Merge tag 'mac80211-for-davem-2015-01-23' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / net / netlink / af_netlink.c
1 /*
2 * NETLINK Kernel-user communication protocol.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6 * Patrick McHardy <kaber@trash.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14 * added netlink_proto_exit
15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16 * use nlk_sk, as sk->protinfo is on a diet 8)
17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18 * - inc module use count of module that owns
19 * the kernel socket in case userspace opens
20 * socket of same protocol
21 * - remove all module support, since netlink is
22 * mandatory if CONFIG_NET=y these days
23 */
24
25 #include <linux/module.h>
26
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64 #include <linux/genetlink.h>
65
66 #include <net/net_namespace.h>
67 #include <net/sock.h>
68 #include <net/scm.h>
69 #include <net/netlink.h>
70
71 #include "af_netlink.h"
72
73 struct listeners {
74 struct rcu_head rcu;
75 unsigned long masks[0];
76 };
77
78 /* state bits */
79 #define NETLINK_CONGESTED 0x0
80
81 /* flags */
82 #define NETLINK_KERNEL_SOCKET 0x1
83 #define NETLINK_RECV_PKTINFO 0x2
84 #define NETLINK_BROADCAST_SEND_ERROR 0x4
85 #define NETLINK_RECV_NO_ENOBUFS 0x8
86
87 static inline int netlink_is_kernel(struct sock *sk)
88 {
89 return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
90 }
91
92 struct netlink_table *nl_table;
93 EXPORT_SYMBOL_GPL(nl_table);
94
95 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
96
97 static int netlink_dump(struct sock *sk);
98 static void netlink_skb_destructor(struct sk_buff *skb);
99
100 /* nl_table locking explained:
101 * Lookup and traversal are protected with nl_sk_hash_lock or nl_table_lock
102 * combined with an RCU read-side lock. Insertion and removal are protected
103 * with nl_sk_hash_lock while using RCU list modification primitives and may
104 * run in parallel to nl_table_lock protected lookups. Destruction of the
105 * Netlink socket may only occur *after* nl_table_lock has been acquired
106 * either during or after the socket has been removed from the list.
107 */
108 DEFINE_RWLOCK(nl_table_lock);
109 EXPORT_SYMBOL_GPL(nl_table_lock);
110 static atomic_t nl_table_users = ATOMIC_INIT(0);
111
112 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
113
114 /* Protects netlink socket hash table mutations */
115 DEFINE_MUTEX(nl_sk_hash_lock);
116 EXPORT_SYMBOL_GPL(nl_sk_hash_lock);
117
118 #ifdef CONFIG_PROVE_LOCKING
119 static int lockdep_nl_sk_hash_is_held(void *parent)
120 {
121 if (debug_locks)
122 return lockdep_is_held(&nl_sk_hash_lock) || lockdep_is_held(&nl_table_lock);
123 return 1;
124 }
125 #endif
126
127 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
128
129 static DEFINE_SPINLOCK(netlink_tap_lock);
130 static struct list_head netlink_tap_all __read_mostly;
131
132 static inline u32 netlink_group_mask(u32 group)
133 {
134 return group ? 1 << (group - 1) : 0;
135 }
136
137 int netlink_add_tap(struct netlink_tap *nt)
138 {
139 if (unlikely(nt->dev->type != ARPHRD_NETLINK))
140 return -EINVAL;
141
142 spin_lock(&netlink_tap_lock);
143 list_add_rcu(&nt->list, &netlink_tap_all);
144 spin_unlock(&netlink_tap_lock);
145
146 __module_get(nt->module);
147
148 return 0;
149 }
150 EXPORT_SYMBOL_GPL(netlink_add_tap);
151
152 static int __netlink_remove_tap(struct netlink_tap *nt)
153 {
154 bool found = false;
155 struct netlink_tap *tmp;
156
157 spin_lock(&netlink_tap_lock);
158
159 list_for_each_entry(tmp, &netlink_tap_all, list) {
160 if (nt == tmp) {
161 list_del_rcu(&nt->list);
162 found = true;
163 goto out;
164 }
165 }
166
167 pr_warn("__netlink_remove_tap: %p not found\n", nt);
168 out:
169 spin_unlock(&netlink_tap_lock);
170
171 if (found && nt->module)
172 module_put(nt->module);
173
174 return found ? 0 : -ENODEV;
175 }
176
177 int netlink_remove_tap(struct netlink_tap *nt)
178 {
179 int ret;
180
181 ret = __netlink_remove_tap(nt);
182 synchronize_net();
183
184 return ret;
185 }
186 EXPORT_SYMBOL_GPL(netlink_remove_tap);
187
188 static bool netlink_filter_tap(const struct sk_buff *skb)
189 {
190 struct sock *sk = skb->sk;
191
192 /* We take the more conservative approach and
193 * whitelist socket protocols that may pass.
194 */
195 switch (sk->sk_protocol) {
196 case NETLINK_ROUTE:
197 case NETLINK_USERSOCK:
198 case NETLINK_SOCK_DIAG:
199 case NETLINK_NFLOG:
200 case NETLINK_XFRM:
201 case NETLINK_FIB_LOOKUP:
202 case NETLINK_NETFILTER:
203 case NETLINK_GENERIC:
204 return true;
205 }
206
207 return false;
208 }
209
210 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
211 struct net_device *dev)
212 {
213 struct sk_buff *nskb;
214 struct sock *sk = skb->sk;
215 int ret = -ENOMEM;
216
217 dev_hold(dev);
218 nskb = skb_clone(skb, GFP_ATOMIC);
219 if (nskb) {
220 nskb->dev = dev;
221 nskb->protocol = htons((u16) sk->sk_protocol);
222 nskb->pkt_type = netlink_is_kernel(sk) ?
223 PACKET_KERNEL : PACKET_USER;
224 skb_reset_network_header(nskb);
225 ret = dev_queue_xmit(nskb);
226 if (unlikely(ret > 0))
227 ret = net_xmit_errno(ret);
228 }
229
230 dev_put(dev);
231 return ret;
232 }
233
234 static void __netlink_deliver_tap(struct sk_buff *skb)
235 {
236 int ret;
237 struct netlink_tap *tmp;
238
239 if (!netlink_filter_tap(skb))
240 return;
241
242 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
243 ret = __netlink_deliver_tap_skb(skb, tmp->dev);
244 if (unlikely(ret))
245 break;
246 }
247 }
248
249 static void netlink_deliver_tap(struct sk_buff *skb)
250 {
251 rcu_read_lock();
252
253 if (unlikely(!list_empty(&netlink_tap_all)))
254 __netlink_deliver_tap(skb);
255
256 rcu_read_unlock();
257 }
258
259 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
260 struct sk_buff *skb)
261 {
262 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
263 netlink_deliver_tap(skb);
264 }
265
266 static void netlink_overrun(struct sock *sk)
267 {
268 struct netlink_sock *nlk = nlk_sk(sk);
269
270 if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
271 if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) {
272 sk->sk_err = ENOBUFS;
273 sk->sk_error_report(sk);
274 }
275 }
276 atomic_inc(&sk->sk_drops);
277 }
278
279 static void netlink_rcv_wake(struct sock *sk)
280 {
281 struct netlink_sock *nlk = nlk_sk(sk);
282
283 if (skb_queue_empty(&sk->sk_receive_queue))
284 clear_bit(NETLINK_CONGESTED, &nlk->state);
285 if (!test_bit(NETLINK_CONGESTED, &nlk->state))
286 wake_up_interruptible(&nlk->wait);
287 }
288
289 #ifdef CONFIG_NETLINK_MMAP
290 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
291 {
292 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
293 }
294
295 static bool netlink_rx_is_mmaped(struct sock *sk)
296 {
297 return nlk_sk(sk)->rx_ring.pg_vec != NULL;
298 }
299
300 static bool netlink_tx_is_mmaped(struct sock *sk)
301 {
302 return nlk_sk(sk)->tx_ring.pg_vec != NULL;
303 }
304
305 static __pure struct page *pgvec_to_page(const void *addr)
306 {
307 if (is_vmalloc_addr(addr))
308 return vmalloc_to_page(addr);
309 else
310 return virt_to_page(addr);
311 }
312
313 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
314 {
315 unsigned int i;
316
317 for (i = 0; i < len; i++) {
318 if (pg_vec[i] != NULL) {
319 if (is_vmalloc_addr(pg_vec[i]))
320 vfree(pg_vec[i]);
321 else
322 free_pages((unsigned long)pg_vec[i], order);
323 }
324 }
325 kfree(pg_vec);
326 }
327
328 static void *alloc_one_pg_vec_page(unsigned long order)
329 {
330 void *buffer;
331 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
332 __GFP_NOWARN | __GFP_NORETRY;
333
334 buffer = (void *)__get_free_pages(gfp_flags, order);
335 if (buffer != NULL)
336 return buffer;
337
338 buffer = vzalloc((1 << order) * PAGE_SIZE);
339 if (buffer != NULL)
340 return buffer;
341
342 gfp_flags &= ~__GFP_NORETRY;
343 return (void *)__get_free_pages(gfp_flags, order);
344 }
345
346 static void **alloc_pg_vec(struct netlink_sock *nlk,
347 struct nl_mmap_req *req, unsigned int order)
348 {
349 unsigned int block_nr = req->nm_block_nr;
350 unsigned int i;
351 void **pg_vec;
352
353 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
354 if (pg_vec == NULL)
355 return NULL;
356
357 for (i = 0; i < block_nr; i++) {
358 pg_vec[i] = alloc_one_pg_vec_page(order);
359 if (pg_vec[i] == NULL)
360 goto err1;
361 }
362
363 return pg_vec;
364 err1:
365 free_pg_vec(pg_vec, order, block_nr);
366 return NULL;
367 }
368
369 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
370 bool closing, bool tx_ring)
371 {
372 struct netlink_sock *nlk = nlk_sk(sk);
373 struct netlink_ring *ring;
374 struct sk_buff_head *queue;
375 void **pg_vec = NULL;
376 unsigned int order = 0;
377 int err;
378
379 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
380 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
381
382 if (!closing) {
383 if (atomic_read(&nlk->mapped))
384 return -EBUSY;
385 if (atomic_read(&ring->pending))
386 return -EBUSY;
387 }
388
389 if (req->nm_block_nr) {
390 if (ring->pg_vec != NULL)
391 return -EBUSY;
392
393 if ((int)req->nm_block_size <= 0)
394 return -EINVAL;
395 if (!PAGE_ALIGNED(req->nm_block_size))
396 return -EINVAL;
397 if (req->nm_frame_size < NL_MMAP_HDRLEN)
398 return -EINVAL;
399 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
400 return -EINVAL;
401
402 ring->frames_per_block = req->nm_block_size /
403 req->nm_frame_size;
404 if (ring->frames_per_block == 0)
405 return -EINVAL;
406 if (ring->frames_per_block * req->nm_block_nr !=
407 req->nm_frame_nr)
408 return -EINVAL;
409
410 order = get_order(req->nm_block_size);
411 pg_vec = alloc_pg_vec(nlk, req, order);
412 if (pg_vec == NULL)
413 return -ENOMEM;
414 } else {
415 if (req->nm_frame_nr)
416 return -EINVAL;
417 }
418
419 err = -EBUSY;
420 mutex_lock(&nlk->pg_vec_lock);
421 if (closing || atomic_read(&nlk->mapped) == 0) {
422 err = 0;
423 spin_lock_bh(&queue->lock);
424
425 ring->frame_max = req->nm_frame_nr - 1;
426 ring->head = 0;
427 ring->frame_size = req->nm_frame_size;
428 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE;
429
430 swap(ring->pg_vec_len, req->nm_block_nr);
431 swap(ring->pg_vec_order, order);
432 swap(ring->pg_vec, pg_vec);
433
434 __skb_queue_purge(queue);
435 spin_unlock_bh(&queue->lock);
436
437 WARN_ON(atomic_read(&nlk->mapped));
438 }
439 mutex_unlock(&nlk->pg_vec_lock);
440
441 if (pg_vec)
442 free_pg_vec(pg_vec, order, req->nm_block_nr);
443 return err;
444 }
445
446 static void netlink_mm_open(struct vm_area_struct *vma)
447 {
448 struct file *file = vma->vm_file;
449 struct socket *sock = file->private_data;
450 struct sock *sk = sock->sk;
451
452 if (sk)
453 atomic_inc(&nlk_sk(sk)->mapped);
454 }
455
