Merge tag 'xtensa-next-20141215' of git://github.com/czankel/xtensa-linux
[deliverable/linux.git] / net / mac80211 / sta_info.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
4 * Copyright 2013-2014 Intel Mobile Communications GmbH
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/etherdevice.h>
14 #include <linux/netdevice.h>
15 #include <linux/types.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/if_arp.h>
19 #include <linux/timer.h>
20 #include <linux/rtnetlink.h>
21
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30
31 /**
32 * DOC: STA information lifetime rules
33 *
34 * STA info structures (&struct sta_info) are managed in a hash table
35 * for faster lookup and a list for iteration. They are managed using
36 * RCU, i.e. access to the list and hash table is protected by RCU.
37 *
38 * Upon allocating a STA info structure with sta_info_alloc(), the caller
39 * owns that structure. It must then insert it into the hash table using
40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41 * case (which acquires an rcu read section but must not be called from
42 * within one) will the pointer still be valid after the call. Note that
43 * the caller may not do much with the STA info before inserting it, in
44 * particular, it may not start any mesh peer link management or add
45 * encryption keys.
46 *
47 * When the insertion fails (sta_info_insert()) returns non-zero), the
48 * structure will have been freed by sta_info_insert()!
49 *
50 * Station entries are added by mac80211 when you establish a link with a
51 * peer. This means different things for the different type of interfaces
52 * we support. For a regular station this mean we add the AP sta when we
53 * receive an association response from the AP. For IBSS this occurs when
54 * get to know about a peer on the same IBSS. For WDS we add the sta for
55 * the peer immediately upon device open. When using AP mode we add stations
56 * for each respective station upon request from userspace through nl80211.
57 *
58 * In order to remove a STA info structure, various sta_info_destroy_*()
59 * calls are available.
60 *
61 * There is no concept of ownership on a STA entry, each structure is
62 * owned by the global hash table/list until it is removed. All users of
63 * the structure need to be RCU protected so that the structure won't be
64 * freed before they are done using it.
65 */
66
67 /* Caller must hold local->sta_mtx */
68 static int sta_info_hash_del(struct ieee80211_local *local,
69 struct sta_info *sta)
70 {
71 struct sta_info *s;
72
73 s = rcu_dereference_protected(local->sta_hash[STA_HASH(sta->sta.addr)],
74 lockdep_is_held(&local->sta_mtx));
75 if (!s)
76 return -ENOENT;
77 if (s == sta) {
78 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)],
79 s->hnext);
80 return 0;
81 }
82
83 while (rcu_access_pointer(s->hnext) &&
84 rcu_access_pointer(s->hnext) != sta)
85 s = rcu_dereference_protected(s->hnext,
86 lockdep_is_held(&local->sta_mtx));
87 if (rcu_access_pointer(s->hnext)) {
88 rcu_assign_pointer(s->hnext, sta->hnext);
89 return 0;
90 }
91
92 return -ENOENT;
93 }
94
95 static void __cleanup_single_sta(struct sta_info *sta)
96 {
97 int ac, i;
98 struct tid_ampdu_tx *tid_tx;
99 struct ieee80211_sub_if_data *sdata = sta->sdata;
100 struct ieee80211_local *local = sdata->local;
101 struct ps_data *ps;
102
103 if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
104 test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
105 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
106 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
107 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
108 ps = &sdata->bss->ps;
109 else if (ieee80211_vif_is_mesh(&sdata->vif))
110 ps = &sdata->u.mesh.ps;
111 else
112 return;
113
114 clear_sta_flag(sta, WLAN_STA_PS_STA);
115 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
116 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
117
118 atomic_dec(&ps->num_sta_ps);
119 sta_info_recalc_tim(sta);
120 }
121
122 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
123 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
124 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
125 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
126 }
127
128 if (ieee80211_vif_is_mesh(&sdata->vif))
129 mesh_sta_cleanup(sta);
130
131 cancel_work_sync(&sta->drv_deliver_wk);
132
133 /*
134 * Destroy aggregation state here. It would be nice to wait for the
135 * driver to finish aggregation stop and then clean up, but for now
136 * drivers have to handle aggregation stop being requested, followed
137 * directly by station destruction.
138 */
139 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
140 kfree(sta->ampdu_mlme.tid_start_tx[i]);
141 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
142 if (!tid_tx)
143 continue;
144 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
145 kfree(tid_tx);
146 }
147 }
148
149 static void cleanup_single_sta(struct sta_info *sta)
150 {
151 struct ieee80211_sub_if_data *sdata = sta->sdata;
152 struct ieee80211_local *local = sdata->local;
153
154 __cleanup_single_sta(sta);
155 sta_info_free(local, sta);
156 }
157
158 /* protected by RCU */
159 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
160 const u8 *addr)
161 {
162 struct ieee80211_local *local = sdata->local;
163 struct sta_info *sta;
164
165 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)],
166 lockdep_is_held(&local->sta_mtx));
167 while (sta) {
168 if (sta->sdata == sdata &&
169 ether_addr_equal(sta->sta.addr, addr))
170 break;
171 sta = rcu_dereference_check(sta->hnext,
172 lockdep_is_held(&local->sta_mtx));
173 }
174 return sta;
175 }
176
177 /*
178 * Get sta info either from the specified interface
179 * or from one of its vlans
180 */
181 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
182 const u8 *addr)
183 {
184 struct ieee80211_local *local = sdata->local;
185 struct sta_info *sta;
186
187 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)],
188 lockdep_is_held(&local->sta_mtx));
189 while (sta) {
190 if ((sta->sdata == sdata ||
191 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) &&
192 ether_addr_equal(sta->sta.addr, addr))
193 break;
194 sta = rcu_dereference_check(sta->hnext,
195 lockdep_is_held(&local->sta_mtx));
196 }
197 return sta;
198 }
199
200 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
201 int idx)
202 {
203 struct ieee80211_local *local = sdata->local;
204 struct sta_info *sta;
205 int i = 0;
206
207 list_for_each_entry_rcu(sta, &local->sta_list, list) {
208 if (sdata != sta->sdata)
209 continue;
210 if (i < idx) {
211 ++i;
212 continue;
213 }
214 return sta;
215 }
216
217 return NULL;
218 }
219
220 /**
221 * sta_info_free - free STA
222 *
223 * @local: pointer to the global information
224 * @sta: STA info to free
225 *
226 * This function must undo everything done by sta_info_alloc()
227 * that may happen before sta_info_insert(). It may only be
228 * called when sta_info_insert() has not been attempted (and
229 * if that fails, the station is freed anyway.)
