netfilter: conntrack: add gc worker to remove timed-out entries
[deliverable/linux.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/types.h>
18 #include <linux/netfilter.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/skbuff.h>
22 #include <linux/proc_fs.h>
23 #include <linux/vmalloc.h>
24 #include <linux/stddef.h>
25 #include <linux/slab.h>
26 #include <linux/random.h>
27 #include <linux/jhash.h>
28 #include <linux/err.h>
29 #include <linux/percpu.h>
30 #include <linux/moduleparam.h>
31 #include <linux/notifier.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/socket.h>
35 #include <linux/mm.h>
36 #include <linux/nsproxy.h>
37 #include <linux/rculist_nulls.h>
38
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/netfilter/nf_conntrack_l3proto.h>
41 #include <net/netfilter/nf_conntrack_l4proto.h>
42 #include <net/netfilter/nf_conntrack_expect.h>
43 #include <net/netfilter/nf_conntrack_helper.h>
44 #include <net/netfilter/nf_conntrack_seqadj.h>
45 #include <net/netfilter/nf_conntrack_core.h>
46 #include <net/netfilter/nf_conntrack_extend.h>
47 #include <net/netfilter/nf_conntrack_acct.h>
48 #include <net/netfilter/nf_conntrack_ecache.h>
49 #include <net/netfilter/nf_conntrack_zones.h>
50 #include <net/netfilter/nf_conntrack_timestamp.h>
51 #include <net/netfilter/nf_conntrack_timeout.h>
52 #include <net/netfilter/nf_conntrack_labels.h>
53 #include <net/netfilter/nf_conntrack_synproxy.h>
54 #include <net/netfilter/nf_nat.h>
55 #include <net/netfilter/nf_nat_core.h>
56 #include <net/netfilter/nf_nat_helper.h>
57 #include <net/netns/hash.h>
58
59 #define NF_CONNTRACK_VERSION "0.5.0"
60
61 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
62 enum nf_nat_manip_type manip,
63 const struct nlattr *attr) __read_mostly;
64 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
65
66 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
67 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
68
69 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
70 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
71
72 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
73 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
74
75 struct conntrack_gc_work {
76 struct delayed_work dwork;
77 u32 last_bucket;
78 bool exiting;
79 };
80
81 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
82 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
83 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
84 static __read_mostly bool nf_conntrack_locks_all;
85
86 #define GC_MAX_BUCKETS_DIV 64u
87 #define GC_MAX_BUCKETS 8192u
88 #define GC_INTERVAL (5 * HZ)
89 #define GC_MAX_EVICTS 256u
90
91 static struct conntrack_gc_work conntrack_gc_work;
92
93 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
94 {
95 spin_lock(lock);
96 while (unlikely(nf_conntrack_locks_all)) {
97 spin_unlock(lock);
98
99 /*
100 * Order the 'nf_conntrack_locks_all' load vs. the
101 * spin_unlock_wait() loads below, to ensure
102 * that 'nf_conntrack_locks_all_lock' is indeed held:
103 */
104 smp_rmb(); /* spin_lock(&nf_conntrack_locks_all_lock) */
105 spin_unlock_wait(&nf_conntrack_locks_all_lock);
106 spin_lock(lock);
107 }
108 }
109 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
110
111 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
112 {
113 h1 %= CONNTRACK_LOCKS;
114 h2 %= CONNTRACK_LOCKS;
115 spin_unlock(&nf_conntrack_locks[h1]);
116 if (h1 != h2)
117 spin_unlock(&nf_conntrack_locks[h2]);
118 }
119
120 /* return true if we need to recompute hashes (in case hash table was resized) */
121 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
122 unsigned int h2, unsigned int sequence)
123 {
124 h1 %= CONNTRACK_LOCKS;
125 h2 %= CONNTRACK_LOCKS;
126 if (h1 <= h2) {
127 nf_conntrack_lock(&nf_conntrack_locks[h1]);
128 if (h1 != h2)
129 spin_lock_nested(&nf_conntrack_locks[h2],
130 SINGLE_DEPTH_NESTING);
131 } else {
132 nf_conntrack_lock(&nf_conntrack_locks[h2]);
133 spin_lock_nested(&nf_conntrack_locks[h1],
134 SINGLE_DEPTH_NESTING);
135 }
136 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
137 nf_conntrack_double_unlock(h1, h2);
138 return true;
139 }
140 return false;
141 }
142
143 static void nf_conntrack_all_lock(void)
144 {
145 int i;
146
147 spin_lock(&nf_conntrack_locks_all_lock);
148 nf_conntrack_locks_all = true;
149
150 /*
151 * Order the above store of 'nf_conntrack_locks_all' against
152 * the spin_unlock_wait() loads below, such that if
153 * nf_conntrack_lock() observes 'nf_conntrack_locks_all'
154 * we must observe nf_conntrack_locks[] held:
155 */
156 smp_mb(); /* spin_lock(&nf_conntrack_locks_all_lock) */
157
158 for (i = 0; i < CONNTRACK_LOCKS; i++) {
159 spin_unlock_wait(&nf_conntrack_locks[i]);
160 }
161 }
162
163 static void nf_conntrack_all_unlock(void)
164 {
165 /*
166 * All prior stores must be complete before we clear
167 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
168 * might observe the false value but not the entire
169 * critical section:
170 */
171 smp_store_release(&nf_conntrack_locks_all, false);
172 spin_unlock(&nf_conntrack_locks_all_lock);
173 }
174
175 unsigned int nf_conntrack_htable_size __read_mostly;
176 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
177
178 unsigned int nf_conntrack_max __read_mostly;
179 seqcount_t nf_conntrack_generation __read_mostly;
180
181 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
182 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
183
184 static unsigned int nf_conntrack_hash_rnd __read_mostly;
185
186 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
187 const struct net *net)
188 {
189 unsigned int n;
190 u32 seed;
191
192 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
193
194 /* The direction must be ignored, so we hash everything up to the
195 * destination ports (which is a multiple of 4) and treat the last
196 * three bytes manually.
