Merge branch 'pm-tools'
[deliverable/linux.git] / net / mac80211 / sta_info.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
4 * Copyright 2013-2014 Intel Mobile Communications GmbH
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/etherdevice.h>
14 #include <linux/netdevice.h>
15 #include <linux/types.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/if_arp.h>
19 #include <linux/timer.h>
20 #include <linux/rtnetlink.h>
21
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30
31 /**
32 * DOC: STA information lifetime rules
33 *
34 * STA info structures (&struct sta_info) are managed in a hash table
35 * for faster lookup and a list for iteration. They are managed using
36 * RCU, i.e. access to the list and hash table is protected by RCU.
37 *
38 * Upon allocating a STA info structure with sta_info_alloc(), the caller
39 * owns that structure. It must then insert it into the hash table using
40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41 * case (which acquires an rcu read section but must not be called from
42 * within one) will the pointer still be valid after the call. Note that
43 * the caller may not do much with the STA info before inserting it, in
44 * particular, it may not start any mesh peer link management or add
45 * encryption keys.
46 *
47 * When the insertion fails (sta_info_insert()) returns non-zero), the
48 * structure will have been freed by sta_info_insert()!
49 *
50 * Station entries are added by mac80211 when you establish a link with a
51 * peer. This means different things for the different type of interfaces
52 * we support. For a regular station this mean we add the AP sta when we
53 * receive an association response from the AP. For IBSS this occurs when
54 * get to know about a peer on the same IBSS. For WDS we add the sta for
55 * the peer immediately upon device open. When using AP mode we add stations
56 * for each respective station upon request from userspace through nl80211.
57 *
58 * In order to remove a STA info structure, various sta_info_destroy_*()
59 * calls are available.
60 *
61 * There is no concept of ownership on a STA entry, each structure is
62 * owned by the global hash table/list until it is removed. All users of
63 * the structure need to be RCU protected so that the structure won't be
64 * freed before they are done using it.
65 */
66
67 static const struct rhashtable_params sta_rht_params = {
68 .nelem_hint = 3, /* start small */
69 .automatic_shrinking = true,
70 .head_offset = offsetof(struct sta_info, hash_node),
71 .key_offset = offsetof(struct sta_info, addr),
72 .key_len = ETH_ALEN,
73 .hashfn = sta_addr_hash,
74 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
75 };
76
77 /* Caller must hold local->sta_mtx */
78 static int sta_info_hash_del(struct ieee80211_local *local,
79 struct sta_info *sta)
80 {
81 return rhashtable_remove_fast(&local->sta_hash, &sta->hash_node,
82 sta_rht_params);
83 }
84
85 static void __cleanup_single_sta(struct sta_info *sta)
86 {
87 int ac, i;
88 struct tid_ampdu_tx *tid_tx;
89 struct ieee80211_sub_if_data *sdata = sta->sdata;
90 struct ieee80211_local *local = sdata->local;
91 struct ps_data *ps;
92
93 if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
94 test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
95 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
96 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
97 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
98 ps = &sdata->bss->ps;
99 else if (ieee80211_vif_is_mesh(&sdata->vif))
100 ps = &sdata->u.mesh.ps;
101 else
102 return;
103
104 clear_sta_flag(sta, WLAN_STA_PS_STA);
105 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
106 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
107
108 atomic_dec(&ps->num_sta_ps);
109 }
110
111 if (sta->sta.txq[0]) {
112 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
113 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]);
114 int n = skb_queue_len(&txqi->queue);
115
116 ieee80211_purge_tx_queue(&local->hw, &txqi->queue);
117 atomic_sub(n, &sdata->txqs_len[txqi->txq.ac]);
118 }
119 }
120
121 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
122 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
123 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
124 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
125 }
126
127 if (ieee80211_vif_is_mesh(&sdata->vif))
128 mesh_sta_cleanup(sta);
129
130 cancel_work_sync(&sta->drv_deliver_wk);
131
132 /*
133 * Destroy aggregation state here. It would be nice to wait for the
134 * driver to finish aggregation stop and then clean up, but for now
135 * drivers have to handle aggregation stop being requested, followed
136 * directly by station destruction.
137 */
138 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
139 kfree(sta->ampdu_mlme.tid_start_tx[i]);
140 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
141 if (!tid_tx)
142 continue;
143 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
144 kfree(tid_tx);
145 }
146 }
147
148 static void cleanup_single_sta(struct sta_info *sta)
149 {
150 struct ieee80211_sub_if_data *sdata = sta->sdata;
151 struct ieee80211_local *local = sdata->local;
152
153 __cleanup_single_sta(sta);
154 sta_info_free(local, sta);
155 }
156
157 /* protected by RCU */
158 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
159 const u8 *addr)
160 {
161 struct ieee80211_local *local = sdata->local;
162 struct sta_info *sta;
163 struct rhash_head *tmp;
164 const struct bucket_table *tbl;
165
166 rcu_read_lock();
167 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
168
169 for_each_sta_info(local, tbl, addr, sta, tmp) {
170 if (sta->sdata == sdata) {
171 rcu_read_unlock();
172 /* this is safe as the caller must already hold
173 * another rcu read section or the mutex
174 */
175 return sta;
176 }
177 }
178 rcu_read_unlock();
179 return NULL;
180 }
181
182 /*
183 * Get sta info either from the specified interface
184 * or from one of its vlans
185 */
186 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
187 const u8 *addr)
188 {
189 struct ieee80211_local *local = sdata->local;
190 struct sta_info *sta;
191 struct rhash_head *tmp;
192 const struct bucket_table *tbl;
193
194 rcu_read_lock();
195 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
196
197 for_each_sta_info(local, tbl, addr, sta, tmp) {
198 if (sta->sdata == sdata ||
199 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
200 rcu_read_unlock();
201 /* this is safe as the caller must already hold
202 * another rcu read section or the mutex
203 */
204 return sta;
205 }
206 }
207 rcu_read_unlock();
208 return NULL;
209 }
210
211 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
212 int idx)
213 {
214 struct ieee80211_local *local = sdata->local;
215 struct sta_info *sta;
216 int i = 0;
217
218 list_for_each_entry_rcu(sta, &local->sta_list, list) {
219 if (sdata != sta->sdata)
220 continue;
221 if (i < idx) {
222 ++i;
223 continue;
224 }
225 return sta;
226 }
227
228 return NULL;
229 }
230
231 /**
232 * sta_info_free - free STA
233 *
234 * @local: pointer to the global information
235 * @sta: STA info to free
236 *
237 * This function must undo everything done by sta_info_alloc()
238 * that may happen before sta_info_insert(). It may only be
239 * called when sta_info_insert() has not been attempted (and
240 * if that fails, the station is freed anyway.)
