cfg80211: allow beaconing after DFS CAC
[deliverable/linux.git] / net / mac80211 / rx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33
34 /*
35 * monitor mode reception
36 *
37 * This function cleans up the SKB, i.e. it removes all the stuff
38 * only useful for monitoring.
39 */
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 struct sk_buff *skb)
42 {
43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
44
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 __pskb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 return NULL;
53 }
54 }
55
56 if (status->vendor_radiotap_len)
57 __pskb_pull(skb, status->vendor_radiotap_len);
58
59 return skb;
60 }
61
62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len)
63 {
64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 struct ieee80211_hdr *hdr;
66
67 hdr = (void *)(skb->data + status->vendor_radiotap_len);
68
69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 RX_FLAG_FAILED_PLCP_CRC |
71 RX_FLAG_AMPDU_IS_ZEROLEN))
72 return 1;
73 if (unlikely(skb->len < 16 + present_fcs_len +
74 status->vendor_radiotap_len))
75 return 1;
76 if (ieee80211_is_ctl(hdr->frame_control) &&
77 !ieee80211_is_pspoll(hdr->frame_control) &&
78 !ieee80211_is_back_req(hdr->frame_control))
79 return 1;
80 return 0;
81 }
82
83 static int
84 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
85 struct ieee80211_rx_status *status)
86 {
87 int len;
88
89 /* always present fields */
90 len = sizeof(struct ieee80211_radiotap_header) + 8;
91
92 /* allocate extra bitmaps */
93 if (status->vendor_radiotap_len)
94 len += 4;
95 if (status->chains)
96 len += 4 * hweight8(status->chains);
97
98 if (ieee80211_have_rx_timestamp(status)) {
99 len = ALIGN(len, 8);
100 len += 8;
101 }
102 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
103 len += 1;
104
105 /* antenna field, if we don't have per-chain info */
106 if (!status->chains)
107 len += 1;
108
109 /* padding for RX_FLAGS if necessary */
110 len = ALIGN(len, 2);
111
112 if (status->flag & RX_FLAG_HT) /* HT info */
113 len += 3;
114
115 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
116 len = ALIGN(len, 4);
117 len += 8;
118 }
119
120 if (status->flag & RX_FLAG_VHT) {
121 len = ALIGN(len, 2);
122 len += 12;
123 }
124
125 if (status->chains) {
126 /* antenna and antenna signal fields */
127 len += 2 * hweight8(status->chains);
128 }
129
130 if (status->vendor_radiotap_len) {
131 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0))
132 status->vendor_radiotap_align = 1;
133 /* align standard part of vendor namespace */
134 len = ALIGN(len, 2);
135 /* allocate standard part of vendor namespace */
136 len += 6;
137 /* align vendor-defined part */
138 len = ALIGN(len, status->vendor_radiotap_align);
139 /* vendor-defined part is already in skb */
140 }
141
142 return len;
143 }
144
145 /*
146 * ieee80211_add_rx_radiotap_header - add radiotap header
147 *
148 * add a radiotap header containing all the fields which the hardware provided.
149 */
150 static void
151 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
152 struct sk_buff *skb,
153 struct ieee80211_rate *rate,
154 int rtap_len, bool has_fcs)
155 {
156 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
157 struct ieee80211_radiotap_header *rthdr;
158 unsigned char *pos;
159 __le32 *it_present;
160 u32 it_present_val;
161 u16 rx_flags = 0;
162 u16 channel_flags = 0;
163 int mpdulen, chain;
164 unsigned long chains = status->chains;
165
166 mpdulen = skb->len;
167 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
168 mpdulen += FCS_LEN;
169
170 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
171 memset(rthdr, 0, rtap_len);
172 it_present = &rthdr->it_present;
173
174 /* radiotap header, set always present flags */
175 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len);
176 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
177 BIT(IEEE80211_RADIOTAP_CHANNEL) |
178 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
179
180 if (!status->chains)
181 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
182
183 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
184 it_present_val |=
185 BIT(IEEE80211_RADIOTAP_EXT) |
186 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
187 put_unaligned_le32(it_present_val, it_present);
188 it_present++;
189 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
190 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
191 }
192
193 if (status->vendor_radiotap_len) {
194 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
195 BIT(IEEE80211_RADIOTAP_EXT);
196 put_unaligned_le32(it_present_val, it_present);
197 it_present++;
198 it_present_val = status->vendor_radiotap_bitmap;
199 }
200
201 put_unaligned_le32(it_present_val, it_present);
202
203 pos = (void *)(it_present + 1);
204
205 /* the order of the following fields is important */
206
207 /* IEEE80211_RADIOTAP_TSFT */
208 if (ieee80211_have_rx_timestamp(status)) {
209 /* padding */
210 while ((pos - (u8 *)rthdr) & 7)
211 *pos++ = 0;
212 put_unaligned_le64(
213 ieee80211_calculate_rx_timestamp(local, status,
214 mpdulen, 0),
215 pos);
216 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
217 pos += 8;
218 }
219
220 /* IEEE80211_RADIOTAP_FLAGS */
221 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
222 *pos |= IEEE80211_RADIOTAP_F_FCS;
223 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
224 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
225 if (status->flag & RX_FLAG_SHORTPRE)
226 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
227 pos++;
228
229 /* IEEE80211_RADIOTAP_RATE */
230 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
231 /*
232 * Without rate information don't add it. If we have,
233 * MCS information is a separate field in radiotap,
234 * added below. The byte here is needed as padding
235 * for the channel though, so initialise it to 0.
236 */
237 *pos = 0;
238 } else {
239 int shift = 0;
240 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
241 if (status->flag & RX_FLAG_10MHZ)
242 shift = 1;
243 else if (status->flag & RX_FLAG_5MHZ)
244 shift = 2;
245 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
246 }
247 pos++;
248
249 /* IEEE80211_RADIOTAP_CHANNEL */
250 put_unaligned_le16(status->freq, pos);
251 pos += 2;
252 if (status->flag & RX_FLAG_10MHZ)
253 channel_flags |= IEEE80211_CHAN_HALF;
254 else if (status->flag & RX_FLAG_5MHZ)
255 channel_flags |= IEEE80211_CHAN_QUARTER;
256
257 if (status->band == IEEE80211_BAND_5GHZ)
258 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
259 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
260 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
261 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
262 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
263 else if (rate)
264 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
265 else
266 channel_flags |= IEEE80211_CHAN_2GHZ;
267 put_unaligned_le16(channel_flags, pos);
268 pos += 2;
269
270 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
271 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
272 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
273 *pos = status->signal;
274 rthdr->it_present |=
275 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
276 pos++;
277 }
278
279 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
280
281 if (!status->chains) {
282 /* IEEE80211_RADIOTAP_ANTENNA */
283 *pos = status->antenna;
284 pos++;
285 }
286
287 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
288
289 /* IEEE80211_RADIOTAP_RX_FLAGS */
290 /* ensure 2 byte alignment for the 2 byte field as required */
291 if ((pos - (u8 *)rthdr) & 1)
292 *pos++ = 0;
293 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
294 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
295 put_unaligned_le16(rx_flags, pos);
296 pos += 2;
297
298 if (status->flag & RX_FLAG_HT) {
299 unsigned int stbc;
300
301 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
302 *pos++ = local->hw.radiotap_mcs_details;
303 *pos = 0;
304 if (status->flag & RX_FLAG_SHORT_GI)
305 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
306 if (status->flag & RX_FLAG_40MHZ)
307 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
308 if (status->flag & RX_FLAG_HT_GF)
309 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
310 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
311 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
312 pos++;
313 *pos++ = status->rate_idx;
314 }
315
316 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
317 u16 flags = 0;
318
319 /* ensure 4 byte alignment */
320 while ((pos - (u8 *)rthdr) & 3)
321 pos++;
322 rthdr->it_present |=
323 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
324 put_unaligned_le32(status->ampdu_reference, pos);
325 pos += 4;
326 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
327 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
328 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
329 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
330 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
331 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
332 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
333 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
334 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
335 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
336 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
337 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
338 put_unaligned_le16(flags, pos);
339 pos += 2;
340 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
341 *pos++ = status->ampdu_delimiter_crc;
342 else
343 *pos++ = 0;
344 *pos++ = 0;
345 }
346
347 if (status->flag & RX_FLAG_VHT) {
348 u16 known = local->hw.radiotap_vht_details;
349
350 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
351 /* known field - how to handle 80+80? */
352 if (status->flag & RX_FLAG_80P80MHZ)
353 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
354 put_unaligned_le16(known, pos);
355 pos += 2;
356 /* flags */
357 if (status->flag & RX_FLAG_SHORT_GI)
358 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
359 pos++;
360 /* bandwidth */
361 if (status->flag & RX_FLAG_80MHZ)
362 *pos++ = 4;
363 else if (status->flag & RX_FLAG_80P80MHZ)
364 *pos++ = 0; /* marked not known above */
365 else if (status->flag & RX_FLAG_160MHZ)
366 *pos++ = 11;
367 else if (status->flag & RX_FLAG_40MHZ)
368 *pos++ = 1;
369 else /* 20 MHz */
370 *pos++ = 0;
371 /* MCS/NSS */
372 *pos = (status->rate_idx << 4) | status->vht_nss;
373 pos += 4;
374 /* coding field */
375 pos++;
376 /* group ID */
377 pos++;
378 /* partial_aid */
379 pos += 2;
380 }
381
382 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
383 *pos++ = status->chain_signal[chain];
384 *pos++ = chain;
385 }
386
387 if (status->vendor_radiotap_len) {
388 /* ensure 2 byte alignment for the vendor field as required */
389 if ((pos - (u8 *)rthdr) & 1)
390 *pos++ = 0;
391 *pos++ = status->vendor_radiotap_oui[0];
392 *pos++ = status->vendor_radiotap_oui[1];
393 *pos++ = status->vendor_radiotap_oui[2];
394 *pos++ = status->vendor_radiotap_subns;
395 put_unaligned_le16(status->vendor_radiotap_len, pos);
396 pos += 2;
397 /* align the actual payload as requested */
398 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1))
399 *pos++ = 0;
400 }
401 }
402
403 /*
404 * This function copies a received frame to all monitor interfaces and
405 * returns a cleaned-up SKB that no longer includes the FCS nor the
406 * radiotap header the driver might have added.
407 */
408 static struct sk_buff *
409 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
410 struct ieee80211_rate *rate)
411 {
412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
413 struct ieee80211_sub_if_data *sdata;
414 int needed_headroom;
415 struct sk_buff *skb, *skb2;
416 struct net_device *prev_dev = NULL;
417 int present_fcs_len = 0;
418
419 /*
420 * First, we may need to make a copy of the skb because
421 * (1) we need to modify it for radiotap (if not present), and
422 * (2) the other RX handlers will modify the skb we got.
423 *
424 * We don't need to, of course, if we aren't going to return
425 * the SKB because it has a bad FCS/PLCP checksum.
426 */
427
428 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
429 present_fcs_len = FCS_LEN;
430
431 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
432 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) {
433 dev_kfree_skb(origskb);
434 return NULL;
435 }
436
437 if (!local->monitors) {
438 if (should_drop_frame(origskb, present_fcs_len)) {
439 dev_kfree_skb(origskb);
440 return NULL;
441 }
442
443 return remove_monitor_info(local, origskb);
444 }
445
446 /* room for the radiotap header based on driver features */
447 needed_headroom = ieee80211_rx_radiotap_space(local, status);
448
449 if (should_drop_frame(origskb, present_fcs_len)) {
450 /* only need to expand headroom if necessary */
451 skb = origskb;
452 origskb = NULL;
453
454 /*
455 * This shouldn't trigger often because most devices have an
456 * RX header they pull before we get here, and that should
457 * be big enough for our radiotap information. We should
458 * probably export the length to drivers so that we can have
459 * them allocate enough headroom to start with.
460 */
461 if (skb_headroom(skb) < needed_headroom &&
462 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
463 dev_kfree_skb(skb);
464 return NULL;
465 }
466 } else {
467 /*
468 * Need to make a copy and possibly remove radiotap header
469 * and FCS from the original.