230 */
231 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
232 {
233 int i;
234
235 if (sta->rate_ctrl)
236 rate_control_free_sta(sta);
237
238 if (sta->tx_lat) {
239 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
240 kfree(sta->tx_lat[i].bins);
241 kfree(sta->tx_lat);
242 }
243
244 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
245
246 kfree(rcu_dereference_raw(sta->sta.rates));
247 kfree(sta);
248 }
249
250 /* Caller must hold local->sta_mtx */
251 static void sta_info_hash_add(struct ieee80211_local *local,
252 struct sta_info *sta)
253 {
254 lockdep_assert_held(&local->sta_mtx);
255 sta->hnext = local->sta_hash[STA_HASH(sta->sta.addr)];
256 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], sta);
257 }
258
259 static void sta_deliver_ps_frames(struct work_struct *wk)
260 {
261 struct sta_info *sta;
262
263 sta = container_of(wk, struct sta_info, drv_deliver_wk);
264
265 if (sta->dead)
266 return;
267
268 local_bh_disable();
269 if (!test_sta_flag(sta, WLAN_STA_PS_STA))
270 ieee80211_sta_ps_deliver_wakeup(sta);
271 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
272 ieee80211_sta_ps_deliver_poll_response(sta);
273 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
274 ieee80211_sta_ps_deliver_uapsd(sta);
275 local_bh_enable();
276 }
277
278 static int sta_prepare_rate_control(struct ieee80211_local *local,
279 struct sta_info *sta, gfp_t gfp)
280 {
281 if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)
282 return 0;
283
284 sta->rate_ctrl = local->rate_ctrl;
285 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
286 &sta->sta, gfp);
287 if (!sta->rate_ctrl_priv)
288 return -ENOMEM;
289
290 return 0;
291 }
292
293 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
294 const u8 *addr, gfp_t gfp)
295 {
296 struct ieee80211_local *local = sdata->local;
297 struct sta_info *sta;
298 struct timespec uptime;
299 struct ieee80211_tx_latency_bin_ranges *tx_latency;
300 int i;
301
302 sta = kzalloc(sizeof(*sta) + local->hw.sta_data_size, gfp);
303 if (!sta)
304 return NULL;
305
306 rcu_read_lock();
307 tx_latency = rcu_dereference(local->tx_latency);
308 /* init stations Tx latency statistics && TID bins */
309 if (tx_latency) {
310 sta->tx_lat = kzalloc(IEEE80211_NUM_TIDS *
311 sizeof(struct ieee80211_tx_latency_stat),
312 GFP_ATOMIC);
313 if (!sta->tx_lat) {
314 rcu_read_unlock();
315 goto free;
316 }
317
318 if (tx_latency->n_ranges) {
319 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
320 /* size of bins is size of the ranges +1 */
321 sta->tx_lat[i].bin_count =
322 tx_latency->n_ranges + 1;
323 sta->tx_lat[i].bins =
324 kcalloc(sta->tx_lat[i].bin_count,
325 sizeof(u32), GFP_ATOMIC);
326 if (!sta->tx_lat[i].bins) {
327 rcu_read_unlock();
328 goto free;
329 }
330 }
331 }
332 }
333 rcu_read_unlock();
334
335 spin_lock_init(&sta->lock);
336 spin_lock_init(&sta->ps_lock);
337 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
338 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
339 mutex_init(&sta->ampdu_mlme.mtx);
340 #ifdef CONFIG_MAC80211_MESH
341 if (ieee80211_vif_is_mesh(&sdata->vif) &&
342 !sdata->u.mesh.user_mpm)
343 init_timer(&sta->plink_timer);
344 sta->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
345 #endif
346
347 memcpy(sta->sta.addr, addr, ETH_ALEN);
348 sta->local = local;
349 sta->sdata = sdata;
350 sta->last_rx = jiffies;
351
352 sta->sta_state = IEEE80211_STA_NONE;
353
354 /* Mark TID as unreserved */
355 sta->reserved_tid = IEEE80211_TID_UNRESERVED;
356
357 ktime_get_ts(&uptime);
358 sta->last_connected = uptime.tv_sec;
359 ewma_init(&sta->avg_signal, 1024, 8);
360 for (i = 0; i < ARRAY_SIZE(sta->chain_signal_avg); i++)
361 ewma_init(&sta->chain_signal_avg[i], 1024, 8);
362
363 if (sta_prepare_rate_control(local, sta, gfp))
364 goto free;
365
366 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
367 /*
368 * timer_to_tid must be initialized with identity mapping
369 * to enable session_timer's data differentiation. See
370 * sta_rx_agg_session_timer_expired for usage.
371 */
372 sta->timer_to_tid[i] = i;
373 }
374 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
375 skb_queue_head_init(&sta->ps_tx_buf[i]);
376 skb_queue_head_init(&sta->tx_filtered[i]);
377 }
378
379 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
380 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
381
382 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
383 if (sdata->vif.type == NL80211_IFTYPE_AP ||
384 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
385 struct ieee80211_supported_band *sband =
386 local->hw.wiphy->bands[ieee80211_get_sdata_band(sdata)];
387 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
388 IEEE80211_HT_CAP_SM_PS_SHIFT;
389 /*
390 * Assume that hostapd advertises our caps in the beacon and
391 * this is the known_smps_mode for a station that just assciated
392 */
393 switch (smps) {
394 case WLAN_HT_SMPS_CONTROL_DISABLED:
395 sta->known_smps_mode = IEEE80211_SMPS_OFF;
396 break;
397 case WLAN_HT_SMPS_CONTROL_STATIC:
398 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
399 break;
400 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
401 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
402 break;
403 default:
404 WARN_ON(1);
405 }
406 }
407
408 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
409 return sta;
410
411 free:
412 if (sta->tx_lat) {
413 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
414 kfree(sta->tx_lat[i].bins);
415 kfree(sta->tx_lat);
416 }
417 kfree(sta);
418 return NULL;
419 }
420
421 static int sta_info_insert_check(struct sta_info *sta)
422 {
423 struct ieee80211_sub_if_data *sdata = sta->sdata;
424
425 /*
426 * Can't be a WARN_ON because it can be triggered through a race:
427 * something inserts a STA (on one CPU) without holding the RTNL
428 * and another CPU turns off the net device.
429 */
430 if (unlikely(!ieee80211_sdata_running(sdata)))
431 return -ENETDOWN;
432
433 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
434 is_multicast_ether_addr(sta->sta.addr)))
435 return -EINVAL;
436
437 return 0;
438 }
439
440 static int sta_info_insert_drv_state(struct ieee80211_local *local,
441 struct ieee80211_sub_if_data *sdata,
442 struct sta_info *sta)
443 {
444 enum ieee80211_sta_state state;
445 int err = 0;
446
447 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
448 err = drv_sta_state(local, sdata, sta, state, state + 1);
449 if (err)
450 break;
451 }
452
453 if (!err) {
454 /*
455 * Drivers using legacy sta_add/sta_remove callbacks only
456 * get uploaded set to true after sta_add is called.