241 */
242 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
243 {
244 if (sta->rate_ctrl)
245 rate_control_free_sta(sta);
246
247 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
248
249 if (sta->sta.txq[0])
250 kfree(to_txq_info(sta->sta.txq[0]));
251 kfree(rcu_dereference_raw(sta->sta.rates));
252 #ifdef CONFIG_MAC80211_MESH
253 kfree(sta->mesh);
254 #endif
255 kfree(sta);
256 }
257
258 /* Caller must hold local->sta_mtx */
259 static void sta_info_hash_add(struct ieee80211_local *local,
260 struct sta_info *sta)
261 {
262 rhashtable_insert_fast(&local->sta_hash, &sta->hash_node,
263 sta_rht_params);
264 }
265
266 static void sta_deliver_ps_frames(struct work_struct *wk)
267 {
268 struct sta_info *sta;
269
270 sta = container_of(wk, struct sta_info, drv_deliver_wk);
271
272 if (sta->dead)
273 return;
274
275 local_bh_disable();
276 if (!test_sta_flag(sta, WLAN_STA_PS_STA))
277 ieee80211_sta_ps_deliver_wakeup(sta);
278 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
279 ieee80211_sta_ps_deliver_poll_response(sta);
280 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
281 ieee80211_sta_ps_deliver_uapsd(sta);
282 local_bh_enable();
283 }
284
285 static int sta_prepare_rate_control(struct ieee80211_local *local,
286 struct sta_info *sta, gfp_t gfp)
287 {
288 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
289 return 0;
290
291 sta->rate_ctrl = local->rate_ctrl;
292 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
293 sta, gfp);
294 if (!sta->rate_ctrl_priv)
295 return -ENOMEM;
296
297 return 0;
298 }
299
300 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
301 const u8 *addr, gfp_t gfp)
302 {
303 struct ieee80211_local *local = sdata->local;
304 struct ieee80211_hw *hw = &local->hw;
305 struct sta_info *sta;
306 int i;
307
308 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
309 if (!sta)
310 return NULL;
311
312 spin_lock_init(&sta->lock);
313 spin_lock_init(&sta->ps_lock);
314 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
315 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
316 mutex_init(&sta->ampdu_mlme.mtx);
317 #ifdef CONFIG_MAC80211_MESH
318 if (ieee80211_vif_is_mesh(&sdata->vif)) {
319 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
320 if (!sta->mesh)
321 goto free;
322 spin_lock_init(&sta->mesh->plink_lock);
323 if (ieee80211_vif_is_mesh(&sdata->vif) &&
324 !sdata->u.mesh.user_mpm)
325 init_timer(&sta->mesh->plink_timer);
326 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
327 }
328 #endif
329
330 memcpy(sta->addr, addr, ETH_ALEN);
331 memcpy(sta->sta.addr, addr, ETH_ALEN);
332 sta->local = local;
333 sta->sdata = sdata;
334 sta->rx_stats.last_rx = jiffies;
335
336 sta->sta_state = IEEE80211_STA_NONE;
337
338 /* Mark TID as unreserved */
339 sta->reserved_tid = IEEE80211_TID_UNRESERVED;
340
341 sta->last_connected = ktime_get_seconds();
342 ewma_signal_init(&sta->rx_stats.avg_signal);
343 for (i = 0; i < ARRAY_SIZE(sta->rx_stats.chain_signal_avg); i++)
344 ewma_signal_init(&sta->rx_stats.chain_signal_avg[i]);
345
346 if (local->ops->wake_tx_queue) {
347 void *txq_data;
348 int size = sizeof(struct txq_info) +
349 ALIGN(hw->txq_data_size, sizeof(void *));
350
351 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
352 if (!txq_data)
353 goto free;
354
355 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
356 struct txq_info *txq = txq_data + i * size;
357
358 ieee80211_init_tx_queue(sdata, sta, txq, i);
359 }
360 }
361
362 if (sta_prepare_rate_control(local, sta, gfp))
363 goto free_txq;
364
365 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
366 /*
367 * timer_to_tid must be initialized with identity mapping
368 * to enable session_timer's data differentiation. See
369 * sta_rx_agg_session_timer_expired for usage.
370 */
371 sta->timer_to_tid[i] = i;
372 }
373 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
374 skb_queue_head_init(&sta->ps_tx_buf[i]);
375 skb_queue_head_init(&sta->tx_filtered[i]);
376 }
377
378 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
379 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
380
381 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
382 if (sdata->vif.type == NL80211_IFTYPE_AP ||
383 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
384 struct ieee80211_supported_band *sband =
385 hw->wiphy->bands[ieee80211_get_sdata_band(sdata)];
386 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
387 IEEE80211_HT_CAP_SM_PS_SHIFT;
388 /*
389 * Assume that hostapd advertises our caps in the beacon and
390 * this is the known_smps_mode for a station that just assciated
391 */
392 switch (smps) {
393 case WLAN_HT_SMPS_CONTROL_DISABLED:
394 sta->known_smps_mode = IEEE80211_SMPS_OFF;
395 break;
396 case WLAN_HT_SMPS_CONTROL_STATIC:
397 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
398 break;
399 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
400 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
401 break;
402 default:
403 WARN_ON(1);
404 }
405 }
406
407 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
408
409 return sta;
410
411 free_txq:
412 if (sta->sta.txq[0])
413 kfree(to_txq_info(sta->sta.txq[0]));
414 free:
415 #ifdef CONFIG_MAC80211_MESH
416 kfree(sta->mesh);
417 #endif
418 kfree(sta);
419 return NULL;
420 }
421
422 static int sta_info_insert_check(struct sta_info *sta)
423 {
424 struct ieee80211_sub_if_data *sdata = sta->sdata;
425
426 /*
427 * Can't be a WARN_ON because it can be triggered through a race:
428 * something inserts a STA (on one CPU) without holding the RTNL
429 * and another CPU turns off the net device.
430 */
431 if (unlikely(!ieee80211_sdata_running(sdata)))
432 return -ENETDOWN;
433
434 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
435 is_multicast_ether_addr(sta->sta.addr)))
436 return -EINVAL;
437
438 return 0;
439 }
440
441 static int sta_info_insert_drv_state(struct ieee80211_local *local,
442 struct ieee80211_sub_if_data *sdata,
443 struct sta_info *sta)
444 {
445 enum ieee80211_sta_state state;
446 int err = 0;
447
448 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
449 err = drv_sta_state(local, sdata, sta, state, state + 1);
450 if (err)
451 break;
452 }
453
454 if (!err) {
455 /*
456 * Drivers using legacy sta_add/sta_remove callbacks only
457 * get uploaded set to true after sta_add is called.
458 */
459 if (!local->ops->sta_add)
460 sta->uploaded = true;
461 return 0;
462 }
463
464 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
465 sdata_info(sdata,
466 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
467 sta->sta.addr, state + 1, err);
468 err = 0;
469 }
470
471 /* unwind on error */
472 for (; state > IEEE80211_STA_NOTEXIST; state--)
473 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
474
475 return err;
476 }
477
478 /*
479 * should be called with sta_mtx locked
480 * this function replaces the mutex lock
481 * with a RCU lock
482 */
483 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
484 {
485 struct ieee80211_local *local = sta->local;
486 struct ieee80211_sub_if_data *sdata = sta->sdata;
487 struct station_info sinfo;
488 int err = 0;
489
490 lockdep_assert_held(&local->sta_mtx);
491
492 /* check if STA exists already */
493 if (sta_info_get_bss(sdata, sta->sta.addr)) {
494 err = -EEXIST;
495 goto out_err;
496 }
497
498 local->num_sta++;
499 local->sta_generation++;
500 smp_mb();
501
502 /* simplify things and don't accept BA sessions yet */
503 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
504
505 /* make the station visible */
506 sta_info_hash_add(local, sta);
507
508 list_add_tail_rcu(&sta->list, &local->sta_list);
509
510 /* notify driver */
511 err = sta_info_insert_drv_state(local, sdata, sta);
512 if (err)
513 goto out_remove;
514
515 set_sta_flag(sta, WLAN_STA_INSERTED);
516 /* accept BA sessions now */
517 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
518
519 ieee80211_recalc_min_chandef(sdata);
520 ieee80211_sta_debugfs_add(sta);
521 rate_control_add_sta_debugfs(sta);
522
523 memset(&sinfo, 0, sizeof(sinfo));
524 sinfo.filled = 0;
525 sinfo.generation = local->sta_generation;
526 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL);
527
528 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
529
530 /* move reference to rcu-protected */
531 rcu_read_lock();
532 mutex_unlock(&local->sta_mtx);
533
534 if (ieee80211_vif_is_mesh(&sdata->vif))
535 mesh_accept_plinks_update(sdata);
536
537 return 0;
538 out_remove:
539 sta_info_hash_del(local, sta);
540 list_del_rcu(&sta->list);
541 local->num_sta--;
542 synchronize_net();
543 __cleanup_single_sta(sta);
544 out_err:
545 mutex_unlock(&local->sta_mtx);
546 rcu_read_lock();
547 return err;
548 }
549
550 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
551 {
552 struct ieee80211_local *local = sta->local;
553 int err;
554
555 might_sleep();
556
557 err = sta_info_insert_check(sta);
558 if (err) {
559 rcu_read_lock();
560 goto out_free;
561 }
562
563 mutex_lock(&local->sta_mtx);
564
565 err = sta_info_insert_finish(sta);
566 if (err)
567 goto out_free;
568
569 return 0;
570 out_free:
571 sta_info_free(local, sta);
572 return err;
573 }
574
575 int sta_info_insert(struct sta_info *sta)
576 {
577 int err = sta_info_insert_rcu(sta);
578
579 rcu_read_unlock();
580
581 return err;
582 }
583
584 static inline void __bss_tim_set(u8 *tim, u16 id)
585 {
586 /*
587 * This format has been mandated by the IEEE specifications,
588 * so this line may not be changed to use the __set_bit() format.
