mac80211: reduce reliance on netdev
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/kernel.h>
14 #include <linux/skbuff.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/rcupdate.h>
18 #include <net/mac80211.h>
19 #include <net/ieee80211_radiotap.h>
20
21 #include "ieee80211_i.h"
22 #include "driver-ops.h"
23 #include "led.h"
24 #include "mesh.h"
25 #include "wep.h"
26 #include "wpa.h"
27 #include "tkip.h"
28 #include "wme.h"
29
30 /*
31 * monitor mode reception
32 *
33 * This function cleans up the SKB, i.e. it removes all the stuff
34 * only useful for monitoring.
35 */
36 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
37 struct sk_buff *skb)
38 {
39 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
40 if (likely(skb->len > FCS_LEN))
41 skb_trim(skb, skb->len - FCS_LEN);
42 else {
43 /* driver bug */
44 WARN_ON(1);
45 dev_kfree_skb(skb);
46 skb = NULL;
47 }
48 }
49
50 return skb;
51 }
52
53 static inline int should_drop_frame(struct sk_buff *skb,
54 int present_fcs_len)
55 {
56 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
57 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
58
59 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
60 return 1;
61 if (unlikely(skb->len < 16 + present_fcs_len))
62 return 1;
63 if (ieee80211_is_ctl(hdr->frame_control) &&
64 !ieee80211_is_pspoll(hdr->frame_control) &&
65 !ieee80211_is_back_req(hdr->frame_control))
66 return 1;
67 return 0;
68 }
69
70 static int
71 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
72 struct ieee80211_rx_status *status)
73 {
74 int len;
75
76 /* always present fields */
77 len = sizeof(struct ieee80211_radiotap_header) + 9;
78
79 if (status->flag & RX_FLAG_TSFT)
80 len += 8;
81 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
82 len += 1;
83 if (local->hw.flags & IEEE80211_HW_NOISE_DBM)
84 len += 1;
85
86 if (len & 1) /* padding for RX_FLAGS if necessary */
87 len++;
88
89 return len;
90 }
91
92 /*
93 * ieee80211_add_rx_radiotap_header - add radiotap header
94 *
95 * add a radiotap header containing all the fields which the hardware provided.
96 */
97 static void
98 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
99 struct sk_buff *skb,
100 struct ieee80211_rate *rate,
101 int rtap_len)
102 {
103 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
104 struct ieee80211_radiotap_header *rthdr;
105 unsigned char *pos;
106 u16 rx_flags = 0;
107
108 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
109 memset(rthdr, 0, rtap_len);
110
111 /* radiotap header, set always present flags */
112 rthdr->it_present =
113 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
114 (1 << IEEE80211_RADIOTAP_CHANNEL) |
115 (1 << IEEE80211_RADIOTAP_ANTENNA) |
116 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
117 rthdr->it_len = cpu_to_le16(rtap_len);
118
119 pos = (unsigned char *)(rthdr+1);
120
121 /* the order of the following fields is important */
122
123 /* IEEE80211_RADIOTAP_TSFT */
124 if (status->flag & RX_FLAG_TSFT) {
125 put_unaligned_le64(status->mactime, pos);
126 rthdr->it_present |=
127 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
128 pos += 8;
129 }
130
131 /* IEEE80211_RADIOTAP_FLAGS */
132 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
133 *pos |= IEEE80211_RADIOTAP_F_FCS;
134 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
135 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
136 if (status->flag & RX_FLAG_SHORTPRE)
137 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
138 pos++;
139
140 /* IEEE80211_RADIOTAP_RATE */
141 if (status->flag & RX_FLAG_HT) {
142 /*
143 * TODO: add following information into radiotap header once
144 * suitable fields are defined for it:
145 * - MCS index (status->rate_idx)
146 * - HT40 (status->flag & RX_FLAG_40MHZ)
147 * - short-GI (status->flag & RX_FLAG_SHORT_GI)
148 */
149 *pos = 0;
150 } else {
151 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
152 *pos = rate->bitrate / 5;
153 }
154 pos++;
155
156 /* IEEE80211_RADIOTAP_CHANNEL */
157 put_unaligned_le16(status->freq, pos);
158 pos += 2;
159 if (status->band == IEEE80211_BAND_5GHZ)
160 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
161 pos);
162 else if (status->flag & RX_FLAG_HT)
163 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
164 pos);
165 else if (rate->flags & IEEE80211_RATE_ERP_G)
166 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
167 pos);
168 else
169 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
170 pos);
171 pos += 2;
172
173 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
174 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
175 *pos = status->signal;
176 rthdr->it_present |=
177 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
178 pos++;
179 }
180
181 /* IEEE80211_RADIOTAP_DBM_ANTNOISE */
182 if (local->hw.flags & IEEE80211_HW_NOISE_DBM) {
183 *pos = status->noise;
184 rthdr->it_present |=
185 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTNOISE);
186 pos++;
187 }
188
189 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
190
191 /* IEEE80211_RADIOTAP_ANTENNA */
192 *pos = status->antenna;
193 pos++;
194
195 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
196
197 /* IEEE80211_RADIOTAP_RX_FLAGS */
198 /* ensure 2 byte alignment for the 2 byte field as required */
199 if ((pos - (u8 *)rthdr) & 1)
200 pos++;
201 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
202 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
203 put_unaligned_le16(rx_flags, pos);
204 pos += 2;
205 }
206
207 /*
208 * This function copies a received frame to all monitor interfaces and
209 * returns a cleaned-up SKB that no longer includes the FCS nor the
210 * radiotap header the driver might have added.
211 */
212 static struct sk_buff *
213 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
214 struct ieee80211_rate *rate)
215 {
216 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
217 struct ieee80211_sub_if_data *sdata;
218 int needed_headroom = 0;
219 struct sk_buff *skb, *skb2;
220 struct net_device *prev_dev = NULL;
221 int present_fcs_len = 0;
222
223 /*
224 * First, we may need to make a copy of the skb because
225 * (1) we need to modify it for radiotap (if not present), and
226 * (2) the other RX handlers will modify the skb we got.
227 *
228 * We don't need to, of course, if we aren't going to return
229 * the SKB because it has a bad FCS/PLCP checksum.
230 */
231
232 /* room for the radiotap header based on driver features */
233 needed_headroom = ieee80211_rx_radiotap_len(local, status);
234
235 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
236 present_fcs_len = FCS_LEN;
237
238 if (!local->monitors) {
239 if (should_drop_frame(origskb, present_fcs_len)) {
240 dev_kfree_skb(origskb);
241 return NULL;
242 }
243
244 return remove_monitor_info(local, origskb);
245 }
246
247 if (should_drop_frame(origskb, present_fcs_len)) {
248 /* only need to expand headroom if necessary */
249 skb = origskb;
250 origskb = NULL;
251
252 /*
253 * This shouldn't trigger often because most devices have an
254 * RX header they pull before we get here, and that should
255 * be big enough for our radiotap information. We should
256 * probably export the length to drivers so that we can have
257 * them allocate enough headroom to start with.
258 */
259 if (skb_headroom(skb) < needed_headroom &&
260 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
261 dev_kfree_skb(skb);
262 return NULL;
263 }
264 } else {
265 /*
266 * Need to make a copy and possibly remove radiotap header
267 * and FCS from the original.
268 */
269 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
270
271 origskb = remove_monitor_info(local, origskb);
272
273 if (!skb)
274 return origskb;
275 }
276
277 /* prepend radiotap information */
278 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
279
280 skb_reset_mac_header(skb);
281 skb->ip_summed = CHECKSUM_UNNECESSARY;
282 skb->pkt_type = PACKET_OTHERHOST;
283 skb->protocol = htons(ETH_P_802_2);
284
285 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
286 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
287 continue;
288
289 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
290 continue;
291
292 if (!netif_running(sdata->dev))
293 continue;
294
295 if (prev_dev) {
296 skb2 = skb_clone(skb, GFP_ATOMIC);
297 if (skb2) {
298 skb2->dev = prev_dev;
299 netif_rx(skb2);
300 }
301 }
302
303 prev_dev = sdata->dev;
304 sdata->dev->stats.rx_packets++;
305 sdata->dev->stats.rx_bytes += skb->len;
306 }
307
308 if (prev_dev) {
309 skb->dev = prev_dev;
310 netif_rx(skb);
311 } else
312 dev_kfree_skb(skb);
313
314 return origskb;
315 }
316
317
318 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
319 {
320 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
321 int tid;
322
323 /* does the frame have a qos control field? */
324 if (ieee80211_is_data_qos(hdr->frame_control)) {
325 u8 *qc = ieee80211_get_qos_ctl(hdr);
326 /* frame has qos control */
327 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
328 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
329 rx->flags |= IEEE80211_RX_AMSDU;
330 else
331 rx->flags &= ~IEEE80211_RX_AMSDU;
332 } else {
333 /*
334 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
335 *
336 * Sequence numbers for management frames, QoS data
337 * frames with a broadcast/multicast address in the
338 * Address 1 field, and all non-QoS data frames sent
339 * by QoS STAs are assigned using an additional single
340 * modulo-4096 counter, [...]
341 *
342 * We also use that counter for non-QoS STAs.
343 */
344 tid = NUM_RX_DATA_QUEUES - 1;
345 }
346
347 rx->queue = tid;
348 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
349 * For now, set skb->priority to 0 for other cases. */
350 rx->skb->priority = (tid > 7) ? 0 : tid;
351 }
352
353 /**
354 * DOC: Packet alignment
355 *
356 * Drivers always need to pass packets that are aligned to two-byte boundaries
357 * to the stack.
358 *
359 * Additionally, should, if possible, align the payload data in a way that
360 * guarantees that the contained IP header is aligned to a four-byte
361 * boundary. In the case of regular frames, this simply means aligning the
362 * payload to a four-byte boundary (because either the IP header is directly
363 * contained, or IV/RFC1042 headers that have a length divisible by four are
364 * in front of it).
