powerpc: Correct emulated mtfsf instruction
[deliverable/linux.git] / net / netfilter / nf_nat_core.c
1 /*
2 * (C) 1999-2001 Paul `Rusty' Russell
3 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
4 * (C) 2011 Patrick McHardy <kaber@trash.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/timer.h>
14 #include <linux/skbuff.h>
15 #include <linux/gfp.h>
16 #include <net/xfrm.h>
17 #include <linux/jhash.h>
18 #include <linux/rtnetlink.h>
19
20 #include <net/netfilter/nf_conntrack.h>
21 #include <net/netfilter/nf_conntrack_core.h>
22 #include <net/netfilter/nf_nat.h>
23 #include <net/netfilter/nf_nat_l3proto.h>
24 #include <net/netfilter/nf_nat_l4proto.h>
25 #include <net/netfilter/nf_nat_core.h>
26 #include <net/netfilter/nf_nat_helper.h>
27 #include <net/netfilter/nf_conntrack_helper.h>
28 #include <net/netfilter/nf_conntrack_seqadj.h>
29 #include <net/netfilter/nf_conntrack_l3proto.h>
30 #include <net/netfilter/nf_conntrack_zones.h>
31 #include <linux/netfilter/nf_nat.h>
32
33 static DEFINE_SPINLOCK(nf_nat_lock);
34
35 static DEFINE_MUTEX(nf_nat_proto_mutex);
36 static const struct nf_nat_l3proto __rcu *nf_nat_l3protos[NFPROTO_NUMPROTO]
37 __read_mostly;
38 static const struct nf_nat_l4proto __rcu **nf_nat_l4protos[NFPROTO_NUMPROTO]
39 __read_mostly;
40
41
42 inline const struct nf_nat_l3proto *
43 __nf_nat_l3proto_find(u8 family)
44 {
45 return rcu_dereference(nf_nat_l3protos[family]);
46 }
47
48 inline const struct nf_nat_l4proto *
49 __nf_nat_l4proto_find(u8 family, u8 protonum)
50 {
51 return rcu_dereference(nf_nat_l4protos[family][protonum]);
52 }
53 EXPORT_SYMBOL_GPL(__nf_nat_l4proto_find);
54
55 #ifdef CONFIG_XFRM
56 static void __nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl)
57 {
58 const struct nf_nat_l3proto *l3proto;
59 const struct nf_conn *ct;
60 enum ip_conntrack_info ctinfo;
61 enum ip_conntrack_dir dir;
62 unsigned long statusbit;
63 u8 family;
64
65 ct = nf_ct_get(skb, &ctinfo);
66 if (ct == NULL)
67 return;
68
69 family = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.l3num;
70 rcu_read_lock();
71 l3proto = __nf_nat_l3proto_find(family);
72 if (l3proto == NULL)
73 goto out;
74
75 dir = CTINFO2DIR(ctinfo);
76 if (dir == IP_CT_DIR_ORIGINAL)
77 statusbit = IPS_DST_NAT;
78 else
79 statusbit = IPS_SRC_NAT;
80
81 l3proto->decode_session(skb, ct, dir, statusbit, fl);
82 out:
83 rcu_read_unlock();
84 }
85
86 int nf_xfrm_me_harder(struct sk_buff *skb, unsigned int family)
87 {
88 struct flowi fl;
89 unsigned int hh_len;
90 struct dst_entry *dst;
91 int err;
92
93 err = xfrm_decode_session(skb, &fl, family);
94 if (err < 0)
95 return err;
96
97 dst = skb_dst(skb);
98 if (dst->xfrm)
99 dst = ((struct xfrm_dst *)dst)->route;
100 dst_hold(dst);
101
102 dst = xfrm_lookup(dev_net(dst->dev), dst, &fl, skb->sk, 0);
103 if (IS_ERR(dst))
104 return PTR_ERR(dst);
105
106 skb_dst_drop(skb);
107 skb_dst_set(skb, dst);
108
109 /* Change in oif may mean change in hh_len. */
110 hh_len = skb_dst(skb)->dev->hard_header_len;
111 if (skb_headroom(skb) < hh_len &&
112 pskb_expand_head(skb, hh_len - skb_headroom(skb), 0, GFP_ATOMIC))
113 return -ENOMEM;
114 return 0;
115 }
116 EXPORT_SYMBOL(nf_xfrm_me_harder);
117 #endif /* CONFIG_XFRM */
118
119 /* We keep an extra hash for each conntrack, for fast searching. */
120 static inline unsigned int
