUITE_TKIP:
362 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
363 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
364 if (seq) {
365 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
366 key->u.tkip.rx[i].iv32 =
367 get_unaligned_le32(&seq[2]);
368 key->u.tkip.rx[i].iv16 =
369 get_unaligned_le16(seq);
370 }
371 }
372 spin_lock_init(&key->u.tkip.txlock);
373 break;
374 case WLAN_CIPHER_SUITE_CCMP:
375 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
376 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
377 if (seq) {
378 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
379 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
380 key->u.ccmp.rx_pn[i][j] =
381 seq[IEEE80211_CCMP_PN_LEN - j - 1];
382 }
383 /*
384 * Initialize AES key state here as an optimization so that
385 * it does not need to be initialized for every packet.
386 */
387 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(key_data);
388 if (IS_ERR(key->u.ccmp.tfm)) {
389 err = PTR_ERR(key->u.ccmp.tfm);
390 kfree(key);
391 return ERR_PTR(err);
392 }
393 break;
394 case WLAN_CIPHER_SUITE_AES_CMAC:
395 key->conf.iv_len = 0;
396 key->conf.icv_len = sizeof(struct ieee80211_mmie);
397 if (seq)
398 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
399 key->u.aes_cmac.rx_pn[j] =
400 seq[IEEE80211_CMAC_PN_LEN - j - 1];
401 /*
402 * Initialize AES key state here as an optimization so that
403 * it does not need to be initialized for every packet.
404 */
405 key->u.aes_cmac.tfm =
406 ieee80211_aes_cmac_key_setup(key_data);
407 if (IS_ERR(key->u.aes_cmac.tfm)) {
408 err = PTR_ERR(key->u.aes_cmac.tfm);
409 kfree(key);
410 return ERR_PTR(err);
411 }
412 break;
413 default:
414 if (cs) {
415 size_t len = (seq_len > MAX_PN_LEN) ?
416 MAX_PN_LEN : seq_len;
417
418 key->conf.iv_len = cs->hdr_len;
419 key->conf.icv_len = cs->mic_len;
420 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
421 for (j = 0; j < len; j++)
422 key->u.gen.rx_pn[i][j] =
423 seq[len - j - 1];
424 }
425 }
426 memcpy(key->conf.key, key_data, key_len);
427 INIT_LIST_HEAD(&key->list);
428
429 return key;
430 }
431
432 static void ieee80211_key_free_common(struct ieee80211_key *key)
433 {
434 if (key->conf.cipher == WLAN_CIPHER_SUITE_CCMP)
435 ieee80211_aes_key_free(key->u.ccmp.tfm);
436 if (key->conf.cipher == WLAN_CIPHER_SUITE_AES_CMAC)
437 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
438 kzfree(key);
439 }
440
441 static void __ieee80211_key_destroy(struct ieee80211_key *key,
442 bool delay_tailroom)
443 {
444 if (key->local)
445 ieee80211_key_disable_hw_accel(key);
446
447 if (key->local) {
448 struct ieee80211_sub_if_data *sdata = key->sdata;
449
450 ieee80211_debugfs_key_remove(key);
451
452 if (delay_tailroom) {
453 /* see ieee80211_delayed_tailroom_dec */
454 sdata->crypto_tx_tailroom_pending_dec++;
455 schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
456 HZ/2);
457 } else {
458 sdata->crypto_tx_tailroom_needed_cnt--;
459 }
460 }
461
462 ieee80211_key_free_common(key);
463 }
464
465 static void ieee80211_key_destroy(struct ieee80211_key *key,
466 bool delay_tailroom)
467 {
468 if (!key)
469 return;
470
471 /*
472 * Synchronize so the TX path can no longer be using
473 * this key before we free/remove it.