365 *
366 * With A-MSDU frames, however, the payload data address must yield two modulo
367 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
368 * push the IP header further back to a multiple of four again. Thankfully, the
369 * specs were sane enough this time around to require padding each A-MSDU
370 * subframe to a length that is a multiple of four.
371 *
372 * Padding like Atheros hardware adds which is inbetween the 802.11 header and
373 * the payload is not supported, the driver is required to move the 802.11
374 * header to be directly in front of the payload in that case.
375 */
376 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
377 {
378 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
379 int hdrlen;
380
381 #ifndef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
382 return;
383 #endif
384
385 if (WARN_ONCE((unsigned long)rx->skb->data & 1,
386 "unaligned packet at 0x%p\n", rx->skb->data))
387 return;
388
389 if (!ieee80211_is_data_present(hdr->frame_control))
390 return;
391
392 hdrlen = ieee80211_hdrlen(hdr->frame_control);
393 if (rx->flags & IEEE80211_RX_AMSDU)
394 hdrlen += ETH_HLEN;
395 WARN_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3,
396 "unaligned IP payload at 0x%p\n", rx->skb->data + hdrlen);
397 }
398
399
400 /* rx handlers */
401
402 static ieee80211_rx_result debug_noinline
403 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
404 {
405 struct ieee80211_local *local = rx->local;
406 struct sk_buff *skb = rx->skb;
407
408 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning)))
409 return ieee80211_scan_rx(rx->sdata, skb);
410
411 if (unlikely(test_bit(SCAN_SW_SCANNING, &local->scanning) &&
412 (rx->flags & IEEE80211_RX_IN_SCAN))) {
413 /* drop all the other packets during a software scan anyway */
414 if (ieee80211_scan_rx(rx->sdata, skb) != RX_QUEUED)
415 dev_kfree_skb(skb);
416 return RX_QUEUED;
417 }
418
419 if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) {
420 /* scanning finished during invoking of handlers */
421 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
422 return RX_DROP_UNUSABLE;
423 }
424
425 return RX_CONTINUE;
426 }
427
428
429 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
430 {
431 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
432
433 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
434 return 0;
435
436 return ieee80211_is_robust_mgmt_frame(hdr);
437 }
438
439
440 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
441 {
442 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
443
444 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
445 return 0;
446
447 return ieee80211_is_robust_mgmt_frame(hdr);
448 }
449
450
451 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
452 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
453 {
454 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
455 struct ieee80211_mmie *mmie;
456
457 if (skb->len < 24 + sizeof(*mmie) ||
458 !is_multicast_ether_addr(hdr->da))
459 return -1;
460
461 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
462 return -1; /* not a robust management frame */
463
464 mmie = (struct ieee80211_mmie *)
465 (skb->data + skb->len - sizeof(*mmie));
466 if (mmie->element_id != WLAN_EID_MMIE ||
467 mmie->length != sizeof(*mmie) - 2)
468 return -1;
469
470 return le16_to_cpu(mmie->key_id);
471 }
472
473
474 static ieee80211_rx_result
475 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
476 {
477 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
478 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
479 char *dev_addr = rx->sdata->vif.addr;
480
481 if (ieee80211_is_data(hdr->frame_control)) {
482 if (is_multicast_ether_addr(hdr->addr1)) {
483 if (ieee80211_has_tods(hdr->frame_control) ||
484 !ieee80211_has_fromds(hdr->frame_control))
485 return RX_DROP_MONITOR;
486 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
487 return RX_DROP_MONITOR;
488 } else {
489 if (!ieee80211_has_a4(hdr->frame_control))
490 return RX_DROP_MONITOR;
491 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
492 return RX_DROP_MONITOR;
493 }
494 }
495
496 /* If there is not an established peer link and this is not a peer link
497 * establisment frame, beacon or probe, drop the frame.
498 */
499
500 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
501 struct ieee80211_mgmt *mgmt;
502
503 if (!ieee80211_is_mgmt(hdr->frame_control))
504 return RX_DROP_MONITOR;
505
506 if (ieee80211_is_action(hdr->frame_control)) {
507 mgmt = (struct ieee80211_mgmt *)hdr;
508 if (mgmt->u.action.category != MESH_PLINK_CATEGORY)
509 return RX_DROP_MONITOR;
510 return RX_CONTINUE;
511 }
512
513 if (ieee80211_is_probe_req(hdr->frame_control) ||
514 ieee80211_is_probe_resp(hdr->frame_control) ||
515 ieee80211_is_beacon(hdr->frame_control))
516 return RX_CONTINUE;
517
518 return RX_DROP_MONITOR;
519
520 }
521
522 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
523
524 if (ieee80211_is_data(hdr->frame_control) &&
525 is_multicast_ether_addr(hdr->addr1) &&
526 mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
527 return RX_DROP_MONITOR;
528 #undef msh_h_get
529
530 return RX_CONTINUE;
531 }
532
533 #define SEQ_MODULO 0x1000
534 #define SEQ_MASK 0xfff
535
536 static inline int seq_less(u16 sq1, u16 sq2)
537 {
538 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
539 }
540
541 static inline u16 seq_inc(u16 sq)
542 {
543 return (sq + 1) & SEQ_MASK;
544 }
545
546 static inline u16 seq_sub(u16 sq1, u16 sq2)
547 {
548 return (sq1 - sq2) & SEQ_MASK;
549 }
550
551
552 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
553 struct tid_ampdu_rx *tid_agg_rx,
554 int index,
555 struct sk_buff_head *frames)
556 {
557 struct ieee80211_supported_band *sband;
558 struct ieee80211_rate *rate = NULL;
559 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
560 struct ieee80211_rx_status *status;
561
562 if (!skb)
563 goto no_frame;
564
565 status = IEEE80211_SKB_RXCB(skb);
566
567 /* release the reordered frames to stack */
568 sband = hw->wiphy->bands[status->band];
569 if (!(status->flag & RX_FLAG_HT))
570 rate = &sband->bitrates[status->rate_idx];
571 tid_agg_rx->stored_mpdu_num--;
572 tid_agg_rx->reorder_buf[index] = NULL;
573 __skb_queue_tail(frames, skb);
574
575 no_frame:
576 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
577 }
578
579 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
580 struct tid_ampdu_rx *tid_agg_rx,
581 u16 head_seq_num,
582 struct sk_buff_head *frames)
583 {
584 int index;
585
586 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
587 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
588 tid_agg_rx->buf_size;
589 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
590 }
591 }
592
593 /*
594 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
595 * the skb was added to the buffer longer than this time ago, the earlier
596 * frames that have not yet been received are assumed to be lost and the skb
597 * can be released for processing. This may also release other skb's from the
598 * reorder buffer if there are no additional gaps between the frames.
599 */
600 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
601
602 /*
603 * As this function belongs to the RX path it must be under
604 * rcu_read_lock protection. It returns false if the frame
605 * can be processed immediately, true if it was consumed.
606 */
607 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
608 struct tid_ampdu_rx *tid_agg_rx,
609 struct sk_buff *skb,
610 struct sk_buff_head *frames)
611 {
612 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
613 u16 sc = le16_to_cpu(hdr->seq_ctrl);
614 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
615 u16 head_seq_num, buf_size;
616 int index;
617
618 buf_size = tid_agg_rx->buf_size;
619 head_seq_num = tid_agg_rx->head_seq_num;
620
621 /* frame with out of date sequence number */
622 if (seq_less(mpdu_seq_num, head_seq_num)) {
623 dev_kfree_skb(skb);
624 return true;
625 }
626
627 /*
628 * If frame the sequence number exceeds our buffering window
629 * size release some previous frames to make room for this one.
630 */
631 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
632 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
633 /* release stored frames up to new head to stack */
634 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num,
635 frames);
636 }
637
638 /* Now the new frame is always in the range of the reordering buffer */
639
640 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
641
642 /* check if we already stored this frame */
643 if (tid_agg_rx->reorder_buf[index]) {
644 dev_kfree_skb(skb);
645 return true;
646 }
647
648 /*
649 * If the current MPDU is in the right order and nothing else
650 * is stored we can process it directly, no need to buffer it.
651 */
652 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
653 tid_agg_rx->stored_mpdu_num == 0) {
654 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
655 return false;
656 }
657
658 /* put the frame in the reordering buffer */
659 tid_agg_rx->reorder_buf[index] = skb;
660 tid_agg_rx->reorder_time[index] = jiffies;
661 tid_agg_rx->stored_mpdu_num++;
662 /* release the buffer until next missing frame */
663 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
664 tid_agg_rx->buf_size;
665 if (!tid_agg_rx->reorder_buf[index] &&
666 tid_agg_rx->stored_mpdu_num > 1) {
667 /*
668 * No buffers ready to be released, but check whether any
669 * frames in the reorder buffer have timed out.
670 */
671 int j;
672 int skipped = 1;
673 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
674 j = (j + 1) % tid_agg_rx->buf_size) {
675 if (!tid_agg_rx->reorder_buf[j]) {
676 skipped++;
677 continue;
678 }
679 if (!time_after(jiffies, tid_agg_rx->reorder_time[j] +
680 HT_RX_REORDER_BUF_TIMEOUT))
681 break;
682
683 #ifdef CONFIG_MAC80211_HT_DEBUG
684 if (net_ratelimit())
685 printk(KERN_DEBUG "%s: release an RX reorder "
686 "frame due to timeout on earlier "
687 "frames\n",
688 wiphy_name(hw->wiphy));
689 #endif
690 ieee80211_release_reorder_frame(hw, tid_agg_rx,
691 j, frames);
692
693 /*
694 * Increment the head seq# also for the skipped slots.
695 */
696 tid_agg_rx->head_seq_num =
697 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
698 skipped = 0;
699 }
700 } else while (tid_agg_rx->reorder_buf[index]) {
701 ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
702 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
703 tid_agg_rx->buf_size;
704 }
705
706 return true;
707 }
708
709 /*
710 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
711 * true if the MPDU was buffered, false if it should be processed.
