Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[deliverable/linux.git] / net / openvswitch / actions.c
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/sctp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/in6.h>
29 #include <linux/if_arp.h>
30 #include <linux/if_vlan.h>
31
32 #include <net/ip.h>
33 #include <net/ipv6.h>
34 #include <net/checksum.h>
35 #include <net/dsfield.h>
36 #include <net/mpls.h>
37 #include <net/sctp/checksum.h>
38
39 #include "datapath.h"
40 #include "flow.h"
41 #include "vport.h"
42
43 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
44 struct sw_flow_key *key,
45 const struct nlattr *attr, int len);
46
47 struct deferred_action {
48 struct sk_buff *skb;
49 const struct nlattr *actions;
50
51 /* Store pkt_key clone when creating deferred action. */
52 struct sw_flow_key pkt_key;
53 };
54
55 #define DEFERRED_ACTION_FIFO_SIZE 10
56 struct action_fifo {
57 int head;
58 int tail;
59 /* Deferred action fifo queue storage. */
60 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
61 };
62
63 static struct action_fifo __percpu *action_fifos;
64 static DEFINE_PER_CPU(int, exec_actions_level);
65
66 static void action_fifo_init(struct action_fifo *fifo)
67 {
68 fifo->head = 0;
69 fifo->tail = 0;
70 }
71
72 static bool action_fifo_is_empty(const struct action_fifo *fifo)
73 {
74 return (fifo->head == fifo->tail);
75 }
76
77 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
78 {
79 if (action_fifo_is_empty(fifo))
80 return NULL;
81
82 return &fifo->fifo[fifo->tail++];
83 }
84
85 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
86 {
87 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
88 return NULL;
89
90 return &fifo->fifo[fifo->head++];
91 }
92
93 /* Return true if fifo is not full */
94 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
95 const struct sw_flow_key *key,
96 const struct nlattr *attr)
97 {
98 struct action_fifo *fifo;
99 struct deferred_action *da;
100
101 fifo = this_cpu_ptr(action_fifos);
102 da = action_fifo_put(fifo);
103 if (da) {
104 da->skb = skb;
105 da->actions = attr;
106 da->pkt_key = *key;
107 }
108
109 return da;
110 }
111
112 static void invalidate_flow_key(struct sw_flow_key *key)
113 {
114 key->eth.type = htons(0);
115 }
116
117 static bool is_flow_key_valid(const struct sw_flow_key *key)
118 {
119 return !!key->eth.type;
120 }
121
122 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
123 const struct ovs_action_push_mpls *mpls)
124 {
125 __be32 *new_mpls_lse;
126 struct ethhdr *hdr;
127
128 /* Networking stack do not allow simultaneous Tunnel and MPLS GSO. */
129 if (skb->encapsulation)
130 return -ENOTSUPP;
131
132 if (skb_cow_head(skb, MPLS_HLEN) < 0)
133 return -ENOMEM;
134
135 skb_push(skb, MPLS_HLEN);
136 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
137 skb->mac_len);
138 skb_reset_mac_header(skb);
139
140 new_mpls_lse = (__be32 *)skb_mpls_header(skb);
141 *new_mpls_lse = mpls->mpls_lse;
142
143 if (skb->ip_summed == CHECKSUM_COMPLETE)
144 skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
145 MPLS_HLEN, 0));
146
147 hdr = eth_hdr(skb);
148 hdr->h_proto = mpls->mpls_ethertype;
149
150 if (!skb->inner_protocol)
151 skb_set_inner_protocol(skb, skb->protocol);
152 skb->protocol = mpls->mpls_ethertype;
153
154 invalidate_flow_key(key);
155 return 0;
156 }
157
158 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
159 const __be16 ethertype)
160 {
161 struct ethhdr *hdr;
162 int err;
163
164 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
165 if (unlikely(err))
166 return err;
167
168 skb_postpull_rcsum(skb, skb_mpls_header(skb), MPLS_HLEN);
169
170 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
171 skb->mac_len);
172
173 __skb_pull(skb, MPLS_HLEN);
174 skb_reset_mac_header(skb);
175
176 /* skb_mpls_header() is used to locate the ethertype
177 * field correctly in the presence of VLAN tags.
