Merge tag 'acpica-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[deliverable/linux.git] / net / openvswitch / actions.c
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/sctp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/in6.h>
29 #include <linux/if_arp.h>
30 #include <linux/if_vlan.h>
31
32 #include <net/ip.h>
33 #include <net/ipv6.h>
34 #include <net/checksum.h>
35 #include <net/dsfield.h>
36 #include <net/mpls.h>
37 #include <net/sctp/checksum.h>
38
39 #include "datapath.h"
40 #include "flow.h"
41 #include "vport.h"
42
43 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
44 struct sw_flow_key *key,
45 const struct nlattr *attr, int len);
46
47 struct deferred_action {
48 struct sk_buff *skb;
49 const struct nlattr *actions;
50
51 /* Store pkt_key clone when creating deferred action. */
52 struct sw_flow_key pkt_key;
53 };
54
55 #define DEFERRED_ACTION_FIFO_SIZE 10
56 struct action_fifo {
57 int head;
58 int tail;
59 /* Deferred action fifo queue storage. */
60 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
61 };
62
63 static struct action_fifo __percpu *action_fifos;
64 static DEFINE_PER_CPU(int, exec_actions_level);
65
66 static void action_fifo_init(struct action_fifo *fifo)
67 {
68 fifo->head = 0;
69 fifo->tail = 0;
70 }
71
72 static bool action_fifo_is_empty(const struct action_fifo *fifo)
73 {
74 return (fifo->head == fifo->tail);
75 }
76
77 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
78 {
79 if (action_fifo_is_empty(fifo))
80 return NULL;
81
82 return &fifo->fifo[fifo->tail++];
83 }
84
85 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
86 {
87 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
88 return NULL;
89
90 return &fifo->fifo[fifo->head++];
91 }
92
93 /* Return true if fifo is not full */
94 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
95 const struct sw_flow_key *key,
96 const struct nlattr *attr)
97 {
98 struct action_fifo *fifo;
99 struct deferred_action *da;
100
101 fifo = this_cpu_ptr(action_fifos);
102 da = action_fifo_put(fifo);
103 if (da) {
104 da->skb = skb;
105 da->actions = attr;
106 da->pkt_key = *key;
107 }
108
109 return da;
110 }
111
112 static void invalidate_flow_key(struct sw_flow_key *key)
113 {
114 key->eth.type = htons(0);
115 }
116
117 static bool is_flow_key_valid(const struct sw_flow_key *key)
118 {
119 return !!key->eth.type;
120 }
121
122 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
123 const struct ovs_action_push_mpls *mpls)
124 {
125 __be32 *new_mpls_lse;
126 struct ethhdr *hdr;
127
128 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
129 if (skb->encapsulation)
130 return -ENOTSUPP;
131
132 if (skb_cow_head(skb, MPLS_HLEN) < 0)
133 return -ENOMEM;
134
135 skb_push(skb, MPLS_HLEN);
136 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
137 skb->mac_len);
138 skb_reset_mac_header(skb);
139
140 new_mpls_lse = (__be32 *)skb_mpls_header(skb);
141 *new_mpls_lse = mpls->mpls_lse;
142
143 if (skb->ip_summed == CHECKSUM_COMPLETE)
144 skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
145 MPLS_HLEN, 0));
146
147 hdr = eth_hdr(skb);
148 hdr->h_proto = mpls->mpls_ethertype;
149
150 if (!skb->inner_protocol)
151 skb_set_inner_protocol(skb, skb->protocol);
152 skb->protocol = mpls->mpls_ethertype;
153
154 invalidate_flow_key(key);
155 return 0;
156 }
157
158 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
159 const __be16 ethertype)
160 {
161 struct ethhdr *hdr;
162 int err;
163
164 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
165 if (unlikely(err))
166 return err;
167
168 skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
169
170 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
171 skb->mac_len);
172
173 __skb_pull(skb, MPLS_HLEN);
174 skb_reset_mac_header(skb);
175
176 /* skb_mpls_header() is used to locate the ethertype
177 * field correctly in the presence of VLAN tags.