470 */
471 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
472
473 origskb = remove_monitor_info(local, origskb);
474
475 if (!skb)
476 return origskb;
477 }
478
479 /* prepend radiotap information */
480 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
481 true);
482
483 skb_reset_mac_header(skb);
484 skb->ip_summed = CHECKSUM_UNNECESSARY;
485 skb->pkt_type = PACKET_OTHERHOST;
486 skb->protocol = htons(ETH_P_802_2);
487
488 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
489 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
490 continue;
491
492 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
493 continue;
494
495 if (!ieee80211_sdata_running(sdata))
496 continue;
497
498 if (prev_dev) {
499 skb2 = skb_clone(skb, GFP_ATOMIC);
500 if (skb2) {
501 skb2->dev = prev_dev;
502 netif_receive_skb(skb2);
503 }
504 }
505
506 prev_dev = sdata->dev;
507 sdata->dev->stats.rx_packets++;
508 sdata->dev->stats.rx_bytes += skb->len;
509 }
510
511 if (prev_dev) {
512 skb->dev = prev_dev;
513 netif_receive_skb(skb);
514 } else
515 dev_kfree_skb(skb);
516
517 return origskb;
518 }
519
520 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
521 {
522 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
523 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
524 int tid, seqno_idx, security_idx;
525
526 /* does the frame have a qos control field? */
527 if (ieee80211_is_data_qos(hdr->frame_control)) {
528 u8 *qc = ieee80211_get_qos_ctl(hdr);
529 /* frame has qos control */
530 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
531 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
532 status->rx_flags |= IEEE80211_RX_AMSDU;
533
534 seqno_idx = tid;
535 security_idx = tid;
536 } else {
537 /*
538 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
539 *
540 * Sequence numbers for management frames, QoS data
541 * frames with a broadcast/multicast address in the
542 * Address 1 field, and all non-QoS data frames sent
543 * by QoS STAs are assigned using an additional single
544 * modulo-4096 counter, [...]
545 *
546 * We also use that counter for non-QoS STAs.
547 */
548 seqno_idx = IEEE80211_NUM_TIDS;
549 security_idx = 0;
550 if (ieee80211_is_mgmt(hdr->frame_control))
551 security_idx = IEEE80211_NUM_TIDS;
552 tid = 0;
553 }
554
555 rx->seqno_idx = seqno_idx;
556 rx->security_idx = security_idx;
557 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
558 * For now, set skb->priority to 0 for other cases. */
559 rx->skb->priority = (tid > 7) ? 0 : tid;
560 }
561
562 /**
563 * DOC: Packet alignment
564 *
565 * Drivers always need to pass packets that are aligned to two-byte boundaries
566 * to the stack.
567 *
568 * Additionally, should, if possible, align the payload data in a way that
569 * guarantees that the contained IP header is aligned to a four-byte
570 * boundary. In the case of regular frames, this simply means aligning the
571 * payload to a four-byte boundary (because either the IP header is directly
572 * contained, or IV/RFC1042 headers that have a length divisible by four are
573 * in front of it). If the payload data is not properly aligned and the
574 * architecture doesn't support efficient unaligned operations, mac80211
575 * will align the data.
576 *
577 * With A-MSDU frames, however, the payload data address must yield two modulo
578 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
579 * push the IP header further back to a multiple of four again. Thankfully, the
580 * specs were sane enough this time around to require padding each A-MSDU
581 * subframe to a length that is a multiple of four.
582 *
583 * Padding like Atheros hardware adds which is between the 802.11 header and
584 * the payload is not supported, the driver is required to move the 802.11
585 * header to be directly in front of the payload in that case.
586 */
587 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
588 {
589 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
590 WARN_ONCE((unsigned long)rx->skb->data & 1,
591 "unaligned packet at 0x%p\n", rx->skb->data);
592 #endif
593 }
594
595
596 /* rx handlers */
597
598 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
599 {
600 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
601
602 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
603 return 0;
604
605 return ieee80211_is_robust_mgmt_frame(hdr);
606 }
607
608
609 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
610 {
611 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
612
613 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
614 return 0;
615
616 return ieee80211_is_robust_mgmt_frame(hdr);
617 }
618
619
620 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
621 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
622 {
623 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
624 struct ieee80211_mmie *mmie;
625
626 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
627 return -1;
628
629 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
630 return -1; /* not a robust management frame */
631
632 mmie = (struct ieee80211_mmie *)
633 (skb->data + skb->len - sizeof(*mmie));
634 if (mmie->element_id != WLAN_EID_MMIE ||
635 mmie->length != sizeof(*mmie) - 2)
636 return -1;
637
638 return le16_to_cpu(mmie->key_id);
639 }
640
641 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
642 {
643 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
644 char *dev_addr = rx->sdata->vif.addr;
645
646 if (ieee80211_is_data(hdr->frame_control)) {
647 if (is_multicast_ether_addr(hdr->addr1)) {
648 if (ieee80211_has_tods(hdr->frame_control) ||
649 !ieee80211_has_fromds(hdr->frame_control))
650 return RX_DROP_MONITOR;
651 if (ether_addr_equal(hdr->addr3, dev_addr))
652 return RX_DROP_MONITOR;
653 } else {
654 if (!ieee80211_has_a4(hdr->frame_control))
655 return RX_DROP_MONITOR;
656 if (ether_addr_equal(hdr->addr4, dev_addr))
657 return RX_DROP_MONITOR;
658 }
659 }
660
661 /* If there is not an established peer link and this is not a peer link
662 * establisment frame, beacon or probe, drop the frame.
663 */
664
665 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
666 struct ieee80211_mgmt *mgmt;
667
668 if (!ieee80211_is_mgmt(hdr->frame_control))
669 return RX_DROP_MONITOR;
670
671 if (ieee80211_is_action(hdr->frame_control)) {
672 u8 category;
673
674 /* make sure category field is present */
675 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
676 return RX_DROP_MONITOR;
677
678 mgmt = (struct ieee80211_mgmt *)hdr;
679 category = mgmt->u.action.category;
680 if (category != WLAN_CATEGORY_MESH_ACTION &&
681 category != WLAN_CATEGORY_SELF_PROTECTED)
682 return RX_DROP_MONITOR;
683 return RX_CONTINUE;
684 }
685
686 if (ieee80211_is_probe_req(hdr->frame_control) ||
687 ieee80211_is_probe_resp(hdr->frame_control) ||
688 ieee80211_is_beacon(hdr->frame_control) ||
689 ieee80211_is_auth(hdr->frame_control))
690 return RX_CONTINUE;
691
692 return RX_DROP_MONITOR;
693 }
694
695 return RX_CONTINUE;
696 }
697
698 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
699 struct tid_ampdu_rx *tid_agg_rx,
700 int index,
701 struct sk_buff_head *frames)
702 {
703 struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
704 struct ieee80211_rx_status *status;
705
706 lockdep_assert_held(&tid_agg_rx->reorder_lock);
707
708 if (!skb)
709 goto no_frame;
710
711 /* release the frame from the reorder ring buffer */
712 tid_agg_rx->stored_mpdu_num--;
713 tid_agg_rx->reorder_buf[index] = NULL;
714 status = IEEE80211_SKB_RXCB(skb);
715 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
716 __skb_queue_tail(frames, skb);
717
718 no_frame:
719 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
720 }
721
722 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
723 struct tid_ampdu_rx *tid_agg_rx,
724 u16 head_seq_num,
725 struct sk_buff_head *frames)
726 {
727 int index;
728
729 lockdep_assert_held(&tid_agg_rx->reorder_lock);
730
731 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
732 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
733 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
734 frames);
735 }
736 }
737
738 /*
739 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
740 * the skb was added to the buffer longer than this time ago, the earlier
741 * frames that have not yet been received are assumed to be lost and the skb
742 * can be released for processing. This may also release other skb's from the
743 * reorder buffer if there are no additional gaps between the frames.
744 *
745 * Callers must hold tid_agg_rx->reorder_lock.
746 */
747 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
748
749 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
750 struct tid_ampdu_rx *tid_agg_rx,
751 struct sk_buff_head *frames)
752 {
753 int index, j;
754
755 lockdep_assert_held(&tid_agg_rx->reorder_lock);
756
757 /* release the buffer until next missing frame */
758 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
759 if (!tid_agg_rx->reorder_buf[index] &&
760 tid_agg_rx->stored_mpdu_num) {
761 /*
762 * No buffers ready to be released, but check whether any
763 * frames in the reorder buffer have timed out.
764 */
765 int skipped = 1;
766 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
767 j = (j + 1) % tid_agg_rx->buf_size) {
768 if (!tid_agg_rx->reorder_buf[j]) {
769 skipped++;
770 continue;
771 }
772 if (skipped &&
773 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
774 HT_RX_REORDER_BUF_TIMEOUT))
775 goto set_release_timer;
776
777 ht_dbg_ratelimited(sdata,
778 "release an RX reorder frame due to timeout on earlier frames\n");
779 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
780 frames);
781
782 /*
783 * Increment the head seq# also for the skipped slots.
784 */
785 tid_agg_rx->head_seq_num =
786 (tid_agg_rx->head_seq_num +
787 skipped) & IEEE80211_SN_MASK;
788 skipped = 0;
789 }
790 } else while (tid_agg_rx->reorder_buf[index]) {
791 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
792 frames);
793 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
794 }
795
796 if (tid_agg_rx->stored_mpdu_num) {
797 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
798
799 for (; j != (index - 1) % tid_agg_rx->buf_size;
800 j = (j + 1) % tid_agg_rx->buf_size) {
801 if (tid_agg_rx->reorder_buf[j])
802 break;
803 }
804
805 set_release_timer:
806
807 mod_timer(&tid_agg_rx->reorder_timer,
808 tid_agg_rx->reorder_time[j] + 1 +
809 HT_RX_REORDER_BUF_TIMEOUT);
810 } else {
811 del_timer(&tid_agg_rx->reorder_timer);
812 }
813 }
814
815 /*
816 * As this function belongs to the RX path it must be under
817 * rcu_read_lock protection. It returns false if the frame
818 * can be processed immediately, true if it was consumed.
819 */
820 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
821 struct tid_ampdu_rx *tid_agg_rx,
822 struct sk_buff *skb,
823 struct sk_buff_head *frames)
824 {
825 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
826 u16 sc = le16_to_cpu(hdr->seq_ctrl);
827 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
828 u16 head_seq_num, buf_size;
829 int index;
830 bool ret = true;
831
832 spin_lock(&tid_agg_rx->reorder_lock);
833
834 buf_size = tid_agg_rx->buf_size;
835 head_seq_num = tid_agg_rx->head_seq_num;
836
837 /* frame with out of date sequence number */
838 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
839 dev_kfree_skb(skb);
840 goto out;
841 }
842
843 /*
844 * If frame the sequence number exceeds our buffering window
845 * size release some previous frames to make room for this one.
846 */
847 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
848 head_seq_num = ieee80211_sn_inc(
849 ieee80211_sn_sub(mpdu_seq_num, buf_size));
850 /* release stored frames up to new head to stack */
851 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
852 head_seq_num, frames);
853 }
854
855 /* Now the new frame is always in the range of the reordering buffer */
856
857 index = mpdu_seq_num % tid_agg_rx->buf_size;
858
859 /* check if we already stored this frame */
860 if (tid_agg_rx->reorder_buf[index]) {
861 dev_kfree_skb(skb);
862 goto out;
863 }
864
865 /*
866 * If the current MPDU is in the right order and nothing else
867 * is stored we can process it directly, no need to buffer it.
868 * If it is first but there's something stored, we may be able
869 * to release frames after this one.
870 */
871 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
872 tid_agg_rx->stored_mpdu_num == 0) {
873 tid_agg_rx->head_seq_num =
874 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
875 ret = false;
876 goto out;
877 }
878
879 /* put the frame in the reordering buffer */
880 tid_agg_rx->reorder_buf[index] = skb;
881 tid_agg_rx->reorder_time[index] = jiffies;
882 tid_agg_rx->stored_mpdu_num++;
883 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
884
885 out:
886 spin_unlock(&tid_agg_rx->reorder_lock);
887 return ret;
888 }
889
890 /*
891 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
892 * true if the MPDU was buffered, false if it should be processed.