589 */
590 tim[id / 8] |= (1 << (id % 8));
591 }
592
593 static inline void __bss_tim_clear(u8 *tim, u16 id)
594 {
595 /*
596 * This format has been mandated by the IEEE specifications,
597 * so this line may not be changed to use the __clear_bit() format.
598 */
599 tim[id / 8] &= ~(1 << (id % 8));
600 }
601
602 static inline bool __bss_tim_get(u8 *tim, u16 id)
603 {
604 /*
605 * This format has been mandated by the IEEE specifications,
606 * so this line may not be changed to use the test_bit() format.
607 */
608 return tim[id / 8] & (1 << (id % 8));
609 }
610
611 static unsigned long ieee80211_tids_for_ac(int ac)
612 {
613 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
614 switch (ac) {
615 case IEEE80211_AC_VO:
616 return BIT(6) | BIT(7);
617 case IEEE80211_AC_VI:
618 return BIT(4) | BIT(5);
619 case IEEE80211_AC_BE:
620 return BIT(0) | BIT(3);
621 case IEEE80211_AC_BK:
622 return BIT(1) | BIT(2);
623 default:
624 WARN_ON(1);
625 return 0;
626 }
627 }
628
629 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
630 {
631 struct ieee80211_local *local = sta->local;
632 struct ps_data *ps;
633 bool indicate_tim = false;
634 u8 ignore_for_tim = sta->sta.uapsd_queues;
635 int ac;
636 u16 id = sta->sta.aid;
637
638 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
639 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
640 if (WARN_ON_ONCE(!sta->sdata->bss))
641 return;
642
643 ps = &sta->sdata->bss->ps;
644 #ifdef CONFIG_MAC80211_MESH
645 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
646 ps = &sta->sdata->u.mesh.ps;
647 #endif
648 } else {
649 return;
650 }
651
652 /* No need to do anything if the driver does all */
653 if (ieee80211_hw_check(&local->hw, AP_LINK_PS))
654 return;
655
656 if (sta->dead)
657 goto done;
658
659 /*
660 * If all ACs are delivery-enabled then we should build
661 * the TIM bit for all ACs anyway; if only some are then
662 * we ignore those and build the TIM bit using only the
663 * non-enabled ones.
664 */
665 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
666 ignore_for_tim = 0;
667
668 if (ignore_pending)
669 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
670
671 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
672 unsigned long tids;
673
674 if (ignore_for_tim & BIT(ac))
675 continue;
676
677 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
678 !skb_queue_empty(&sta->ps_tx_buf[ac]);
679 if (indicate_tim)
680 break;
681
682 tids = ieee80211_tids_for_ac(ac);
683
684 indicate_tim |=
685 sta->driver_buffered_tids & tids;
686 indicate_tim |=
687 sta->txq_buffered_tids & tids;
688 }
689
690 done:
691 spin_lock_bh(&local->tim_lock);
692
693 if (indicate_tim == __bss_tim_get(ps->tim, id))
694 goto out_unlock;
695
696 if (indicate_tim)
697 __bss_tim_set(ps->tim, id);
698 else
699 __bss_tim_clear(ps->tim, id);
700
701 if (local->ops->set_tim && !WARN_ON(sta->dead)) {
702 local->tim_in_locked_section = true;
703 drv_set_tim(local, &sta->sta, indicate_tim);
704 local->tim_in_locked_section = false;
705 }
706
707 out_unlock:
708 spin_unlock_bh(&local->tim_lock);
709 }
710
711 void sta_info_recalc_tim(struct sta_info *sta)
712 {
713 __sta_info_recalc_tim(sta, false);
714 }
715
716 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
717 {
718 struct ieee80211_tx_info *info;
719 int timeout;
720
721 if (!skb)
722 return false;
723
724 info = IEEE80211_SKB_CB(skb);
725
726 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
727 timeout = (sta->listen_interval *
728 sta->sdata->vif.bss_conf.beacon_int *
729 32 / 15625) * HZ;
730 if (timeout < STA_TX_BUFFER_EXPIRE)
731 timeout = STA_TX_BUFFER_EXPIRE;
732 return time_after(jiffies, info->control.jiffies + timeout);
733 }
734
735
736 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
737 struct sta_info *sta, int ac)
738 {
739 unsigned long flags;
740 struct sk_buff *skb;
741
742 /*
743 * First check for frames that should expire on the filtered
744 * queue. Frames here were rejected by the driver and are on
745 * a separate queue to avoid reordering with normal PS-buffered
746 * frames. They also aren't accounted for right now in the
747 * total_ps_buffered counter.
748 */
749 for (;;) {
750 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
751 skb = skb_peek(&sta->tx_filtered[ac]);
752 if (sta_info_buffer_expired(sta, skb))
753 skb = __skb_dequeue(&sta->tx_filtered[ac]);
754 else
755 skb = NULL;
756 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
757
758 /*
759 * Frames are queued in order, so if this one
760 * hasn't expired yet we can stop testing. If
761 * we actually reached the end of the queue we
762 * also need to stop, of course.
763 */
764 if (!skb)
765 break;
766 ieee80211_free_txskb(&local->hw, skb);
767 }
768
769 /*
770 * Now also check the normal PS-buffered queue, this will
771 * only find something if the filtered queue was emptied
772 * since the filtered frames are all before the normal PS
773 * buffered frames.
774 */
775 for (;;) {
776 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
777 skb = skb_peek(&sta->ps_tx_buf[ac]);
778 if (sta_info_buffer_expired(sta, skb))
779 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
780 else
781 skb = NULL;
782 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
783
784 /*
785 * frames are queued in order, so if this one
786 * hasn't expired yet (or we reached the end of
787 * the queue) we can stop testing
788 */
789 if (!skb)
790 break;
791
792 local->total_ps_buffered--;
793 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
794 sta->sta.addr);
795 ieee80211_free_txskb(&local->hw, skb);
796 }
797
798 /*
799 * Finally, recalculate the TIM bit for this station -- it might
800 * now be clear because the station was too slow to retrieve its
801 * frames.
802 */
803 sta_info_recalc_tim(sta);
804
805 /*
806 * Return whether there are any frames still buffered, this is
807 * used to check whether the cleanup timer still needs to run,
808 * if there are no frames we don't need to rearm the timer.
