mac80211: Send mesh non-HWMP path selection frames to userspace
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30
31 /*
32 * monitor mode reception
33 *
34 * This function cleans up the SKB, i.e. it removes all the stuff
35 * only useful for monitoring.
36 */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 struct sk_buff *skb)
39 {
40 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 if (likely(skb->len > FCS_LEN))
42 __pskb_trim(skb, skb->len - FCS_LEN);
43 else {
44 /* driver bug */
45 WARN_ON(1);
46 dev_kfree_skb(skb);
47 skb = NULL;
48 }
49 }
50
51 return skb;
52 }
53
54 static inline int should_drop_frame(struct sk_buff *skb,
55 int present_fcs_len)
56 {
57 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59
60 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 return 1;
62 if (unlikely(skb->len < 16 + present_fcs_len))
63 return 1;
64 if (ieee80211_is_ctl(hdr->frame_control) &&
65 !ieee80211_is_pspoll(hdr->frame_control) &&
66 !ieee80211_is_back_req(hdr->frame_control))
67 return 1;
68 return 0;
69 }
70
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 struct ieee80211_rx_status *status)
74 {
75 int len;
76
77 /* always present fields */
78 len = sizeof(struct ieee80211_radiotap_header) + 9;
79
80 if (status->flag & RX_FLAG_TSFT)
81 len += 8;
82 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 len += 1;
84
85 if (len & 1) /* padding for RX_FLAGS if necessary */
86 len++;
87
88 return len;
89 }
90
91 /*
92 * ieee80211_add_rx_radiotap_header - add radiotap header
93 *
94 * add a radiotap header containing all the fields which the hardware provided.
95 */
96 static void
97 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
98 struct sk_buff *skb,
99 struct ieee80211_rate *rate,
100 int rtap_len)
101 {
102 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
103 struct ieee80211_radiotap_header *rthdr;
104 unsigned char *pos;
105 u16 rx_flags = 0;
106
107 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
108 memset(rthdr, 0, rtap_len);
109
110 /* radiotap header, set always present flags */
111 rthdr->it_present =
112 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
113 (1 << IEEE80211_RADIOTAP_CHANNEL) |
114 (1 << IEEE80211_RADIOTAP_ANTENNA) |
115 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
116 rthdr->it_len = cpu_to_le16(rtap_len);
117
118 pos = (unsigned char *)(rthdr+1);
119
120 /* the order of the following fields is important */
121
122 /* IEEE80211_RADIOTAP_TSFT */
123 if (status->flag & RX_FLAG_TSFT) {
124 put_unaligned_le64(status->mactime, pos);
125 rthdr->it_present |=
126 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
127 pos += 8;
128 }
129
130 /* IEEE80211_RADIOTAP_FLAGS */
131 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
132 *pos |= IEEE80211_RADIOTAP_F_FCS;
133 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
134 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
135 if (status->flag & RX_FLAG_SHORTPRE)
136 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
137 pos++;
138
139 /* IEEE80211_RADIOTAP_RATE */
140 if (status->flag & RX_FLAG_HT) {
141 /*
142 * TODO: add following information into radiotap header once
143 * suitable fields are defined for it:
144 * - MCS index (status->rate_idx)
145 * - HT40 (status->flag & RX_FLAG_40MHZ)
146 * - short-GI (status->flag & RX_FLAG_SHORT_GI)
147 */
148 *pos = 0;
149 } else {
150 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
151 *pos = rate->bitrate / 5;
152 }
153 pos++;
154
155 /* IEEE80211_RADIOTAP_CHANNEL */
156 put_unaligned_le16(status->freq, pos);
157 pos += 2;
158 if (status->band == IEEE80211_BAND_5GHZ)
159 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
160 pos);
161 else if (status->flag & RX_FLAG_HT)
162 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
163 pos);
164 else if (rate->flags & IEEE80211_RATE_ERP_G)
165 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
166 pos);
167 else
168 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
169 pos);
170 pos += 2;
171
172 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
173 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
174 *pos = status->signal;
175 rthdr->it_present |=
176 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
177 pos++;
178 }
179
180 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
181
182 /* IEEE80211_RADIOTAP_ANTENNA */
183 *pos = status->antenna;
184 pos++;
185
186 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
187
188 /* IEEE80211_RADIOTAP_RX_FLAGS */
189 /* ensure 2 byte alignment for the 2 byte field as required */
190 if ((pos - (u8 *)rthdr) & 1)
191 pos++;
192 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
193 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
194 put_unaligned_le16(rx_flags, pos);
195 pos += 2;
196 }
197
198 /*
199 * This function copies a received frame to all monitor interfaces and
200 * returns a cleaned-up SKB that no longer includes the FCS nor the
201 * radiotap header the driver might have added.
202 */
203 static struct sk_buff *
204 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
205 struct ieee80211_rate *rate)
206 {
207 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
208 struct ieee80211_sub_if_data *sdata;
209 int needed_headroom = 0;
210 struct sk_buff *skb, *skb2;
211 struct net_device *prev_dev = NULL;
212 int present_fcs_len = 0;
213
214 /*
215 * First, we may need to make a copy of the skb because
216 * (1) we need to modify it for radiotap (if not present), and
217 * (2) the other RX handlers will modify the skb we got.
218 *
219 * We don't need to, of course, if we aren't going to return
220 * the SKB because it has a bad FCS/PLCP checksum.
221 */
222
223 /* room for the radiotap header based on driver features */
224 needed_headroom = ieee80211_rx_radiotap_len(local, status);
225
226 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
227 present_fcs_len = FCS_LEN;
228
229 /* make sure hdr->frame_control is on the linear part */
230 if (!pskb_may_pull(origskb, 2)) {
231 dev_kfree_skb(origskb);
232 return NULL;
233 }
234
235 if (!local->monitors) {
236 if (should_drop_frame(origskb, present_fcs_len)) {
237 dev_kfree_skb(origskb);
238 return NULL;
239 }
240
241 return remove_monitor_info(local, origskb);
242 }
243
244 if (should_drop_frame(origskb, present_fcs_len)) {
245 /* only need to expand headroom if necessary */
246 skb = origskb;
247 origskb = NULL;
248
249 /*
250 * This shouldn't trigger often because most devices have an
251 * RX header they pull before we get here, and that should
252 * be big enough for our radiotap information. We should
253 * probably export the length to drivers so that we can have
254 * them allocate enough headroom to start with.
255 */
256 if (skb_headroom(skb) < needed_headroom &&
257 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
258 dev_kfree_skb(skb);
259 return NULL;
260 }
261 } else {
262 /*
263 * Need to make a copy and possibly remove radiotap header
264 * and FCS from the original.
265 */
266 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
267
268 origskb = remove_monitor_info(local, origskb);
269
270 if (!skb)
271 return origskb;
272 }
273
274 /* prepend radiotap information */
275 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
276
277 skb_reset_mac_header(skb);
278 skb->ip_summed = CHECKSUM_UNNECESSARY;
279 skb->pkt_type = PACKET_OTHERHOST;
280 skb->protocol = htons(ETH_P_802_2);
281
282 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
283 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
284 continue;
285
286 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
287 continue;
288
289 if (!ieee80211_sdata_running(sdata))
290 continue;
291
292 if (prev_dev) {
293 skb2 = skb_clone(skb, GFP_ATOMIC);
294 if (skb2) {
295 skb2->dev = prev_dev;
296 netif_receive_skb(skb2);
297 }
298 }
299
300 prev_dev = sdata->dev;
301 sdata->dev->stats.rx_packets++;
302 sdata->dev->stats.rx_bytes += skb->len;
303 }
304
305 if (prev_dev) {
306 skb->dev = prev_dev;
307 netif_receive_skb(skb);
308 } else
309 dev_kfree_skb(skb);
310
311 return origskb;
312 }
313
314
315 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
316 {
317 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
318 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
319 int tid;
320
321 /* does the frame have a qos control field? */
322 if (ieee80211_is_data_qos(hdr->frame_control)) {
323 u8 *qc = ieee80211_get_qos_ctl(hdr);
324 /* frame has qos control */
325 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
326 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
327 status->rx_flags |= IEEE80211_RX_AMSDU;
328 } else {
329 /*
330 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
331 *
332 * Sequence numbers for management frames, QoS data
333 * frames with a broadcast/multicast address in the
334 * Address 1 field, and all non-QoS data frames sent
335 * by QoS STAs are assigned using an additional single
336 * modulo-4096 counter, [...]
337 *
338 * We also use that counter for non-QoS STAs.
339 */
340 tid = NUM_RX_DATA_QUEUES - 1;
341 }
342
343 rx->queue = tid;
344 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
345 * For now, set skb->priority to 0 for other cases. */
346 rx->skb->priority = (tid > 7) ? 0 : tid;
347 }
348
349 /**
350 * DOC: Packet alignment
351 *
352 * Drivers always need to pass packets that are aligned to two-byte boundaries
353 * to the stack.
354 *
355 * Additionally, should, if possible, align the payload data in a way that
356 * guarantees that the contained IP header is aligned to a four-byte
357 * boundary. In the case of regular frames, this simply means aligning the
358 * payload to a four-byte boundary (because either the IP header is directly
359 * contained, or IV/RFC1042 headers that have a length divisible by four are
360 * in front of it). If the payload data is not properly aligned and the
361 * architecture doesn't support efficient unaligned operations, mac80211
362 * will align the data.
363 *
364 * With A-MSDU frames, however, the payload data address must yield two modulo
365 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
366 * push the IP header further back to a multiple of four again. Thankfully, the
367 * specs were sane enough this time around to require padding each A-MSDU
368 * subframe to a length that is a multiple of four.
369 *
370 * Padding like Atheros hardware adds which is inbetween the 802.11 header and
371 * the payload is not supported, the driver is required to move the 802.11
372 * header to be directly in front of the payload in that case.