178 */
179 hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
180 hdr->h_proto = ethertype;
181 if (eth_p_mpls(skb->protocol))
182 skb->protocol = ethertype;
183
184 invalidate_flow_key(key);
185 return 0;
186 }
187
188 /* 'KEY' must not have any bits set outside of the 'MASK' */
189 #define MASKED(OLD, KEY, MASK) ((KEY) | ((OLD) & ~(MASK)))
190 #define SET_MASKED(OLD, KEY, MASK) ((OLD) = MASKED(OLD, KEY, MASK))
191
192 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
193 const __be32 *mpls_lse, const __be32 *mask)
194 {
195 __be32 *stack;
196 __be32 lse;
197 int err;
198
199 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
200 if (unlikely(err))
201 return err;
202
203 stack = (__be32 *)skb_mpls_header(skb);
204 lse = MASKED(*stack, *mpls_lse, *mask);
205 if (skb->ip_summed == CHECKSUM_COMPLETE) {
206 __be32 diff[] = { ~(*stack), lse };
207
208 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
209 ~skb->csum);
210 }
211
212 *stack = lse;
213 flow_key->mpls.top_lse = lse;
214 return 0;
215 }
216
217 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
218 {
219 int err;
220
221 err = skb_vlan_pop(skb);
222 if (skb_vlan_tag_present(skb))
223 invalidate_flow_key(key);
224 else
225 key->eth.tci = 0;
226 return err;
227 }
228
229 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
230 const struct ovs_action_push_vlan *vlan)
231 {
232 if (skb_vlan_tag_present(skb))
233 invalidate_flow_key(key);
234 else
235 key->eth.tci = vlan->vlan_tci;
236 return skb_vlan_push(skb, vlan->vlan_tpid,
237 ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
238 }
239
240 /* 'src' is already properly masked. */
241 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
242 {
243 u16 *dst = (u16 *)dst_;
244 const u16 *src = (const u16 *)src_;
245 const u16 *mask = (const u16 *)mask_;
246
247 SET_MASKED(dst[0], src[0], mask[0]);
248 SET_MASKED(dst[1], src[1], mask[1]);
249 SET_MASKED(dst[2], src[2], mask[2]);
250 }
251
252 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
253 const struct ovs_key_ethernet *key,
254 const struct ovs_key_ethernet *mask)
255 {
256 int err;
257
258 err = skb_ensure_writable(skb, ETH_HLEN);
259 if (unlikely(err))
260 return err;
261
262 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
263
264 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
265 mask->eth_src);
266 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
267 mask->eth_dst);
268
269 ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
270
271 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
272 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
273 return 0;
274 }
275
276 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
277 __be32 *addr, __be32 new_addr)
278 {
279 int transport_len = skb->len - skb_transport_offset(skb);
280
281 if (nh->protocol == IPPROTO_TCP) {
282 if (likely(transport_len >= sizeof(struct tcphdr)))
283 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
284 *addr, new_addr, 1);
285 } else if (nh->protocol == IPPROTO_UDP) {
286 if (likely(transport_len >= sizeof(struct udphdr))) {
287 struct udphdr *uh = udp_hdr(skb);
288
289 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
290 inet_proto_csum_replace4(&uh->check, skb,
291 *addr, new_addr, 1);
292 if (!uh->check)
293 uh->check = CSUM_MANGLED_0;
294 }
295 }
296 }
297
298 csum_replace4(&nh->check, *addr, new_addr);
299 skb_clear_hash(skb);
300 *addr = new_addr;
301 }
302
303 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
304 __be32 addr[4], const __be32 new_addr[4])
305 {
306 int transport_len = skb->len - skb_transport_offset(skb);
307
308 if (l4_proto == NEXTHDR_TCP) {
309 if (likely(transport_len >= sizeof(struct tcphdr)))
310 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