809 */
810 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
811 skb_queue_empty(&sta->tx_filtered[ac]));
812 }
813
814 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
815 struct sta_info *sta)
816 {
817 bool have_buffered = false;
818 int ac;
819
820 /* This is only necessary for stations on BSS/MBSS interfaces */
821 if (!sta->sdata->bss &&
822 !ieee80211_vif_is_mesh(&sta->sdata->vif))
823 return false;
824
825 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
826 have_buffered |=
827 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
828
829 return have_buffered;
830 }
831
832 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
833 {
834 struct ieee80211_local *local;
835 struct ieee80211_sub_if_data *sdata;
836 int ret;
837
838 might_sleep();
839
840 if (!sta)
841 return -ENOENT;
842
843 local = sta->local;
844 sdata = sta->sdata;
845
846 lockdep_assert_held(&local->sta_mtx);
847
848 /*
849 * Before removing the station from the driver and
850 * rate control, it might still start new aggregation
851 * sessions -- block that to make sure the tear-down
852 * will be sufficient.
853 */
854 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
855 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
856
857 ret = sta_info_hash_del(local, sta);
858 if (WARN_ON(ret))
859 return ret;
860
861 /*
862 * for TDLS peers, make sure to return to the base channel before
863 * removal.
864 */
865 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
866 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
867 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
868 }
869
870 list_del_rcu(&sta->list);
871
872 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
873
874 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
875 rcu_access_pointer(sdata->u.vlan.sta) == sta)
876 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
877
878 return 0;
879 }
880
881 static void __sta_info_destroy_part2(struct sta_info *sta)
882 {
883 struct ieee80211_local *local = sta->local;
884 struct ieee80211_sub_if_data *sdata = sta->sdata;
885 struct station_info sinfo = {};
886 int ret;
887
888 /*
889 * NOTE: This assumes at least synchronize_net() was done
890 * after _part1 and before _part2!
891 */
892
893 might_sleep();
894 lockdep_assert_held(&local->sta_mtx);
895
896 /* now keys can no longer be reached */
897 ieee80211_free_sta_keys(local, sta);
898
899 /* disable TIM bit - last chance to tell driver */
900 __sta_info_recalc_tim(sta, true);
901
902 sta->dead = true;
903
904 local->num_sta--;
905 local->sta_generation++;
906
907 while (sta->sta_state > IEEE80211_STA_NONE) {
908 ret = sta_info_move_state(sta, sta->sta_state - 1);
909 if (ret) {
910 WARN_ON_ONCE(1);
911 break;
912 }
913 }
914
915 if (sta->uploaded) {
916 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
917 IEEE80211_STA_NOTEXIST);
918 WARN_ON_ONCE(ret != 0);
919 }
920
921 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
922
923 sta_set_sinfo(sta, &sinfo);
924 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL);
925
926 rate_control_remove_sta_debugfs(sta);
927 ieee80211_sta_debugfs_remove(sta);
928 ieee80211_recalc_min_chandef(sdata);
929
930 cleanup_single_sta(sta);
931 }
932
933 int __must_check __sta_info_destroy(struct sta_info *sta)
934 {
935 int err = __sta_info_destroy_part1(sta);
936
937 if (err)
938 return err;
939
940 synchronize_net();
941
942 __sta_info_destroy_part2(sta);
943
944 return 0;
945 }
946
947 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
948 {
949 struct sta_info *sta;
950 int ret;
951
952 mutex_lock(&sdata->local->sta_mtx);
953 sta = sta_info_get(sdata, addr);
954 ret = __sta_info_destroy(sta);
955 mutex_unlock(&sdata->local->sta_mtx);
956
957 return ret;
958 }
959
960 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
961 const u8 *addr)
962 {
963 struct sta_info *sta;
964 int ret;
965
966 mutex_lock(&sdata->local->sta_mtx);
967 sta = sta_info_get_bss(sdata, addr);
968 ret = __sta_info_destroy(sta);
969 mutex_unlock(&sdata->local->sta_mtx);
970
971 return ret;
972 }
973
974 static void sta_info_cleanup(unsigned long data)
975 {
976 struct ieee80211_local *local = (struct ieee80211_local *) data;
977 struct sta_info *sta;
978 bool timer_needed = false;
979
980 rcu_read_lock();
981 list_for_each_entry_rcu(sta, &local->sta_list, list)
982 if (sta_info_cleanup_expire_buffered(local, sta))
983 timer_needed = true;
984 rcu_read_unlock();
985
986 if (local->quiescing)
987 return;
988
989 if (!timer_needed)
990 return;
991
992 mod_timer(&local->sta_cleanup,
993 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
994 }
995
996 u32 sta_addr_hash(const void *key, u32 length, u32 seed)
997 {
998 return jhash(key, ETH_ALEN, seed);
999 }
1000
1001 int sta_info_init(struct ieee80211_local *local)
1002 {
1003 int err;
1004
1005 err = rhashtable_init(&local->sta_hash, &sta_rht_params);
1006 if (err)
1007 return err;
1008
1009 spin_lock_init(&local->tim_lock);
1010 mutex_init(&local->sta_mtx);
1011 INIT_LIST_HEAD(&local->sta_list);
1012
1013 setup_timer(&local->sta_cleanup, sta_info_cleanup,
1014 (unsigned long)local);
1015 return 0;
1016 }
1017
1018 void sta_info_stop(struct ieee80211_local *local)
1019 {
1020 del_timer_sync(&local->sta_cleanup);
1021 rhashtable_destroy(&local->sta_hash);
1022 }
1023
1024
1025 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1026 {
1027 struct ieee80211_local *local = sdata->local;
1028 struct sta_info *sta, *tmp;
1029 LIST_HEAD(free_list);
1030 int ret = 0;
1031
1032 might_sleep();
1033
1034 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1035 WARN_ON(vlans && !sdata->bss);
1036
1037 mutex_lock(&local->sta_mtx);
1038 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1039 if (sdata == sta->sdata ||
1040 (vlans && sdata->bss == sta->sdata->bss)) {
1041 if (!WARN_ON(__sta_info_destroy_part1(sta)))
1042 list_add(&sta->free_list, &free_list);
1043 ret++;
1044 }
1045 }
1046
1047 if (!list_empty(&free_list)) {
1048 synchronize_net();
1049 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1050 __sta_info_destroy_part2(sta);
1051 }
1052 mutex_unlock(&local->sta_mtx);
1053
1054 return ret;
1055 }
1056
1057 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1058 unsigned long exp_time)
1059 {
1060 struct ieee80211_local *local = sdata->local;
1061 struct sta_info *sta, *tmp;
1062
1063 mutex_lock(&local->sta_mtx);
1064
1065 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1066 if (sdata != sta->sdata)
1067 continue;
1068
1069 if (time_after(jiffies, sta->rx_stats.last_rx + exp_time)) {
1070 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1071 sta->sta.addr);
1072
1073 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1074 test_sta_flag(sta, WLAN_STA_PS_STA))
1075 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1076
1077 WARN_ON(__sta_info_destroy(sta));
1078 }
1079 }
1080
1081 mutex_unlock(&local->sta_mtx);
1082 }
1083
1084 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1085 const u8 *addr,
1086 const u8 *localaddr)
1087 {
1088 struct ieee80211_local *local = hw_to_local(hw);
1089 struct sta_info *sta;
1090 struct rhash_head *tmp;
1091 const struct bucket_table *tbl;
1092
1093 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
1094
1095 /*
1096 * Just return a random station if localaddr is NULL
1097 * ... first in list.