893 */
894 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
895 struct sk_buff_head *frames)
896 {
897 struct sk_buff *skb = rx->skb;
898 struct ieee80211_local *local = rx->local;
899 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
900 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
901 struct sta_info *sta = rx->sta;
902 struct tid_ampdu_rx *tid_agg_rx;
903 u16 sc;
904 u8 tid, ack_policy;
905
906 if (!ieee80211_is_data_qos(hdr->frame_control))
907 goto dont_reorder;
908
909 /*
910 * filter the QoS data rx stream according to
911 * STA/TID and check if this STA/TID is on aggregation
912 */
913
914 if (!sta)
915 goto dont_reorder;
916
917 ack_policy = *ieee80211_get_qos_ctl(hdr) &
918 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
919 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
920
921 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
922 if (!tid_agg_rx)
923 goto dont_reorder;
924
925 /* qos null data frames are excluded */
926 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
927 goto dont_reorder;
928
929 /* not part of a BA session */
930 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
931 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
932 goto dont_reorder;
933
934 /* not actually part of this BA session */
935 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
936 goto dont_reorder;
937
938 /* new, potentially un-ordered, ampdu frame - process it */
939
940 /* reset session timer */
941 if (tid_agg_rx->timeout)
942 tid_agg_rx->last_rx = jiffies;
943
944 /* if this mpdu is fragmented - terminate rx aggregation session */
945 sc = le16_to_cpu(hdr->seq_ctrl);
946 if (sc & IEEE80211_SCTL_FRAG) {
947 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
948 skb_queue_tail(&rx->sdata->skb_queue, skb);
949 ieee80211_queue_work(&local->hw, &rx->sdata->work);
950 return;
951 }
952
953 /*
954 * No locking needed -- we will only ever process one
955 * RX packet at a time, and thus own tid_agg_rx. All
956 * other code manipulating it needs to (and does) make
957 * sure that we cannot get to it any more before doing
958 * anything with it.
959 */
960 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
961 frames))
962 return;
963
964 dont_reorder:
965 __skb_queue_tail(frames, skb);
966 }
967
968 static ieee80211_rx_result debug_noinline
969 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
970 {
971 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
972 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
973
974 /*
975 * Drop duplicate 802.11 retransmissions
976 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
977 */
978 if (rx->skb->len >= 24 && rx->sta &&
979 !ieee80211_is_ctl(hdr->frame_control) &&
980 !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
981 !is_multicast_ether_addr(hdr->addr1)) {
982 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
983 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
984 hdr->seq_ctrl)) {
985 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
986 rx->local->dot11FrameDuplicateCount++;
987 rx->sta->num_duplicates++;
988 }
989 return RX_DROP_UNUSABLE;
990 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
991 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
992 }
993 }
994
995 if (unlikely(rx->skb->len < 16)) {
996 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
997 return RX_DROP_MONITOR;
998 }
999
1000 /* Drop disallowed frame classes based on STA auth/assoc state;
1001 * IEEE 802.11, Chap 5.5.
1002 *
1003 * mac80211 filters only based on association state, i.e. it drops
1004 * Class 3 frames from not associated stations. hostapd sends
1005 * deauth/disassoc frames when needed. In addition, hostapd is
1006 * responsible for filtering on both auth and assoc states.
1007 */
1008
1009 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1010 return ieee80211_rx_mesh_check(rx);
1011
1012 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1013 ieee80211_is_pspoll(hdr->frame_control)) &&
1014 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1015 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1016 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1017 /*
1018 * accept port control frames from the AP even when it's not
1019 * yet marked ASSOC to prevent a race where we don't set the
1020 * assoc bit quickly enough before it sends the first frame
1021 */
1022 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1023 ieee80211_is_data_present(hdr->frame_control)) {
1024 unsigned int hdrlen;
1025 __be16 ethertype;
1026
1027 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1028
1029 if (rx->skb->len < hdrlen + 8)
1030 return RX_DROP_MONITOR;
1031
1032 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1033 if (ethertype == rx->sdata->control_port_protocol)
1034 return RX_CONTINUE;
1035 }
1036
1037 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1038 cfg80211_rx_spurious_frame(rx->sdata->dev,
1039 hdr->addr2,
1040 GFP_ATOMIC))
1041 return RX_DROP_UNUSABLE;
1042
1043 return RX_DROP_MONITOR;
1044 }
1045
1046 return RX_CONTINUE;
1047 }
1048
1049
1050 static ieee80211_rx_result debug_noinline
1051 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1052 {
1053 struct ieee80211_local *local;
1054 struct ieee80211_hdr *hdr;
1055 struct sk_buff *skb;
1056
1057 local = rx->local;
1058 skb = rx->skb;
1059 hdr = (struct ieee80211_hdr *) skb->data;
1060
1061 if (!local->pspolling)
1062 return RX_CONTINUE;
1063
1064 if (!ieee80211_has_fromds(hdr->frame_control))
1065 /* this is not from AP */
1066 return RX_CONTINUE;
1067
1068 if (!ieee80211_is_data(hdr->frame_control))
1069 return RX_CONTINUE;
1070
1071 if (!ieee80211_has_moredata(hdr->frame_control)) {
1072 /* AP has no more frames buffered for us */
1073 local->pspolling = false;
1074 return RX_CONTINUE;
1075 }
1076
1077 /* more data bit is set, let's request a new frame from the AP */
1078 ieee80211_send_pspoll(local, rx->sdata);
1079
1080 return RX_CONTINUE;
1081 }
1082
1083 static void sta_ps_start(struct sta_info *sta)
1084 {
1085 struct ieee80211_sub_if_data *sdata = sta->sdata;
1086 struct ieee80211_local *local = sdata->local;
1087 struct ps_data *ps;
1088
1089 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1090 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1091 ps = &sdata->bss->ps;
1092 else
1093 return;
1094
1095 atomic_inc(&ps->num_sta_ps);
1096 set_sta_flag(sta, WLAN_STA_PS_STA);
1097 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1098 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1099 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1100 sta->sta.addr, sta->sta.aid);
1101 }
1102
1103 static void sta_ps_end(struct sta_info *sta)
1104 {
1105 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1106 sta->sta.addr, sta->sta.aid);
1107
1108 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1109 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1110 sta->sta.addr, sta->sta.aid);
1111 return;
1112 }
1113
1114 ieee80211_sta_ps_deliver_wakeup(sta);
1115 }
1116
1117 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1118 {
1119 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1120 bool in_ps;
1121
1122 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1123
1124 /* Don't let the same PS state be set twice */
1125 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1126 if ((start && in_ps) || (!start && !in_ps))
1127 return -EINVAL;
1128
1129 if (start)
1130 sta_ps_start(sta_inf);
1131 else
1132 sta_ps_end(sta_inf);
1133
1134 return 0;
1135 }
1136 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1137
1138 static ieee80211_rx_result debug_noinline
1139 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1140 {
1141 struct ieee80211_sub_if_data *sdata = rx->sdata;
1142 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1143 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1144 int tid, ac;
1145
1146 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1147 return RX_CONTINUE;
1148
1149 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1150 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1151 return RX_CONTINUE;
1152
1153 /*
1154 * The device handles station powersave, so don't do anything about
1155 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1156 * it to mac80211 since they're handled.)
1157 */
1158 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1159 return RX_CONTINUE;
1160
1161 /*
1162 * Don't do anything if the station isn't already asleep. In
1163 * the uAPSD case, the station will probably be marked asleep,
1164 * in the PS-Poll case the station must be confused ...
1165 */
1166 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1167 return RX_CONTINUE;
1168
1169 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1170 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1171 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1172 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1173 else
1174 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1175 }
1176
1177 /* Free PS Poll skb here instead of returning RX_DROP that would
1178 * count as an dropped frame. */
1179 dev_kfree_skb(rx->skb);
1180
1181 return RX_QUEUED;
1182 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1183 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1184 ieee80211_has_pm(hdr->frame_control) &&
1185 (ieee80211_is_data_qos(hdr->frame_control) ||
1186 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1187 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1188 ac = ieee802_1d_to_ac[tid & 7];
1189
1190 /*
1191 * If this AC is not trigger-enabled do nothing.
1192 *
1193 * NB: This could/should check a separate bitmap of trigger-
1194 * enabled queues, but for now we only implement uAPSD w/o
1195 * TSPEC changes to the ACs, so they're always the same.
1196 */
1197 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1198 return RX_CONTINUE;
1199
1200 /* if we are in a service period, do nothing */
1201 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1202 return RX_CONTINUE;
1203
1204 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1205 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1206 else
1207 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1208 }
1209
1210 return RX_CONTINUE;
1211 }
1212
1213 static ieee80211_rx_result debug_noinline
1214 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1215 {
1216 struct sta_info *sta = rx->sta;
1217 struct sk_buff *skb = rx->skb;
1218 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1219 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1220 int i;
1221
1222 if (!sta)
1223 return RX_CONTINUE;
1224
1225 /*
1226 * Update last_rx only for IBSS packets which are for the current
1227 * BSSID and for station already AUTHORIZED to avoid keeping the
1228 * current IBSS network alive in cases where other STAs start
1229 * using different BSSID. This will also give the station another
1230 * chance to restart the authentication/authorization in case
1231 * something went wrong the first time.
1232 */
1233 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1234 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1235 NL80211_IFTYPE_ADHOC);
1236 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1237 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1238 sta->last_rx = jiffies;
1239 if (ieee80211_is_data(hdr->frame_control)) {
1240 sta->last_rx_rate_idx = status->rate_idx;
1241 sta->last_rx_rate_flag = status->flag;
1242 sta->last_rx_rate_vht_nss = status->vht_nss;
1243 }
1244 }
1245 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1246 /*
1247 * Mesh beacons will update last_rx when if they are found to
1248 * match the current local configuration when processed.
1249 */
1250 sta->last_rx = jiffies;
1251 if (ieee80211_is_data(hdr->frame_control)) {
1252 sta->last_rx_rate_idx = status->rate_idx;
1253 sta->last_rx_rate_flag = status->flag;
1254 sta->last_rx_rate_vht_nss = status->vht_nss;
1255 }
1256 }
1257
1258 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1259 return RX_CONTINUE;
1260
1261 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1262 ieee80211_sta_rx_notify(rx->sdata, hdr);
1263
1264 sta->rx_fragments++;
1265 sta->rx_bytes += rx->skb->len;
1266 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1267 sta->last_signal = status->signal;
1268 ewma_add(&sta->avg_signal, -status->signal);
1269 }
1270
1271 if (status->chains) {
1272 sta->chains = status->chains;
1273 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1274 int signal = status->chain_signal[i];
1275
1276 if (!(status->chains & BIT(i)))
1277 continue;
1278
1279 sta->chain_signal_last[i] = signal;
1280 ewma_add(&sta->chain_signal_avg[i], -signal);
1281 }
1282 }
1283
1284 /*
1285 * Change STA power saving mode only at the end of a frame
1286 * exchange sequence.
1287 */
1288 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1289 !ieee80211_has_morefrags(hdr->frame_control) &&
1290 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1291 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1292 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1293 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1294 /*
1295 * Ignore doze->wake transitions that are
1296 * indicated by non-data frames, the standard
1297 * is unclear here, but for example going to
1298 * PS mode and then scanning would cause a
1299 * doze->wake transition for the probe request,
1300 * and that is clearly undesirable.
1301 */
1302 if (ieee80211_is_data(hdr->frame_control) &&
1303 !ieee80211_has_pm(hdr->frame_control))
1304 sta_ps_end(sta);
1305 } else {
1306 if (ieee80211_has_pm(hdr->frame_control))
1307 sta_ps_start(sta);
1308 }
1309 }
1310
1311 /* mesh power save support */
1312 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1313 ieee80211_mps_rx_h_sta_process(sta, hdr);
1314
1315 /*
1316 * Drop (qos-)data::nullfunc frames silently, since they
1317 * are used only to control station power saving mode.
1318 */
1319 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1320 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1321 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1322
1323 /*
1324 * If we receive a 4-addr nullfunc frame from a STA
1325 * that was not moved to a 4-addr STA vlan yet send
1326 * the event to userspace and for older hostapd drop
1327 * the frame to the monitor interface.
1328 */
1329 if (ieee80211_has_a4(hdr->frame_control) &&
1330 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1331 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1332 !rx->sdata->u.vlan.sta))) {
1333 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1334 cfg80211_rx_unexpected_4addr_frame(
1335 rx->sdata->dev, sta->sta.addr,
1336 GFP_ATOMIC);
1337 return RX_DROP_MONITOR;
1338 }
1339 /*
1340 * Update counter and free packet here to avoid
1341 * counting this as a dropped packed.