311 addr, new_addr, 1);
312 } else if (l4_proto == NEXTHDR_UDP) {
313 if (likely(transport_len >= sizeof(struct udphdr))) {
314 struct udphdr *uh = udp_hdr(skb);
315
316 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
317 inet_proto_csum_replace16(&uh->check, skb,
318 addr, new_addr, 1);
319 if (!uh->check)
320 uh->check = CSUM_MANGLED_0;
321 }
322 }
323 } else if (l4_proto == NEXTHDR_ICMP) {
324 if (likely(transport_len >= sizeof(struct icmp6hdr)))
325 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
326 skb, addr, new_addr, 1);
327 }
328 }
329
330 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
331 const __be32 mask[4], __be32 masked[4])
332 {
333 masked[0] = MASKED(old[0], addr[0], mask[0]);
334 masked[1] = MASKED(old[1], addr[1], mask[1]);
335 masked[2] = MASKED(old[2], addr[2], mask[2]);
336 masked[3] = MASKED(old[3], addr[3], mask[3]);
337 }
338
339 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
340 __be32 addr[4], const __be32 new_addr[4],
341 bool recalculate_csum)
342 {
343 if (recalculate_csum)
344 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
345
346 skb_clear_hash(skb);
347 memcpy(addr, new_addr, sizeof(__be32[4]));
348 }
349
350 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
351 {
352 /* Bits 21-24 are always unmasked, so this retains their values. */
353 SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
354 SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
355 SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
356 }
357
358 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
359 u8 mask)
360 {
361 new_ttl = MASKED(nh->ttl, new_ttl, mask);
362
363 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
364 nh->ttl = new_ttl;
365 }
366
367 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
368 const struct ovs_key_ipv4 *key,
369 const struct ovs_key_ipv4 *mask)
370 {
371 struct iphdr *nh;
372 __be32 new_addr;
373 int err;
374
375 err = skb_ensure_writable(skb, skb_network_offset(skb) +
376 sizeof(struct iphdr));
377 if (unlikely(err))
378 return err;
379
380 nh = ip_hdr(skb);
381
382 /* Setting an IP addresses is typically only a side effect of
383 * matching on them in the current userspace implementation, so it
384 * makes sense to check if the value actually changed.
385 */
386 if (mask->ipv4_src) {
387 new_addr = MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
388
389 if (unlikely(new_addr != nh->saddr)) {
390 set_ip_addr(skb, nh, &nh->saddr, new_addr);
391 flow_key->ipv4.addr.src = new_addr;
392 }
393 }
394 if (mask->ipv4_dst) {
395 new_addr = MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
396
397 if (unlikely(new_addr != nh->daddr)) {
398 set_ip_addr(skb, nh, &nh->daddr, new_addr);
399 flow_key->ipv4.addr.dst = new_addr;
400 }
401 }
402 if (mask->ipv4_tos) {
403 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
404 flow_key->ip.tos = nh->tos;
405 }
406 if (mask->ipv4_ttl) {
407 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
408 flow_key->ip.ttl = nh->ttl;
409 }
410
411 return 0;
412 }
413
414 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
415 {
416 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
417 }
418
419 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
420 const struct ovs_key_ipv6 *key,
421 const struct ovs_key_ipv6 *mask)
422 {
423 struct ipv6hdr *nh;
424 int err;
425
426 err = skb_ensure_writable(skb, skb_network_offset(skb) +
427 sizeof(struct ipv6hdr));
428 if (unlikely(err))
429 return err;
430
431 nh = ipv6_hdr(skb);
432
433 /* Setting an IP addresses is typically only a side effect of
434 * matching on them in the current userspace implementation, so it
435 * makes sense to check if the value actually changed.