197 */
198 seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
199 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
200 return jhash2((u32 *)tuple, n, seed ^
201 (((__force __u16)tuple->dst.u.all << 16) |
202 tuple->dst.protonum));
203 }
204
205 static u32 scale_hash(u32 hash)
206 {
207 return reciprocal_scale(hash, nf_conntrack_htable_size);
208 }
209
210 static u32 __hash_conntrack(const struct net *net,
211 const struct nf_conntrack_tuple *tuple,
212 unsigned int size)
213 {
214 return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
215 }
216
217 static u32 hash_conntrack(const struct net *net,
218 const struct nf_conntrack_tuple *tuple)
219 {
220 return scale_hash(hash_conntrack_raw(tuple, net));
221 }
222
223 bool
224 nf_ct_get_tuple(const struct sk_buff *skb,
225 unsigned int nhoff,
226 unsigned int dataoff,
227 u_int16_t l3num,
228 u_int8_t protonum,
229 struct net *net,
230 struct nf_conntrack_tuple *tuple,
231 const struct nf_conntrack_l3proto *l3proto,
232 const struct nf_conntrack_l4proto *l4proto)
233 {
234 memset(tuple, 0, sizeof(*tuple));
235
236 tuple->src.l3num = l3num;
237 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
238 return false;
239
240 tuple->dst.protonum = protonum;
241 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
242
243 return l4proto->pkt_to_tuple(skb, dataoff, net, tuple);
244 }
245 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
246
247 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
248 u_int16_t l3num,
249 struct net *net, struct nf_conntrack_tuple *tuple)
250 {
251 struct nf_conntrack_l3proto *l3proto;
252 struct nf_conntrack_l4proto *l4proto;
253 unsigned int protoff;
254 u_int8_t protonum;
255 int ret;
256
257 rcu_read_lock();
258
259 l3proto = __nf_ct_l3proto_find(l3num);
260 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
261 if (ret != NF_ACCEPT) {
262 rcu_read_unlock();
263 return false;
264 }
265
266 l4proto = __nf_ct_l4proto_find(l3num, protonum);
267
268 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple,
269 l3proto, l4proto);
270
271 rcu_read_unlock();
272 return ret;
273 }
274 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
275
276 bool
277 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
278 const struct nf_conntrack_tuple *orig,
279 const struct nf_conntrack_l3proto *l3proto,
280 const struct nf_conntrack_l4proto *l4proto)
281 {
282 memset(inverse, 0, sizeof(*inverse));
283
284 inverse->src.l3num = orig->src.l3num;
285 if (l3proto->invert_tuple(inverse, orig) == 0)
286 return false;
287
288 inverse->dst.dir = !orig->dst.dir;
289
290 inverse->dst.protonum = orig->dst.protonum;
291 return l4proto->invert_tuple(inverse, orig);
292 }
293 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
294
295 static void
296 clean_from_lists(struct nf_conn *ct)
297 {
298 pr_debug("clean_from_lists(%p)\n", ct);
299 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
300 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
301
302 /* Destroy all pending expectations */
303 nf_ct_remove_expectations(ct);
304 }
305
306 /* must be called with local_bh_disable */
307 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
308 {
309 struct ct_pcpu *pcpu;
310
311 /* add this conntrack to the (per cpu) dying list */
312 ct->cpu = smp_processor_id();
313 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
314
315 spin_lock(&pcpu->lock);
316 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
317 &pcpu->dying);
318 spin_unlock(&pcpu->lock);
319 }
320
321 /* must be called with local_bh_disable */
322 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
323 {
324 struct ct_pcpu *pcpu;
325
326 /* add this conntrack to the (per cpu) unconfirmed list */
327 ct->cpu = smp_processor_id();
328 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
329
330 spin_lock(&pcpu->lock);
331 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
332 &pcpu->unconfirmed);
333 spin_unlock(&pcpu->lock);
334 }
335
336 /* must be called with local_bh_disable */
337 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
338 {
339 struct ct_pcpu *pcpu;
340
341 /* We overload first tuple to link into unconfirmed or dying list.*/
342 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
343
344 spin_lock(&pcpu->lock);
345 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
346 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
347 spin_unlock(&pcpu->lock);
348 }
349
350 /* Released via destroy_conntrack() */
351 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
352 const struct nf_conntrack_zone *zone,
353 gfp_t flags)
354 {
355 struct nf_conn *tmpl;
356
357 tmpl = kzalloc(sizeof(*tmpl), flags);
358 if (tmpl == NULL)
359 return NULL;
360
361 tmpl->status = IPS_TEMPLATE;
362 write_pnet(&tmpl->ct_net, net);
363 nf_ct_zone_add(tmpl, zone);
364 atomic_set(&tmpl->ct_general.use, 0);
365
366 return tmpl;
367 }
368 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
369
370 void nf_ct_tmpl_free(struct nf_conn *tmpl)
371 {
372 nf_ct_ext_destroy(tmpl);
373 nf_ct_ext_free(tmpl);
374 kfree(tmpl);
375 }
376 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
377
378 static void
379 destroy_conntrack(struct nf_conntrack *nfct)
380 {
381 struct nf_conn *ct = (struct nf_conn *)nfct;
382 struct net *net = nf_ct_net(ct);
383 struct nf_conntrack_l4proto *l4proto;
384
385 pr_debug("destroy_conntrack(%p)\n", ct);
386 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
387
388 if (unlikely(nf_ct_is_template(ct))) {
389 nf_ct_tmpl_free(ct);
390 return;
391 }
392 rcu_read_lock();
393 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
394 if (l4proto->destroy)
395 l4proto->destroy(ct);
396
397 rcu_read_unlock();
398
399 local_bh_disable();
400 /* Expectations will have been removed in clean_from_lists,
401 * except TFTP can create an expectation on the first packet,
402 * before connection is in the list, so we need to clean here,
403 * too.
404 */
405 nf_ct_remove_expectations(ct);
406
407 nf_ct_del_from_dying_or_unconfirmed_list(ct);
408
409 NF_CT_STAT_INC(net, delete);
410 local_bh_enable();
411
412 if (ct->master)
413 nf_ct_put(ct->master);
414
415 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
416 nf_conntrack_free(ct);
417 }
418
419 static void nf_ct_delete_from_lists(struct nf_conn *ct)
420 {
421 struct net *net = nf_ct_net(ct);
422 unsigned int hash, reply_hash;
423 unsigned int sequence;
424
425 nf_ct_helper_destroy(ct);
426
427 local_bh_disable();
428 do {
429 sequence = read_seqcount_begin(&nf_conntrack_generation);
430 hash = hash_conntrack(net,
431 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
432 reply_hash = hash_conntrack(net,
433 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
434 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
435
436 clean_from_lists(ct);
437 nf_conntrack_double_unlock(hash, reply_hash);
438
439 nf_ct_add_to_dying_list(ct);
440
441 NF_CT_STAT_INC(net, delete_list);
442 local_bh_enable();
443 }
444
445 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
446 {
447 struct nf_conn_tstamp *tstamp;
448
449 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
450 return false;
451
452 tstamp = nf_conn_tstamp_find(ct);
453 if (tstamp && tstamp->stop == 0)
454 tstamp->stop = ktime_get_real_ns();
455
456 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
457 portid, report) < 0) {
458 /* destroy event was not delivered. nf_ct_put will
459 * be done by event cache worker on redelivery.
460 */
461 nf_ct_delete_from_lists(ct);
462 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
463 return false;
464 }
465
466 nf_conntrack_ecache_work(nf_ct_net(ct));
467 nf_ct_delete_from_lists(ct);
468 nf_ct_put(ct);
469 return true;
470 }
471 EXPORT_SYMBOL_GPL(nf_ct_delete);
472
473 static inline bool
474 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
475 const struct nf_conntrack_tuple *tuple,
476 const struct nf_conntrack_zone *zone,
477 const struct net *net)
478 {
479 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
480
481 /* A conntrack can be recreated with the equal tuple,
482 * so we need to check that the conntrack is confirmed
483 */
484 return nf_ct_tuple_equal(tuple, &h->tuple) &&
485 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
486 nf_ct_is_confirmed(ct) &&
487 net_eq(net, nf_ct_net(ct));
488 }
489
490 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
491 static void nf_ct_gc_expired(struct nf_conn *ct)
492 {
493 if (!atomic_inc_not_zero(&ct->ct_general.use))
494 return;
495
496 if (nf_ct_should_gc(ct))
497 nf_ct_kill(ct);
498
499 nf_ct_put(ct);
500 }
501
502 /*
503 * Warning :
504 * - Caller must take a reference on returned object
505 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
506 */
507 static struct nf_conntrack_tuple_hash *
508 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
509 const struct nf_conntrack_tuple *tuple, u32 hash)
510 {
511 struct nf_conntrack_tuple_hash *h;
512 struct hlist_nulls_head *ct_hash;
513 struct hlist_nulls_node *n;
514 unsigned int bucket, hsize;
515
516 begin:
517 nf_conntrack_get_ht(&ct_hash, &hsize);
518 bucket = reciprocal_scale(hash, hsize);
519
520 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
521 struct nf_conn *ct;
522
523 ct = nf_ct_tuplehash_to_ctrack(h);
524 if (nf_ct_is_expired(ct)) {
525 nf_ct_gc_expired(ct);
526 continue;
527 }
528
529 if (nf_ct_is_dying(ct))
530 continue;
531
532 if (nf_ct_key_equal(h, tuple, zone, net)) {
533 NF_CT_STAT_INC_ATOMIC(net, found);
534 return h;
535 }
536 NF_CT_STAT_INC_ATOMIC(net, searched);
537 }
538 /*
539 * if the nulls value we got at the end of this lookup is
540 * not the expected one, we must restart lookup.