1342 */
1343 sta->rx_packets++;
1344 dev_kfree_skb(rx->skb);
1345 return RX_QUEUED;
1346 }
1347
1348 return RX_CONTINUE;
1349 } /* ieee80211_rx_h_sta_process */
1350
1351 static ieee80211_rx_result debug_noinline
1352 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1353 {
1354 struct sk_buff *skb = rx->skb;
1355 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1356 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1357 int keyidx;
1358 int hdrlen;
1359 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1360 struct ieee80211_key *sta_ptk = NULL;
1361 int mmie_keyidx = -1;
1362 __le16 fc;
1363
1364 /*
1365 * Key selection 101
1366 *
1367 * There are four types of keys:
1368 * - GTK (group keys)
1369 * - IGTK (group keys for management frames)
1370 * - PTK (pairwise keys)
1371 * - STK (station-to-station pairwise keys)
1372 *
1373 * When selecting a key, we have to distinguish between multicast
1374 * (including broadcast) and unicast frames, the latter can only
1375 * use PTKs and STKs while the former always use GTKs and IGTKs.
1376 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1377 * unicast frames can also use key indices like GTKs. Hence, if we
1378 * don't have a PTK/STK we check the key index for a WEP key.
1379 *
1380 * Note that in a regular BSS, multicast frames are sent by the
1381 * AP only, associated stations unicast the frame to the AP first
1382 * which then multicasts it on their behalf.
1383 *
1384 * There is also a slight problem in IBSS mode: GTKs are negotiated
1385 * with each station, that is something we don't currently handle.
1386 * The spec seems to expect that one negotiates the same key with
1387 * every station but there's no such requirement; VLANs could be
1388 * possible.
1389 */
1390
1391 /*
1392 * No point in finding a key and decrypting if the frame is neither
1393 * addressed to us nor a multicast frame.
1394 */
1395 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1396 return RX_CONTINUE;
1397
1398 /* start without a key */
1399 rx->key = NULL;
1400
1401 if (rx->sta)
1402 sta_ptk = rcu_dereference(rx->sta->ptk);
1403
1404 fc = hdr->frame_control;
1405
1406 if (!ieee80211_has_protected(fc))
1407 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1408
1409 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1410 rx->key = sta_ptk;
1411 if ((status->flag & RX_FLAG_DECRYPTED) &&
1412 (status->flag & RX_FLAG_IV_STRIPPED))
1413 return RX_CONTINUE;
1414 /* Skip decryption if the frame is not protected. */
1415 if (!ieee80211_has_protected(fc))
1416 return RX_CONTINUE;
1417 } else if (mmie_keyidx >= 0) {
1418 /* Broadcast/multicast robust management frame / BIP */
1419 if ((status->flag & RX_FLAG_DECRYPTED) &&
1420 (status->flag & RX_FLAG_IV_STRIPPED))
1421 return RX_CONTINUE;
1422
1423 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1424 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1425 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1426 if (rx->sta)
1427 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1428 if (!rx->key)
1429 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1430 } else if (!ieee80211_has_protected(fc)) {
1431 /*
1432 * The frame was not protected, so skip decryption. However, we
1433 * need to set rx->key if there is a key that could have been
1434 * used so that the frame may be dropped if encryption would
1435 * have been expected.
1436 */
1437 struct ieee80211_key *key = NULL;
1438 struct ieee80211_sub_if_data *sdata = rx->sdata;
1439 int i;
1440
1441 if (ieee80211_is_mgmt(fc) &&
1442 is_multicast_ether_addr(hdr->addr1) &&
1443 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1444 rx->key = key;
1445 else {
1446 if (rx->sta) {
1447 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1448 key = rcu_dereference(rx->sta->gtk[i]);
1449 if (key)
1450 break;
1451 }
1452 }
1453 if (!key) {
1454 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1455 key = rcu_dereference(sdata->keys[i]);
1456 if (key)
1457 break;
1458 }
1459 }
1460 if (key)
1461 rx->key = key;
1462 }
1463 return RX_CONTINUE;
1464 } else {
1465 u8 keyid;
1466 /*
1467 * The device doesn't give us the IV so we won't be
1468 * able to look up the key. That's ok though, we
1469 * don't need to decrypt the frame, we just won't
1470 * be able to keep statistics accurate.
1471 * Except for key threshold notifications, should
1472 * we somehow allow the driver to tell us which key
1473 * the hardware used if this flag is set?
1474 */
1475 if ((status->flag & RX_FLAG_DECRYPTED) &&
1476 (status->flag & RX_FLAG_IV_STRIPPED))
1477 return RX_CONTINUE;
1478
1479 hdrlen = ieee80211_hdrlen(fc);
1480
1481 if (rx->skb->len < 8 + hdrlen)
1482 return RX_DROP_UNUSABLE; /* TODO: count this? */
1483
1484 /*
1485 * no need to call ieee80211_wep_get_keyidx,
1486 * it verifies a bunch of things we've done already
1487 */
1488 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1489 keyidx = keyid >> 6;
1490
1491 /* check per-station GTK first, if multicast packet */
1492 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1493 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1494
1495 /* if not found, try default key */
1496 if (!rx->key) {
1497 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1498
1499 /*
1500 * RSNA-protected unicast frames should always be
1501 * sent with pairwise or station-to-station keys,
1502 * but for WEP we allow using a key index as well.
1503 */
1504 if (rx->key &&
1505 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1506 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1507 !is_multicast_ether_addr(hdr->addr1))
1508 rx->key = NULL;
1509 }
1510 }
1511
1512 if (rx->key) {
1513 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1514 return RX_DROP_MONITOR;
1515
1516 rx->key->tx_rx_count++;
1517 /* TODO: add threshold stuff again */
1518 } else {
1519 return RX_DROP_MONITOR;
1520 }
1521
1522 switch (rx->key->conf.cipher) {
1523 case WLAN_CIPHER_SUITE_WEP40:
1524 case WLAN_CIPHER_SUITE_WEP104:
1525 result = ieee80211_crypto_wep_decrypt(rx);
1526 break;
1527 case WLAN_CIPHER_SUITE_TKIP:
1528 result = ieee80211_crypto_tkip_decrypt(rx);
1529 break;
1530 case WLAN_CIPHER_SUITE_CCMP:
1531 result = ieee80211_crypto_ccmp_decrypt(rx);
1532 break;
1533 case WLAN_CIPHER_SUITE_AES_CMAC:
1534 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1535 break;
1536 default:
1537 /*
1538 * We can reach here only with HW-only algorithms
1539 * but why didn't it decrypt the frame?!
1540 */
1541 return RX_DROP_UNUSABLE;
1542 }
1543
1544 /* the hdr variable is invalid after the decrypt handlers */
1545
1546 /* either the frame has been decrypted or will be dropped */
1547 status->flag |= RX_FLAG_DECRYPTED;
1548
1549 return result;
1550 }
1551
1552 static inline struct ieee80211_fragment_entry *
1553 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1554 unsigned int frag, unsigned int seq, int rx_queue,
1555 struct sk_buff **skb)
1556 {
1557 struct ieee80211_fragment_entry *entry;
1558
1559 entry = &sdata->fragments[sdata->fragment_next++];
1560 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1561 sdata->fragment_next = 0;
1562
1563 if (!skb_queue_empty(&entry->skb_list))
1564 __skb_queue_purge(&entry->skb_list);
1565
1566 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1567 *skb = NULL;
1568 entry->first_frag_time = jiffies;
1569 entry->seq = seq;
1570 entry->rx_queue = rx_queue;
1571 entry->last_frag = frag;
1572 entry->ccmp = 0;
1573 entry->extra_len = 0;
1574
1575 return entry;
1576 }
1577
1578 static inline struct ieee80211_fragment_entry *
1579 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1580 unsigned int frag, unsigned int seq,
1581 int rx_queue, struct ieee80211_hdr *hdr)
1582 {
1583 struct ieee80211_fragment_entry *entry;
1584 int i, idx;
1585
1586 idx = sdata->fragment_next;
1587 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1588 struct ieee80211_hdr *f_hdr;
1589
1590 idx--;
1591 if (idx < 0)
1592 idx = IEEE80211_FRAGMENT_MAX - 1;
1593
1594 entry = &sdata->fragments[idx];
1595 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1596 entry->rx_queue != rx_queue ||
1597 entry->last_frag + 1 != frag)
1598 continue;
1599
1600 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1601
1602 /*
1603 * Check ftype and addresses are equal, else check next fragment
1604 */
1605 if (((hdr->frame_control ^ f_hdr->frame_control) &
1606 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1607 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1608 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1609 continue;
1610
1611 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1612 __skb_queue_purge(&entry->skb_list);
1613 continue;
1614 }
1615 return entry;
1616 }
1617
1618 return NULL;
1619 }
1620
1621 static ieee80211_rx_result debug_noinline
1622 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1623 {
1624 struct ieee80211_hdr *hdr;
1625 u16 sc;
1626 __le16 fc;
1627 unsigned int frag, seq;
1628 struct ieee80211_fragment_entry *entry;
1629 struct sk_buff *skb;
1630 struct ieee80211_rx_status *status;
1631
1632 hdr = (struct ieee80211_hdr *)rx->skb->data;
1633 fc = hdr->frame_control;
1634
1635 if (ieee80211_is_ctl(fc))
1636 return RX_CONTINUE;
1637
1638 sc = le16_to_cpu(hdr->seq_ctrl);
1639 frag = sc & IEEE80211_SCTL_FRAG;
1640
1641 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1642 is_multicast_ether_addr(hdr->addr1))) {
1643 /* not fragmented */
1644 goto out;
1645 }
1646 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1647
1648 if (skb_linearize(rx->skb))
1649 return RX_DROP_UNUSABLE;
1650
1651 /*
1652 * skb_linearize() might change the skb->data and
1653 * previously cached variables (in this case, hdr) need to
1654 * be refreshed with the new data.
1655 */
1656 hdr = (struct ieee80211_hdr *)rx->skb->data;
1657 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1658
1659 if (frag == 0) {
1660 /* This is the first fragment of a new frame. */
1661 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1662 rx->seqno_idx, &(rx->skb));
1663 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1664 ieee80211_has_protected(fc)) {
1665 int queue = rx->security_idx;
1666 /* Store CCMP PN so that we can verify that the next
1667 * fragment has a sequential PN value. */
1668 entry->ccmp = 1;
1669 memcpy(entry->last_pn,
1670 rx->key->u.ccmp.rx_pn[queue],
1671 IEEE80211_CCMP_PN_LEN);
1672 }
1673 return RX_QUEUED;
1674 }
1675
1676 /* This is a fragment for a frame that should already be pending in
1677 * fragment cache. Add this fragment to the end of the pending entry.
1678 */
1679 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1680 rx->seqno_idx, hdr);
1681 if (!entry) {
1682 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1683 return RX_DROP_MONITOR;
1684 }
1685
1686 /* Verify that MPDUs within one MSDU have sequential PN values.
1687 * (IEEE 802.11i, 8.3.3.4.5) */
1688 if (entry->ccmp) {
1689 int i;
1690 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1691 int queue;
1692 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1693 return RX_DROP_UNUSABLE;
1694 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1695 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1696 pn[i]++;
1697 if (pn[i])
1698 break;
1699 }
1700 queue = rx->security_idx;
1701 rpn = rx->key->u.ccmp.rx_pn[queue];
1702 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1703 return RX_DROP_UNUSABLE;
1704 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1705 }
1706
1707 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1708 __skb_queue_tail(&entry->skb_list, rx->skb);
1709 entry->last_frag = frag;
1710 entry->extra_len += rx->skb->len;
1711 if (ieee80211_has_morefrags(fc)) {
1712 rx->skb = NULL;
1713 return RX_QUEUED;
1714 }
1715
1716 rx->skb = __skb_dequeue(&entry->skb_list);
1717 if (skb_tailroom(rx->skb) < entry->extra_len) {
1718 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1719 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1720 GFP_ATOMIC))) {
1721 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1722 __skb_queue_purge(&entry->skb_list);
1723 return RX_DROP_UNUSABLE;
1724 }
1725 }
1726 while ((skb = __skb_dequeue(&entry->skb_list))) {
1727 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1728 dev_kfree_skb(skb);
1729 }
1730
1731 /* Complete frame has been reassembled - process it now */
1732 status = IEEE80211_SKB_RXCB(rx->skb);
1733 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1734
1735 out:
1736 if (rx->sta)
1737 rx->sta->rx_packets++;
1738 if (is_multicast_ether_addr(hdr->addr1))
1739 rx->local->dot11MulticastReceivedFrameCount++;
1740 else
1741 ieee80211_led_rx(rx->local);
1742 return RX_CONTINUE;
1743 }
1744
1745 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1746 {
1747 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1748 return -EACCES;
1749
1750 return 0;
1751 }
1752
1753 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1754 {
1755 struct sk_buff *skb = rx->skb;
1756 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1757
1758 /*
1759 * Pass through unencrypted frames if the hardware has
1760 * decrypted them already.