456 static void netlink_mm_close(struct vm_area_struct *vma)
457 {
458 struct file *file = vma->vm_file;
459 struct socket *sock = file->private_data;
460 struct sock *sk = sock->sk;
461
462 if (sk)
463 atomic_dec(&nlk_sk(sk)->mapped);
464 }
465
466 static const struct vm_operations_struct netlink_mmap_ops = {
467 .open = netlink_mm_open,
468 .close = netlink_mm_close,
469 };
470
471 static int netlink_mmap(struct file *file, struct socket *sock,
472 struct vm_area_struct *vma)
473 {
474 struct sock *sk = sock->sk;
475 struct netlink_sock *nlk = nlk_sk(sk);
476 struct netlink_ring *ring;
477 unsigned long start, size, expected;
478 unsigned int i;
479 int err = -EINVAL;
480
481 if (vma->vm_pgoff)
482 return -EINVAL;
483
484 mutex_lock(&nlk->pg_vec_lock);
485
486 expected = 0;
487 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
488 if (ring->pg_vec == NULL)
489 continue;
490 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
491 }
492
493 if (expected == 0)
494 goto out;
495
496 size = vma->vm_end - vma->vm_start;
497 if (size != expected)
498 goto out;
499
500 start = vma->vm_start;
501 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
502 if (ring->pg_vec == NULL)
503 continue;
504
505 for (i = 0; i < ring->pg_vec_len; i++) {
506 struct page *page;
507 void *kaddr = ring->pg_vec[i];
508 unsigned int pg_num;
509
510 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
511 page = pgvec_to_page(kaddr);
512 err = vm_insert_page(vma, start, page);
513 if (err < 0)
514 goto out;
515 start += PAGE_SIZE;
516 kaddr += PAGE_SIZE;
517 }
518 }
519 }
520
521 atomic_inc(&nlk->mapped);
522 vma->vm_ops = &netlink_mmap_ops;
523 err = 0;
524 out:
525 mutex_unlock(&nlk->pg_vec_lock);
526 return err;
527 }
528
529 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len)
530 {
531 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
532 struct page *p_start, *p_end;
533
534 /* First page is flushed through netlink_{get,set}_status */
535 p_start = pgvec_to_page(hdr + PAGE_SIZE);
536 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1);
537 while (p_start <= p_end) {
538 flush_dcache_page(p_start);
539 p_start++;
540 }
541 #endif
542 }
543
544 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
545 {
546 smp_rmb();
547 flush_dcache_page(pgvec_to_page(hdr));
548 return hdr->nm_status;
549 }
550
551 static void netlink_set_status(struct nl_mmap_hdr *hdr,
552 enum nl_mmap_status status)
553 {
554 smp_mb();
555 hdr->nm_status = status;
556 flush_dcache_page(pgvec_to_page(hdr));
557 }
558
559 static struct nl_mmap_hdr *
560 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
561 {
562 unsigned int pg_vec_pos, frame_off;
563
564 pg_vec_pos = pos / ring->frames_per_block;
565 frame_off = pos % ring->frames_per_block;
566
567 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
568 }
569
570 static struct nl_mmap_hdr *
571 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
572 enum nl_mmap_status status)
573 {
574 struct nl_mmap_hdr *hdr;
575
576 hdr = __netlink_lookup_frame(ring, pos);
577 if (netlink_get_status(hdr) != status)
578 return NULL;
579
580 return hdr;
581 }
582
583 static struct nl_mmap_hdr *
584 netlink_current_frame(const struct netlink_ring *ring,
585 enum nl_mmap_status status)
586 {
587 return netlink_lookup_frame(ring, ring->head, status);
588 }
589
590 static struct nl_mmap_hdr *
591 netlink_previous_frame(const struct netlink_ring *ring,
592 enum nl_mmap_status status)
593 {
594 unsigned int prev;
595
596 prev = ring->head ? ring->head - 1 : ring->frame_max;
597 return netlink_lookup_frame(ring, prev, status);
598 }
599
600 static void netlink_increment_head(struct netlink_ring *ring)
601 {
602 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
603 }
604
605 static void netlink_forward_ring(struct netlink_ring *ring)
606 {
607 unsigned int head = ring->head, pos = head;
608 const struct nl_mmap_hdr *hdr;
609
610 do {
611 hdr = __netlink_lookup_frame(ring, pos);
612 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
613 break;
614 if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
615 break;
616 netlink_increment_head(ring);
617 } while (ring->head != head);
618 }
619
620 static bool netlink_dump_space(struct netlink_sock *nlk)
621 {
622 struct netlink_ring *ring = &nlk->rx_ring;
623 struct nl_mmap_hdr *hdr;
624 unsigned int n;
625
626 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
627 if (hdr == NULL)
628 return false;
629
630 n = ring->head + ring->frame_max / 2;
631 if (n > ring->frame_max)
632 n -= ring->frame_max;
633
634 hdr = __netlink_lookup_frame(ring, n);
635
636 return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
637 }
638
639 static unsigned int netlink_poll(struct file *file, struct socket *sock,
640 poll_table *wait)
641 {
642 struct sock *sk = sock->sk;
643 struct netlink_sock *nlk = nlk_sk(sk);
644 unsigned int mask;
645 int err;
646
647 if (nlk->rx_ring.pg_vec != NULL) {
648 /* Memory mapped sockets don't call recvmsg(), so flow control
649 * for dumps is performed here. A dump is allowed to continue
650 * if at least half the ring is unused.
651 */
652 while (nlk->cb_running && netlink_dump_space(nlk)) {
653 err = netlink_dump(sk);
654 if (err < 0) {
655 sk->sk_err = -err;
656 sk->sk_error_report(sk);
657 break;
658 }
659 }
660 netlink_rcv_wake(sk);
661 }
662
663 mask = datagram_poll(file, sock, wait);
664
665 spin_lock_bh(&sk->sk_receive_queue.lock);
666 if (nlk->rx_ring.pg_vec) {
667 netlink_forward_ring(&nlk->rx_ring);
668 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
669 mask |= POLLIN | POLLRDNORM;
670 }
671 spin_unlock_bh(&sk->sk_receive_queue.lock);
672
673 spin_lock_bh(&sk->sk_write_queue.lock);
674 if (nlk->tx_ring.pg_vec) {
675 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
676 mask |= POLLOUT | POLLWRNORM;
677 }
678 spin_unlock_bh(&sk->sk_write_queue.lock);
679
680 return mask;
681 }
682
683 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
684 {
685 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
686 }
687
688 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
689 struct netlink_ring *ring,
690 struct nl_mmap_hdr *hdr)
691 {
692 unsigned int size;
693 void *data;
694
695 size = ring->frame_size - NL_MMAP_HDRLEN;
696 data = (void *)hdr + NL_MMAP_HDRLEN;
697
698 skb->head = data;
699 skb->data = data;
700 skb_reset_tail_pointer(skb);
701 skb->end = skb->tail + size;
702 skb->len = 0;
703
704 skb->destructor = netlink_skb_destructor;
705 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
706 NETLINK_CB(skb).sk = sk;
707 }
708
709 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
710 u32 dst_portid, u32 dst_group,
711 struct sock_iocb *siocb)
712 {
713 struct netlink_sock *nlk = nlk_sk(sk);
714 struct netlink_ring *ring;
715 struct nl_mmap_hdr *hdr;
716 struct sk_buff *skb;
717 unsigned int maxlen;
718 int err = 0, len = 0;
719
720 mutex_lock(&nlk->pg_vec_lock);
721
722 ring = &nlk->tx_ring;
723 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
724
725 do {
726 unsigned int nm_len;
727
728 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
729 if (hdr == NULL) {
730 if (!(msg->msg_flags & MSG_DONTWAIT) &&
731 atomic_read(&nlk->tx_ring.pending))
732 schedule();
733 continue;
734 }
735
736 nm_len = ACCESS_ONCE(hdr->nm_len);
737 if (nm_len > maxlen) {
738 err = -EINVAL;
739 goto out;
740 }
741
742 netlink_frame_flush_dcache(hdr, nm_len);
743
744 skb = alloc_skb(nm_len, GFP_KERNEL);
745 if (skb == NULL) {
746 err = -ENOBUFS;
747 goto out;
748 }
749 __skb_put(skb, nm_len);
750 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len);
751 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
752
753 netlink_increment_head(ring);
754
755 NETLINK_CB(skb).portid = nlk->portid;
756 NETLINK_CB(skb).dst_group = dst_group;
757 NETLINK_CB(skb).creds = siocb->scm->creds;
758
759 err = security_netlink_send(sk, skb);
760 if (err) {
761 kfree_skb(skb);
762 goto out;
763 }
764
765 if (unlikely(dst_group)) {
766 atomic_inc(&skb->users);
767 netlink_broadcast(sk, skb, dst_portid, dst_group,
768 GFP_KERNEL);
769 }
770 err = netlink_unicast(sk, skb, dst_portid,
771 msg->msg_flags & MSG_DONTWAIT);
772 if (err < 0)
773 goto out;
774 len += err;
775
776 } while (hdr != NULL ||
777 (!(msg->msg_flags & MSG_DONTWAIT) &&
778 atomic_read(&nlk->tx_ring.pending)));
779
780 if (len > 0)
781 err = len;
782 out:
783 mutex_unlock(&nlk->pg_vec_lock);
784 return err;
785 }
786
787 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
788 {
789 struct nl_mmap_hdr *hdr;
790
791 hdr = netlink_mmap_hdr(skb);
792 hdr->nm_len = skb->len;
793 hdr->nm_group = NETLINK_CB(skb).dst_group;
794 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
795 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
796 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
797 netlink_frame_flush_dcache(hdr, hdr->nm_len);
798 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
799
800 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
801 kfree_skb(skb);
802 }
803
804 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
805 {
806 struct netlink_sock *nlk = nlk_sk(sk);
807 struct netlink_ring *ring = &nlk->rx_ring;
808 struct nl_mmap_hdr *hdr;
809
810 spin_lock_bh(&sk->sk_receive_queue.lock);
811 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
812 if (hdr == NULL) {
813 spin_unlock_bh(&sk->sk_receive_queue.lock);
814 kfree_skb(skb);
815 netlink_overrun(sk);
816 return;
817 }
818 netlink_increment_head(ring);
819 __skb_queue_tail(&sk->sk_receive_queue, skb);
820 spin_unlock_bh(&sk->sk_receive_queue.lock);
821
822 hdr->nm_len = skb->len;
823 hdr->nm_group = NETLINK_CB(skb).dst_group;
824 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
825 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
826 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
827 netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
828 }
829
830 #else /* CONFIG_NETLINK_MMAP */
831 #define netlink_skb_is_mmaped(skb) false
832 #define netlink_rx_is_mmaped(sk) false
833 #define netlink_tx_is_mmaped(sk) false
834 #define netlink_mmap sock_no_mmap
835 #define netlink_poll datagram_poll
836 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb) 0
837 #endif /* CONFIG_NETLINK_MMAP */
838
839 static void netlink_skb_destructor(struct sk_buff *skb)
840 {
841 #ifdef CONFIG_NETLINK_MMAP
842 struct nl_mmap_hdr *hdr;
843 struct netlink_ring *ring;
844 struct sock *sk;
845
846 /* If a packet from the kernel to userspace was freed because of an
847 * error without being delivered to userspace, the kernel must reset
848 * the status. In the direction userspace to kernel, the status is
849 * always reset here after the packet was processed and freed.
