Merge branch 'sfi' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux into...
[deliverable/linux.git] / net / openvswitch / flow_netlink.c
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50
51 #include "flow_netlink.h"
52
53 static void update_range(struct sw_flow_match *match,
54 size_t offset, size_t size, bool is_mask)
55 {
56 struct sw_flow_key_range *range;
57 size_t start = rounddown(offset, sizeof(long));
58 size_t end = roundup(offset + size, sizeof(long));
59
60 if (!is_mask)
61 range = &match->range;
62 else
63 range = &match->mask->range;
64
65 if (range->start == range->end) {
66 range->start = start;
67 range->end = end;
68 return;
69 }
70
71 if (range->start > start)
72 range->start = start;
73
74 if (range->end < end)
75 range->end = end;
76 }
77
78 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
79 do { \
80 update_range(match, offsetof(struct sw_flow_key, field), \
81 sizeof((match)->key->field), is_mask); \
82 if (is_mask) \
83 (match)->mask->key.field = value; \
84 else \
85 (match)->key->field = value; \
86 } while (0)
87
88 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \
89 do { \
90 update_range(match, offset, len, is_mask); \
91 if (is_mask) \
92 memcpy((u8 *)&(match)->mask->key + offset, value_p, \
93 len); \
94 else \
95 memcpy((u8 *)(match)->key + offset, value_p, len); \
96 } while (0)
97
98 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
99 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
100 value_p, len, is_mask)
101
102 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
103 do { \
104 update_range(match, offsetof(struct sw_flow_key, field), \
105 sizeof((match)->key->field), is_mask); \
106 if (is_mask) \
107 memset((u8 *)&(match)->mask->key.field, value, \
108 sizeof((match)->mask->key.field)); \
109 else \
110 memset((u8 *)&(match)->key->field, value, \
111 sizeof((match)->key->field)); \
112 } while (0)
113
114 static bool match_validate(const struct sw_flow_match *match,
115 u64 key_attrs, u64 mask_attrs, bool log)
116 {
117 u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
118 u64 mask_allowed = key_attrs; /* At most allow all key attributes */
119
120 /* The following mask attributes allowed only if they
121 * pass the validation tests. */
122 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
123 | (1 << OVS_KEY_ATTR_IPV6)
124 | (1 << OVS_KEY_ATTR_TCP)
125 | (1 << OVS_KEY_ATTR_TCP_FLAGS)
126 | (1 << OVS_KEY_ATTR_UDP)
127 | (1 << OVS_KEY_ATTR_SCTP)
128 | (1 << OVS_KEY_ATTR_ICMP)
129 | (1 << OVS_KEY_ATTR_ICMPV6)
130 | (1 << OVS_KEY_ATTR_ARP)
131 | (1 << OVS_KEY_ATTR_ND)
132 | (1 << OVS_KEY_ATTR_MPLS));
133
134 /* Always allowed mask fields. */
135 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
136 | (1 << OVS_KEY_ATTR_IN_PORT)
137 | (1 << OVS_KEY_ATTR_ETHERTYPE));
138
139 /* Check key attributes. */
140 if (match->key->eth.type == htons(ETH_P_ARP)
141 || match->key->eth.type == htons(ETH_P_RARP)) {
142 key_expected |= 1 << OVS_KEY_ATTR_ARP;
143 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
144 mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
145 }
146
147 if (eth_p_mpls(match->key->eth.type)) {
148 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
149 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
150 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
151 }
152
153 if (match->key->eth.type == htons(ETH_P_IP)) {
154 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
155 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
156 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
157
158 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
159 if (match->key->ip.proto == IPPROTO_UDP) {
160 key_expected |= 1 << OVS_KEY_ATTR_UDP;
161 if (match->mask && (match->mask->key.ip.proto == 0xff))
162 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
163 }
164
165 if (match->key->ip.proto == IPPROTO_SCTP) {
166 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
167 if (match->mask && (match->mask->key.ip.proto == 0xff))
168 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
169 }
170
171 if (match->key->ip.proto == IPPROTO_TCP) {
172 key_expected |= 1 << OVS_KEY_ATTR_TCP;
173 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
174 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
175 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
176 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
177 }
178 }
179
180 if (match->key->ip.proto == IPPROTO_ICMP) {
181 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
182 if (match->mask && (match->mask->key.ip.proto == 0xff))
183 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
184 }
185 }
186 }
187
188 if (match->key->eth.type == htons(ETH_P_IPV6)) {
189 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
190 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
191 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
192
193 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
194 if (match->key->ip.proto == IPPROTO_UDP) {
195 key_expected |= 1 << OVS_KEY_ATTR_UDP;
196 if (match->mask && (match->mask->key.ip.proto == 0xff))