121 hash_by_src(const struct net *net, u16 zone,
122 const struct nf_conntrack_tuple *tuple)
123 {
124 unsigned int hash;
125
126 /* Original src, to ensure we map it consistently if poss. */
127 hash = jhash2((u32 *)&tuple->src, sizeof(tuple->src) / sizeof(u32),
128 tuple->dst.protonum ^ zone ^ nf_conntrack_hash_rnd);
129 return ((u64)hash * net->ct.nat_htable_size) >> 32;
130 }
131
132 /* Is this tuple already taken? (not by us) */
133 int
134 nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
135 const struct nf_conn *ignored_conntrack)
136 {
137 /* Conntrack tracking doesn't keep track of outgoing tuples; only
138 * incoming ones. NAT means they don't have a fixed mapping,
139 * so we invert the tuple and look for the incoming reply.
140 *
141 * We could keep a separate hash if this proves too slow.
142 */
143 struct nf_conntrack_tuple reply;
144
145 nf_ct_invert_tuplepr(&reply, tuple);
146 return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
147 }
148 EXPORT_SYMBOL(nf_nat_used_tuple);
149
150 /* If we source map this tuple so reply looks like reply_tuple, will
151 * that meet the constraints of range.
152 */
153 static int in_range(const struct nf_nat_l3proto *l3proto,
154 const struct nf_nat_l4proto *l4proto,
155 const struct nf_conntrack_tuple *tuple,
156 const struct nf_nat_range *range)
157 {
158 /* If we are supposed to map IPs, then we must be in the
159 * range specified, otherwise let this drag us onto a new src IP.
160 */
161 if (range->flags & NF_NAT_RANGE_MAP_IPS &&
162 !l3proto->in_range(tuple, range))
163 return 0;
164
165 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) ||
166 l4proto->in_range(tuple, NF_NAT_MANIP_SRC,
167 &range->min_proto, &range->max_proto))
168 return 1;
169
170 return 0;
171 }
172
173 static inline int
174 same_src(const struct nf_conn *ct,
175 const struct nf_conntrack_tuple *tuple)
176 {
177 const struct nf_conntrack_tuple *t;
178
179 t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
180 return (t->dst.protonum == tuple->dst.protonum &&
181 nf_inet_addr_cmp(&t->src.u3, &tuple->src.u3) &&
182 t->src.u.all == tuple->src.u.all);
183 }
184
185 /* Only called for SRC manip */
186 static int
187 find_appropriate_src(struct net *net, u16 zone,
188 const struct nf_nat_l3proto *l3proto,
189 const struct nf_nat_l4proto *l4proto,
190 const struct nf_conntrack_tuple *tuple,
191 struct nf_conntrack_tuple *result,
192 const struct nf_nat_range *range)
193 {
194 unsigned int h = hash_by_src(net, zone, tuple);
195 const struct nf_conn_nat *nat;
196 const struct nf_conn *ct;
197
198 hlist_for_each_entry_rcu(nat, &net->ct.nat_bysource[h], bysource) {
199 ct = nat->ct;
200 if (same_src(ct, tuple) && nf_ct_zone(ct) == zone) {
201 /* Copy source part from reply tuple. */
202 nf_ct_invert_tuplepr(result,
203 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
204 result->dst = tuple->dst;
205
206 if (in_range(l3proto, l4proto, result, range))
207 return 1;
208 }
209 }
210 return 0;
211 }
212
213 /* For [FUTURE] fragmentation handling, we want the least-used
214 * src-ip/dst-ip/proto triple. Fairness doesn't come into it. Thus
215 * if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
216 * 1-65535, we don't do pro-rata allocation based on ports; we choose
217 * the ip with the lowest src-ip/dst-ip/proto usage.