850 */
851 if (netlink_skb_is_mmaped(skb)) {
852 hdr = netlink_mmap_hdr(skb);
853 sk = NETLINK_CB(skb).sk;
854
855 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
856 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
857 ring = &nlk_sk(sk)->tx_ring;
858 } else {
859 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
860 hdr->nm_len = 0;
861 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
862 }
863 ring = &nlk_sk(sk)->rx_ring;
864 }
865
866 WARN_ON(atomic_read(&ring->pending) == 0);
867 atomic_dec(&ring->pending);
868 sock_put(sk);
869
870 skb->head = NULL;
871 }
872 #endif
873 if (is_vmalloc_addr(skb->head)) {
874 if (!skb->cloned ||
875 !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
876 vfree(skb->head);
877
878 skb->head = NULL;
879 }
880 if (skb->sk != NULL)
881 sock_rfree(skb);
882 }
883
884 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
885 {
886 WARN_ON(skb->sk != NULL);
887 skb->sk = sk;
888 skb->destructor = netlink_skb_destructor;
889 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
890 sk_mem_charge(sk, skb->truesize);
891 }
892
893 static void netlink_sock_destruct(struct sock *sk)
894 {
895 struct netlink_sock *nlk = nlk_sk(sk);
896
897 if (nlk->cb_running) {
898 if (nlk->cb.done)
899 nlk->cb.done(&nlk->cb);
900
901 module_put(nlk->cb.module);
902 kfree_skb(nlk->cb.skb);
903 }
904
905 skb_queue_purge(&sk->sk_receive_queue);
906 #ifdef CONFIG_NETLINK_MMAP
907 if (1) {
908 struct nl_mmap_req req;
909
910 memset(&req, 0, sizeof(req));
911 if (nlk->rx_ring.pg_vec)
912 netlink_set_ring(sk, &req, true, false);
913 memset(&req, 0, sizeof(req));
914 if (nlk->tx_ring.pg_vec)
915 netlink_set_ring(sk, &req, true, true);
916 }
917 #endif /* CONFIG_NETLINK_MMAP */
918
919 if (!sock_flag(sk, SOCK_DEAD)) {
920 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
921 return;
922 }
923
924 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
925 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
926 WARN_ON(nlk_sk(sk)->groups);
927 }
928
929 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
930 * SMP. Look, when several writers sleep and reader wakes them up, all but one
931 * immediately hit write lock and grab all the cpus. Exclusive sleep solves
932 * this, _but_ remember, it adds useless work on UP machines.
933 */
934
935 void netlink_table_grab(void)
936 __acquires(nl_table_lock)
937 {
938 might_sleep();
939
940 write_lock_irq(&nl_table_lock);
941
942 if (atomic_read(&nl_table_users)) {
943 DECLARE_WAITQUEUE(wait, current);
944
945 add_wait_queue_exclusive(&nl_table_wait, &wait);
946 for (;;) {
947 set_current_state(TASK_UNINTERRUPTIBLE);
948 if (atomic_read(&nl_table_users) == 0)
949 break;
950 write_unlock_irq(&nl_table_lock);
951 schedule();
952 write_lock_irq(&nl_table_lock);
953 }
954
955 __set_current_state(TASK_RUNNING);
956 remove_wait_queue(&nl_table_wait, &wait);
957 }
958 }
959
960 void netlink_table_ungrab(void)
961 __releases(nl_table_lock)
962 {
963 write_unlock_irq(&nl_table_lock);
964 wake_up(&nl_table_wait);
965 }
966
967 static inline void
968 netlink_lock_table(void)
969 {
970 /* read_lock() synchronizes us to netlink_table_grab */
971
972 read_lock(&nl_table_lock);
973 atomic_inc(&nl_table_users);
974 read_unlock(&nl_table_lock);
975 }
976
977 static inline void
978 netlink_unlock_table(void)
979 {
980 if (atomic_dec_and_test(&nl_table_users))
981 wake_up(&nl_table_wait);
982 }
983
984 struct netlink_compare_arg
985 {
986 struct net *net;
987 u32 portid;
988 };
989
990 static bool netlink_compare(void *ptr, void *arg)
991 {
992 struct netlink_compare_arg *x = arg;
993 struct sock *sk = ptr;
994
995 return nlk_sk(sk)->portid == x->portid &&
996 net_eq(sock_net(sk), x->net);
997 }
998
999 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
1000 struct net *net)
1001 {
1002 struct netlink_compare_arg arg = {
1003 .net = net,
1004 .portid = portid,
1005 };
1006 u32 hash;
1007
1008 hash = rhashtable_hashfn(&table->hash, &portid, sizeof(portid));
1009
1010 return rhashtable_lookup_compare(&table->hash, hash,
1011 &netlink_compare, &arg);
1012 }
1013
1014 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1015 {
1016 struct netlink_table *table = &nl_table[protocol];
1017 struct sock *sk;
1018
1019 read_lock(&nl_table_lock);
1020 rcu_read_lock();
1021 sk = __netlink_lookup(table, portid, net);
1022 if (sk)
1023 sock_hold(sk);
1024 rcu_read_unlock();
1025 read_unlock(&nl_table_lock);
1026
1027 return sk;
1028 }
1029
1030 static const struct proto_ops netlink_ops;
1031
1032 static void
1033 netlink_update_listeners(struct sock *sk)
1034 {
1035 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1036 unsigned long mask;
1037 unsigned int i;
1038 struct listeners *listeners;
1039
1040 listeners = nl_deref_protected(tbl->listeners);
1041 if (!listeners)
1042 return;
1043
1044 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1045 mask = 0;
1046 sk_for_each_bound(sk, &tbl->mc_list) {
1047 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1048 mask |= nlk_sk(sk)->groups[i];
1049 }
1050 listeners->masks[i] = mask;
1051 }
1052 /* this function is only called with the netlink table "grabbed", which
1053 * makes sure updates are visible before bind or setsockopt return. */
1054 }
1055
1056 static int netlink_insert(struct sock *sk, struct net *net, u32 portid)
1057 {
1058 struct netlink_table *table = &nl_table[sk->sk_protocol];
1059 int err = -EADDRINUSE;
1060
1061 mutex_lock(&nl_sk_hash_lock);
1062 if (__netlink_lookup(table, portid, net))
1063 goto err;
1064
1065 err = -EBUSY;
1066 if (nlk_sk(sk)->portid)
1067 goto err;
1068
1069 err = -ENOMEM;
1070 if (BITS_PER_LONG > 32 && unlikely(table->hash.nelems >= UINT_MAX))
1071 goto err;
1072
1073 nlk_sk(sk)->portid = portid;
1074 sock_hold(sk);
1075 rhashtable_insert(&table->hash, &nlk_sk(sk)->node);
1076 err = 0;
1077 err:
1078 mutex_unlock(&nl_sk_hash_lock);
1079 return err;
1080 }
1081
1082 static void netlink_remove(struct sock *sk)
1083 {
1084 struct netlink_table *table;
1085
1086 mutex_lock(&nl_sk_hash_lock);
1087 table = &nl_table[sk->sk_protocol];
1088 if (rhashtable_remove(&table->hash, &nlk_sk(sk)->node)) {
1089 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1090 __sock_put(sk);
1091 }
1092 mutex_unlock(&nl_sk_hash_lock);
1093
1094 netlink_table_grab();
1095 if (nlk_sk(sk)->subscriptions) {
1096 __sk_del_bind_node(sk);
1097 netlink_update_listeners(sk);
1098 }
1099 if (sk->sk_protocol == NETLINK_GENERIC)
1100 atomic_inc(&genl_sk_destructing_cnt);
1101 netlink_table_ungrab();
1102 }
1103
1104 static struct proto netlink_proto = {
1105 .name = "NETLINK",
1106 .owner = THIS_MODULE,
1107 .obj_size = sizeof(struct netlink_sock),
1108 };
1109
1110 static int __netlink_create(struct net *net, struct socket *sock,
1111 struct mutex *cb_mutex, int protocol)
1112 {
1113 struct sock *sk;
1114 struct netlink_sock *nlk;
1115
1116 sock->ops = &netlink_ops;
1117
1118 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
1119 if (!sk)
1120 return -ENOMEM;
1121
1122 sock_init_data(sock, sk);
1123
1124 nlk = nlk_sk(sk);
1125 if (cb_mutex) {
1126 nlk->cb_mutex = cb_mutex;
1127 } else {
1128 nlk->cb_mutex = &nlk->cb_def_mutex;
1129 mutex_init(nlk->cb_mutex);
1130 }
1131 init_waitqueue_head(&nlk->wait);
1132 #ifdef CONFIG_NETLINK_MMAP
1133 mutex_init(&nlk->pg_vec_lock);
1134 #endif
1135
1136 sk->sk_destruct = netlink_sock_destruct;
1137 sk->sk_protocol = protocol;
1138 return 0;
1139 }
1140
1141 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1142 int kern)
1143 {
1144 struct module *module = NULL;
1145 struct mutex *cb_mutex;
1146 struct netlink_sock *nlk;
1147 int (*bind)(struct net *net, int group);
1148 void (*unbind)(struct net *net, int group);
1149 int err = 0;
1150
1151 sock->state = SS_UNCONNECTED;
1152
1153 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1154 return -ESOCKTNOSUPPORT;
1155
1156 if (protocol < 0 || protocol >= MAX_LINKS)
1157 return -EPROTONOSUPPORT;
1158
1159 netlink_lock_table();
1160 #ifdef CONFIG_MODULES
1161 if (!nl_table[protocol].registered) {
1162 netlink_unlock_table();
1163 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1164 netlink_lock_table();
1165 }
1166 #endif
1167 if (nl_table[protocol].registered &&
1168 try_module_get(nl_table[protocol].module))
1169 module = nl_table[protocol].module;
1170 else
1171 err = -EPROTONOSUPPORT;
1172 cb_mutex = nl_table[protocol].cb_mutex;
1173 bind = nl_table[protocol].bind;
1174 unbind = nl_table[protocol].unbind;
1175 netlink_unlock_table();
1176
1177 if (err < 0)
1178 goto out;
1179
1180 err = __netlink_create(net, sock, cb_mutex, protocol);
1181 if (err < 0)
1182 goto out_module;
1183
1184 local_bh_disable();
1185 sock_prot_inuse_add(net, &netlink_proto, 1);
1186 local_bh_enable();
1187
1188 nlk = nlk_sk(sock->sk);
1189 nlk->module = module;
1190 nlk->netlink_bind = bind;
1191 nlk->netlink_unbind = unbind;
1192 out:
1193 return err;
1194
1195 out_module:
1196 module_put(module);
1197 goto out;
1198 }
1199
1200 static int netlink_release(struct socket *sock)
1201 {
1202 struct sock *sk = sock->sk;
1203 struct netlink_sock *nlk;
1204
1205 if (!sk)
1206 return 0;
1207
1208 netlink_remove(sk);
1209 sock_orphan(sk);
1210 nlk = nlk_sk(sk);
1211
1212 /*
1213 * OK. Socket is unlinked, any packets that arrive now
1214 * will be purged.