436 */
437 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
438 __be32 *saddr = (__be32 *)&nh->saddr;
439 __be32 masked[4];
440
441 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
442
443 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
444 set_ipv6_addr(skb, key->ipv6_proto, saddr, masked,
445 true);
446 memcpy(&flow_key->ipv6.addr.src, masked,
447 sizeof(flow_key->ipv6.addr.src));
448 }
449 }
450 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
451 unsigned int offset = 0;
452 int flags = IP6_FH_F_SKIP_RH;
453 bool recalc_csum = true;
454 __be32 *daddr = (__be32 *)&nh->daddr;
455 __be32 masked[4];
456
457 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
458
459 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
460 if (ipv6_ext_hdr(nh->nexthdr))
461 recalc_csum = (ipv6_find_hdr(skb, &offset,
462 NEXTHDR_ROUTING,
463 NULL, &flags)
464 != NEXTHDR_ROUTING);
465
466 set_ipv6_addr(skb, key->ipv6_proto, daddr, masked,
467 recalc_csum);
468 memcpy(&flow_key->ipv6.addr.dst, masked,
469 sizeof(flow_key->ipv6.addr.dst));
470 }
471 }
472 if (mask->ipv6_tclass) {
473 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
474 flow_key->ip.tos = ipv6_get_dsfield(nh);
475 }
476 if (mask->ipv6_label) {
477 set_ipv6_fl(nh, ntohl(key->ipv6_label),
478 ntohl(mask->ipv6_label));
479 flow_key->ipv6.label =
480 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
481 }
482 if (mask->ipv6_hlimit) {
483 SET_MASKED(nh->hop_limit, key->ipv6_hlimit, mask->ipv6_hlimit);
484 flow_key->ip.ttl = nh->hop_limit;
485 }
486 return 0;
487 }
488
489 /* Must follow skb_ensure_writable() since that can move the skb data. */
490 static void set_tp_port(struct sk_buff *skb, __be16 *port,
491 __be16 new_port, __sum16 *check)
492 {
493 inet_proto_csum_replace2(check, skb, *port, new_port, 0);
494 *port = new_port;
495 }
496
497 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
498 const struct ovs_key_udp *key,
499 const struct ovs_key_udp *mask)
500 {
501 struct udphdr *uh;
502 __be16 src, dst;
503 int err;
504
505 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
506 sizeof(struct udphdr));
507 if (unlikely(err))
508 return err;
509
510 uh = udp_hdr(skb);
511 /* Either of the masks is non-zero, so do not bother checking them. */
512 src = MASKED(uh->source, key->udp_src, mask->udp_src);
513 dst = MASKED(uh->dest, key->udp_dst, mask->udp_dst);
514
515 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
516 if (likely(src != uh->source)) {
517 set_tp_port(skb, &uh->source, src, &uh->check);
518 flow_key->tp.src = src;
519 }
520 if (likely(dst != uh->dest)) {
521 set_tp_port(skb, &uh->dest, dst, &uh->check);
522 flow_key->tp.dst = dst;
523 }
524
525 if (unlikely(!uh->check))
526 uh->check = CSUM_MANGLED_0;
527 } else {
528 uh->source = src;
529 uh->dest = dst;
530 flow_key->tp.src = src;
531 flow_key->tp.dst = dst;
532 }
533
534 skb_clear_hash(skb);
535
536 return 0;
537 }
538
539 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
540 const struct ovs_key_tcp *key,
541 const struct ovs_key_tcp *mask)
542 {
543 struct tcphdr *th;
544 __be16 src, dst;
545 int err;
546
547 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
548 sizeof(struct tcphdr));
549 if (unlikely(err))
550 return err;
551
552 th = tcp_hdr(skb);
553 src = MASKED(th->source, key->tcp_src, mask->tcp_src);
554 if (likely(src != th->source)) {
555 set_tp_port(skb, &th->source, src, &th->check);
556 flow_key->tp.src = src;
557 }
558 dst = MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