218 */
219 static void
220 find_best_ips_proto(u16 zone, struct nf_conntrack_tuple *tuple,
221 const struct nf_nat_range *range,
222 const struct nf_conn *ct,
223 enum nf_nat_manip_type maniptype)
224 {
225 union nf_inet_addr *var_ipp;
226 unsigned int i, max;
227 /* Host order */
228 u32 minip, maxip, j, dist;
229 bool full_range;
230
231 /* No IP mapping? Do nothing. */
232 if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
233 return;
234
235 if (maniptype == NF_NAT_MANIP_SRC)
236 var_ipp = &tuple->src.u3;
237 else
238 var_ipp = &tuple->dst.u3;
239
240 /* Fast path: only one choice. */
241 if (nf_inet_addr_cmp(&range->min_addr, &range->max_addr)) {
242 *var_ipp = range->min_addr;
243 return;
244 }
245
246 if (nf_ct_l3num(ct) == NFPROTO_IPV4)
247 max = sizeof(var_ipp->ip) / sizeof(u32) - 1;
248 else
249 max = sizeof(var_ipp->ip6) / sizeof(u32) - 1;
250
251 /* Hashing source and destination IPs gives a fairly even
252 * spread in practice (if there are a small number of IPs
253 * involved, there usually aren't that many connections
254 * anyway). The consistency means that servers see the same
255 * client coming from the same IP (some Internet Banking sites
256 * like this), even across reboots.
257 */
258 j = jhash2((u32 *)&tuple->src.u3, sizeof(tuple->src.u3) / sizeof(u32),
259 range->flags & NF_NAT_RANGE_PERSISTENT ?
260 0 : (__force u32)tuple->dst.u3.all[max] ^ zone);
261
262 full_range = false;
263 for (i = 0; i <= max; i++) {
264 /* If first bytes of the address are at the maximum, use the
265 * distance. Otherwise use the full range.
266 */
267 if (!full_range) {
268 minip = ntohl((__force __be32)range->min_addr.all[i]);
269 maxip = ntohl((__force __be32)range->max_addr.all[i]);
270 dist = maxip - minip + 1;
271 } else {
272 minip = 0;
273 dist = ~0;
274 }
275
276 var_ipp->all[i] = (__force __u32)
277 htonl(minip + (((u64)j * dist) >> 32));
278 if (var_ipp->all[i] != range->max_addr.all[i])
279 full_range = true;
280
281 if (!(range->flags & NF_NAT_RANGE_PERSISTENT))
282 j ^= (__force u32)tuple->dst.u3.all[i];
283 }
284 }
285
286 /* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING,
287 * we change the source to map into the range. For NF_INET_PRE_ROUTING
288 * and NF_INET_LOCAL_OUT, we change the destination to map into the
289 * range. It might not be possible to get a unique tuple, but we try.
290 * At worst (or if we race), we will end up with a final duplicate in
291 * __ip_conntrack_confirm and drop the packet. */
292 static void
293 get_unique_tuple(struct nf_conntrack_tuple *tuple,
294 const struct nf_conntrack_tuple *orig_tuple,
295 const struct nf_nat_range *range,
296 struct nf_conn *ct,
297 enum nf_nat_manip_type maniptype)
298 {
299 const struct nf_nat_l3proto *l3proto;
300 const struct nf_nat_l4proto *l4proto;
301 struct net *net = nf_ct_net(ct);
302 u16 zone = nf_ct_zone(ct);
303
304 rcu_read_lock();
305 l3proto = __nf_nat_l3proto_find(orig_tuple->src.l3num);
306 l4proto = __nf_nat_l4proto_find(orig_tuple->src.l3num,
307 orig_tuple->dst.protonum);
308
309 /* 1) If this srcip/proto/src-proto-part is currently mapped,
310 * and that same mapping gives a unique tuple within the given
311 * range, use that.
312 *
313 * This is only required for source (ie. NAT/masq) mappings.
314 * So far, we don't do local source mappings, so multiple
315 * manips not an issue.
