Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / net / mac80211 / sta_info.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20
21 #include <net/mac80211.h>
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "rate.h"
25 #include "sta_info.h"
26 #include "debugfs_sta.h"
27 #include "mesh.h"
28 #include "wme.h"
29
30 /**
31 * DOC: STA information lifetime rules
32 *
33 * STA info structures (&struct sta_info) are managed in a hash table
34 * for faster lookup and a list for iteration. They are managed using
35 * RCU, i.e. access to the list and hash table is protected by RCU.
36 *
37 * Upon allocating a STA info structure with sta_info_alloc(), the caller
38 * owns that structure. It must then insert it into the hash table using
39 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
40 * case (which acquires an rcu read section but must not be called from
41 * within one) will the pointer still be valid after the call. Note that
42 * the caller may not do much with the STA info before inserting it, in
43 * particular, it may not start any mesh peer link management or add
44 * encryption keys.
45 *
46 * When the insertion fails (sta_info_insert()) returns non-zero), the
47 * structure will have been freed by sta_info_insert()!
48 *
49 * Station entries are added by mac80211 when you establish a link with a
50 * peer. This means different things for the different type of interfaces
51 * we support. For a regular station this mean we add the AP sta when we
52 * receive an association response from the AP. For IBSS this occurs when
53 * get to know about a peer on the same IBSS. For WDS we add the sta for
54 * the peer immediately upon device open. When using AP mode we add stations
55 * for each respective station upon request from userspace through nl80211.
56 *
57 * In order to remove a STA info structure, various sta_info_destroy_*()
58 * calls are available.
59 *
60 * There is no concept of ownership on a STA entry, each structure is
61 * owned by the global hash table/list until it is removed. All users of
62 * the structure need to be RCU protected so that the structure won't be
63 * freed before they are done using it.
64 */
65
66 /* Caller must hold local->sta_mtx */
67 static int sta_info_hash_del(struct ieee80211_local *local,
68 struct sta_info *sta)
69 {
70 struct sta_info *s;
71
72 s = rcu_dereference_protected(local->sta_hash[STA_HASH(sta->sta.addr)],
73 lockdep_is_held(&local->sta_mtx));
74 if (!s)
75 return -ENOENT;
76 if (s == sta) {
77 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)],
78 s->hnext);
79 return 0;
80 }
81
82 while (rcu_access_pointer(s->hnext) &&
83 rcu_access_pointer(s->hnext) != sta)
84 s = rcu_dereference_protected(s->hnext,
85 lockdep_is_held(&local->sta_mtx));
86 if (rcu_access_pointer(s->hnext)) {
87 rcu_assign_pointer(s->hnext, sta->hnext);
88 return 0;
89 }
90
91 return -ENOENT;
92 }
93
94 static void __cleanup_single_sta(struct sta_info *sta)
95 {
96 int ac, i;
97 struct tid_ampdu_tx *tid_tx;
98 struct ieee80211_sub_if_data *sdata = sta->sdata;
99 struct ieee80211_local *local = sdata->local;
100 struct ps_data *ps;
101
102 if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
103 test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
104 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
105 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
106 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
107 ps = &sdata->bss->ps;
108 else if (ieee80211_vif_is_mesh(&sdata->vif))
109 ps = &sdata->u.mesh.ps;
110 else
111 return;
112
113 clear_sta_flag(sta, WLAN_STA_PS_STA);
114 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
115 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
116
117 atomic_dec(&ps->num_sta_ps);
118 sta_info_recalc_tim(sta);
119 }
120
121 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
122 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
123 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
124 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
125 }
126
127 if (ieee80211_vif_is_mesh(&sdata->vif))
128 mesh_sta_cleanup(sta);
129
130 cancel_work_sync(&sta->drv_deliver_wk);
131
132 /*
133 * Destroy aggregation state here. It would be nice to wait for the
134 * driver to finish aggregation stop and then clean up, but for now
135 * drivers have to handle aggregation stop being requested, followed
136 * directly by station destruction.
137 */
138 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
139 kfree(sta->ampdu_mlme.tid_start_tx[i]);
140 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
141 if (!tid_tx)
142 continue;
143 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
144 kfree(tid_tx);
145 }
146 }
147
148 static void cleanup_single_sta(struct sta_info *sta)
149 {
150 struct ieee80211_sub_if_data *sdata = sta->sdata;
151 struct ieee80211_local *local = sdata->local;
152
153 __cleanup_single_sta(sta);
154 sta_info_free(local, sta);
155 }
156
157 /* protected by RCU */
158 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
159 const u8 *addr)
160 {
161 struct ieee80211_local *local = sdata->local;
162 struct sta_info *sta;
163
164 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)],
165 lockdep_is_held(&local->sta_mtx));
166 while (sta) {
167 if (sta->sdata == sdata &&
168 ether_addr_equal(sta->sta.addr, addr))
169 break;
170 sta = rcu_dereference_check(sta->hnext,
171 lockdep_is_held(&local->sta_mtx));
172 }
173 return sta;
174 }
175
176 /*
177 * Get sta info either from the specified interface
178 * or from one of its vlans
179 */
180 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
181 const u8 *addr)
182 {
183 struct ieee80211_local *local = sdata->local;
184 struct sta_info *sta;
185
186 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)],
187 lockdep_is_held(&local->sta_mtx));
188 while (sta) {
189 if ((sta->sdata == sdata ||
190 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) &&
191 ether_addr_equal(sta->sta.addr, addr))
192 break;
193 sta = rcu_dereference_check(sta->hnext,
194 lockdep_is_held(&local->sta_mtx));
195 }
196 return sta;
197 }
198
199 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
200 int idx)
201 {
202 struct ieee80211_local *local = sdata->local;
203 struct sta_info *sta;
204 int i = 0;
205
206 list_for_each_entry_rcu(sta, &local->sta_list, list) {
207 if (sdata != sta->sdata)
208 continue;
209 if (i < idx) {
210 ++i;
211 continue;
212 }
213 return sta;
214 }
215
216 return NULL;
217 }
218
219 /**
220 * sta_info_free - free STA
221 *
222 * @local: pointer to the global information
223 * @sta: STA info to free
224 *
225 * This function must undo everything done by sta_info_alloc()
226 * that may happen before sta_info_insert(). It may only be
227 * called when sta_info_insert() has not been attempted (and
228 * if that fails, the station is freed anyway.)