1098 */
1099 for_each_sta_info(local, tbl, addr, sta, tmp) {
1100 if (localaddr &&
1101 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1102 continue;
1103 if (!sta->uploaded)
1104 return NULL;
1105 return &sta->sta;
1106 }
1107
1108 return NULL;
1109 }
1110 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1111
1112 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1113 const u8 *addr)
1114 {
1115 struct sta_info *sta;
1116
1117 if (!vif)
1118 return NULL;
1119
1120 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1121 if (!sta)
1122 return NULL;
1123
1124 if (!sta->uploaded)
1125 return NULL;
1126
1127 return &sta->sta;
1128 }
1129 EXPORT_SYMBOL(ieee80211_find_sta);
1130
1131 /* powersave support code */
1132 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1133 {
1134 struct ieee80211_sub_if_data *sdata = sta->sdata;
1135 struct ieee80211_local *local = sdata->local;
1136 struct sk_buff_head pending;
1137 int filtered = 0, buffered = 0, ac, i;
1138 unsigned long flags;
1139 struct ps_data *ps;
1140
1141 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1142 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1143 u.ap);
1144
1145 if (sdata->vif.type == NL80211_IFTYPE_AP)
1146 ps = &sdata->bss->ps;
1147 else if (ieee80211_vif_is_mesh(&sdata->vif))
1148 ps = &sdata->u.mesh.ps;
1149 else
1150 return;
1151
1152 clear_sta_flag(sta, WLAN_STA_SP);
1153
1154 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1155 sta->driver_buffered_tids = 0;
1156 sta->txq_buffered_tids = 0;
1157
1158 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1159 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1160
1161 if (sta->sta.txq[0]) {
1162 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1163 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]);
1164
1165 if (!skb_queue_len(&txqi->queue))
1166 continue;
1167
1168 drv_wake_tx_queue(local, txqi);
1169 }
1170 }
1171
1172 skb_queue_head_init(&pending);
1173
1174 /* sync with ieee80211_tx_h_unicast_ps_buf */
1175 spin_lock(&sta->ps_lock);
1176 /* Send all buffered frames to the station */
1177 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1178 int count = skb_queue_len(&pending), tmp;
1179
1180 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1181 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1182 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1183 tmp = skb_queue_len(&pending);
1184 filtered += tmp - count;
1185 count = tmp;
1186
1187 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1188 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1189 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1190 tmp = skb_queue_len(&pending);
1191 buffered += tmp - count;
1192 }
1193
1194 ieee80211_add_pending_skbs(local, &pending);
1195
1196 /* now we're no longer in the deliver code */
1197 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1198
1199 /* The station might have polled and then woken up before we responded,
1200 * so clear these flags now to avoid them sticking around.
1201 */
1202 clear_sta_flag(sta, WLAN_STA_PSPOLL);
1203 clear_sta_flag(sta, WLAN_STA_UAPSD);
1204 spin_unlock(&sta->ps_lock);
1205
1206 atomic_dec(&ps->num_sta_ps);
1207
1208 /* This station just woke up and isn't aware of our SMPS state */
1209 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1210 !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1211 sdata->smps_mode) &&
1212 sta->known_smps_mode != sdata->bss->req_smps &&
1213 sta_info_tx_streams(sta) != 1) {
1214 ht_dbg(sdata,
1215 "%pM just woke up and MIMO capable - update SMPS\n",
1216 sta->sta.addr);
1217 ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1218 sta->sta.addr,
1219 sdata->vif.bss_conf.bssid);
1220 }
1221
1222 local->total_ps_buffered -= buffered;
1223
1224 sta_info_recalc_tim(sta);
1225
1226 ps_dbg(sdata,
1227 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n",
1228 sta->sta.addr, sta->sta.aid, filtered, buffered);
1229
1230 ieee80211_check_fast_xmit(sta);
1231 }
1232
1233 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata,
1234 struct sta_info *sta, int tid,
1235 enum ieee80211_frame_release_type reason,
1236 bool call_driver)
1237 {
1238 struct ieee80211_local *local = sdata->local;
1239 struct ieee80211_qos_hdr *nullfunc;
1240 struct sk_buff *skb;
1241 int size = sizeof(*nullfunc);
1242 __le16 fc;
1243 bool qos = sta->sta.wme;
1244 struct ieee80211_tx_info *info;
1245 struct ieee80211_chanctx_conf *chanctx_conf;
1246
1247 if (qos) {
1248 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1249 IEEE80211_STYPE_QOS_NULLFUNC |
1250 IEEE80211_FCTL_FROMDS);
1251 } else {
1252 size -= 2;
1253 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1254 IEEE80211_STYPE_NULLFUNC |
1255 IEEE80211_FCTL_FROMDS);
1256 }
1257
1258 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1259 if (!skb)
1260 return;
1261
1262 skb_reserve(skb, local->hw.extra_tx_headroom);
1263
1264 nullfunc = (void *) skb_put(skb, size);
1265 nullfunc->frame_control = fc;
1266 nullfunc->duration_id = 0;
1267 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1268 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1269 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1270 nullfunc->seq_ctrl = 0;
1271
1272 skb->priority = tid;
1273 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1274 if (qos) {
1275 nullfunc->qos_ctrl = cpu_to_le16(tid);
1276
1277 if (reason == IEEE80211_FRAME_RELEASE_UAPSD)
1278 nullfunc->qos_ctrl |=
1279 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1280 }
1281
1282 info = IEEE80211_SKB_CB(skb);
1283
1284 /*
1285 * Tell TX path to send this frame even though the
1286 * STA may still remain is PS mode after this frame
1287 * exchange. Also set EOSP to indicate this packet
1288 * ends the poll/service period.
1289 */
1290 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1291 IEEE80211_TX_STATUS_EOSP |
1292 IEEE80211_TX_CTL_REQ_TX_STATUS;
1293
1294 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1295
1296 if (call_driver)
1297 drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1298 reason, false);
1299
1300 skb->dev = sdata->dev;
1301
1302 rcu_read_lock();
1303 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1304 if (WARN_ON(!chanctx_conf)) {
1305 rcu_read_unlock();
1306 kfree_skb(skb);
1307 return;
1308 }
1309
1310 info->band = chanctx_conf->def.chan->band;
1311 ieee80211_xmit(sdata, sta, skb);
1312 rcu_read_unlock();
1313 }
1314
1315 static int find_highest_prio_tid(unsigned long tids)
1316 {
1317 /* lower 3 TIDs aren't ordered perfectly */
1318 if (tids & 0xF8)
1319 return fls(tids) - 1;
1320 /* TID 0 is BE just like TID 3 */
1321 if (tids & BIT(0))
1322 return 0;
1323 return fls(tids) - 1;
1324 }
1325
1326 static void
1327 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1328 int n_frames, u8 ignored_acs,
1329 enum ieee80211_frame_release_type reason)
1330 {
1331 struct ieee80211_sub_if_data *sdata = sta->sdata;
1332 struct ieee80211_local *local = sdata->local;
1333 bool more_data = false;
1334 int ac;
1335 unsigned long driver_release_tids = 0;
1336 struct sk_buff_head frames;
1337
1338 /* Service or PS-Poll period starts */
1339 set_sta_flag(sta, WLAN_STA_SP);
1340
1341 __skb_queue_head_init(&frames);
1342
1343 /* Get response frame(s) and more data bit for the last one. */
1344 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1345 unsigned long tids;
1346
1347 if (ignored_acs & BIT(ac))
1348 continue;
1349
1350 tids = ieee80211_tids_for_ac(ac);
1351
1352 /* if we already have frames from software, then we can't also
1353 * release from hardware queues
1354 */
1355 if (skb_queue_empty(&frames)) {
1356 driver_release_tids |= sta->driver_buffered_tids & tids;
1357 driver_release_tids |= sta->txq_buffered_tids & tids;
1358 }
1359
1360 if (driver_release_tids) {
1361 /* If the driver has data on more than one TID then
1362 * certainly there's more data if we release just a
1363 * single frame now (from a single TID). This will
1364 * only happen for PS-Poll.