373 */
374 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
375 {
376 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
377 WARN_ONCE((unsigned long)rx->skb->data & 1,
378 "unaligned packet at 0x%p\n", rx->skb->data);
379 #endif
380 }
381
382
383 /* rx handlers */
384
385 static ieee80211_rx_result debug_noinline
386 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
387 {
388 struct ieee80211_local *local = rx->local;
389 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
390 struct sk_buff *skb = rx->skb;
391
392 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN)))
393 return RX_CONTINUE;
394
395 if (test_bit(SCAN_HW_SCANNING, &local->scanning))
396 return ieee80211_scan_rx(rx->sdata, skb);
397
398 if (test_bit(SCAN_SW_SCANNING, &local->scanning)) {
399 /* drop all the other packets during a software scan anyway */
400 if (ieee80211_scan_rx(rx->sdata, skb) != RX_QUEUED)
401 dev_kfree_skb(skb);
402 return RX_QUEUED;
403 }
404
405 /* scanning finished during invoking of handlers */
406 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
407 return RX_DROP_UNUSABLE;
408 }
409
410
411 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
412 {
413 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
414
415 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
416 return 0;
417
418 return ieee80211_is_robust_mgmt_frame(hdr);
419 }
420
421
422 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
423 {
424 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
425
426 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
427 return 0;
428
429 return ieee80211_is_robust_mgmt_frame(hdr);
430 }
431
432
433 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
434 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
435 {
436 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
437 struct ieee80211_mmie *mmie;
438
439 if (skb->len < 24 + sizeof(*mmie) ||
440 !is_multicast_ether_addr(hdr->da))
441 return -1;
442
443 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
444 return -1; /* not a robust management frame */
445
446 mmie = (struct ieee80211_mmie *)
447 (skb->data + skb->len - sizeof(*mmie));
448 if (mmie->element_id != WLAN_EID_MMIE ||
449 mmie->length != sizeof(*mmie) - 2)
450 return -1;
451
452 return le16_to_cpu(mmie->key_id);
453 }
454
455
456 static ieee80211_rx_result
457 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
458 {
459 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
460 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
461 char *dev_addr = rx->sdata->vif.addr;
462
463 if (ieee80211_is_data(hdr->frame_control)) {
464 if (is_multicast_ether_addr(hdr->addr1)) {
465 if (ieee80211_has_tods(hdr->frame_control) ||
466 !ieee80211_has_fromds(hdr->frame_control))
467 return RX_DROP_MONITOR;
468 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
469 return RX_DROP_MONITOR;
470 } else {
471 if (!ieee80211_has_a4(hdr->frame_control))
472 return RX_DROP_MONITOR;
473 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
474 return RX_DROP_MONITOR;
475 }
476 }
477
478 /* If there is not an established peer link and this is not a peer link
479 * establisment frame, beacon or probe, drop the frame.
480 */
481
482 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
483 struct ieee80211_mgmt *mgmt;
484
485 if (!ieee80211_is_mgmt(hdr->frame_control))
486 return RX_DROP_MONITOR;
487
488 if (ieee80211_is_action(hdr->frame_control)) {
489 mgmt = (struct ieee80211_mgmt *)hdr;
490 if (mgmt->u.action.category != WLAN_CATEGORY_MESH_PLINK)
491 return RX_DROP_MONITOR;
492 return RX_CONTINUE;
493 }
494
495 if (ieee80211_is_probe_req(hdr->frame_control) ||
496 ieee80211_is_probe_resp(hdr->frame_control) ||
497 ieee80211_is_beacon(hdr->frame_control))
498 return RX_CONTINUE;
499
500 return RX_DROP_MONITOR;
501
502 }
503
504 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
505
506 if (ieee80211_is_data(hdr->frame_control) &&
507 is_multicast_ether_addr(hdr->addr1) &&
508 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
509 return RX_DROP_MONITOR;
510 #undef msh_h_get
511
512 return RX_CONTINUE;
513 }
514
515 #define SEQ_MODULO 0x1000
516 #define SEQ_MASK 0xfff
517
518 static inline int seq_less(u16 sq1, u16 sq2)
519 {
520 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
521 }
522
523 static inline u16 seq_inc(u16 sq)
524 {
525 return (sq + 1) & SEQ_MASK;
526 }
527
528 static inline u16 seq_sub(u16 sq1, u16 sq2)
529 {
530 return (sq1 - sq2) & SEQ_MASK;
531 }
532
533
534 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
535 struct tid_ampdu_rx *tid_agg_rx,
536 int index,
537 struct sk_buff_head *frames)
538 {
539 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
540
541 lockdep_assert_held(&tid_agg_rx->reorder_lock);
542
543 if (!skb)
544 goto no_frame;
545
546 /* release the frame from the reorder ring buffer */
547 tid_agg_rx->stored_mpdu_num--;
548 tid_agg_rx->reorder_buf[index] = NULL;
549 __skb_queue_tail(frames, skb);
550
551 no_frame:
552 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
553 }
554
555 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
556 struct tid_ampdu_rx *tid_agg_rx,
557 u16 head_seq_num,
558 struct sk_buff_head *frames)
559 {
560 int index;
561
562 lockdep_assert_held(&tid_agg_rx->reorder_lock);
563
564 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
565 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
566 tid_agg_rx->buf_size;
567 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
568 }
569 }
570
571 /*
572 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
573 * the skb was added to the buffer longer than this time ago, the earlier
574 * frames that have not yet been received are assumed to be lost and the skb
575 * can be released for processing. This may also release other skb's from the
576 * reorder buffer if there are no additional gaps between the frames.
577 *
578 * Callers must hold tid_agg_rx->reorder_lock.
579 */
580 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
581
582 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
583 struct tid_ampdu_rx *tid_agg_rx,
584 struct sk_buff_head *frames)
585 {
586 int index, j;
587
588 lockdep_assert_held(&tid_agg_rx->reorder_lock);
589
590 /* release the buffer until next missing frame */
591 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
592 tid_agg_rx->buf_size;
593 if (!tid_agg_rx->reorder_buf[index] &&
594 tid_agg_rx->stored_mpdu_num > 1) {
595 /*
596 * No buffers ready to be released, but check whether any
597 * frames in the reorder buffer have timed out.
598 */
599 int skipped = 1;
600 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
601 j = (j + 1) % tid_agg_rx->buf_size) {
602 if (!tid_agg_rx->reorder_buf[j]) {
603 skipped++;
604 continue;
605 }
606 if (!time_after(jiffies, tid_agg_rx->reorder_time[j] +
607 HT_RX_REORDER_BUF_TIMEOUT))
608 goto set_release_timer;
609
610 #ifdef CONFIG_MAC80211_HT_DEBUG
611 if (net_ratelimit())
612 wiphy_debug(hw->wiphy,
613 "release an RX reorder frame due to timeout on earlier frames\n");
614 #endif
615 ieee80211_release_reorder_frame(hw, tid_agg_rx,
616 j, frames);
617
618 /*
619 * Increment the head seq# also for the skipped slots.
620 */
621 tid_agg_rx->head_seq_num =
622 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
623 skipped = 0;
624 }
625 } else while (tid_agg_rx->reorder_buf[index]) {
626 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
627 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
628 tid_agg_rx->buf_size;
629 }
630
631 /*
632 * Disable the reorder release timer for now.
633 *
634 * The current implementation lacks a proper locking scheme
635 * which would protect vital statistic and debug counters
636 * from being updated by two different but concurrent BHs.
637 *
638 * More information about the topic is available from:
639 * - thread: http://marc.info/?t=128635927000001
640 *
641 * What was wrong:
642 * => http://marc.info/?l=linux-wireless&m=128636170811964
643 * "Basically the thing is that until your patch, the data
644 * in the struct didn't actually need locking because it
645 * was accessed by the RX path only which is not concurrent."
646 *
647 * List of what needs to be fixed:
648 * => http://marc.info/?l=linux-wireless&m=128656352920957
649 *
650
651 if (tid_agg_rx->stored_mpdu_num) {
652 j = index = seq_sub(tid_agg_rx->head_seq_num,
653 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
654
655 for (; j != (index - 1) % tid_agg_rx->buf_size;
656 j = (j + 1) % tid_agg_rx->buf_size) {
657 if (tid_agg_rx->reorder_buf[j])
658 break;
659 }
660
661 set_release_timer:
662
663 mod_timer(&tid_agg_rx->reorder_timer,
664 tid_agg_rx->reorder_time[j] +
665 HT_RX_REORDER_BUF_TIMEOUT);
666 } else {
667 del_timer(&tid_agg_rx->reorder_timer);
668 }
669 */
670
671 set_release_timer:
672 return;
673 }
674
675 /*
676 * As this function belongs to the RX path it must be under
677 * rcu_read_lock protection. It returns false if the frame
678 * can be processed immediately, true if it was consumed.
679 */
680 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
681 struct tid_ampdu_rx *tid_agg_rx,
682 struct sk_buff *skb,
683 struct sk_buff_head *frames)
684 {
685 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
686 u16 sc = le16_to_cpu(hdr->seq_ctrl);
687 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
688 u16 head_seq_num, buf_size;
689 int index;
690 bool ret = true;
691
692 spin_lock(&tid_agg_rx->reorder_lock);
693
694 buf_size = tid_agg_rx->buf_size;
695 head_seq_num = tid_agg_rx->head_seq_num;
696
697 /* frame with out of date sequence number */
698 if (seq_less(mpdu_seq_num, head_seq_num)) {
699 dev_kfree_skb(skb);
700 goto out;
701 }
702
703 /*
704 * If frame the sequence number exceeds our buffering window
705 * size release some previous frames to make room for this one.
706 */
707 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
708 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
709 /* release stored frames up to new head to stack */
710 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num,
711 frames);
712 }
713
714 /* Now the new frame is always in the range of the reordering buffer */
715
716 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
717
718 /* check if we already stored this frame */
719 if (tid_agg_rx->reorder_buf[index]) {
720 dev_kfree_skb(skb);
721 goto out;
722 }
723
724 /*
725 * If the current MPDU is in the right order and nothing else
726 * is stored we can process it directly, no need to buffer it.
727 */
728 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
729 tid_agg_rx->stored_mpdu_num == 0) {
730 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
731 ret = false;
732 goto out;
733 }
734
735 /* put the frame in the reordering buffer */
736 tid_agg_rx->reorder_buf[index] = skb;
737 tid_agg_rx->reorder_time[index] = jiffies;
738 tid_agg_rx->stored_mpdu_num++;
739 ieee80211_sta_reorder_release(hw, tid_agg_rx, frames);
740
741 out:
742 spin_unlock(&tid_agg_rx->reorder_lock);
743 return ret;
744 }
745
746 /*
747 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
748 * true if the MPDU was buffered, false if it should be processed.
749 */
750 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
751 struct sk_buff_head *frames)
752 {
753 struct sk_buff *skb = rx->skb;
754 struct ieee80211_local *local = rx->local;
755 struct ieee80211_hw *hw = &local->hw;
756 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
757 struct sta_info *sta = rx->sta;
758 struct tid_ampdu_rx *tid_agg_rx;
759 u16 sc;
760 int tid;
761
762 if (!ieee80211_is_data_qos(hdr->frame_control))
763 goto dont_reorder;
764
765 /*
766 * filter the QoS data rx stream according to
767 * STA/TID and check if this STA/TID is on aggregation
768 */
769
770 if (!sta)
771 goto dont_reorder;
772
773 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
774
775 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
776 if (!tid_agg_rx)
777 goto dont_reorder;
778
779 /* qos null data frames are excluded */
780 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
781 goto dont_reorder;
782
783 /* new, potentially un-ordered, ampdu frame - process it */
784
785 /* reset session timer */
786 if (tid_agg_rx->timeout)
787 mod_timer(&tid_agg_rx->session_timer,
788 TU_TO_EXP_TIME(tid_agg_rx->timeout));
789
790 /* if this mpdu is fragmented - terminate rx aggregation session */
791 sc = le16_to_cpu(hdr->seq_ctrl);
792 if (sc & IEEE80211_SCTL_FRAG) {
793 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
794 skb_queue_tail(&rx->sdata->skb_queue, skb);
795 ieee80211_queue_work(&local->hw, &rx->sdata->work);
796 return;
797 }
798
799 /*
800 * No locking needed -- we will only ever process one
801 * RX packet at a time, and thus own tid_agg_rx. All
802 * other code manipulating it needs to (and does) make
803 * sure that we cannot get to it any more before doing
804 * anything with it.