712 */
713 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
714 struct sk_buff_head *frames)
715 {
716 struct sk_buff *skb = rx->skb;
717 struct ieee80211_local *local = rx->local;
718 struct ieee80211_hw *hw = &local->hw;
719 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
720 struct sta_info *sta = rx->sta;
721 struct tid_ampdu_rx *tid_agg_rx;
722 u16 sc;
723 int tid;
724
725 if (!ieee80211_is_data_qos(hdr->frame_control))
726 goto dont_reorder;
727
728 /*
729 * filter the QoS data rx stream according to
730 * STA/TID and check if this STA/TID is on aggregation
731 */
732
733 if (!sta)
734 goto dont_reorder;
735
736 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
737
738 if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_OPERATIONAL)
739 goto dont_reorder;
740
741 tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
742
743 /* qos null data frames are excluded */
744 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
745 goto dont_reorder;
746
747 /* new, potentially un-ordered, ampdu frame - process it */
748
749 /* reset session timer */
750 if (tid_agg_rx->timeout)
751 mod_timer(&tid_agg_rx->session_timer,
752 TU_TO_EXP_TIME(tid_agg_rx->timeout));
753
754 /* if this mpdu is fragmented - terminate rx aggregation session */
755 sc = le16_to_cpu(hdr->seq_ctrl);
756 if (sc & IEEE80211_SCTL_FRAG) {
757 ieee80211_sta_stop_rx_ba_session(sta->sdata, sta->sta.addr,
758 tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP);
759 dev_kfree_skb(skb);
760 return;
761 }
762
763 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, frames))
764 return;
765
766 dont_reorder:
767 __skb_queue_tail(frames, skb);
768 }
769
770 static ieee80211_rx_result debug_noinline
771 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
772 {
773 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
774
775 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
776 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
777 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
778 rx->sta->last_seq_ctrl[rx->queue] ==
779 hdr->seq_ctrl)) {
780 if (rx->flags & IEEE80211_RX_RA_MATCH) {
781 rx->local->dot11FrameDuplicateCount++;
782 rx->sta->num_duplicates++;
783 }
784 return RX_DROP_MONITOR;
785 } else
786 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
787 }
788
789 if (unlikely(rx->skb->len < 16)) {
790 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
791 return RX_DROP_MONITOR;
792 }
793
794 /* Drop disallowed frame classes based on STA auth/assoc state;
795 * IEEE 802.11, Chap 5.5.
796 *
797 * mac80211 filters only based on association state, i.e. it drops
798 * Class 3 frames from not associated stations. hostapd sends
799 * deauth/disassoc frames when needed. In addition, hostapd is
800 * responsible for filtering on both auth and assoc states.
801 */
802
803 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
804 return ieee80211_rx_mesh_check(rx);
805
806 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
807 ieee80211_is_pspoll(hdr->frame_control)) &&
808 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
809 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
810 if ((!ieee80211_has_fromds(hdr->frame_control) &&
811 !ieee80211_has_tods(hdr->frame_control) &&
812 ieee80211_is_data(hdr->frame_control)) ||
813 !(rx->flags & IEEE80211_RX_RA_MATCH)) {
814 /* Drop IBSS frames and frames for other hosts
815 * silently. */
816 return RX_DROP_MONITOR;
817 }
818
819 return RX_DROP_MONITOR;
820 }
821
822 return RX_CONTINUE;
823 }
824
825
826 static ieee80211_rx_result debug_noinline
827 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
828 {
829 struct sk_buff *skb = rx->skb;
830 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
831 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
832 int keyidx;
833 int hdrlen;
834 ieee80211_rx_result result = RX_DROP_UNUSABLE;
835 struct ieee80211_key *stakey = NULL;
836 int mmie_keyidx = -1;
837
838 /*
839 * Key selection 101
840 *
841 * There are four types of keys:
842 * - GTK (group keys)
843 * - IGTK (group keys for management frames)
844 * - PTK (pairwise keys)
845 * - STK (station-to-station pairwise keys)
846 *
847 * When selecting a key, we have to distinguish between multicast
848 * (including broadcast) and unicast frames, the latter can only
849 * use PTKs and STKs while the former always use GTKs and IGTKs.
850 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
851 * unicast frames can also use key indices like GTKs. Hence, if we
852 * don't have a PTK/STK we check the key index for a WEP key.
853 *
854 * Note that in a regular BSS, multicast frames are sent by the
855 * AP only, associated stations unicast the frame to the AP first
856 * which then multicasts it on their behalf.
857 *
858 * There is also a slight problem in IBSS mode: GTKs are negotiated
859 * with each station, that is something we don't currently handle.
860 * The spec seems to expect that one negotiates the same key with
861 * every station but there's no such requirement; VLANs could be
862 * possible.
863 */
864
865 /*
866 * No point in finding a key and decrypting if the frame is neither
867 * addressed to us nor a multicast frame.
868 */
869 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
870 return RX_CONTINUE;
871
872 /* start without a key */
873 rx->key = NULL;
874
875 if (rx->sta)
876 stakey = rcu_dereference(rx->sta->key);
877
878 if (!ieee80211_has_protected(hdr->frame_control))
879 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
880
881 if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
882 rx->key = stakey;
883 /* Skip decryption if the frame is not protected. */
884 if (!ieee80211_has_protected(hdr->frame_control))
885 return RX_CONTINUE;
886 } else if (mmie_keyidx >= 0) {
887 /* Broadcast/multicast robust management frame / BIP */
888 if ((status->flag & RX_FLAG_DECRYPTED) &&
889 (status->flag & RX_FLAG_IV_STRIPPED))
890 return RX_CONTINUE;
891
892 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
893 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
894 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
895 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
896 } else if (!ieee80211_has_protected(hdr->frame_control)) {
897 /*
898 * The frame was not protected, so skip decryption. However, we
899 * need to set rx->key if there is a key that could have been
900 * used so that the frame may be dropped if encryption would
901 * have been expected.
902 */
903 struct ieee80211_key *key = NULL;
904 if (ieee80211_is_mgmt(hdr->frame_control) &&
905 is_multicast_ether_addr(hdr->addr1) &&
906 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
907 rx->key = key;
908 else if ((key = rcu_dereference(rx->sdata->default_key)))
909 rx->key = key;
910 return RX_CONTINUE;
911 } else {
912 /*
913 * The device doesn't give us the IV so we won't be
914 * able to look up the key. That's ok though, we
915 * don't need to decrypt the frame, we just won't
916 * be able to keep statistics accurate.
917 * Except for key threshold notifications, should
918 * we somehow allow the driver to tell us which key
919 * the hardware used if this flag is set?
920 */
921 if ((status->flag & RX_FLAG_DECRYPTED) &&
922 (status->flag & RX_FLAG_IV_STRIPPED))
923 return RX_CONTINUE;
924
925 hdrlen = ieee80211_hdrlen(hdr->frame_control);
926
927 if (rx->skb->len < 8 + hdrlen)
928 return RX_DROP_UNUSABLE; /* TODO: count this? */
929
930 /*
931 * no need to call ieee80211_wep_get_keyidx,
932 * it verifies a bunch of things we've done already
933 */
934 keyidx = rx->skb->data[hdrlen + 3] >> 6;
935
936 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
937
938 /*
939 * RSNA-protected unicast frames should always be sent with
940 * pairwise or station-to-station keys, but for WEP we allow
941 * using a key index as well.
942 */
943 if (rx->key && rx->key->conf.alg != ALG_WEP &&
944 !is_multicast_ether_addr(hdr->addr1))
945 rx->key = NULL;
946 }
947
948 if (rx->key) {
949 rx->key->tx_rx_count++;
950 /* TODO: add threshold stuff again */
951 } else {
952 return RX_DROP_MONITOR;
953 }
954
955 /* Check for weak IVs if possible */
956 if (rx->sta && rx->key->conf.alg == ALG_WEP &&
957 ieee80211_is_data(hdr->frame_control) &&
958 (!(status->flag & RX_FLAG_IV_STRIPPED) ||
959 !(status->flag & RX_FLAG_DECRYPTED)) &&
960 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
961 rx->sta->wep_weak_iv_count++;
962
963 switch (rx->key->conf.alg) {
964 case ALG_WEP:
965 result = ieee80211_crypto_wep_decrypt(rx);
966 break;
967 case ALG_TKIP:
968 result = ieee80211_crypto_tkip_decrypt(rx);
969 break;
970 case ALG_CCMP:
971 result = ieee80211_crypto_ccmp_decrypt(rx);
972 break;
973 case ALG_AES_CMAC:
974 result = ieee80211_crypto_aes_cmac_decrypt(rx);
975 break;
976 }
977
978 /* either the frame has been decrypted or will be dropped */
979 status->flag |= RX_FLAG_DECRYPTED;
980
981 return result;
982 }
983
984 static ieee80211_rx_result debug_noinline
985 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
986 {
987 struct ieee80211_local *local;
988 struct ieee80211_hdr *hdr;
989 struct sk_buff *skb;
990
991 local = rx->local;
992 skb = rx->skb;
993 hdr = (struct ieee80211_hdr *) skb->data;
994
995 if (!local->pspolling)
996 return RX_CONTINUE;
997
998 if (!ieee80211_has_fromds(hdr->frame_control))
999 /* this is not from AP */
1000 return RX_CONTINUE;
1001
1002 if (!ieee80211_is_data(hdr->frame_control))
1003 return RX_CONTINUE;
1004
1005 if (!ieee80211_has_moredata(hdr->frame_control)) {
1006 /* AP has no more frames buffered for us */
1007 local->pspolling = false;
1008 return RX_CONTINUE;
1009 }
1010
1011 /* more data bit is set, let's request a new frame from the AP */
1012 ieee80211_send_pspoll(local, rx->sdata);
1013
1014 return RX_CONTINUE;
1015 }
1016
1017 static void ap_sta_ps_start(struct sta_info *sta)
1018 {
1019 struct ieee80211_sub_if_data *sdata = sta->sdata;
1020 struct ieee80211_local *local = sdata->local;
1021
1022 atomic_inc(&sdata->bss->num_sta_ps);
1023 set_sta_flags(sta, WLAN_STA_PS_STA);
1024 drv_sta_notify(local, &sdata->vif, STA_NOTIFY_SLEEP, &sta->sta);
1025 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1026 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1027 sdata->name, sta->sta.addr, sta->sta.aid);
1028 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1029 }
1030
1031 static void ap_sta_ps_end(struct sta_info *sta)
1032 {
1033 struct ieee80211_sub_if_data *sdata = sta->sdata;
1034
1035 atomic_dec(&sdata->bss->num_sta_ps);
1036
1037 clear_sta_flags(sta, WLAN_STA_PS_STA);
1038
1039 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1040 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1041 sdata->name, sta->sta.addr, sta->sta.aid);
1042 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1043
1044 if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1045 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1046 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1047 sdata->name, sta->sta.addr, sta->sta.aid);
1048 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1049 return;
1050 }
1051
1052 ieee80211_sta_ps_deliver_wakeup(sta);
1053 }
1054
1055 static ieee80211_rx_result debug_noinline
1056 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1057 {
1058 struct sta_info *sta = rx->sta;
1059 struct sk_buff *skb = rx->skb;
1060 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1061 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1062
1063 if (!sta)
1064 return RX_CONTINUE;
1065
1066 /*
1067 * Update last_rx only for IBSS packets which are for the current
1068 * BSSID to avoid keeping the current IBSS network alive in cases
1069 * where other STAs start using different BSSID.