1761 */
1762 if (status->flag & RX_FLAG_DECRYPTED)
1763 return 0;
1764
1765 /* Drop unencrypted frames if key is set. */
1766 if (unlikely(!ieee80211_has_protected(fc) &&
1767 !ieee80211_is_nullfunc(fc) &&
1768 ieee80211_is_data(fc) &&
1769 (rx->key || rx->sdata->drop_unencrypted)))
1770 return -EACCES;
1771
1772 return 0;
1773 }
1774
1775 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1776 {
1777 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1778 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1779 __le16 fc = hdr->frame_control;
1780
1781 /*
1782 * Pass through unencrypted frames if the hardware has
1783 * decrypted them already.
1784 */
1785 if (status->flag & RX_FLAG_DECRYPTED)
1786 return 0;
1787
1788 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1789 if (unlikely(!ieee80211_has_protected(fc) &&
1790 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1791 rx->key)) {
1792 if (ieee80211_is_deauth(fc) ||
1793 ieee80211_is_disassoc(fc))
1794 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1795 rx->skb->data,
1796 rx->skb->len);
1797 return -EACCES;
1798 }
1799 /* BIP does not use Protected field, so need to check MMIE */
1800 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1801 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1802 if (ieee80211_is_deauth(fc) ||
1803 ieee80211_is_disassoc(fc))
1804 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1805 rx->skb->data,
1806 rx->skb->len);
1807 return -EACCES;
1808 }
1809 /*
1810 * When using MFP, Action frames are not allowed prior to
1811 * having configured keys.
1812 */
1813 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1814 ieee80211_is_robust_mgmt_frame(
1815 (struct ieee80211_hdr *) rx->skb->data)))
1816 return -EACCES;
1817 }
1818
1819 return 0;
1820 }
1821
1822 static int
1823 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1824 {
1825 struct ieee80211_sub_if_data *sdata = rx->sdata;
1826 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1827 bool check_port_control = false;
1828 struct ethhdr *ehdr;
1829 int ret;
1830
1831 *port_control = false;
1832 if (ieee80211_has_a4(hdr->frame_control) &&
1833 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1834 return -1;
1835
1836 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1837 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1838
1839 if (!sdata->u.mgd.use_4addr)
1840 return -1;
1841 else
1842 check_port_control = true;
1843 }
1844
1845 if (is_multicast_ether_addr(hdr->addr1) &&
1846 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1847 return -1;
1848
1849 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1850 if (ret < 0)
1851 return ret;
1852
1853 ehdr = (struct ethhdr *) rx->skb->data;
1854 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1855 *port_control = true;
1856 else if (check_port_control)
1857 return -1;
1858
1859 return 0;
1860 }
1861
1862 /*
1863 * requires that rx->skb is a frame with ethernet header
1864 */
1865 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1866 {
1867 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1868 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1869 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1870
1871 /*
1872 * Allow EAPOL frames to us/the PAE group address regardless
1873 * of whether the frame was encrypted or not.
1874 */
1875 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1876 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1877 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1878 return true;
1879
1880 if (ieee80211_802_1x_port_control(rx) ||
1881 ieee80211_drop_unencrypted(rx, fc))
1882 return false;
1883
1884 return true;
1885 }
1886
1887 /*
1888 * requires that rx->skb is a frame with ethernet header
1889 */
1890 static void
1891 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1892 {
1893 struct ieee80211_sub_if_data *sdata = rx->sdata;
1894 struct net_device *dev = sdata->dev;
1895 struct sk_buff *skb, *xmit_skb;
1896 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1897 struct sta_info *dsta;
1898 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1899
1900 skb = rx->skb;
1901 xmit_skb = NULL;
1902
1903 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1904 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1905 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1906 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1907 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1908 if (is_multicast_ether_addr(ehdr->h_dest)) {
1909 /*
1910 * send multicast frames both to higher layers in
1911 * local net stack and back to the wireless medium
1912 */
1913 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1914 if (!xmit_skb)
1915 net_info_ratelimited("%s: failed to clone multicast frame\n",
1916 dev->name);
1917 } else {
1918 dsta = sta_info_get(sdata, skb->data);
1919 if (dsta) {
1920 /*
1921 * The destination station is associated to
1922 * this AP (in this VLAN), so send the frame
1923 * directly to it and do not pass it to local
1924 * net stack.
1925 */
1926 xmit_skb = skb;
1927 skb = NULL;
1928 }
1929 }
1930 }
1931
1932 if (skb) {
1933 int align __maybe_unused;
1934
1935 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1936 /*
1937 * 'align' will only take the values 0 or 2 here
1938 * since all frames are required to be aligned
1939 * to 2-byte boundaries when being passed to
1940 * mac80211; the code here works just as well if
1941 * that isn't true, but mac80211 assumes it can
1942 * access fields as 2-byte aligned (e.g. for
1943 * compare_ether_addr)
1944 */
1945 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1946 if (align) {
1947 if (WARN_ON(skb_headroom(skb) < 3)) {
1948 dev_kfree_skb(skb);
1949 skb = NULL;
1950 } else {
1951 u8 *data = skb->data;
1952 size_t len = skb_headlen(skb);
1953 skb->data -= align;
1954 memmove(skb->data, data, len);
1955 skb_set_tail_pointer(skb, len);
1956 }
1957 }
1958 #endif
1959
1960 if (skb) {
1961 /* deliver to local stack */
1962 skb->protocol = eth_type_trans(skb, dev);
1963 memset(skb->cb, 0, sizeof(skb->cb));
1964 netif_receive_skb(skb);
1965 }
1966 }
1967
1968 if (xmit_skb) {
1969 /*
1970 * Send to wireless media and increase priority by 256 to
1971 * keep the received priority instead of reclassifying
1972 * the frame (see cfg80211_classify8021d).
1973 */
1974 xmit_skb->priority += 256;
1975 xmit_skb->protocol = htons(ETH_P_802_3);
1976 skb_reset_network_header(xmit_skb);
1977 skb_reset_mac_header(xmit_skb);
1978 dev_queue_xmit(xmit_skb);
1979 }
1980 }
1981
1982 static ieee80211_rx_result debug_noinline
1983 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1984 {
1985 struct net_device *dev = rx->sdata->dev;
1986 struct sk_buff *skb = rx->skb;
1987 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1988 __le16 fc = hdr->frame_control;
1989 struct sk_buff_head frame_list;
1990 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1991
1992 if (unlikely(!ieee80211_is_data(fc)))
1993 return RX_CONTINUE;
1994
1995 if (unlikely(!ieee80211_is_data_present(fc)))
1996 return RX_DROP_MONITOR;
1997
1998 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1999 return RX_CONTINUE;
2000
2001 if (ieee80211_has_a4(hdr->frame_control) &&
2002 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2003 !rx->sdata->u.vlan.sta)
2004 return RX_DROP_UNUSABLE;
2005
2006 if (is_multicast_ether_addr(hdr->addr1) &&
2007 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2008 rx->sdata->u.vlan.sta) ||
2009 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2010 rx->sdata->u.mgd.use_4addr)))
2011 return RX_DROP_UNUSABLE;
2012
2013 skb->dev = dev;
2014 __skb_queue_head_init(&frame_list);
2015
2016 if (skb_linearize(skb))
2017 return RX_DROP_UNUSABLE;
2018
2019 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2020 rx->sdata->vif.type,
2021 rx->local->hw.extra_tx_headroom, true);
2022
2023 while (!skb_queue_empty(&frame_list)) {
2024 rx->skb = __skb_dequeue(&frame_list);
2025
2026 if (!ieee80211_frame_allowed(rx, fc)) {
2027 dev_kfree_skb(rx->skb);
2028 continue;
2029 }
2030 dev->stats.rx_packets++;
2031 dev->stats.rx_bytes += rx->skb->len;
2032
2033 ieee80211_deliver_skb(rx);
2034 }
2035
2036 return RX_QUEUED;
2037 }
2038
2039 #ifdef CONFIG_MAC80211_MESH
2040 static ieee80211_rx_result
2041 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2042 {
2043 struct ieee80211_hdr *fwd_hdr, *hdr;
2044 struct ieee80211_tx_info *info;
2045 struct ieee80211s_hdr *mesh_hdr;
2046 struct sk_buff *skb = rx->skb, *fwd_skb;
2047 struct ieee80211_local *local = rx->local;
2048 struct ieee80211_sub_if_data *sdata = rx->sdata;
2049 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2050 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2051 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
2052 u16 q, hdrlen;
2053
2054 hdr = (struct ieee80211_hdr *) skb->data;
2055 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2056
2057 /* make sure fixed part of mesh header is there, also checks skb len */
2058 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2059 return RX_DROP_MONITOR;
2060
2061 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2062
2063 /* make sure full mesh header is there, also checks skb len */
2064 if (!pskb_may_pull(rx->skb,
2065 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2066 return RX_DROP_MONITOR;
2067
2068 /* reload pointers */
2069 hdr = (struct ieee80211_hdr *) skb->data;
2070 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2071
2072 /* frame is in RMC, don't forward */
2073 if (ieee80211_is_data(hdr->frame_control) &&
2074 is_multicast_ether_addr(hdr->addr1) &&
2075 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2076 return RX_DROP_MONITOR;
2077
2078 if (!ieee80211_is_data(hdr->frame_control) ||
2079 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2080 return RX_CONTINUE;
2081
2082 if (!mesh_hdr->ttl)
2083 return RX_DROP_MONITOR;
2084
2085 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2086 struct mesh_path *mppath;
2087 char *proxied_addr;
2088 char *mpp_addr;
2089
2090 if (is_multicast_ether_addr(hdr->addr1)) {
2091 mpp_addr = hdr->addr3;
2092 proxied_addr = mesh_hdr->eaddr1;
2093 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2094 /* has_a4 already checked in ieee80211_rx_mesh_check */
2095 mpp_addr = hdr->addr4;
2096 proxied_addr = mesh_hdr->eaddr2;
2097 } else {
2098 return RX_DROP_MONITOR;
2099 }
2100
2101 rcu_read_lock();
2102 mppath = mpp_path_lookup(sdata, proxied_addr);
2103 if (!mppath) {
2104 mpp_path_add(sdata, proxied_addr, mpp_addr);
2105 } else {
2106 spin_lock_bh(&mppath->state_lock);
2107 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2108 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2109 spin_unlock_bh(&mppath->state_lock);
2110 }
2111 rcu_read_unlock();
2112 }
2113
2114 /* Frame has reached destination. Don't forward */
2115 if (!is_multicast_ether_addr(hdr->addr1) &&
2116 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2117 return RX_CONTINUE;
2118
2119 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2120 if (ieee80211_queue_stopped(&local->hw, q)) {
2121 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2122 return RX_DROP_MONITOR;
2123 }
2124 skb_set_queue_mapping(skb, q);
2125
2126 if (!--mesh_hdr->ttl) {
2127 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2128 goto out;
2129 }
2130
2131 if (!ifmsh->mshcfg.dot11MeshForwarding)
2132 goto out;
2133
2134 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2135 if (!fwd_skb) {
2136 net_info_ratelimited("%s: failed to clone mesh frame\n",
2137 sdata->name);
2138 goto out;
2139 }
2140
2141 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2142 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2143 info = IEEE80211_SKB_CB(fwd_skb);
2144 memset(info, 0, sizeof(*info));
2145 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2146 info->control.vif = &rx->sdata->vif;
2147 info->control.jiffies = jiffies;
2148 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2149 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2150 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2151 /* update power mode indication when forwarding */
2152 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2153 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2154 /* mesh power mode flags updated in mesh_nexthop_lookup */
2155 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2156 } else {
2157 /* unable to resolve next hop */
2158 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2159 fwd_hdr->addr3, 0, reason, fwd_hdr->addr2);
2160 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2161 kfree_skb(fwd_skb);
2162 return RX_DROP_MONITOR;
2163 }
2164
2165 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2166 ieee80211_add_pending_skb(local, fwd_skb);
2167 out:
2168 if (is_multicast_ether_addr(hdr->addr1) ||
2169 sdata->dev->flags & IFF_PROMISC)
2170 return RX_CONTINUE;
2171 else
2172 return RX_DROP_MONITOR;
2173 }
2174 #endif
2175
2176 static ieee80211_rx_result debug_noinline
2177 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2178 {
2179 struct ieee80211_sub_if_data *sdata = rx->sdata;
2180 struct ieee80211_local *local = rx->local;
2181 struct net_device *dev = sdata->dev;
2182 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2183 __le16 fc = hdr->frame_control;
2184 bool port_control;
2185 int err;
2186
2187 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2188 return RX_CONTINUE;
2189
2190 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2191 return RX_DROP_MONITOR;
2192
2193 /*
2194 * Send unexpected-4addr-frame event to hostapd. For older versions,
2195 * also drop the frame to cooked monitor interfaces.