197 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
198 }
199
200 if (match->key->ip.proto == IPPROTO_SCTP) {
201 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
202 if (match->mask && (match->mask->key.ip.proto == 0xff))
203 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
204 }
205
206 if (match->key->ip.proto == IPPROTO_TCP) {
207 key_expected |= 1 << OVS_KEY_ATTR_TCP;
208 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
209 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
210 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
211 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
212 }
213 }
214
215 if (match->key->ip.proto == IPPROTO_ICMPV6) {
216 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
217 if (match->mask && (match->mask->key.ip.proto == 0xff))
218 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
219
220 if (match->key->tp.src ==
221 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
222 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
223 key_expected |= 1 << OVS_KEY_ATTR_ND;
224 if (match->mask && (match->mask->key.tp.src == htons(0xff)))
225 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
226 }
227 }
228 }
229 }
230
231 if ((key_attrs & key_expected) != key_expected) {
232 /* Key attributes check failed. */
233 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
234 (unsigned long long)key_attrs,
235 (unsigned long long)key_expected);
236 return false;
237 }
238
239 if ((mask_attrs & mask_allowed) != mask_attrs) {
240 /* Mask attributes check failed. */
241 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
242 (unsigned long long)mask_attrs,
243 (unsigned long long)mask_allowed);
244 return false;
245 }
246
247 return true;
248 }
249
250 size_t ovs_tun_key_attr_size(void)
251 {
252 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
253 * updating this function.
254 */
255 return nla_total_size(8) /* OVS_TUNNEL_KEY_ATTR_ID */
256 + nla_total_size(4) /* OVS_TUNNEL_KEY_ATTR_IPV4_SRC */
257 + nla_total_size(4) /* OVS_TUNNEL_KEY_ATTR_IPV4_DST */
258 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */
259 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */
260 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
261 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */
262 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */
263 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
264 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
265 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */
266 }
267
268 size_t ovs_key_attr_size(void)
269 {
270 /* Whenever adding new OVS_KEY_ FIELDS, we should consider
271 * updating this function.
272 */
273 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 22);
274
275 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */
276 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */
277 + ovs_tun_key_attr_size()
278 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */
279 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */
280 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */
281 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */
282 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */
283 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
284 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */
285 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */
286 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
287 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */
288 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */
289 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
290 }
291
292 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
293 static const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
294 [OVS_KEY_ATTR_ENCAP] = -1,
295 [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
296 [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
297 [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32),
298 [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
299 [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
300 [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
301 [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
302 [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
303 [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
304 [OVS_KEY_ATTR_TCP_FLAGS] = sizeof(__be16),
305 [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
306 [OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp),
307 [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
308 [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
309 [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
310 [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
311 [OVS_KEY_ATTR_RECIRC_ID] = sizeof(u32),
312 [OVS_KEY_ATTR_DP_HASH] = sizeof(u32),
313 [OVS_KEY_ATTR_TUNNEL] = -1,
314 [OVS_KEY_ATTR_MPLS] = sizeof(struct ovs_key_mpls),
315 };
316
317 static bool is_all_zero(const u8 *fp, size_t size)
318 {
319 int i;
320
321 if (!fp)
322 return false;
323
324 for (i = 0; i < size; i++)
325 if (fp[i])
326 return false;
327
328 return true;
329 }
330