1070 */
1071 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1072 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1073 NL80211_IFTYPE_ADHOC);
1074 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0)
1075 sta->last_rx = jiffies;
1076 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1077 /*
1078 * Mesh beacons will update last_rx when if they are found to
1079 * match the current local configuration when processed.
1080 */
1081 sta->last_rx = jiffies;
1082 }
1083
1084 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1085 return RX_CONTINUE;
1086
1087 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1088 ieee80211_sta_rx_notify(rx->sdata, hdr);
1089
1090 sta->rx_fragments++;
1091 sta->rx_bytes += rx->skb->len;
1092 sta->last_signal = status->signal;
1093 sta->last_noise = status->noise;
1094
1095 /*
1096 * Change STA power saving mode only at the end of a frame
1097 * exchange sequence.
1098 */
1099 if (!ieee80211_has_morefrags(hdr->frame_control) &&
1100 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1101 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1102 if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1103 /*
1104 * Ignore doze->wake transitions that are
1105 * indicated by non-data frames, the standard
1106 * is unclear here, but for example going to
1107 * PS mode and then scanning would cause a
1108 * doze->wake transition for the probe request,
1109 * and that is clearly undesirable.
1110 */
1111 if (ieee80211_is_data(hdr->frame_control) &&
1112 !ieee80211_has_pm(hdr->frame_control))
1113 ap_sta_ps_end(sta);
1114 } else {
1115 if (ieee80211_has_pm(hdr->frame_control))
1116 ap_sta_ps_start(sta);
1117 }
1118 }
1119
1120 /*
1121 * Drop (qos-)data::nullfunc frames silently, since they
1122 * are used only to control station power saving mode.
1123 */
1124 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1125 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1126 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1127 /*
1128 * Update counter and free packet here to avoid
1129 * counting this as a dropped packed.
1130 */
1131 sta->rx_packets++;
1132 dev_kfree_skb(rx->skb);
1133 return RX_QUEUED;
1134 }
1135
1136 return RX_CONTINUE;
1137 } /* ieee80211_rx_h_sta_process */
1138
1139 static inline struct ieee80211_fragment_entry *
1140 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1141 unsigned int frag, unsigned int seq, int rx_queue,
1142 struct sk_buff **skb)
1143 {
1144 struct ieee80211_fragment_entry *entry;
1145 int idx;
1146
1147 idx = sdata->fragment_next;
1148 entry = &sdata->fragments[sdata->fragment_next++];
1149 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1150 sdata->fragment_next = 0;
1151
1152 if (!skb_queue_empty(&entry->skb_list)) {
1153 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1154 struct ieee80211_hdr *hdr =
1155 (struct ieee80211_hdr *) entry->skb_list.next->data;
1156 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1157 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1158 "addr1=%pM addr2=%pM\n",
1159 sdata->name, idx,
1160 jiffies - entry->first_frag_time, entry->seq,
1161 entry->last_frag, hdr->addr1, hdr->addr2);
1162 #endif
1163 __skb_queue_purge(&entry->skb_list);
1164 }
1165
1166 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1167 *skb = NULL;
1168 entry->first_frag_time = jiffies;
1169 entry->seq = seq;
1170 entry->rx_queue = rx_queue;
1171 entry->last_frag = frag;
1172 entry->ccmp = 0;
1173 entry->extra_len = 0;
1174
1175 return entry;
1176 }
1177
1178 static inline struct ieee80211_fragment_entry *
1179 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1180 unsigned int frag, unsigned int seq,
1181 int rx_queue, struct ieee80211_hdr *hdr)
1182 {
1183 struct ieee80211_fragment_entry *entry;
1184 int i, idx;
1185
1186 idx = sdata->fragment_next;
1187 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1188 struct ieee80211_hdr *f_hdr;
1189
1190 idx--;
1191 if (idx < 0)
1192 idx = IEEE80211_FRAGMENT_MAX - 1;
1193
1194 entry = &sdata->fragments[idx];
1195 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1196 entry->rx_queue != rx_queue ||
1197 entry->last_frag + 1 != frag)
1198 continue;
1199
1200 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1201
1202 /*
1203 * Check ftype and addresses are equal, else check next fragment
1204 */
1205 if (((hdr->frame_control ^ f_hdr->frame_control) &
1206 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1207 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1208 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1209 continue;
1210
1211 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1212 __skb_queue_purge(&entry->skb_list);
1213 continue;
1214 }
1215 return entry;
1216 }
1217
1218 return NULL;
1219 }
1220
1221 static ieee80211_rx_result debug_noinline
1222 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1223 {
1224 struct ieee80211_hdr *hdr;
1225 u16 sc;
1226 __le16 fc;
1227 unsigned int frag, seq;
1228 struct ieee80211_fragment_entry *entry;
1229 struct sk_buff *skb;
1230
1231 hdr = (struct ieee80211_hdr *)rx->skb->data;
1232 fc = hdr->frame_control;
1233 sc = le16_to_cpu(hdr->seq_ctrl);
1234 frag = sc & IEEE80211_SCTL_FRAG;
1235
1236 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1237 (rx->skb)->len < 24 ||
1238 is_multicast_ether_addr(hdr->addr1))) {
1239 /* not fragmented */
1240 goto out;
1241 }
1242 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1243
1244 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1245
1246 if (frag == 0) {
1247 /* This is the first fragment of a new frame. */
1248 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1249 rx->queue, &(rx->skb));
1250 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
1251 ieee80211_has_protected(fc)) {
1252 /* Store CCMP PN so that we can verify that the next
1253 * fragment has a sequential PN value. */
1254 entry->ccmp = 1;
1255 memcpy(entry->last_pn,
1256 rx->key->u.ccmp.rx_pn[rx->queue],
1257 CCMP_PN_LEN);
1258 }
1259 return RX_QUEUED;
1260 }
1261
1262 /* This is a fragment for a frame that should already be pending in
1263 * fragment cache. Add this fragment to the end of the pending entry.
1264 */
1265 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1266 if (!entry) {
1267 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1268 return RX_DROP_MONITOR;
1269 }
1270
1271 /* Verify that MPDUs within one MSDU have sequential PN values.
1272 * (IEEE 802.11i, 8.3.3.4.5) */
1273 if (entry->ccmp) {
1274 int i;
1275 u8 pn[CCMP_PN_LEN], *rpn;
1276 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
1277 return RX_DROP_UNUSABLE;
1278 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1279 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1280 pn[i]++;
1281 if (pn[i])
1282 break;
1283 }
1284 rpn = rx->key->u.ccmp.rx_pn[rx->queue];
1285 if (memcmp(pn, rpn, CCMP_PN_LEN))
1286 return RX_DROP_UNUSABLE;
1287 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1288 }
1289
1290 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1291 __skb_queue_tail(&entry->skb_list, rx->skb);
1292 entry->last_frag = frag;
1293 entry->extra_len += rx->skb->len;
1294 if (ieee80211_has_morefrags(fc)) {
1295 rx->skb = NULL;
1296 return RX_QUEUED;
1297 }
1298
1299 rx->skb = __skb_dequeue(&entry->skb_list);
1300 if (skb_tailroom(rx->skb) < entry->extra_len) {
1301 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1302 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1303 GFP_ATOMIC))) {
1304 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1305 __skb_queue_purge(&entry->skb_list);
1306 return RX_DROP_UNUSABLE;
1307 }
1308 }
1309 while ((skb = __skb_dequeue(&entry->skb_list))) {
1310 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1311 dev_kfree_skb(skb);
1312 }
1313
1314 /* Complete frame has been reassembled - process it now */
1315 rx->flags |= IEEE80211_RX_FRAGMENTED;
1316
1317 out:
1318 if (rx->sta)
1319 rx->sta->rx_packets++;
1320 if (is_multicast_ether_addr(hdr->addr1))
1321 rx->local->dot11MulticastReceivedFrameCount++;
1322 else
1323 ieee80211_led_rx(rx->local);
1324 return RX_CONTINUE;
1325 }
1326
1327 static ieee80211_rx_result debug_noinline
1328 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1329 {
1330 struct ieee80211_sub_if_data *sdata = rx->sdata;
1331 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1332
1333 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1334 !(rx->flags & IEEE80211_RX_RA_MATCH)))
1335 return RX_CONTINUE;
1336
1337 if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1338 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1339 return RX_DROP_UNUSABLE;
1340
1341 if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1342 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1343 else
1344 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1345
1346 /* Free PS Poll skb here instead of returning RX_DROP that would
1347 * count as an dropped frame. */
1348 dev_kfree_skb(rx->skb);
1349
1350 return RX_QUEUED;
1351 }
1352
1353 static ieee80211_rx_result debug_noinline
1354 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1355 {
1356 u8 *data = rx->skb->data;
1357 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1358
1359 if (!ieee80211_is_data_qos(hdr->frame_control))
1360 return RX_CONTINUE;
1361
1362 /* remove the qos control field, update frame type and meta-data */
1363 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1364 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1365 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1366 /* change frame type to non QOS */
1367 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1368
1369 return RX_CONTINUE;
1370 }
1371
1372 static int
1373 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1374 {
1375 if (unlikely(!rx->sta ||
1376 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1377 return -EACCES;
1378
1379 return 0;
1380 }
1381
1382 static int
1383 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1384 {
1385 struct sk_buff *skb = rx->skb;
1386 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1387
1388 /*
1389 * Pass through unencrypted frames if the hardware has
1390 * decrypted them already.