316 */
317 if (maniptype == NF_NAT_MANIP_SRC &&
318 !(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
319 /* try the original tuple first */
320 if (in_range(l3proto, l4proto, orig_tuple, range)) {
321 if (!nf_nat_used_tuple(orig_tuple, ct)) {
322 *tuple = *orig_tuple;
323 goto out;
324 }
325 } else if (find_appropriate_src(net, zone, l3proto, l4proto,
326 orig_tuple, tuple, range)) {
327 pr_debug("get_unique_tuple: Found current src map\n");
328 if (!nf_nat_used_tuple(tuple, ct))
329 goto out;
330 }
331 }
332
333 /* 2) Select the least-used IP/proto combination in the given range */
334 *tuple = *orig_tuple;
335 find_best_ips_proto(zone, tuple, range, ct, maniptype);
336
337 /* 3) The per-protocol part of the manip is made to map into
338 * the range to make a unique tuple.
339 */
340
341 /* Only bother mapping if it's not already in range and unique */
342 if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
343 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
344 if (l4proto->in_range(tuple, maniptype,
345 &range->min_proto,
346 &range->max_proto) &&
347 (range->min_proto.all == range->max_proto.all ||
348 !nf_nat_used_tuple(tuple, ct)))
349 goto out;
350 } else if (!nf_nat_used_tuple(tuple, ct)) {
351 goto out;
352 }
353 }
354
355 /* Last change: get protocol to try to obtain unique tuple. */
356 l4proto->unique_tuple(l3proto, tuple, range, maniptype, ct);
357 out:
358 rcu_read_unlock();
359 }
360
361 unsigned int
362 nf_nat_setup_info(struct nf_conn *ct,
363 const struct nf_nat_range *range,
364 enum nf_nat_manip_type maniptype)
365 {
366 struct net *net = nf_ct_net(ct);
367 struct nf_conntrack_tuple curr_tuple, new_tuple;
368 struct nf_conn_nat *nat;
369
370 /* nat helper or nfctnetlink also setup binding */
371 nat = nfct_nat(ct);
372 if (!nat) {
373 nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
374 if (nat == NULL) {
375 pr_debug("failed to add NAT extension\n");
376 return NF_ACCEPT;
377 }
378 }
379
380 NF_CT_ASSERT(maniptype == NF_NAT_MANIP_SRC ||
381 maniptype == NF_NAT_MANIP_DST);
382 BUG_ON(nf_nat_initialized(ct, maniptype));
383
384 /* What we've got will look like inverse of reply. Normally
385 * this is what is in the conntrack, except for prior
386 * manipulations (future optimization: if num_manips == 0,
387 * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)
388 */
389 nf_ct_invert_tuplepr(&curr_tuple,
390 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
391
392 get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
393
394 if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
395 struct nf_conntrack_tuple reply;
396
397 /* Alter conntrack table so will recognize replies. */
398 nf_ct_invert_tuplepr(&reply, &new_tuple);
399 nf_conntrack_alter_reply(ct, &reply);
400
401 /* Non-atomic: we own this at the moment. */
402 if (maniptype == NF_NAT_MANIP_SRC)
403 ct->status |= IPS_SRC_NAT;
404 else
405 ct->status |= IPS_DST_NAT;
406
407 if (nfct_help(ct))
408 nfct_seqadj_ext_add(ct);
409 }
410
411 if (maniptype == NF_NAT_MANIP_SRC) {
412 unsigned int srchash;
413
414 srchash = hash_by_src(net, nf_ct_zone(ct),
415 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
416 spin_lock_bh(&nf_nat_lock);
417 /* nf_conntrack_alter_reply might re-allocate extension aera */
418 nat = nfct_nat(ct);
419 nat->ct = ct;
420 hlist_add_head_rcu(&nat->bysource,
421 &net->ct.nat_bysource[srchash]);
422 spin_unlock_bh(&nf_nat_lock);
423 }
424
425 /* It's done. */
426 if (maniptype == NF_NAT_MANIP_DST)
427 ct->status |= IPS_DST_NAT_DONE;
428 else
429 ct->status |= IPS_SRC_NAT_DONE;
430
431 return NF_ACCEPT;
432 }
433 EXPORT_SYMBOL(nf_nat_setup_info);
434
435 static unsigned int
436 __nf_nat_alloc_null_binding(struct nf_conn *ct, enum nf_nat_manip_type manip)
437 {
438 /* Force range to this IP; let proto decide mapping for
439 * per-proto parts (hence not IP_NAT_RANGE_PROTO_SPECIFIED).