1215 */
1216
1217 /* must not acquire netlink_table_lock in any way again before unbind
1218 * and notifying genetlink is done as otherwise it might deadlock
1219 */
1220 if (nlk->netlink_unbind) {
1221 int i;
1222
1223 for (i = 0; i < nlk->ngroups; i++)
1224 if (test_bit(i, nlk->groups))
1225 nlk->netlink_unbind(sock_net(sk), i + 1);
1226 }
1227 if (sk->sk_protocol == NETLINK_GENERIC &&
1228 atomic_dec_return(&genl_sk_destructing_cnt) == 0)
1229 wake_up(&genl_sk_destructing_waitq);
1230
1231 sock->sk = NULL;
1232 wake_up_interruptible_all(&nlk->wait);
1233
1234 skb_queue_purge(&sk->sk_write_queue);
1235
1236 if (nlk->portid) {
1237 struct netlink_notify n = {
1238 .net = sock_net(sk),
1239 .protocol = sk->sk_protocol,
1240 .portid = nlk->portid,
1241 };
1242 atomic_notifier_call_chain(&netlink_chain,
1243 NETLINK_URELEASE, &n);
1244 }
1245
1246 module_put(nlk->module);
1247
1248 if (netlink_is_kernel(sk)) {
1249 netlink_table_grab();
1250 BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1251 if (--nl_table[sk->sk_protocol].registered == 0) {
1252 struct listeners *old;
1253
1254 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1255 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1256 kfree_rcu(old, rcu);
1257 nl_table[sk->sk_protocol].module = NULL;
1258 nl_table[sk->sk_protocol].bind = NULL;
1259 nl_table[sk->sk_protocol].unbind = NULL;
1260 nl_table[sk->sk_protocol].flags = 0;
1261 nl_table[sk->sk_protocol].registered = 0;
1262 }
1263 netlink_table_ungrab();
1264 }
1265
1266 kfree(nlk->groups);
1267 nlk->groups = NULL;
1268
1269 local_bh_disable();
1270 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1271 local_bh_enable();
1272 sock_put(sk);
1273 return 0;
1274 }
1275
1276 static int netlink_autobind(struct socket *sock)
1277 {
1278 struct sock *sk = sock->sk;
1279 struct net *net = sock_net(sk);
1280 struct netlink_table *table = &nl_table[sk->sk_protocol];
1281 s32 portid = task_tgid_vnr(current);
1282 int err;
1283 static s32 rover = -4097;
1284
1285 retry:
1286 cond_resched();
1287 netlink_table_grab();
1288 rcu_read_lock();
1289 if (__netlink_lookup(table, portid, net)) {
1290 /* Bind collision, search negative portid values. */
1291 portid = rover--;
1292 if (rover > -4097)
1293 rover = -4097;
1294 rcu_read_unlock();
1295 netlink_table_ungrab();
1296 goto retry;
1297 }
1298 rcu_read_unlock();
1299 netlink_table_ungrab();
1300
1301 err = netlink_insert(sk, net, portid);
1302 if (err == -EADDRINUSE)
1303 goto retry;
1304
1305 /* If 2 threads race to autobind, that is fine. */
1306 if (err == -EBUSY)
1307 err = 0;
1308
1309 return err;
1310 }
1311
1312 /**
1313 * __netlink_ns_capable - General netlink message capability test
1314 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1315 * @user_ns: The user namespace of the capability to use
1316 * @cap: The capability to use
1317 *
1318 * Test to see if the opener of the socket we received the message
1319 * from had when the netlink socket was created and the sender of the
1320 * message has has the capability @cap in the user namespace @user_ns.
1321 */
1322 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1323 struct user_namespace *user_ns, int cap)
1324 {
1325 return ((nsp->flags & NETLINK_SKB_DST) ||
1326 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1327 ns_capable(user_ns, cap);
1328 }
1329 EXPORT_SYMBOL(__netlink_ns_capable);
1330
1331 /**
1332 * netlink_ns_capable - General netlink message capability test
1333 * @skb: socket buffer holding a netlink command from userspace
1334 * @user_ns: The user namespace of the capability to use
1335 * @cap: The capability to use
1336 *
1337 * Test to see if the opener of the socket we received the message
1338 * from had when the netlink socket was created and the sender of the
1339 * message has has the capability @cap in the user namespace @user_ns.
1340 */
1341 bool netlink_ns_capable(const struct sk_buff *skb,
1342 struct user_namespace *user_ns, int cap)
1343 {
1344 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1345 }
1346 EXPORT_SYMBOL(netlink_ns_capable);
1347
1348 /**
1349 * netlink_capable - Netlink global message capability test
1350 * @skb: socket buffer holding a netlink command from userspace
1351 * @cap: The capability to use
1352 *
1353 * Test to see if the opener of the socket we received the message
1354 * from had when the netlink socket was created and the sender of the
1355 * message has has the capability @cap in all user namespaces.
1356 */
1357 bool netlink_capable(const struct sk_buff *skb, int cap)
1358 {
1359 return netlink_ns_capable(skb, &init_user_ns, cap);
1360 }
1361 EXPORT_SYMBOL(netlink_capable);
1362
1363 /**
1364 * netlink_net_capable - Netlink network namespace message capability test
1365 * @skb: socket buffer holding a netlink command from userspace
1366 * @cap: The capability to use
1367 *
1368 * Test to see if the opener of the socket we received the message
1369 * from had when the netlink socket was created and the sender of the
1370 * message has has the capability @cap over the network namespace of
1371 * the socket we received the message from.
1372 */
1373 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1374 {
1375 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1376 }
1377 EXPORT_SYMBOL(netlink_net_capable);
1378
1379 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1380 {
1381 return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1382 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1383 }
1384
1385 static void
1386 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1387 {
1388 struct netlink_sock *nlk = nlk_sk(sk);
1389
1390 if (nlk->subscriptions && !subscriptions)
1391 __sk_del_bind_node(sk);
1392 else if (!nlk->subscriptions && subscriptions)
1393 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1394 nlk->subscriptions = subscriptions;
1395 }
1396
1397 static int netlink_realloc_groups(struct sock *sk)
1398 {
1399 struct netlink_sock *nlk = nlk_sk(sk);
1400 unsigned int groups;
1401 unsigned long *new_groups;
1402 int err = 0;
1403
1404 netlink_table_grab();
1405
1406 groups = nl_table[sk->sk_protocol].groups;
1407 if (!nl_table[sk->sk_protocol].registered) {
1408 err = -ENOENT;
1409 goto out_unlock;
1410 }
1411
1412 if (nlk->ngroups >= groups)
1413 goto out_unlock;
1414
1415 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1416 if (new_groups == NULL) {
1417 err = -ENOMEM;
1418 goto out_unlock;
1419 }
1420 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1421 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1422
1423 nlk->groups = new_groups;
1424 nlk->ngroups = groups;
1425 out_unlock:
1426 netlink_table_ungrab();
1427 return err;
1428 }
1429
1430 static void netlink_undo_bind(int group, long unsigned int groups,
1431 struct sock *sk)
1432 {
1433 struct netlink_sock *nlk = nlk_sk(sk);
1434 int undo;
1435
1436 if (!nlk->netlink_unbind)
1437 return;
1438
1439 for (undo = 0; undo < group; undo++)
1440 if (test_bit(undo, &groups))
1441 nlk->netlink_unbind(sock_net(sk), undo);
1442 }
1443
1444 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1445 int addr_len)
1446 {
1447 struct sock *sk = sock->sk;
1448 struct net *net = sock_net(sk);
1449 struct netlink_sock *nlk = nlk_sk(sk);
1450 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1451 int err;
1452 long unsigned int groups = nladdr->nl_groups;
1453
1454 if (addr_len < sizeof(struct sockaddr_nl))
1455 return -EINVAL;
1456
1457 if (nladdr->nl_family != AF_NETLINK)
1458 return -EINVAL;
1459
1460 /* Only superuser is allowed to listen multicasts */
1461 if (groups) {
1462 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1463 return -EPERM;
1464 err = netlink_realloc_groups(sk);
1465 if (err)
1466 return err;
1467 }
1468
1469 if (nlk->portid)
1470 if (nladdr->nl_pid != nlk->portid)
1471 return -EINVAL;
1472
1473 if (nlk->netlink_bind && groups) {
1474 int group;
1475
1476 for (group = 0; group < nlk->ngroups; group++) {
1477 if (!test_bit(group, &groups))
1478 continue;
1479 err = nlk->netlink_bind(net, group);
1480 if (!err)
1481 continue;
1482 netlink_undo_bind(group, groups, sk);
1483 return err;
1484 }
1485 }
1486
1487 if (!nlk->portid) {
1488 err = nladdr->nl_pid ?
1489 netlink_insert(sk, net, nladdr->nl_pid) :
1490 netlink_autobind(sock);
1491 if (err) {
1492 netlink_undo_bind(nlk->ngroups, groups, sk);
1493 return err;
1494 }
1495 }
1496
1497 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1498 return 0;
1499
1500 netlink_table_grab();
1501 netlink_update_subscriptions(sk, nlk->subscriptions +
1502 hweight32(groups) -
1503 hweight32(nlk->groups[0]));
1504 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1505 netlink_update_listeners(sk);
1506 netlink_table_ungrab();
1507
1508 return 0;
1509 }
1510
1511 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1512 int alen, int flags)
1513 {
1514 int err = 0;
1515 struct sock *sk = sock->sk;
1516 struct netlink_sock *nlk = nlk_sk(sk);
1517 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1518
1519 if (alen < sizeof(addr->sa_family))
1520 return -EINVAL;
1521
1522 if (addr->sa_family == AF_UNSPEC) {
1523 sk->sk_state = NETLINK_UNCONNECTED;
1524 nlk->dst_portid = 0;
1525 nlk->dst_group = 0;
1526 return 0;
1527 }
1528 if (addr->sa_family != AF_NETLINK)
1529 return -EINVAL;
1530
1531 if ((nladdr->nl_groups || nladdr->nl_pid) &&
1532 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1533 return -EPERM;
1534
1535 if (!nlk->portid)
1536 err = netlink_autobind(sock);
1537
1538 if (err == 0) {
1539 sk->sk_state = NETLINK_CONNECTED;
1540 nlk->dst_portid = nladdr->nl_pid;
1541 nlk->dst_group = ffs(nladdr->nl_groups);
1542 }
1543
1544 return err;
1545 }
1546
1547 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1548 int *addr_len, int peer)
1549 {
1550 struct sock *sk = sock->sk;
1551 struct netlink_sock *nlk = nlk_sk(sk);
1552 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1553
1554 nladdr->nl_family = AF_NETLINK;
1555 nladdr->nl_pad = 0;
1556 *addr_len = sizeof(*nladdr);
1557
1558 if (peer) {
1559 nladdr->nl_pid = nlk->dst_portid;
1560 nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1561 } else {
1562 nladdr->nl_pid = nlk->portid;
1563 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1564 }
1565 return 0;
1566 }
1567
1568 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1569 {
1570 struct sock *sock;
1571 struct netlink_sock *nlk;
1572
1573 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1574 if (!sock)
1575 return ERR_PTR(-ECONNREFUSED);
1576
1577 /* Don't bother queuing skb if kernel socket has no input function */
1578 nlk = nlk_sk(sock);
1579 if (sock->sk_state == NETLINK_CONNECTED &&
1580 nlk->dst_portid != nlk_sk(ssk)->portid) {
1581 sock_put(sock);
1582 return ERR_PTR(-ECONNREFUSED);
1583 }
1584 return sock;
1585 }
1586
1587 struct sock *netlink_getsockbyfilp(struct file *filp)
1588 {
1589 struct inode *inode = file_inode(filp);
1590 struct sock *sock;
1591
1592 if (!S_ISSOCK(inode->i_mode))
1593 return ERR_PTR(-ENOTSOCK);
1594
1595 sock = SOCKET_I(inode)->sk;
1596 if (sock->sk_family != AF_NETLINK)
1597 return ERR_PTR(-EINVAL);
1598
1599 sock_hold(sock);
1600 return sock;
1601 }
1602
1603 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1604 int broadcast)
1605 {
1606 struct sk_buff *skb;
1607 void *data;
1608
1609 if (size <= NLMSG_GOODSIZE || broadcast)
1610 return alloc_skb(size, GFP_KERNEL);
1611
1612 size = SKB_DATA_ALIGN(size) +
1613 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1614
1615 data = vmalloc(size);
1616 if (data == NULL)
1617 return NULL;
1618
1619 skb = build_skb(data, size);
1620 if (skb == NULL)
1621 vfree(data);
1622 else {
1623 skb->head_frag = 0;
1624 skb->destructor = netlink_skb_destructor;
1625 }
1626
1627 return skb;
1628 }
1629
1630 /*
1631 * Attach a skb to a netlink socket.