178 */
179 hdr = (struct ethhdr *)(skb_mpls_header(skb) - ETH_HLEN);
180 hdr->h_proto = ethertype;
181 if (eth_p_mpls(skb->protocol))
182 skb->protocol = ethertype;
183
184 invalidate_flow_key(key);
185 return 0;
186 }
187
188 /* 'KEY' must not have any bits set outside of the 'MASK' */
189 #define MASKED(OLD, KEY, MASK) ((KEY) | ((OLD) & ~(MASK)))
190 #define SET_MASKED(OLD, KEY, MASK) ((OLD) = MASKED(OLD, KEY, MASK))
191
192 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
193 const __be32 *mpls_lse, const __be32 *mask)
194 {
195 __be32 *stack;
196 __be32 lse;
197 int err;
198
199 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
200 if (unlikely(err))
201 return err;
202
203 stack = (__be32 *)skb_mpls_header(skb);
204 lse = MASKED(*stack, *mpls_lse, *mask);
205 if (skb->ip_summed == CHECKSUM_COMPLETE) {
206 __be32 diff[] = { ~(*stack), lse };
207
208 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
209 ~skb->csum);
210 }
211
212 *stack = lse;
213 flow_key->mpls.top_lse = lse;
214 return 0;
215 }
216
217 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
218 {
219 int err;
220
221 err = skb_vlan_pop(skb);
222 if (skb_vlan_tag_present(skb))
223 invalidate_flow_key(key);
224 else
225 key->eth.tci = 0;
226 return err;
227 }
228
229 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
230 const struct ovs_action_push_vlan *vlan)
231 {
232 if (skb_vlan_tag_present(skb))
233 invalidate_flow_key(key);
234 else
235 key->eth.tci = vlan->vlan_tci;
236 return skb_vlan_push(skb, vlan->vlan_tpid,
237 ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
238 }
239
240 /* 'src' is already properly masked. */
241 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
242 {
243 u16 *dst = (u16 *)dst_;
244 const u16 *src = (const u16 *)src_;
245 const u16 *mask = (const u16 *)mask_;
246
247 SET_MASKED(dst[0], src[0], mask[0]);
248 SET_MASKED(dst[1], src[1], mask[1]);
249 SET_MASKED(dst[2], src[2], mask[2]);
250 }
251
252 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
253 const struct ovs_key_ethernet *key,
254 const struct ovs_key_ethernet *mask)
255 {
256 int err;
257
258 err = skb_ensure_writable(skb, ETH_HLEN);
259 if (unlikely(err))
260 return err;
261
262 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
263
264 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
265 mask->eth_src);
266 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
267 mask->eth_dst);
268
269 ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
270
271 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
272 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
273 return 0;
274 }
275
276 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
277 __be32 addr, __be32 new_addr)
278 {
279 int transport_len = skb->len - skb_transport_offset(skb);
280
281 if (nh->frag_off & htons(IP_OFFSET))
282 return;
283
284 if (nh->protocol == IPPROTO_TCP) {
285 if (likely(transport_len >= sizeof(struct tcphdr)))
286 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
287 addr, new_addr, 1);
288 } else if (nh->protocol == IPPROTO_UDP) {
289 if (likely(transport_len >= sizeof(struct udphdr))) {
290 struct udphdr *uh = udp_hdr(skb);
291
292 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
293 inet_proto_csum_replace4(&uh->check, skb,
294 addr, new_addr, 1);
295 if (!uh->check)
296 uh->check = CSUM_MANGLED_0;
297 }
298 }
299 }
300 }
301
302 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
303 __be32 *addr, __be32 new_addr)
304 {
305 update_ip_l4_checksum(skb, nh, *addr, new_addr);
306 csum_replace4(&nh->check, *addr, new_addr);
307 skb_clear_hash(skb);
308 *addr = new_addr;
309 }
310
311 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
312 __be32 addr[4], const __be32 new_addr[4])
313 {
314 int transport_len = skb->len - skb_transport_offset(skb);
315
316 if (l4_proto == NEXTHDR_TCP) {