229 */
230 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
231 {
232 int i;
233
234 if (sta->rate_ctrl)
235 rate_control_free_sta(sta);
236
237 if (sta->tx_lat) {
238 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
239 kfree(sta->tx_lat[i].bins);
240 kfree(sta->tx_lat);
241 }
242
243 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
244
245 kfree(rcu_dereference_raw(sta->sta.rates));
246 kfree(sta);
247 }
248
249 /* Caller must hold local->sta_mtx */
250 static void sta_info_hash_add(struct ieee80211_local *local,
251 struct sta_info *sta)
252 {
253 lockdep_assert_held(&local->sta_mtx);
254 sta->hnext = local->sta_hash[STA_HASH(sta->sta.addr)];
255 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], sta);
256 }
257
258 static void sta_deliver_ps_frames(struct work_struct *wk)
259 {
260 struct sta_info *sta;
261
262 sta = container_of(wk, struct sta_info, drv_deliver_wk);
263
264 if (sta->dead)
265 return;
266
267 local_bh_disable();
268 if (!test_sta_flag(sta, WLAN_STA_PS_STA))
269 ieee80211_sta_ps_deliver_wakeup(sta);
270 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
271 ieee80211_sta_ps_deliver_poll_response(sta);
272 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
273 ieee80211_sta_ps_deliver_uapsd(sta);
274 local_bh_enable();
275 }
276
277 static int sta_prepare_rate_control(struct ieee80211_local *local,
278 struct sta_info *sta, gfp_t gfp)
279 {
280 if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)
281 return 0;
282
283 sta->rate_ctrl = local->rate_ctrl;
284 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
285 &sta->sta, gfp);
286 if (!sta->rate_ctrl_priv)
287 return -ENOMEM;
288
289 return 0;
290 }
291
292 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
293 const u8 *addr, gfp_t gfp)
294 {
295 struct ieee80211_local *local = sdata->local;
296 struct sta_info *sta;
297 struct timespec uptime;
298 struct ieee80211_tx_latency_bin_ranges *tx_latency;
299 int i;
300
301 sta = kzalloc(sizeof(*sta) + local->hw.sta_data_size, gfp);
302 if (!sta)
303 return NULL;
304
305 rcu_read_lock();
306 tx_latency = rcu_dereference(local->tx_latency);
307 /* init stations Tx latency statistics && TID bins */
308 if (tx_latency) {
309 sta->tx_lat = kzalloc(IEEE80211_NUM_TIDS *
310 sizeof(struct ieee80211_tx_latency_stat),
311 GFP_ATOMIC);
312 if (!sta->tx_lat) {
313 rcu_read_unlock();
314 goto free;
315 }
316
317 if (tx_latency->n_ranges) {
318 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
319 /* size of bins is size of the ranges +1 */
320 sta->tx_lat[i].bin_count =
321 tx_latency->n_ranges + 1;
322 sta->tx_lat[i].bins =
323 kcalloc(sta->tx_lat[i].bin_count,
324 sizeof(u32), GFP_ATOMIC);
325 if (!sta->tx_lat[i].bins) {
326 rcu_read_unlock();
327 goto free;
328 }
329 }
330 }
331 }
332 rcu_read_unlock();
333
334 spin_lock_init(&sta->lock);
335 spin_lock_init(&sta->ps_lock);
336 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
337 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
338 mutex_init(&sta->ampdu_mlme.mtx);
339 #ifdef CONFIG_MAC80211_MESH
340 if (ieee80211_vif_is_mesh(&sdata->vif) &&
341 !sdata->u.mesh.user_mpm)
342 init_timer(&sta->plink_timer);
343 sta->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
344 #endif
345
346 memcpy(sta->sta.addr, addr, ETH_ALEN);
347 sta->local = local;
348 sta->sdata = sdata;
349 sta->last_rx = jiffies;
350
351 sta->sta_state = IEEE80211_STA_NONE;
352
353 ktime_get_ts(&uptime);
354 sta->last_connected = uptime.tv_sec;
355 ewma_init(&sta->avg_signal, 1024, 8);
356 for (i = 0; i < ARRAY_SIZE(sta->chain_signal_avg); i++)
357 ewma_init(&sta->chain_signal_avg[i], 1024, 8);
358
359 if (sta_prepare_rate_control(local, sta, gfp))
360 goto free;
361
362 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
363 /*
364 * timer_to_tid must be initialized with identity mapping
365 * to enable session_timer's data differentiation. See
366 * sta_rx_agg_session_timer_expired for usage.
367 */
368 sta->timer_to_tid[i] = i;
369 }
370 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
371 skb_queue_head_init(&sta->ps_tx_buf[i]);
372 skb_queue_head_init(&sta->tx_filtered[i]);
373 }
374
375 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
376 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
377
378 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
379 if (sdata->vif.type == NL80211_IFTYPE_AP ||
380 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
381 struct ieee80211_supported_band *sband =
382 local->hw.wiphy->bands[ieee80211_get_sdata_band(sdata)];
383 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
384 IEEE80211_HT_CAP_SM_PS_SHIFT;
385 /*
386 * Assume that hostapd advertises our caps in the beacon and
387 * this is the known_smps_mode for a station that just assciated
388 */
389 switch (smps) {
390 case WLAN_HT_SMPS_CONTROL_DISABLED:
391 sta->known_smps_mode = IEEE80211_SMPS_OFF;
392 break;
393 case WLAN_HT_SMPS_CONTROL_STATIC:
394 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
395 break;
396 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
397 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
398 break;
399 default:
400 WARN_ON(1);
401 }
402 }
403
404 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
405 return sta;
406
407 free:
408 if (sta->tx_lat) {
409 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
410 kfree(sta->tx_lat[i].bins);
411 kfree(sta->tx_lat);
412 }
413 kfree(sta);
414 return NULL;
415 }
416
417 static int sta_info_insert_check(struct sta_info *sta)
418 {
419 struct ieee80211_sub_if_data *sdata = sta->sdata;
420
421 /*
422 * Can't be a WARN_ON because it can be triggered through a race:
423 * something inserts a STA (on one CPU) without holding the RTNL
424 * and another CPU turns off the net device.
425 */
426 if (unlikely(!ieee80211_sdata_running(sdata)))
427 return -ENETDOWN;
428
429 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
430 is_multicast_ether_addr(sta->sta.addr)))
431 return -EINVAL;
432
433 return 0;
434 }
435
436 static int sta_info_insert_drv_state(struct ieee80211_local *local,
437 struct ieee80211_sub_if_data *sdata,
438 struct sta_info *sta)
439 {
440 enum ieee80211_sta_state state;
441 int err = 0;
442
443 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
444 err = drv_sta_state(local, sdata, sta, state, state + 1);
445 if (err)
446 break;
447 }
448
449 if (!err) {
450 /*
451 * Drivers using legacy sta_add/sta_remove callbacks only
452 * get uploaded set to true after sta_add is called.