1632 * The caller must hold a reference to the destination socket. On error, the
1633 * reference is dropped. The skb is not send to the destination, just all
1634 * all error checks are performed and memory in the queue is reserved.
1635 * Return values:
1636 * < 0: error. skb freed, reference to sock dropped.
1637 * 0: continue
1638 * 1: repeat lookup - reference dropped while waiting for socket memory.
1639 */
1640 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1641 long *timeo, struct sock *ssk)
1642 {
1643 struct netlink_sock *nlk;
1644
1645 nlk = nlk_sk(sk);
1646
1647 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1648 test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1649 !netlink_skb_is_mmaped(skb)) {
1650 DECLARE_WAITQUEUE(wait, current);
1651 if (!*timeo) {
1652 if (!ssk || netlink_is_kernel(ssk))
1653 netlink_overrun(sk);
1654 sock_put(sk);
1655 kfree_skb(skb);
1656 return -EAGAIN;
1657 }
1658
1659 __set_current_state(TASK_INTERRUPTIBLE);
1660 add_wait_queue(&nlk->wait, &wait);
1661
1662 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1663 test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1664 !sock_flag(sk, SOCK_DEAD))
1665 *timeo = schedule_timeout(*timeo);
1666
1667 __set_current_state(TASK_RUNNING);
1668 remove_wait_queue(&nlk->wait, &wait);
1669 sock_put(sk);
1670
1671 if (signal_pending(current)) {
1672 kfree_skb(skb);
1673 return sock_intr_errno(*timeo);
1674 }
1675 return 1;
1676 }
1677 netlink_skb_set_owner_r(skb, sk);
1678 return 0;
1679 }
1680
1681 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1682 {
1683 int len = skb->len;
1684
1685 netlink_deliver_tap(skb);
1686
1687 #ifdef CONFIG_NETLINK_MMAP
1688 if (netlink_skb_is_mmaped(skb))
1689 netlink_queue_mmaped_skb(sk, skb);
1690 else if (netlink_rx_is_mmaped(sk))
1691 netlink_ring_set_copied(sk, skb);
1692 else
1693 #endif /* CONFIG_NETLINK_MMAP */
1694 skb_queue_tail(&sk->sk_receive_queue, skb);
1695 sk->sk_data_ready(sk);
1696 return len;
1697 }
1698
1699 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1700 {
1701 int len = __netlink_sendskb(sk, skb);
1702
1703 sock_put(sk);
1704 return len;
1705 }
1706
1707 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1708 {
1709 kfree_skb(skb);
1710 sock_put(sk);
1711 }
1712
1713 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1714 {
1715 int delta;
1716
1717 WARN_ON(skb->sk != NULL);
1718 if (netlink_skb_is_mmaped(skb))
1719 return skb;
1720
1721 delta = skb->end - skb->tail;
1722 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1723 return skb;
1724
1725 if (skb_shared(skb)) {
1726 struct sk_buff *nskb = skb_clone(skb, allocation);
1727 if (!nskb)
1728 return skb;
1729 consume_skb(skb);
1730 skb = nskb;
1731 }
1732
1733 if (!pskb_expand_head(skb, 0, -delta, allocation))
1734 skb->truesize -= delta;
1735
1736 return skb;
1737 }
1738
1739 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1740 struct sock *ssk)
1741 {
1742 int ret;
1743 struct netlink_sock *nlk = nlk_sk(sk);
1744
1745 ret = -ECONNREFUSED;
1746 if (nlk->netlink_rcv != NULL) {
1747 ret = skb->len;
1748 netlink_skb_set_owner_r(skb, sk);
1749 NETLINK_CB(skb).sk = ssk;
1750 netlink_deliver_tap_kernel(sk, ssk, skb);
1751 nlk->netlink_rcv(skb);
1752 consume_skb(skb);
1753 } else {
1754 kfree_skb(skb);
1755 }
1756 sock_put(sk);
1757 return ret;
1758 }
1759
1760 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1761 u32 portid, int nonblock)
1762 {
1763 struct sock *sk;
1764 int err;
1765 long timeo;
1766
1767 skb = netlink_trim(skb, gfp_any());
1768
1769 timeo = sock_sndtimeo(ssk, nonblock);
1770 retry:
1771 sk = netlink_getsockbyportid(ssk, portid);
1772 if (IS_ERR(sk)) {
1773 kfree_skb(skb);
1774 return PTR_ERR(sk);
1775 }
1776 if (netlink_is_kernel(sk))
1777 return netlink_unicast_kernel(sk, skb, ssk);
1778
1779 if (sk_filter(sk, skb)) {
1780 err = skb->len;
1781 kfree_skb(skb);
1782 sock_put(sk);
1783 return err;
1784 }
1785
1786 err = netlink_attachskb(sk, skb, &timeo, ssk);
1787 if (err == 1)
1788 goto retry;
1789 if (err)
1790 return err;
1791
1792 return netlink_sendskb(sk, skb);
1793 }
1794 EXPORT_SYMBOL(netlink_unicast);
1795
1796 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1797 u32 dst_portid, gfp_t gfp_mask)
1798 {
1799 #ifdef CONFIG_NETLINK_MMAP
1800 struct sock *sk = NULL;
1801 struct sk_buff *skb;
1802 struct netlink_ring *ring;
1803 struct nl_mmap_hdr *hdr;
1804 unsigned int maxlen;
1805
1806 sk = netlink_getsockbyportid(ssk, dst_portid);
1807 if (IS_ERR(sk))
1808 goto out;
1809
1810 ring = &nlk_sk(sk)->rx_ring;
1811 /* fast-path without atomic ops for common case: non-mmaped receiver */
1812 if (ring->pg_vec == NULL)
1813 goto out_put;
1814
1815 if (ring->frame_size - NL_MMAP_HDRLEN < size)
1816 goto out_put;
1817
1818 skb = alloc_skb_head(gfp_mask);
1819 if (skb == NULL)
1820 goto err1;
1821
1822 spin_lock_bh(&sk->sk_receive_queue.lock);
1823 /* check again under lock */
1824 if (ring->pg_vec == NULL)
1825 goto out_free;
1826
1827 /* check again under lock */
1828 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1829 if (maxlen < size)
1830 goto out_free;
1831
1832 netlink_forward_ring(ring);
1833 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1834 if (hdr == NULL)
1835 goto err2;
1836 netlink_ring_setup_skb(skb, sk, ring, hdr);
1837 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1838 atomic_inc(&ring->pending);
1839 netlink_increment_head(ring);
1840
1841 spin_unlock_bh(&sk->sk_receive_queue.lock);
1842 return skb;
1843
1844 err2:
1845 kfree_skb(skb);
1846 spin_unlock_bh(&sk->sk_receive_queue.lock);
1847 netlink_overrun(sk);
1848 err1:
1849 sock_put(sk);
1850 return NULL;
1851
1852 out_free:
1853 kfree_skb(skb);
1854 spin_unlock_bh(&sk->sk_receive_queue.lock);
1855 out_put:
1856 sock_put(sk);
1857 out:
1858 #endif
1859 return alloc_skb(size, gfp_mask);
1860 }
1861 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1862
1863 int netlink_has_listeners(struct sock *sk, unsigned int group)
1864 {
1865 int res = 0;
1866 struct listeners *listeners;
1867
1868 BUG_ON(!netlink_is_kernel(sk));
1869
1870 rcu_read_lock();
1871 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1872
1873 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1874 res = test_bit(group - 1, listeners->masks);
1875
1876 rcu_read_unlock();
1877
1878 return res;
1879 }
1880 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1881
1882 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1883 {
1884 struct netlink_sock *nlk = nlk_sk(sk);
1885
1886 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1887 !test_bit(NETLINK_CONGESTED, &nlk->state)) {
1888 netlink_skb_set_owner_r(skb, sk);
1889 __netlink_sendskb(sk, skb);
1890 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1891 }
1892 return -1;
1893 }
1894
1895 struct netlink_broadcast_data {
1896 struct sock *exclude_sk;
1897 struct net *net;
1898 u32 portid;
1899 u32 group;
1900 int failure;
1901 int delivery_failure;
1902 int congested;
1903 int delivered;
1904 gfp_t allocation;
1905 struct sk_buff *skb, *skb2;
1906 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1907 void *tx_data;
1908 };
1909
1910 static void do_one_broadcast(struct sock *sk,
1911 struct netlink_broadcast_data *p)
1912 {
1913 struct netlink_sock *nlk = nlk_sk(sk);
1914 int val;
1915
1916 if (p->exclude_sk == sk)
1917 return;
1918
1919 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1920 !test_bit(p->group - 1, nlk->groups))
1921 return;
1922
1923 if (!net_eq(sock_net(sk), p->net))
1924 return;
1925
1926 if (p->failure) {
1927 netlink_overrun(sk);
1928 return;
1929 }
1930
1931 sock_hold(sk);
1932 if (p->skb2 == NULL) {
1933 if (skb_shared(p->skb)) {
1934 p->skb2 = skb_clone(p->skb, p->allocation);
1935 } else {
1936 p->skb2 = skb_get(p->skb);
1937 /*
1938 * skb ownership may have been set when
1939 * delivered to a previous socket.