457 */
458 if (!local->ops->sta_add)
459 sta->uploaded = true;
460 return 0;
461 }
462
463 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
464 sdata_info(sdata,
465 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
466 sta->sta.addr, state + 1, err);
467 err = 0;
468 }
469
470 /* unwind on error */
471 for (; state > IEEE80211_STA_NOTEXIST; state--)
472 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
473
474 return err;
475 }
476
477 /*
478 * should be called with sta_mtx locked
479 * this function replaces the mutex lock
480 * with a RCU lock
481 */
482 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
483 {
484 struct ieee80211_local *local = sta->local;
485 struct ieee80211_sub_if_data *sdata = sta->sdata;
486 struct station_info sinfo;
487 int err = 0;
488
489 lockdep_assert_held(&local->sta_mtx);
490
491 /* check if STA exists already */
492 if (sta_info_get_bss(sdata, sta->sta.addr)) {
493 err = -EEXIST;
494 goto out_err;
495 }
496
497 local->num_sta++;
498 local->sta_generation++;
499 smp_mb();
500
501 /* simplify things and don't accept BA sessions yet */
502 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
503
504 /* make the station visible */
505 sta_info_hash_add(local, sta);
506
507 list_add_tail_rcu(&sta->list, &local->sta_list);
508
509 /* notify driver */
510 err = sta_info_insert_drv_state(local, sdata, sta);
511 if (err)
512 goto out_remove;
513
514 set_sta_flag(sta, WLAN_STA_INSERTED);
515 /* accept BA sessions now */
516 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
517
518 ieee80211_recalc_min_chandef(sdata);
519 ieee80211_sta_debugfs_add(sta);
520 rate_control_add_sta_debugfs(sta);
521
522 memset(&sinfo, 0, sizeof(sinfo));
523 sinfo.filled = 0;
524 sinfo.generation = local->sta_generation;
525 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL);
526
527 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
528
529 /* move reference to rcu-protected */
530 rcu_read_lock();
531 mutex_unlock(&local->sta_mtx);
532
533 if (ieee80211_vif_is_mesh(&sdata->vif))
534 mesh_accept_plinks_update(sdata);
535
536 return 0;
537 out_remove:
538 sta_info_hash_del(local, sta);
539 list_del_rcu(&sta->list);
540 local->num_sta--;
541 synchronize_net();
542 __cleanup_single_sta(sta);
543 out_err:
544 mutex_unlock(&local->sta_mtx);
545 rcu_read_lock();
546 return err;
547 }
548
549 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
550 {
551 struct ieee80211_local *local = sta->local;
552 int err;
553
554 might_sleep();
555
556 err = sta_info_insert_check(sta);
557 if (err) {
558 rcu_read_lock();
559 goto out_free;
560 }
561
562 mutex_lock(&local->sta_mtx);
563
564 err = sta_info_insert_finish(sta);
565 if (err)
566 goto out_free;
567
568 return 0;
569 out_free:
570 sta_info_free(local, sta);
571 return err;
572 }
573
574 int sta_info_insert(struct sta_info *sta)
575 {
576 int err = sta_info_insert_rcu(sta);
577
578 rcu_read_unlock();
579
580 return err;
581 }
582
583 static inline void __bss_tim_set(u8 *tim, u16 id)
584 {
585 /*
586 * This format has been mandated by the IEEE specifications,
587 * so this line may not be changed to use the __set_bit() format.
588 */
589 tim[id / 8] |= (1 << (id % 8));
590 }
591
592 static inline void __bss_tim_clear(u8 *tim, u16 id)
593 {
594 /*
595 * This format has been mandated by the IEEE specifications,
596 * so this line may not be changed to use the __clear_bit() format.
597 */
598 tim[id / 8] &= ~(1 << (id % 8));
599 }
600
601 static inline bool __bss_tim_get(u8 *tim, u16 id)
602 {
603 /*
604 * This format has been mandated by the IEEE specifications,
605 * so this line may not be changed to use the test_bit() format.
606 */
607 return tim[id / 8] & (1 << (id % 8));
608 }
609
610 static unsigned long ieee80211_tids_for_ac(int ac)
611 {
612 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
613 switch (ac) {
614 case IEEE80211_AC_VO:
615 return BIT(6) | BIT(7);
616 case IEEE80211_AC_VI:
617 return BIT(4) | BIT(5);
618 case IEEE80211_AC_BE:
619 return BIT(0) | BIT(3);
620 case IEEE80211_AC_BK:
621 return BIT(1) | BIT(2);
622 default:
623 WARN_ON(1);
624 return 0;
625 }
626 }
627
628 void sta_info_recalc_tim(struct sta_info *sta)
629 {
630 struct ieee80211_local *local = sta->local;
631 struct ps_data *ps;
632 bool indicate_tim = false;
633 u8 ignore_for_tim = sta->sta.uapsd_queues;
634 int ac;
635 u16 id;
636
637 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
638 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
639 if (WARN_ON_ONCE(!sta->sdata->bss))
640 return;
641
642 ps = &sta->sdata->bss->ps;
643 id = sta->sta.aid;
644 #ifdef CONFIG_MAC80211_MESH
645 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
646 ps = &sta->sdata->u.mesh.ps;
647 /* TIM map only for 1 <= PLID <= IEEE80211_MAX_AID */
648 id = sta->plid % (IEEE80211_MAX_AID + 1);
649 #endif
650 } else {
651 return;
652 }
653
654 /* No need to do anything if the driver does all */
655 if (local->hw.flags & IEEE80211_HW_AP_LINK_PS)
656 return;
657
658 if (sta->dead)
659 goto done;
660
661 /*
662 * If all ACs are delivery-enabled then we should build
663 * the TIM bit for all ACs anyway; if only some are then
664 * we ignore those and build the TIM bit using only the
665 * non-enabled ones.
666 */
667 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
668 ignore_for_tim = 0;
669
670 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
671 unsigned long tids;
672
673 if (ignore_for_tim & BIT(ac))
674 continue;
675
676 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
677 !skb_queue_empty(&sta->ps_tx_buf[ac]);
678 if (indicate_tim)
679 break;
680
681 tids = ieee80211_tids_for_ac(ac);
682
683 indicate_tim |=
684 sta->driver_buffered_tids & tids;
685 }
686
687 done:
688 spin_lock_bh(&local->tim_lock);
689
690 if (indicate_tim == __bss_tim_get(ps->tim, id))
691 goto out_unlock;
692
693 if (indicate_tim)
694 __bss_tim_set(ps->tim, id);
695 else
696 __bss_tim_clear(ps->tim, id);
697
698 if (local->ops->set_tim) {
699 local->tim_in_locked_section = true;
700 drv_set_tim(local, &sta->sta, indicate_tim);
701 local->tim_in_locked_section = false;
702 }
703
704 out_unlock:
705 spin_unlock_bh(&local->tim_lock);
706 }
707
708 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
709 {
710 struct ieee80211_tx_info *info;
711 int timeout;
712
713 if (!skb)
714 return false;
715
716 info = IEEE80211_SKB_CB(skb);
717
718 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
719 timeout = (sta->listen_interval *
720 sta->sdata->vif.bss_conf.beacon_int *
721 32 / 15625) * HZ;
722 if (timeout < STA_TX_BUFFER_EXPIRE)
723 timeout = STA_TX_BUFFER_EXPIRE;
724 return time_after(jiffies, info->control.jiffies + timeout);
725 }
726
727
728 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
729 struct sta_info *sta, int ac)
730 {
731 unsigned long flags;
732 struct sk_buff *skb;
733
734 /*
735 * First check for frames that should expire on the filtered
736 * queue. Frames here were rejected by the driver and are on
737 * a separate queue to avoid reordering with normal PS-buffered
738 * frames. They also aren't accounted for right now in the
739 * total_ps_buffered counter.