541 * We probably met an item that was moved to another chain.
542 */
543 if (get_nulls_value(n) != bucket) {
544 NF_CT_STAT_INC_ATOMIC(net, search_restart);
545 goto begin;
546 }
547
548 return NULL;
549 }
550
551 /* Find a connection corresponding to a tuple. */
552 static struct nf_conntrack_tuple_hash *
553 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
554 const struct nf_conntrack_tuple *tuple, u32 hash)
555 {
556 struct nf_conntrack_tuple_hash *h;
557 struct nf_conn *ct;
558
559 rcu_read_lock();
560 begin:
561 h = ____nf_conntrack_find(net, zone, tuple, hash);
562 if (h) {
563 ct = nf_ct_tuplehash_to_ctrack(h);
564 if (unlikely(nf_ct_is_dying(ct) ||
565 !atomic_inc_not_zero(&ct->ct_general.use)))
566 h = NULL;
567 else {
568 if (unlikely(!nf_ct_key_equal(h, tuple, zone, net))) {
569 nf_ct_put(ct);
570 goto begin;
571 }
572 }
573 }
574 rcu_read_unlock();
575
576 return h;
577 }
578
579 struct nf_conntrack_tuple_hash *
580 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
581 const struct nf_conntrack_tuple *tuple)
582 {
583 return __nf_conntrack_find_get(net, zone, tuple,
584 hash_conntrack_raw(tuple, net));
585 }
586 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
587
588 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
589 unsigned int hash,
590 unsigned int reply_hash)
591 {
592 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
593 &nf_conntrack_hash[hash]);
594 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
595 &nf_conntrack_hash[reply_hash]);
596 }
597
598 int
599 nf_conntrack_hash_check_insert(struct nf_conn *ct)
600 {
601 const struct nf_conntrack_zone *zone;
602 struct net *net = nf_ct_net(ct);
603 unsigned int hash, reply_hash;
604 struct nf_conntrack_tuple_hash *h;
605 struct hlist_nulls_node *n;
606 unsigned int sequence;
607
608 zone = nf_ct_zone(ct);
609
610 local_bh_disable();
611 do {
612 sequence = read_seqcount_begin(&nf_conntrack_generation);
613 hash = hash_conntrack(net,
614 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
615 reply_hash = hash_conntrack(net,
616 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
617 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
618
619 /* See if there's one in the list already, including reverse */
620 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
621 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
622 zone, net))
623 goto out;
624
625 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
626 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
627 zone, net))
628 goto out;
629
630 smp_wmb();
631 /* The caller holds a reference to this object */
632 atomic_set(&ct->ct_general.use, 2);
633 __nf_conntrack_hash_insert(ct, hash, reply_hash);
634 nf_conntrack_double_unlock(hash, reply_hash);
635 NF_CT_STAT_INC(net, insert);
636 local_bh_enable();
637 return 0;
638
639 out:
640 nf_conntrack_double_unlock(hash, reply_hash);
641 NF_CT_STAT_INC(net, insert_failed);
642 local_bh_enable();
643 return -EEXIST;
644 }
645 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
646
647 static inline void nf_ct_acct_update(struct nf_conn *ct,
648 enum ip_conntrack_info ctinfo,
649 unsigned int len)
650 {
651 struct nf_conn_acct *acct;
652
653 acct = nf_conn_acct_find(ct);
654 if (acct) {
655 struct nf_conn_counter *counter = acct->counter;
656
657 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
658 atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
659 }
660 }
661
662 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
663 const struct nf_conn *loser_ct)
664 {
665 struct nf_conn_acct *acct;
666
667 acct = nf_conn_acct_find(loser_ct);
668 if (acct) {
669 struct nf_conn_counter *counter = acct->counter;
670 unsigned int bytes;
671
672 /* u32 should be fine since we must have seen one packet. */
673 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
674 nf_ct_acct_update(ct, ctinfo, bytes);
675 }
676 }
677
678 /* Resolve race on insertion if this protocol allows this. */
679 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
680 enum ip_conntrack_info ctinfo,
681 struct nf_conntrack_tuple_hash *h)
682 {
683 /* This is the conntrack entry already in hashes that won race. */
684 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
685 struct nf_conntrack_l4proto *l4proto;
686
687 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
688 if (l4proto->allow_clash &&
689 !nfct_nat(ct) &&
690 !nf_ct_is_dying(ct) &&
691 atomic_inc_not_zero(&ct->ct_general.use)) {
692 nf_ct_acct_merge(ct, ctinfo, (struct nf_conn *)skb->nfct);
693 nf_conntrack_put(skb->nfct);
694 /* Assign conntrack already in hashes to this skbuff. Don't
695 * modify skb->nfctinfo to ensure consistent stateful filtering.
696 */
697 skb->nfct = &ct->ct_general;
698 return NF_ACCEPT;
699 }
700 NF_CT_STAT_INC(net, drop);
701 return NF_DROP;
702 }
703
704 /* Confirm a connection given skb; places it in hash table */
705 int
706 __nf_conntrack_confirm(struct sk_buff *skb)
707 {
708 const struct nf_conntrack_zone *zone;
709 unsigned int hash, reply_hash;
710 struct nf_conntrack_tuple_hash *h;
711 struct nf_conn *ct;
712 struct nf_conn_help *help;
713 struct nf_conn_tstamp *tstamp;
714 struct hlist_nulls_node *n;
715 enum ip_conntrack_info ctinfo;
716 struct net *net;
717 unsigned int sequence;
718 int ret = NF_DROP;
719
720 ct = nf_ct_get(skb, &ctinfo);
721 net = nf_ct_net(ct);
722
723 /* ipt_REJECT uses nf_conntrack_attach to attach related
724 ICMP/TCP RST packets in other direction. Actual packet
725 which created connection will be IP_CT_NEW or for an
726 expected connection, IP_CT_RELATED. */
727 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
728 return NF_ACCEPT;
729
730 zone = nf_ct_zone(ct);
731 local_bh_disable();
732
733 do {
734 sequence = read_seqcount_begin(&nf_conntrack_generation);
735 /* reuse the hash saved before */
736 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
737 hash = scale_hash(hash);
738 reply_hash = hash_conntrack(net,
739 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
740
741 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
742
743 /* We're not in hash table, and we refuse to set up related
744 * connections for unconfirmed conns. But packet copies and
745 * REJECT will give spurious warnings here.
746 */
747 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
748
749 /* No external references means no one else could have
750 * confirmed us.
751 */
752 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
753 pr_debug("Confirming conntrack %p\n", ct);
754 /* We have to check the DYING flag after unlink to prevent
755 * a race against nf_ct_get_next_corpse() possibly called from
756 * user context, else we insert an already 'dead' hash, blocking
757 * further use of that particular connection -JM.