559 if (likely(dst != th->dest)) {
560 set_tp_port(skb, &th->dest, dst, &th->check);
561 flow_key->tp.dst = dst;
562 }
563 skb_clear_hash(skb);
564
565 return 0;
566 }
567
568 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
569 const struct ovs_key_sctp *key,
570 const struct ovs_key_sctp *mask)
571 {
572 unsigned int sctphoff = skb_transport_offset(skb);
573 struct sctphdr *sh;
574 __le32 old_correct_csum, new_csum, old_csum;
575 int err;
576
577 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
578 if (unlikely(err))
579 return err;
580
581 sh = sctp_hdr(skb);
582 old_csum = sh->checksum;
583 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
584
585 sh->source = MASKED(sh->source, key->sctp_src, mask->sctp_src);
586 sh->dest = MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
587
588 new_csum = sctp_compute_cksum(skb, sctphoff);
589
590 /* Carry any checksum errors through. */
591 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
592
593 skb_clear_hash(skb);
594 flow_key->tp.src = sh->source;
595 flow_key->tp.dst = sh->dest;
596
597 return 0;
598 }
599
600 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
601 {
602 struct vport *vport = ovs_vport_rcu(dp, out_port);
603
604 if (likely(vport))
605 ovs_vport_send(vport, skb);
606 else
607 kfree_skb(skb);
608 }
609
610 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
611 struct sw_flow_key *key, const struct nlattr *attr,
612 const struct nlattr *actions, int actions_len)
613 {
614 struct ovs_tunnel_info info;
615 struct dp_upcall_info upcall;
616 const struct nlattr *a;
617 int rem;
618
619 memset(&upcall, 0, sizeof(upcall));
620 upcall.cmd = OVS_PACKET_CMD_ACTION;
621
622 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
623 a = nla_next(a, &rem)) {
624 switch (nla_type(a)) {
625 case OVS_USERSPACE_ATTR_USERDATA:
626 upcall.userdata = a;
627 break;
628
629 case OVS_USERSPACE_ATTR_PID:
630 upcall.portid = nla_get_u32(a);
631 break;
632
633 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
634 /* Get out tunnel info. */
635 struct vport *vport;
636
637 vport = ovs_vport_rcu(dp, nla_get_u32(a));
638 if (vport) {
639 int err;
640
641 err = ovs_vport_get_egress_tun_info(vport, skb,
642 &info);
643 if (!err)
644 upcall.egress_tun_info = &info;
645 }
646 break;
647 }
648
649 case OVS_USERSPACE_ATTR_ACTIONS: {
650 /* Include actions. */
651 upcall.actions = actions;
652 upcall.actions_len = actions_len;
653 break;
654 }
655
656 } /* End of switch. */
657 }
658
659 return ovs_dp_upcall(dp, skb, key, &upcall);
660 }
661
662 static int sample(struct datapath *dp, struct sk_buff *skb,
663 struct sw_flow_key *key, const struct nlattr *attr,
664 const struct nlattr *actions, int actions_len)
665 {
666 const struct nlattr *acts_list = NULL;
667 const struct nlattr *a;
668 int rem;
669
670 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
671 a = nla_next(a, &rem)) {
672 switch (nla_type(a)) {
673 case OVS_SAMPLE_ATTR_PROBABILITY:
674 if (prandom_u32() >= nla_get_u32(a))
675 return 0;
676 break;
677
678 case OVS_SAMPLE_ATTR_ACTIONS:
679 acts_list = a;
680 break;
681 }
682 }
683
684 rem = nla_len(acts_list);
685 a = nla_data(acts_list);
686
687 /* Actions list is empty, do nothing */
688 if (unlikely(!rem))
689 return 0;
690
691 /* The only known usage of sample action is having a single user-space
692 * action. Treat this usage as a special case.
693 * The output_userspace() should clone the skb to be sent to the
694 * user space. This skb will be consumed by its caller.