740 */
741 for (;;) {
742 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
743 skb = skb_peek(&sta->tx_filtered[ac]);
744 if (sta_info_buffer_expired(sta, skb))
745 skb = __skb_dequeue(&sta->tx_filtered[ac]);
746 else
747 skb = NULL;
748 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
749
750 /*
751 * Frames are queued in order, so if this one
752 * hasn't expired yet we can stop testing. If
753 * we actually reached the end of the queue we
754 * also need to stop, of course.
755 */
756 if (!skb)
757 break;
758 ieee80211_free_txskb(&local->hw, skb);
759 }
760
761 /*
762 * Now also check the normal PS-buffered queue, this will
763 * only find something if the filtered queue was emptied
764 * since the filtered frames are all before the normal PS
765 * buffered frames.
766 */
767 for (;;) {
768 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
769 skb = skb_peek(&sta->ps_tx_buf[ac]);
770 if (sta_info_buffer_expired(sta, skb))
771 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
772 else
773 skb = NULL;
774 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
775
776 /*
777 * frames are queued in order, so if this one
778 * hasn't expired yet (or we reached the end of
779 * the queue) we can stop testing
780 */
781 if (!skb)
782 break;
783
784 local->total_ps_buffered--;
785 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
786 sta->sta.addr);
787 ieee80211_free_txskb(&local->hw, skb);
788 }
789
790 /*
791 * Finally, recalculate the TIM bit for this station -- it might
792 * now be clear because the station was too slow to retrieve its
793 * frames.
794 */
795 sta_info_recalc_tim(sta);
796
797 /*
798 * Return whether there are any frames still buffered, this is
799 * used to check whether the cleanup timer still needs to run,
800 * if there are no frames we don't need to rearm the timer.
801 */
802 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
803 skb_queue_empty(&sta->tx_filtered[ac]));
804 }
805
806 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
807 struct sta_info *sta)
808 {
809 bool have_buffered = false;
810 int ac;
811
812 /* This is only necessary for stations on BSS/MBSS interfaces */
813 if (!sta->sdata->bss &&
814 !ieee80211_vif_is_mesh(&sta->sdata->vif))
815 return false;
816
817 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
818 have_buffered |=
819 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
820
821 return have_buffered;
822 }
823
824 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
825 {
826 struct ieee80211_local *local;
827 struct ieee80211_sub_if_data *sdata;
828 int ret;
829
830 might_sleep();
831
832 if (!sta)
833 return -ENOENT;
834
835 local = sta->local;
836 sdata = sta->sdata;
837
838 lockdep_assert_held(&local->sta_mtx);
839
840 /*
841 * Before removing the station from the driver and
842 * rate control, it might still start new aggregation
843 * sessions -- block that to make sure the tear-down
844 * will be sufficient.
845 */
846 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
847 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
848
849 ret = sta_info_hash_del(local, sta);
850 if (WARN_ON(ret))
851 return ret;
852
853 /*
854 * for TDLS peers, make sure to return to the base channel before
855 * removal.
856 */
857 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
858 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
859 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
860 }
861
862 list_del_rcu(&sta->list);
863
864 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
865
866 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
867 rcu_access_pointer(sdata->u.vlan.sta) == sta)
868 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
869
870 return 0;
871 }
872
873 static void __sta_info_destroy_part2(struct sta_info *sta)
874 {
875 struct ieee80211_local *local = sta->local;
876 struct ieee80211_sub_if_data *sdata = sta->sdata;
877 int ret;
878
879 /*
880 * NOTE: This assumes at least synchronize_net() was done
881 * after _part1 and before _part2!
882 */
883
884 might_sleep();
885 lockdep_assert_held(&local->sta_mtx);
886
887 /* now keys can no longer be reached */
888 ieee80211_free_sta_keys(local, sta);
889
890 sta->dead = true;
891
892 local->num_sta--;
893 local->sta_generation++;
894
895 while (sta->sta_state > IEEE80211_STA_NONE) {
896 ret = sta_info_move_state(sta, sta->sta_state - 1);
897 if (ret) {
898 WARN_ON_ONCE(1);
899 break;
900 }
901 }
902
903 if (sta->uploaded) {
904 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
905 IEEE80211_STA_NOTEXIST);
906 WARN_ON_ONCE(ret != 0);
907 }
908
909 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
910
911 cfg80211_del_sta(sdata->dev, sta->sta.addr, GFP_KERNEL);
912
913 rate_control_remove_sta_debugfs(sta);
914 ieee80211_sta_debugfs_remove(sta);
915 ieee80211_recalc_min_chandef(sdata);
916
917 cleanup_single_sta(sta);
918 }
919
920 int __must_check __sta_info_destroy(struct sta_info *sta)
921 {
922 int err = __sta_info_destroy_part1(sta);
923
924 if (err)
925 return err;
926
927 synchronize_net();
928
929 __sta_info_destroy_part2(sta);
930
931 return 0;
932 }
933
934 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
935 {
936 struct sta_info *sta;
937 int ret;
938
939 mutex_lock(&sdata->local->sta_mtx);
940 sta = sta_info_get(sdata, addr);
941 ret = __sta_info_destroy(sta);
942 mutex_unlock(&sdata->local->sta_mtx);
943
944 return ret;
945 }
946
947 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
948 const u8 *addr)
949 {
950 struct sta_info *sta;
951 int ret;
952
953 mutex_lock(&sdata->local->sta_mtx);
954 sta = sta_info_get_bss(sdata, addr);
955 ret = __sta_info_destroy(sta);
956 mutex_unlock(&sdata->local->sta_mtx);
957
958 return ret;
959 }
960
961 static void sta_info_cleanup(unsigned long data)
962 {
963 struct ieee80211_local *local = (struct ieee80211_local *) data;
964 struct sta_info *sta;
965 bool timer_needed = false;
966
967 rcu_read_lock();
968 list_for_each_entry_rcu(sta, &local->sta_list, list)
969 if (sta_info_cleanup_expire_buffered(local, sta))
970 timer_needed = true;
971 rcu_read_unlock();
972
973 if (local->quiescing)
974 return;
975
976 if (!timer_needed)
977 return;
978
979 mod_timer(&local->sta_cleanup,
980 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
981 }
982
983 void sta_info_init(struct ieee80211_local *local)
984 {
985 spin_lock_init(&local->tim_lock);
986 mutex_init(&local->sta_mtx);
987 INIT_LIST_HEAD(&local->sta_list);
988
989 setup_timer(&local->sta_cleanup, sta_info_cleanup,
990 (unsigned long)local);
991 }
992
993 void sta_info_stop(struct ieee80211_local *local)
994 {
995 del_timer_sync(&local->sta_cleanup);
996 }
997
998
999 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1000 {
1001 struct ieee80211_local *local = sdata->local;
1002 struct sta_info *sta, *tmp;
1003 LIST_HEAD(free_list);
1004 int ret = 0;
1005
1006 might_sleep();
1007
1008 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1009 WARN_ON(vlans && !sdata->bss);
1010
1011 mutex_lock(&local->sta_mtx);
1012 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1013 if (sdata == sta->sdata ||
1014 (vlans && sdata->bss == sta->sdata->bss)) {
1015 if (!WARN_ON(__sta_info_destroy_part1(sta)))
1016 list_add(&sta->free_list, &free_list);
1017 ret++;
1018 }
1019 }
1020
1021 if (!list_empty(&free_list)) {
1022 synchronize_net();
1023 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1024 __sta_info_destroy_part2(sta);
1025 }
1026 mutex_unlock(&local->sta_mtx);
1027
1028 return ret;
1029 }
1030
1031 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1032 unsigned long exp_time)
1033 {
1034 struct ieee80211_local *local = sdata->local;
1035 struct sta_info *sta, *tmp;
1036
1037 mutex_lock(&local->sta_mtx);
1038
1039 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1040 if (sdata != sta->sdata)
1041 continue;
1042
1043 if (time_after(jiffies, sta->last_rx + exp_time)) {
1044 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1045 sta->sta.addr);
1046
1047 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1048 test_sta_flag(sta, WLAN_STA_PS_STA))
1049 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1050
1051 WARN_ON(__sta_info_destroy(sta));
1052 }
1053 }
1054
1055 mutex_unlock(&local->sta_mtx);
1056 }
1057
1058 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1059 const u8 *addr,
1060 const u8 *localaddr)
1061 {
1062 struct sta_info *sta, *nxt;
1063
1064 /*
1065 * Just return a random station if localaddr is NULL
1066 * ... first in list.