1391 */
1392 if (status->flag & RX_FLAG_DECRYPTED)
1393 return 0;
1394
1395 /* Drop unencrypted frames if key is set. */
1396 if (unlikely(!ieee80211_has_protected(fc) &&
1397 !ieee80211_is_nullfunc(fc) &&
1398 ieee80211_is_data(fc) &&
1399 (rx->key || rx->sdata->drop_unencrypted)))
1400 return -EACCES;
1401 if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1402 if (unlikely(ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1403 rx->key))
1404 return -EACCES;
1405 /* BIP does not use Protected field, so need to check MMIE */
1406 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1407 ieee80211_get_mmie_keyidx(rx->skb) < 0 &&
1408 rx->key))
1409 return -EACCES;
1410 /*
1411 * When using MFP, Action frames are not allowed prior to
1412 * having configured keys.
1413 */
1414 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1415 ieee80211_is_robust_mgmt_frame(
1416 (struct ieee80211_hdr *) rx->skb->data)))
1417 return -EACCES;
1418 }
1419
1420 return 0;
1421 }
1422
1423 static int
1424 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1425 {
1426 struct ieee80211_sub_if_data *sdata = rx->sdata;
1427 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1428
1429 if (ieee80211_has_a4(hdr->frame_control) &&
1430 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1431 return -1;
1432
1433 if (is_multicast_ether_addr(hdr->addr1) &&
1434 ((sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) ||
1435 (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.use_4addr)))
1436 return -1;
1437
1438 return ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1439 }
1440
1441 /*
1442 * requires that rx->skb is a frame with ethernet header
1443 */
1444 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1445 {
1446 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1447 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1448 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1449
1450 /*
1451 * Allow EAPOL frames to us/the PAE group address regardless
1452 * of whether the frame was encrypted or not.
1453 */
1454 if (ehdr->h_proto == htons(ETH_P_PAE) &&
1455 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1456 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1457 return true;
1458
1459 if (ieee80211_802_1x_port_control(rx) ||
1460 ieee80211_drop_unencrypted(rx, fc))
1461 return false;
1462
1463 return true;
1464 }
1465
1466 /*
1467 * requires that rx->skb is a frame with ethernet header
1468 */
1469 static void
1470 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1471 {
1472 struct ieee80211_sub_if_data *sdata = rx->sdata;
1473 struct net_device *dev = sdata->dev;
1474 struct sk_buff *skb, *xmit_skb;
1475 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1476 struct sta_info *dsta;
1477
1478 skb = rx->skb;
1479 xmit_skb = NULL;
1480
1481 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1482 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1483 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1484 (rx->flags & IEEE80211_RX_RA_MATCH) &&
1485 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1486 if (is_multicast_ether_addr(ehdr->h_dest)) {
1487 /*
1488 * send multicast frames both to higher layers in
1489 * local net stack and back to the wireless medium
1490 */
1491 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1492 if (!xmit_skb && net_ratelimit())
1493 printk(KERN_DEBUG "%s: failed to clone "
1494 "multicast frame\n", dev->name);
1495 } else {
1496 dsta = sta_info_get(sdata, skb->data);
1497 if (dsta) {
1498 /*
1499 * The destination station is associated to
1500 * this AP (in this VLAN), so send the frame
1501 * directly to it and do not pass it to local
1502 * net stack.
1503 */
1504 xmit_skb = skb;
1505 skb = NULL;
1506 }
1507 }
1508 }
1509
1510 if (skb) {
1511 int align __maybe_unused;
1512
1513 #if defined(CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT) || !defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1514 /*
1515 * 'align' will only take the values 0 or 2 here
1516 * since all frames are required to be aligned
1517 * to 2-byte boundaries when being passed to
1518 * mac80211. That also explains the __skb_push()
1519 * below.
1520 */
1521 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1522 if (align) {
1523 if (WARN_ON(skb_headroom(skb) < 3)) {
1524 dev_kfree_skb(skb);
1525 skb = NULL;
1526 } else {
1527 u8 *data = skb->data;
1528 size_t len = skb_headlen(skb);
1529 skb->data -= align;
1530 memmove(skb->data, data, len);
1531 skb_set_tail_pointer(skb, len);
1532 }
1533 }
1534 #endif
1535
1536 if (skb) {
1537 /* deliver to local stack */
1538 skb->protocol = eth_type_trans(skb, dev);
1539 memset(skb->cb, 0, sizeof(skb->cb));
1540 netif_rx(skb);
1541 }
1542 }
1543
1544 if (xmit_skb) {
1545 /* send to wireless media */
1546 xmit_skb->protocol = htons(ETH_P_802_3);
1547 skb_reset_network_header(xmit_skb);
1548 skb_reset_mac_header(xmit_skb);
1549 dev_queue_xmit(xmit_skb);
1550 }
1551 }
1552
1553 static ieee80211_rx_result debug_noinline
1554 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1555 {
1556 struct net_device *dev = rx->sdata->dev;
1557 struct ieee80211_local *local = rx->local;
1558 u16 ethertype;
1559 u8 *payload;
1560 struct sk_buff *skb = rx->skb, *frame = NULL;
1561 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1562 __le16 fc = hdr->frame_control;
1563 const struct ethhdr *eth;
1564 int remaining, err;
1565 u8 dst[ETH_ALEN];
1566 u8 src[ETH_ALEN];
1567
1568 if (unlikely(!ieee80211_is_data(fc)))
1569 return RX_CONTINUE;
1570
1571 if (unlikely(!ieee80211_is_data_present(fc)))
1572 return RX_DROP_MONITOR;
1573
1574 if (!(rx->flags & IEEE80211_RX_AMSDU))
1575 return RX_CONTINUE;
1576
1577 err = __ieee80211_data_to_8023(rx);
1578 if (unlikely(err))
1579 return RX_DROP_UNUSABLE;
1580
1581 skb->dev = dev;
1582
1583 dev->stats.rx_packets++;
1584 dev->stats.rx_bytes += skb->len;
1585
1586 /* skip the wrapping header */
1587 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
1588 if (!eth)
1589 return RX_DROP_UNUSABLE;
1590
1591 while (skb != frame) {
1592 u8 padding;
1593 __be16 len = eth->h_proto;
1594 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
1595
1596 remaining = skb->len;
1597 memcpy(dst, eth->h_dest, ETH_ALEN);
1598 memcpy(src, eth->h_source, ETH_ALEN);
1599
1600 padding = ((4 - subframe_len) & 0x3);
1601 /* the last MSDU has no padding */
1602 if (subframe_len > remaining)
1603 return RX_DROP_UNUSABLE;
1604
1605 skb_pull(skb, sizeof(struct ethhdr));
1606 /* if last subframe reuse skb */
1607 if (remaining <= subframe_len + padding)
1608 frame = skb;
1609 else {
1610 /*
1611 * Allocate and reserve two bytes more for payload
1612 * alignment since sizeof(struct ethhdr) is 14.