474 */
475 synchronize_net();
476
477 __ieee80211_key_destroy(key, delay_tailroom);
478 }
479
480 void ieee80211_key_free_unused(struct ieee80211_key *key)
481 {
482 WARN_ON(key->sdata || key->local);
483 ieee80211_key_free_common(key);
484 }
485
486 int ieee80211_key_link(struct ieee80211_key *key,
487 struct ieee80211_sub_if_data *sdata,
488 struct sta_info *sta)
489 {
490 struct ieee80211_local *local = sdata->local;
491 struct ieee80211_key *old_key;
492 int idx, ret;
493 bool pairwise;
494
495 pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
496 idx = key->conf.keyidx;
497 key->local = sdata->local;
498 key->sdata = sdata;
499 key->sta = sta;
500
501 mutex_lock(&sdata->local->key_mtx);
502
503 if (sta && pairwise)
504 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
505 else if (sta)
506 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
507 else
508 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
509
510 increment_tailroom_need_count(sdata);
511
512 ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
513 ieee80211_key_destroy(old_key, true);
514
515 ieee80211_debugfs_key_add(key);
516
517 if (!local->wowlan) {
518 ret = ieee80211_key_enable_hw_accel(key);
519 if (ret)
520 ieee80211_key_free(key, true);
521 } else {
522 ret = 0;
523 }
524
525 mutex_unlock(&sdata->local->key_mtx);
526
527 return ret;
528 }
529
530 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
531 {
532 if (!key)
533 return;
534
535 /*
536 * Replace key with nothingness if it was ever used.
537 */
538 if (key->sdata)
539 ieee80211_key_replace(key->sdata, key->sta,
540 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
541 key, NULL);
542 ieee80211_key_destroy(key, delay_tailroom);
543 }
544
545 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
546 {
547 struct ieee80211_key *key;
548
549 ASSERT_RTNL();
550
551 if (WARN_ON(!ieee80211_sdata_running(sdata)))
552 return;
553
554 mutex_lock(&sdata->local->key_mtx);
555
556 sdata->crypto_tx_tailroom_needed_cnt = 0;
557
558 list_for_each_entry(key, &sdata->key_list, list) {
559 increment_tailroom_need_count(sdata);
560 ieee80211_key_enable_hw_accel(key);
561 }
562
563 mutex_unlock(&sdata->local->key_mtx);
564 }
565
566 void ieee80211_iter_keys(struct ieee80211_hw *hw,
567 struct ieee80211_vif *vif,
568 void (*iter)(struct ieee80211_hw *hw,
569 struct ieee80211_vif *vif,
570 struct ieee80211_sta *sta,
571 struct ieee80211_key_conf *key,
572 void *data),
573 void *iter_data)
574 {
575 struct ieee80211_local *local = hw_to_local(hw);
576 struct ieee80211_key *key, *tmp;
577 struct ieee80211_sub_if_data *sdata;
578
579 ASSERT_RTNL();
580
581 mutex_lock(&local->key_mtx);
582 if (vif) {
583 sdata = vif_to_sdata(vif);
584 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
585 iter(hw, &sdata->vif,
586 key->sta ? &key->sta->sta : NULL,
587 &key->conf, iter_data);
588 } else {
589 list_for_each_entry(sdata, &local->interfaces, list)
590 list_for_each_entry_safe(key, tmp,
591 &sdata->key_list, list)
592 iter(hw, &sdata->vif,
593 key->sta ? &key->sta->sta : NULL,
594 &key->conf, iter_data);
595 }
596 mutex_unlock(&local->key_mtx);
597 }
598 EXPORT_SYMBOL(ieee80211_iter_keys);
599
600 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
601 struct list_head *keys)
602 {
603 struct ieee80211_key *key, *tmp;
604
605 sdata->crypto_tx_tailroom_needed_cnt -=
606 sdata->crypto_tx_tailroom_pending_dec;
607 sdata->crypto_tx_tailroom_pending_dec = 0;
608
609 ieee80211_debugfs_key_remove_mgmt_default(sdata);
610
611 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
612 ieee80211_key_replace(key->sdata, key->sta,
613 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
614 key, NULL);
615 list_add_tail(&key->list, keys);
616 }
617
618 ieee80211_debugfs_key_update_default(sdata);
619 }
620
621 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
622 bool force_synchronize)
623 {
624 struct ieee80211_local *local = sdata->local;
625 struct ieee80211_sub_if_data *vlan;
626 struct ieee80211_key *key, *tmp;
627 LIST_HEAD(keys);
628
629 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
630
631 mutex_lock(&local->key_mtx);
632
633 ieee80211_free_keys_iface(sdata, &keys);
634
635 if (sdata->vif.type == NL80211_IFTYPE_AP) {
636 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
637 ieee80211_free_keys_iface(vlan, &keys);
638 }
639
640 if (!list_empty(&keys) || force_synchronize)
641 synchronize_net();
642 list_for_each_entry_safe(key, tmp, &keys, list)