1067 */
1068 for_each_sta_info(hw_to_local(hw), addr, sta, nxt) {
1069 if (localaddr &&
1070 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1071 continue;
1072 if (!sta->uploaded)
1073 return NULL;
1074 return &sta->sta;
1075 }
1076
1077 return NULL;
1078 }
1079 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1080
1081 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1082 const u8 *addr)
1083 {
1084 struct sta_info *sta;
1085
1086 if (!vif)
1087 return NULL;
1088
1089 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1090 if (!sta)
1091 return NULL;
1092
1093 if (!sta->uploaded)
1094 return NULL;
1095
1096 return &sta->sta;
1097 }
1098 EXPORT_SYMBOL(ieee80211_find_sta);
1099
1100 /* powersave support code */
1101 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1102 {
1103 struct ieee80211_sub_if_data *sdata = sta->sdata;
1104 struct ieee80211_local *local = sdata->local;
1105 struct sk_buff_head pending;
1106 int filtered = 0, buffered = 0, ac;
1107 unsigned long flags;
1108 struct ps_data *ps;
1109
1110 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1111 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1112 u.ap);
1113
1114 if (sdata->vif.type == NL80211_IFTYPE_AP)
1115 ps = &sdata->bss->ps;
1116 else if (ieee80211_vif_is_mesh(&sdata->vif))
1117 ps = &sdata->u.mesh.ps;
1118 else
1119 return;
1120
1121 clear_sta_flag(sta, WLAN_STA_SP);
1122
1123 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1124 sta->driver_buffered_tids = 0;
1125
1126 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1127 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1128
1129 skb_queue_head_init(&pending);
1130
1131 /* sync with ieee80211_tx_h_unicast_ps_buf */
1132 spin_lock(&sta->ps_lock);
1133 /* Send all buffered frames to the station */
1134 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1135 int count = skb_queue_len(&pending), tmp;
1136
1137 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1138 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1139 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1140 tmp = skb_queue_len(&pending);
1141 filtered += tmp - count;
1142 count = tmp;
1143
1144 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1145 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1146 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1147 tmp = skb_queue_len(&pending);
1148 buffered += tmp - count;
1149 }
1150
1151 ieee80211_add_pending_skbs(local, &pending);
1152
1153 /* now we're no longer in the deliver code */
1154 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1155
1156 /* The station might have polled and then woken up before we responded,
1157 * so clear these flags now to avoid them sticking around.
1158 */
1159 clear_sta_flag(sta, WLAN_STA_PSPOLL);
1160 clear_sta_flag(sta, WLAN_STA_UAPSD);
1161 spin_unlock(&sta->ps_lock);
1162
1163 atomic_dec(&ps->num_sta_ps);
1164
1165 /* This station just woke up and isn't aware of our SMPS state */
1166 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1167 !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1168 sdata->smps_mode) &&
1169 sta->known_smps_mode != sdata->bss->req_smps &&
1170 sta_info_tx_streams(sta) != 1) {
1171 ht_dbg(sdata,
1172 "%pM just woke up and MIMO capable - update SMPS\n",
1173 sta->sta.addr);
1174 ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1175 sta->sta.addr,
1176 sdata->vif.bss_conf.bssid);
1177 }
1178
1179 local->total_ps_buffered -= buffered;
1180
1181 sta_info_recalc_tim(sta);
1182
1183 ps_dbg(sdata,
1184 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n",
1185 sta->sta.addr, sta->sta.aid, filtered, buffered);
1186 }
1187
1188 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata,
1189 struct sta_info *sta, int tid,
1190 enum ieee80211_frame_release_type reason,
1191 bool call_driver)
1192 {
1193 struct ieee80211_local *local = sdata->local;
1194 struct ieee80211_qos_hdr *nullfunc;
1195 struct sk_buff *skb;
1196 int size = sizeof(*nullfunc);
1197 __le16 fc;
1198 bool qos = sta->sta.wme;
1199 struct ieee80211_tx_info *info;
1200 struct ieee80211_chanctx_conf *chanctx_conf;
1201
1202 if (qos) {
1203 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1204 IEEE80211_STYPE_QOS_NULLFUNC |
1205 IEEE80211_FCTL_FROMDS);
1206 } else {
1207 size -= 2;
1208 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1209 IEEE80211_STYPE_NULLFUNC |
1210 IEEE80211_FCTL_FROMDS);
1211 }
1212
1213 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1214 if (!skb)
1215 return;
1216
1217 skb_reserve(skb, local->hw.extra_tx_headroom);
1218
1219 nullfunc = (void *) skb_put(skb, size);
1220 nullfunc->frame_control = fc;
1221 nullfunc->duration_id = 0;
1222 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1223 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1224 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1225 nullfunc->seq_ctrl = 0;
1226
1227 skb->priority = tid;
1228 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1229 if (qos) {
1230 nullfunc->qos_ctrl = cpu_to_le16(tid);
1231
1232 if (reason == IEEE80211_FRAME_RELEASE_UAPSD)
1233 nullfunc->qos_ctrl |=
1234 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1235 }
1236
1237 info = IEEE80211_SKB_CB(skb);
1238
1239 /*
1240 * Tell TX path to send this frame even though the
1241 * STA may still remain is PS mode after this frame
1242 * exchange. Also set EOSP to indicate this packet
1243 * ends the poll/service period.