317 if (likely(transport_len >= sizeof(struct tcphdr)))
318 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
319 addr, new_addr, 1);
320 } else if (l4_proto == NEXTHDR_UDP) {
321 if (likely(transport_len >= sizeof(struct udphdr))) {
322 struct udphdr *uh = udp_hdr(skb);
323
324 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
325 inet_proto_csum_replace16(&uh->check, skb,
326 addr, new_addr, 1);
327 if (!uh->check)
328 uh->check = CSUM_MANGLED_0;
329 }
330 }
331 } else if (l4_proto == NEXTHDR_ICMP) {
332 if (likely(transport_len >= sizeof(struct icmp6hdr)))
333 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
334 skb, addr, new_addr, 1);
335 }
336 }
337
338 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
339 const __be32 mask[4], __be32 masked[4])
340 {
341 masked[0] = MASKED(old[0], addr[0], mask[0]);
342 masked[1] = MASKED(old[1], addr[1], mask[1]);
343 masked[2] = MASKED(old[2], addr[2], mask[2]);
344 masked[3] = MASKED(old[3], addr[3], mask[3]);
345 }
346
347 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
348 __be32 addr[4], const __be32 new_addr[4],
349 bool recalculate_csum)
350 {
351 if (recalculate_csum)
352 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
353
354 skb_clear_hash(skb);
355 memcpy(addr, new_addr, sizeof(__be32[4]));
356 }
357
358 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
359 {
360 /* Bits 21-24 are always unmasked, so this retains their values. */
361 SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
362 SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
363 SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
364 }
365
366 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
367 u8 mask)
368 {
369 new_ttl = MASKED(nh->ttl, new_ttl, mask);
370
371 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
372 nh->ttl = new_ttl;
373 }
374
375 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
376 const struct ovs_key_ipv4 *key,
377 const struct ovs_key_ipv4 *mask)
378 {
379 struct iphdr *nh;
380 __be32 new_addr;
381 int err;
382
383 err = skb_ensure_writable(skb, skb_network_offset(skb) +
384 sizeof(struct iphdr));
385 if (unlikely(err))
386 return err;
387
388 nh = ip_hdr(skb);
389
390 /* Setting an IP addresses is typically only a side effect of
391 * matching on them in the current userspace implementation, so it
392 * makes sense to check if the value actually changed.
393 */
394 if (mask->ipv4_src) {
395 new_addr = MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
396
397 if (unlikely(new_addr != nh->saddr)) {
398 set_ip_addr(skb, nh, &nh->saddr, new_addr);
399 flow_key->ipv4.addr.src = new_addr;
400 }
401 }
402 if (mask->ipv4_dst) {
403 new_addr = MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
404
405 if (unlikely(new_addr != nh->daddr)) {
406 set_ip_addr(skb, nh, &nh->daddr, new_addr);
407 flow_key->ipv4.addr.dst = new_addr;
408 }
409 }
410 if (mask->ipv4_tos) {
411 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
412 flow_key->ip.tos = nh->tos;
413 }
414 if (mask->ipv4_ttl) {
415 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
416 flow_key->ip.ttl = nh->ttl;
417 }
418
419 return 0;
420 }
421
422 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
423 {
424 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
425 }
426
427 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
428 const struct ovs_key_ipv6 *key,
429 const struct ovs_key_ipv6 *mask)
430 {
431 struct ipv6hdr *nh;
432 int err;
433
434 err = skb_ensure_writable(skb, skb_network_offset(skb) +
435 sizeof(struct ipv6hdr));
436 if (unlikely(err))
437 return err;
438
439 nh = ipv6_hdr(skb);
440
441 /* Setting an IP addresses is typically only a side effect of
442 * matching on them in the current userspace implementation, so it
443 * makes sense to check if the value actually changed.