440 * Use reply in case it's already been mangled (eg local packet).
441 */
442 union nf_inet_addr ip =
443 (manip == NF_NAT_MANIP_SRC ?
444 ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.u3 :
445 ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u3);
446 struct nf_nat_range range = {
447 .flags = NF_NAT_RANGE_MAP_IPS,
448 .min_addr = ip,
449 .max_addr = ip,
450 };
451 return nf_nat_setup_info(ct, &range, manip);
452 }
453
454 unsigned int
455 nf_nat_alloc_null_binding(struct nf_conn *ct, unsigned int hooknum)
456 {
457 return __nf_nat_alloc_null_binding(ct, HOOK2MANIP(hooknum));
458 }
459 EXPORT_SYMBOL_GPL(nf_nat_alloc_null_binding);
460
461 /* Do packet manipulations according to nf_nat_setup_info. */
462 unsigned int nf_nat_packet(struct nf_conn *ct,
463 enum ip_conntrack_info ctinfo,
464 unsigned int hooknum,
465 struct sk_buff *skb)
466 {
467 const struct nf_nat_l3proto *l3proto;
468 const struct nf_nat_l4proto *l4proto;
469 enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
470 unsigned long statusbit;
471 enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
472
473 if (mtype == NF_NAT_MANIP_SRC)
474 statusbit = IPS_SRC_NAT;
475 else
476 statusbit = IPS_DST_NAT;
477
478 /* Invert if this is reply dir. */
479 if (dir == IP_CT_DIR_REPLY)
480 statusbit ^= IPS_NAT_MASK;
481
482 /* Non-atomic: these bits don't change. */
483 if (ct->status & statusbit) {
484 struct nf_conntrack_tuple target;
485
486 /* We are aiming to look like inverse of other direction. */
487 nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
488
489 l3proto = __nf_nat_l3proto_find(target.src.l3num);
490 l4proto = __nf_nat_l4proto_find(target.src.l3num,
491 target.dst.protonum);
492 if (!l3proto->manip_pkt(skb, 0, l4proto, &target, mtype))
493 return NF_DROP;
494 }
495 return NF_ACCEPT;
496 }
497 EXPORT_SYMBOL_GPL(nf_nat_packet);
498
499 struct nf_nat_proto_clean {
500 u8 l3proto;
501 u8 l4proto;
502 };
503
504 /* kill conntracks with affected NAT section */
505 static int nf_nat_proto_remove(struct nf_conn *i, void *data)
506 {
507 const struct nf_nat_proto_clean *clean = data;
508 struct nf_conn_nat *nat = nfct_nat(i);
509
510 if (!nat)
511 return 0;
512
513 if ((clean->l3proto && nf_ct_l3num(i) != clean->l3proto) ||
514 (clean->l4proto && nf_ct_protonum(i) != clean->l4proto))
515 return 0;
516
517 return i->status & IPS_NAT_MASK ? 1 : 0;
518 }
519
520 static void nf_nat_l4proto_clean(u8 l3proto, u8 l4proto)
521 {
522 struct nf_nat_proto_clean clean = {
523 .l3proto = l3proto,
524 .l4proto = l4proto,
525 };
526 struct net *net;
527
528 rtnl_lock();
529 for_each_net(net)
530 nf_ct_iterate_cleanup(net, nf_nat_proto_remove, &clean, 0, 0);
531 rtnl_unlock();
532 }
533
534 static void nf_nat_l3proto_clean(u8 l3proto)
535 {
536 struct nf_nat_proto_clean clean = {
537 .l3proto = l3proto,
538 };
539 struct net *net;
540
541 rtnl_lock();
542
543 for_each_net(net)
544 nf_ct_iterate_cleanup(net, nf_nat_proto_remove, &clean, 0, 0);
545 rtnl_unlock();
546 }
547
548 /* Protocol registration. */
549 int nf_nat_l4proto_register(u8 l3proto, const struct nf_nat_l4proto *l4proto)
550 {
551 const struct nf_nat_l4proto **l4protos;
552 unsigned int i;
553 int ret = 0;
554
555 mutex_lock(&nf_nat_proto_mutex);
556 if (nf_nat_l4protos[l3proto] == NULL) {
557 l4protos = kmalloc(IPPROTO_MAX * sizeof(struct nf_nat_l4proto *),
558 GFP_KERNEL);
559 if (l4protos == NULL) {
560 ret = -ENOMEM;
561 goto out;
562 }
563
564 for (i = 0; i < IPPROTO_MAX; i++)
565 RCU_INIT_POINTER(l4protos[i], &nf_nat_l4proto_unknown);
566
567 /* Before making proto_array visible to lockless readers,
568 * we must make sure its content is committed to memory.