2196 */
2197 if (ieee80211_has_a4(hdr->frame_control) &&
2198 sdata->vif.type == NL80211_IFTYPE_AP) {
2199 if (rx->sta &&
2200 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2201 cfg80211_rx_unexpected_4addr_frame(
2202 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2203 return RX_DROP_MONITOR;
2204 }
2205
2206 err = __ieee80211_data_to_8023(rx, &port_control);
2207 if (unlikely(err))
2208 return RX_DROP_UNUSABLE;
2209
2210 if (!ieee80211_frame_allowed(rx, fc))
2211 return RX_DROP_MONITOR;
2212
2213 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2214 unlikely(port_control) && sdata->bss) {
2215 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2216 u.ap);
2217 dev = sdata->dev;
2218 rx->sdata = sdata;
2219 }
2220
2221 rx->skb->dev = dev;
2222
2223 dev->stats.rx_packets++;
2224 dev->stats.rx_bytes += rx->skb->len;
2225
2226 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2227 !is_multicast_ether_addr(
2228 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2229 (!local->scanning &&
2230 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2231 mod_timer(&local->dynamic_ps_timer, jiffies +
2232 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2233 }
2234
2235 ieee80211_deliver_skb(rx);
2236
2237 return RX_QUEUED;
2238 }
2239
2240 static ieee80211_rx_result debug_noinline
2241 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2242 {
2243 struct sk_buff *skb = rx->skb;
2244 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2245 struct tid_ampdu_rx *tid_agg_rx;
2246 u16 start_seq_num;
2247 u16 tid;
2248
2249 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2250 return RX_CONTINUE;
2251
2252 if (ieee80211_is_back_req(bar->frame_control)) {
2253 struct {
2254 __le16 control, start_seq_num;
2255 } __packed bar_data;
2256
2257 if (!rx->sta)
2258 return RX_DROP_MONITOR;
2259
2260 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2261 &bar_data, sizeof(bar_data)))
2262 return RX_DROP_MONITOR;
2263
2264 tid = le16_to_cpu(bar_data.control) >> 12;
2265
2266 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2267 if (!tid_agg_rx)
2268 return RX_DROP_MONITOR;
2269
2270 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2271
2272 /* reset session timer */
2273 if (tid_agg_rx->timeout)
2274 mod_timer(&tid_agg_rx->session_timer,
2275 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2276
2277 spin_lock(&tid_agg_rx->reorder_lock);
2278 /* release stored frames up to start of BAR */
2279 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2280 start_seq_num, frames);
2281 spin_unlock(&tid_agg_rx->reorder_lock);
2282
2283 kfree_skb(skb);
2284 return RX_QUEUED;
2285 }
2286
2287 /*
2288 * After this point, we only want management frames,
2289 * so we can drop all remaining control frames to
2290 * cooked monitor interfaces.
2291 */
2292 return RX_DROP_MONITOR;
2293 }
2294
2295 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2296 struct ieee80211_mgmt *mgmt,
2297 size_t len)
2298 {
2299 struct ieee80211_local *local = sdata->local;
2300 struct sk_buff *skb;
2301 struct ieee80211_mgmt *resp;
2302
2303 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2304 /* Not to own unicast address */
2305 return;
2306 }
2307
2308 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2309 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2310 /* Not from the current AP or not associated yet. */
2311 return;
2312 }
2313
2314 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2315 /* Too short SA Query request frame */
2316 return;
2317 }
2318
2319 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2320 if (skb == NULL)
2321 return;
2322
2323 skb_reserve(skb, local->hw.extra_tx_headroom);
2324 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2325 memset(resp, 0, 24);
2326 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2327 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2328 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2329 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2330 IEEE80211_STYPE_ACTION);
2331 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2332 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2333 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2334 memcpy(resp->u.action.u.sa_query.trans_id,
2335 mgmt->u.action.u.sa_query.trans_id,
2336 WLAN_SA_QUERY_TR_ID_LEN);
2337
2338 ieee80211_tx_skb(sdata, skb);
2339 }
2340
2341 static ieee80211_rx_result debug_noinline
2342 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2343 {
2344 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2345 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2346
2347 /*
2348 * From here on, look only at management frames.
2349 * Data and control frames are already handled,
2350 * and unknown (reserved) frames are useless.
2351 */
2352 if (rx->skb->len < 24)
2353 return RX_DROP_MONITOR;
2354
2355 if (!ieee80211_is_mgmt(mgmt->frame_control))
2356 return RX_DROP_MONITOR;
2357
2358 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2359 ieee80211_is_beacon(mgmt->frame_control) &&
2360 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2361 int sig = 0;
2362
2363 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2364 sig = status->signal;
2365
2366 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2367 rx->skb->data, rx->skb->len,
2368 status->freq, sig);
2369 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2370 }
2371
2372 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2373 return RX_DROP_MONITOR;
2374
2375 if (ieee80211_drop_unencrypted_mgmt(rx))
2376 return RX_DROP_UNUSABLE;
2377
2378 return RX_CONTINUE;
2379 }
2380
2381 static ieee80211_rx_result debug_noinline
2382 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2383 {
2384 struct ieee80211_local *local = rx->local;
2385 struct ieee80211_sub_if_data *sdata = rx->sdata;
2386 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2387 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2388 int len = rx->skb->len;
2389
2390 if (!ieee80211_is_action(mgmt->frame_control))
2391 return RX_CONTINUE;
2392
2393 /* drop too small frames */
2394 if (len < IEEE80211_MIN_ACTION_SIZE)
2395 return RX_DROP_UNUSABLE;
2396
2397 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2398 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2399 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2400 return RX_DROP_UNUSABLE;
2401
2402 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2403 return RX_DROP_UNUSABLE;
2404
2405 switch (mgmt->u.action.category) {
2406 case WLAN_CATEGORY_HT:
2407 /* reject HT action frames from stations not supporting HT */
2408 if (!rx->sta->sta.ht_cap.ht_supported)
2409 goto invalid;
2410
2411 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2412 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2413 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2414 sdata->vif.type != NL80211_IFTYPE_AP &&
2415 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2416 break;
2417
2418 /* verify action & smps_control/chanwidth are present */
2419 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2420 goto invalid;
2421
2422 switch (mgmt->u.action.u.ht_smps.action) {
2423 case WLAN_HT_ACTION_SMPS: {
2424 struct ieee80211_supported_band *sband;
2425 enum ieee80211_smps_mode smps_mode;
2426
2427 /* convert to HT capability */
2428 switch (mgmt->u.action.u.ht_smps.smps_control) {
2429 case WLAN_HT_SMPS_CONTROL_DISABLED:
2430 smps_mode = IEEE80211_SMPS_OFF;
2431 break;
2432 case WLAN_HT_SMPS_CONTROL_STATIC:
2433 smps_mode = IEEE80211_SMPS_STATIC;
2434 break;
2435 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2436 smps_mode = IEEE80211_SMPS_DYNAMIC;
2437 break;
2438 default:
2439 goto invalid;
2440 }
2441
2442 /* if no change do nothing */
2443 if (rx->sta->sta.smps_mode == smps_mode)
2444 goto handled;
2445 rx->sta->sta.smps_mode = smps_mode;
2446
2447 sband = rx->local->hw.wiphy->bands[status->band];
2448
2449 rate_control_rate_update(local, sband, rx->sta,
2450 IEEE80211_RC_SMPS_CHANGED);
2451 goto handled;
2452 }
2453 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2454 struct ieee80211_supported_band *sband;
2455 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2456 enum ieee80211_sta_rx_bandwidth new_bw;
2457
2458 /* If it doesn't support 40 MHz it can't change ... */
2459 if (!(rx->sta->sta.ht_cap.cap &
2460 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2461 goto handled;
2462
2463 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2464 new_bw = IEEE80211_STA_RX_BW_20;
2465 else
2466 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2467
2468 if (rx->sta->sta.bandwidth == new_bw)
2469 goto handled;
2470
2471 sband = rx->local->hw.wiphy->bands[status->band];
2472
2473 rate_control_rate_update(local, sband, rx->sta,
2474 IEEE80211_RC_BW_CHANGED);
2475 goto handled;
2476 }
2477 default:
2478 goto invalid;
2479 }
2480
2481 break;
2482 case WLAN_CATEGORY_PUBLIC:
2483 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2484 goto invalid;
2485 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2486 break;
2487 if (!rx->sta)
2488 break;
2489 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2490 break;
2491 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2492 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2493 break;
2494 if (len < offsetof(struct ieee80211_mgmt,
2495 u.action.u.ext_chan_switch.variable))
2496 goto invalid;
2497 goto queue;
2498 case WLAN_CATEGORY_VHT:
2499 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2500 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2501 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2502 sdata->vif.type != NL80211_IFTYPE_AP &&
2503 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2504 break;
2505
2506 /* verify action code is present */
2507 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2508 goto invalid;
2509
2510 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2511 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2512 u8 opmode;
2513
2514 /* verify opmode is present */
2515 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2516 goto invalid;
2517
2518 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2519
2520 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2521 opmode, status->band,
2522 false);
2523 goto handled;
2524 }
2525 default:
2526 break;
2527 }
2528 break;
2529 case WLAN_CATEGORY_BACK:
2530 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2531 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2532 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2533 sdata->vif.type != NL80211_IFTYPE_AP &&
2534 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2535 break;
2536
2537 /* verify action_code is present */
2538 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2539 break;
2540
2541 switch (mgmt->u.action.u.addba_req.action_code) {
2542 case WLAN_ACTION_ADDBA_REQ:
2543 if (len < (IEEE80211_MIN_ACTION_SIZE +
2544 sizeof(mgmt->u.action.u.addba_req)))
2545 goto invalid;
2546 break;
2547 case WLAN_ACTION_ADDBA_RESP:
2548 if (len < (IEEE80211_MIN_ACTION_SIZE +
2549 sizeof(mgmt->u.action.u.addba_resp)))
2550 goto invalid;
2551 break;
2552 case WLAN_ACTION_DELBA:
2553 if (len < (IEEE80211_MIN_ACTION_SIZE +
2554 sizeof(mgmt->u.action.u.delba)))
2555 goto invalid;
2556 break;
2557 default:
2558 goto invalid;
2559 }
2560
2561 goto queue;
2562 case WLAN_CATEGORY_SPECTRUM_MGMT:
2563 /* verify action_code is present */
2564 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2565 break;
2566
2567 switch (mgmt->u.action.u.measurement.action_code) {
2568 case WLAN_ACTION_SPCT_MSR_REQ:
2569 if (status->band != IEEE80211_BAND_5GHZ)
2570 break;
2571
2572 if (len < (IEEE80211_MIN_ACTION_SIZE +
2573 sizeof(mgmt->u.action.u.measurement)))
2574 break;
2575
2576 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2577 break;
2578
2579 ieee80211_process_measurement_req(sdata, mgmt, len);
2580 goto handled;
2581 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2582 u8 *bssid;
2583 if (len < (IEEE80211_MIN_ACTION_SIZE +
2584 sizeof(mgmt->u.action.u.chan_switch)))
2585 break;
2586
2587 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2588 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2589 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2590 break;
2591
2592 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2593 bssid = sdata->u.mgd.bssid;
2594 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2595 bssid = sdata->u.ibss.bssid;
2596 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2597 bssid = mgmt->sa;
2598 else
2599 break;
2600
2601 if (!ether_addr_equal(mgmt->bssid, bssid))
2602 break;
2603
2604 goto queue;
2605 }
2606 }
2607 break;
2608 case WLAN_CATEGORY_SA_QUERY:
2609 if (len < (IEEE80211_MIN_ACTION_SIZE +
2610 sizeof(mgmt->u.action.u.sa_query)))
2611 break;
2612
2613 switch (mgmt->u.action.u.sa_query.action) {
2614 case WLAN_ACTION_SA_QUERY_REQUEST:
2615 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2616 break;
2617 ieee80211_process_sa_query_req(sdata, mgmt, len);
2618 goto handled;
2619 }
2620 break;
2621 case WLAN_CATEGORY_SELF_PROTECTED:
2622 if (len < (IEEE80211_MIN_ACTION_SIZE +
2623 sizeof(mgmt->u.action.u.self_prot.action_code)))
2624 break;
2625
2626 switch (mgmt->u.action.u.self_prot.action_code) {
2627 case WLAN_SP_MESH_PEERING_OPEN:
2628 case WLAN_SP_MESH_PEERING_CLOSE:
2629 case WLAN_SP_MESH_PEERING_CONFIRM:
2630 if (!ieee80211_vif_is_mesh(&sdata->vif))
2631 goto invalid;
2632 if (sdata->u.mesh.user_mpm)
2633 /* userspace handles this frame */
2634 break;
2635 goto queue;
2636 case WLAN_SP_MGK_INFORM:
2637 case WLAN_SP_MGK_ACK:
2638 if (!ieee80211_vif_is_mesh(&sdata->vif))
2639 goto invalid;
2640 break;
2641 }
2642 break;
2643 case WLAN_CATEGORY_MESH_ACTION:
2644 if (len < (IEEE80211_MIN_ACTION_SIZE +
2645 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2646 break;
2647
2648 if (!ieee80211_vif_is_mesh(&sdata->vif))
2649 break;
2650 if (mesh_action_is_path_sel(mgmt) &&
2651 !mesh_path_sel_is_hwmp(sdata))
2652 break;
2653 goto queue;
2654 }
2655
2656 return RX_CONTINUE;
2657
2658 invalid:
2659 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2660 /* will return in the next handlers */
2661 return RX_CONTINUE;
2662
2663 handled:
2664 if (rx->sta)
2665 rx->sta->rx_packets++;
2666 dev_kfree_skb(rx->skb);
2667 return RX_QUEUED;
2668
2669 queue:
2670 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2671 skb_queue_tail(&sdata->skb_queue, rx->skb);
2672 ieee80211_queue_work(&local->hw, &sdata->work);
2673 if (rx->sta)
2674 rx->sta->rx_packets++;
2675 return RX_QUEUED;
2676 }
2677
2678 static ieee80211_rx_result debug_noinline
2679 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2680 {
2681 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2682 int sig = 0;
2683
2684 /* skip known-bad action frames and return them in the next handler */
2685 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2686 return RX_CONTINUE;
2687
2688 /*
2689 * Getting here means the kernel doesn't know how to handle
2690 * it, but maybe userspace does ... include returned frames
2691 * so userspace can register for those to know whether ones
2692 * it transmitted were processed or returned.