331 static int __parse_flow_nlattrs(const struct nlattr *attr,
332 const struct nlattr *a[],
333 u64 *attrsp, bool log, bool nz)
334 {
335 const struct nlattr *nla;
336 u64 attrs;
337 int rem;
338
339 attrs = *attrsp;
340 nla_for_each_nested(nla, attr, rem) {
341 u16 type = nla_type(nla);
342 int expected_len;
343
344 if (type > OVS_KEY_ATTR_MAX) {
345 OVS_NLERR(log, "Key type %d is out of range max %d",
346 type, OVS_KEY_ATTR_MAX);
347 return -EINVAL;
348 }
349
350 if (attrs & (1 << type)) {
351 OVS_NLERR(log, "Duplicate key (type %d).", type);
352 return -EINVAL;
353 }
354
355 expected_len = ovs_key_lens[type];
356 if (nla_len(nla) != expected_len && expected_len != -1) {
357 OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
358 type, nla_len(nla), expected_len);
359 return -EINVAL;
360 }
361
362 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
363 attrs |= 1 << type;
364 a[type] = nla;
365 }
366 }
367 if (rem) {
368 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
369 return -EINVAL;
370 }
371
372 *attrsp = attrs;
373 return 0;
374 }
375
376 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
377 const struct nlattr *a[], u64 *attrsp,
378 bool log)
379 {
380 return __parse_flow_nlattrs(attr, a, attrsp, log, true);
381 }
382
383 static int parse_flow_nlattrs(const struct nlattr *attr,
384 const struct nlattr *a[], u64 *attrsp,
385 bool log)
386 {
387 return __parse_flow_nlattrs(attr, a, attrsp, log, false);
388 }
389
390 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
391 struct sw_flow_match *match, bool is_mask,
392 bool log)
393 {
394 unsigned long opt_key_offset;
395
396 if (nla_len(a) > sizeof(match->key->tun_opts)) {
397 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
398 nla_len(a), sizeof(match->key->tun_opts));
399 return -EINVAL;
400 }
401
402 if (nla_len(a) % 4 != 0) {
403 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
404 nla_len(a));
405 return -EINVAL;
406 }
407
408 /* We need to record the length of the options passed
409 * down, otherwise packets with the same format but
410 * additional options will be silently matched.
411 */
412 if (!is_mask) {
413 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
414 false);
415 } else {
416 /* This is somewhat unusual because it looks at
417 * both the key and mask while parsing the
418 * attributes (and by extension assumes the key
419 * is parsed first). Normally, we would verify
420 * that each is the correct length and that the
421 * attributes line up in the validate function.
422 * However, that is difficult because this is
423 * variable length and we won't have the
424 * information later.
425 */
426 if (match->key->tun_opts_len != nla_len(a)) {
427 OVS_NLERR(log, "Geneve option len %d != mask len %d",
428 match->key->tun_opts_len, nla_len(a));
429 return -EINVAL;
430 }
431
432 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
433 }
434
435 opt_key_offset = (unsigned long)GENEVE_OPTS((struct sw_flow_key *)0,
436 nla_len(a));
437 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
438 nla_len(a), is_mask);
439 return 0;
440 }
441
442 static int ipv4_tun_from_nlattr(const struct nlattr *attr,
443 struct sw_flow_match *match, bool is_mask,
444 bool log)
445 {
446 struct nlattr *a;
447 int rem;
448 bool ttl = false;
449 __be16 tun_flags = 0;
450
451 nla_for_each_nested(a, attr, rem) {
452 int type = nla_type(a);
453 int err;
454
455 static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
456 [OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64),
457 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32),
458 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32),
459 [OVS_TUNNEL_KEY_ATTR_TOS] = 1,
460 [OVS_TUNNEL_KEY_ATTR_TTL] = 1,
461 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0,
462 [OVS_TUNNEL_KEY_ATTR_CSUM] = 0,
463 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = sizeof(u16),
464 [OVS_TUNNEL_KEY_ATTR_TP_DST] = sizeof(u16),
465 [OVS_TUNNEL_KEY_ATTR_OAM] = 0,
466 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = -1,
467 };
468
469 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
470 OVS_NLERR(log, "Tunnel attr %d out of range max %d",
471 type, OVS_TUNNEL_KEY_ATTR_MAX);
472 return -EINVAL;
473 }
474
475 if (ovs_tunnel_key_lens[type] != nla_len(a) &&
476 ovs_tunnel_key_lens[type] != -1) {
477 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
478 type, nla_len(a), ovs_tunnel_key_lens[type]);
479 return -EINVAL;
480 }
481
482 switch (type) {
483 case OVS_TUNNEL_KEY_ATTR_ID:
484 SW_FLOW_KEY_PUT(match, tun_key.tun_id,
485 nla_get_be64(a), is_mask);
486 tun_flags |= TUNNEL_KEY;
487 break;
488 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
489 SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
490 nla_get_be32(a), is_mask);
491 break;
492 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
493 SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
494 nla_get_be32(a), is_mask);
495 break;
496 case OVS_TUNNEL_KEY_ATTR_TOS:
497 SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
498 nla_get_u8(a), is_mask);
499 break;
500 case OVS_TUNNEL_KEY_ATTR_TTL:
501 SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