453 */
454 if (!local->ops->sta_add)
455 sta->uploaded = true;
456 return 0;
457 }
458
459 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
460 sdata_info(sdata,
461 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
462 sta->sta.addr, state + 1, err);
463 err = 0;
464 }
465
466 /* unwind on error */
467 for (; state > IEEE80211_STA_NOTEXIST; state--)
468 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
469
470 return err;
471 }
472
473 /*
474 * should be called with sta_mtx locked
475 * this function replaces the mutex lock
476 * with a RCU lock
477 */
478 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
479 {
480 struct ieee80211_local *local = sta->local;
481 struct ieee80211_sub_if_data *sdata = sta->sdata;
482 struct station_info sinfo;
483 int err = 0;
484
485 lockdep_assert_held(&local->sta_mtx);
486
487 /* check if STA exists already */
488 if (sta_info_get_bss(sdata, sta->sta.addr)) {
489 err = -EEXIST;
490 goto out_err;
491 }
492
493 local->num_sta++;
494 local->sta_generation++;
495 smp_mb();
496
497 /* simplify things and don't accept BA sessions yet */
498 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
499
500 /* make the station visible */
501 sta_info_hash_add(local, sta);
502
503 list_add_rcu(&sta->list, &local->sta_list);
504
505 /* notify driver */
506 err = sta_info_insert_drv_state(local, sdata, sta);
507 if (err)
508 goto out_remove;
509
510 set_sta_flag(sta, WLAN_STA_INSERTED);
511 /* accept BA sessions now */
512 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
513
514 ieee80211_recalc_min_chandef(sdata);
515 ieee80211_sta_debugfs_add(sta);
516 rate_control_add_sta_debugfs(sta);
517
518 memset(&sinfo, 0, sizeof(sinfo));
519 sinfo.filled = 0;
520 sinfo.generation = local->sta_generation;
521 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL);
522
523 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
524
525 /* move reference to rcu-protected */
526 rcu_read_lock();
527 mutex_unlock(&local->sta_mtx);
528
529 if (ieee80211_vif_is_mesh(&sdata->vif))
530 mesh_accept_plinks_update(sdata);
531
532 return 0;
533 out_remove:
534 sta_info_hash_del(local, sta);
535 list_del_rcu(&sta->list);
536 local->num_sta--;
537 synchronize_net();
538 __cleanup_single_sta(sta);
539 out_err:
540 mutex_unlock(&local->sta_mtx);
541 rcu_read_lock();
542 return err;
543 }
544
545 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
546 {
547 struct ieee80211_local *local = sta->local;
548 int err;
549
550 might_sleep();
551
552 err = sta_info_insert_check(sta);
553 if (err) {
554 rcu_read_lock();
555 goto out_free;
556 }
557
558 mutex_lock(&local->sta_mtx);
559
560 err = sta_info_insert_finish(sta);
561 if (err)
562 goto out_free;
563
564 return 0;
565 out_free:
566 sta_info_free(local, sta);
567 return err;
568 }
569
570 int sta_info_insert(struct sta_info *sta)
571 {
572 int err = sta_info_insert_rcu(sta);
573
574 rcu_read_unlock();
575
576 return err;
577 }
578
579 static inline void __bss_tim_set(u8 *tim, u16 id)
580 {
581 /*
582 * This format has been mandated by the IEEE specifications,
583 * so this line may not be changed to use the __set_bit() format.
584 */
585 tim[id / 8] |= (1 << (id % 8));
586 }
587
588 static inline void __bss_tim_clear(u8 *tim, u16 id)
589 {
590 /*
591 * This format has been mandated by the IEEE specifications,
592 * so this line may not be changed to use the __clear_bit() format.
593 */
594 tim[id / 8] &= ~(1 << (id % 8));
595 }
596
597 static inline bool __bss_tim_get(u8 *tim, u16 id)
598 {
599 /*
600 * This format has been mandated by the IEEE specifications,
601 * so this line may not be changed to use the test_bit() format.
602 */
603 return tim[id / 8] & (1 << (id % 8));
604 }
605
606 static unsigned long ieee80211_tids_for_ac(int ac)
607 {
608 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
609 switch (ac) {
610 case IEEE80211_AC_VO:
611 return BIT(6) | BIT(7);
612 case IEEE80211_AC_VI:
613 return BIT(4) | BIT(5);
614 case IEEE80211_AC_BE:
615 return BIT(0) | BIT(3);
616 case IEEE80211_AC_BK:
617 return BIT(1) | BIT(2);
618 default:
619 WARN_ON(1);
620 return 0;
621 }
622 }
623
624 void sta_info_recalc_tim(struct sta_info *sta)
625 {
626 struct ieee80211_local *local = sta->local;
627 struct ps_data *ps;
628 bool indicate_tim = false;
629 u8 ignore_for_tim = sta->sta.uapsd_queues;
630 int ac;
631 u16 id;
632
633 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
634 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
635 if (WARN_ON_ONCE(!sta->sdata->bss))
636 return;
637
638 ps = &sta->sdata->bss->ps;
639 id = sta->sta.aid;
640 #ifdef CONFIG_MAC80211_MESH
641 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
642 ps = &sta->sdata->u.mesh.ps;
643 /* TIM map only for 1 <= PLID <= IEEE80211_MAX_AID */
644 id = sta->plid % (IEEE80211_MAX_AID + 1);
645 #endif
646 } else {
647 return;
648 }
649
650 /* No need to do anything if the driver does all */
651 if (local->hw.flags & IEEE80211_HW_AP_LINK_PS)
652 return;
653
654 if (sta->dead)
655 goto done;
656
657 /*
658 * If all ACs are delivery-enabled then we should build
659 * the TIM bit for all ACs anyway; if only some are then
660 * we ignore those and build the TIM bit using only the
661 * non-enabled ones.
662 */
663 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
664 ignore_for_tim = 0;
665
666 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
667 unsigned long tids;
668
669 if (ignore_for_tim & BIT(ac))
670 continue;
671
672 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
673 !skb_queue_empty(&sta->ps_tx_buf[ac]);
674 if (indicate_tim)
675 break;
676
677 tids = ieee80211_tids_for_ac(ac);
678
679 indicate_tim |=
680 sta->driver_buffered_tids & tids;
681 }
682
683 done:
684 spin_lock_bh(&local->tim_lock);
685
686 if (indicate_tim == __bss_tim_get(ps->tim, id))
687 goto out_unlock;
688
689 if (indicate_tim)
690 __bss_tim_set(ps->tim, id);
691 else
692 __bss_tim_clear(ps->tim, id);
693
694 if (local->ops->set_tim) {
695 local->tim_in_locked_section = true;
696 drv_set_tim(local, &sta->sta, indicate_tim);
697 local->tim_in_locked_section = false;
698 }
699
700 out_unlock:
701 spin_unlock_bh(&local->tim_lock);
702 }
703
704 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
705 {
706 struct ieee80211_tx_info *info;
707 int timeout;
708
709 if (!skb)
710 return false;
711
712 info = IEEE80211_SKB_CB(skb);
713
714 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
715 timeout = (sta->listen_interval *
716 sta->sdata->vif.bss_conf.beacon_int *
717 32 / 15625) * HZ;
718 if (timeout < STA_TX_BUFFER_EXPIRE)
719 timeout = STA_TX_BUFFER_EXPIRE;
720 return time_after(jiffies, info->control.jiffies + timeout);
721 }
722
723
724 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
725 struct sta_info *sta, int ac)
726 {
727 unsigned long flags;
728 struct sk_buff *skb;
729
730 /*
731 * First check for frames that should expire on the filtered
732 * queue. Frames here were rejected by the driver and are on
733 * a separate queue to avoid reordering with normal PS-buffered
734 * frames. They also aren't accounted for right now in the
735 * total_ps_buffered counter.