444 */
445 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
446 __be32 *saddr = (__be32 *)&nh->saddr;
447 __be32 masked[4];
448
449 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
450
451 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
452 set_ipv6_addr(skb, key->ipv6_proto, saddr, masked,
453 true);
454 memcpy(&flow_key->ipv6.addr.src, masked,
455 sizeof(flow_key->ipv6.addr.src));
456 }
457 }
458 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
459 unsigned int offset = 0;
460 int flags = IP6_FH_F_SKIP_RH;
461 bool recalc_csum = true;
462 __be32 *daddr = (__be32 *)&nh->daddr;
463 __be32 masked[4];
464
465 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
466
467 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
468 if (ipv6_ext_hdr(nh->nexthdr))
469 recalc_csum = (ipv6_find_hdr(skb, &offset,
470 NEXTHDR_ROUTING,
471 NULL, &flags)
472 != NEXTHDR_ROUTING);
473
474 set_ipv6_addr(skb, key->ipv6_proto, daddr, masked,
475 recalc_csum);
476 memcpy(&flow_key->ipv6.addr.dst, masked,
477 sizeof(flow_key->ipv6.addr.dst));
478 }
479 }
480 if (mask->ipv6_tclass) {
481 ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
482 flow_key->ip.tos = ipv6_get_dsfield(nh);
483 }
484 if (mask->ipv6_label) {
485 set_ipv6_fl(nh, ntohl(key->ipv6_label),
486 ntohl(mask->ipv6_label));
487 flow_key->ipv6.label =
488 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
489 }
490 if (mask->ipv6_hlimit) {
491 SET_MASKED(nh->hop_limit, key->ipv6_hlimit, mask->ipv6_hlimit);
492 flow_key->ip.ttl = nh->hop_limit;
493 }
494 return 0;
495 }
496
497 /* Must follow skb_ensure_writable() since that can move the skb data. */
498 static void set_tp_port(struct sk_buff *skb, __be16 *port,
499 __be16 new_port, __sum16 *check)
500 {
501 inet_proto_csum_replace2(check, skb, *port, new_port, 0);
502 *port = new_port;
503 }
504
505 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
506 const struct ovs_key_udp *key,
507 const struct ovs_key_udp *mask)
508 {
509 struct udphdr *uh;
510 __be16 src, dst;
511 int err;
512
513 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
514 sizeof(struct udphdr));
515 if (unlikely(err))
516 return err;
517
518 uh = udp_hdr(skb);
519 /* Either of the masks is non-zero, so do not bother checking them. */
520 src = MASKED(uh->source, key->udp_src, mask->udp_src);
521 dst = MASKED(uh->dest, key->udp_dst, mask->udp_dst);
522
523 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
524 if (likely(src != uh->source)) {
525 set_tp_port(skb, &uh->source, src, &uh->check);
526 flow_key->tp.src = src;
527 }
528 if (likely(dst != uh->dest)) {
529 set_tp_port(skb, &uh->dest, dst, &uh->check);
530 flow_key->tp.dst = dst;
531 }
532
533 if (unlikely(!uh->check))
534 uh->check = CSUM_MANGLED_0;
535 } else {
536 uh->source = src;
537 uh->dest = dst;
538 flow_key->tp.src = src;
539 flow_key->tp.dst = dst;
540 }
541
542 skb_clear_hash(skb);
543
544 return 0;
545 }
546
547 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
548 const struct ovs_key_tcp *key,
549 const struct ovs_key_tcp *mask)
550 {
551 struct tcphdr *th;
552 __be16 src, dst;
553 int err;
554
555 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
556 sizeof(struct tcphdr));
557 if (unlikely(err))
558 return err;
559
560 th = tcp_hdr(skb);
561 src = MASKED(th->source, key->tcp_src, mask->tcp_src);
562 if (likely(src != th->source)) {
563 set_tp_port(skb, &th->source, src, &th->check);
564 flow_key->tp.src = src;
565 }
566 dst = MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