805 */
806 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, frames))
807 return;
808
809 dont_reorder:
810 __skb_queue_tail(frames, skb);
811 }
812
813 static ieee80211_rx_result debug_noinline
814 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
815 {
816 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
817 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
818
819 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
820 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
821 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
822 rx->sta->last_seq_ctrl[rx->queue] ==
823 hdr->seq_ctrl)) {
824 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
825 rx->local->dot11FrameDuplicateCount++;
826 rx->sta->num_duplicates++;
827 }
828 return RX_DROP_MONITOR;
829 } else
830 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
831 }
832
833 if (unlikely(rx->skb->len < 16)) {
834 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
835 return RX_DROP_MONITOR;
836 }
837
838 /* Drop disallowed frame classes based on STA auth/assoc state;
839 * IEEE 802.11, Chap 5.5.
840 *
841 * mac80211 filters only based on association state, i.e. it drops
842 * Class 3 frames from not associated stations. hostapd sends
843 * deauth/disassoc frames when needed. In addition, hostapd is
844 * responsible for filtering on both auth and assoc states.
845 */
846
847 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
848 return ieee80211_rx_mesh_check(rx);
849
850 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
851 ieee80211_is_pspoll(hdr->frame_control)) &&
852 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
853 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
854 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
855 if ((!ieee80211_has_fromds(hdr->frame_control) &&
856 !ieee80211_has_tods(hdr->frame_control) &&
857 ieee80211_is_data(hdr->frame_control)) ||
858 !(status->rx_flags & IEEE80211_RX_RA_MATCH)) {
859 /* Drop IBSS frames and frames for other hosts
860 * silently. */
861 return RX_DROP_MONITOR;
862 }
863
864 return RX_DROP_MONITOR;
865 }
866
867 return RX_CONTINUE;
868 }
869
870
871 static ieee80211_rx_result debug_noinline
872 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
873 {
874 struct sk_buff *skb = rx->skb;
875 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
876 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
877 int keyidx;
878 int hdrlen;
879 ieee80211_rx_result result = RX_DROP_UNUSABLE;
880 struct ieee80211_key *sta_ptk = NULL;
881 int mmie_keyidx = -1;
882 __le16 fc;
883
884 /*
885 * Key selection 101
886 *
887 * There are four types of keys:
888 * - GTK (group keys)
889 * - IGTK (group keys for management frames)
890 * - PTK (pairwise keys)
891 * - STK (station-to-station pairwise keys)
892 *
893 * When selecting a key, we have to distinguish between multicast
894 * (including broadcast) and unicast frames, the latter can only
895 * use PTKs and STKs while the former always use GTKs and IGTKs.
896 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
897 * unicast frames can also use key indices like GTKs. Hence, if we
898 * don't have a PTK/STK we check the key index for a WEP key.
899 *
900 * Note that in a regular BSS, multicast frames are sent by the
901 * AP only, associated stations unicast the frame to the AP first
902 * which then multicasts it on their behalf.
903 *
904 * There is also a slight problem in IBSS mode: GTKs are negotiated
905 * with each station, that is something we don't currently handle.
906 * The spec seems to expect that one negotiates the same key with
907 * every station but there's no such requirement; VLANs could be
908 * possible.
909 */
910
911 /*
912 * No point in finding a key and decrypting if the frame is neither
913 * addressed to us nor a multicast frame.
914 */
915 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
916 return RX_CONTINUE;
917
918 /* start without a key */
919 rx->key = NULL;
920
921 if (rx->sta)
922 sta_ptk = rcu_dereference(rx->sta->ptk);
923
924 fc = hdr->frame_control;
925
926 if (!ieee80211_has_protected(fc))
927 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
928
929 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
930 rx->key = sta_ptk;
931 if ((status->flag & RX_FLAG_DECRYPTED) &&
932 (status->flag & RX_FLAG_IV_STRIPPED))
933 return RX_CONTINUE;
934 /* Skip decryption if the frame is not protected. */
935 if (!ieee80211_has_protected(fc))
936 return RX_CONTINUE;
937 } else if (mmie_keyidx >= 0) {
938 /* Broadcast/multicast robust management frame / BIP */
939 if ((status->flag & RX_FLAG_DECRYPTED) &&
940 (status->flag & RX_FLAG_IV_STRIPPED))
941 return RX_CONTINUE;
942
943 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
944 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
945 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
946 if (rx->sta)
947 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
948 if (!rx->key)
949 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
950 } else if (!ieee80211_has_protected(fc)) {
951 /*
952 * The frame was not protected, so skip decryption. However, we
953 * need to set rx->key if there is a key that could have been
954 * used so that the frame may be dropped if encryption would
955 * have been expected.
956 */
957 struct ieee80211_key *key = NULL;
958 struct ieee80211_sub_if_data *sdata = rx->sdata;
959 int i;
960
961 if (ieee80211_is_mgmt(fc) &&
962 is_multicast_ether_addr(hdr->addr1) &&
963 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
964 rx->key = key;
965 else {
966 if (rx->sta) {
967 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
968 key = rcu_dereference(rx->sta->gtk[i]);
969 if (key)
970 break;
971 }
972 }
973 if (!key) {
974 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
975 key = rcu_dereference(sdata->keys[i]);
976 if (key)
977 break;
978 }
979 }
980 if (key)
981 rx->key = key;
982 }
983 return RX_CONTINUE;
984 } else {
985 u8 keyid;
986 /*
987 * The device doesn't give us the IV so we won't be
988 * able to look up the key. That's ok though, we
989 * don't need to decrypt the frame, we just won't
990 * be able to keep statistics accurate.
991 * Except for key threshold notifications, should
992 * we somehow allow the driver to tell us which key
993 * the hardware used if this flag is set?
994 */
995 if ((status->flag & RX_FLAG_DECRYPTED) &&
996 (status->flag & RX_FLAG_IV_STRIPPED))
997 return RX_CONTINUE;
998
999 hdrlen = ieee80211_hdrlen(fc);
1000
1001 if (rx->skb->len < 8 + hdrlen)
1002 return RX_DROP_UNUSABLE; /* TODO: count this? */
1003
1004 /*
1005 * no need to call ieee80211_wep_get_keyidx,
1006 * it verifies a bunch of things we've done already
1007 */
1008 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1009 keyidx = keyid >> 6;
1010
1011 /* check per-station GTK first, if multicast packet */
1012 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1013 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1014
1015 /* if not found, try default key */
1016 if (!rx->key) {
1017 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1018
1019 /*
1020 * RSNA-protected unicast frames should always be
1021 * sent with pairwise or station-to-station keys,
1022 * but for WEP we allow using a key index as well.
1023 */
1024 if (rx->key &&
1025 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1026 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1027 !is_multicast_ether_addr(hdr->addr1))
1028 rx->key = NULL;
1029 }
1030 }
1031
1032 if (rx->key) {
1033 rx->key->tx_rx_count++;
1034 /* TODO: add threshold stuff again */
1035 } else {
1036 return RX_DROP_MONITOR;
1037 }
1038
1039 if (skb_linearize(rx->skb))
1040 return RX_DROP_UNUSABLE;
1041 /* the hdr variable is invalid now! */
1042
1043 switch (rx->key->conf.cipher) {
1044 case WLAN_CIPHER_SUITE_WEP40:
1045 case WLAN_CIPHER_SUITE_WEP104:
1046 /* Check for weak IVs if possible */
1047 if (rx->sta && ieee80211_is_data(fc) &&
1048 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1049 !(status->flag & RX_FLAG_DECRYPTED)) &&
1050 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1051 rx->sta->wep_weak_iv_count++;
1052
1053 result = ieee80211_crypto_wep_decrypt(rx);
1054 break;
1055 case WLAN_CIPHER_SUITE_TKIP:
1056 result = ieee80211_crypto_tkip_decrypt(rx);
1057 break;
1058 case WLAN_CIPHER_SUITE_CCMP:
1059 result = ieee80211_crypto_ccmp_decrypt(rx);
1060 break;
1061 case WLAN_CIPHER_SUITE_AES_CMAC:
1062 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1063 break;
1064 default:
1065 /*
1066 * We can reach here only with HW-only algorithms
1067 * but why didn't it decrypt the frame?!
1068 */
1069 return RX_DROP_UNUSABLE;
1070 }
1071
1072 /* either the frame has been decrypted or will be dropped */
1073 status->flag |= RX_FLAG_DECRYPTED;
1074
1075 return result;
1076 }
1077
1078 static ieee80211_rx_result debug_noinline
1079 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1080 {
1081 struct ieee80211_local *local;
1082 struct ieee80211_hdr *hdr;
1083 struct sk_buff *skb;
1084
1085 local = rx->local;
1086 skb = rx->skb;
1087 hdr = (struct ieee80211_hdr *) skb->data;
1088
1089 if (!local->pspolling)
1090 return RX_CONTINUE;
1091
1092 if (!ieee80211_has_fromds(hdr->frame_control))
1093 /* this is not from AP */
1094 return RX_CONTINUE;
1095
1096 if (!ieee80211_is_data(hdr->frame_control))
1097 return RX_CONTINUE;
1098
1099 if (!ieee80211_has_moredata(hdr->frame_control)) {
1100 /* AP has no more frames buffered for us */
1101 local->pspolling = false;
1102 return RX_CONTINUE;
1103 }
1104
1105 /* more data bit is set, let's request a new frame from the AP */
1106 ieee80211_send_pspoll(local, rx->sdata);
1107
1108 return RX_CONTINUE;
1109 }
1110
1111 static void ap_sta_ps_start(struct sta_info *sta)
1112 {
1113 struct ieee80211_sub_if_data *sdata = sta->sdata;
1114 struct ieee80211_local *local = sdata->local;
1115
1116 atomic_inc(&sdata->bss->num_sta_ps);
1117 set_sta_flags(sta, WLAN_STA_PS_STA);
1118 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1119 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1120 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1121 sdata->name, sta->sta.addr, sta->sta.aid);
1122 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1123 }
1124
1125 static void ap_sta_ps_end(struct sta_info *sta)
1126 {
1127 struct ieee80211_sub_if_data *sdata = sta->sdata;
1128
1129 atomic_dec(&sdata->bss->num_sta_ps);
1130
1131 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1132 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1133 sdata->name, sta->sta.addr, sta->sta.aid);
1134 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1135
1136 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1137 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1138 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1139 sdata->name, sta->sta.addr, sta->sta.aid);
1140 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1141 return;
1142 }
1143
1144 ieee80211_sta_ps_deliver_wakeup(sta);
1145 }
1146
1147 static ieee80211_rx_result debug_noinline
1148 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1149 {
1150 struct sta_info *sta = rx->sta;
1151 struct sk_buff *skb = rx->skb;
1152 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1153 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1154
1155 if (!sta)
1156 return RX_CONTINUE;
1157
1158 /*
1159 * Update last_rx only for IBSS packets which are for the current
1160 * BSSID to avoid keeping the current IBSS network alive in cases
1161 * where other STAs start using different BSSID.