1940 */
1941 skb_orphan(p->skb2);
1942 }
1943 }
1944 if (p->skb2 == NULL) {
1945 netlink_overrun(sk);
1946 /* Clone failed. Notify ALL listeners. */
1947 p->failure = 1;
1948 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1949 p->delivery_failure = 1;
1950 } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
1951 kfree_skb(p->skb2);
1952 p->skb2 = NULL;
1953 } else if (sk_filter(sk, p->skb2)) {
1954 kfree_skb(p->skb2);
1955 p->skb2 = NULL;
1956 } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
1957 netlink_overrun(sk);
1958 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1959 p->delivery_failure = 1;
1960 } else {
1961 p->congested |= val;
1962 p->delivered = 1;
1963 p->skb2 = NULL;
1964 }
1965 sock_put(sk);
1966 }
1967
1968 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
1969 u32 group, gfp_t allocation,
1970 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
1971 void *filter_data)
1972 {
1973 struct net *net = sock_net(ssk);
1974 struct netlink_broadcast_data info;
1975 struct sock *sk;
1976
1977 skb = netlink_trim(skb, allocation);
1978
1979 info.exclude_sk = ssk;
1980 info.net = net;
1981 info.portid = portid;
1982 info.group = group;
1983 info.failure = 0;
1984 info.delivery_failure = 0;
1985 info.congested = 0;
1986 info.delivered = 0;
1987 info.allocation = allocation;
1988 info.skb = skb;
1989 info.skb2 = NULL;
1990 info.tx_filter = filter;
1991 info.tx_data = filter_data;
1992
1993 /* While we sleep in clone, do not allow to change socket list */
1994
1995 netlink_lock_table();
1996
1997 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
1998 do_one_broadcast(sk, &info);
1999
2000 consume_skb(skb);
2001
2002 netlink_unlock_table();
2003
2004 if (info.delivery_failure) {
2005 kfree_skb(info.skb2);
2006 return -ENOBUFS;
2007 }
2008 consume_skb(info.skb2);
2009
2010 if (info.delivered) {
2011 if (info.congested && (allocation & __GFP_WAIT))
2012 yield();
2013 return 0;
2014 }
2015 return -ESRCH;
2016 }
2017 EXPORT_SYMBOL(netlink_broadcast_filtered);
2018
2019 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2020 u32 group, gfp_t allocation)
2021 {
2022 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2023 NULL, NULL);
2024 }
2025 EXPORT_SYMBOL(netlink_broadcast);
2026
2027 struct netlink_set_err_data {
2028 struct sock *exclude_sk;
2029 u32 portid;
2030 u32 group;
2031 int code;
2032 };
2033
2034 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2035 {
2036 struct netlink_sock *nlk = nlk_sk(sk);
2037 int ret = 0;
2038
2039 if (sk == p->exclude_sk)
2040 goto out;
2041
2042 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2043 goto out;
2044
2045 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2046 !test_bit(p->group - 1, nlk->groups))
2047 goto out;
2048
2049 if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
2050 ret = 1;
2051 goto out;
2052 }
2053
2054 sk->sk_err = p->code;
2055 sk->sk_error_report(sk);
2056 out:
2057 return ret;
2058 }
2059
2060 /**
2061 * netlink_set_err - report error to broadcast listeners
2062 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2063 * @portid: the PORTID of a process that we want to skip (if any)
2064 * @group: the broadcast group that will notice the error
2065 * @code: error code, must be negative (as usual in kernelspace)
2066 *
2067 * This function returns the number of broadcast listeners that have set the
2068 * NETLINK_RECV_NO_ENOBUFS socket option.
2069 */
2070 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2071 {
2072 struct netlink_set_err_data info;
2073 struct sock *sk;
2074 int ret = 0;
2075
2076 info.exclude_sk = ssk;
2077 info.portid = portid;
2078 info.group = group;
2079 /* sk->sk_err wants a positive error value */
2080 info.code = -code;
2081
2082 read_lock(&nl_table_lock);
2083
2084 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2085 ret += do_one_set_err(sk, &info);
2086
2087 read_unlock(&nl_table_lock);
2088 return ret;
2089 }
2090 EXPORT_SYMBOL(netlink_set_err);
2091
2092 /* must be called with netlink table grabbed */
2093 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2094 unsigned int group,
2095 int is_new)
2096 {
2097 int old, new = !!is_new, subscriptions;
2098
2099 old = test_bit(group - 1, nlk->groups);
2100 subscriptions = nlk->subscriptions - old + new;
2101 if (new)
2102 __set_bit(group - 1, nlk->groups);
2103 else
2104 __clear_bit(group - 1, nlk->groups);
2105 netlink_update_subscriptions(&nlk->sk, subscriptions);
2106 netlink_update_listeners(&nlk->sk);
2107 }
2108
2109 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2110 char __user *optval, unsigned int optlen)
2111 {
2112 struct sock *sk = sock->sk;
2113 struct netlink_sock *nlk = nlk_sk(sk);
2114 unsigned int val = 0;
2115 int err;
2116
2117 if (level != SOL_NETLINK)
2118 return -ENOPROTOOPT;
2119
2120 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2121 optlen >= sizeof(int) &&
2122 get_user(val, (unsigned int __user *)optval))
2123 return -EFAULT;
2124
2125 switch (optname) {
2126 case NETLINK_PKTINFO:
2127 if (val)
2128 nlk->flags |= NETLINK_RECV_PKTINFO;
2129 else
2130 nlk->flags &= ~NETLINK_RECV_PKTINFO;
2131 err = 0;
2132 break;
2133 case NETLINK_ADD_MEMBERSHIP:
2134 case NETLINK_DROP_MEMBERSHIP: {
2135 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2136 return -EPERM;
2137 err = netlink_realloc_groups(sk);
2138 if (err)
2139 return err;
2140 if (!val || val - 1 >= nlk->ngroups)
2141 return -EINVAL;
2142 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2143 err = nlk->netlink_bind(sock_net(sk), val);
2144 if (err)
2145 return err;
2146 }
2147 netlink_table_grab();
2148 netlink_update_socket_mc(nlk, val,
2149 optname == NETLINK_ADD_MEMBERSHIP);
2150 netlink_table_ungrab();
2151 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2152 nlk->netlink_unbind(sock_net(sk), val);
2153
2154 err = 0;
2155 break;
2156 }
2157 case NETLINK_BROADCAST_ERROR:
2158 if (val)
2159 nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
2160 else
2161 nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
2162 err = 0;
2163 break;
2164 case NETLINK_NO_ENOBUFS:
2165 if (val) {
2166 nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
2167 clear_bit(NETLINK_CONGESTED, &nlk->state);
2168 wake_up_interruptible(&nlk->wait);
2169 } else {
2170 nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
2171 }
2172 err = 0;
2173 break;
2174 #ifdef CONFIG_NETLINK_MMAP
2175 case NETLINK_RX_RING:
2176 case NETLINK_TX_RING: {
2177 struct nl_mmap_req req;
2178
2179 /* Rings might consume more memory than queue limits, require
2180 * CAP_NET_ADMIN.
2181 */
2182 if (!capable(CAP_NET_ADMIN))
2183 return -EPERM;
2184 if (optlen < sizeof(req))
2185 return -EINVAL;
2186 if (copy_from_user(&req, optval, sizeof(req)))
2187 return -EFAULT;
2188 err = netlink_set_ring(sk, &req, false,
2189 optname == NETLINK_TX_RING);
2190 break;
2191 }
2192 #endif /* CONFIG_NETLINK_MMAP */
2193 default:
2194 err = -ENOPROTOOPT;
2195 }
2196 return err;
2197 }
2198
2199 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2200 char __user *optval, int __user *optlen)
2201 {
2202 struct sock *sk = sock->sk;
2203 struct netlink_sock *nlk = nlk_sk(sk);
2204 int len, val, err;
2205
2206 if (level != SOL_NETLINK)
2207 return -ENOPROTOOPT;
2208
2209 if (get_user(len, optlen))
2210 return -EFAULT;
2211 if (len < 0)
2212 return -EINVAL;
2213
2214 switch (optname) {
2215 case NETLINK_PKTINFO:
2216 if (len < sizeof(int))
2217 return -EINVAL;
2218 len = sizeof(int);
2219 val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
2220 if (put_user(len, optlen) ||
2221 put_user(val, optval))
2222 return -EFAULT;
2223 err = 0;
2224 break;
2225 case NETLINK_BROADCAST_ERROR:
2226 if (len < sizeof(int))
2227 return -EINVAL;
2228 len = sizeof(int);
2229 val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
2230 if (put_user(len, optlen) ||
2231 put_user(val, optval))
2232 return -EFAULT;
2233 err = 0;
2234 break;
2235 case NETLINK_NO_ENOBUFS:
2236 if (len < sizeof(int))
2237 return -EINVAL;
2238 len = sizeof(int);
2239 val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
2240 if (put_user(len, optlen) ||
2241 put_user(val, optval))
2242 return -EFAULT;
2243 err = 0;
2244 break;
2245 default:
2246 err = -ENOPROTOOPT;
2247 }
2248 return err;
2249 }
2250
2251 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2252 {
2253 struct nl_pktinfo info;
2254
2255 info.group = NETLINK_CB(skb).dst_group;
2256 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2257 }
2258
2259 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
2260 struct msghdr *msg, size_t len)
2261 {
2262 struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2263 struct sock *sk = sock->sk;
2264 struct netlink_sock *nlk = nlk_sk(sk);
2265 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2266 u32 dst_portid;
2267 u32 dst_group;
2268 struct sk_buff *skb;
2269 int err;
2270 struct scm_cookie scm;
2271 u32 netlink_skb_flags = 0;
2272
2273 if (msg->msg_flags&MSG_OOB)
2274 return -EOPNOTSUPP;
2275
2276 if (NULL == siocb->scm)
2277 siocb->scm = &scm;
2278
2279 err = scm_send(sock, msg, siocb->scm, true);
2280 if (err < 0)
2281 return err;
2282
2283 if (msg->msg_namelen) {
2284 err = -EINVAL;
2285 if (addr->nl_family != AF_NETLINK)
2286 goto out;
2287 dst_portid = addr->nl_pid;
2288 dst_group = ffs(addr->nl_groups);
2289 err = -EPERM;
2290 if ((dst_group || dst_portid) &&
2291 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2292 goto out;
2293 netlink_skb_flags |= NETLINK_SKB_DST;
2294 } else {
2295 dst_portid = nlk->dst_portid;
2296 dst_group = nlk->dst_group;
2297 }
2298
2299 if (!nlk->portid) {
2300 err = netlink_autobind(sock);
2301 if (err)
2302 goto out;
2303 }
2304
2305 if (netlink_tx_is_mmaped(sk) &&
2306 msg->msg_iter.iov->iov_base == NULL) {
2307 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2308 siocb);
2309 goto out;
2310 }
2311
2312 err = -EMSGSIZE;
2313 if (len > sk->sk_sndbuf - 32)
2314 goto out;
2315 err = -ENOBUFS;
2316 skb = netlink_alloc_large_skb(len, dst_group);
2317 if (skb == NULL)
2318 goto out;
2319
2320 NETLINK_CB(skb).portid = nlk->portid;
2321 NETLINK_CB(skb).dst_group = dst_group;
2322 NETLINK_CB(skb).creds = siocb->scm->creds;
2323 NETLINK_CB(skb).flags = netlink_skb_flags;
2324
2325 err = -EFAULT;
2326 if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
2327 kfree_skb(skb);
2328 goto out;
2329 }
2330
2331 err = security_netlink_send(sk, skb);
2332 if (err) {
2333 kfree_skb(skb);
2334 goto out;
2335 }
2336
2337 if (dst_group) {
2338 atomic_inc(&skb->users);
2339 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2340 }
2341 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2342
2343 out:
2344 scm_destroy(siocb->scm);
2345 return err;
2346 }
2347
2348 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
2349 struct msghdr *msg, size_t len,
2350 int flags)
2351 {
2352 struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
2353 struct scm_cookie scm;
2354 struct sock *sk = sock->sk;
2355 struct netlink_sock *nlk = nlk_sk(sk);
2356 int noblock = flags&MSG_DONTWAIT;
2357 size_t copied;
2358 struct sk_buff *skb, *data_skb;
2359 int err, ret;
2360
2361 if (flags&MSG_OOB)
2362 return -EOPNOTSUPP;
2363
2364 copied = 0;
2365
2366 skb = skb_recv_datagram(sk, flags, noblock, &err);
2367 if (skb == NULL)
2368 goto out;
2369
2370 data_skb = skb;
2371
2372 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2373 if (unlikely(skb_shinfo(skb)->frag_list)) {
2374 /*
2375 * If this skb has a frag_list, then here that means that we
2376 * will have to use the frag_list skb's data for compat tasks
2377 * and the regular skb's data for normal (non-compat) tasks.
2378 *
2379 * If we need to send the compat skb, assign it to the
2380 * 'data_skb' variable so that it will be used below for data
2381 * copying. We keep 'skb' for everything else, including
2382 * freeing both later.