1365 */
1366 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1367 hweight16(driver_release_tids) > 1) {
1368 more_data = true;
1369 driver_release_tids =
1370 BIT(find_highest_prio_tid(
1371 driver_release_tids));
1372 break;
1373 }
1374 } else {
1375 struct sk_buff *skb;
1376
1377 while (n_frames > 0) {
1378 skb = skb_dequeue(&sta->tx_filtered[ac]);
1379 if (!skb) {
1380 skb = skb_dequeue(
1381 &sta->ps_tx_buf[ac]);
1382 if (skb)
1383 local->total_ps_buffered--;
1384 }
1385 if (!skb)
1386 break;
1387 n_frames--;
1388 __skb_queue_tail(&frames, skb);
1389 }
1390 }
1391
1392 /* If we have more frames buffered on this AC, then set the
1393 * more-data bit and abort the loop since we can't send more
1394 * data from other ACs before the buffered frames from this.
1395 */
1396 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1397 !skb_queue_empty(&sta->ps_tx_buf[ac])) {
1398 more_data = true;
1399 break;
1400 }
1401 }
1402
1403 if (skb_queue_empty(&frames) && !driver_release_tids) {
1404 int tid;
1405
1406 /*
1407 * For PS-Poll, this can only happen due to a race condition
1408 * when we set the TIM bit and the station notices it, but
1409 * before it can poll for the frame we expire it.
1410 *
1411 * For uAPSD, this is said in the standard (11.2.1.5 h):
1412 * At each unscheduled SP for a non-AP STA, the AP shall
1413 * attempt to transmit at least one MSDU or MMPDU, but no
1414 * more than the value specified in the Max SP Length field
1415 * in the QoS Capability element from delivery-enabled ACs,
1416 * that are destined for the non-AP STA.
1417 *
1418 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1419 */
1420
1421 /* This will evaluate to 1, 3, 5 or 7. */
1422 tid = 7 - ((ffs(~ignored_acs) - 1) << 1);
1423
1424 ieee80211_send_null_response(sdata, sta, tid, reason, true);
1425 } else if (!driver_release_tids) {
1426 struct sk_buff_head pending;
1427 struct sk_buff *skb;
1428 int num = 0;
1429 u16 tids = 0;
1430 bool need_null = false;
1431
1432 skb_queue_head_init(&pending);
1433
1434 while ((skb = __skb_dequeue(&frames))) {
1435 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1436 struct ieee80211_hdr *hdr = (void *) skb->data;
1437 u8 *qoshdr = NULL;
1438
1439 num++;
1440
1441 /*
1442 * Tell TX path to send this frame even though the
1443 * STA may still remain is PS mode after this frame
1444 * exchange.
1445 */
1446 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1447 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1448
1449 /*
1450 * Use MoreData flag to indicate whether there are
1451 * more buffered frames for this STA
1452 */
1453 if (more_data || !skb_queue_empty(&frames))
1454 hdr->frame_control |=
1455 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1456 else
1457 hdr->frame_control &=
1458 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1459
1460 if (ieee80211_is_data_qos(hdr->frame_control) ||
1461 ieee80211_is_qos_nullfunc(hdr->frame_control))
1462 qoshdr = ieee80211_get_qos_ctl(hdr);
1463
1464 tids |= BIT(skb->priority);
1465
1466 __skb_queue_tail(&pending, skb);
1467
1468 /* end service period after last frame or add one */
1469 if (!skb_queue_empty(&frames))
1470 continue;
1471
1472 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1473 /* for PS-Poll, there's only one frame */
1474 info->flags |= IEEE80211_TX_STATUS_EOSP |
1475 IEEE80211_TX_CTL_REQ_TX_STATUS;
1476 break;
1477 }
1478
1479 /* For uAPSD, things are a bit more complicated. If the
1480 * last frame has a QoS header (i.e. is a QoS-data or
1481 * QoS-nulldata frame) then just set the EOSP bit there
1482 * and be done.
1483 * If the frame doesn't have a QoS header (which means
1484 * it should be a bufferable MMPDU) then we can't set
1485 * the EOSP bit in the QoS header; add a QoS-nulldata
1486 * frame to the list to send it after the MMPDU.
1487 *
1488 * Note that this code is only in the mac80211-release
1489 * code path, we assume that the driver will not buffer
1490 * anything but QoS-data frames, or if it does, will
1491 * create the QoS-nulldata frame by itself if needed.
1492 *
1493 * Cf. 802.11-2012 10.2.1.10 (c).
1494 */
1495 if (qoshdr) {
1496 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1497
1498 info->flags |= IEEE80211_TX_STATUS_EOSP |
1499 IEEE80211_TX_CTL_REQ_TX_STATUS;
1500 } else {
1501 /* The standard isn't completely clear on this
1502 * as it says the more-data bit should be set
1503 * if there are more BUs. The QoS-Null frame
1504 * we're about to send isn't buffered yet, we
1505 * only create it below, but let's pretend it
1506 * was buffered just in case some clients only
1507 * expect more-data=0 when eosp=1.
1508 */
1509 hdr->frame_control |=
1510 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1511 need_null = true;
1512 num++;
1513 }
1514 break;
1515 }
1516
1517 drv_allow_buffered_frames(local, sta, tids, num,
1518 reason, more_data);
1519
1520 ieee80211_add_pending_skbs(local, &pending);
1521
1522 if (need_null)
1523 ieee80211_send_null_response(
1524 sdata, sta, find_highest_prio_tid(tids),
1525 reason, false);
1526
1527 sta_info_recalc_tim(sta);
1528 } else {
1529 unsigned long tids = sta->txq_buffered_tids & driver_release_tids;
1530 int tid;
1531
1532 /*
1533 * We need to release a frame that is buffered somewhere in the
1534 * driver ... it'll have to handle that.
1535 * Note that the driver also has to check the number of frames
1536 * on the TIDs we're releasing from - if there are more than
1537 * n_frames it has to set the more-data bit (if we didn't ask
1538 * it to set it anyway due to other buffered frames); if there
1539 * are fewer than n_frames it has to make sure to adjust that
1540 * to allow the service period to end properly.
1541 */
1542 drv_release_buffered_frames(local, sta, driver_release_tids,
1543 n_frames, reason, more_data);
1544
1545 /*
1546 * Note that we don't recalculate the TIM bit here as it would
1547 * most likely have no effect at all unless the driver told us
1548 * that the TID(s) became empty before returning here from the
1549 * release function.
1550 * Either way, however, when the driver tells us that the TID(s)
1551 * became empty or we find that a txq became empty, we'll do the
1552 * TIM recalculation.
1553 */
1554
1555 if (!sta->sta.txq[0])
1556 return;
1557
1558 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1559 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1560
1561 if (!(tids & BIT(tid)) || skb_queue_len(&txqi->queue))
1562 continue;
1563
1564 sta_info_recalc_tim(sta);
1565 break;
1566 }
1567 }
1568 }
1569
1570 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1571 {
1572 u8 ignore_for_response = sta->sta.uapsd_queues;
1573
1574 /*
1575 * If all ACs are delivery-enabled then we should reply
1576 * from any of them, if only some are enabled we reply
1577 * only from the non-enabled ones.