736 */
737 for (;;) {
738 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
739 skb = skb_peek(&sta->tx_filtered[ac]);
740 if (sta_info_buffer_expired(sta, skb))
741 skb = __skb_dequeue(&sta->tx_filtered[ac]);
742 else
743 skb = NULL;
744 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
745
746 /*
747 * Frames are queued in order, so if this one
748 * hasn't expired yet we can stop testing. If
749 * we actually reached the end of the queue we
750 * also need to stop, of course.
751 */
752 if (!skb)
753 break;
754 ieee80211_free_txskb(&local->hw, skb);
755 }
756
757 /*
758 * Now also check the normal PS-buffered queue, this will
759 * only find something if the filtered queue was emptied
760 * since the filtered frames are all before the normal PS
761 * buffered frames.
762 */
763 for (;;) {
764 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
765 skb = skb_peek(&sta->ps_tx_buf[ac]);
766 if (sta_info_buffer_expired(sta, skb))
767 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
768 else
769 skb = NULL;
770 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
771
772 /*
773 * frames are queued in order, so if this one
774 * hasn't expired yet (or we reached the end of
775 * the queue) we can stop testing
776 */
777 if (!skb)
778 break;
779
780 local->total_ps_buffered--;
781 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
782 sta->sta.addr);
783 ieee80211_free_txskb(&local->hw, skb);
784 }
785
786 /*
787 * Finally, recalculate the TIM bit for this station -- it might
788 * now be clear because the station was too slow to retrieve its
789 * frames.
790 */
791 sta_info_recalc_tim(sta);
792
793 /*
794 * Return whether there are any frames still buffered, this is
795 * used to check whether the cleanup timer still needs to run,
796 * if there are no frames we don't need to rearm the timer.
797 */
798 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
799 skb_queue_empty(&sta->tx_filtered[ac]));
800 }
801
802 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
803 struct sta_info *sta)
804 {
805 bool have_buffered = false;
806 int ac;
807
808 /* This is only necessary for stations on BSS/MBSS interfaces */
809 if (!sta->sdata->bss &&
810 !ieee80211_vif_is_mesh(&sta->sdata->vif))
811 return false;
812
813 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
814 have_buffered |=
815 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
816
817 return have_buffered;
818 }
819
820 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
821 {
822 struct ieee80211_local *local;
823 struct ieee80211_sub_if_data *sdata;
824 int ret;
825
826 might_sleep();
827
828 if (!sta)
829 return -ENOENT;
830
831 local = sta->local;
832 sdata = sta->sdata;
833
834 lockdep_assert_held(&local->sta_mtx);
835
836 /*
837 * Before removing the station from the driver and
838 * rate control, it might still start new aggregation
839 * sessions -- block that to make sure the tear-down
840 * will be sufficient.
841 */
842 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
843 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
844
845 ret = sta_info_hash_del(local, sta);
846 if (WARN_ON(ret))
847 return ret;
848
849 list_del_rcu(&sta->list);
850
851 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
852
853 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
854 rcu_access_pointer(sdata->u.vlan.sta) == sta)
855 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
856
857 return 0;
858 }
859
860 static void __sta_info_destroy_part2(struct sta_info *sta)
861 {
862 struct ieee80211_local *local = sta->local;
863 struct ieee80211_sub_if_data *sdata = sta->sdata;
864 int ret;
865
866 /*
867 * NOTE: This assumes at least synchronize_net() was done
868 * after _part1 and before _part2!
869 */
870
871 might_sleep();
872 lockdep_assert_held(&local->sta_mtx);
873
874 /* now keys can no longer be reached */
875 ieee80211_free_sta_keys(local, sta);
876
877 sta->dead = true;
878
879 local->num_sta--;
880 local->sta_generation++;
881
882 while (sta->sta_state > IEEE80211_STA_NONE) {
883 ret = sta_info_move_state(sta, sta->sta_state - 1);
884 if (ret) {
885 WARN_ON_ONCE(1);
886 break;
887 }
888 }
889
890 if (sta->uploaded) {
891 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
892 IEEE80211_STA_NOTEXIST);
893 WARN_ON_ONCE(ret != 0);
894 }
895
896 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
897
898 cfg80211_del_sta(sdata->dev, sta->sta.addr, GFP_KERNEL);
899
900 rate_control_remove_sta_debugfs(sta);
901 ieee80211_sta_debugfs_remove(sta);
902 ieee80211_recalc_min_chandef(sdata);
903
904 cleanup_single_sta(sta);
905 }
906
907 int __must_check __sta_info_destroy(struct sta_info *sta)
908 {
909 int err = __sta_info_destroy_part1(sta);
910
911 if (err)
912 return err;
913
914 synchronize_net();
915
916 __sta_info_destroy_part2(sta);
917
918 return 0;
919 }
920
921 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
922 {
923 struct sta_info *sta;
924 int ret;
925
926 mutex_lock(&sdata->local->sta_mtx);
927 sta = sta_info_get(sdata, addr);
928 ret = __sta_info_destroy(sta);
929 mutex_unlock(&sdata->local->sta_mtx);
930
931 return ret;
932 }
933
934 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
935 const u8 *addr)
936 {
937 struct sta_info *sta;
938 int ret;
939
940 mutex_lock(&sdata->local->sta_mtx);
941 sta = sta_info_get_bss(sdata, addr);
942 ret = __sta_info_destroy(sta);
943 mutex_unlock(&sdata->local->sta_mtx);
944
945 return ret;
946 }
947
948 static void sta_info_cleanup(unsigned long data)
949 {
950 struct ieee80211_local *local = (struct ieee80211_local *) data;
951 struct sta_info *sta;
952 bool timer_needed = false;
953
954 rcu_read_lock();
955 list_for_each_entry_rcu(sta, &local->sta_list, list)
956 if (sta_info_cleanup_expire_buffered(local, sta))
957 timer_needed = true;
958 rcu_read_unlock();
959
960 if (local->quiescing)
961 return;
962
963 if (!timer_needed)
964 return;
965
966 mod_timer(&local->sta_cleanup,
967 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
968 }
969
970 void sta_info_init(struct ieee80211_local *local)
971 {
972 spin_lock_init(&local->tim_lock);
973 mutex_init(&local->sta_mtx);
974 INIT_LIST_HEAD(&local->sta_list);
975
976 setup_timer(&local->sta_cleanup, sta_info_cleanup,
977 (unsigned long)local);
978 }
979
980 void sta_info_stop(struct ieee80211_local *local)
981 {
982 del_timer_sync(&local->sta_cleanup);
983 }
984
985
986 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
987 {
988 struct ieee80211_local *local = sdata->local;
989 struct sta_info *sta, *tmp;
990 LIST_HEAD(free_list);
991 int ret = 0;
992
993 might_sleep();
994
995 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
996 WARN_ON(vlans && !sdata->bss);
997
998 mutex_lock(&local->sta_mtx);
999 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1000 if (sdata == sta->sdata ||
1001 (vlans && sdata->bss == sta->sdata->bss)) {
1002 if (!WARN_ON(__sta_info_destroy_part1(sta)))
1003 list_add(&sta->free_list, &free_list);
1004 ret++;
1005 }
1006 }
1007
1008 if (!list_empty(&free_list)) {
1009 synchronize_net();
1010 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1011 __sta_info_destroy_part2(sta);
1012 }
1013 mutex_unlock(&local->sta_mtx);
1014
1015 return ret;
1016 }
1017
1018 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1019 unsigned long exp_time)
1020 {
1021 struct ieee80211_local *local = sdata->local;
1022 struct sta_info *sta, *tmp;
1023
1024 mutex_lock(&local->sta_mtx);
1025
1026 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1027 if (sdata != sta->sdata)
1028 continue;
1029
1030 if (time_after(jiffies, sta->last_rx + exp_time)) {
1031 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1032 sta->sta.addr);
1033
1034 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1035 test_sta_flag(sta, WLAN_STA_PS_STA))
1036 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1037
1038 WARN_ON(__sta_info_destroy(sta));
1039 }
1040 }
1041
1042 mutex_unlock(&local->sta_mtx);
1043 }
1044
1045 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1046 const u8 *addr,
1047 const u8 *localaddr)
1048 {
1049 struct sta_info *sta, *nxt;
1050
1051 /*
1052 * Just return a random station if localaddr is NULL
1053 * ... first in list.