2383 */
2384 if (flags & MSG_CMSG_COMPAT)
2385 data_skb = skb_shinfo(skb)->frag_list;
2386 }
2387 #endif
2388
2389 /* Record the max length of recvmsg() calls for future allocations */
2390 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2391 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2392 16384);
2393
2394 copied = data_skb->len;
2395 if (len < copied) {
2396 msg->msg_flags |= MSG_TRUNC;
2397 copied = len;
2398 }
2399
2400 skb_reset_transport_header(data_skb);
2401 err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
2402
2403 if (msg->msg_name) {
2404 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2405 addr->nl_family = AF_NETLINK;
2406 addr->nl_pad = 0;
2407 addr->nl_pid = NETLINK_CB(skb).portid;
2408 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
2409 msg->msg_namelen = sizeof(*addr);
2410 }
2411
2412 if (nlk->flags & NETLINK_RECV_PKTINFO)
2413 netlink_cmsg_recv_pktinfo(msg, skb);
2414
2415 if (NULL == siocb->scm) {
2416 memset(&scm, 0, sizeof(scm));
2417 siocb->scm = &scm;
2418 }
2419 siocb->scm->creds = *NETLINK_CREDS(skb);
2420 if (flags & MSG_TRUNC)
2421 copied = data_skb->len;
2422
2423 skb_free_datagram(sk, skb);
2424
2425 if (nlk->cb_running &&
2426 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2427 ret = netlink_dump(sk);
2428 if (ret) {
2429 sk->sk_err = -ret;
2430 sk->sk_error_report(sk);
2431 }
2432 }
2433
2434 scm_recv(sock, msg, siocb->scm, flags);
2435 out:
2436 netlink_rcv_wake(sk);
2437 return err ? : copied;
2438 }
2439
2440 static void netlink_data_ready(struct sock *sk)
2441 {
2442 BUG();
2443 }
2444
2445 /*
2446 * We export these functions to other modules. They provide a
2447 * complete set of kernel non-blocking support for message
2448 * queueing.
2449 */
2450
2451 struct sock *
2452 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2453 struct netlink_kernel_cfg *cfg)
2454 {
2455 struct socket *sock;
2456 struct sock *sk;
2457 struct netlink_sock *nlk;
2458 struct listeners *listeners = NULL;
2459 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2460 unsigned int groups;
2461
2462 BUG_ON(!nl_table);
2463
2464 if (unit < 0 || unit >= MAX_LINKS)
2465 return NULL;
2466
2467 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2468 return NULL;
2469
2470 /*
2471 * We have to just have a reference on the net from sk, but don't
2472 * get_net it. Besides, we cannot get and then put the net here.
2473 * So we create one inside init_net and the move it to net.
2474 */
2475
2476 if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
2477 goto out_sock_release_nosk;
2478
2479 sk = sock->sk;
2480 sk_change_net(sk, net);
2481
2482 if (!cfg || cfg->groups < 32)
2483 groups = 32;
2484 else
2485 groups = cfg->groups;
2486
2487 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2488 if (!listeners)
2489 goto out_sock_release;
2490
2491 sk->sk_data_ready = netlink_data_ready;
2492 if (cfg && cfg->input)
2493 nlk_sk(sk)->netlink_rcv = cfg->input;
2494
2495 if (netlink_insert(sk, net, 0))
2496 goto out_sock_release;
2497
2498 nlk = nlk_sk(sk);
2499 nlk->flags |= NETLINK_KERNEL_SOCKET;
2500
2501 netlink_table_grab();
2502 if (!nl_table[unit].registered) {
2503 nl_table[unit].groups = groups;
2504 rcu_assign_pointer(nl_table[unit].listeners, listeners);
2505 nl_table[unit].cb_mutex = cb_mutex;
2506 nl_table[unit].module = module;
2507 if (cfg) {
2508 nl_table[unit].bind = cfg->bind;
2509 nl_table[unit].unbind = cfg->unbind;
2510 nl_table[unit].flags = cfg->flags;
2511 if (cfg->compare)
2512 nl_table[unit].compare = cfg->compare;
2513 }
2514 nl_table[unit].registered = 1;
2515 } else {
2516 kfree(listeners);
2517 nl_table[unit].registered++;
2518 }
2519 netlink_table_ungrab();
2520 return sk;
2521
2522 out_sock_release:
2523 kfree(listeners);
2524 netlink_kernel_release(sk);
2525 return NULL;
2526
2527 out_sock_release_nosk:
2528 sock_release(sock);
2529 return NULL;
2530 }
2531 EXPORT_SYMBOL(__netlink_kernel_create);
2532
2533 void
2534 netlink_kernel_release(struct sock *sk)
2535 {
2536 sk_release_kernel(sk);
2537 }
2538 EXPORT_SYMBOL(netlink_kernel_release);
2539
2540 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2541 {
2542 struct listeners *new, *old;
2543 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2544
2545 if (groups < 32)
2546 groups = 32;
2547
2548 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2549 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2550 if (!new)
2551 return -ENOMEM;
2552 old = nl_deref_protected(tbl->listeners);
2553 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2554 rcu_assign_pointer(tbl->listeners, new);
2555
2556 kfree_rcu(old, rcu);
2557 }
2558 tbl->groups = groups;
2559
2560 return 0;
2561 }
2562
2563 /**
2564 * netlink_change_ngroups - change number of multicast groups
2565 *
2566 * This changes the number of multicast groups that are available
2567 * on a certain netlink family. Note that it is not possible to
2568 * change the number of groups to below 32. Also note that it does
2569 * not implicitly call netlink_clear_multicast_users() when the
2570 * number of groups is reduced.
2571 *
2572 * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2573 * @groups: The new number of groups.
2574 */
2575 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2576 {
2577 int err;
2578
2579 netlink_table_grab();
2580 err = __netlink_change_ngroups(sk, groups);
2581 netlink_table_ungrab();
2582
2583 return err;
2584 }
2585
2586 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2587 {
2588 struct sock *sk;
2589 struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2590
2591 sk_for_each_bound(sk, &tbl->mc_list)
2592 netlink_update_socket_mc(nlk_sk(sk), group, 0);
2593 }
2594
2595 struct nlmsghdr *
2596 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2597 {
2598 struct nlmsghdr *nlh;
2599 int size = nlmsg_msg_size(len);
2600
2601 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2602 nlh->nlmsg_type = type;
2603 nlh->nlmsg_len = size;
2604 nlh->nlmsg_flags = flags;
2605 nlh->nlmsg_pid = portid;
2606 nlh->nlmsg_seq = seq;
2607 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2608 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2609 return nlh;
2610 }
2611 EXPORT_SYMBOL(__nlmsg_put);
2612
2613 /*
2614 * It looks a bit ugly.
2615 * It would be better to create kernel thread.
2616 */
2617
2618 static int netlink_dump(struct sock *sk)
2619 {
2620 struct netlink_sock *nlk = nlk_sk(sk);
2621 struct netlink_callback *cb;
2622 struct sk_buff *skb = NULL;
2623 struct nlmsghdr *nlh;
2624 int len, err = -ENOBUFS;
2625 int alloc_size;
2626
2627 mutex_lock(nlk->cb_mutex);
2628 if (!nlk->cb_running) {
2629 err = -EINVAL;
2630 goto errout_skb;
2631 }
2632
2633 cb = &nlk->cb;
2634 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2635
2636 if (!netlink_rx_is_mmaped(sk) &&
2637 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2638 goto errout_skb;
2639
2640 /* NLMSG_GOODSIZE is small to avoid high order allocations being
2641 * required, but it makes sense to _attempt_ a 16K bytes allocation
2642 * to reduce number of system calls on dump operations, if user
2643 * ever provided a big enough buffer.
2644 */
2645 if (alloc_size < nlk->max_recvmsg_len) {
2646 skb = netlink_alloc_skb(sk,
2647 nlk->max_recvmsg_len,
2648 nlk->portid,
2649 GFP_KERNEL |
2650 __GFP_NOWARN |
2651 __GFP_NORETRY);
2652 /* available room should be exact amount to avoid MSG_TRUNC */
2653 if (skb)
2654 skb_reserve(skb, skb_tailroom(skb) -
2655 nlk->max_recvmsg_len);
2656 }
2657 if (!skb)
2658 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2659 GFP_KERNEL);
2660 if (!skb)
2661 goto errout_skb;
2662 netlink_skb_set_owner_r(skb, sk);
2663
2664 len = cb->dump(skb, cb);
2665
2666 if (len > 0) {
2667 mutex_unlock(nlk->cb_mutex);
2668
2669 if (sk_filter(sk, skb))
2670 kfree_skb(skb);
2671 else
2672 __netlink_sendskb(sk, skb);
2673 return 0;
2674 }
2675
2676 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2677 if (!nlh)
2678 goto errout_skb;
2679
2680 nl_dump_check_consistent(cb, nlh);
2681
2682 memcpy(nlmsg_data(nlh), &len, sizeof(len));
2683
2684 if (sk_filter(sk, skb))
2685 kfree_skb(skb);
2686 else
2687 __netlink_sendskb(sk, skb);
2688
2689 if (cb->done)
2690 cb->done(cb);
2691
2692 nlk->cb_running = false;
2693 mutex_unlock(nlk->cb_mutex);
2694 module_put(cb->module);
2695 consume_skb(cb->skb);
2696 return 0;
2697
2698 errout_skb:
2699 mutex_unlock(nlk->cb_mutex);
2700 kfree_skb(skb);
2701 return err;
2702 }
2703
2704 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2705 const struct nlmsghdr *nlh,
2706 struct netlink_dump_control *control)
2707 {
2708 struct netlink_callback *cb;
2709 struct sock *sk;
2710 struct netlink_sock *nlk;
2711 int ret;
2712
2713 /* Memory mapped dump requests need to be copied to avoid looping
2714 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2715 * a reference to the skb.
2716 */
2717 if (netlink_skb_is_mmaped(skb)) {
2718 skb = skb_copy(skb, GFP_KERNEL);
2719 if (skb == NULL)
2720 return -ENOBUFS;
2721 } else
2722 atomic_inc(&skb->users);
2723
2724 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2725 if (sk == NULL) {
2726 ret = -ECONNREFUSED;
2727 goto error_free;
2728 }
2729
2730 nlk = nlk_sk(sk);
2731 mutex_lock(nlk->cb_mutex);
2732 /* A dump is in progress... */
2733 if (nlk->cb_running) {
2734 ret = -EBUSY;
2735 goto error_unlock;
2736 }
2737 /* add reference of module which cb->dump belongs to */
2738 if (!try_module_get(control->module)) {
2739 ret = -EPROTONOSUPPORT;
2740 goto error_unlock;
2741 }
2742
2743 cb = &nlk->cb;
2744 memset(cb, 0, sizeof(*cb));
2745 cb->dump = control->dump;
2746 cb->done = control->done;
2747 cb->nlh = nlh;
2748 cb->data = control->data;
2749 cb->module = control->module;
2750 cb->min_dump_alloc = control->min_dump_alloc;
2751 cb->skb = skb;
2752
2753 nlk->cb_running = true;
2754
2755 mutex_unlock(nlk->cb_mutex);
2756
2757 ret = netlink_dump(sk);
2758 sock_put(sk);
2759
2760 if (ret)
2761 return ret;
2762
2763 /* We successfully started a dump, by returning -EINTR we
2764 * signal not to send ACK even if it was requested.