1578 */
1579 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1580 ignore_for_response = 0;
1581
1582 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1583 IEEE80211_FRAME_RELEASE_PSPOLL);
1584 }
1585
1586 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1587 {
1588 int n_frames = sta->sta.max_sp;
1589 u8 delivery_enabled = sta->sta.uapsd_queues;
1590
1591 /*
1592 * If we ever grow support for TSPEC this might happen if
1593 * the TSPEC update from hostapd comes in between a trigger
1594 * frame setting WLAN_STA_UAPSD in the RX path and this
1595 * actually getting called.
1596 */
1597 if (!delivery_enabled)
1598 return;
1599
1600 switch (sta->sta.max_sp) {
1601 case 1:
1602 n_frames = 2;
1603 break;
1604 case 2:
1605 n_frames = 4;
1606 break;
1607 case 3:
1608 n_frames = 6;
1609 break;
1610 case 0:
1611 /* XXX: what is a good value? */
1612 n_frames = 128;
1613 break;
1614 }
1615
1616 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1617 IEEE80211_FRAME_RELEASE_UAPSD);
1618 }
1619
1620 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1621 struct ieee80211_sta *pubsta, bool block)
1622 {
1623 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1624
1625 trace_api_sta_block_awake(sta->local, pubsta, block);
1626
1627 if (block) {
1628 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1629 ieee80211_clear_fast_xmit(sta);
1630 return;
1631 }
1632
1633 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1634 return;
1635
1636 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1637 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1638 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1639 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1640 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1641 test_sta_flag(sta, WLAN_STA_UAPSD)) {
1642 /* must be asleep in this case */
1643 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1644 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1645 } else {
1646 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1647 ieee80211_check_fast_xmit(sta);
1648 }
1649 }
1650 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1651
1652 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1653 {
1654 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1655 struct ieee80211_local *local = sta->local;
1656
1657 trace_api_eosp(local, pubsta);
1658
1659 clear_sta_flag(sta, WLAN_STA_SP);
1660 }
1661 EXPORT_SYMBOL(ieee80211_sta_eosp);
1662
1663 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1664 u8 tid, bool buffered)
1665 {
1666 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1667
1668 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1669 return;
1670
1671 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1672
1673 if (buffered)
1674 set_bit(tid, &sta->driver_buffered_tids);
1675 else
1676 clear_bit(tid, &sta->driver_buffered_tids);
1677
1678 sta_info_recalc_tim(sta);
1679 }
1680 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1681
1682 int sta_info_move_state(struct sta_info *sta,
1683 enum ieee80211_sta_state new_state)
1684 {
1685 might_sleep();
1686
1687 if (sta->sta_state == new_state)
1688 return 0;
1689
1690 /* check allowed transitions first */
1691
1692 switch (new_state) {
1693 case IEEE80211_STA_NONE:
1694 if (sta->sta_state != IEEE80211_STA_AUTH)
1695 return -EINVAL;
1696 break;
1697 case IEEE80211_STA_AUTH:
1698 if (sta->sta_state != IEEE80211_STA_NONE &&
1699 sta->sta_state != IEEE80211_STA_ASSOC)
1700 return -EINVAL;
1701 break;
1702 case IEEE80211_STA_ASSOC:
1703 if (sta->sta_state != IEEE80211_STA_AUTH &&
1704 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1705 return -EINVAL;
1706 break;
1707 case IEEE80211_STA_AUTHORIZED:
1708 if (sta->sta_state != IEEE80211_STA_ASSOC)
1709 return -EINVAL;
1710 break;
1711 default:
1712 WARN(1, "invalid state %d", new_state);
1713 return -EINVAL;
1714 }
1715
1716 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1717 sta->sta.addr, new_state);
1718
1719 /*
1720 * notify the driver before the actual changes so it can
1721 * fail the transition
1722 */
1723 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1724 int err = drv_sta_state(sta->local, sta->sdata, sta,
1725 sta->sta_state, new_state);
1726 if (err)
1727 return err;
1728 }
1729
1730 /* reflect the change in all state variables */
1731
1732 switch (new_state) {
1733 case IEEE80211_STA_NONE:
1734 if (sta->sta_state == IEEE80211_STA_AUTH)
1735 clear_bit(WLAN_STA_AUTH, &sta->_flags);
1736 break;
1737 case IEEE80211_STA_AUTH:
1738 if (sta->sta_state == IEEE80211_STA_NONE)
1739 set_bit(WLAN_STA_AUTH, &sta->_flags);
1740 else if (sta->sta_state == IEEE80211_STA_ASSOC)
1741 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1742 break;
1743 case IEEE80211_STA_ASSOC:
1744 if (sta->sta_state == IEEE80211_STA_AUTH) {
1745 set_bit(WLAN_STA_ASSOC, &sta->_flags);
1746 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1747 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1748 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1749 !sta->sdata->u.vlan.sta))
1750 atomic_dec(&sta->sdata->bss->num_mcast_sta);
1751 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1752 ieee80211_clear_fast_xmit(sta);
1753 }
1754 break;
1755 case IEEE80211_STA_AUTHORIZED:
1756 if (sta->sta_state == IEEE80211_STA_ASSOC) {
1757 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1758 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1759 !sta->sdata->u.vlan.sta))
1760 atomic_inc(&sta->sdata->bss->num_mcast_sta);
1761 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1762 ieee80211_check_fast_xmit(sta);
1763 }
1764 break;
1765 default:
1766 break;
1767 }
1768
1769 sta->sta_state = new_state;
1770
1771 return 0;
1772 }
1773
1774 u8 sta_info_tx_streams(struct sta_info *sta)
1775 {
1776 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1777 u8 rx_streams;
1778
1779 if (!sta->sta.ht_cap.ht_supported)
1780 return 1;
1781
1782 if (sta->sta.vht_cap.vht_supported) {
1783 int i;
1784 u16 tx_mcs_map =
1785 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
1786
1787 for (i = 7; i >= 0; i--)
1788 if ((tx_mcs_map & (0x3 << (i * 2))) !=
1789 IEEE80211_VHT_MCS_NOT_SUPPORTED)
1790 return i + 1;
1791 }
1792
1793 if (ht_cap->mcs.rx_mask[3])
1794 rx_streams = 4;
1795 else if (ht_cap->mcs.rx_mask[2])
1796 rx_streams = 3;
1797 else if (ht_cap->mcs.rx_mask[1])
1798 rx_streams = 2;
1799 else
1800 rx_streams = 1;
1801
1802 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
1803 return rx_streams;
1804
1805 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
1806 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
1807 }
1808
1809 static void sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
1810 {
1811 rinfo->flags = 0;
1812
1813 if (sta->rx_stats.last_rate_flag & RX_FLAG_HT) {
1814 rinfo->flags |= RATE_INFO_FLAGS_MCS;
1815 rinfo->mcs = sta->rx_stats.last_rate_idx;
1816 } else if (sta->rx_stats.last_rate_flag & RX_FLAG_VHT) {
1817 rinfo->flags |= RATE_INFO_FLAGS_VHT_MCS;
1818 rinfo->nss = sta->rx_stats.last_rate_vht_nss;
1819 rinfo->mcs = sta->rx_stats.last_rate_idx;
1820 } else {
1821 struct ieee80211_supported_band *sband;
1822 int shift = ieee80211_vif_get_shift(&sta->sdata->vif);
1823 u16 brate;
1824
1825 sband = sta->local->hw.wiphy->bands[
1826 ieee80211_get_sdata_band(sta->sdata)];
1827 brate = sband->bitrates[sta->rx_stats.last_rate_idx].bitrate;
1828 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
1829 }
1830
1831 if (sta->rx_stats.last_rate_flag & RX_FLAG_SHORT_GI)
1832 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
1833
1834 if (sta->rx_stats.last_rate_flag & RX_FLAG_5MHZ)
1835 rinfo->bw = RATE_INFO_BW_5;
1836 else if (sta->rx_stats.last_rate_flag & RX_FLAG_10MHZ)
1837 rinfo->bw = RATE_INFO_BW_10;
1838 else if (sta->rx_stats.last_rate_flag & RX_FLAG_40MHZ)
1839 rinfo->bw = RATE_INFO_BW_40;
1840 else if (sta->rx_stats.last_rate_vht_flag & RX_VHT_FLAG_80MHZ)
1841 rinfo->bw = RATE_INFO_BW_80;
1842 else if (sta->rx_stats.last_rate_vht_flag & RX_VHT_FLAG_160MHZ)
1843 rinfo->bw = RATE_INFO_BW_160;
1844 else
1845 rinfo->bw = RATE_INFO_BW_20;
1846 }
1847
1848 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
1849 {
1850 struct ieee80211_sub_if_data *sdata = sta->sdata;
1851 struct ieee80211_local *local = sdata->local;
1852 struct rate_control_ref *ref = NULL;
1853 u32 thr = 0;