2693 */
2694
2695 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2696 sig = status->signal;
2697
2698 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2699 rx->skb->data, rx->skb->len, 0, GFP_ATOMIC)) {
2700 if (rx->sta)
2701 rx->sta->rx_packets++;
2702 dev_kfree_skb(rx->skb);
2703 return RX_QUEUED;
2704 }
2705
2706 return RX_CONTINUE;
2707 }
2708
2709 static ieee80211_rx_result debug_noinline
2710 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2711 {
2712 struct ieee80211_local *local = rx->local;
2713 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2714 struct sk_buff *nskb;
2715 struct ieee80211_sub_if_data *sdata = rx->sdata;
2716 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2717
2718 if (!ieee80211_is_action(mgmt->frame_control))
2719 return RX_CONTINUE;
2720
2721 /*
2722 * For AP mode, hostapd is responsible for handling any action
2723 * frames that we didn't handle, including returning unknown
2724 * ones. For all other modes we will return them to the sender,
2725 * setting the 0x80 bit in the action category, as required by
2726 * 802.11-2012 9.24.4.
2727 * Newer versions of hostapd shall also use the management frame
2728 * registration mechanisms, but older ones still use cooked
2729 * monitor interfaces so push all frames there.
2730 */
2731 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2732 (sdata->vif.type == NL80211_IFTYPE_AP ||
2733 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2734 return RX_DROP_MONITOR;
2735
2736 if (is_multicast_ether_addr(mgmt->da))
2737 return RX_DROP_MONITOR;
2738
2739 /* do not return rejected action frames */
2740 if (mgmt->u.action.category & 0x80)
2741 return RX_DROP_UNUSABLE;
2742
2743 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2744 GFP_ATOMIC);
2745 if (nskb) {
2746 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2747
2748 nmgmt->u.action.category |= 0x80;
2749 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2750 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2751
2752 memset(nskb->cb, 0, sizeof(nskb->cb));
2753
2754 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2755 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2756
2757 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2758 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2759 IEEE80211_TX_CTL_NO_CCK_RATE;
2760 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2761 info->hw_queue =
2762 local->hw.offchannel_tx_hw_queue;
2763 }
2764
2765 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2766 status->band);
2767 }
2768 dev_kfree_skb(rx->skb);
2769 return RX_QUEUED;
2770 }
2771
2772 static ieee80211_rx_result debug_noinline
2773 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2774 {
2775 struct ieee80211_sub_if_data *sdata = rx->sdata;
2776 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2777 __le16 stype;
2778
2779 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2780
2781 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2782 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2783 sdata->vif.type != NL80211_IFTYPE_STATION)
2784 return RX_DROP_MONITOR;
2785
2786 switch (stype) {
2787 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2788 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2789 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2790 /* process for all: mesh, mlme, ibss */
2791 break;
2792 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2793 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2794 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2795 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2796 if (is_multicast_ether_addr(mgmt->da) &&
2797 !is_broadcast_ether_addr(mgmt->da))
2798 return RX_DROP_MONITOR;
2799
2800 /* process only for station */
2801 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2802 return RX_DROP_MONITOR;
2803 break;
2804 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2805 /* process only for ibss and mesh */
2806 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2807 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2808 return RX_DROP_MONITOR;
2809 break;
2810 default:
2811 return RX_DROP_MONITOR;
2812 }
2813
2814 /* queue up frame and kick off work to process it */
2815 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2816 skb_queue_tail(&sdata->skb_queue, rx->skb);
2817 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2818 if (rx->sta)
2819 rx->sta->rx_packets++;
2820
2821 return RX_QUEUED;
2822 }
2823
2824 /* TODO: use IEEE80211_RX_FRAGMENTED */
2825 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2826 struct ieee80211_rate *rate)
2827 {
2828 struct ieee80211_sub_if_data *sdata;
2829 struct ieee80211_local *local = rx->local;
2830 struct sk_buff *skb = rx->skb, *skb2;
2831 struct net_device *prev_dev = NULL;
2832 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2833 int needed_headroom;
2834
2835 /*
2836 * If cooked monitor has been processed already, then
2837 * don't do it again. If not, set the flag.
2838 */
2839 if (rx->flags & IEEE80211_RX_CMNTR)
2840 goto out_free_skb;
2841 rx->flags |= IEEE80211_RX_CMNTR;
2842
2843 /* If there are no cooked monitor interfaces, just free the SKB */
2844 if (!local->cooked_mntrs)
2845 goto out_free_skb;
2846
2847 /* room for the radiotap header based on driver features */
2848 needed_headroom = ieee80211_rx_radiotap_space(local, status);
2849
2850 if (skb_headroom(skb) < needed_headroom &&
2851 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2852 goto out_free_skb;
2853
2854 /* prepend radiotap information */
2855 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2856 false);
2857
2858 skb_set_mac_header(skb, 0);
2859 skb->ip_summed = CHECKSUM_UNNECESSARY;
2860 skb->pkt_type = PACKET_OTHERHOST;
2861 skb->protocol = htons(ETH_P_802_2);
2862
2863 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2864 if (!ieee80211_sdata_running(sdata))
2865 continue;
2866
2867 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2868 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2869 continue;
2870
2871 if (prev_dev) {
2872 skb2 = skb_clone(skb, GFP_ATOMIC);
2873 if (skb2) {
2874 skb2->dev = prev_dev;
2875 netif_receive_skb(skb2);
2876 }
2877 }
2878
2879 prev_dev = sdata->dev;
2880 sdata->dev->stats.rx_packets++;
2881 sdata->dev->stats.rx_bytes += skb->len;
2882 }
2883
2884 if (prev_dev) {
2885 skb->dev = prev_dev;
2886 netif_receive_skb(skb);
2887 return;
2888 }
2889
2890 out_free_skb:
2891 dev_kfree_skb(skb);
2892 }
2893
2894 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2895 ieee80211_rx_result res)
2896 {
2897 switch (res) {
2898 case RX_DROP_MONITOR:
2899 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2900 if (rx->sta)
2901 rx->sta->rx_dropped++;
2902 /* fall through */
2903 case RX_CONTINUE: {
2904 struct ieee80211_rate *rate = NULL;
2905 struct ieee80211_supported_band *sband;
2906 struct ieee80211_rx_status *status;
2907
2908 status = IEEE80211_SKB_RXCB((rx->skb));
2909
2910 sband = rx->local->hw.wiphy->bands[status->band];
2911 if (!(status->flag & RX_FLAG_HT) &&
2912 !(status->flag & RX_FLAG_VHT))
2913 rate = &sband->bitrates[status->rate_idx];
2914
2915 ieee80211_rx_cooked_monitor(rx, rate);
2916 break;
2917 }
2918 case RX_DROP_UNUSABLE:
2919 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2920 if (rx->sta)
2921 rx->sta->rx_dropped++;
2922 dev_kfree_skb(rx->skb);
2923 break;
2924 case RX_QUEUED:
2925 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2926 break;
2927 }
2928 }
2929
2930 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2931 struct sk_buff_head *frames)
2932 {
2933 ieee80211_rx_result res = RX_DROP_MONITOR;
2934 struct sk_buff *skb;
2935
2936 #define CALL_RXH(rxh) \
2937 do { \
2938 res = rxh(rx); \
2939 if (res != RX_CONTINUE) \
2940 goto rxh_next; \
2941 } while (0);
2942
2943 spin_lock_bh(&rx->local->rx_path_lock);
2944
2945 while ((skb = __skb_dequeue(frames))) {
2946 /*
2947 * all the other fields are valid across frames
2948 * that belong to an aMPDU since they are on the
2949 * same TID from the same station
2950 */
2951 rx->skb = skb;
2952
2953 CALL_RXH(ieee80211_rx_h_check_more_data)
2954 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2955 CALL_RXH(ieee80211_rx_h_sta_process)
2956 CALL_RXH(ieee80211_rx_h_decrypt)
2957 CALL_RXH(ieee80211_rx_h_defragment)
2958 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2959 /* must be after MMIC verify so header is counted in MPDU mic */
2960 #ifdef CONFIG_MAC80211_MESH
2961 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2962 CALL_RXH(ieee80211_rx_h_mesh_fwding);
2963 #endif
2964 CALL_RXH(ieee80211_rx_h_amsdu)
2965 CALL_RXH(ieee80211_rx_h_data)
2966
2967 /* special treatment -- needs the queue */
2968 res = ieee80211_rx_h_ctrl(rx, frames);
2969 if (res != RX_CONTINUE)
2970 goto rxh_next;
2971
2972 CALL_RXH(ieee80211_rx_h_mgmt_check)
2973 CALL_RXH(ieee80211_rx_h_action)
2974 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2975 CALL_RXH(ieee80211_rx_h_action_return)
2976 CALL_RXH(ieee80211_rx_h_mgmt)
2977
2978 rxh_next:
2979 ieee80211_rx_handlers_result(rx, res);
2980
2981 #undef CALL_RXH
2982 }
2983
2984 spin_unlock_bh(&rx->local->rx_path_lock);
2985 }
2986
2987 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2988 {
2989 struct sk_buff_head reorder_release;
2990 ieee80211_rx_result res = RX_DROP_MONITOR;
2991
2992 __skb_queue_head_init(&reorder_release);
2993
2994 #define CALL_RXH(rxh) \
2995 do { \
2996 res = rxh(rx); \
2997 if (res != RX_CONTINUE) \
2998 goto rxh_next; \
2999 } while (0);
3000
3001 CALL_RXH(ieee80211_rx_h_check)
3002
3003 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3004
3005 ieee80211_rx_handlers(rx, &reorder_release);
3006 return;
3007
3008 rxh_next:
3009 ieee80211_rx_handlers_result(rx, res);
3010
3011 #undef CALL_RXH
3012 }
3013
3014 /*
3015 * This function makes calls into the RX path, therefore
3016 * it has to be invoked under RCU read lock.