1162 */
1163 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1164 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1165 NL80211_IFTYPE_ADHOC);
1166 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0)
1167 sta->last_rx = jiffies;
1168 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1169 /*
1170 * Mesh beacons will update last_rx when if they are found to
1171 * match the current local configuration when processed.
1172 */
1173 sta->last_rx = jiffies;
1174 }
1175
1176 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1177 return RX_CONTINUE;
1178
1179 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1180 ieee80211_sta_rx_notify(rx->sdata, hdr);
1181
1182 sta->rx_fragments++;
1183 sta->rx_bytes += rx->skb->len;
1184 sta->last_signal = status->signal;
1185 ewma_add(&sta->avg_signal, -status->signal);
1186
1187 /*
1188 * Change STA power saving mode only at the end of a frame
1189 * exchange sequence.
1190 */
1191 if (!ieee80211_has_morefrags(hdr->frame_control) &&
1192 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1193 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1194 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1195 /*
1196 * Ignore doze->wake transitions that are
1197 * indicated by non-data frames, the standard
1198 * is unclear here, but for example going to
1199 * PS mode and then scanning would cause a
1200 * doze->wake transition for the probe request,
1201 * and that is clearly undesirable.
1202 */
1203 if (ieee80211_is_data(hdr->frame_control) &&
1204 !ieee80211_has_pm(hdr->frame_control))
1205 ap_sta_ps_end(sta);
1206 } else {
1207 if (ieee80211_has_pm(hdr->frame_control))
1208 ap_sta_ps_start(sta);
1209 }
1210 }
1211
1212 /*
1213 * Drop (qos-)data::nullfunc frames silently, since they
1214 * are used only to control station power saving mode.
1215 */
1216 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1217 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1218 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1219
1220 /*
1221 * If we receive a 4-addr nullfunc frame from a STA
1222 * that was not moved to a 4-addr STA vlan yet, drop
1223 * the frame to the monitor interface, to make sure
1224 * that hostapd sees it
1225 */
1226 if (ieee80211_has_a4(hdr->frame_control) &&
1227 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1228 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1229 !rx->sdata->u.vlan.sta)))
1230 return RX_DROP_MONITOR;
1231 /*
1232 * Update counter and free packet here to avoid
1233 * counting this as a dropped packed.
1234 */
1235 sta->rx_packets++;
1236 dev_kfree_skb(rx->skb);
1237 return RX_QUEUED;
1238 }
1239
1240 return RX_CONTINUE;
1241 } /* ieee80211_rx_h_sta_process */
1242
1243 static inline struct ieee80211_fragment_entry *
1244 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1245 unsigned int frag, unsigned int seq, int rx_queue,
1246 struct sk_buff **skb)
1247 {
1248 struct ieee80211_fragment_entry *entry;
1249 int idx;
1250
1251 idx = sdata->fragment_next;
1252 entry = &sdata->fragments[sdata->fragment_next++];
1253 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1254 sdata->fragment_next = 0;
1255
1256 if (!skb_queue_empty(&entry->skb_list)) {
1257 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1258 struct ieee80211_hdr *hdr =
1259 (struct ieee80211_hdr *) entry->skb_list.next->data;
1260 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1261 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1262 "addr1=%pM addr2=%pM\n",
1263 sdata->name, idx,
1264 jiffies - entry->first_frag_time, entry->seq,
1265 entry->last_frag, hdr->addr1, hdr->addr2);
1266 #endif
1267 __skb_queue_purge(&entry->skb_list);
1268 }
1269
1270 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1271 *skb = NULL;
1272 entry->first_frag_time = jiffies;
1273 entry->seq = seq;
1274 entry->rx_queue = rx_queue;
1275 entry->last_frag = frag;
1276 entry->ccmp = 0;
1277 entry->extra_len = 0;
1278
1279 return entry;
1280 }
1281
1282 static inline struct ieee80211_fragment_entry *
1283 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1284 unsigned int frag, unsigned int seq,
1285 int rx_queue, struct ieee80211_hdr *hdr)
1286 {
1287 struct ieee80211_fragment_entry *entry;
1288 int i, idx;
1289
1290 idx = sdata->fragment_next;
1291 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1292 struct ieee80211_hdr *f_hdr;
1293
1294 idx--;
1295 if (idx < 0)
1296 idx = IEEE80211_FRAGMENT_MAX - 1;
1297
1298 entry = &sdata->fragments[idx];
1299 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1300 entry->rx_queue != rx_queue ||
1301 entry->last_frag + 1 != frag)
1302 continue;
1303
1304 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1305
1306 /*
1307 * Check ftype and addresses are equal, else check next fragment
1308 */
1309 if (((hdr->frame_control ^ f_hdr->frame_control) &
1310 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1311 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1312 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1313 continue;
1314
1315 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1316 __skb_queue_purge(&entry->skb_list);
1317 continue;
1318 }
1319 return entry;
1320 }
1321
1322 return NULL;
1323 }
1324
1325 static ieee80211_rx_result debug_noinline
1326 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1327 {
1328 struct ieee80211_hdr *hdr;
1329 u16 sc;
1330 __le16 fc;
1331 unsigned int frag, seq;
1332 struct ieee80211_fragment_entry *entry;
1333 struct sk_buff *skb;
1334 struct ieee80211_rx_status *status;
1335
1336 hdr = (struct ieee80211_hdr *)rx->skb->data;
1337 fc = hdr->frame_control;
1338 sc = le16_to_cpu(hdr->seq_ctrl);
1339 frag = sc & IEEE80211_SCTL_FRAG;
1340
1341 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1342 (rx->skb)->len < 24 ||
1343 is_multicast_ether_addr(hdr->addr1))) {
1344 /* not fragmented */
1345 goto out;
1346 }
1347 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1348
1349 if (skb_linearize(rx->skb))
1350 return RX_DROP_UNUSABLE;
1351
1352 /*
1353 * skb_linearize() might change the skb->data and
1354 * previously cached variables (in this case, hdr) need to
1355 * be refreshed with the new data.
1356 */
1357 hdr = (struct ieee80211_hdr *)rx->skb->data;
1358 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1359
1360 if (frag == 0) {
1361 /* This is the first fragment of a new frame. */
1362 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1363 rx->queue, &(rx->skb));
1364 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1365 ieee80211_has_protected(fc)) {
1366 int queue = ieee80211_is_mgmt(fc) ?
1367 NUM_RX_DATA_QUEUES : rx->queue;
1368 /* Store CCMP PN so that we can verify that the next
1369 * fragment has a sequential PN value. */
1370 entry->ccmp = 1;
1371 memcpy(entry->last_pn,
1372 rx->key->u.ccmp.rx_pn[queue],
1373 CCMP_PN_LEN);
1374 }
1375 return RX_QUEUED;
1376 }
1377
1378 /* This is a fragment for a frame that should already be pending in
1379 * fragment cache. Add this fragment to the end of the pending entry.
1380 */
1381 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1382 if (!entry) {
1383 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1384 return RX_DROP_MONITOR;
1385 }
1386
1387 /* Verify that MPDUs within one MSDU have sequential PN values.
1388 * (IEEE 802.11i, 8.3.3.4.5) */
1389 if (entry->ccmp) {
1390 int i;
1391 u8 pn[CCMP_PN_LEN], *rpn;
1392 int queue;
1393 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1394 return RX_DROP_UNUSABLE;
1395 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1396 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1397 pn[i]++;
1398 if (pn[i])
1399 break;
1400 }
1401 queue = ieee80211_is_mgmt(fc) ?
1402 NUM_RX_DATA_QUEUES : rx->queue;
1403 rpn = rx->key->u.ccmp.rx_pn[queue];
1404 if (memcmp(pn, rpn, CCMP_PN_LEN))
1405 return RX_DROP_UNUSABLE;
1406 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1407 }
1408
1409 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1410 __skb_queue_tail(&entry->skb_list, rx->skb);
1411 entry->last_frag = frag;
1412 entry->extra_len += rx->skb->len;
1413 if (ieee80211_has_morefrags(fc)) {
1414 rx->skb = NULL;
1415 return RX_QUEUED;
1416 }
1417
1418 rx->skb = __skb_dequeue(&entry->skb_list);
1419 if (skb_tailroom(rx->skb) < entry->extra_len) {
1420 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1421 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1422 GFP_ATOMIC))) {
1423 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1424 __skb_queue_purge(&entry->skb_list);
1425 return RX_DROP_UNUSABLE;
1426 }
1427 }
1428 while ((skb = __skb_dequeue(&entry->skb_list))) {
1429 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1430 dev_kfree_skb(skb);
1431 }
1432
1433 /* Complete frame has been reassembled - process it now */
1434 status = IEEE80211_SKB_RXCB(rx->skb);
1435 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1436
1437 out:
1438 if (rx->sta)
1439 rx->sta->rx_packets++;
1440 if (is_multicast_ether_addr(hdr->addr1))
1441 rx->local->dot11MulticastReceivedFrameCount++;
1442 else
1443 ieee80211_led_rx(rx->local);
1444 return RX_CONTINUE;
1445 }
1446
1447 static ieee80211_rx_result debug_noinline
1448 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1449 {
1450 struct ieee80211_sub_if_data *sdata = rx->sdata;
1451 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1452 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1453
1454 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1455 !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1456 return RX_CONTINUE;
1457
1458 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1459 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1460 return RX_DROP_UNUSABLE;
1461
1462 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1463 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1464 else
1465 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1466
1467 /* Free PS Poll skb here instead of returning RX_DROP that would
1468 * count as an dropped frame. */
1469 dev_kfree_skb(rx->skb);
1470
1471 return RX_QUEUED;
1472 }
1473
1474 static ieee80211_rx_result debug_noinline
1475 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1476 {
1477 u8 *data = rx->skb->data;
1478 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1479
1480 if (!ieee80211_is_data_qos(hdr->frame_control))
1481 return RX_CONTINUE;
1482
1483 /* remove the qos control field, update frame type and meta-data */
1484 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1485 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1486 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1487 /* change frame type to non QOS */
1488 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1489
1490 return RX_CONTINUE;
1491 }
1492
1493 static int
1494 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1495 {
1496 if (unlikely(!rx->sta ||
1497 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1498 return -EACCES;
1499
1500 return 0;
1501 }
1502
1503 static int
1504 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1505 {
1506 struct sk_buff *skb = rx->skb;
1507 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1508
1509 /*
1510 * Pass through unencrypted frames if the hardware has
1511 * decrypted them already.