695 */
696 if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
697 nla_is_last(a, rem)))
698 return output_userspace(dp, skb, key, a, actions, actions_len);
699
700 skb = skb_clone(skb, GFP_ATOMIC);
701 if (!skb)
702 /* Skip the sample action when out of memory. */
703 return 0;
704
705 if (!add_deferred_actions(skb, key, a)) {
706 if (net_ratelimit())
707 pr_warn("%s: deferred actions limit reached, dropping sample action\n",
708 ovs_dp_name(dp));
709
710 kfree_skb(skb);
711 }
712 return 0;
713 }
714
715 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
716 const struct nlattr *attr)
717 {
718 struct ovs_action_hash *hash_act = nla_data(attr);
719 u32 hash = 0;
720
721 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
722 hash = skb_get_hash(skb);
723 hash = jhash_1word(hash, hash_act->hash_basis);
724 if (!hash)
725 hash = 0x1;
726
727 key->ovs_flow_hash = hash;
728 }
729
730 static int execute_set_action(struct sk_buff *skb,
731 struct sw_flow_key *flow_key,
732 const struct nlattr *a)
733 {
734 /* Only tunnel set execution is supported without a mask. */
735 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
736 OVS_CB(skb)->egress_tun_info = nla_data(a);
737 return 0;
738 }
739
740 return -EINVAL;
741 }
742
743 /* Mask is at the midpoint of the data. */
744 #define get_mask(a, type) ((const type)nla_data(a) + 1)
745
746 static int execute_masked_set_action(struct sk_buff *skb,
747 struct sw_flow_key *flow_key,
748 const struct nlattr *a)
749 {
750 int err = 0;
751
752 switch (nla_type(a)) {
753 case OVS_KEY_ATTR_PRIORITY:
754 SET_MASKED(skb->priority, nla_get_u32(a), *get_mask(a, u32 *));
755 flow_key->phy.priority = skb->priority;
756 break;
757
758 case OVS_KEY_ATTR_SKB_MARK:
759 SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
760 flow_key->phy.skb_mark = skb->mark;
761 break;
762
763 case OVS_KEY_ATTR_TUNNEL_INFO:
764 /* Masked data not supported for tunnel. */
765 err = -EINVAL;
766 break;
767
768 case OVS_KEY_ATTR_ETHERNET:
769 err = set_eth_addr(skb, flow_key, nla_data(a),
770 get_mask(a, struct ovs_key_ethernet *));
771 break;
772
773 case OVS_KEY_ATTR_IPV4:
774 err = set_ipv4(skb, flow_key, nla_data(a),
775 get_mask(a, struct ovs_key_ipv4 *));
776 break;
777
778 case OVS_KEY_ATTR_IPV6:
779 err = set_ipv6(skb, flow_key, nla_data(a),
780 get_mask(a, struct ovs_key_ipv6 *));
781 break;
782
783 case OVS_KEY_ATTR_TCP:
784 err = set_tcp(skb, flow_key, nla_data(a),
785 get_mask(a, struct ovs_key_tcp *));
786 break;
787
788 case OVS_KEY_ATTR_UDP:
789 err = set_udp(skb, flow_key, nla_data(a),
790 get_mask(a, struct ovs_key_udp *));
791 break;
792
793 case OVS_KEY_ATTR_SCTP:
794 err = set_sctp(skb, flow_key, nla_data(a),
795 get_mask(a, struct ovs_key_sctp *));
796 break;
797
798 case OVS_KEY_ATTR_MPLS:
799 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
800 __be32 *));
801 break;
802 }
803
804 return err;
805 }
806
807 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
808 struct sw_flow_key *key,
809 const struct nlattr *a, int rem)
810 {
811 struct deferred_action *da;
812
813 if (!is_flow_key_valid(key)) {
814 int err;
815
816 err = ovs_flow_key_update(skb, key);
817 if (err)
818 return err;
819 }
820 BUG_ON(!is_flow_key_valid(key));
821
822 if (!nla_is_last(a, rem)) {
823 /* Recirc action is the not the last action
824 * of the action list, need to clone the skb.
825 */
826 skb = skb_clone(skb, GFP_ATOMIC);
827
828 /* Skip the recirc action when out of memory, but
829 * continue on with the rest of the action list.
830 */
831 if (!skb)
832 return 0;
833 }
834
835 da = add_deferred_actions(skb, key, NULL);
836 if (da) {
837 da->pkt_key.recirc_id = nla_get_u32(a);
838 } else {
839 kfree_skb(skb);
840
841 if (net_ratelimit())
842 pr_warn("%s: deferred action limit reached, drop recirc action\n",
843 ovs_dp_name(dp));
844 }
845
846 return 0;
847 }
848
849 /* Execute a list of actions against 'skb'. */
850 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
851 struct sw_flow_key *key,
852 const struct nlattr *attr, int len)
853 {
854 /* Every output action needs a separate clone of 'skb', but the common
855 * case is just a single output action, so that doing a clone and
856 * then freeing the original skbuff is wasteful. So the following code
857 * is slightly obscure just to avoid that.