1054 */
1055 for_each_sta_info(hw_to_local(hw), addr, sta, nxt) {
1056 if (localaddr &&
1057 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1058 continue;
1059 if (!sta->uploaded)
1060 return NULL;
1061 return &sta->sta;
1062 }
1063
1064 return NULL;
1065 }
1066 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1067
1068 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1069 const u8 *addr)
1070 {
1071 struct sta_info *sta;
1072
1073 if (!vif)
1074 return NULL;
1075
1076 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1077 if (!sta)
1078 return NULL;
1079
1080 if (!sta->uploaded)
1081 return NULL;
1082
1083 return &sta->sta;
1084 }
1085 EXPORT_SYMBOL(ieee80211_find_sta);
1086
1087 /* powersave support code */
1088 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1089 {
1090 struct ieee80211_sub_if_data *sdata = sta->sdata;
1091 struct ieee80211_local *local = sdata->local;
1092 struct sk_buff_head pending;
1093 int filtered = 0, buffered = 0, ac;
1094 unsigned long flags;
1095 struct ps_data *ps;
1096
1097 if (sdata->vif.type == NL80211_IFTYPE_AP ||
1098 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1099 ps = &sdata->bss->ps;
1100 else if (ieee80211_vif_is_mesh(&sdata->vif))
1101 ps = &sdata->u.mesh.ps;
1102 else
1103 return;
1104
1105 clear_sta_flag(sta, WLAN_STA_SP);
1106
1107 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1108 sta->driver_buffered_tids = 0;
1109
1110 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1111 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1112
1113 skb_queue_head_init(&pending);
1114
1115 /* sync with ieee80211_tx_h_unicast_ps_buf */
1116 spin_lock(&sta->ps_lock);
1117 /* Send all buffered frames to the station */
1118 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1119 int count = skb_queue_len(&pending), tmp;
1120
1121 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1122 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1123 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1124 tmp = skb_queue_len(&pending);
1125 filtered += tmp - count;
1126 count = tmp;
1127
1128 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1129 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1130 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1131 tmp = skb_queue_len(&pending);
1132 buffered += tmp - count;
1133 }
1134
1135 ieee80211_add_pending_skbs(local, &pending);
1136
1137 /* now we're no longer in the deliver code */
1138 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1139
1140 /* The station might have polled and then woken up before we responded,
1141 * so clear these flags now to avoid them sticking around.
1142 */
1143 clear_sta_flag(sta, WLAN_STA_PSPOLL);
1144 clear_sta_flag(sta, WLAN_STA_UAPSD);
1145 spin_unlock(&sta->ps_lock);
1146
1147 atomic_dec(&ps->num_sta_ps);
1148
1149 /* This station just woke up and isn't aware of our SMPS state */
1150 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1151 !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1152 sdata->smps_mode) &&
1153 sta->known_smps_mode != sdata->bss->req_smps &&
1154 sta_info_tx_streams(sta) != 1) {
1155 ht_dbg(sdata,
1156 "%pM just woke up and MIMO capable - update SMPS\n",
1157 sta->sta.addr);
1158 ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1159 sta->sta.addr,
1160 sdata->vif.bss_conf.bssid);
1161 }
1162
1163 local->total_ps_buffered -= buffered;
1164
1165 sta_info_recalc_tim(sta);
1166
1167 ps_dbg(sdata,
1168 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n",
1169 sta->sta.addr, sta->sta.aid, filtered, buffered);
1170 }
1171
1172 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata,
1173 struct sta_info *sta, int tid,
1174 enum ieee80211_frame_release_type reason,
1175 bool call_driver)
1176 {
1177 struct ieee80211_local *local = sdata->local;
1178 struct ieee80211_qos_hdr *nullfunc;
1179 struct sk_buff *skb;
1180 int size = sizeof(*nullfunc);
1181 __le16 fc;
1182 bool qos = test_sta_flag(sta, WLAN_STA_WME);
1183 struct ieee80211_tx_info *info;
1184 struct ieee80211_chanctx_conf *chanctx_conf;
1185
1186 if (qos) {
1187 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1188 IEEE80211_STYPE_QOS_NULLFUNC |
1189 IEEE80211_FCTL_FROMDS);
1190 } else {
1191 size -= 2;
1192 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1193 IEEE80211_STYPE_NULLFUNC |
1194 IEEE80211_FCTL_FROMDS);
1195 }
1196
1197 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1198 if (!skb)
1199 return;
1200
1201 skb_reserve(skb, local->hw.extra_tx_headroom);
1202
1203 nullfunc = (void *) skb_put(skb, size);
1204 nullfunc->frame_control = fc;
1205 nullfunc->duration_id = 0;
1206 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1207 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1208 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1209 nullfunc->seq_ctrl = 0;
1210
1211 skb->priority = tid;
1212 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1213 if (qos) {
1214 nullfunc->qos_ctrl = cpu_to_le16(tid);
1215
1216 if (reason == IEEE80211_FRAME_RELEASE_UAPSD)
1217 nullfunc->qos_ctrl |=
1218 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1219 }
1220
1221 info = IEEE80211_SKB_CB(skb);
1222
1223 /*
1224 * Tell TX path to send this frame even though the
1225 * STA may still remain is PS mode after this frame
1226 * exchange. Also set EOSP to indicate this packet
1227 * ends the poll/service period.