758 */
759 nf_ct_del_from_dying_or_unconfirmed_list(ct);
760
761 if (unlikely(nf_ct_is_dying(ct))) {
762 nf_ct_add_to_dying_list(ct);
763 goto dying;
764 }
765
766 /* See if there's one in the list already, including reverse:
767 NAT could have grabbed it without realizing, since we're
768 not in the hash. If there is, we lost race. */
769 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
770 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
771 zone, net))
772 goto out;
773
774 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
775 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
776 zone, net))
777 goto out;
778
779 /* Timer relative to confirmation time, not original
780 setting time, otherwise we'd get timer wrap in
781 weird delay cases. */
782 ct->timeout += nfct_time_stamp;
783 atomic_inc(&ct->ct_general.use);
784 ct->status |= IPS_CONFIRMED;
785
786 /* set conntrack timestamp, if enabled. */
787 tstamp = nf_conn_tstamp_find(ct);
788 if (tstamp) {
789 if (skb->tstamp.tv64 == 0)
790 __net_timestamp(skb);
791
792 tstamp->start = ktime_to_ns(skb->tstamp);
793 }
794 /* Since the lookup is lockless, hash insertion must be done after
795 * starting the timer and setting the CONFIRMED bit. The RCU barriers
796 * guarantee that no other CPU can find the conntrack before the above
797 * stores are visible.
798 */
799 __nf_conntrack_hash_insert(ct, hash, reply_hash);
800 nf_conntrack_double_unlock(hash, reply_hash);
801 NF_CT_STAT_INC(net, insert);
802 local_bh_enable();
803
804 help = nfct_help(ct);
805 if (help && help->helper)
806 nf_conntrack_event_cache(IPCT_HELPER, ct);
807
808 nf_conntrack_event_cache(master_ct(ct) ?
809 IPCT_RELATED : IPCT_NEW, ct);
810 return NF_ACCEPT;
811
812 out:
813 nf_ct_add_to_dying_list(ct);
814 ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
815 dying:
816 nf_conntrack_double_unlock(hash, reply_hash);
817 NF_CT_STAT_INC(net, insert_failed);
818 local_bh_enable();
819 return ret;
820 }
821 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
822
823 /* Returns true if a connection correspondings to the tuple (required
824 for NAT). */
825 int
826 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
827 const struct nf_conn *ignored_conntrack)
828 {
829 struct net *net = nf_ct_net(ignored_conntrack);
830 const struct nf_conntrack_zone *zone;
831 struct nf_conntrack_tuple_hash *h;
832 struct hlist_nulls_head *ct_hash;
833 unsigned int hash, hsize;
834 struct hlist_nulls_node *n;
835 struct nf_conn *ct;
836
837 zone = nf_ct_zone(ignored_conntrack);
838
839 rcu_read_lock();
840 begin:
841 nf_conntrack_get_ht(&ct_hash, &hsize);
842 hash = __hash_conntrack(net, tuple, hsize);
843
844 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
845 ct = nf_ct_tuplehash_to_ctrack(h);
846
847 if (ct == ignored_conntrack)
848 continue;
849
850 if (nf_ct_is_expired(ct)) {
851 nf_ct_gc_expired(ct);
852 continue;
853 }
854
855 if (nf_ct_key_equal(h, tuple, zone, net)) {
856 NF_CT_STAT_INC_ATOMIC(net, found);
857 rcu_read_unlock();
858 return 1;
859 }
860 NF_CT_STAT_INC_ATOMIC(net, searched);
861 }
862
863 if (get_nulls_value(n) != hash) {
864 NF_CT_STAT_INC_ATOMIC(net, search_restart);
865 goto begin;
866 }
867
868 rcu_read_unlock();
869
870 return 0;
871 }
872 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
873
874 #define NF_CT_EVICTION_RANGE 8
875
876 /* There's a small race here where we may free a just-assured
877 connection. Too bad: we're in trouble anyway. */
878 static unsigned int early_drop_list(struct net *net,
879 struct hlist_nulls_head *head)
880 {
881 struct nf_conntrack_tuple_hash *h;
882 struct hlist_nulls_node *n;
883 unsigned int drops = 0;
884 struct nf_conn *tmp;
885
886 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
887 tmp = nf_ct_tuplehash_to_ctrack(h);
888
889 if (nf_ct_is_expired(tmp)) {
890 nf_ct_gc_expired(tmp);
891 continue;
892 }
893
894 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
895 !net_eq(nf_ct_net(tmp), net) ||
896 nf_ct_is_dying(tmp))
897 continue;
898
899 if (!atomic_inc_not_zero(&tmp->ct_general.use))
900 continue;
901
902 /* kill only if still in same netns -- might have moved due to
903 * SLAB_DESTROY_BY_RCU rules.
904 *
905 * We steal the timer reference. If that fails timer has
906 * already fired or someone else deleted it. Just drop ref
907 * and move to next entry.
908 */
909 if (net_eq(nf_ct_net(tmp), net) &&
910 nf_ct_is_confirmed(tmp) &&
911 nf_ct_delete(tmp, 0, 0))
912 drops++;
913
914 nf_ct_put(tmp);
915 }
916
917 return drops;
918 }
919
920 static noinline int early_drop(struct net *net, unsigned int _hash)
921 {
922 unsigned int i;
923
924 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
925 struct hlist_nulls_head *ct_hash;
926 unsigned int hash, hsize, drops;
927
928 rcu_read_lock();
929 nf_conntrack_get_ht(&ct_hash, &hsize);
930 hash = reciprocal_scale(_hash++, hsize);
931
932 drops = early_drop_list(net, &ct_hash[hash]);
933 rcu_read_unlock();
934
935 if (drops) {
936 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
937 return true;
938 }
939 }
940
941 return false;
942 }
943
944 static void gc_worker(struct work_struct *work)
945 {
946 unsigned int i, goal, buckets = 0, expired_count = 0;
947 unsigned long next_run = GC_INTERVAL;
948 struct conntrack_gc_work *gc_work;
949
950 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
951
952 goal = min(nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV, GC_MAX_BUCKETS);
953 i = gc_work->last_bucket;
954
955 do {
956 struct nf_conntrack_tuple_hash *h;
957 struct hlist_nulls_head *ct_hash;
958 struct hlist_nulls_node *n;
959 unsigned int hashsz;
960 struct nf_conn *tmp;
961
962 i++;
963 rcu_read_lock();
964
965 nf_conntrack_get_ht(&ct_hash, &hashsz);
966 if (i >= hashsz)
967 i = 0;
968
969 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
970 tmp = nf_ct_tuplehash_to_ctrack(h);
971
972 if (nf_ct_is_expired(tmp)) {
973 nf_ct_gc_expired(tmp);
974 expired_count++;
975 continue;
976 }
977 }
978
979 /* could check get_nulls_value() here and restart if ct
980 * was moved to another chain. But given gc is best-effort
981 * we will just continue with next hash slot.
982 */
983 rcu_read_unlock();
984 cond_resched_rcu_qs();
985 } while (++buckets < goal &&
986 expired_count < GC_MAX_EVICTS);
987
988 if (gc_work->exiting)
989 return;
990
991 gc_work->last_bucket = i;
992 schedule_delayed_work(&gc_work->dwork, next_run);
993 }
994
995 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
996 {
997 INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
998 gc_work->exiting = false;
999 }
1000
1001 static struct nf_conn *
1002 __nf_conntrack_alloc(struct net *net,
1003 const struct nf_conntrack_zone *zone,
1004 const struct nf_conntrack_tuple *orig,
1005 const struct nf_conntrack_tuple *repl,
1006 gfp_t gfp, u32 hash)
1007 {
1008 struct nf_conn *ct;
1009
1010 /* We don't want any race condition at early drop stage */
1011 atomic_inc(&net->ct.count);
1012
1013 if (nf_conntrack_max &&
1014 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1015 if (!early_drop(net, hash)) {
1016 atomic_dec(&net->ct.count);
1017 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1018 return ERR_PTR(-ENOMEM);
1019 }
1020 }
1021
1022 /*
1023 * Do not use kmem_cache_zalloc(), as this cache uses
1024 * SLAB_DESTROY_BY_RCU.