502 nla_get_u8(a), is_mask);
503 ttl = true;
504 break;
505 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
506 tun_flags |= TUNNEL_DONT_FRAGMENT;
507 break;
508 case OVS_TUNNEL_KEY_ATTR_CSUM:
509 tun_flags |= TUNNEL_CSUM;
510 break;
511 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
512 SW_FLOW_KEY_PUT(match, tun_key.tp_src,
513 nla_get_be16(a), is_mask);
514 break;
515 case OVS_TUNNEL_KEY_ATTR_TP_DST:
516 SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
517 nla_get_be16(a), is_mask);
518 break;
519 case OVS_TUNNEL_KEY_ATTR_OAM:
520 tun_flags |= TUNNEL_OAM;
521 break;
522 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
523 err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
524 if (err)
525 return err;
526
527 tun_flags |= TUNNEL_OPTIONS_PRESENT;
528 break;
529 default:
530 OVS_NLERR(log, "Unknown IPv4 tunnel attribute %d",
531 type);
532 return -EINVAL;
533 }
534 }
535
536 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
537
538 if (rem > 0) {
539 OVS_NLERR(log, "IPv4 tunnel attribute has %d unknown bytes.",
540 rem);
541 return -EINVAL;
542 }
543
544 if (!is_mask) {
545 if (!match->key->tun_key.ipv4_dst) {
546 OVS_NLERR(log, "IPv4 tunnel dst address is zero");
547 return -EINVAL;
548 }
549
550 if (!ttl) {
551 OVS_NLERR(log, "IPv4 tunnel TTL not specified.");
552 return -EINVAL;
553 }
554 }
555
556 return 0;
557 }
558
559 static int __ipv4_tun_to_nlattr(struct sk_buff *skb,
560 const struct ovs_key_ipv4_tunnel *output,
561 const struct geneve_opt *tun_opts,
562 int swkey_tun_opts_len)
563 {
564 if (output->tun_flags & TUNNEL_KEY &&
565 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
566 return -EMSGSIZE;
567 if (output->ipv4_src &&
568 nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src))
569 return -EMSGSIZE;
570 if (output->ipv4_dst &&
571 nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst))
572 return -EMSGSIZE;
573 if (output->ipv4_tos &&
574 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
575 return -EMSGSIZE;
576 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
577 return -EMSGSIZE;
578 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
579 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
580 return -EMSGSIZE;
581 if ((output->tun_flags & TUNNEL_CSUM) &&
582 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
583 return -EMSGSIZE;
584 if (output->tp_src &&
585 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
586 return -EMSGSIZE;
587 if (output->tp_dst &&
588 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
589 return -EMSGSIZE;
590 if ((output->tun_flags & TUNNEL_OAM) &&
591 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
592 return -EMSGSIZE;
593 if (tun_opts &&
594 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
595 swkey_tun_opts_len, tun_opts))
596 return -EMSGSIZE;
597
598 return 0;
599 }
600
601 static int ipv4_tun_to_nlattr(struct sk_buff *skb,
602 const struct ovs_key_ipv4_tunnel *output,
603 const struct geneve_opt *tun_opts,
604 int swkey_tun_opts_len)
605 {
606 struct nlattr *nla;
607 int err;
608
609 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
610 if (!nla)
611 return -EMSGSIZE;
612
613 err = __ipv4_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len);
614 if (err)
615 return err;
616
617 nla_nest_end(skb, nla);
618 return 0;
619 }
620
621 int ovs_nla_put_egress_tunnel_key(struct sk_buff *skb,
622 const struct ovs_tunnel_info *egress_tun_info)
623 {
624 return __ipv4_tun_to_nlattr(skb, &egress_tun_info->tunnel,
625 egress_tun_info->options,
626 egress_tun_info->options_len);
627 }
628
629 static int metadata_from_nlattrs(struct sw_flow_match *match, u64 *attrs,
630 const struct nlattr **a, bool is_mask,
631 bool log)
632 {
633 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
634 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
635
636 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
637 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
638 }
639
640 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
641 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
642
643 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
644 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
645 }
646
647 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
648 SW_FLOW_KEY_PUT(match, phy.priority,
649 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
650 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
651 }
652
653 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
654 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
655
656 if (is_mask) {
657 in_port = 0xffffffff; /* Always exact match in_port. */
658 } else if (in_port >= DP_MAX_PORTS) {
659 OVS_NLERR(log, "Port %d exceeds max allowable %d",
660 in_port, DP_MAX_PORTS);
661 return -EINVAL;
662 }
663
664 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
665 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
666 } else if (!is_mask) {
667 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
668 }
669
670 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