1228 */
1229 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1230 IEEE80211_TX_CTL_PS_RESPONSE |
1231 IEEE80211_TX_STATUS_EOSP |
1232 IEEE80211_TX_CTL_REQ_TX_STATUS;
1233
1234 if (call_driver)
1235 drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1236 reason, false);
1237
1238 skb->dev = sdata->dev;
1239
1240 rcu_read_lock();
1241 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1242 if (WARN_ON(!chanctx_conf)) {
1243 rcu_read_unlock();
1244 kfree_skb(skb);
1245 return;
1246 }
1247
1248 ieee80211_xmit(sdata, skb, chanctx_conf->def.chan->band);
1249 rcu_read_unlock();
1250 }
1251
1252 static int find_highest_prio_tid(unsigned long tids)
1253 {
1254 /* lower 3 TIDs aren't ordered perfectly */
1255 if (tids & 0xF8)
1256 return fls(tids) - 1;
1257 /* TID 0 is BE just like TID 3 */
1258 if (tids & BIT(0))
1259 return 0;
1260 return fls(tids) - 1;
1261 }
1262
1263 static void
1264 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1265 int n_frames, u8 ignored_acs,
1266 enum ieee80211_frame_release_type reason)
1267 {
1268 struct ieee80211_sub_if_data *sdata = sta->sdata;
1269 struct ieee80211_local *local = sdata->local;
1270 bool more_data = false;
1271 int ac;
1272 unsigned long driver_release_tids = 0;
1273 struct sk_buff_head frames;
1274
1275 /* Service or PS-Poll period starts */
1276 set_sta_flag(sta, WLAN_STA_SP);
1277
1278 __skb_queue_head_init(&frames);
1279
1280 /* Get response frame(s) and more data bit for the last one. */
1281 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1282 unsigned long tids;
1283
1284 if (ignored_acs & BIT(ac))
1285 continue;
1286
1287 tids = ieee80211_tids_for_ac(ac);
1288
1289 /* if we already have frames from software, then we can't also
1290 * release from hardware queues
1291 */
1292 if (skb_queue_empty(&frames))
1293 driver_release_tids |= sta->driver_buffered_tids & tids;
1294
1295 if (driver_release_tids) {
1296 /* If the driver has data on more than one TID then
1297 * certainly there's more data if we release just a
1298 * single frame now (from a single TID). This will
1299 * only happen for PS-Poll.
1300 */
1301 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1302 hweight16(driver_release_tids) > 1) {
1303 more_data = true;
1304 driver_release_tids =
1305 BIT(find_highest_prio_tid(
1306 driver_release_tids));
1307 break;
1308 }
1309 } else {
1310 struct sk_buff *skb;
1311
1312 while (n_frames > 0) {
1313 skb = skb_dequeue(&sta->tx_filtered[ac]);
1314 if (!skb) {
1315 skb = skb_dequeue(
1316 &sta->ps_tx_buf[ac]);
1317 if (skb)
1318 local->total_ps_buffered--;
1319 }
1320 if (!skb)
1321 break;
1322 n_frames--;
1323 __skb_queue_tail(&frames, skb);
1324 }
1325 }
1326
1327 /* If we have more frames buffered on this AC, then set the
1328 * more-data bit and abort the loop since we can't send more
1329 * data from other ACs before the buffered frames from this.
1330 */
1331 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1332 !skb_queue_empty(&sta->ps_tx_buf[ac])) {
1333 more_data = true;
1334 break;
1335 }
1336 }
1337
1338 if (skb_queue_empty(&frames) && !driver_release_tids) {
1339 int tid;
1340
1341 /*
1342 * For PS-Poll, this can only happen due to a race condition
1343 * when we set the TIM bit and the station notices it, but
1344 * before it can poll for the frame we expire it.
1345 *
1346 * For uAPSD, this is said in the standard (11.2.1.5 h):
1347 * At each unscheduled SP for a non-AP STA, the AP shall
1348 * attempt to transmit at least one MSDU or MMPDU, but no
1349 * more than the value specified in the Max SP Length field
1350 * in the QoS Capability element from delivery-enabled ACs,
1351 * that are destined for the non-AP STA.
1352 *
1353 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1354 */
1355
1356 /* This will evaluate to 1, 3, 5 or 7. */
1357 tid = 7 - ((ffs(~ignored_acs) - 1) << 1);
1358
1359 ieee80211_send_null_response(sdata, sta, tid, reason, true);
1360 } else if (!driver_release_tids) {
1361 struct sk_buff_head pending;
1362 struct sk_buff *skb;
1363 int num = 0;
1364 u16 tids = 0;
1365 bool need_null = false;
1366
1367 skb_queue_head_init(&pending);
1368
1369 while ((skb = __skb_dequeue(&frames))) {
1370 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1371 struct ieee80211_hdr *hdr = (void *) skb->data;
1372 u8 *qoshdr = NULL;
1373
1374 num++;
1375
1376 /*
1377 * Tell TX path to send this frame even though the
1378 * STA may still remain is PS mode after this frame
1379 * exchange.
1380 */
1381 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1382 IEEE80211_TX_CTL_PS_RESPONSE;
1383
1384 /*
1385 * Use MoreData flag to indicate whether there are
1386 * more buffered frames for this STA
1387 */
1388 if (more_data || !skb_queue_empty(&frames))
1389 hdr->frame_control |=
1390 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1391 else
1392 hdr->frame_control &=
1393 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1394
1395 if (ieee80211_is_data_qos(hdr->frame_control) ||
1396 ieee80211_is_qos_nullfunc(hdr->frame_control))
1397 qoshdr = ieee80211_get_qos_ctl(hdr);
1398
1399 tids |= BIT(skb->priority);
1400
1401 __skb_queue_tail(&pending, skb);
1402
1403 /* end service period after last frame or add one */
1404 if (!skb_queue_empty(&frames))
1405 continue;
1406
1407 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1408 /* for PS-Poll, there's only one frame */
1409 info->flags |= IEEE80211_TX_STATUS_EOSP |
1410 IEEE80211_TX_CTL_REQ_TX_STATUS;
1411 break;
1412 }
1413
1414 /* For uAPSD, things are a bit more complicated. If the
1415 * last frame has a QoS header (i.e. is a QoS-data or
1416 * QoS-nulldata frame) then just set the EOSP bit there
1417 * and be done.
1418 * If the frame doesn't have a QoS header (which means
1419 * it should be a bufferable MMPDU) then we can't set
1420 * the EOSP bit in the QoS header; add a QoS-nulldata
1421 * frame to the list to send it after the MMPDU.
1422 *
1423 * Note that this code is only in the mac80211-release
1424 * code path, we assume that the driver will not buffer
1425 * anything but QoS-data frames, or if it does, will
1426 * create the QoS-nulldata frame by itself if needed.
1427 *
1428 * Cf. 802.11-2012 10.2.1.10 (c).
1429 */
1430 if (qoshdr) {
1431 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1432
1433 info->flags |= IEEE80211_TX_STATUS_EOSP |
1434 IEEE80211_TX_CTL_REQ_TX_STATUS;
1435 } else {
1436 /* The standard isn't completely clear on this
1437 * as it says the more-data bit should be set
1438 * if there are more BUs. The QoS-Null frame
1439 * we're about to send isn't buffered yet, we
1440 * only create it below, but let's pretend it
1441 * was buffered just in case some clients only
1442 * expect more-data=0 when eosp=1.