1025 */
1026 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1027 if (ct == NULL)
1028 goto out;
1029
1030 spin_lock_init(&ct->lock);
1031 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1032 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1033 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1034 /* save hash for reusing when confirming */
1035 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1036 ct->status = 0;
1037 write_pnet(&ct->ct_net, net);
1038 memset(&ct->__nfct_init_offset[0], 0,
1039 offsetof(struct nf_conn, proto) -
1040 offsetof(struct nf_conn, __nfct_init_offset[0]));
1041
1042 nf_ct_zone_add(ct, zone);
1043
1044 /* Because we use RCU lookups, we set ct_general.use to zero before
1045 * this is inserted in any list.
1046 */
1047 atomic_set(&ct->ct_general.use, 0);
1048 return ct;
1049 out:
1050 atomic_dec(&net->ct.count);
1051 return ERR_PTR(-ENOMEM);
1052 }
1053
1054 struct nf_conn *nf_conntrack_alloc(struct net *net,
1055 const struct nf_conntrack_zone *zone,
1056 const struct nf_conntrack_tuple *orig,
1057 const struct nf_conntrack_tuple *repl,
1058 gfp_t gfp)
1059 {
1060 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1061 }
1062 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1063
1064 void nf_conntrack_free(struct nf_conn *ct)
1065 {
1066 struct net *net = nf_ct_net(ct);
1067
1068 /* A freed object has refcnt == 0, that's
1069 * the golden rule for SLAB_DESTROY_BY_RCU
1070 */
1071 NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 0);
1072
1073 nf_ct_ext_destroy(ct);
1074 nf_ct_ext_free(ct);
1075 kmem_cache_free(nf_conntrack_cachep, ct);
1076 smp_mb__before_atomic();
1077 atomic_dec(&net->ct.count);
1078 }
1079 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1080
1081
1082 /* Allocate a new conntrack: we return -ENOMEM if classification
1083 failed due to stress. Otherwise it really is unclassifiable. */
1084 static struct nf_conntrack_tuple_hash *
1085 init_conntrack(struct net *net, struct nf_conn *tmpl,
1086 const struct nf_conntrack_tuple *tuple,
1087 struct nf_conntrack_l3proto *l3proto,
1088 struct nf_conntrack_l4proto *l4proto,
1089 struct sk_buff *skb,
1090 unsigned int dataoff, u32 hash)
1091 {
1092 struct nf_conn *ct;
1093 struct nf_conn_help *help;
1094 struct nf_conntrack_tuple repl_tuple;
1095 struct nf_conntrack_ecache *ecache;
1096 struct nf_conntrack_expect *exp = NULL;
1097 const struct nf_conntrack_zone *zone;
1098 struct nf_conn_timeout *timeout_ext;
1099 struct nf_conntrack_zone tmp;
1100 unsigned int *timeouts;
1101
1102 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
1103 pr_debug("Can't invert tuple.\n");
1104 return NULL;
1105 }
1106
1107 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1108 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1109 hash);
1110 if (IS_ERR(ct))
1111 return (struct nf_conntrack_tuple_hash *)ct;
1112
1113 if (tmpl && nfct_synproxy(tmpl)) {
1114 nfct_seqadj_ext_add(ct);
1115 nfct_synproxy_ext_add(ct);
1116 }
1117
1118 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1119 if (timeout_ext) {
1120 timeouts = nf_ct_timeout_data(timeout_ext);
1121 if (unlikely(!timeouts))
1122 timeouts = l4proto->get_timeouts(net);
1123 } else {
1124 timeouts = l4proto->get_timeouts(net);
1125 }
1126
1127 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
1128 nf_conntrack_free(ct);
1129 pr_debug("can't track with proto module\n");
1130 return NULL;
1131 }
1132
1133 if (timeout_ext)
1134 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1135 GFP_ATOMIC);
1136
1137 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1138 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1139 nf_ct_labels_ext_add(ct);
1140
1141 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1142 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1143 ecache ? ecache->expmask : 0,
1144 GFP_ATOMIC);
1145
1146 local_bh_disable();
1147 if (net->ct.expect_count) {
1148 spin_lock(&nf_conntrack_expect_lock);
1149 exp = nf_ct_find_expectation(net, zone, tuple);
1150 if (exp) {
1151 pr_debug("expectation arrives ct=%p exp=%p\n",
1152 ct, exp);
1153 /* Welcome, Mr. Bond. We've been expecting you... */
1154 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1155 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1156 ct->master = exp->master;
1157 if (exp->helper) {
1158 help = nf_ct_helper_ext_add(ct, exp->helper,
1159 GFP_ATOMIC);
1160 if (help)
1161 rcu_assign_pointer(help->helper, exp->helper);
1162 }
1163
1164 #ifdef CONFIG_NF_CONNTRACK_MARK
1165 ct->mark = exp->master->mark;
1166 #endif
1167 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1168 ct->secmark = exp->master->secmark;
1169 #endif
1170 NF_CT_STAT_INC(net, expect_new);
1171 }
1172 spin_unlock(&nf_conntrack_expect_lock);
1173 }
1174 if (!exp) {
1175 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1176 NF_CT_STAT_INC(net, new);
1177 }
1178
1179 /* Now it is inserted into the unconfirmed list, bump refcount */
1180 nf_conntrack_get(&ct->ct_general);
1181 nf_ct_add_to_unconfirmed_list(ct);
1182
1183 local_bh_enable();
1184
1185 if (exp) {
1186 if (exp->expectfn)
1187 exp->expectfn(ct, exp);
1188 nf_ct_expect_put(exp);
1189 }
1190
1191 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1192 }
1193
1194 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
1195 static inline struct nf_conn *
1196 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1197 struct sk_buff *skb,
1198 unsigned int dataoff,
1199 u_int16_t l3num,
1200 u_int8_t protonum,
1201 struct nf_conntrack_l3proto *l3proto,
1202 struct nf_conntrack_l4proto *l4proto,
1203 int *set_reply,
1204 enum ip_conntrack_info *ctinfo)
1205 {
1206 const struct nf_conntrack_zone *zone;
1207 struct nf_conntrack_tuple tuple;
1208 struct nf_conntrack_tuple_hash *h;
1209 struct nf_conntrack_zone tmp;
1210 struct nf_conn *ct;
1211 u32 hash;
1212
1213 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1214 dataoff, l3num, protonum, net, &tuple, l3proto,
1215 l4proto)) {
1216 pr_debug("Can't get tuple\n");
1217 return NULL;
1218 }
1219
1220 /* look for tuple match */
1221 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1222 hash = hash_conntrack_raw(&tuple, net);
1223 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1224 if (!h) {
1225 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
1226 skb, dataoff, hash);
1227 if (!h)
1228 return NULL;
1229 if (IS_ERR(h))
1230 return (void *)h;
1231 }
1232 ct = nf_ct_tuplehash_to_ctrack(h);
1233
1234 /* It exists; we have (non-exclusive) reference. */
1235 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1236 *ctinfo = IP_CT_ESTABLISHED_REPLY;
1237 /* Please set reply bit if this packet OK */
1238 *set_reply = 1;
1239 } else {
1240 /* Once we've had two way comms, always ESTABLISHED. */
1241 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1242 pr_debug("normal packet for %p\n", ct);
1243 *ctinfo = IP_CT_ESTABLISHED;
1244 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1245 pr_debug("related packet for %p\n", ct);
1246 *ctinfo = IP_CT_RELATED;
1247 } else {
1248 pr_debug("new packet for %p\n", ct);
1249 *ctinfo = IP_CT_NEW;
1250 }
1251 *set_reply = 0;
1252 }
1253 skb->nfct = &ct->ct_general;
1254 skb->nfctinfo = *ctinfo;
1255 return ct;
1256 }
1257
1258 unsigned int
1259 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1260 struct sk_buff *skb)
1261 {
1262 struct nf_conn *ct, *tmpl = NULL;
1263 enum ip_conntrack_info ctinfo;
1264 struct nf_conntrack_l3proto *l3proto;
1265 struct nf_conntrack_l4proto *l4proto;
1266 unsigned int *timeouts;
1267 unsigned int dataoff;
1268 u_int8_t protonum;
1269 int set_reply = 0;
1270 int ret;
1271
1272 if (skb->nfct) {
1273 /* Previously seen (loopback or untracked)? Ignore. */
1274 tmpl = (struct nf_conn *)skb->nfct;
1275 if (!nf_ct_is_template(tmpl)) {
1276 NF_CT_STAT_INC_ATOMIC(net, ignore);
1277 return NF_ACCEPT;
1278 }
1279 skb->nfct = NULL;
1280 }
1281
1282 /* rcu_read_lock()ed by nf_hook_slow */
1283 l3proto = __nf_ct_l3proto_find(pf);
1284 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
1285 &dataoff, &protonum);
1286 if (ret <= 0) {
1287 pr_debug("not prepared to track yet or error occurred\n");
1288 NF_CT_STAT_INC_ATOMIC(net, error);
1289 NF_CT_STAT_INC_ATOMIC(net, invalid);
1290 ret = -ret;
1291 goto out;
1292 }
1293
1294 l4proto = __nf_ct_l4proto_find(pf, protonum);
1295
1296 /* It may be an special packet, error, unclean...