1512 */
1513 if (status->flag & RX_FLAG_DECRYPTED)
1514 return 0;
1515
1516 /* Drop unencrypted frames if key is set. */
1517 if (unlikely(!ieee80211_has_protected(fc) &&
1518 !ieee80211_is_nullfunc(fc) &&
1519 ieee80211_is_data(fc) &&
1520 (rx->key || rx->sdata->drop_unencrypted)))
1521 return -EACCES;
1522
1523 return 0;
1524 }
1525
1526 static int
1527 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1528 {
1529 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1530 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1531 __le16 fc = hdr->frame_control;
1532
1533 /*
1534 * Pass through unencrypted frames if the hardware has
1535 * decrypted them already.
1536 */
1537 if (status->flag & RX_FLAG_DECRYPTED)
1538 return 0;
1539
1540 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1541 if (unlikely(!ieee80211_has_protected(fc) &&
1542 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1543 rx->key)) {
1544 if (ieee80211_is_deauth(fc))
1545 cfg80211_send_unprot_deauth(rx->sdata->dev,
1546 rx->skb->data,
1547 rx->skb->len);
1548 else if (ieee80211_is_disassoc(fc))
1549 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1550 rx->skb->data,
1551 rx->skb->len);
1552 return -EACCES;
1553 }
1554 /* BIP does not use Protected field, so need to check MMIE */
1555 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1556 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1557 if (ieee80211_is_deauth(fc))
1558 cfg80211_send_unprot_deauth(rx->sdata->dev,
1559 rx->skb->data,
1560 rx->skb->len);
1561 else if (ieee80211_is_disassoc(fc))
1562 cfg80211_send_unprot_disassoc(rx->sdata->dev,
1563 rx->skb->data,
1564 rx->skb->len);
1565 return -EACCES;
1566 }
1567 /*
1568 * When using MFP, Action frames are not allowed prior to
1569 * having configured keys.
1570 */
1571 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1572 ieee80211_is_robust_mgmt_frame(
1573 (struct ieee80211_hdr *) rx->skb->data)))
1574 return -EACCES;
1575 }
1576
1577 return 0;
1578 }
1579
1580 static int
1581 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1582 {
1583 struct ieee80211_sub_if_data *sdata = rx->sdata;
1584 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1585
1586 if (ieee80211_has_a4(hdr->frame_control) &&
1587 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1588 return -1;
1589
1590 if (is_multicast_ether_addr(hdr->addr1) &&
1591 ((sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) ||
1592 (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.use_4addr)))
1593 return -1;
1594
1595 return ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1596 }
1597
1598 /*
1599 * requires that rx->skb is a frame with ethernet header
1600 */
1601 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1602 {
1603 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1604 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1605 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1606
1607 /*
1608 * Allow EAPOL frames to us/the PAE group address regardless
1609 * of whether the frame was encrypted or not.
1610 */
1611 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1612 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1613 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1614 return true;
1615
1616 if (ieee80211_802_1x_port_control(rx) ||
1617 ieee80211_drop_unencrypted(rx, fc))
1618 return false;
1619
1620 return true;
1621 }
1622
1623 /*
1624 * requires that rx->skb is a frame with ethernet header
1625 */
1626 static void
1627 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1628 {
1629 struct ieee80211_sub_if_data *sdata = rx->sdata;
1630 struct net_device *dev = sdata->dev;
1631 struct sk_buff *skb, *xmit_skb;
1632 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1633 struct sta_info *dsta;
1634 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1635
1636 skb = rx->skb;
1637 xmit_skb = NULL;
1638
1639 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1640 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1641 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1642 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1643 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1644 if (is_multicast_ether_addr(ehdr->h_dest)) {
1645 /*
1646 * send multicast frames both to higher layers in
1647 * local net stack and back to the wireless medium
1648 */
1649 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1650 if (!xmit_skb && net_ratelimit())
1651 printk(KERN_DEBUG "%s: failed to clone "
1652 "multicast frame\n", dev->name);
1653 } else {
1654 dsta = sta_info_get(sdata, skb->data);
1655 if (dsta) {
1656 /*
1657 * The destination station is associated to
1658 * this AP (in this VLAN), so send the frame
1659 * directly to it and do not pass it to local
1660 * net stack.
1661 */
1662 xmit_skb = skb;
1663 skb = NULL;
1664 }
1665 }
1666 }
1667
1668 if (skb) {
1669 int align __maybe_unused;
1670
1671 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1672 /*
1673 * 'align' will only take the values 0 or 2 here
1674 * since all frames are required to be aligned
1675 * to 2-byte boundaries when being passed to
1676 * mac80211. That also explains the __skb_push()
1677 * below.
1678 */
1679 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1680 if (align) {
1681 if (WARN_ON(skb_headroom(skb) < 3)) {
1682 dev_kfree_skb(skb);
1683 skb = NULL;
1684 } else {
1685 u8 *data = skb->data;
1686 size_t len = skb_headlen(skb);
1687 skb->data -= align;
1688 memmove(skb->data, data, len);
1689 skb_set_tail_pointer(skb, len);
1690 }
1691 }
1692 #endif
1693
1694 if (skb) {
1695 /* deliver to local stack */
1696 skb->protocol = eth_type_trans(skb, dev);
1697 memset(skb->cb, 0, sizeof(skb->cb));
1698 netif_receive_skb(skb);
1699 }
1700 }
1701
1702 if (xmit_skb) {
1703 /* send to wireless media */
1704 xmit_skb->protocol = htons(ETH_P_802_3);
1705 skb_reset_network_header(xmit_skb);
1706 skb_reset_mac_header(xmit_skb);
1707 dev_queue_xmit(xmit_skb);
1708 }
1709 }
1710
1711 static ieee80211_rx_result debug_noinline
1712 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1713 {
1714 struct net_device *dev = rx->sdata->dev;
1715 struct sk_buff *skb = rx->skb;
1716 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1717 __le16 fc = hdr->frame_control;
1718 struct sk_buff_head frame_list;
1719 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1720
1721 if (unlikely(!ieee80211_is_data(fc)))
1722 return RX_CONTINUE;
1723
1724 if (unlikely(!ieee80211_is_data_present(fc)))
1725 return RX_DROP_MONITOR;
1726
1727 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1728 return RX_CONTINUE;
1729
1730 if (ieee80211_has_a4(hdr->frame_control) &&
1731 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1732 !rx->sdata->u.vlan.sta)
1733 return RX_DROP_UNUSABLE;
1734
1735 if (is_multicast_ether_addr(hdr->addr1) &&
1736 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1737 rx->sdata->u.vlan.sta) ||
1738 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1739 rx->sdata->u.mgd.use_4addr)))
1740 return RX_DROP_UNUSABLE;
1741
1742 skb->dev = dev;
1743 __skb_queue_head_init(&frame_list);
1744
1745 if (skb_linearize(skb))
1746 return RX_DROP_UNUSABLE;
1747
1748 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1749 rx->sdata->vif.type,
1750 rx->local->hw.extra_tx_headroom);
1751
1752 while (!skb_queue_empty(&frame_list)) {
1753 rx->skb = __skb_dequeue(&frame_list);
1754
1755 if (!ieee80211_frame_allowed(rx, fc)) {
1756 dev_kfree_skb(rx->skb);
1757 continue;
1758 }
1759 dev->stats.rx_packets++;
1760 dev->stats.rx_bytes += rx->skb->len;
1761
1762 ieee80211_deliver_skb(rx);
1763 }
1764
1765 return RX_QUEUED;
1766 }
1767
1768 #ifdef CONFIG_MAC80211_MESH
1769 static ieee80211_rx_result
1770 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1771 {
1772 struct ieee80211_hdr *hdr;
1773 struct ieee80211s_hdr *mesh_hdr;
1774 unsigned int hdrlen;
1775 struct sk_buff *skb = rx->skb, *fwd_skb;
1776 struct ieee80211_local *local = rx->local;
1777 struct ieee80211_sub_if_data *sdata = rx->sdata;
1778 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1779
1780 hdr = (struct ieee80211_hdr *) skb->data;
1781 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1782 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1783
1784 if (!ieee80211_is_data(hdr->frame_control))
1785 return RX_CONTINUE;
1786
1787 if (!mesh_hdr->ttl)
1788 /* illegal frame */
1789 return RX_DROP_MONITOR;
1790
1791 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1792 struct mesh_path *mppath;
1793 char *proxied_addr;
1794 char *mpp_addr;
1795
1796 if (is_multicast_ether_addr(hdr->addr1)) {
1797 mpp_addr = hdr->addr3;
1798 proxied_addr = mesh_hdr->eaddr1;
1799 } else {
1800 mpp_addr = hdr->addr4;
1801 proxied_addr = mesh_hdr->eaddr2;
1802 }
1803
1804 rcu_read_lock();
1805 mppath = mpp_path_lookup(proxied_addr, sdata);
1806 if (!mppath) {
1807 mpp_path_add(proxied_addr, mpp_addr, sdata);
1808 } else {
1809 spin_lock_bh(&mppath->state_lock);
1810 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1811 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1812 spin_unlock_bh(&mppath->state_lock);
1813 }
1814 rcu_read_unlock();
1815 }
1816
1817 /* Frame has reached destination. Don't forward */
1818 if (!is_multicast_ether_addr(hdr->addr1) &&
1819 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1820 return RX_CONTINUE;
1821
1822 mesh_hdr->ttl--;
1823
1824 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1825 if (!mesh_hdr->ttl)
1826 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1827 dropped_frames_ttl);
1828 else {
1829 struct ieee80211_hdr *fwd_hdr;
1830 struct ieee80211_tx_info *info;
1831
1832 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1833
1834 if (!fwd_skb && net_ratelimit())
1835 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1836 sdata->name);
1837
1838 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1839 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1840 info = IEEE80211_SKB_CB(fwd_skb);
1841 memset(info, 0, sizeof(*info));
1842 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1843 info->control.vif = &rx->sdata->vif;
1844 skb_set_queue_mapping(skb,
1845 ieee80211_select_queue(rx->sdata, fwd_skb));
1846 ieee80211_set_qos_hdr(local, skb);
1847 if (is_multicast_ether_addr(fwd_hdr->addr1))
1848 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1849 fwded_mcast);
1850 else {
1851 int err;
1852 /*
1853 * Save TA to addr1 to send TA a path error if a
1854 * suitable next hop is not found
1855 */
1856 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1857 ETH_ALEN);
1858 err = mesh_nexthop_lookup(fwd_skb, sdata);
1859 /* Failed to immediately resolve next hop:
1860 * fwded frame was dropped or will be added
1861 * later to the pending skb queue. */
1862 if (err)
1863 return RX_DROP_MONITOR;
1864
1865 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1866 fwded_unicast);
1867 }
1868 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1869 fwded_frames);
1870 ieee80211_add_pending_skb(local, fwd_skb);
1871 }
1872 }
1873
1874 if (is_multicast_ether_addr(hdr->addr1) ||