1244 */
1245 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1246 IEEE80211_TX_CTL_PS_RESPONSE |
1247 IEEE80211_TX_STATUS_EOSP |
1248 IEEE80211_TX_CTL_REQ_TX_STATUS;
1249
1250 if (call_driver)
1251 drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1252 reason, false);
1253
1254 skb->dev = sdata->dev;
1255
1256 rcu_read_lock();
1257 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1258 if (WARN_ON(!chanctx_conf)) {
1259 rcu_read_unlock();
1260 kfree_skb(skb);
1261 return;
1262 }
1263
1264 info->band = chanctx_conf->def.chan->band;
1265 ieee80211_xmit(sdata, skb);
1266 rcu_read_unlock();
1267 }
1268
1269 static int find_highest_prio_tid(unsigned long tids)
1270 {
1271 /* lower 3 TIDs aren't ordered perfectly */
1272 if (tids & 0xF8)
1273 return fls(tids) - 1;
1274 /* TID 0 is BE just like TID 3 */
1275 if (tids & BIT(0))
1276 return 0;
1277 return fls(tids) - 1;
1278 }
1279
1280 static void
1281 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1282 int n_frames, u8 ignored_acs,
1283 enum ieee80211_frame_release_type reason)
1284 {
1285 struct ieee80211_sub_if_data *sdata = sta->sdata;
1286 struct ieee80211_local *local = sdata->local;
1287 bool more_data = false;
1288 int ac;
1289 unsigned long driver_release_tids = 0;
1290 struct sk_buff_head frames;
1291
1292 /* Service or PS-Poll period starts */
1293 set_sta_flag(sta, WLAN_STA_SP);
1294
1295 __skb_queue_head_init(&frames);
1296
1297 /* Get response frame(s) and more data bit for the last one. */
1298 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1299 unsigned long tids;
1300
1301 if (ignored_acs & BIT(ac))
1302 continue;
1303
1304 tids = ieee80211_tids_for_ac(ac);
1305
1306 /* if we already have frames from software, then we can't also
1307 * release from hardware queues
1308 */
1309 if (skb_queue_empty(&frames))
1310 driver_release_tids |= sta->driver_buffered_tids & tids;
1311
1312 if (driver_release_tids) {
1313 /* If the driver has data on more than one TID then
1314 * certainly there's more data if we release just a
1315 * single frame now (from a single TID). This will
1316 * only happen for PS-Poll.
1317 */
1318 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1319 hweight16(driver_release_tids) > 1) {
1320 more_data = true;
1321 driver_release_tids =
1322 BIT(find_highest_prio_tid(
1323 driver_release_tids));
1324 break;
1325 }
1326 } else {
1327 struct sk_buff *skb;
1328
1329 while (n_frames > 0) {
1330 skb = skb_dequeue(&sta->tx_filtered[ac]);
1331 if (!skb) {
1332 skb = skb_dequeue(
1333 &sta->ps_tx_buf[ac]);
1334 if (skb)
1335 local->total_ps_buffered--;
1336 }
1337 if (!skb)
1338 break;
1339 n_frames--;
1340 __skb_queue_tail(&frames, skb);
1341 }
1342 }
1343
1344 /* If we have more frames buffered on this AC, then set the
1345 * more-data bit and abort the loop since we can't send more
1346 * data from other ACs before the buffered frames from this.
1347 */
1348 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1349 !skb_queue_empty(&sta->ps_tx_buf[ac])) {
1350 more_data = true;
1351 break;
1352 }
1353 }
1354
1355 if (skb_queue_empty(&frames) && !driver_release_tids) {
1356 int tid;
1357
1358 /*
1359 * For PS-Poll, this can only happen due to a race condition
1360 * when we set the TIM bit and the station notices it, but
1361 * before it can poll for the frame we expire it.
1362 *
1363 * For uAPSD, this is said in the standard (11.2.1.5 h):
1364 * At each unscheduled SP for a non-AP STA, the AP shall
1365 * attempt to transmit at least one MSDU or MMPDU, but no
1366 * more than the value specified in the Max SP Length field
1367 * in the QoS Capability element from delivery-enabled ACs,
1368 * that are destined for the non-AP STA.
1369 *
1370 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1371 */
1372
1373 /* This will evaluate to 1, 3, 5 or 7. */
1374 tid = 7 - ((ffs(~ignored_acs) - 1) << 1);
1375
1376 ieee80211_send_null_response(sdata, sta, tid, reason, true);
1377 } else if (!driver_release_tids) {
1378 struct sk_buff_head pending;
1379 struct sk_buff *skb;
1380 int num = 0;
1381 u16 tids = 0;
1382 bool need_null = false;
1383
1384 skb_queue_head_init(&pending);
1385
1386 while ((skb = __skb_dequeue(&frames))) {
1387 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1388 struct ieee80211_hdr *hdr = (void *) skb->data;
1389 u8 *qoshdr = NULL;
1390
1391 num++;
1392
1393 /*
1394 * Tell TX path to send this frame even though the
1395 * STA may still remain is PS mode after this frame
1396 * exchange.
1397 */
1398 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1399 IEEE80211_TX_CTL_PS_RESPONSE;
1400
1401 /*
1402 * Use MoreData flag to indicate whether there are
1403 * more buffered frames for this STA
1404 */
1405 if (more_data || !skb_queue_empty(&frames))
1406 hdr->frame_control |=
1407 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1408 else
1409 hdr->frame_control &=
1410 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1411
1412 if (ieee80211_is_data_qos(hdr->frame_control) ||
1413 ieee80211_is_qos_nullfunc(hdr->frame_control))
1414 qoshdr = ieee80211_get_qos_ctl(hdr);
1415
1416 tids |= BIT(skb->priority);
1417
1418 __skb_queue_tail(&pending, skb);
1419
1420 /* end service period after last frame or add one */
1421 if (!skb_queue_empty(&frames))
1422 continue;
1423
1424 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1425 /* for PS-Poll, there's only one frame */
1426 info->flags |= IEEE80211_TX_STATUS_EOSP |
1427 IEEE80211_TX_CTL_REQ_TX_STATUS;
1428 break;
1429 }
1430
1431 /* For uAPSD, things are a bit more complicated. If the
1432 * last frame has a QoS header (i.e. is a QoS-data or
1433 * QoS-nulldata frame) then just set the EOSP bit there
1434 * and be done.
1435 * If the frame doesn't have a QoS header (which means
1436 * it should be a bufferable MMPDU) then we can't set
1437 * the EOSP bit in the QoS header; add a QoS-nulldata
1438 * frame to the list to send it after the MMPDU.
1439 *
1440 * Note that this code is only in the mac80211-release
1441 * code path, we assume that the driver will not buffer
1442 * anything but QoS-data frames, or if it does, will
1443 * create the QoS-nulldata frame by itself if needed.
1444 *
1445 * Cf. 802.11-2012 10.2.1.10 (c).
1446 */
1447 if (qoshdr) {
1448 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1449
1450 info->flags |= IEEE80211_TX_STATUS_EOSP |
1451 IEEE80211_TX_CTL_REQ_TX_STATUS;
1452 } else {
1453 /* The standard isn't completely clear on this
1454 * as it says the more-data bit should be set
1455 * if there are more BUs. The QoS-Null frame
1456 * we're about to send isn't buffered yet, we
1457 * only create it below, but let's pretend it
1458 * was buffered just in case some clients only
1459 * expect more-data=0 when eosp=1.