1297 * inverse of the return code tells to the netfilter
1298 * core what to do with the packet. */
1299 if (l4proto->error != NULL) {
1300 ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
1301 pf, hooknum);
1302 if (ret <= 0) {
1303 NF_CT_STAT_INC_ATOMIC(net, error);
1304 NF_CT_STAT_INC_ATOMIC(net, invalid);
1305 ret = -ret;
1306 goto out;
1307 }
1308 /* ICMP[v6] protocol trackers may assign one conntrack. */
1309 if (skb->nfct)
1310 goto out;
1311 }
1312
1313 ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
1314 l3proto, l4proto, &set_reply, &ctinfo);
1315 if (!ct) {
1316 /* Not valid part of a connection */
1317 NF_CT_STAT_INC_ATOMIC(net, invalid);
1318 ret = NF_ACCEPT;
1319 goto out;
1320 }
1321
1322 if (IS_ERR(ct)) {
1323 /* Too stressed to deal. */
1324 NF_CT_STAT_INC_ATOMIC(net, drop);
1325 ret = NF_DROP;
1326 goto out;
1327 }
1328
1329 NF_CT_ASSERT(skb->nfct);
1330
1331 /* Decide what timeout policy we want to apply to this flow. */
1332 timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1333
1334 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1335 if (ret <= 0) {
1336 /* Invalid: inverse of the return code tells
1337 * the netfilter core what to do */
1338 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1339 nf_conntrack_put(skb->nfct);
1340 skb->nfct = NULL;
1341 NF_CT_STAT_INC_ATOMIC(net, invalid);
1342 if (ret == -NF_DROP)
1343 NF_CT_STAT_INC_ATOMIC(net, drop);
1344 ret = -ret;
1345 goto out;
1346 }
1347
1348 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1349 nf_conntrack_event_cache(IPCT_REPLY, ct);
1350 out:
1351 if (tmpl) {
1352 /* Special case: we have to repeat this hook, assign the
1353 * template again to this packet. We assume that this packet
1354 * has no conntrack assigned. This is used by nf_ct_tcp. */
1355 if (ret == NF_REPEAT)
1356 skb->nfct = (struct nf_conntrack *)tmpl;
1357 else
1358 nf_ct_put(tmpl);
1359 }
1360
1361 return ret;
1362 }
1363 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1364
1365 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1366 const struct nf_conntrack_tuple *orig)
1367 {
1368 bool ret;
1369
1370 rcu_read_lock();
1371 ret = nf_ct_invert_tuple(inverse, orig,
1372 __nf_ct_l3proto_find(orig->src.l3num),
1373 __nf_ct_l4proto_find(orig->src.l3num,
1374 orig->dst.protonum));
1375 rcu_read_unlock();
1376 return ret;
1377 }
1378 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1379
1380 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1381 implicitly racy: see __nf_conntrack_confirm */
1382 void nf_conntrack_alter_reply(struct nf_conn *ct,
1383 const struct nf_conntrack_tuple *newreply)
1384 {
1385 struct nf_conn_help *help = nfct_help(ct);
1386
1387 /* Should be unconfirmed, so not in hash table yet */
1388 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1389
1390 pr_debug("Altering reply tuple of %p to ", ct);
1391 nf_ct_dump_tuple(newreply);
1392
1393 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1394 if (ct->master || (help && !hlist_empty(&help->expectations)))
1395 return;
1396
1397 rcu_read_lock();
1398 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1399 rcu_read_unlock();
1400 }
1401 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1402
1403 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1404 void __nf_ct_refresh_acct(struct nf_conn *ct,
1405 enum ip_conntrack_info ctinfo,
1406 const struct sk_buff *skb,
1407 unsigned long extra_jiffies,
1408 int do_acct)
1409 {
1410 NF_CT_ASSERT(skb);
1411
1412 /* Only update if this is not a fixed timeout */
1413 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1414 goto acct;
1415
1416 /* If not in hash table, timer will not be active yet */
1417 if (nf_ct_is_confirmed(ct))
1418 extra_jiffies += nfct_time_stamp;
1419
1420 ct->timeout = extra_jiffies;
1421 acct:
1422 if (do_acct)
1423 nf_ct_acct_update(ct, ctinfo, skb->len);
1424 }
1425 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1426
1427 bool __nf_ct_kill_acct(struct nf_conn *ct,
1428 enum ip_conntrack_info ctinfo,
1429 const struct sk_buff *skb,
1430 int do_acct)
1431 {
1432 if (do_acct)
1433 nf_ct_acct_update(ct, ctinfo, skb->len);
1434
1435 return nf_ct_delete(ct, 0, 0);
1436 }
1437 EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
1438
1439 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1440
1441 #include <linux/netfilter/nfnetlink.h>
1442 #include <linux/netfilter/nfnetlink_conntrack.h>
1443 #include <linux/mutex.h>
1444
1445 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1446 * in ip_conntrack_core, since we don't want the protocols to autoload
1447 * or depend on ctnetlink */
1448 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1449 const struct nf_conntrack_tuple *tuple)
1450 {
1451 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1452 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1453 goto nla_put_failure;
1454 return 0;
1455
1456 nla_put_failure:
1457 return -1;
1458 }
1459 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1460
1461 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1462 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1463 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1464 };
1465 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1466
1467 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1468 struct nf_conntrack_tuple *t)
1469 {
1470 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1471 return -EINVAL;
1472
1473 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1474 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1475
1476 return 0;
1477 }
1478 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1479
1480 int nf_ct_port_nlattr_tuple_size(void)
1481 {
1482 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1483 }
1484 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1485 #endif
1486
1487 /* Used by ipt_REJECT and ip6t_REJECT. */
1488 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1489 {
1490 struct nf_conn *ct;
1491 enum ip_conntrack_info ctinfo;
1492
1493 /* This ICMP is in reverse direction to the packet which caused it */
1494 ct = nf_ct_get(skb, &ctinfo);
1495 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1496 ctinfo = IP_CT_RELATED_REPLY;
1497 else
1498 ctinfo = IP_CT_RELATED;
1499
1500 /* Attach to new skbuff, and increment count */
1501 nskb->nfct = &ct->ct_general;
1502 nskb->nfctinfo = ctinfo;
1503 nf_conntrack_get(nskb->nfct);