1443 */
1444 hdr->frame_control |=
1445 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1446 need_null = true;
1447 num++;
1448 }
1449 break;
1450 }
1451
1452 drv_allow_buffered_frames(local, sta, tids, num,
1453 reason, more_data);
1454
1455 ieee80211_add_pending_skbs(local, &pending);
1456
1457 if (need_null)
1458 ieee80211_send_null_response(
1459 sdata, sta, find_highest_prio_tid(tids),
1460 reason, false);
1461
1462 sta_info_recalc_tim(sta);
1463 } else {
1464 /*
1465 * We need to release a frame that is buffered somewhere in the
1466 * driver ... it'll have to handle that.
1467 * Note that the driver also has to check the number of frames
1468 * on the TIDs we're releasing from - if there are more than
1469 * n_frames it has to set the more-data bit (if we didn't ask
1470 * it to set it anyway due to other buffered frames); if there
1471 * are fewer than n_frames it has to make sure to adjust that
1472 * to allow the service period to end properly.
1473 */
1474 drv_release_buffered_frames(local, sta, driver_release_tids,
1475 n_frames, reason, more_data);
1476
1477 /*
1478 * Note that we don't recalculate the TIM bit here as it would
1479 * most likely have no effect at all unless the driver told us
1480 * that the TID(s) became empty before returning here from the
1481 * release function.
1482 * Either way, however, when the driver tells us that the TID(s)
1483 * became empty we'll do the TIM recalculation.
1484 */
1485 }
1486 }
1487
1488 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1489 {
1490 u8 ignore_for_response = sta->sta.uapsd_queues;
1491
1492 /*
1493 * If all ACs are delivery-enabled then we should reply
1494 * from any of them, if only some are enabled we reply
1495 * only from the non-enabled ones.
1496 */
1497 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1498 ignore_for_response = 0;
1499
1500 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1501 IEEE80211_FRAME_RELEASE_PSPOLL);
1502 }
1503
1504 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1505 {
1506 int n_frames = sta->sta.max_sp;
1507 u8 delivery_enabled = sta->sta.uapsd_queues;
1508
1509 /*
1510 * If we ever grow support for TSPEC this might happen if
1511 * the TSPEC update from hostapd comes in between a trigger
1512 * frame setting WLAN_STA_UAPSD in the RX path and this
1513 * actually getting called.
1514 */
1515 if (!delivery_enabled)
1516 return;
1517
1518 switch (sta->sta.max_sp) {
1519 case 1:
1520 n_frames = 2;
1521 break;
1522 case 2:
1523 n_frames = 4;
1524 break;
1525 case 3:
1526 n_frames = 6;
1527 break;
1528 case 0:
1529 /* XXX: what is a good value? */
1530 n_frames = 8;
1531 break;
1532 }
1533
1534 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1535 IEEE80211_FRAME_RELEASE_UAPSD);
1536 }
1537
1538 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1539 struct ieee80211_sta *pubsta, bool block)
1540 {
1541 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1542
1543 trace_api_sta_block_awake(sta->local, pubsta, block);
1544
1545 if (block) {
1546 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1547 return;
1548 }
1549
1550 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1551 return;
1552
1553 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1554 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1555 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1556 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1557 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1558 test_sta_flag(sta, WLAN_STA_UAPSD)) {
1559 /* must be asleep in this case */
1560 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1561 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1562 } else {
1563 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1564 }
1565 }
1566 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1567
1568 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1569 {
1570 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1571 struct ieee80211_local *local = sta->local;
1572
1573 trace_api_eosp(local, pubsta);
1574
1575 clear_sta_flag(sta, WLAN_STA_SP);
1576 }
1577 EXPORT_SYMBOL(ieee80211_sta_eosp);
1578
1579 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1580 u8 tid, bool buffered)
1581 {
1582 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1583
1584 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1585 return;
1586
1587 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1588
1589 if (buffered)
1590 set_bit(tid, &sta->driver_buffered_tids);
1591 else
1592 clear_bit(tid, &sta->driver_buffered_tids);
1593
1594 sta_info_recalc_tim(sta);
1595 }
1596 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1597
1598 int sta_info_move_state(struct sta_info *sta,
1599 enum ieee80211_sta_state new_state)
1600 {
1601 might_sleep();
1602
1603 if (sta->sta_state == new_state)
1604 return 0;
1605
1606 /* check allowed transitions first */
1607
1608 switch (new_state) {
1609 case IEEE80211_STA_NONE:
1610 if (sta->sta_state != IEEE80211_STA_AUTH)
1611 return -EINVAL;
1612 break;
1613 case IEEE80211_STA_AUTH:
1614 if (sta->sta_state != IEEE80211_STA_NONE &&
1615 sta->sta_state != IEEE80211_STA_ASSOC)
1616 return -EINVAL;
1617 break;
1618 case IEEE80211_STA_ASSOC:
1619 if (sta->sta_state != IEEE80211_STA_AUTH &&
1620 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1621 return -EINVAL;
1622 break;
1623 case IEEE80211_STA_AUTHORIZED:
1624 if (sta->sta_state != IEEE80211_STA_ASSOC)
1625 return -EINVAL;
1626 break;
1627 default:
1628 WARN(1, "invalid state %d", new_state);
1629 return -EINVAL;
1630 }
1631
1632 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1633 sta->sta.addr, new_state);
1634
1635 /*
1636 * notify the driver before the actual changes so it can
1637 * fail the transition
1638 */
1639 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1640 int err = drv_sta_state(sta->local, sta->sdata, sta,
1641 sta->sta_state, new_state);
1642 if (err)
1643 return err;
1644 }
1645
1646 /* reflect the change in all state variables */
1647
1648 switch (new_state) {
1649 case IEEE80211_STA_NONE:
1650 if (sta->sta_state == IEEE80211_STA_AUTH)
1651 clear_bit(WLAN_STA_AUTH, &sta->_flags);
1652 break;
1653 case IEEE80211_STA_AUTH:
1654 if (sta->sta_state == IEEE80211_STA_NONE)
1655 set_bit(WLAN_STA_AUTH, &sta->_flags);
1656 else if (sta->sta_state == IEEE80211_STA_ASSOC)
1657 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1658 break;
1659 case IEEE80211_STA_ASSOC:
1660 if (sta->sta_state == IEEE80211_STA_AUTH) {
1661 set_bit(WLAN_STA_ASSOC, &sta->_flags);
1662 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1663 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1664 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1665 !sta->sdata->u.vlan.sta))