1460 */
1461 hdr->frame_control |=
1462 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1463 need_null = true;
1464 num++;
1465 }
1466 break;
1467 }
1468
1469 drv_allow_buffered_frames(local, sta, tids, num,
1470 reason, more_data);
1471
1472 ieee80211_add_pending_skbs(local, &pending);
1473
1474 if (need_null)
1475 ieee80211_send_null_response(
1476 sdata, sta, find_highest_prio_tid(tids),
1477 reason, false);
1478
1479 sta_info_recalc_tim(sta);
1480 } else {
1481 /*
1482 * We need to release a frame that is buffered somewhere in the
1483 * driver ... it'll have to handle that.
1484 * Note that the driver also has to check the number of frames
1485 * on the TIDs we're releasing from - if there are more than
1486 * n_frames it has to set the more-data bit (if we didn't ask
1487 * it to set it anyway due to other buffered frames); if there
1488 * are fewer than n_frames it has to make sure to adjust that
1489 * to allow the service period to end properly.
1490 */
1491 drv_release_buffered_frames(local, sta, driver_release_tids,
1492 n_frames, reason, more_data);
1493
1494 /*
1495 * Note that we don't recalculate the TIM bit here as it would
1496 * most likely have no effect at all unless the driver told us
1497 * that the TID(s) became empty before returning here from the
1498 * release function.
1499 * Either way, however, when the driver tells us that the TID(s)
1500 * became empty we'll do the TIM recalculation.
1501 */
1502 }
1503 }
1504
1505 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1506 {
1507 u8 ignore_for_response = sta->sta.uapsd_queues;
1508
1509 /*
1510 * If all ACs are delivery-enabled then we should reply
1511 * from any of them, if only some are enabled we reply
1512 * only from the non-enabled ones.
1513 */
1514 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1515 ignore_for_response = 0;
1516
1517 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1518 IEEE80211_FRAME_RELEASE_PSPOLL);
1519 }
1520
1521 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1522 {
1523 int n_frames = sta->sta.max_sp;
1524 u8 delivery_enabled = sta->sta.uapsd_queues;
1525
1526 /*
1527 * If we ever grow support for TSPEC this might happen if
1528 * the TSPEC update from hostapd comes in between a trigger
1529 * frame setting WLAN_STA_UAPSD in the RX path and this
1530 * actually getting called.
1531 */
1532 if (!delivery_enabled)
1533 return;
1534
1535 switch (sta->sta.max_sp) {
1536 case 1:
1537 n_frames = 2;
1538 break;
1539 case 2:
1540 n_frames = 4;
1541 break;
1542 case 3:
1543 n_frames = 6;
1544 break;
1545 case 0:
1546 /* XXX: what is a good value? */
1547 n_frames = 128;
1548 break;
1549 }
1550
1551 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1552 IEEE80211_FRAME_RELEASE_UAPSD);
1553 }
1554
1555 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1556 struct ieee80211_sta *pubsta, bool block)
1557 {
1558 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1559
1560 trace_api_sta_block_awake(sta->local, pubsta, block);
1561
1562 if (block) {
1563 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1564 return;
1565 }
1566
1567 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1568 return;
1569
1570 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1571 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1572 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1573 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1574 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1575 test_sta_flag(sta, WLAN_STA_UAPSD)) {
1576 /* must be asleep in this case */
1577 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1578 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1579 } else {
1580 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1581 }
1582 }
1583 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1584
1585 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1586 {
1587 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1588 struct ieee80211_local *local = sta->local;
1589
1590 trace_api_eosp(local, pubsta);
1591
1592 clear_sta_flag(sta, WLAN_STA_SP);
1593 }
1594 EXPORT_SYMBOL(ieee80211_sta_eosp);
1595
1596 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1597 u8 tid, bool buffered)
1598 {
1599 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1600
1601 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1602 return;
1603
1604 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1605
1606 if (buffered)
1607 set_bit(tid, &sta->driver_buffered_tids);
1608 else
1609 clear_bit(tid, &sta->driver_buffered_tids);
1610
1611 sta_info_recalc_tim(sta);
1612 }
1613 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1614
1615 int sta_info_move_state(struct sta_info *sta,
1616 enum ieee80211_sta_state new_state)
1617 {
1618 might_sleep();
1619
1620 if (sta->sta_state == new_state)
1621 return 0;
1622
1623 /* check allowed transitions first */
1624
1625 switch (new_state) {
1626 case IEEE80211_STA_NONE:
1627 if (sta->sta_state != IEEE80211_STA_AUTH)
1628 return -EINVAL;
1629 break;
1630 case IEEE80211_STA_AUTH:
1631 if (sta->sta_state != IEEE80211_STA_NONE &&
1632 sta->sta_state != IEEE80211_STA_ASSOC)
1633 return -EINVAL;
1634 break;
1635 case IEEE80211_STA_ASSOC:
1636 if (sta->sta_state != IEEE80211_STA_AUTH &&
1637 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1638 return -EINVAL;
1639 break;
1640 case IEEE80211_STA_AUTHORIZED:
1641 if (sta->sta_state != IEEE80211_STA_ASSOC)
1642 return -EINVAL;
1643 break;
1644 default:
1645 WARN(1, "invalid state %d", new_state);
1646 return -EINVAL;
1647 }
1648
1649 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1650 sta->sta.addr, new_state);
1651
1652 /*
1653 * notify the driver before the actual changes so it can
1654 * fail the transition
1655 */
1656 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1657 int err = drv_sta_state(sta->local, sta->sdata, sta,
1658 sta->sta_state, new_state);
1659 if (err)
1660 return err;
1661 }
1662
1663 /* reflect the change in all state variables */
1664
1665 switch (new_state) {
1666 case IEEE80211_STA_NONE:
1667 if (sta->sta_state == IEEE80211_STA_AUTH)
1668 clear_bit(WLAN_STA_AUTH, &sta->_flags);
1669 break;
1670 case IEEE80211_STA_AUTH:
1671 if (sta->sta_state == IEEE80211_STA_NONE)
1672 set_bit(WLAN_STA_AUTH, &sta->_flags);
1673 else if (sta->sta_state == IEEE80211_STA_ASSOC)
1674 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1675 break;
1676 case IEEE80211_STA_ASSOC:
1677 if (sta->sta_state == IEEE80211_STA_AUTH) {
1678 set_bit(WLAN_STA_ASSOC, &sta->_flags);
1679 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1680 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1681 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1682 !sta->sdata->u.vlan.sta))