858 */
859 int prev_port = -1;
860 const struct nlattr *a;
861 int rem;
862
863 for (a = attr, rem = len; rem > 0;
864 a = nla_next(a, &rem)) {
865 int err = 0;
866
867 if (unlikely(prev_port != -1)) {
868 struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
869
870 if (out_skb)
871 do_output(dp, out_skb, prev_port);
872
873 prev_port = -1;
874 }
875
876 switch (nla_type(a)) {
877 case OVS_ACTION_ATTR_OUTPUT:
878 prev_port = nla_get_u32(a);
879 break;
880
881 case OVS_ACTION_ATTR_USERSPACE:
882 output_userspace(dp, skb, key, a, attr, len);
883 break;
884
885 case OVS_ACTION_ATTR_HASH:
886 execute_hash(skb, key, a);
887 break;
888
889 case OVS_ACTION_ATTR_PUSH_MPLS:
890 err = push_mpls(skb, key, nla_data(a));
891 break;
892
893 case OVS_ACTION_ATTR_POP_MPLS:
894 err = pop_mpls(skb, key, nla_get_be16(a));
895 break;
896
897 case OVS_ACTION_ATTR_PUSH_VLAN:
898 err = push_vlan(skb, key, nla_data(a));
899 break;
900
901 case OVS_ACTION_ATTR_POP_VLAN:
902 err = pop_vlan(skb, key);
903 break;
904
905 case OVS_ACTION_ATTR_RECIRC:
906 err = execute_recirc(dp, skb, key, a, rem);
907 if (nla_is_last(a, rem)) {
908 /* If this is the last action, the skb has
909 * been consumed or freed.
910 * Return immediately.
911 */
912 return err;
913 }
914 break;
915
916 case OVS_ACTION_ATTR_SET:
917 err = execute_set_action(skb, key, nla_data(a));
918 break;
919
920 case OVS_ACTION_ATTR_SET_MASKED:
921 case OVS_ACTION_ATTR_SET_TO_MASKED:
922 err = execute_masked_set_action(skb, key, nla_data(a));
923 break;
924
925 case OVS_ACTION_ATTR_SAMPLE:
926 err = sample(dp, skb, key, a, attr, len);
927 break;
928 }
929
930 if (unlikely(err)) {
931 kfree_skb(skb);
932 return err;
933 }
934 }
935
936 if (prev_port != -1)
937 do_output(dp, skb, prev_port);
938 else
939 consume_skb(skb);
940
941 return 0;
942 }
943
944 static void process_deferred_actions(struct datapath *dp)
945 {
946 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
947
948 /* Do not touch the FIFO in case there is no deferred actions. */
949 if (action_fifo_is_empty(fifo))
950 return;
951
952 /* Finishing executing all deferred actions. */
953 do {
954 struct deferred_action *da = action_fifo_get(fifo);
955 struct sk_buff *skb = da->skb;
956 struct sw_flow_key *key = &da->pkt_key;
957 const struct nlattr *actions = da->actions;
958
959 if (actions)
960 do_execute_actions(dp, skb, key, actions,
961 nla_len(actions));
962 else
963 ovs_dp_process_packet(skb, key);
964 } while (!action_fifo_is_empty(fifo));
965
966 /* Reset FIFO for the next packet. */
967 action_fifo_init(fifo);
968 }
969
970 /* Execute a list of actions against 'skb'. */
971 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
972 const struct sw_flow_actions *acts,
973 struct sw_flow_key *key)
974 {
975 int level = this_cpu_read(exec_actions_level);
976 int err;
977
978 this_cpu_inc(exec_actions_level);
979 OVS_CB(skb)->egress_tun_info = NULL;
980 err = do_execute_actions(dp, skb, key,
981 acts->actions, acts->actions_len);
982
983 if (!level)
984 process_deferred_actions(dp);
985
986 this_cpu_dec(exec_actions_level);
987 return err;
988 }
989
990 int action_fifos_init(void)
991 {
992 action_fifos = alloc_percpu(struct action_fifo);
993 if (!action_fifos)
994 return -ENOMEM;
995
996 return 0;
997 }
998
999 void action_fifos_exit(void)
1000 {
1001 free_percpu(action_fifos);
1002 }
This page took 0.04986 seconds and 6 git commands to generate.