1854 int i, ac;
1855
1856 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
1857 ref = local->rate_ctrl;
1858
1859 sinfo->generation = sdata->local->sta_generation;
1860
1861 /* do before driver, so beacon filtering drivers have a
1862 * chance to e.g. just add the number of filtered beacons
1863 * (or just modify the value entirely, of course)
1864 */
1865 if (sdata->vif.type == NL80211_IFTYPE_STATION)
1866 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
1867
1868 drv_sta_statistics(local, sdata, &sta->sta, sinfo);
1869
1870 sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) |
1871 BIT(NL80211_STA_INFO_STA_FLAGS) |
1872 BIT(NL80211_STA_INFO_BSS_PARAM) |
1873 BIT(NL80211_STA_INFO_CONNECTED_TIME) |
1874 BIT(NL80211_STA_INFO_RX_DROP_MISC);
1875
1876 if (sdata->vif.type == NL80211_IFTYPE_STATION) {
1877 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
1878 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_LOSS);
1879 }
1880
1881 sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
1882 sinfo->inactive_time =
1883 jiffies_to_msecs(jiffies - sta->rx_stats.last_rx);
1884
1885 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) |
1886 BIT(NL80211_STA_INFO_TX_BYTES)))) {
1887 sinfo->tx_bytes = 0;
1888 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
1889 sinfo->tx_bytes += sta->tx_stats.bytes[ac];
1890 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64);
1891 }
1892
1893 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) {
1894 sinfo->tx_packets = 0;
1895 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
1896 sinfo->tx_packets += sta->tx_stats.packets[ac];
1897 sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS);
1898 }
1899
1900 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) |
1901 BIT(NL80211_STA_INFO_RX_BYTES)))) {
1902 sinfo->rx_bytes = sta->rx_stats.bytes;
1903 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64);
1904 }
1905
1906 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) {
1907 sinfo->rx_packets = sta->rx_stats.packets;
1908 sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS);
1909 }
1910
1911 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) {
1912 sinfo->tx_retries = sta->status_stats.retry_count;
1913 sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES);
1914 }
1915
1916 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) {
1917 sinfo->tx_failed = sta->status_stats.retry_failed;
1918 sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED);
1919 }
1920
1921 sinfo->rx_dropped_misc = sta->rx_stats.dropped;
1922
1923 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1924 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
1925 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) |
1926 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
1927 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
1928 }
1929
1930 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
1931 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
1932 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) {
1933 sinfo->signal = (s8)sta->rx_stats.last_signal;
1934 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL);
1935 }
1936
1937 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) {
1938 sinfo->signal_avg =
1939 -ewma_signal_read(&sta->rx_stats.avg_signal);
1940 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG);
1941 }
1942 }
1943
1944 if (sta->rx_stats.chains &&
1945 !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) |
1946 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
1947 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL) |
1948 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
1949
1950 sinfo->chains = sta->rx_stats.chains;
1951 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
1952 sinfo->chain_signal[i] =
1953 sta->rx_stats.chain_signal_last[i];
1954 sinfo->chain_signal_avg[i] =
1955 -ewma_signal_read(&sta->rx_stats.chain_signal_avg[i]);
1956 }
1957 }
1958
1959 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) {
1960 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
1961 &sinfo->txrate);
1962 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE);
1963 }
1964
1965 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) {
1966 sta_set_rate_info_rx(sta, &sinfo->rxrate);
1967 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE);
1968 }
1969
1970 sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS);
1971 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) {
1972 struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i];
1973
1974 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
1975 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
1976 tidstats->rx_msdu = sta->rx_stats.msdu[i];
1977 }
1978
1979 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
1980 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
1981 tidstats->tx_msdu = sta->tx_stats.msdu[i];
1982 }
1983
1984 if (!(tidstats->filled &
1985 BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
1986 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
1987 tidstats->filled |=
1988 BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
1989 tidstats->tx_msdu_retries =
1990 sta->status_stats.msdu_retries[i];
1991 }
1992
1993 if (!(tidstats->filled &
1994 BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
1995 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
1996 tidstats->filled |=
1997 BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
1998 tidstats->tx_msdu_failed =
1999 sta->status_stats.msdu_failed[i];
2000 }
2001 }
2002
2003 if (ieee80211_vif_is_mesh(&sdata->vif)) {
2004 #ifdef CONFIG_MAC80211_MESH
2005 sinfo->filled |= BIT(NL80211_STA_INFO_LLID) |
2006 BIT(NL80211_STA_INFO_PLID) |
2007 BIT(NL80211_STA_INFO_PLINK_STATE) |
2008 BIT(NL80211_STA_INFO_LOCAL_PM) |
2009 BIT(NL80211_STA_INFO_PEER_PM) |
2010 BIT(NL80211_STA_INFO_NONPEER_PM);
2011
2012 sinfo->llid = sta->mesh->llid;
2013 sinfo->plid = sta->mesh->plid;
2014 sinfo->plink_state = sta->mesh->plink_state;
2015 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2016 sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET);
2017 sinfo->t_offset = sta->mesh->t_offset;
2018 }
2019 sinfo->local_pm = sta->mesh->local_pm;
2020 sinfo->peer_pm = sta->mesh->peer_pm;
2021 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2022 #endif
2023 }
2024
2025 sinfo->bss_param.flags = 0;
2026 if (sdata->vif.bss_conf.use_cts_prot)
2027 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2028 if (sdata->vif.bss_conf.use_short_preamble)
2029 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2030 if (sdata->vif.bss_conf.use_short_slot)
2031 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2032 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2033 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2034
2035 sinfo->sta_flags.set = 0;
2036 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2037 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2038 BIT(NL80211_STA_FLAG_WME) |
2039 BIT(NL80211_STA_FLAG_MFP) |
2040 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2041 BIT(NL80211_STA_FLAG_ASSOCIATED) |
2042 BIT(NL80211_STA_FLAG_TDLS_PEER);
2043 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2044 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2045 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2046 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2047 if (sta->sta.wme)
2048 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2049 if (test_sta_flag(sta, WLAN_STA_MFP))
2050 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2051 if (test_sta_flag(sta, WLAN_STA_AUTH))
2052 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2053 if (test_sta_flag(sta, WLAN_STA_ASSOC))
2054 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2055 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2056 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2057
2058 /* check if the driver has a SW RC implementation */
2059 if (ref && ref->ops->get_expected_throughput)
2060 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2061 else
2062 thr = drv_get_expected_throughput(local, &sta->sta);
2063
2064 if (thr != 0) {
2065 sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2066 sinfo->expected_throughput = thr;
2067 }
2068 }
This page took 0.074365 seconds and 6 git commands to generate.