2765 */
2766 return -EINTR;
2767
2768 error_unlock:
2769 sock_put(sk);
2770 mutex_unlock(nlk->cb_mutex);
2771 error_free:
2772 kfree_skb(skb);
2773 return ret;
2774 }
2775 EXPORT_SYMBOL(__netlink_dump_start);
2776
2777 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2778 {
2779 struct sk_buff *skb;
2780 struct nlmsghdr *rep;
2781 struct nlmsgerr *errmsg;
2782 size_t payload = sizeof(*errmsg);
2783
2784 /* error messages get the original request appened */
2785 if (err)
2786 payload += nlmsg_len(nlh);
2787
2788 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2789 NETLINK_CB(in_skb).portid, GFP_KERNEL);
2790 if (!skb) {
2791 struct sock *sk;
2792
2793 sk = netlink_lookup(sock_net(in_skb->sk),
2794 in_skb->sk->sk_protocol,
2795 NETLINK_CB(in_skb).portid);
2796 if (sk) {
2797 sk->sk_err = ENOBUFS;
2798 sk->sk_error_report(sk);
2799 sock_put(sk);
2800 }
2801 return;
2802 }
2803
2804 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2805 NLMSG_ERROR, payload, 0);
2806 errmsg = nlmsg_data(rep);
2807 errmsg->error = err;
2808 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2809 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2810 }
2811 EXPORT_SYMBOL(netlink_ack);
2812
2813 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2814 struct nlmsghdr *))
2815 {
2816 struct nlmsghdr *nlh;
2817 int err;
2818
2819 while (skb->len >= nlmsg_total_size(0)) {
2820 int msglen;
2821
2822 nlh = nlmsg_hdr(skb);
2823 err = 0;
2824
2825 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2826 return 0;
2827
2828 /* Only requests are handled by the kernel */
2829 if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2830 goto ack;
2831
2832 /* Skip control messages */
2833 if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2834 goto ack;
2835
2836 err = cb(skb, nlh);
2837 if (err == -EINTR)
2838 goto skip;
2839
2840 ack:
2841 if (nlh->nlmsg_flags & NLM_F_ACK || err)
2842 netlink_ack(skb, nlh, err);
2843
2844 skip:
2845 msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2846 if (msglen > skb->len)
2847 msglen = skb->len;
2848 skb_pull(skb, msglen);
2849 }
2850
2851 return 0;
2852 }
2853 EXPORT_SYMBOL(netlink_rcv_skb);
2854
2855 /**
2856 * nlmsg_notify - send a notification netlink message
2857 * @sk: netlink socket to use
2858 * @skb: notification message
2859 * @portid: destination netlink portid for reports or 0
2860 * @group: destination multicast group or 0
2861 * @report: 1 to report back, 0 to disable
2862 * @flags: allocation flags
2863 */
2864 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2865 unsigned int group, int report, gfp_t flags)
2866 {
2867 int err = 0;
2868
2869 if (group) {
2870 int exclude_portid = 0;
2871
2872 if (report) {
2873 atomic_inc(&skb->users);
2874 exclude_portid = portid;
2875 }
2876
2877 /* errors reported via destination sk->sk_err, but propagate
2878 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2879 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2880 }
2881
2882 if (report) {
2883 int err2;
2884
2885 err2 = nlmsg_unicast(sk, skb, portid);
2886 if (!err || err == -ESRCH)
2887 err = err2;
2888 }
2889
2890 return err;
2891 }
2892 EXPORT_SYMBOL(nlmsg_notify);
2893
2894 #ifdef CONFIG_PROC_FS
2895 struct nl_seq_iter {
2896 struct seq_net_private p;
2897 int link;
2898 int hash_idx;
2899 };
2900
2901 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
2902 {
2903 struct nl_seq_iter *iter = seq->private;
2904 int i, j;
2905 struct netlink_sock *nlk;
2906 struct sock *s;
2907 loff_t off = 0;
2908
2909 for (i = 0; i < MAX_LINKS; i++) {
2910 struct rhashtable *ht = &nl_table[i].hash;
2911 const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
2912
2913 for (j = 0; j < tbl->size; j++) {
2914 rht_for_each_entry_rcu(nlk, tbl->buckets[j], node) {
2915 s = (struct sock *)nlk;
2916
2917 if (sock_net(s) != seq_file_net(seq))
2918 continue;
2919 if (off == pos) {
2920 iter->link = i;
2921 iter->hash_idx = j;
2922 return s;
2923 }
2924 ++off;
2925 }
2926 }
2927 }
2928 return NULL;
2929 }
2930
2931 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
2932 __acquires(nl_table_lock) __acquires(RCU)
2933 {
2934 read_lock(&nl_table_lock);
2935 rcu_read_lock();
2936 return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2937 }
2938
2939 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2940 {
2941 struct rhashtable *ht;
2942 struct netlink_sock *nlk;
2943 struct nl_seq_iter *iter;
2944 struct net *net;
2945 int i, j;
2946
2947 ++*pos;
2948
2949 if (v == SEQ_START_TOKEN)
2950 return netlink_seq_socket_idx(seq, 0);
2951
2952 net = seq_file_net(seq);
2953 iter = seq->private;
2954 nlk = v;
2955
2956 i = iter->link;
2957 ht = &nl_table[i].hash;
2958 rht_for_each_entry(nlk, nlk->node.next, ht, node)
2959 if (net_eq(sock_net((struct sock *)nlk), net))
2960 return nlk;
2961
2962 j = iter->hash_idx + 1;
2963
2964 do {
2965 const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
2966
2967 for (; j < tbl->size; j++) {
2968 rht_for_each_entry(nlk, tbl->buckets[j], ht, node) {
2969 if (net_eq(sock_net((struct sock *)nlk), net)) {
2970 iter->link = i;
2971 iter->hash_idx = j;
2972 return nlk;
2973 }
2974 }
2975 }
2976
2977 j = 0;
2978 } while (++i < MAX_LINKS);
2979
2980 return NULL;
2981 }
2982
2983 static void netlink_seq_stop(struct seq_file *seq, void *v)
2984 __releases(RCU) __releases(nl_table_lock)
2985 {
2986 rcu_read_unlock();
2987 read_unlock(&nl_table_lock);
2988 }
2989
2990
2991 static int netlink_seq_show(struct seq_file *seq, void *v)
2992 {
2993 if (v == SEQ_START_TOKEN) {
2994 seq_puts(seq,
2995 "sk Eth Pid Groups "
2996 "Rmem Wmem Dump Locks Drops Inode\n");
2997 } else {
2998 struct sock *s = v;
2999 struct netlink_sock *nlk = nlk_sk(s);
3000
3001 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
3002 s,
3003 s->sk_protocol,
3004 nlk->portid,
3005 nlk->groups ? (u32)nlk->groups[0] : 0,
3006 sk_rmem_alloc_get(s),
3007 sk_wmem_alloc_get(s),
3008 nlk->cb_running,
3009 atomic_read(&s->sk_refcnt),
3010 atomic_read(&s->sk_drops),
3011 sock_i_ino(s)
3012 );
3013
3014 }
3015 return 0;
3016 }
3017
3018 static const struct seq_operations netlink_seq_ops = {
3019 .start = netlink_seq_start,
3020 .next = netlink_seq_next,
3021 .stop = netlink_seq_stop,
3022 .show = netlink_seq_show,
3023 };
3024
3025
3026 static int netlink_seq_open(struct inode *inode, struct file *file)
3027 {
3028 return seq_open_net(inode, file, &netlink_seq_ops,
3029 sizeof(struct nl_seq_iter));
3030 }
3031
3032 static const struct file_operations netlink_seq_fops = {
3033 .owner = THIS_MODULE,
3034 .open = netlink_seq_open,
3035 .read = seq_read,
3036 .llseek = seq_lseek,
3037 .release = seq_release_net,
3038 };
3039
3040 #endif
3041
3042 int netlink_register_notifier(struct notifier_block *nb)
3043 {
3044 return atomic_notifier_chain_register(&netlink_chain, nb);
3045 }
3046 EXPORT_SYMBOL(netlink_register_notifier);
3047
3048 int netlink_unregister_notifier(struct notifier_block *nb)
3049 {
3050 return atomic_notifier_chain_unregister(&netlink_chain, nb);
3051 }
3052 EXPORT_SYMBOL(netlink_unregister_notifier);
3053
3054 static const struct proto_ops netlink_ops = {
3055 .family = PF_NETLINK,
3056 .owner = THIS_MODULE,
3057 .release = netlink_release,
3058 .bind = netlink_bind,
3059 .connect = netlink_connect,
3060 .socketpair = sock_no_socketpair,
3061 .accept = sock_no_accept,
3062 .getname = netlink_getname,
3063 .poll = netlink_poll,
3064 .ioctl = sock_no_ioctl,
3065 .listen = sock_no_listen,
3066 .shutdown = sock_no_shutdown,
3067 .setsockopt = netlink_setsockopt,
3068 .getsockopt = netlink_getsockopt,
3069 .sendmsg = netlink_sendmsg,
3070 .recvmsg = netlink_recvmsg,
3071 .mmap = netlink_mmap,
3072 .sendpage = sock_no_sendpage,
3073 };
3074
3075 static const struct net_proto_family netlink_family_ops = {
3076 .family = PF_NETLINK,
3077 .create = netlink_create,
3078 .owner = THIS_MODULE, /* for consistency 8) */
3079 };
3080
3081 static int __net_init netlink_net_init(struct net *net)
3082 {
3083 #ifdef CONFIG_PROC_FS
3084 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3085 return -ENOMEM;
3086 #endif
3087 return 0;
3088 }
3089
3090 static void __net_exit netlink_net_exit(struct net *net)
3091 {
3092 #ifdef CONFIG_PROC_FS
3093 remove_proc_entry("netlink", net->proc_net);
3094 #endif
3095 }
3096
3097 static void __init netlink_add_usersock_entry(void)
3098 {
3099 struct listeners *listeners;
3100 int groups = 32;
3101
3102 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3103 if (!listeners)
3104 panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3105
3106 netlink_table_grab();
3107
3108 nl_table[NETLINK_USERSOCK].groups = groups;
3109 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3110 nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3111 nl_table[NETLINK_USERSOCK].registered = 1;
3112 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3113
3114 netlink_table_ungrab();
3115 }
3116
3117 static struct pernet_operations __net_initdata netlink_net_ops = {
3118 .init = netlink_net_init,
3119 .exit = netlink_net_exit,
3120 };
3121
3122 static int __init netlink_proto_init(void)
3123 {
3124 int i;
3125 int err = proto_register(&netlink_proto, 0);
3126 struct rhashtable_params ht_params = {
3127 .head_offset = offsetof(struct netlink_sock, node),
3128 .key_offset = offsetof(struct netlink_sock, portid),
3129 .key_len = sizeof(u32), /* portid */
3130 .hashfn = jhash,
3131 .max_shift = 16, /* 64K */
3132 .grow_decision = rht_grow_above_75,
3133 .shrink_decision = rht_shrink_below_30,
3134 #ifdef CONFIG_PROVE_LOCKING
3135 .mutex_is_held = lockdep_nl_sk_hash_is_held,
3136 #endif
3137 };
3138
3139 if (err != 0)
3140 goto out;
3141
3142 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3143
3144 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3145 if (!nl_table)
3146 goto panic;
3147
3148 for (i = 0; i < MAX_LINKS; i++) {
3149 if (rhashtable_init(&nl_table[i].hash, &ht_params) < 0) {
3150 while (--i > 0)
3151 rhashtable_destroy(&nl_table[i].hash);
3152 kfree(nl_table);
3153 goto panic;
3154 }
3155 }
3156
3157 INIT_LIST_HEAD(&netlink_tap_all);
3158
3159 netlink_add_usersock_entry();
3160
3161 sock_register(&netlink_family_ops);
3162 register_pernet_subsys(&netlink_net_ops);
3163 /* The netlink device handler may be needed early. */
3164 rtnetlink_init();
3165 out:
3166 return err;
3167 panic:
3168 panic("netlink_init: Cannot allocate nl_table\n");
3169 }
3170
3171 core_initcall(netlink_proto_init);
This page took 0.1979 seconds and 5 git commands to generate.