569 */
570 smp_wmb();
571
572 nf_nat_l4protos[l3proto] = l4protos;
573 }
574
575 if (rcu_dereference_protected(
576 nf_nat_l4protos[l3proto][l4proto->l4proto],
577 lockdep_is_held(&nf_nat_proto_mutex)
578 ) != &nf_nat_l4proto_unknown) {
579 ret = -EBUSY;
580 goto out;
581 }
582 RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto], l4proto);
583 out:
584 mutex_unlock(&nf_nat_proto_mutex);
585 return ret;
586 }
587 EXPORT_SYMBOL_GPL(nf_nat_l4proto_register);
588
589 /* No one stores the protocol anywhere; simply delete it. */
590 void nf_nat_l4proto_unregister(u8 l3proto, const struct nf_nat_l4proto *l4proto)
591 {
592 mutex_lock(&nf_nat_proto_mutex);
593 RCU_INIT_POINTER(nf_nat_l4protos[l3proto][l4proto->l4proto],
594 &nf_nat_l4proto_unknown);
595 mutex_unlock(&nf_nat_proto_mutex);
596 synchronize_rcu();
597
598 nf_nat_l4proto_clean(l3proto, l4proto->l4proto);
599 }
600 EXPORT_SYMBOL_GPL(nf_nat_l4proto_unregister);
601
602 int nf_nat_l3proto_register(const struct nf_nat_l3proto *l3proto)
603 {
604 int err;
605
606 err = nf_ct_l3proto_try_module_get(l3proto->l3proto);
607 if (err < 0)
608 return err;
609
610 mutex_lock(&nf_nat_proto_mutex);
611 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_TCP],
612 &nf_nat_l4proto_tcp);
613 RCU_INIT_POINTER(nf_nat_l4protos[l3proto->l3proto][IPPROTO_UDP],
614 &nf_nat_l4proto_udp);
615 mutex_unlock(&nf_nat_proto_mutex);
616
617 RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], l3proto);
618 return 0;
619 }
620 EXPORT_SYMBOL_GPL(nf_nat_l3proto_register);
621
622 void nf_nat_l3proto_unregister(const struct nf_nat_l3proto *l3proto)
623 {
624 mutex_lock(&nf_nat_proto_mutex);
625 RCU_INIT_POINTER(nf_nat_l3protos[l3proto->l3proto], NULL);
626 mutex_unlock(&nf_nat_proto_mutex);
627 synchronize_rcu();
628
629 nf_nat_l3proto_clean(l3proto->l3proto);
630 nf_ct_l3proto_module_put(l3proto->l3proto);
631 }
632 EXPORT_SYMBOL_GPL(nf_nat_l3proto_unregister);
633
634 /* No one using conntrack by the time this called. */
635 static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
636 {
637 struct nf_conn_nat *nat = nf_ct_ext_find(ct, NF_CT_EXT_NAT);
638
639 if (nat == NULL || nat->ct == NULL)
640 return;
641
642 NF_CT_ASSERT(nat->ct->status & IPS_SRC_NAT_DONE);
643
644 spin_lock_bh(&nf_nat_lock);
645 hlist_del_rcu(&nat->bysource);
646 spin_unlock_bh(&nf_nat_lock);
647 }
648
649 static void nf_nat_move_storage(void *new, void *old)
650 {
651 struct nf_conn_nat *new_nat = new;
652 struct nf_conn_nat *old_nat = old;
653 struct nf_conn *ct = old_nat->ct;
654
655 if (!ct || !(ct->status & IPS_SRC_NAT_DONE))
656 return;
657