1683 atomic_dec(&sta->sdata->bss->num_mcast_sta);
1684 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1685 }
1686 break;
1687 case IEEE80211_STA_AUTHORIZED:
1688 if (sta->sta_state == IEEE80211_STA_ASSOC) {
1689 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1690 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1691 !sta->sdata->u.vlan.sta))
1692 atomic_inc(&sta->sdata->bss->num_mcast_sta);
1693 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1694 }
1695 break;
1696 default:
1697 break;
1698 }
1699
1700 sta->sta_state = new_state;
1701
1702 return 0;
1703 }
1704
1705 u8 sta_info_tx_streams(struct sta_info *sta)
1706 {
1707 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1708 u8 rx_streams;
1709
1710 if (!sta->sta.ht_cap.ht_supported)
1711 return 1;
1712
1713 if (sta->sta.vht_cap.vht_supported) {
1714 int i;
1715 u16 tx_mcs_map =
1716 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
1717
1718 for (i = 7; i >= 0; i--)
1719 if ((tx_mcs_map & (0x3 << (i * 2))) !=
1720 IEEE80211_VHT_MCS_NOT_SUPPORTED)
1721 return i + 1;
1722 }
1723
1724 if (ht_cap->mcs.rx_mask[3])
1725 rx_streams = 4;
1726 else if (ht_cap->mcs.rx_mask[2])
1727 rx_streams = 3;
1728 else if (ht_cap->mcs.rx_mask[1])
1729 rx_streams = 2;
1730 else
1731 rx_streams = 1;
1732
1733 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
1734 return rx_streams;
1735
1736 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
1737 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
1738 }
1739
1740 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
1741 {
1742 struct ieee80211_sub_if_data *sdata = sta->sdata;
1743 struct ieee80211_local *local = sdata->local;
1744 struct rate_control_ref *ref = NULL;
1745 struct timespec uptime;
1746 u64 packets = 0;
1747 u32 thr = 0;
1748 int i, ac;
1749
1750 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
1751 ref = local->rate_ctrl;
1752
1753 sinfo->generation = sdata->local->sta_generation;
1754
1755 sinfo->filled = STATION_INFO_INACTIVE_TIME |
1756 STATION_INFO_RX_BYTES64 |
1757 STATION_INFO_TX_BYTES64 |
1758 STATION_INFO_RX_PACKETS |
1759 STATION_INFO_TX_PACKETS |
1760 STATION_INFO_TX_RETRIES |
1761 STATION_INFO_TX_FAILED |
1762 STATION_INFO_TX_BITRATE |
1763 STATION_INFO_RX_BITRATE |
1764 STATION_INFO_RX_DROP_MISC |
1765 STATION_INFO_BSS_PARAM |
1766 STATION_INFO_CONNECTED_TIME |
1767 STATION_INFO_STA_FLAGS |
1768 STATION_INFO_BEACON_LOSS_COUNT;
1769
1770 ktime_get_ts(&uptime);
1771 sinfo->connected_time = uptime.tv_sec - sta->last_connected;
1772
1773 sinfo->inactive_time = jiffies_to_msecs(jiffies - sta->last_rx);
1774 sinfo->tx_bytes = 0;
1775 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1776 sinfo->tx_bytes += sta->tx_bytes[ac];
1777 packets += sta->tx_packets[ac];
1778 }
1779 sinfo->tx_packets = packets;
1780 sinfo->rx_bytes = sta->rx_bytes;
1781 sinfo->rx_packets = sta->rx_packets;
1782 sinfo->tx_retries = sta->tx_retry_count;
1783 sinfo->tx_failed = sta->tx_retry_failed;
1784 sinfo->rx_dropped_misc = sta->rx_dropped;
1785 sinfo->beacon_loss_count = sta->beacon_loss_count;
1786
1787 if ((sta->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) ||
1788 (sta->local->hw.flags & IEEE80211_HW_SIGNAL_UNSPEC)) {
1789 sinfo->filled |= STATION_INFO_SIGNAL | STATION_INFO_SIGNAL_AVG;
1790 if (!local->ops->get_rssi ||
1791 drv_get_rssi(local, sdata, &sta->sta, &sinfo->signal))
1792 sinfo->signal = (s8)sta->last_signal;
1793 sinfo->signal_avg = (s8) -ewma_read(&sta->avg_signal);
1794 }
1795 if (sta->chains) {
1796 sinfo->filled |= STATION_INFO_CHAIN_SIGNAL |
1797 STATION_INFO_CHAIN_SIGNAL_AVG;
1798
1799 sinfo->chains = sta->chains;
1800 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
1801 sinfo->chain_signal[i] = sta->chain_signal_last[i];
1802 sinfo->chain_signal_avg[i] =
1803 (s8) -ewma_read(&sta->chain_signal_avg[i]);
1804 }
1805 }
1806
1807 sta_set_rate_info_tx(sta, &sta->last_tx_rate, &sinfo->txrate);
1808 sta_set_rate_info_rx(sta, &sinfo->rxrate);
1809
1810 if (ieee80211_vif_is_mesh(&sdata->vif)) {
1811 #ifdef CONFIG_MAC80211_MESH
1812 sinfo->filled |= STATION_INFO_LLID |
1813 STATION_INFO_PLID |
1814 STATION_INFO_PLINK_STATE |
1815 STATION_INFO_LOCAL_PM |
1816 STATION_INFO_PEER_PM |
1817 STATION_INFO_NONPEER_PM;
1818
1819 sinfo->llid = sta->llid;
1820 sinfo->plid = sta->plid;
1821 sinfo->plink_state = sta->plink_state;
1822 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
1823 sinfo->filled |= STATION_INFO_T_OFFSET;
1824 sinfo->t_offset = sta->t_offset;
1825 }
1826 sinfo->local_pm = sta->local_pm;
1827 sinfo->peer_pm = sta->peer_pm;
1828 sinfo->nonpeer_pm = sta->nonpeer_pm;
1829 #endif
1830 }
1831
1832 sinfo->bss_param.flags = 0;
1833 if (sdata->vif.bss_conf.use_cts_prot)
1834 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
1835 if (sdata->vif.bss_conf.use_short_preamble)
1836 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
1837 if (sdata->vif.bss_conf.use_short_slot)
1838 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
1839 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
1840 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
1841
1842 sinfo->sta_flags.set = 0;
1843 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
1844 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
1845 BIT(NL80211_STA_FLAG_WME) |
1846 BIT(NL80211_STA_FLAG_MFP) |
1847 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
1848 BIT(NL80211_STA_FLAG_ASSOCIATED) |
1849 BIT(NL80211_STA_FLAG_TDLS_PEER);
1850 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
1851 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
1852 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
1853 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
1854 if (sta->sta.wme)
1855 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
1856 if (test_sta_flag(sta, WLAN_STA_MFP))
1857 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
1858 if (test_sta_flag(sta, WLAN_STA_AUTH))
1859 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
1860 if (test_sta_flag(sta, WLAN_STA_ASSOC))
1861 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
1862 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
1863 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
1864
1865 /* check if the driver has a SW RC implementation */
1866 if (ref && ref->ops->get_expected_throughput)
1867 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
1868 else
1869 thr = drv_get_expected_throughput(local, &sta->sta);
1870
1871 if (thr != 0) {
1872 sinfo->filled |= STATION_INFO_EXPECTED_THROUGHPUT;
1873 sinfo->expected_throughput = thr;
1874 }
1875 }
This page took 0.081156 seconds and 6 git commands to generate.