1504 }
1505
1506 /* Bring out ya dead! */
1507 static struct nf_conn *
1508 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1509 void *data, unsigned int *bucket)
1510 {
1511 struct nf_conntrack_tuple_hash *h;
1512 struct nf_conn *ct;
1513 struct hlist_nulls_node *n;
1514 int cpu;
1515 spinlock_t *lockp;
1516
1517 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1518 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1519 local_bh_disable();
1520 nf_conntrack_lock(lockp);
1521 if (*bucket < nf_conntrack_htable_size) {
1522 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
1523 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1524 continue;
1525 ct = nf_ct_tuplehash_to_ctrack(h);
1526 if (net_eq(nf_ct_net(ct), net) &&
1527 iter(ct, data))
1528 goto found;
1529 }
1530 }
1531 spin_unlock(lockp);
1532 local_bh_enable();
1533 cond_resched();
1534 }
1535
1536 for_each_possible_cpu(cpu) {
1537 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1538
1539 spin_lock_bh(&pcpu->lock);
1540 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1541 ct = nf_ct_tuplehash_to_ctrack(h);
1542 if (iter(ct, data))
1543 set_bit(IPS_DYING_BIT, &ct->status);
1544 }
1545 spin_unlock_bh(&pcpu->lock);
1546 cond_resched();
1547 }
1548 return NULL;
1549 found:
1550 atomic_inc(&ct->ct_general.use);
1551 spin_unlock(lockp);
1552 local_bh_enable();
1553 return ct;
1554 }
1555
1556 void nf_ct_iterate_cleanup(struct net *net,
1557 int (*iter)(struct nf_conn *i, void *data),
1558 void *data, u32 portid, int report)
1559 {
1560 struct nf_conn *ct;
1561 unsigned int bucket = 0;
1562
1563 might_sleep();
1564
1565 if (atomic_read(&net->ct.count) == 0)
1566 return;
1567
1568 while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1569 /* Time to push up daises... */
1570
1571 nf_ct_delete(ct, portid, report);
1572 nf_ct_put(ct);
1573 cond_resched();
1574 }
1575 }
1576 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1577
1578 static int kill_all(struct nf_conn *i, void *data)
1579 {
1580 return 1;
1581 }
1582
1583 void nf_ct_free_hashtable(void *hash, unsigned int size)
1584 {
1585 if (is_vmalloc_addr(hash))
1586 vfree(hash);
1587 else
1588 free_pages((unsigned long)hash,
1589 get_order(sizeof(struct hlist_head) * size));
1590 }
1591 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1592
1593 static int untrack_refs(void)
1594 {
1595 int cnt = 0, cpu;
1596
1597 for_each_possible_cpu(cpu) {
1598 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1599
1600 cnt += atomic_read(&ct->ct_general.use) - 1;
1601 }
1602 return cnt;
1603 }
1604
1605 void nf_conntrack_cleanup_start(void)
1606 {
1607 conntrack_gc_work.exiting = true;
1608 RCU_INIT_POINTER(ip_ct_attach, NULL);
1609 }
1610
1611 void nf_conntrack_cleanup_end(void)
1612 {
1613 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1614 while (untrack_refs() > 0)
1615 schedule();
1616
1617 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
1618 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1619
1620 nf_conntrack_proto_fini();
1621 nf_conntrack_seqadj_fini();
1622 nf_conntrack_labels_fini();
1623 nf_conntrack_helper_fini();
1624 nf_conntrack_timeout_fini();
1625 nf_conntrack_ecache_fini();
1626 nf_conntrack_tstamp_fini();
1627 nf_conntrack_acct_fini();
1628 nf_conntrack_expect_fini();
1629
1630 kmem_cache_destroy(nf_conntrack_cachep);
1631 }
1632
1633 /*
1634 * Mishearing the voices in his head, our hero wonders how he's
1635 * supposed to kill the mall.
1636 */
1637 void nf_conntrack_cleanup_net(struct net *net)
1638 {
1639 LIST_HEAD(single);
1640
1641 list_add(&net->exit_list, &single);
1642 nf_conntrack_cleanup_net_list(&single);
1643 }
1644
1645 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1646 {
1647 int busy;
1648 struct net *net;
1649
1650 /*
1651 * This makes sure all current packets have passed through
1652 * netfilter framework. Roll on, two-stage module
1653 * delete...
1654 */
1655 synchronize_net();
1656 i_see_dead_people:
1657 busy = 0;
1658 list_for_each_entry(net, net_exit_list, exit_list) {
1659 nf_ct_iterate_cleanup(net, kill_all, NULL, 0, 0);
1660 if (atomic_read(&net->ct.count) != 0)
1661 busy = 1;
1662 }
1663 if (busy) {
1664 schedule();
1665 goto i_see_dead_people;
1666 }
1667
1668 list_for_each_entry(net, net_exit_list, exit_list) {
1669 nf_conntrack_proto_pernet_fini(net);
1670 nf_conntrack_helper_pernet_fini(net);
1671 nf_conntrack_ecache_pernet_fini(net);
1672 nf_conntrack_tstamp_pernet_fini(net);
1673 nf_conntrack_acct_pernet_fini(net);
1674 nf_conntrack_expect_pernet_fini(net);
1675 free_percpu(net->ct.stat);
1676 free_percpu(net->ct.pcpu_lists);
1677 }
1678 }
1679
1680 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1681 {
1682 struct hlist_nulls_head *hash;
1683 unsigned int nr_slots, i;
1684 size_t sz;
1685
1686 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1687 return NULL;
1688
1689 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1690 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1691
1692 if (nr_slots > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1693 return NULL;
1694
1695 sz = nr_slots * sizeof(struct hlist_nulls_head);
1696 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1697 get_order(sz));
1698 if (!hash)
1699 hash = vzalloc(sz);
1700
1701 if (hash && nulls)
1702 for (i = 0; i < nr_slots; i++)
1703 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1704
1705 return hash;
1706 }
1707 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1708
1709 int nf_conntrack_hash_resize(unsigned int hashsize)
1710 {
1711 int i, bucket;
1712 unsigned int old_size;
1713 struct hlist_nulls_head *hash, *old_hash;
1714 struct nf_conntrack_tuple_hash *h;
1715 struct nf_conn *ct;
1716
1717 if (!hashsize)
1718 return -EINVAL;
1719
1720 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1721 if (!hash)
1722 return -ENOMEM;
1723
1724 old_size = nf_conntrack_htable_size;
1725 if (old_size == hashsize) {
1726 nf_ct_free_hashtable(hash, hashsize);
1727 return 0;
1728 }
1729
1730 local_bh_disable();
1731 nf_conntrack_all_lock();
1732 write_seqcount_begin(&nf_conntrack_generation);
1733
1734 /* Lookups in the old hash might happen in parallel, which means we
1735 * might get false negatives during connection lookup. New connections
1736 * created because of a false negative won't make it into the hash
1737 * though since that required taking the locks.