643 __ieee80211_key_destroy(key, false);
644
645 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
646 sdata->crypto_tx_tailroom_pending_dec);
647 if (sdata->vif.type == NL80211_IFTYPE_AP) {
648 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
649 WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
650 vlan->crypto_tx_tailroom_pending_dec);
651 }
652
653 mutex_unlock(&local->key_mtx);
654 }
655
656 void ieee80211_free_sta_keys(struct ieee80211_local *local,
657 struct sta_info *sta)
658 {
659 struct ieee80211_key *key;
660 int i;
661
662 mutex_lock(&local->key_mtx);
663 for (i = 0; i < ARRAY_SIZE(sta->gtk); i++) {
664 key = key_mtx_dereference(local, sta->gtk[i]);
665 if (!key)
666 continue;
667 ieee80211_key_replace(key->sdata, key->sta,
668 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
669 key, NULL);
670 __ieee80211_key_destroy(key, true);
671 }
672
673 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
674 key = key_mtx_dereference(local, sta->ptk[i]);
675 if (!key)
676 continue;
677 ieee80211_key_replace(key->sdata, key->sta,
678 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
679 key, NULL);
680 __ieee80211_key_destroy(key, true);
681 }
682
683 mutex_unlock(&local->key_mtx);
684 }
685
686 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
687 {
688 struct ieee80211_sub_if_data *sdata;
689
690 sdata = container_of(wk, struct ieee80211_sub_if_data,
691 dec_tailroom_needed_wk.work);
692
693 /*
694 * The reason for the delayed tailroom needed decrementing is to
695 * make roaming faster: during roaming, all keys are first deleted
696 * and then new keys are installed. The first new key causes the
697 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
698 * the cost of synchronize_net() (which can be slow). Avoid this
699 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
700 * key removal for a while, so if we roam the value is larger than
701 * zero and no 0->1 transition happens.
702 *
703 * The cost is that if the AP switching was from an AP with keys
704 * to one without, we still allocate tailroom while it would no
705 * longer be needed. However, in the typical (fast) roaming case
706 * within an ESS this usually won't happen.
707 */
708
709 mutex_lock(&sdata->local->key_mtx);
710 sdata->crypto_tx_tailroom_needed_cnt -=
711 sdata->crypto_tx_tailroom_pending_dec;
712 sdata->crypto_tx_tailroom_pending_dec = 0;
713 mutex_unlock(&sdata->local->key_mtx);
714 }
715
716 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
717 const u8 *replay_ctr, gfp_t gfp)
718 {
719 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
720
721 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
722
723 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
724 }
725 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
726
727 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
728 struct ieee80211_key_seq *seq)
729 {
730 struct ieee80211_key *key;
731 u64 pn64;
732
733 if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
734 return;
735
736 key = container_of(keyconf, struct ieee80211_key, conf);
737
738 switch (key->conf.cipher) {
739 case WLAN_CIPHER_SUITE_TKIP:
740 seq->tkip.iv32 = key->u.tkip.tx.iv32;
741 seq->tkip.iv16 = key->u.tkip.tx.iv16;
742 break;
743 case WLAN_CIPHER_SUITE_CCMP:
744 pn64 = atomic64_read(&key->u.ccmp.tx_pn);
745 seq->ccmp.pn[5] = pn64;
746 seq->ccmp.pn[4] = pn64 >> 8;
747 seq->ccmp.pn[3] = pn64 >> 16;
748 seq->ccmp.pn[2] = pn64 >> 24;
749 seq->ccmp.pn[1] = pn64 >> 32;
750 seq->ccmp.pn[0] = pn64 >> 40;
751 break;
752 case WLAN_CIPHER_SUITE_AES_CMAC:
753 pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
754 seq->ccmp.pn[5] = pn64;
755 seq->ccmp.pn[4] = pn64 >> 8;
756 seq->ccmp.pn[3] = pn64 >> 16;
757 seq->ccmp.pn[2] = pn64 >> 24;
758 seq->ccmp.pn[1] = pn64 >> 32;
759 seq->ccmp.pn[0] = pn64 >> 40;
760 break;
761 default:
762 WARN_ON(1);
763 }
764 }
765 EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
766
767 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
768 int tid, struct ieee80211_key_seq *seq)
769 {
770 struct ieee80211_key *key;
771 const u8 *pn;
772
773 key = container_of(keyconf, struct ieee80211_key, conf);
774
775 switch (key->conf.cipher) {
776 case WLAN_CIPHER_SUITE_TKIP:
777 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
778 return;
779 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
780 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
781 break;