658 spin_lock_bh(&nf_nat_lock);
659 hlist_replace_rcu(&old_nat->bysource, &new_nat->bysource);
660 spin_unlock_bh(&nf_nat_lock);
661 }
662
663 static struct nf_ct_ext_type nat_extend __read_mostly = {
664 .len = sizeof(struct nf_conn_nat),
665 .align = __alignof__(struct nf_conn_nat),
666 .destroy = nf_nat_cleanup_conntrack,
667 .move = nf_nat_move_storage,
668 .id = NF_CT_EXT_NAT,
669 .flags = NF_CT_EXT_F_PREALLOC,
670 };
671
672 #if defined(CONFIG_NF_CT_NETLINK) || defined(CONFIG_NF_CT_NETLINK_MODULE)
673
674 #include <linux/netfilter/nfnetlink.h>
675 #include <linux/netfilter/nfnetlink_conntrack.h>
676
677 static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
678 [CTA_PROTONAT_PORT_MIN] = { .type = NLA_U16 },
679 [CTA_PROTONAT_PORT_MAX] = { .type = NLA_U16 },
680 };
681
682 static int nfnetlink_parse_nat_proto(struct nlattr *attr,
683 const struct nf_conn *ct,
684 struct nf_nat_range *range)
685 {
686 struct nlattr *tb[CTA_PROTONAT_MAX+1];
687 const struct nf_nat_l4proto *l4proto;
688 int err;
689
690 err = nla_parse_nested(tb, CTA_PROTONAT_MAX, attr, protonat_nla_policy);
691 if (err < 0)
692 return err;
693
694 l4proto = __nf_nat_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
695 if (l4proto->nlattr_to_range)
696 err = l4proto->nlattr_to_range(tb, range);
697
698 return err;
699 }
700
701 static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
702 [CTA_NAT_V4_MINIP] = { .type = NLA_U32 },
703 [CTA_NAT_V4_MAXIP] = { .type = NLA_U32 },
704 [CTA_NAT_V6_MINIP] = { .len = sizeof(struct in6_addr) },
705 [CTA_NAT_V6_MAXIP] = { .len = sizeof(struct in6_addr) },
706 [CTA_NAT_PROTO] = { .type = NLA_NESTED },
707 };
708
709 static int
710 nfnetlink_parse_nat(const struct nlattr *nat,
711 const struct nf_conn *ct, struct nf_nat_range *range,
712 const struct nf_nat_l3proto *l3proto)
713 {
714 struct nlattr *tb[CTA_NAT_MAX+1];
715 int err;
716
717 memset(range, 0, sizeof(*range));
718
719 err = nla_parse_nested(tb, CTA_NAT_MAX, nat, nat_nla_policy);
720 if (err < 0)
721 return err;
722
723 err = l3proto->nlattr_to_range(tb, range);
724 if (err < 0)
725 return err;
726
727 if (!tb[CTA_NAT_PROTO])
728 return 0;
729
730 return nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
731 }
732
733 /* This function is called under rcu_read_lock() */
734 static int
735 nfnetlink_parse_nat_setup(struct nf_conn *ct,
736 enum nf_nat_manip_type manip,
737 const struct nlattr *attr)
738 {
739 struct nf_nat_range range;
740 const struct nf_nat_l3proto *l3proto;
741 int err;
742
743 /* Should not happen, restricted to creating new conntracks
744 * via ctnetlink.