1613 */
1614 frame = dev_alloc_skb(
1615 ALIGN(local->hw.extra_tx_headroom, 4) +
1616 subframe_len + 2);
1617
1618 if (frame == NULL)
1619 return RX_DROP_UNUSABLE;
1620
1621 skb_reserve(frame,
1622 ALIGN(local->hw.extra_tx_headroom, 4) +
1623 sizeof(struct ethhdr) + 2);
1624 memcpy(skb_put(frame, ntohs(len)), skb->data,
1625 ntohs(len));
1626
1627 eth = (struct ethhdr *) skb_pull(skb, ntohs(len) +
1628 padding);
1629 if (!eth) {
1630 dev_kfree_skb(frame);
1631 return RX_DROP_UNUSABLE;
1632 }
1633 }
1634
1635 skb_reset_network_header(frame);
1636 frame->dev = dev;
1637 frame->priority = skb->priority;
1638 rx->skb = frame;
1639
1640 payload = frame->data;
1641 ethertype = (payload[6] << 8) | payload[7];
1642
1643 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1644 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1645 compare_ether_addr(payload,
1646 bridge_tunnel_header) == 0)) {
1647 /* remove RFC1042 or Bridge-Tunnel
1648 * encapsulation and replace EtherType */
1649 skb_pull(frame, 6);
1650 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1651 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1652 } else {
1653 memcpy(skb_push(frame, sizeof(__be16)),
1654 &len, sizeof(__be16));
1655 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1656 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1657 }
1658
1659 if (!ieee80211_frame_allowed(rx, fc)) {
1660 if (skb == frame) /* last frame */
1661 return RX_DROP_UNUSABLE;
1662 dev_kfree_skb(frame);
1663 continue;
1664 }
1665
1666 ieee80211_deliver_skb(rx);
1667 }
1668
1669 return RX_QUEUED;
1670 }
1671
1672 #ifdef CONFIG_MAC80211_MESH
1673 static ieee80211_rx_result
1674 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1675 {
1676 struct ieee80211_hdr *hdr;
1677 struct ieee80211s_hdr *mesh_hdr;
1678 unsigned int hdrlen;
1679 struct sk_buff *skb = rx->skb, *fwd_skb;
1680 struct ieee80211_local *local = rx->local;
1681 struct ieee80211_sub_if_data *sdata = rx->sdata;
1682
1683 hdr = (struct ieee80211_hdr *) skb->data;
1684 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1685 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1686
1687 if (!ieee80211_is_data(hdr->frame_control))
1688 return RX_CONTINUE;
1689
1690 if (!mesh_hdr->ttl)
1691 /* illegal frame */
1692 return RX_DROP_MONITOR;
1693
1694 if (mesh_hdr->flags & MESH_FLAGS_AE) {
1695 struct mesh_path *mppath;
1696 char *proxied_addr;
1697 char *mpp_addr;
1698
1699 if (is_multicast_ether_addr(hdr->addr1)) {
1700 mpp_addr = hdr->addr3;
1701 proxied_addr = mesh_hdr->eaddr1;
1702 } else {
1703 mpp_addr = hdr->addr4;
1704 proxied_addr = mesh_hdr->eaddr2;
1705 }
1706
1707 rcu_read_lock();
1708 mppath = mpp_path_lookup(proxied_addr, sdata);
1709 if (!mppath) {
1710 mpp_path_add(proxied_addr, mpp_addr, sdata);
1711 } else {
1712 spin_lock_bh(&mppath->state_lock);
1713 mppath->exp_time = jiffies;
1714 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1715 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1716 spin_unlock_bh(&mppath->state_lock);
1717 }
1718 rcu_read_unlock();
1719 }
1720
1721 /* Frame has reached destination. Don't forward */
1722 if (!is_multicast_ether_addr(hdr->addr1) &&
1723 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1724 return RX_CONTINUE;
1725
1726 mesh_hdr->ttl--;
1727
1728 if (rx->flags & IEEE80211_RX_RA_MATCH) {
1729 if (!mesh_hdr->ttl)
1730 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1731 dropped_frames_ttl);
1732 else {
1733 struct ieee80211_hdr *fwd_hdr;
1734 struct ieee80211_tx_info *info;
1735
1736 fwd_skb = skb_copy(skb, GFP_ATOMIC);
1737
1738 if (!fwd_skb && net_ratelimit())
1739 printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1740 sdata->name);
1741
1742 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
1743 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1744 info = IEEE80211_SKB_CB(fwd_skb);
1745 memset(info, 0, sizeof(*info));
1746 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1747 info->control.vif = &rx->sdata->vif;
1748 ieee80211_select_queue(local, fwd_skb);
1749 if (is_multicast_ether_addr(fwd_hdr->addr1))
1750 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1751 fwded_mcast);
1752 else {
1753 int err;
1754 /*
1755 * Save TA to addr1 to send TA a path error if a
1756 * suitable next hop is not found
1757 */
1758 memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1759 ETH_ALEN);
1760 err = mesh_nexthop_lookup(fwd_skb, sdata);
1761 /* Failed to immediately resolve next hop:
1762 * fwded frame was dropped or will be added
1763 * later to the pending skb queue. */
1764 if (err)
1765 return RX_DROP_MONITOR;
1766
1767 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1768 fwded_unicast);
1769 }
1770 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1771 fwded_frames);
1772 ieee80211_add_pending_skb(local, fwd_skb);
1773 }
1774 }
1775
1776 if (is_multicast_ether_addr(hdr->addr1) ||
1777 sdata->dev->flags & IFF_PROMISC)
1778 return RX_CONTINUE;
1779 else
1780 return RX_DROP_MONITOR;
1781 }
1782 #endif
1783
1784 static ieee80211_rx_result debug_noinline
1785 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1786 {
1787 struct ieee80211_sub_if_data *sdata = rx->sdata;
1788 struct net_device *dev = sdata->dev;
1789 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1790 __le16 fc = hdr->frame_control;
1791 int err;
1792
1793 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1794 return RX_CONTINUE;
1795
1796 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1797 return RX_DROP_MONITOR;
1798
1799 /*
1800 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1801 * that a 4-addr station can be detected and moved into a separate VLAN
1802 */
1803 if (ieee80211_has_a4(hdr->frame_control) &&
1804 sdata->vif.type == NL80211_IFTYPE_AP)
1805 return RX_DROP_MONITOR;
1806
1807 err = __ieee80211_data_to_8023(rx);
1808 if (unlikely(err))
1809 return RX_DROP_UNUSABLE;
1810
1811 if (!ieee80211_frame_allowed(rx, fc))
1812 return RX_DROP_MONITOR;
1813
1814 rx->skb->dev = dev;
1815
1816 dev->stats.rx_packets++;
1817 dev->stats.rx_bytes += rx->skb->len;
1818
1819 ieee80211_deliver_skb(rx);
1820
1821 return RX_QUEUED;
1822 }
1823
1824 static ieee80211_rx_result debug_noinline
1825 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
1826 {
1827 struct ieee80211_local *local = rx->local;
1828 struct ieee80211_hw *hw = &local->hw;
1829 struct sk_buff *skb = rx->skb;
1830 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1831 struct tid_ampdu_rx *tid_agg_rx;
1832 u16 start_seq_num;
1833 u16 tid;
1834
1835 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1836 return RX_CONTINUE;
1837
1838 if (ieee80211_is_back_req(bar->frame_control)) {
1839 if (!rx->sta)
1840 return RX_DROP_MONITOR;
1841 tid = le16_to_cpu(bar->control) >> 12;
1842 if (rx->sta->ampdu_mlme.tid_state_rx[tid]
1843 != HT_AGG_STATE_OPERATIONAL)
1844 return RX_DROP_MONITOR;
1845 tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid];
1846
1847 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
1848
1849 /* reset session timer */
1850 if (tid_agg_rx->timeout)
1851 mod_timer(&tid_agg_rx->session_timer,
1852 TU_TO_EXP_TIME(tid_agg_rx->timeout));
1853
1854 /* release stored frames up to start of BAR */
1855 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num,
1856 frames);
1857 kfree_skb(skb);
1858 return RX_QUEUED;
1859 }
1860
1861 return RX_CONTINUE;
1862 }
1863
1864 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
1865 struct ieee80211_mgmt *mgmt,
1866 size_t len)
1867 {
1868 struct ieee80211_local *local = sdata->local;
1869 struct sk_buff *skb;
1870 struct ieee80211_mgmt *resp;
1871
1872 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
1873 /* Not to own unicast address */
1874 return;
1875 }
1876
1877 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
1878 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
1879 /* Not from the current AP or not associated yet. */
1880 return;
1881 }
1882
1883 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
1884 /* Too short SA Query request frame */
1885 return;
1886 }
1887
1888 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
1889 if (skb == NULL)
1890 return;
1891
1892 skb_reserve(skb, local->hw.extra_tx_headroom);
1893 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
1894 memset(resp, 0, 24);
1895 memcpy(resp->da, mgmt->sa, ETH_ALEN);
1896 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
1897 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
1898 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1899 IEEE80211_STYPE_ACTION);
1900 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
1901 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
1902 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
1903 memcpy(resp->u.action.u.sa_query.trans_id,
1904 mgmt->u.action.u.sa_query.trans_id,
1905 WLAN_SA_QUERY_TR_ID_LEN);
1906
1907 ieee80211_tx_skb(sdata, skb);
1908 }
1909
1910 static ieee80211_rx_result debug_noinline
1911 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
1912 {
1913 struct ieee80211_local *local = rx->local;
1914 struct ieee80211_sub_if_data *sdata = rx->sdata;
1915 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
1916 int len = rx->skb->len;
1917
1918 if (!ieee80211_is_action(mgmt->frame_control))
1919 return RX_CONTINUE;
1920
1921 if (!rx->sta)
1922 return RX_DROP_MONITOR;
1923
1924 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1925 return RX_DROP_MONITOR;
1926
1927 if (ieee80211_drop_unencrypted(rx, mgmt->frame_control))
1928 return RX_DROP_MONITOR;
1929
1930 /* all categories we currently handle have action_code */
1931 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
1932 return RX_DROP_MONITOR;
1933
1934 switch (mgmt->u.action.category) {
1935 case WLAN_CATEGORY_BACK:
1936 /*
1937 * The aggregation code is not prepared to handle
1938 * anything but STA/AP due to the BSSID handling;
1939 * IBSS could work in the code but isn't supported
1940 * by drivers or the standard.