567 if (likely(dst != th->dest)) {
568 set_tp_port(skb, &th->dest, dst, &th->check);
569 flow_key->tp.dst = dst;
570 }
571 skb_clear_hash(skb);
572
573 return 0;
574 }
575
576 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
577 const struct ovs_key_sctp *key,
578 const struct ovs_key_sctp *mask)
579 {
580 unsigned int sctphoff = skb_transport_offset(skb);
581 struct sctphdr *sh;
582 __le32 old_correct_csum, new_csum, old_csum;
583 int err;
584
585 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
586 if (unlikely(err))
587 return err;
588
589 sh = sctp_hdr(skb);
590 old_csum = sh->checksum;
591 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
592
593 sh->source = MASKED(sh->source, key->sctp_src, mask->sctp_src);
594 sh->dest = MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
595
596 new_csum = sctp_compute_cksum(skb, sctphoff);
597
598 /* Carry any checksum errors through. */
599 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
600
601 skb_clear_hash(skb);
602 flow_key->tp.src = sh->source;
603 flow_key->tp.dst = sh->dest;
604
605 return 0;
606 }
607
608 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
609 {
610 struct vport *vport = ovs_vport_rcu(dp, out_port);
611
612 if (likely(vport))
613 ovs_vport_send(vport, skb);
614 else
615 kfree_skb(skb);
616 }
617
618 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
619 struct sw_flow_key *key, const struct nlattr *attr,
620 const struct nlattr *actions, int actions_len)
621 {
622 struct ovs_tunnel_info info;
623 struct dp_upcall_info upcall;
624 const struct nlattr *a;
625 int rem;
626
627 memset(&upcall, 0, sizeof(upcall));
628 upcall.cmd = OVS_PACKET_CMD_ACTION;
629
630 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
631 a = nla_next(a, &rem)) {
632 switch (nla_type(a)) {
633 case OVS_USERSPACE_ATTR_USERDATA:
634 upcall.userdata = a;
635 break;
636
637 case OVS_USERSPACE_ATTR_PID:
638 upcall.portid = nla_get_u32(a);
639 break;
640
641 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
642 /* Get out tunnel info. */
643 struct vport *vport;
644
645 vport = ovs_vport_rcu(dp, nla_get_u32(a));
646 if (vport) {
647 int err;
648
649 err = ovs_vport_get_egress_tun_info(vport, skb,
650 &info);
651 if (!err)
652 upcall.egress_tun_info = &info;
653 }
654 break;
655 }
656
657 case OVS_USERSPACE_ATTR_ACTIONS: {
658 /* Include actions. */
659 upcall.actions = actions;
660 upcall.actions_len = actions_len;
661 break;
662 }
663
664 } /* End of switch. */
665 }
666
667 return ovs_dp_upcall(dp, skb, key, &upcall);
668 }
669
670 static int sample(struct datapath *dp, struct sk_buff *skb,
671 struct sw_flow_key *key, const struct nlattr *attr,
672 const struct nlattr *actions, int actions_len)
673 {
674 const struct nlattr *acts_list = NULL;
675 const struct nlattr *a;
676 int rem;
677
678 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
679 a = nla_next(a, &rem)) {
680 switch (nla_type(a)) {
681 case OVS_SAMPLE_ATTR_PROBABILITY:
682 if (prandom_u32() >= nla_get_u32(a))
683 return 0;
684 break;
685
686 case OVS_SAMPLE_ATTR_ACTIONS:
687 acts_list = a;
688 break;
689 }
690 }
691
692 rem = nla_len(acts_list);
693 a = nla_data(acts_list);
694
695 /* Actions list is empty, do nothing */
696 if (unlikely(!rem))
697 return 0;
698
699 /* The only known usage of sample action is having a single user-space
700 * action. Treat this usage as a special case.
701 * The output_userspace() should clone the skb to be sent to the
702 * user space. This skb will be consumed by its caller.