745 */
746 if (WARN_ON_ONCE(nf_nat_initialized(ct, manip)))
747 return -EEXIST;
748
749 /* Make sure that L3 NAT is there by when we call nf_nat_setup_info to
750 * attach the null binding, otherwise this may oops.
751 */
752 l3proto = __nf_nat_l3proto_find(nf_ct_l3num(ct));
753 if (l3proto == NULL)
754 return -EAGAIN;
755
756 /* No NAT information has been passed, allocate the null-binding */
757 if (attr == NULL)
758 return __nf_nat_alloc_null_binding(ct, manip);
759
760 err = nfnetlink_parse_nat(attr, ct, &range, l3proto);
761 if (err < 0)
762 return err;
763
764 return nf_nat_setup_info(ct, &range, manip);
765 }
766 #else
767 static int
768 nfnetlink_parse_nat_setup(struct nf_conn *ct,
769 enum nf_nat_manip_type manip,
770 const struct nlattr *attr)
771 {
772 return -EOPNOTSUPP;
773 }
774 #endif
775
776 static int __net_init nf_nat_net_init(struct net *net)
777 {
778 /* Leave them the same for the moment. */
779 net->ct.nat_htable_size = net->ct.htable_size;
780 net->ct.nat_bysource = nf_ct_alloc_hashtable(&net->ct.nat_htable_size, 0);
781 if (!net->ct.nat_bysource)
782 return -ENOMEM;
783 return 0;
784 }
785
786 static void __net_exit nf_nat_net_exit(struct net *net)
787 {
788 struct nf_nat_proto_clean clean = {};
789
790 nf_ct_iterate_cleanup(net, &nf_nat_proto_remove, &clean, 0, 0);
791 synchronize_rcu();
792 nf_ct_free_hashtable(net->ct.nat_bysource, net->ct.nat_htable_size);
793 }
794
795 static struct pernet_operations nf_nat_net_ops = {
796 .init = nf_nat_net_init,
797 .exit = nf_nat_net_exit,
798 };
799
800 static struct nf_ct_helper_expectfn follow_master_nat = {
801 .name = "nat-follow-master",
802 .expectfn = nf_nat_follow_master,
803 };
804
805 static int __init nf_nat_init(void)
806 {
807 int ret;
808
809 ret = nf_ct_extend_register(&nat_extend);
810 if (ret < 0) {
811 printk(KERN_ERR "nf_nat_core: Unable to register extension\n");
812 return ret;
813 }
814
815 ret = register_pernet_subsys(&nf_nat_net_ops);
816 if (ret < 0)
817 goto cleanup_extend;
818
819 nf_ct_helper_expectfn_register(&follow_master_nat);
820
821 /* Initialize fake conntrack so that NAT will skip it */
822 nf_ct_untracked_status_or(IPS_NAT_DONE_MASK);
823
824 BUG_ON(nfnetlink_parse_nat_setup_hook != NULL);
825 RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook,
826 nfnetlink_parse_nat_setup);
827 #ifdef CONFIG_XFRM
828 BUG_ON(nf_nat_decode_session_hook != NULL);
829 RCU_INIT_POINTER(nf_nat_decode_session_hook, __nf_nat_decode_session);
830 #endif
831 return 0;
832
833 cleanup_extend:
834 nf_ct_extend_unregister(&nat_extend);
835 return ret;
836 }
837
838 static void __exit nf_nat_cleanup(void)
839 {
840 unsigned int i;
841
842 unregister_pernet_subsys(&nf_nat_net_ops);
843 nf_ct_extend_unregister(&nat_extend);
844 nf_ct_helper_expectfn_unregister(&follow_master_nat);
845 RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook, NULL);
846 #ifdef CONFIG_XFRM
847 RCU_INIT_POINTER(nf_nat_decode_session_hook, NULL);
848 #endif
849 for (i = 0; i < NFPROTO_NUMPROTO; i++)
850 kfree(nf_nat_l4protos[i]);
851 synchronize_net();
852 }
853
854 MODULE_LICENSE("GPL");
855
856 module_init(nf_nat_init);
857 module_exit(nf_nat_cleanup);
This page took 0.048409 seconds and 5 git commands to generate.