1875 sdata->dev->flags & IFF_PROMISC)
1876 return RX_CONTINUE;
1877 else
1878 return RX_DROP_MONITOR;
1879 }
1880 #endif
1881
1882 static ieee80211_rx_result debug_noinline
1883 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1884 {
1885 struct ieee80211_sub_if_data *sdata = rx->sdata;
1886 struct ieee80211_local *local = rx->local;
1887 struct net_device *dev = sdata->dev;
1888 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1889 __le16 fc = hdr->frame_control;
1890 int err;
1891
1892 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1893 return RX_CONTINUE;
1894
1895 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1896 return RX_DROP_MONITOR;
1897
1898 /*
1899 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1900 * that a 4-addr station can be detected and moved into a separate VLAN
1901 */
1902 if (ieee80211_has_a4(hdr->frame_control) &&
1903 sdata->vif.type == NL80211_IFTYPE_AP)
1904 return RX_DROP_MONITOR;
1905
1906 err = __ieee80211_data_to_8023(rx);
1907 if (unlikely(err))
1908 return RX_DROP_UNUSABLE;
1909
1910 if (!ieee80211_frame_allowed(rx, fc))
1911 return RX_DROP_MONITOR;
1912
1913 rx->skb->dev = dev;
1914
1915 dev->stats.rx_packets++;
1916 dev->stats.rx_bytes += rx->skb->len;
1917
1918 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
1919 !is_multicast_ether_addr(((struct ethhdr *)rx->skb->data)->h_dest)) {
1920 mod_timer(&local->dynamic_ps_timer, jiffies +
1921 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1922 }
1923
1924 ieee80211_deliver_skb(rx);
1925
1926 return RX_QUEUED;
1927 }
1928
1929 static ieee80211_rx_result debug_noinline
1930 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
1931 {
1932 struct ieee80211_local *local = rx->local;
1933 struct ieee80211_hw *hw = &local->hw;
1934 struct sk_buff *skb = rx->skb;
1935 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1936 struct tid_ampdu_rx *tid_agg_rx;
1937 u16 start_seq_num;
1938 u16 tid;
1939
1940 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1941 return RX_CONTINUE;
1942
1943 if (ieee80211_is_back_req(bar->frame_control)) {
1944 struct {
1945 __le16 control, start_seq_num;
1946 } __packed bar_data;
1947
1948 if (!rx->sta)
1949 return RX_DROP_MONITOR;
1950
1951 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
1952 &bar_data, sizeof(bar_data)))
1953 return RX_DROP_MONITOR;
1954
1955 tid = le16_to_cpu(bar_data.control) >> 12;
1956
1957 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
1958 if (!tid_agg_rx)
1959 return RX_DROP_MONITOR;
1960
1961 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
1962
1963 /* reset session timer */
1964 if (tid_agg_rx->timeout)
1965 mod_timer(&tid_agg_rx->session_timer,
1966 TU_TO_EXP_TIME(tid_agg_rx->timeout));
1967
1968 spin_lock(&tid_agg_rx->reorder_lock);
1969 /* release stored frames up to start of BAR */
1970 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num,
1971 frames);
1972 spin_unlock(&tid_agg_rx->reorder_lock);
1973
1974 kfree_skb(skb);
1975 return RX_QUEUED;
1976 }
1977
1978 /*
1979 * After this point, we only want management frames,
1980 * so we can drop all remaining control frames to
1981 * cooked monitor interfaces.
1982 */
1983 return RX_DROP_MONITOR;
1984 }
1985
1986 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
1987 struct ieee80211_mgmt *mgmt,
1988 size_t len)
1989 {
1990 struct ieee80211_local *local = sdata->local;
1991 struct sk_buff *skb;
1992 struct ieee80211_mgmt *resp;
1993
1994 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
1995 /* Not to own unicast address */
1996 return;
1997 }
1998
1999 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
2000 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
2001 /* Not from the current AP or not associated yet. */
2002 return;
2003 }
2004
2005 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2006 /* Too short SA Query request frame */
2007 return;
2008 }
2009
2010 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2011 if (skb == NULL)
2012 return;
2013
2014 skb_reserve(skb, local->hw.extra_tx_headroom);
2015 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2016 memset(resp, 0, 24);
2017 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2018 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2019 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2020 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2021 IEEE80211_STYPE_ACTION);
2022 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2023 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2024 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2025 memcpy(resp->u.action.u.sa_query.trans_id,
2026 mgmt->u.action.u.sa_query.trans_id,
2027 WLAN_SA_QUERY_TR_ID_LEN);
2028
2029 ieee80211_tx_skb(sdata, skb);
2030 }
2031
2032 static ieee80211_rx_result debug_noinline
2033 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2034 {
2035 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2036 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2037
2038 /*
2039 * From here on, look only at management frames.
2040 * Data and control frames are already handled,
2041 * and unknown (reserved) frames are useless.
2042 */
2043 if (rx->skb->len < 24)
2044 return RX_DROP_MONITOR;
2045
2046 if (!ieee80211_is_mgmt(mgmt->frame_control))
2047 return RX_DROP_MONITOR;
2048
2049 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2050 return RX_DROP_MONITOR;
2051
2052 if (ieee80211_drop_unencrypted_mgmt(rx))
2053 return RX_DROP_UNUSABLE;
2054
2055 return RX_CONTINUE;
2056 }
2057
2058 static ieee80211_rx_result debug_noinline
2059 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2060 {
2061 struct ieee80211_local *local = rx->local;
2062 struct ieee80211_sub_if_data *sdata = rx->sdata;
2063 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2064 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2065 int len = rx->skb->len;
2066
2067 if (!ieee80211_is_action(mgmt->frame_control))
2068 return RX_CONTINUE;
2069
2070 /* drop too small frames */
2071 if (len < IEEE80211_MIN_ACTION_SIZE)
2072 return RX_DROP_UNUSABLE;
2073
2074 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2075 return RX_DROP_UNUSABLE;
2076
2077 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2078 return RX_DROP_UNUSABLE;
2079
2080 switch (mgmt->u.action.category) {
2081 case WLAN_CATEGORY_BACK:
2082 /*
2083 * The aggregation code is not prepared to handle
2084 * anything but STA/AP due to the BSSID handling;
2085 * IBSS could work in the code but isn't supported
2086 * by drivers or the standard.
2087 */
2088 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2089 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2090 sdata->vif.type != NL80211_IFTYPE_AP)
2091 break;
2092
2093 /* verify action_code is present */
2094 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2095 break;
2096
2097 switch (mgmt->u.action.u.addba_req.action_code) {
2098 case WLAN_ACTION_ADDBA_REQ:
2099 if (len < (IEEE80211_MIN_ACTION_SIZE +
2100 sizeof(mgmt->u.action.u.addba_req)))
2101 goto invalid;
2102 break;
2103 case WLAN_ACTION_ADDBA_RESP:
2104 if (len < (IEEE80211_MIN_ACTION_SIZE +
2105 sizeof(mgmt->u.action.u.addba_resp)))
2106 goto invalid;
2107 break;
2108 case WLAN_ACTION_DELBA:
2109 if (len < (IEEE80211_MIN_ACTION_SIZE +
2110 sizeof(mgmt->u.action.u.delba)))
2111 goto invalid;
2112 break;
2113 default:
2114 goto invalid;
2115 }
2116
2117 goto queue;
2118 case WLAN_CATEGORY_SPECTRUM_MGMT:
2119 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2120 break;
2121
2122 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2123 break;
2124
2125 /* verify action_code is present */
2126 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2127 break;
2128
2129 switch (mgmt->u.action.u.measurement.action_code) {
2130 case WLAN_ACTION_SPCT_MSR_REQ:
2131 if (len < (IEEE80211_MIN_ACTION_SIZE +
2132 sizeof(mgmt->u.action.u.measurement)))
2133 break;
2134 ieee80211_process_measurement_req(sdata, mgmt, len);
2135 goto handled;
2136 case WLAN_ACTION_SPCT_CHL_SWITCH:
2137 if (len < (IEEE80211_MIN_ACTION_SIZE +
2138 sizeof(mgmt->u.action.u.chan_switch)))
2139 break;
2140
2141 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2142 break;
2143
2144 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2145 break;
2146
2147 goto queue;
2148 }
2149 break;
2150 case WLAN_CATEGORY_SA_QUERY:
2151 if (len < (IEEE80211_MIN_ACTION_SIZE +
2152 sizeof(mgmt->u.action.u.sa_query)))
2153 break;
2154
2155 switch (mgmt->u.action.u.sa_query.action) {
2156 case WLAN_ACTION_SA_QUERY_REQUEST:
2157 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2158 break;
2159 ieee80211_process_sa_query_req(sdata, mgmt, len);
2160 goto handled;
2161 }
2162 break;
2163 case WLAN_CATEGORY_MESH_PLINK:
2164 if (!ieee80211_vif_is_mesh(&sdata->vif))
2165 break;
2166 goto queue;
2167 case WLAN_CATEGORY_MESH_PATH_SEL:
2168 if (!mesh_path_sel_is_hwmp(sdata))
2169 break;
2170 goto queue;
2171 }
2172
2173 return RX_CONTINUE;
2174
2175 invalid:
2176 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2177 /* will return in the next handlers */
2178 return RX_CONTINUE;
2179
2180 handled:
2181 if (rx->sta)
2182 rx->sta->rx_packets++;
2183 dev_kfree_skb(rx->skb);
2184 return RX_QUEUED;
2185
2186 queue:
2187 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2188 skb_queue_tail(&sdata->skb_queue, rx->skb);
2189 ieee80211_queue_work(&local->hw, &sdata->work);
2190 if (rx->sta)
2191 rx->sta->rx_packets++;
2192 return RX_QUEUED;
2193 }
2194
2195 static ieee80211_rx_result debug_noinline
2196 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2197 {
2198 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2199
2200 /* skip known-bad action frames and return them in the next handler */
2201 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2202 return RX_CONTINUE;
2203
2204 /*
2205 * Getting here means the kernel doesn't know how to handle
2206 * it, but maybe userspace does ... include returned frames
2207 * so userspace can register for those to know whether ones
2208 * it transmitted were processed or returned.
2209 */
2210
2211 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2212 rx->skb->data, rx->skb->len,
2213 GFP_ATOMIC)) {
2214 if (rx->sta)
2215 rx->sta->rx_packets++;
2216 dev_kfree_skb(rx->skb);
2217 return RX_QUEUED;
2218 }
2219
2220
2221 return RX_CONTINUE;
2222 }
2223
2224 static ieee80211_rx_result debug_noinline
2225 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2226 {
2227 struct ieee80211_local *local = rx->local;
2228 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2229 struct sk_buff *nskb;
2230 struct ieee80211_sub_if_data *sdata = rx->sdata;
2231 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2232
2233 if (!ieee80211_is_action(mgmt->frame_control))
2234 return RX_CONTINUE;
2235
2236 /*
2237 * For AP mode, hostapd is responsible for handling any action
2238 * frames that we didn't handle, including returning unknown
2239 * ones. For all other modes we will return them to the sender,
2240 * setting the 0x80 bit in the action category, as required by
2241 * 802.11-2007 7.3.1.11.