703 */
704 if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
705 nla_is_last(a, rem)))
706 return output_userspace(dp, skb, key, a, actions, actions_len);
707
708 skb = skb_clone(skb, GFP_ATOMIC);
709 if (!skb)
710 /* Skip the sample action when out of memory. */
711 return 0;
712
713 if (!add_deferred_actions(skb, key, a)) {
714 if (net_ratelimit())
715 pr_warn("%s: deferred actions limit reached, dropping sample action\n",
716 ovs_dp_name(dp));
717
718 kfree_skb(skb);
719 }
720 return 0;
721 }
722
723 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
724 const struct nlattr *attr)
725 {
726 struct ovs_action_hash *hash_act = nla_data(attr);
727 u32 hash = 0;
728
729 /* OVS_HASH_ALG_L4 is the only possible hash algorithm. */
730 hash = skb_get_hash(skb);
731 hash = jhash_1word(hash, hash_act->hash_basis);
732 if (!hash)
733 hash = 0x1;
734
735 key->ovs_flow_hash = hash;
736 }
737
738 static int execute_set_action(struct sk_buff *skb,
739 struct sw_flow_key *flow_key,
740 const struct nlattr *a)
741 {
742 /* Only tunnel set execution is supported without a mask. */
743 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
744 OVS_CB(skb)->egress_tun_info = nla_data(a);
745 return 0;
746 }
747
748 return -EINVAL;
749 }
750
751 /* Mask is at the midpoint of the data. */
752 #define get_mask(a, type) ((const type)nla_data(a) + 1)
753
754 static int execute_masked_set_action(struct sk_buff *skb,
755 struct sw_flow_key *flow_key,
756 const struct nlattr *a)
757 {
758 int err = 0;
759
760 switch (nla_type(a)) {
761 case OVS_KEY_ATTR_PRIORITY:
762 SET_MASKED(skb->priority, nla_get_u32(a), *get_mask(a, u32 *));
763 flow_key->phy.priority = skb->priority;
764 break;
765
766 case OVS_KEY_ATTR_SKB_MARK:
767 SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
768 flow_key->phy.skb_mark = skb->mark;
769 break;
770
771 case OVS_KEY_ATTR_TUNNEL_INFO:
772 /* Masked data not supported for tunnel. */
773 err = -EINVAL;
774 break;
775
776 case OVS_KEY_ATTR_ETHERNET:
777 err = set_eth_addr(skb, flow_key, nla_data(a),
778 get_mask(a, struct ovs_key_ethernet *));
779 break;
780
781 case OVS_KEY_ATTR_IPV4:
782 err = set_ipv4(skb, flow_key, nla_data(a),
783 get_mask(a, struct ovs_key_ipv4 *));
784 break;
785
786 case OVS_KEY_ATTR_IPV6:
787 err = set_ipv6(skb, flow_key, nla_data(a),
788 get_mask(a, struct ovs_key_ipv6 *));
789 break;
790
791 case OVS_KEY_ATTR_TCP:
792 err = set_tcp(skb, flow_key, nla_data(a),
793 get_mask(a, struct ovs_key_tcp *));
794 break;
795
796 case OVS_KEY_ATTR_UDP:
797 err = set_udp(skb, flow_key, nla_data(a),
798 get_mask(a, struct ovs_key_udp *));
799 break;
800
801 case OVS_KEY_ATTR_SCTP:
802 err = set_sctp(skb, flow_key, nla_data(a),
803 get_mask(a, struct ovs_key_sctp *));
804 break;
805
806 case OVS_KEY_ATTR_MPLS:
807 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
808 __be32 *));
809 break;
810 }
811
812 return err;
813 }
814
815 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
816 struct sw_flow_key *key,
817 const struct nlattr *a, int rem)
818 {
819 struct deferred_action *da;
820
821 if (!is_flow_key_valid(key)) {
822 int err;
823
824 err = ovs_flow_key_update(skb, key);
825 if (err)
826 return err;
827 }
828 BUG_ON(!is_flow_key_valid(key));
829
830 if (!nla_is_last(a, rem)) {
831 /* Recirc action is the not the last action
832 * of the action list, need to clone the skb.
833 */
834 skb = skb_clone(skb, GFP_ATOMIC);
835
836 /* Skip the recirc action when out of memory, but
837 * continue on with the rest of the action list.
838 */
839 if (!skb)
840 return 0;
841 }
842
843 da = add_deferred_actions(skb, key, NULL);
844 if (da) {
845 da->pkt_key.recirc_id = nla_get_u32(a);
846 } else {
847 kfree_skb(skb);
848
849 if (net_ratelimit())
850 pr_warn("%s: deferred action limit reached, drop recirc action\n",
851 ovs_dp_name(dp));
852 }
853
854 return 0;
855 }
856
857 /* Execute a list of actions against 'skb'. */
858 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
859 struct sw_flow_key *key,
860 const struct nlattr *attr, int len)
861 {
862 /* Every output action needs a separate clone of 'skb', but the common
863 * case is just a single output action, so that doing a clone and
864 * then freeing the original skbuff is wasteful. So the following code
865 * is slightly obscure just to avoid that.