1941 */
1942 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
1943 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1944 sdata->vif.type != NL80211_IFTYPE_AP)
1945 return RX_DROP_MONITOR;
1946
1947 switch (mgmt->u.action.u.addba_req.action_code) {
1948 case WLAN_ACTION_ADDBA_REQ:
1949 if (len < (IEEE80211_MIN_ACTION_SIZE +
1950 sizeof(mgmt->u.action.u.addba_req)))
1951 return RX_DROP_MONITOR;
1952 ieee80211_process_addba_request(local, rx->sta, mgmt, len);
1953 break;
1954 case WLAN_ACTION_ADDBA_RESP:
1955 if (len < (IEEE80211_MIN_ACTION_SIZE +
1956 sizeof(mgmt->u.action.u.addba_resp)))
1957 return RX_DROP_MONITOR;
1958 ieee80211_process_addba_resp(local, rx->sta, mgmt, len);
1959 break;
1960 case WLAN_ACTION_DELBA:
1961 if (len < (IEEE80211_MIN_ACTION_SIZE +
1962 sizeof(mgmt->u.action.u.delba)))
1963 return RX_DROP_MONITOR;
1964 ieee80211_process_delba(sdata, rx->sta, mgmt, len);
1965 break;
1966 }
1967 break;
1968 case WLAN_CATEGORY_SPECTRUM_MGMT:
1969 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
1970 return RX_DROP_MONITOR;
1971
1972 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1973 return RX_DROP_MONITOR;
1974
1975 switch (mgmt->u.action.u.measurement.action_code) {
1976 case WLAN_ACTION_SPCT_MSR_REQ:
1977 if (len < (IEEE80211_MIN_ACTION_SIZE +
1978 sizeof(mgmt->u.action.u.measurement)))
1979 return RX_DROP_MONITOR;
1980 ieee80211_process_measurement_req(sdata, mgmt, len);
1981 break;
1982 case WLAN_ACTION_SPCT_CHL_SWITCH:
1983 if (len < (IEEE80211_MIN_ACTION_SIZE +
1984 sizeof(mgmt->u.action.u.chan_switch)))
1985 return RX_DROP_MONITOR;
1986
1987 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1988 return RX_DROP_MONITOR;
1989
1990 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
1991 return RX_DROP_MONITOR;
1992
1993 return ieee80211_sta_rx_mgmt(sdata, rx->skb);
1994 }
1995 break;
1996 case WLAN_CATEGORY_SA_QUERY:
1997 if (len < (IEEE80211_MIN_ACTION_SIZE +
1998 sizeof(mgmt->u.action.u.sa_query)))
1999 return RX_DROP_MONITOR;
2000 switch (mgmt->u.action.u.sa_query.action) {
2001 case WLAN_ACTION_SA_QUERY_REQUEST:
2002 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2003 return RX_DROP_MONITOR;
2004 ieee80211_process_sa_query_req(sdata, mgmt, len);
2005 break;
2006 case WLAN_ACTION_SA_QUERY_RESPONSE:
2007 /*
2008 * SA Query response is currently only used in AP mode
2009 * and it is processed in user space.
2010 */
2011 return RX_CONTINUE;
2012 }
2013 break;
2014 default:
2015 return RX_CONTINUE;
2016 }
2017
2018 rx->sta->rx_packets++;
2019 dev_kfree_skb(rx->skb);
2020 return RX_QUEUED;
2021 }
2022
2023 static ieee80211_rx_result debug_noinline
2024 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2025 {
2026 struct ieee80211_sub_if_data *sdata = rx->sdata;
2027 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2028
2029 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
2030 return RX_DROP_MONITOR;
2031
2032 if (ieee80211_drop_unencrypted(rx, mgmt->frame_control))
2033 return RX_DROP_MONITOR;
2034
2035 if (ieee80211_vif_is_mesh(&sdata->vif))
2036 return ieee80211_mesh_rx_mgmt(sdata, rx->skb);
2037
2038 if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2039 return ieee80211_ibss_rx_mgmt(sdata, rx->skb);
2040
2041 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2042 return ieee80211_sta_rx_mgmt(sdata, rx->skb);
2043
2044 return RX_DROP_MONITOR;
2045 }
2046
2047 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr,
2048 struct ieee80211_rx_data *rx)
2049 {
2050 int keyidx;
2051 unsigned int hdrlen;
2052
2053 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2054 if (rx->skb->len >= hdrlen + 4)
2055 keyidx = rx->skb->data[hdrlen + 3] >> 6;
2056 else
2057 keyidx = -1;
2058
2059 if (!rx->sta) {
2060 /*
2061 * Some hardware seem to generate incorrect Michael MIC
2062 * reports; ignore them to avoid triggering countermeasures.
2063 */
2064 return;
2065 }
2066
2067 if (!ieee80211_has_protected(hdr->frame_control))
2068 return;
2069
2070 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
2071 /*
2072 * APs with pairwise keys should never receive Michael MIC
2073 * errors for non-zero keyidx because these are reserved for
2074 * group keys and only the AP is sending real multicast
2075 * frames in the BSS.
2076 */
2077 return;
2078 }
2079
2080 if (!ieee80211_is_data(hdr->frame_control) &&
2081 !ieee80211_is_auth(hdr->frame_control))
2082 return;
2083
2084 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL,
2085 GFP_ATOMIC);
2086 }
2087
2088 /* TODO: use IEEE80211_RX_FRAGMENTED */
2089 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2090 struct ieee80211_rate *rate)
2091 {
2092 struct ieee80211_sub_if_data *sdata;
2093 struct ieee80211_local *local = rx->local;
2094 struct ieee80211_rtap_hdr {
2095 struct ieee80211_radiotap_header hdr;
2096 u8 flags;
2097 u8 rate_or_pad;
2098 __le16 chan_freq;
2099 __le16 chan_flags;
2100 } __attribute__ ((packed)) *rthdr;
2101 struct sk_buff *skb = rx->skb, *skb2;
2102 struct net_device *prev_dev = NULL;
2103 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2104
2105 if (status->flag & RX_FLAG_INTERNAL_CMTR)
2106 goto out_free_skb;
2107
2108 if (skb_headroom(skb) < sizeof(*rthdr) &&
2109 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2110 goto out_free_skb;
2111
2112 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2113 memset(rthdr, 0, sizeof(*rthdr));
2114 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2115 rthdr->hdr.it_present =
2116 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2117 (1 << IEEE80211_RADIOTAP_CHANNEL));
2118
2119 if (rate) {
2120 rthdr->rate_or_pad = rate->bitrate / 5;
2121 rthdr->hdr.it_present |=
2122 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2123 }
2124 rthdr->chan_freq = cpu_to_le16(status->freq);
2125
2126 if (status->band == IEEE80211_BAND_5GHZ)
2127 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2128 IEEE80211_CHAN_5GHZ);
2129 else
2130 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2131 IEEE80211_CHAN_2GHZ);
2132
2133 skb_set_mac_header(skb, 0);
2134 skb->ip_summed = CHECKSUM_UNNECESSARY;
2135 skb->pkt_type = PACKET_OTHERHOST;
2136 skb->protocol = htons(ETH_P_802_2);
2137
2138 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2139 if (!netif_running(sdata->dev))
2140 continue;
2141
2142 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2143 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2144 continue;
2145
2146 if (prev_dev) {
2147 skb2 = skb_clone(skb, GFP_ATOMIC);
2148 if (skb2) {
2149 skb2->dev = prev_dev;
2150 netif_rx(skb2);
2151 }
2152 }
2153
2154 prev_dev = sdata->dev;
2155 sdata->dev->stats.rx_packets++;
2156 sdata->dev->stats.rx_bytes += skb->len;
2157 }
2158
2159 if (prev_dev) {
2160 skb->dev = prev_dev;
2161 netif_rx(skb);
2162 skb = NULL;
2163 } else
2164 goto out_free_skb;
2165
2166 status->flag |= RX_FLAG_INTERNAL_CMTR;
2167 return;
2168
2169 out_free_skb:
2170 dev_kfree_skb(skb);
2171 }
2172
2173
2174 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
2175 struct ieee80211_rx_data *rx,
2176 struct sk_buff *skb,
2177 struct ieee80211_rate *rate)
2178 {
2179 struct sk_buff_head reorder_release;
2180 ieee80211_rx_result res = RX_DROP_MONITOR;
2181
2182 __skb_queue_head_init(&reorder_release);
2183
2184 rx->skb = skb;
2185 rx->sdata = sdata;
2186
2187 #define CALL_RXH(rxh) \
2188 do { \
2189 res = rxh(rx); \
2190 if (res != RX_CONTINUE) \
2191 goto rxh_next; \
2192 } while (0);
2193
2194 /*
2195 * NB: the rxh_next label works even if we jump
2196 * to it from here because then the list will
2197 * be empty, which is a trivial check
2198 */
2199 CALL_RXH(ieee80211_rx_h_passive_scan)
2200 CALL_RXH(ieee80211_rx_h_check)
2201
2202 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2203
2204 while ((skb = __skb_dequeue(&reorder_release))) {
2205 /*
2206 * all the other fields are valid across frames
2207 * that belong to an aMPDU since they are on the
2208 * same TID from the same station
2209 */
2210 rx->skb = skb;
2211
2212 CALL_RXH(ieee80211_rx_h_decrypt)
2213 CALL_RXH(ieee80211_rx_h_check_more_data)
2214 CALL_RXH(ieee80211_rx_h_sta_process)
2215 CALL_RXH(ieee80211_rx_h_defragment)
2216 CALL_RXH(ieee80211_rx_h_ps_poll)
2217 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2218 /* must be after MMIC verify so header is counted in MPDU mic */
2219 CALL_RXH(ieee80211_rx_h_remove_qos_control)
2220 CALL_RXH(ieee80211_rx_h_amsdu)
2221 #ifdef CONFIG_MAC80211_MESH
2222 if (ieee80211_vif_is_mesh(&sdata->vif))
2223 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2224 #endif
2225 CALL_RXH(ieee80211_rx_h_data)
2226
2227 /* special treatment -- needs the queue */
2228 res = ieee80211_rx_h_ctrl(rx, &reorder_release);
2229 if (res != RX_CONTINUE)
2230 goto rxh_next;
2231
2232 CALL_RXH(ieee80211_rx_h_action)
2233 CALL_RXH(ieee80211_rx_h_mgmt)
2234
2235 #undef CALL_RXH
2236
2237 rxh_next:
2238 switch (res) {
2239 case RX_DROP_MONITOR:
2240 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
2241 if (rx->sta)
2242 rx->sta->rx_dropped++;
2243 /* fall through */
2244 case RX_CONTINUE:
2245 ieee80211_rx_cooked_monitor(rx, rate);
2246 break;
2247 case RX_DROP_UNUSABLE:
2248 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
2249 if (rx->sta)
2250 rx->sta->rx_dropped++;
2251 dev_kfree_skb(rx->skb);
2252 break;
2253 case RX_QUEUED:
2254 I802_DEBUG_INC(sdata->local->rx_handlers_queued);
2255 break;
2256 }
2257 }
2258 }
2259
2260 /* main receive path */
2261
2262 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
2263 struct ieee80211_rx_data *rx,
2264 struct ieee80211_hdr *hdr)
2265 {
2266 struct sk_buff *skb = rx->skb;
2267 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2268 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2269 int multicast = is_multicast_ether_addr(hdr->addr1);
2270
2271 switch (sdata->vif.type) {
2272 case NL80211_IFTYPE_STATION:
2273 if (!bssid && !sdata->u.mgd.use_4addr)
2274 return 0;
2275 if (!multicast &&
2276 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2277 if (!(sdata->dev->flags & IFF_PROMISC))
2278 return 0;
2279 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2280 }
2281 break;
2282 case NL80211_IFTYPE_ADHOC:
2283 if (!bssid)
2284 return 0;
2285 if (ieee80211_is_beacon(hdr->frame_control)) {
2286 return 1;
2287 }
2288 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2289 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
2290 return 0;
2291 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2292 } else if (!multicast &&
2293 compare_ether_addr(sdata->vif.addr,
2294 hdr->addr1) != 0) {
2295 if (!(sdata->dev->flags & IFF_PROMISC))
2296 return 0;
2297 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2298 } else if (!rx->sta) {
2299 int rate_idx;
2300 if (status->flag & RX_FLAG_HT)
2301 rate_idx = 0; /* TODO: HT rates */
2302 else
2303 rate_idx = status->rate_idx;
2304 rx->sta = ieee80211_ibss_add_sta(sdata, bssid, hdr->addr2,
2305 BIT(rate_idx));
2306 }
2307 break;
2308 case NL80211_IFTYPE_MESH_POINT:
2309 if (!multicast &&
2310 compare_ether_addr(sdata->vif.addr,
2311 hdr->addr1) != 0) {
2312 if (!(sdata->dev->flags & IFF_PROMISC))
2313 return 0;
2314
2315 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2316 }
2317 break;
2318 case NL80211_IFTYPE_AP_VLAN:
2319 case NL80211_IFTYPE_AP:
2320 if (!bssid) {
2321 if (compare_ether_addr(sdata->vif.addr,
2322 hdr->addr1))
2323 return 0;
2324 } else if (!ieee80211_bssid_match(bssid,
2325 sdata->vif.addr)) {
2326 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
2327 return 0;
2328 rx->flags &= ~IEEE80211_RX_RA_MATCH;
2329 }
2330 break;
2331 case NL80211_IFTYPE_WDS:
2332 if (bssid || !ieee80211_is_data(hdr->frame_control))
2333 return 0;
2334 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2335 return 0;
2336 break;
2337 case NL80211_IFTYPE_MONITOR:
2338 case NL80211_IFTYPE_UNSPECIFIED:
2339 case __NL80211_IFTYPE_AFTER_LAST:
2340 /* should never get here */
2341 WARN_ON(1);
2342 break;
2343 }
2344
2345 return 1;
2346 }
2347
2348 /*
2349 * This is the actual Rx frames handler. as it blongs to Rx path it must
2350 * be called with rcu_read_lock protection.