1738 */
1739
1740 for (i = 0; i < nf_conntrack_htable_size; i++) {
1741 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
1742 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
1743 struct nf_conntrack_tuple_hash, hnnode);
1744 ct = nf_ct_tuplehash_to_ctrack(h);
1745 hlist_nulls_del_rcu(&h->hnnode);
1746 bucket = __hash_conntrack(nf_ct_net(ct),
1747 &h->tuple, hashsize);
1748 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1749 }
1750 }
1751 old_size = nf_conntrack_htable_size;
1752 old_hash = nf_conntrack_hash;
1753
1754 nf_conntrack_hash = hash;
1755 nf_conntrack_htable_size = hashsize;
1756
1757 write_seqcount_end(&nf_conntrack_generation);
1758 nf_conntrack_all_unlock();
1759 local_bh_enable();
1760
1761 synchronize_net();
1762 nf_ct_free_hashtable(old_hash, old_size);
1763 return 0;
1764 }
1765
1766 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1767 {
1768 unsigned int hashsize;
1769 int rc;
1770
1771 if (current->nsproxy->net_ns != &init_net)
1772 return -EOPNOTSUPP;
1773
1774 /* On boot, we can set this without any fancy locking. */
1775 if (!nf_conntrack_htable_size)
1776 return param_set_uint(val, kp);
1777
1778 rc = kstrtouint(val, 0, &hashsize);
1779 if (rc)
1780 return rc;
1781
1782 return nf_conntrack_hash_resize(hashsize);
1783 }
1784 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1785
1786 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1787 &nf_conntrack_htable_size, 0600);
1788
1789 void nf_ct_untracked_status_or(unsigned long bits)
1790 {
1791 int cpu;
1792
1793 for_each_possible_cpu(cpu)
1794 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1795 }
1796 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1797
1798 int nf_conntrack_init_start(void)
1799 {
1800 int max_factor = 8;
1801 int ret = -ENOMEM;
1802 int i, cpu;
1803
1804 seqcount_init(&nf_conntrack_generation);
1805
1806 for (i = 0; i < CONNTRACK_LOCKS; i++)
1807 spin_lock_init(&nf_conntrack_locks[i]);
1808
1809 if (!nf_conntrack_htable_size) {
1810 /* Idea from tcp.c: use 1/16384 of memory.
1811 * On i386: 32MB machine has 512 buckets.
1812 * >= 1GB machines have 16384 buckets.
1813 * >= 4GB machines have 65536 buckets.
1814 */
1815 nf_conntrack_htable_size
1816 = (((totalram_pages << PAGE_SHIFT) / 16384)
1817 / sizeof(struct hlist_head));
1818 if (totalram_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
1819 nf_conntrack_htable_size = 65536;
1820 else if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1821 nf_conntrack_htable_size = 16384;
1822 if (nf_conntrack_htable_size < 32)
1823 nf_conntrack_htable_size = 32;
1824
1825 /* Use a max. factor of four by default to get the same max as
1826 * with the old struct list_heads. When a table size is given
1827 * we use the old value of 8 to avoid reducing the max.
1828 * entries. */
1829 max_factor = 4;
1830 }
1831
1832 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
1833 if (!nf_conntrack_hash)
1834 return -ENOMEM;
1835
1836 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1837
1838 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
1839 sizeof(struct nf_conn), 0,
1840 SLAB_DESTROY_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
1841 if (!nf_conntrack_cachep)
1842 goto err_cachep;
1843
1844 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1845 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1846 nf_conntrack_max);
1847
1848 ret = nf_conntrack_expect_init();
1849 if (ret < 0)
1850 goto err_expect;
1851
1852 ret = nf_conntrack_acct_init();
1853 if (ret < 0)
1854 goto err_acct;
1855
1856 ret = nf_conntrack_tstamp_init();
1857 if (ret < 0)
1858 goto err_tstamp;
1859
1860 ret = nf_conntrack_ecache_init();
1861 if (ret < 0)
1862 goto err_ecache;
1863
1864 ret = nf_conntrack_timeout_init();
1865 if (ret < 0)
1866 goto err_timeout;
1867
1868 ret = nf_conntrack_helper_init();
1869 if (ret < 0)
1870 goto err_helper;
1871
1872 ret = nf_conntrack_labels_init();
1873 if (ret < 0)
1874 goto err_labels;
1875
1876 ret = nf_conntrack_seqadj_init();
1877 if (ret < 0)
1878 goto err_seqadj;
1879
1880 ret = nf_conntrack_proto_init();
1881 if (ret < 0)
1882 goto err_proto;
1883
1884 /* Set up fake conntrack: to never be deleted, not in any hashes */
1885 for_each_possible_cpu(cpu) {
1886 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1887 write_pnet(&ct->ct_net, &init_net);
1888 atomic_set(&ct->ct_general.use, 1);
1889 }
1890 /* - and look it like as a confirmed connection */
1891 nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1892
1893 conntrack_gc_work_init(&conntrack_gc_work);
1894 schedule_delayed_work(&conntrack_gc_work.dwork, GC_INTERVAL);
1895
1896 return 0;
1897
1898 err_proto:
1899 nf_conntrack_seqadj_fini();
1900 err_seqadj:
1901 nf_conntrack_labels_fini();
1902 err_labels:
1903 nf_conntrack_helper_fini();
1904 err_helper:
1905 nf_conntrack_timeout_fini();
1906 err_timeout:
1907 nf_conntrack_ecache_fini();
1908 err_ecache:
1909 nf_conntrack_tstamp_fini();
1910 err_tstamp:
1911 nf_conntrack_acct_fini();
1912 err_acct:
1913 nf_conntrack_expect_fini();
1914 err_expect:
1915 kmem_cache_destroy(nf_conntrack_cachep);
1916 err_cachep:
1917 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1918 return ret;
1919 }
1920
1921 void nf_conntrack_init_end(void)
1922 {
1923 /* For use by REJECT target */
1924 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1925 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1926 }
1927
1928 /*
1929 * We need to use special "null" values, not used in hash table
1930 */
1931 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
1932 #define DYING_NULLS_VAL ((1<<30)+1)
1933 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
1934
1935 int nf_conntrack_init_net(struct net *net)
1936 {
1937 int ret = -ENOMEM;
1938 int cpu;
1939
1940 atomic_set(&net->ct.count, 0);
1941
1942 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
1943 if (!net->ct.pcpu_lists)
1944 goto err_stat;
1945
1946 for_each_possible_cpu(cpu) {
1947 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1948
1949 spin_lock_init(&pcpu->lock);
1950 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
1951 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
1952 }
1953
1954 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1955 if (!net->ct.stat)
1956 goto err_pcpu_lists;
1957
1958 ret = nf_conntrack_expect_pernet_init(net);
1959 if (ret < 0)
1960 goto err_expect;
1961 ret = nf_conntrack_acct_pernet_init(net);
1962 if (ret < 0)
1963 goto err_acct;
1964 ret = nf_conntrack_tstamp_pernet_init(net);
1965 if (ret < 0)
1966 goto err_tstamp;
1967 ret = nf_conntrack_ecache_pernet_init(net);
1968 if (ret < 0)
1969 goto err_ecache;
1970 ret = nf_conntrack_helper_pernet_init(net);
1971 if (ret < 0)
1972 goto err_helper;
1973 ret = nf_conntrack_proto_pernet_init(net);
1974 if (ret < 0)
1975 goto err_proto;
1976 return 0;
1977
1978 err_proto:
1979 nf_conntrack_helper_pernet_fini(net);
1980 err_helper:
1981 nf_conntrack_ecache_pernet_fini(net);
1982 err_ecache:
1983 nf_conntrack_tstamp_pernet_fini(net);
1984 err_tstamp:
1985 nf_conntrack_acct_pernet_fini(net);
1986 err_acct:
1987 nf_conntrack_expect_pernet_fini(net);
1988 err_expect:
1989 free_percpu(net->ct.stat);
1990 err_pcpu_lists:
1991 free_percpu(net->ct.pcpu_lists);
1992 err_stat:
1993 return ret;
1994 }
This page took 0.082346 seconds and 6 git commands to generate.