866 */
867 int prev_port = -1;
868 const struct nlattr *a;
869 int rem;
870
871 for (a = attr, rem = len; rem > 0;
872 a = nla_next(a, &rem)) {
873 int err = 0;
874
875 if (unlikely(prev_port != -1)) {
876 struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
877
878 if (out_skb)
879 do_output(dp, out_skb, prev_port);
880
881 prev_port = -1;
882 }
883
884 switch (nla_type(a)) {
885 case OVS_ACTION_ATTR_OUTPUT:
886 prev_port = nla_get_u32(a);
887 break;
888
889 case OVS_ACTION_ATTR_USERSPACE:
890 output_userspace(dp, skb, key, a, attr, len);
891 break;
892
893 case OVS_ACTION_ATTR_HASH:
894 execute_hash(skb, key, a);
895 break;
896
897 case OVS_ACTION_ATTR_PUSH_MPLS:
898 err = push_mpls(skb, key, nla_data(a));
899 break;
900
901 case OVS_ACTION_ATTR_POP_MPLS:
902 err = pop_mpls(skb, key, nla_get_be16(a));
903 break;
904
905 case OVS_ACTION_ATTR_PUSH_VLAN:
906 err = push_vlan(skb, key, nla_data(a));
907 break;
908
909 case OVS_ACTION_ATTR_POP_VLAN:
910 err = pop_vlan(skb, key);
911 break;
912
913 case OVS_ACTION_ATTR_RECIRC:
914 err = execute_recirc(dp, skb, key, a, rem);
915 if (nla_is_last(a, rem)) {
916 /* If this is the last action, the skb has
917 * been consumed or freed.
918 * Return immediately.
919 */
920 return err;
921 }
922 break;
923
924 case OVS_ACTION_ATTR_SET:
925 err = execute_set_action(skb, key, nla_data(a));
926 break;
927
928 case OVS_ACTION_ATTR_SET_MASKED:
929 case OVS_ACTION_ATTR_SET_TO_MASKED:
930 err = execute_masked_set_action(skb, key, nla_data(a));
931 break;
932
933 case OVS_ACTION_ATTR_SAMPLE:
934 err = sample(dp, skb, key, a, attr, len);
935 break;
936 }
937
938 if (unlikely(err)) {
939 kfree_skb(skb);
940 return err;
941 }
942 }
943
944 if (prev_port != -1)
945 do_output(dp, skb, prev_port);
946 else
947 consume_skb(skb);
948
949 return 0;
950 }
951
952 static void process_deferred_actions(struct datapath *dp)
953 {
954 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
955
956 /* Do not touch the FIFO in case there is no deferred actions. */
957 if (action_fifo_is_empty(fifo))
958 return;
959
960 /* Finishing executing all deferred actions. */
961 do {
962 struct deferred_action *da = action_fifo_get(fifo);
963 struct sk_buff *skb = da->skb;
964 struct sw_flow_key *key = &da->pkt_key;
965 const struct nlattr *actions = da->actions;
966
967 if (actions)
968 do_execute_actions(dp, skb, key, actions,
969 nla_len(actions));
970 else
971 ovs_dp_process_packet(skb, key);
972 } while (!action_fifo_is_empty(fifo));
973
974 /* Reset FIFO for the next packet. */
975 action_fifo_init(fifo);
976 }
977
978 /* Execute a list of actions against 'skb'. */
979 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
980 const struct sw_flow_actions *acts,
981 struct sw_flow_key *key)
982 {
983 int level = this_cpu_read(exec_actions_level);
984 int err;
985
986 this_cpu_inc(exec_actions_level);
987 OVS_CB(skb)->egress_tun_info = NULL;
988 err = do_execute_actions(dp, skb, key,
989 acts->actions, acts->actions_len);
990
991 if (!level)
992 process_deferred_actions(dp);
993
994 this_cpu_dec(exec_actions_level);
995 return err;
996 }
997
998 int action_fifos_init(void)
999 {
1000 action_fifos = alloc_percpu(struct action_fifo);
1001 if (!action_fifos)
1002 return -ENOMEM;
1003
1004 return 0;
1005 }
1006
1007 void action_fifos_exit(void)
1008 {
1009 free_percpu(action_fifos);
1010 }
This page took 0.079709 seconds and 6 git commands to generate.