2242 * Newer versions of hostapd shall also use the management frame
2243 * registration mechanisms, but older ones still use cooked
2244 * monitor interfaces so push all frames there.
2245 */
2246 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2247 (sdata->vif.type == NL80211_IFTYPE_AP ||
2248 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2249 return RX_DROP_MONITOR;
2250
2251 /* do not return rejected action frames */
2252 if (mgmt->u.action.category & 0x80)
2253 return RX_DROP_UNUSABLE;
2254
2255 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2256 GFP_ATOMIC);
2257 if (nskb) {
2258 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2259
2260 nmgmt->u.action.category |= 0x80;
2261 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2262 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2263
2264 memset(nskb->cb, 0, sizeof(nskb->cb));
2265
2266 ieee80211_tx_skb(rx->sdata, nskb);
2267 }
2268 dev_kfree_skb(rx->skb);
2269 return RX_QUEUED;
2270 }
2271
2272 static ieee80211_rx_result debug_noinline
2273 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2274 {
2275 struct ieee80211_sub_if_data *sdata = rx->sdata;
2276 ieee80211_rx_result rxs;
2277 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2278 __le16 stype;
2279
2280 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2281 if (rxs != RX_CONTINUE)
2282 return rxs;
2283
2284 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2285
2286 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2287 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2288 sdata->vif.type != NL80211_IFTYPE_STATION)
2289 return RX_DROP_MONITOR;
2290
2291 switch (stype) {
2292 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2293 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2294 /* process for all: mesh, mlme, ibss */
2295 break;
2296 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2297 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2298 if (is_multicast_ether_addr(mgmt->da) &&
2299 !is_broadcast_ether_addr(mgmt->da))
2300 return RX_DROP_MONITOR;
2301
2302 /* process only for station */
2303 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2304 return RX_DROP_MONITOR;
2305 break;
2306 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2307 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2308 /* process only for ibss */
2309 if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2310 return RX_DROP_MONITOR;
2311 break;
2312 default:
2313 return RX_DROP_MONITOR;
2314 }
2315
2316 /* queue up frame and kick off work to process it */
2317 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2318 skb_queue_tail(&sdata->skb_queue, rx->skb);
2319 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2320 if (rx->sta)
2321 rx->sta->rx_packets++;
2322
2323 return RX_QUEUED;
2324 }
2325
2326 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr,
2327 struct ieee80211_rx_data *rx)
2328 {
2329 int keyidx;
2330 unsigned int hdrlen;
2331
2332 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2333 if (rx->skb->len >= hdrlen + 4)
2334 keyidx = rx->skb->data[hdrlen + 3] >> 6;
2335 else
2336 keyidx = -1;
2337
2338 if (!rx->sta) {
2339 /*
2340 * Some hardware seem to generate incorrect Michael MIC
2341 * reports; ignore them to avoid triggering countermeasures.
2342 */
2343 return;
2344 }
2345
2346 if (!ieee80211_has_protected(hdr->frame_control))
2347 return;
2348
2349 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
2350 /*
2351 * APs with pairwise keys should never receive Michael MIC
2352 * errors for non-zero keyidx because these are reserved for
2353 * group keys and only the AP is sending real multicast
2354 * frames in the BSS.
2355 */
2356 return;
2357 }
2358
2359 if (!ieee80211_is_data(hdr->frame_control) &&
2360 !ieee80211_is_auth(hdr->frame_control))
2361 return;
2362
2363 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL,
2364 GFP_ATOMIC);
2365 }
2366
2367 /* TODO: use IEEE80211_RX_FRAGMENTED */
2368 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2369 struct ieee80211_rate *rate)
2370 {
2371 struct ieee80211_sub_if_data *sdata;
2372 struct ieee80211_local *local = rx->local;
2373 struct ieee80211_rtap_hdr {
2374 struct ieee80211_radiotap_header hdr;
2375 u8 flags;
2376 u8 rate_or_pad;
2377 __le16 chan_freq;
2378 __le16 chan_flags;
2379 } __packed *rthdr;
2380 struct sk_buff *skb = rx->skb, *skb2;
2381 struct net_device *prev_dev = NULL;
2382 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2383
2384 /*
2385 * If cooked monitor has been processed already, then
2386 * don't do it again. If not, set the flag.
2387 */
2388 if (rx->flags & IEEE80211_RX_CMNTR)
2389 goto out_free_skb;
2390 rx->flags |= IEEE80211_RX_CMNTR;
2391
2392 if (skb_headroom(skb) < sizeof(*rthdr) &&
2393 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2394 goto out_free_skb;
2395
2396 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2397 memset(rthdr, 0, sizeof(*rthdr));
2398 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2399 rthdr->hdr.it_present =
2400 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2401 (1 << IEEE80211_RADIOTAP_CHANNEL));
2402
2403 if (rate) {
2404 rthdr->rate_or_pad = rate->bitrate / 5;
2405 rthdr->hdr.it_present |=
2406 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2407 }
2408 rthdr->chan_freq = cpu_to_le16(status->freq);
2409
2410 if (status->band == IEEE80211_BAND_5GHZ)
2411 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2412 IEEE80211_CHAN_5GHZ);
2413 else
2414 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2415 IEEE80211_CHAN_2GHZ);
2416
2417 skb_set_mac_header(skb, 0);
2418 skb->ip_summed = CHECKSUM_UNNECESSARY;
2419 skb->pkt_type = PACKET_OTHERHOST;
2420 skb->protocol = htons(ETH_P_802_2);
2421
2422 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2423 if (!ieee80211_sdata_running(sdata))
2424 continue;
2425
2426 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2427 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2428 continue;
2429
2430 if (prev_dev) {
2431 skb2 = skb_clone(skb, GFP_ATOMIC);
2432 if (skb2) {
2433 skb2->dev = prev_dev;
2434 netif_receive_skb(skb2);
2435 }
2436 }
2437
2438 prev_dev = sdata->dev;
2439 sdata->dev->stats.rx_packets++;
2440 sdata->dev->stats.rx_bytes += skb->len;
2441 }
2442
2443 if (prev_dev) {
2444 skb->dev = prev_dev;
2445 netif_receive_skb(skb);
2446 return;
2447 }
2448
2449 out_free_skb:
2450 dev_kfree_skb(skb);
2451 }
2452
2453 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2454 ieee80211_rx_result res)
2455 {
2456 switch (res) {
2457 case RX_DROP_MONITOR:
2458 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2459 if (rx->sta)
2460 rx->sta->rx_dropped++;
2461 /* fall through */
2462 case RX_CONTINUE: {
2463 struct ieee80211_rate *rate = NULL;
2464 struct ieee80211_supported_band *sband;
2465 struct ieee80211_rx_status *status;
2466
2467 status = IEEE80211_SKB_RXCB((rx->skb));
2468
2469 sband = rx->local->hw.wiphy->bands[status->band];
2470 if (!(status->flag & RX_FLAG_HT))
2471 rate = &sband->bitrates[status->rate_idx];
2472
2473 ieee80211_rx_cooked_monitor(rx, rate);
2474 break;
2475 }
2476 case RX_DROP_UNUSABLE:
2477 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2478 if (rx->sta)
2479 rx->sta->rx_dropped++;
2480 dev_kfree_skb(rx->skb);
2481 break;
2482 case RX_QUEUED:
2483 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2484 break;
2485 }
2486 }
2487
2488 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2489 struct sk_buff_head *frames)
2490 {
2491 ieee80211_rx_result res = RX_DROP_MONITOR;
2492 struct sk_buff *skb;
2493
2494 #define CALL_RXH(rxh) \
2495 do { \
2496 res = rxh(rx); \
2497 if (res != RX_CONTINUE) \
2498 goto rxh_next; \
2499 } while (0);
2500
2501 while ((skb = __skb_dequeue(frames))) {
2502 /*
2503 * all the other fields are valid across frames
2504 * that belong to an aMPDU since they are on the
2505 * same TID from the same station
2506 */
2507 rx->skb = skb;
2508 rx->flags = 0;
2509
2510 CALL_RXH(ieee80211_rx_h_decrypt)
2511 CALL_RXH(ieee80211_rx_h_check_more_data)
2512 CALL_RXH(ieee80211_rx_h_sta_process)
2513 CALL_RXH(ieee80211_rx_h_defragment)
2514 CALL_RXH(ieee80211_rx_h_ps_poll)
2515 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2516 /* must be after MMIC verify so header is counted in MPDU mic */
2517 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2518 CALL_RXH(ieee80211_rx_h_amsdu)
2519 #ifdef CONFIG_MAC80211_MESH
2520 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2521 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2522 #endif
2523 CALL_RXH(ieee80211_rx_h_data)
2524
2525 /* special treatment -- needs the queue */
2526 res = ieee80211_rx_h_ctrl(rx, frames);
2527 if (res != RX_CONTINUE)
2528 goto rxh_next;
2529
2530 CALL_RXH(ieee80211_rx_h_mgmt_check)
2531 CALL_RXH(ieee80211_rx_h_action)
2532 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2533 CALL_RXH(ieee80211_rx_h_action_return)
2534 CALL_RXH(ieee80211_rx_h_mgmt)
2535
2536 rxh_next:
2537 ieee80211_rx_handlers_result(rx, res);
2538
2539 #undef CALL_RXH
2540 }
2541 }
2542
2543 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2544 {
2545 struct sk_buff_head reorder_release;
2546 ieee80211_rx_result res = RX_DROP_MONITOR;
2547
2548 __skb_queue_head_init(&reorder_release);
2549
2550 #define CALL_RXH(rxh) \
2551 do { \
2552 res = rxh(rx); \
2553 if (res != RX_CONTINUE) \
2554 goto rxh_next; \
2555 } while (0);
2556
2557 CALL_RXH(ieee80211_rx_h_passive_scan)
2558 CALL_RXH(ieee80211_rx_h_check)
2559
2560 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2561
2562 ieee80211_rx_handlers(rx, &reorder_release);
2563 return;
2564
2565 rxh_next:
2566 ieee80211_rx_handlers_result(rx, res);
2567
2568 #undef CALL_RXH
2569 }
2570
2571 /*
2572 * This function makes calls into the RX path, therefore
2573 * it has to be invoked under RCU read lock.