782 case WLAN_CIPHER_SUITE_CCMP:
783 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
784 return;
785 if (tid < 0)
786 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
787 else
788 pn = key->u.ccmp.rx_pn[tid];
789 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
790 break;
791 case WLAN_CIPHER_SUITE_AES_CMAC:
792 if (WARN_ON(tid != 0))
793 return;
794 pn = key->u.aes_cmac.rx_pn;
795 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
796 break;
797 }
798 }
799 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
800
801 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
802 struct ieee80211_key_seq *seq)
803 {
804 struct ieee80211_key *key;
805 u64 pn64;
806
807 key = container_of(keyconf, struct ieee80211_key, conf);
808
809 switch (key->conf.cipher) {
810 case WLAN_CIPHER_SUITE_TKIP:
811 key->u.tkip.tx.iv32 = seq->tkip.iv32;
812 key->u.tkip.tx.iv16 = seq->tkip.iv16;
813 break;
814 case WLAN_CIPHER_SUITE_CCMP:
815 pn64 = (u64)seq->ccmp.pn[5] |
816 ((u64)seq->ccmp.pn[4] << 8) |
817 ((u64)seq->ccmp.pn[3] << 16) |
818 ((u64)seq->ccmp.pn[2] << 24) |
819 ((u64)seq->ccmp.pn[1] << 32) |
820 ((u64)seq->ccmp.pn[0] << 40);
821 atomic64_set(&key->u.ccmp.tx_pn, pn64);
822 break;
823 case WLAN_CIPHER_SUITE_AES_CMAC:
824 pn64 = (u64)seq->aes_cmac.pn[5] |
825 ((u64)seq->aes_cmac.pn[4] << 8) |
826 ((u64)seq->aes_cmac.pn[3] << 16) |
827 ((u64)seq->aes_cmac.pn[2] << 24) |
828 ((u64)seq->aes_cmac.pn[1] << 32) |
829 ((u64)seq->aes_cmac.pn[0] << 40);
830 atomic64_set(&key->u.aes_cmac.tx_pn, pn64);
831 break;
832 default:
833 WARN_ON(1);
834 break;
835 }
836 }
837 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
838
839 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
840 int tid, struct ieee80211_key_seq *seq)
841 {
842 struct ieee80211_key *key;
843 u8 *pn;
844
845 key = container_of(keyconf, struct ieee80211_key, conf);
846
847 switch (key->conf.cipher) {
848 case WLAN_CIPHER_SUITE_TKIP:
849 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
850 return;
851 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
852 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
853 break;
854 case WLAN_CIPHER_SUITE_CCMP:
855 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
856 return;
857 if (tid < 0)
858 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
859 else
860 pn = key->u.ccmp.rx_pn[tid];
861 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
862 break;
863 case WLAN_CIPHER_SUITE_AES_CMAC:
864 if (WARN_ON(tid != 0))
865 return;
866 pn = key->u.aes_cmac.rx_pn;
867 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
868 break;
869 default:
870 WARN_ON(1);
871 break;
872 }
873 }
874 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
875
876 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
877 {
878 struct ieee80211_key *key;
879
880 key = container_of(keyconf, struct ieee80211_key, conf);
881
882 assert_key_lock(key->local);
883
884 /*
885 * if key was uploaded, we assume the driver will/has remove(d)
886 * it, so adjust bookkeeping accordingly
887 */
888 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
889 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
890
891 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
892 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
893 (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
894 increment_tailroom_need_count(key->sdata);
895 }
896
897 ieee80211_key_free(key, false);
898 }
899 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
900
901 struct ieee80211_key_conf *
902 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
903 struct ieee80211_key_conf *keyconf)
904 {
905 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
906 struct ieee80211_local *local = sdata->local;
907 struct ieee80211_key *key;
908 int err;
909
910 if (WARN_ON(!local->wowlan))
911 return ERR_PTR(-EINVAL);
912
913 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
914 return ERR_PTR(-EINVAL);
915
916 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
917 keyconf->keylen, keyconf->key,
918 0, NULL, NULL);
919 if (IS_ERR(key))
920 return ERR_CAST(key);
921
922 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
923 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
924
925 err = ieee80211_key_link(key, sdata, NULL);
926 if (err)
927 return ERR_PTR(err);
928
929 return &key->conf;
930 }
931 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);
This page took 0.052015 seconds and 5 git commands to generate.