3017 */
3018 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3019 {
3020 struct sk_buff_head frames;
3021 struct ieee80211_rx_data rx = {
3022 .sta = sta,
3023 .sdata = sta->sdata,
3024 .local = sta->local,
3025 /* This is OK -- must be QoS data frame */
3026 .security_idx = tid,
3027 .seqno_idx = tid,
3028 .flags = 0,
3029 };
3030 struct tid_ampdu_rx *tid_agg_rx;
3031
3032 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3033 if (!tid_agg_rx)
3034 return;
3035
3036 __skb_queue_head_init(&frames);
3037
3038 spin_lock(&tid_agg_rx->reorder_lock);
3039 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3040 spin_unlock(&tid_agg_rx->reorder_lock);
3041
3042 ieee80211_rx_handlers(&rx, &frames);
3043 }
3044
3045 /* main receive path */
3046
3047 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
3048 struct ieee80211_hdr *hdr)
3049 {
3050 struct ieee80211_sub_if_data *sdata = rx->sdata;
3051 struct sk_buff *skb = rx->skb;
3052 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3053 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3054 int multicast = is_multicast_ether_addr(hdr->addr1);
3055
3056 switch (sdata->vif.type) {
3057 case NL80211_IFTYPE_STATION:
3058 if (!bssid && !sdata->u.mgd.use_4addr)
3059 return 0;
3060 if (!multicast &&
3061 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3062 if (!(sdata->dev->flags & IFF_PROMISC) ||
3063 sdata->u.mgd.use_4addr)
3064 return 0;
3065 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3066 }
3067 break;
3068 case NL80211_IFTYPE_ADHOC:
3069 if (!bssid)
3070 return 0;
3071 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3072 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3073 return 0;
3074 if (ieee80211_is_beacon(hdr->frame_control)) {
3075 return 1;
3076 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3077 return 0;
3078 } else if (!multicast &&
3079 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3080 if (!(sdata->dev->flags & IFF_PROMISC))
3081 return 0;
3082 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3083 } else if (!rx->sta) {
3084 int rate_idx;
3085 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3086 rate_idx = 0; /* TODO: HT/VHT rates */
3087 else
3088 rate_idx = status->rate_idx;
3089 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3090 BIT(rate_idx));
3091 }
3092 break;
3093 case NL80211_IFTYPE_MESH_POINT:
3094 if (!multicast &&
3095 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3096 if (!(sdata->dev->flags & IFF_PROMISC))
3097 return 0;
3098
3099 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3100 }
3101 break;
3102 case NL80211_IFTYPE_AP_VLAN:
3103 case NL80211_IFTYPE_AP:
3104 if (!bssid) {
3105 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3106 return 0;
3107 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3108 /*
3109 * Accept public action frames even when the
3110 * BSSID doesn't match, this is used for P2P
3111 * and location updates. Note that mac80211
3112 * itself never looks at these frames.
3113 */
3114 if (!multicast &&
3115 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3116 return 0;
3117 if (ieee80211_is_public_action(hdr, skb->len))
3118 return 1;
3119 if (!ieee80211_is_beacon(hdr->frame_control))
3120 return 0;
3121 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3122 }
3123 break;
3124 case NL80211_IFTYPE_WDS:
3125 if (bssid || !ieee80211_is_data(hdr->frame_control))
3126 return 0;
3127 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3128 return 0;
3129 break;
3130 case NL80211_IFTYPE_P2P_DEVICE:
3131 if (!ieee80211_is_public_action(hdr, skb->len) &&
3132 !ieee80211_is_probe_req(hdr->frame_control) &&
3133 !ieee80211_is_probe_resp(hdr->frame_control) &&
3134 !ieee80211_is_beacon(hdr->frame_control))
3135 return 0;
3136 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3137 !multicast)
3138 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3139 break;
3140 default:
3141 /* should never get here */
3142 WARN_ON_ONCE(1);
3143 break;
3144 }
3145
3146 return 1;
3147 }
3148
3149 /*
3150 * This function returns whether or not the SKB
3151 * was destined for RX processing or not, which,
3152 * if consume is true, is equivalent to whether
3153 * or not the skb was consumed.
3154 */
3155 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3156 struct sk_buff *skb, bool consume)
3157 {
3158 struct ieee80211_local *local = rx->local;
3159 struct ieee80211_sub_if_data *sdata = rx->sdata;
3160 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3161 struct ieee80211_hdr *hdr = (void *)skb->data;
3162 int prepares;
3163
3164 rx->skb = skb;
3165 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3166 prepares = prepare_for_handlers(rx, hdr);
3167
3168 if (!prepares)
3169 return false;
3170
3171 if (!consume) {
3172 skb = skb_copy(skb, GFP_ATOMIC);
3173 if (!skb) {
3174 if (net_ratelimit())
3175 wiphy_debug(local->hw.wiphy,
3176 "failed to copy skb for %s\n",
3177 sdata->name);
3178 return true;
3179 }
3180
3181 rx->skb = skb;
3182 }
3183
3184 ieee80211_invoke_rx_handlers(rx);
3185 return true;
3186 }
3187
3188 /*
3189 * This is the actual Rx frames handler. as it blongs to Rx path it must
3190 * be called with rcu_read_lock protection.
3191 */
3192 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3193 struct sk_buff *skb)
3194 {
3195 struct ieee80211_local *local = hw_to_local(hw);
3196 struct ieee80211_sub_if_data *sdata;
3197 struct ieee80211_hdr *hdr;
3198 __le16 fc;
3199 struct ieee80211_rx_data rx;
3200 struct ieee80211_sub_if_data *prev;
3201 struct sta_info *sta, *tmp, *prev_sta;
3202 int err = 0;
3203
3204 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3205 memset(&rx, 0, sizeof(rx));
3206 rx.skb = skb;
3207 rx.local = local;
3208
3209 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3210 local->dot11ReceivedFragmentCount++;
3211
3212 if (ieee80211_is_mgmt(fc)) {
3213 /* drop frame if too short for header */
3214 if (skb->len < ieee80211_hdrlen(fc))
3215 err = -ENOBUFS;
3216 else
3217 err = skb_linearize(skb);
3218 } else {
3219 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3220 }
3221
3222 if (err) {
3223 dev_kfree_skb(skb);
3224 return;
3225 }
3226
3227 hdr = (struct ieee80211_hdr *)skb->data;
3228 ieee80211_parse_qos(&rx);
3229 ieee80211_verify_alignment(&rx);
3230
3231 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3232 ieee80211_is_beacon(hdr->frame_control)))
3233 ieee80211_scan_rx(local, skb);
3234
3235 if (ieee80211_is_data(fc)) {
3236 prev_sta = NULL;
3237
3238 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3239 if (!prev_sta) {
3240 prev_sta = sta;
3241 continue;
3242 }
3243
3244 rx.sta = prev_sta;
3245 rx.sdata = prev_sta->sdata;
3246 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3247
3248 prev_sta = sta;
3249 }
3250
3251 if (prev_sta) {
3252 rx.sta = prev_sta;
3253 rx.sdata = prev_sta->sdata;
3254
3255 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3256 return;
3257 goto out;
3258 }
3259 }
3260
3261 prev = NULL;
3262
3263 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3264 if (!ieee80211_sdata_running(sdata))
3265 continue;
3266
3267 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3268 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3269 continue;
3270
3271 /*
3272 * frame is destined for this interface, but if it's
3273 * not also for the previous one we handle that after
3274 * the loop to avoid copying the SKB once too much
3275 */
3276
3277 if (!prev) {
3278 prev = sdata;
3279 continue;
3280 }
3281
3282 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3283 rx.sdata = prev;
3284 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3285
3286 prev = sdata;
3287 }
3288
3289 if (prev) {
3290 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3291 rx.sdata = prev;
3292
3293 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3294 return;
3295 }
3296
3297 out:
3298 dev_kfree_skb(skb);
3299 }
3300
3301 /*
3302 * This is the receive path handler. It is called by a low level driver when an
3303 * 802.11 MPDU is received from the hardware.
3304 */
3305 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3306 {
3307 struct ieee80211_local *local = hw_to_local(hw);
3308 struct ieee80211_rate *rate = NULL;
3309 struct ieee80211_supported_band *sband;
3310 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3311
3312 WARN_ON_ONCE(softirq_count() == 0);
3313
3314 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3315 goto drop;
3316
3317 sband = local->hw.wiphy->bands[status->band];
3318 if (WARN_ON(!sband))
3319 goto drop;
3320
3321 /*
3322 * If we're suspending, it is possible although not too likely
3323 * that we'd be receiving frames after having already partially
3324 * quiesced the stack. We can't process such frames then since
3325 * that might, for example, cause stations to be added or other
3326 * driver callbacks be invoked.
3327 */
3328 if (unlikely(local->quiescing || local->suspended))
3329 goto drop;
3330
3331 /* We might be during a HW reconfig, prevent Rx for the same reason */
3332 if (unlikely(local->in_reconfig))
3333 goto drop;
3334
3335 /*
3336 * The same happens when we're not even started,
3337 * but that's worth a warning.
3338 */
3339 if (WARN_ON(!local->started))
3340 goto drop;
3341
3342 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3343 /*
3344 * Validate the rate, unless a PLCP error means that
3345 * we probably can't have a valid rate here anyway.
3346 */
3347
3348 if (status->flag & RX_FLAG_HT) {
3349 /*
3350 * rate_idx is MCS index, which can be [0-76]
3351 * as documented on:
3352 *
3353 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3354 *
3355 * Anything else would be some sort of driver or
3356 * hardware error. The driver should catch hardware
3357 * errors.
3358 */
3359 if (WARN(status->rate_idx > 76,
3360 "Rate marked as an HT rate but passed "
3361 "status->rate_idx is not "
3362 "an MCS index [0-76]: %d (0x%02x)\n",
3363 status->rate_idx,
3364 status->rate_idx))
3365 goto drop;
3366 } else if (status->flag & RX_FLAG_VHT) {
3367 if (WARN_ONCE(status->rate_idx > 9 ||
3368 !status->vht_nss ||
3369 status->vht_nss > 8,
3370 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3371 status->rate_idx, status->vht_nss))
3372 goto drop;
3373 } else {
3374 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3375 goto drop;
3376 rate = &sband->bitrates[status->rate_idx];
3377 }
3378 }
3379
3380 status->rx_flags = 0;
3381
3382 /*
3383 * key references and virtual interfaces are protected using RCU
3384 * and this requires that we are in a read-side RCU section during
3385 * receive processing
3386 */
3387 rcu_read_lock();
3388
3389 /*
3390 * Frames with failed FCS/PLCP checksum are not returned,
3391 * all other frames are returned without radiotap header
3392 * if it was previously present.
3393 * Also, frames with less than 16 bytes are dropped.
3394 */
3395 skb = ieee80211_rx_monitor(local, skb, rate);
3396 if (!skb) {
3397 rcu_read_unlock();
3398 return;
3399 }
3400
3401 ieee80211_tpt_led_trig_rx(local,
3402 ((struct ieee80211_hdr *)skb->data)->frame_control,
3403 skb->len);
3404 __ieee80211_rx_handle_packet(hw, skb);
3405
3406 rcu_read_unlock();
3407
3408 return;
3409 drop:
3410 kfree_skb(skb);
3411 }
3412 EXPORT_SYMBOL(ieee80211_rx);
3413
3414 /* This is a version of the rx handler that can be called from hard irq
3415 * context. Post the skb on the queue and schedule the tasklet */
3416 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3417 {
3418 struct ieee80211_local *local = hw_to_local(hw);
3419
3420 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3421
3422 skb->pkt_type = IEEE80211_RX_MSG;
3423 skb_queue_tail(&local->skb_queue, skb);
3424 tasklet_schedule(&local->tasklet);
3425 }
3426 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.094158 seconds and 6 git commands to generate.