1666 atomic_dec(&sta->sdata->bss->num_mcast_sta);
1667 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1668 }
1669 break;
1670 case IEEE80211_STA_AUTHORIZED:
1671 if (sta->sta_state == IEEE80211_STA_ASSOC) {
1672 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1673 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1674 !sta->sdata->u.vlan.sta))
1675 atomic_inc(&sta->sdata->bss->num_mcast_sta);
1676 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1677 }
1678 break;
1679 default:
1680 break;
1681 }
1682
1683 sta->sta_state = new_state;
1684
1685 return 0;
1686 }
1687
1688 u8 sta_info_tx_streams(struct sta_info *sta)
1689 {
1690 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1691 u8 rx_streams;
1692
1693 if (!sta->sta.ht_cap.ht_supported)
1694 return 1;
1695
1696 if (sta->sta.vht_cap.vht_supported) {
1697 int i;
1698 u16 tx_mcs_map =
1699 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
1700
1701 for (i = 7; i >= 0; i--)
1702 if ((tx_mcs_map & (0x3 << (i * 2))) !=
1703 IEEE80211_VHT_MCS_NOT_SUPPORTED)
1704 return i + 1;
1705 }
1706
1707 if (ht_cap->mcs.rx_mask[3])
1708 rx_streams = 4;
1709 else if (ht_cap->mcs.rx_mask[2])
1710 rx_streams = 3;
1711 else if (ht_cap->mcs.rx_mask[1])
1712 rx_streams = 2;
1713 else
1714 rx_streams = 1;
1715
1716 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
1717 return rx_streams;
1718
1719 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
1720 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
1721 }
1722
1723 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
1724 {
1725 struct ieee80211_sub_if_data *sdata = sta->sdata;
1726 struct ieee80211_local *local = sdata->local;
1727 struct rate_control_ref *ref = NULL;
1728 struct timespec uptime;
1729 u64 packets = 0;
1730 u32 thr = 0;
1731 int i, ac;
1732
1733 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
1734 ref = local->rate_ctrl;
1735
1736 sinfo->generation = sdata->local->sta_generation;
1737
1738 sinfo->filled = STATION_INFO_INACTIVE_TIME |
1739 STATION_INFO_RX_BYTES64 |
1740 STATION_INFO_TX_BYTES64 |
1741 STATION_INFO_RX_PACKETS |
1742 STATION_INFO_TX_PACKETS |
1743 STATION_INFO_TX_RETRIES |
1744 STATION_INFO_TX_FAILED |
1745 STATION_INFO_TX_BITRATE |
1746 STATION_INFO_RX_BITRATE |
1747 STATION_INFO_RX_DROP_MISC |
1748 STATION_INFO_BSS_PARAM |
1749 STATION_INFO_CONNECTED_TIME |
1750 STATION_INFO_STA_FLAGS |
1751 STATION_INFO_BEACON_LOSS_COUNT;
1752
1753 ktime_get_ts(&uptime);
1754 sinfo->connected_time = uptime.tv_sec - sta->last_connected;
1755
1756 sinfo->inactive_time = jiffies_to_msecs(jiffies - sta->last_rx);
1757 sinfo->tx_bytes = 0;
1758 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1759 sinfo->tx_bytes += sta->tx_bytes[ac];
1760 packets += sta->tx_packets[ac];
1761 }
1762 sinfo->tx_packets = packets;
1763 sinfo->rx_bytes = sta->rx_bytes;
1764 sinfo->rx_packets = sta->rx_packets;
1765 sinfo->tx_retries = sta->tx_retry_count;
1766 sinfo->tx_failed = sta->tx_retry_failed;
1767 sinfo->rx_dropped_misc = sta->rx_dropped;
1768 sinfo->beacon_loss_count = sta->beacon_loss_count;
1769
1770 if ((sta->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) ||
1771 (sta->local->hw.flags & IEEE80211_HW_SIGNAL_UNSPEC)) {
1772 sinfo->filled |= STATION_INFO_SIGNAL | STATION_INFO_SIGNAL_AVG;
1773 if (!local->ops->get_rssi ||
1774 drv_get_rssi(local, sdata, &sta->sta, &sinfo->signal))
1775 sinfo->signal = (s8)sta->last_signal;
1776 sinfo->signal_avg = (s8) -ewma_read(&sta->avg_signal);
1777 }
1778 if (sta->chains) {
1779 sinfo->filled |= STATION_INFO_CHAIN_SIGNAL |
1780 STATION_INFO_CHAIN_SIGNAL_AVG;
1781
1782 sinfo->chains = sta->chains;
1783 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
1784 sinfo->chain_signal[i] = sta->chain_signal_last[i];
1785 sinfo->chain_signal_avg[i] =
1786 (s8) -ewma_read(&sta->chain_signal_avg[i]);
1787 }
1788 }
1789
1790 sta_set_rate_info_tx(sta, &sta->last_tx_rate, &sinfo->txrate);
1791 sta_set_rate_info_rx(sta, &sinfo->rxrate);
1792
1793 if (ieee80211_vif_is_mesh(&sdata->vif)) {
1794 #ifdef CONFIG_MAC80211_MESH
1795 sinfo->filled |= STATION_INFO_LLID |
1796 STATION_INFO_PLID |
1797 STATION_INFO_PLINK_STATE |
1798 STATION_INFO_LOCAL_PM |
1799 STATION_INFO_PEER_PM |
1800 STATION_INFO_NONPEER_PM;
1801
1802 sinfo->llid = sta->llid;
1803 sinfo->plid = sta->plid;
1804 sinfo->plink_state = sta->plink_state;
1805 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
1806 sinfo->filled |= STATION_INFO_T_OFFSET;
1807 sinfo->t_offset = sta->t_offset;
1808 }
1809 sinfo->local_pm = sta->local_pm;
1810 sinfo->peer_pm = sta->peer_pm;
1811 sinfo->nonpeer_pm = sta->nonpeer_pm;
1812 #endif
1813 }
1814
1815 sinfo->bss_param.flags = 0;
1816 if (sdata->vif.bss_conf.use_cts_prot)
1817 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
1818 if (sdata->vif.bss_conf.use_short_preamble)
1819 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
1820 if (sdata->vif.bss_conf.use_short_slot)
1821 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
1822 sinfo->bss_param.dtim_period = sdata->local->hw.conf.ps_dtim_period;
1823 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
1824
1825 sinfo->sta_flags.set = 0;
1826 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
1827 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
1828 BIT(NL80211_STA_FLAG_WME) |
1829 BIT(NL80211_STA_FLAG_MFP) |
1830 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
1831 BIT(NL80211_STA_FLAG_ASSOCIATED) |
1832 BIT(NL80211_STA_FLAG_TDLS_PEER);
1833 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
1834 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
1835 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
1836 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
1837 if (test_sta_flag(sta, WLAN_STA_WME))
1838 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
1839 if (test_sta_flag(sta, WLAN_STA_MFP))
1840 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
1841 if (test_sta_flag(sta, WLAN_STA_AUTH))
1842 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
1843 if (test_sta_flag(sta, WLAN_STA_ASSOC))
1844 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
1845 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
1846 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
1847
1848 /* check if the driver has a SW RC implementation */
1849 if (ref && ref->ops->get_expected_throughput)
1850 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
1851 else
1852 thr = drv_get_expected_throughput(local, &sta->sta);
1853
1854 if (thr != 0) {
1855 sinfo->filled |= STATION_INFO_EXPECTED_THROUGHPUT;
1856 sinfo->expected_throughput = thr;
1857 }
1858 }
This page took 0.067655 seconds and 6 git commands to generate.