2574 */
2575 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2576 {
2577 struct sk_buff_head frames;
2578 struct ieee80211_rx_data rx = {
2579 .sta = sta,
2580 .sdata = sta->sdata,
2581 .local = sta->local,
2582 .queue = tid,
2583 };
2584 struct tid_ampdu_rx *tid_agg_rx;
2585
2586 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2587 if (!tid_agg_rx)
2588 return;
2589
2590 __skb_queue_head_init(&frames);
2591
2592 spin_lock(&tid_agg_rx->reorder_lock);
2593 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx, &frames);
2594 spin_unlock(&tid_agg_rx->reorder_lock);
2595
2596 ieee80211_rx_handlers(&rx, &frames);
2597 }
2598
2599 /* main receive path */
2600
2601 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2602 struct ieee80211_hdr *hdr)
2603 {
2604 struct ieee80211_sub_if_data *sdata = rx->sdata;
2605 struct sk_buff *skb = rx->skb;
2606 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2607 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2608 int multicast = is_multicast_ether_addr(hdr->addr1);
2609
2610 switch (sdata->vif.type) {
2611 case NL80211_IFTYPE_STATION:
2612 if (!bssid && !sdata->u.mgd.use_4addr)
2613 return 0;
2614 if (!multicast &&
2615 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2616 if (!(sdata->dev->flags & IFF_PROMISC))
2617 return 0;
2618 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2619 }
2620 break;
2621 case NL80211_IFTYPE_ADHOC:
2622 if (!bssid)
2623 return 0;
2624 if (ieee80211_is_beacon(hdr->frame_control)) {
2625 return 1;
2626 }
2627 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2628 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2629 return 0;
2630 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2631 } else if (!multicast &&
2632 compare_ether_addr(sdata->vif.addr,
2633 hdr->addr1) != 0) {
2634 if (!(sdata->dev->flags & IFF_PROMISC))
2635 return 0;
2636 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2637 } else if (!rx->sta) {
2638 int rate_idx;
2639 if (status->flag & RX_FLAG_HT)
2640 rate_idx = 0; /* TODO: HT rates */
2641 else
2642 rate_idx = status->rate_idx;
2643 rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2644 hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2645 }
2646 break;
2647 case NL80211_IFTYPE_MESH_POINT:
2648 if (!multicast &&
2649 compare_ether_addr(sdata->vif.addr,
2650 hdr->addr1) != 0) {
2651 if (!(sdata->dev->flags & IFF_PROMISC))
2652 return 0;
2653
2654 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2655 }
2656 break;
2657 case NL80211_IFTYPE_AP_VLAN:
2658 case NL80211_IFTYPE_AP:
2659 if (!bssid) {
2660 if (compare_ether_addr(sdata->vif.addr,
2661 hdr->addr1))
2662 return 0;
2663 } else if (!ieee80211_bssid_match(bssid,
2664 sdata->vif.addr)) {
2665 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2666 return 0;
2667 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2668 }
2669 break;
2670 case NL80211_IFTYPE_WDS:
2671 if (bssid || !ieee80211_is_data(hdr->frame_control))
2672 return 0;
2673 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2674 return 0;
2675 break;
2676 default:
2677 /* should never get here */
2678 WARN_ON(1);
2679 break;
2680 }
2681
2682 return 1;
2683 }
2684
2685 /*
2686 * This function returns whether or not the SKB
2687 * was destined for RX processing or not, which,
2688 * if consume is true, is equivalent to whether
2689 * or not the skb was consumed.
2690 */
2691 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2692 struct sk_buff *skb, bool consume)
2693 {
2694 struct ieee80211_local *local = rx->local;
2695 struct ieee80211_sub_if_data *sdata = rx->sdata;
2696 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2697 struct ieee80211_hdr *hdr = (void *)skb->data;
2698 int prepares;
2699
2700 rx->skb = skb;
2701 status->rx_flags |= IEEE80211_RX_RA_MATCH;
2702 prepares = prepare_for_handlers(rx, hdr);
2703
2704 if (!prepares)
2705 return false;
2706
2707 if (status->flag & RX_FLAG_MMIC_ERROR) {
2708 if (status->rx_flags & IEEE80211_RX_RA_MATCH)
2709 ieee80211_rx_michael_mic_report(hdr, rx);
2710 return false;
2711 }
2712
2713 if (!consume) {
2714 skb = skb_copy(skb, GFP_ATOMIC);
2715 if (!skb) {
2716 if (net_ratelimit())
2717 wiphy_debug(local->hw.wiphy,
2718 "failed to copy multicast frame for %s\n",
2719 sdata->name);
2720 return true;
2721 }
2722
2723 rx->skb = skb;
2724 }
2725
2726 ieee80211_invoke_rx_handlers(rx);
2727 return true;
2728 }
2729
2730 /*
2731 * This is the actual Rx frames handler. as it blongs to Rx path it must
2732 * be called with rcu_read_lock protection.
2733 */
2734 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2735 struct sk_buff *skb)
2736 {
2737 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2738 struct ieee80211_local *local = hw_to_local(hw);
2739 struct ieee80211_sub_if_data *sdata;
2740 struct ieee80211_hdr *hdr;
2741 __le16 fc;
2742 struct ieee80211_rx_data rx;
2743 struct ieee80211_sub_if_data *prev;
2744 struct sta_info *sta, *tmp, *prev_sta;
2745 int err = 0;
2746
2747 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2748 memset(&rx, 0, sizeof(rx));
2749 rx.skb = skb;
2750 rx.local = local;
2751
2752 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2753 local->dot11ReceivedFragmentCount++;
2754
2755 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2756 test_bit(SCAN_OFF_CHANNEL, &local->scanning)))
2757 status->rx_flags |= IEEE80211_RX_IN_SCAN;
2758
2759 if (ieee80211_is_mgmt(fc))
2760 err = skb_linearize(skb);
2761 else
2762 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2763
2764 if (err) {
2765 dev_kfree_skb(skb);
2766 return;
2767 }
2768
2769 hdr = (struct ieee80211_hdr *)skb->data;
2770 ieee80211_parse_qos(&rx);
2771 ieee80211_verify_alignment(&rx);
2772
2773 if (ieee80211_is_data(fc)) {
2774 prev_sta = NULL;
2775
2776 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2777 if (!prev_sta) {
2778 prev_sta = sta;
2779 continue;
2780 }
2781
2782 rx.sta = prev_sta;
2783 rx.sdata = prev_sta->sdata;
2784 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2785
2786 prev_sta = sta;
2787 }
2788
2789 if (prev_sta) {
2790 rx.sta = prev_sta;
2791 rx.sdata = prev_sta->sdata;
2792
2793 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2794 return;
2795 goto out;
2796 }
2797 }
2798
2799 prev = NULL;
2800
2801 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2802 if (!ieee80211_sdata_running(sdata))
2803 continue;
2804
2805 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2806 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2807 continue;
2808
2809 /*
2810 * frame is destined for this interface, but if it's
2811 * not also for the previous one we handle that after
2812 * the loop to avoid copying the SKB once too much
2813 */
2814
2815 if (!prev) {
2816 prev = sdata;
2817 continue;
2818 }
2819
2820 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2821 rx.sdata = prev;
2822 ieee80211_prepare_and_rx_handle(&rx, skb, false);
2823
2824 prev = sdata;
2825 }
2826
2827 if (prev) {
2828 rx.sta = sta_info_get_bss(prev, hdr->addr2);
2829 rx.sdata = prev;
2830
2831 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2832 return;
2833 }
2834
2835 out:
2836 dev_kfree_skb(skb);
2837 }
2838
2839 /*
2840 * This is the receive path handler. It is called by a low level driver when an
2841 * 802.11 MPDU is received from the hardware.
2842 */
2843 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2844 {
2845 struct ieee80211_local *local = hw_to_local(hw);
2846 struct ieee80211_rate *rate = NULL;
2847 struct ieee80211_supported_band *sband;
2848 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2849
2850 WARN_ON_ONCE(softirq_count() == 0);
2851
2852 if (WARN_ON(status->band < 0 ||
2853 status->band >= IEEE80211_NUM_BANDS))
2854 goto drop;
2855
2856 sband = local->hw.wiphy->bands[status->band];
2857 if (WARN_ON(!sband))
2858 goto drop;
2859
2860 /*
2861 * If we're suspending, it is possible although not too likely
2862 * that we'd be receiving frames after having already partially
2863 * quiesced the stack. We can't process such frames then since
2864 * that might, for example, cause stations to be added or other
2865 * driver callbacks be invoked.
2866 */
2867 if (unlikely(local->quiescing || local->suspended))
2868 goto drop;
2869
2870 /*
2871 * The same happens when we're not even started,
2872 * but that's worth a warning.
2873 */
2874 if (WARN_ON(!local->started))
2875 goto drop;
2876
2877 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2878 /*
2879 * Validate the rate, unless a PLCP error means that
2880 * we probably can't have a valid rate here anyway.
2881 */
2882
2883 if (status->flag & RX_FLAG_HT) {
2884 /*
2885 * rate_idx is MCS index, which can be [0-76]
2886 * as documented on:
2887 *
2888 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2889 *
2890 * Anything else would be some sort of driver or
2891 * hardware error. The driver should catch hardware
2892 * errors.
2893 */
2894 if (WARN((status->rate_idx < 0 ||
2895 status->rate_idx > 76),
2896 "Rate marked as an HT rate but passed "
2897 "status->rate_idx is not "
2898 "an MCS index [0-76]: %d (0x%02x)\n",
2899 status->rate_idx,
2900 status->rate_idx))
2901 goto drop;
2902 } else {
2903 if (WARN_ON(status->rate_idx < 0 ||
2904 status->rate_idx >= sband->n_bitrates))
2905 goto drop;
2906 rate = &sband->bitrates[status->rate_idx];
2907 }
2908 }
2909
2910 status->rx_flags = 0;
2911
2912 /*
2913 * key references and virtual interfaces are protected using RCU
2914 * and this requires that we are in a read-side RCU section during
2915 * receive processing
2916 */
2917 rcu_read_lock();
2918
2919 /*
2920 * Frames with failed FCS/PLCP checksum are not returned,
2921 * all other frames are returned without radiotap header
2922 * if it was previously present.
2923 * Also, frames with less than 16 bytes are dropped.
2924 */
2925 skb = ieee80211_rx_monitor(local, skb, rate);
2926 if (!skb) {
2927 rcu_read_unlock();
2928 return;
2929 }
2930
2931 __ieee80211_rx_handle_packet(hw, skb);
2932
2933 rcu_read_unlock();
2934
2935 return;
2936 drop:
2937 kfree_skb(skb);
2938 }
2939 EXPORT_SYMBOL(ieee80211_rx);
2940
2941 /* This is a version of the rx handler that can be called from hard irq
2942 * context. Post the skb on the queue and schedule the tasklet */
2943 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2944 {
2945 struct ieee80211_local *local = hw_to_local(hw);
2946
2947 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2948
2949 skb->pkt_type = IEEE80211_RX_MSG;
2950 skb_queue_tail(&local->skb_queue, skb);
2951 tasklet_schedule(&local->tasklet);
2952 }
2953 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.096077 seconds and 5 git commands to generate.