2351 */
2352 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2353 struct sk_buff *skb,
2354 struct ieee80211_rate *rate)
2355 {
2356 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2357 struct ieee80211_local *local = hw_to_local(hw);
2358 struct ieee80211_sub_if_data *sdata;
2359 struct ieee80211_hdr *hdr;
2360 struct ieee80211_rx_data rx;
2361 int prepares;
2362 struct ieee80211_sub_if_data *prev = NULL;
2363 struct sk_buff *skb_new;
2364 struct sta_info *sta, *tmp;
2365 bool found_sta = false;
2366
2367 hdr = (struct ieee80211_hdr *)skb->data;
2368 memset(&rx, 0, sizeof(rx));
2369 rx.skb = skb;
2370 rx.local = local;
2371
2372 if (ieee80211_is_data(hdr->frame_control) || ieee80211_is_mgmt(hdr->frame_control))
2373 local->dot11ReceivedFragmentCount++;
2374
2375 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2376 test_bit(SCAN_OFF_CHANNEL, &local->scanning)))
2377 rx.flags |= IEEE80211_RX_IN_SCAN;
2378
2379 ieee80211_parse_qos(&rx);
2380 ieee80211_verify_alignment(&rx);
2381
2382 if (ieee80211_is_data(hdr->frame_control)) {
2383 for_each_sta_info(local, hdr->addr2, sta, tmp) {
2384 rx.sta = sta;
2385 found_sta = true;
2386 rx.sdata = sta->sdata;
2387
2388 rx.flags |= IEEE80211_RX_RA_MATCH;
2389 prepares = prepare_for_handlers(rx.sdata, &rx, hdr);
2390 if (prepares) {
2391 if (status->flag & RX_FLAG_MMIC_ERROR) {
2392 if (rx.flags & IEEE80211_RX_RA_MATCH)
2393 ieee80211_rx_michael_mic_report(hdr, &rx);
2394 } else
2395 prev = rx.sdata;
2396 }
2397 }
2398 }
2399 if (!found_sta) {
2400 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2401 if (!netif_running(sdata->dev))
2402 continue;
2403
2404 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2405 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2406 continue;
2407
2408 rx.sta = sta_info_get(sdata, hdr->addr2);
2409
2410 rx.flags |= IEEE80211_RX_RA_MATCH;
2411 prepares = prepare_for_handlers(sdata, &rx, hdr);
2412
2413 if (!prepares)
2414 continue;
2415
2416 if (status->flag & RX_FLAG_MMIC_ERROR) {
2417 rx.sdata = sdata;
2418 if (rx.flags & IEEE80211_RX_RA_MATCH)
2419 ieee80211_rx_michael_mic_report(hdr,
2420 &rx);
2421 continue;
2422 }
2423
2424 /*
2425 * frame is destined for this interface, but if it's
2426 * not also for the previous one we handle that after
2427 * the loop to avoid copying the SKB once too much
2428 */
2429
2430 if (!prev) {
2431 prev = sdata;
2432 continue;
2433 }
2434
2435 /*
2436 * frame was destined for the previous interface
2437 * so invoke RX handlers for it
2438 */
2439
2440 skb_new = skb_copy(skb, GFP_ATOMIC);
2441 if (!skb_new) {
2442 if (net_ratelimit())
2443 printk(KERN_DEBUG "%s: failed to copy "
2444 "multicast frame for %s\n",
2445 wiphy_name(local->hw.wiphy),
2446 prev->name);
2447 continue;
2448 }
2449 ieee80211_invoke_rx_handlers(prev, &rx, skb_new, rate);
2450 prev = sdata;
2451 }
2452 }
2453 if (prev)
2454 ieee80211_invoke_rx_handlers(prev, &rx, skb, rate);
2455 else
2456 dev_kfree_skb(skb);
2457 }
2458
2459 /*
2460 * This is the receive path handler. It is called by a low level driver when an
2461 * 802.11 MPDU is received from the hardware.
2462 */
2463 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2464 {
2465 struct ieee80211_local *local = hw_to_local(hw);
2466 struct ieee80211_rate *rate = NULL;
2467 struct ieee80211_supported_band *sband;
2468 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2469
2470 WARN_ON_ONCE(softirq_count() == 0);
2471
2472 if (WARN_ON(status->band < 0 ||
2473 status->band >= IEEE80211_NUM_BANDS))
2474 goto drop;
2475
2476 sband = local->hw.wiphy->bands[status->band];
2477 if (WARN_ON(!sband))
2478 goto drop;
2479
2480 /*
2481 * If we're suspending, it is possible although not too likely
2482 * that we'd be receiving frames after having already partially
2483 * quiesced the stack. We can't process such frames then since
2484 * that might, for example, cause stations to be added or other
2485 * driver callbacks be invoked.
2486 */
2487 if (unlikely(local->quiescing || local->suspended))
2488 goto drop;
2489
2490 /*
2491 * The same happens when we're not even started,
2492 * but that's worth a warning.
2493 */
2494 if (WARN_ON(!local->started))
2495 goto drop;
2496
2497 if (status->flag & RX_FLAG_HT) {
2498 /*
2499 * rate_idx is MCS index, which can be [0-76] as documented on:
2500 *
2501 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2502 *
2503 * Anything else would be some sort of driver or hardware error.
2504 * The driver should catch hardware errors.
2505 */
2506 if (WARN((status->rate_idx < 0 ||
2507 status->rate_idx > 76),
2508 "Rate marked as an HT rate but passed "
2509 "status->rate_idx is not "
2510 "an MCS index [0-76]: %d (0x%02x)\n",
2511 status->rate_idx,
2512 status->rate_idx))
2513 goto drop;
2514 } else {
2515 if (WARN_ON(status->rate_idx < 0 ||
2516 status->rate_idx >= sband->n_bitrates))
2517 goto drop;
2518 rate = &sband->bitrates[status->rate_idx];
2519 }
2520
2521 /*
2522 * key references and virtual interfaces are protected using RCU
2523 * and this requires that we are in a read-side RCU section during
2524 * receive processing
2525 */
2526 rcu_read_lock();
2527
2528 /*
2529 * Frames with failed FCS/PLCP checksum are not returned,
2530 * all other frames are returned without radiotap header
2531 * if it was previously present.
2532 * Also, frames with less than 16 bytes are dropped.
2533 */
2534 skb = ieee80211_rx_monitor(local, skb, rate);
2535 if (!skb) {
2536 rcu_read_unlock();
2537 return;
2538 }
2539
2540 __ieee80211_rx_handle_packet(hw, skb, rate);
2541
2542 rcu_read_unlock();
2543
2544 return;
2545 drop:
2546 kfree_skb(skb);
2547 }
2548 EXPORT_SYMBOL(ieee80211_rx);
2549
2550 /* This is a version of the rx handler that can be called from hard irq
2551 * context. Post the skb on the queue and schedule the tasklet */
2552 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2553 {
2554 struct ieee80211_local *local = hw_to_local(hw);
2555
2556 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2557
2558 skb->pkt_type = IEEE80211_RX_MSG;
2559 skb_queue_tail(&local->skb_queue, skb);
2560 tasklet_schedule(&local->tasklet);
2561 }
2562 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.089978 seconds and 6 git commands to generate.