671 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
672
673 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
674 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
675 }
676 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
677 if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
678 is_mask, log))
679 return -EINVAL;
680 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
681 }
682 return 0;
683 }
684
685 static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
686 const struct nlattr **a, bool is_mask,
687 bool log)
688 {
689 int err;
690
691 err = metadata_from_nlattrs(match, &attrs, a, is_mask, log);
692 if (err)
693 return err;
694
695 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
696 const struct ovs_key_ethernet *eth_key;
697
698 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
699 SW_FLOW_KEY_MEMCPY(match, eth.src,
700 eth_key->eth_src, ETH_ALEN, is_mask);
701 SW_FLOW_KEY_MEMCPY(match, eth.dst,
702 eth_key->eth_dst, ETH_ALEN, is_mask);
703 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
704 }
705
706 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
707 __be16 tci;
708
709 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
710 if (!(tci & htons(VLAN_TAG_PRESENT))) {
711 if (is_mask)
712 OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
713 else
714 OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
715
716 return -EINVAL;
717 }
718
719 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
720 attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
721 }
722
723 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
724 __be16 eth_type;
725
726 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
727 if (is_mask) {
728 /* Always exact match EtherType. */
729 eth_type = htons(0xffff);
730 } else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
731 OVS_NLERR(log, "EtherType %x is less than min %x",
732 ntohs(eth_type), ETH_P_802_3_MIN);
733 return -EINVAL;
734 }
735
736 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
737 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
738 } else if (!is_mask) {
739 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
740 }
741
742 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
743 const struct ovs_key_ipv4 *ipv4_key;
744
745 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
746 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
747 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
748 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
749 return -EINVAL;
750 }
751 SW_FLOW_KEY_PUT(match, ip.proto,
752 ipv4_key->ipv4_proto, is_mask);
753 SW_FLOW_KEY_PUT(match, ip.tos,
754 ipv4_key->ipv4_tos, is_mask);
755 SW_FLOW_KEY_PUT(match, ip.ttl,
756 ipv4_key->ipv4_ttl, is_mask);
757 SW_FLOW_KEY_PUT(match, ip.frag,
758 ipv4_key->ipv4_frag, is_mask);
759 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
760 ipv4_key->ipv4_src, is_mask);
761 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
762 ipv4_key->ipv4_dst, is_mask);
763 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
764 }
765
766 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
767 const struct ovs_key_ipv6 *ipv6_key;
768
769 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
770 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
771 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
772 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
773 return -EINVAL;
774 }
775
776 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
777 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
778 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
779 return -EINVAL;
780 }
781
782 SW_FLOW_KEY_PUT(match, ipv6.label,
783 ipv6_key->ipv6_label, is_mask);
784 SW_FLOW_KEY_PUT(match, ip.proto,
785 ipv6_key->ipv6_proto, is_mask);
786 SW_FLOW_KEY_PUT(match, ip.tos,
787 ipv6_key->ipv6_tclass, is_mask);
788 SW_FLOW_KEY_PUT(match, ip.ttl,
789 ipv6_key->ipv6_hlimit, is_mask);
790 SW_FLOW_KEY_PUT(match, ip.frag,
791 ipv6_key->ipv6_frag, is_mask);
792 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
793 ipv6_key->ipv6_src,
794 sizeof(match->key->ipv6.addr.src),
795 is_mask);
796 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
797 ipv6_key->ipv6_dst,
798 sizeof(match->key->ipv6.addr.dst),
799 is_mask);
800
801 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
802 }
803
804 if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
805 const struct ovs_key_arp *arp_key;
806
807 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
808 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
809 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
810 arp_key->arp_op);
811 return -EINVAL;
812 }
813
814 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
815 arp_key->arp_sip, is_mask);
816 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
817 arp_key->arp_tip, is_mask);
818 SW_FLOW_KEY_PUT(match, ip.proto,
819 ntohs(arp_key->arp_op), is_mask);
820 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
821 arp_key->arp_sha, ETH_ALEN, is_mask);
822 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
823 arp_key->arp_tha, ETH_ALEN, is_mask);
824
825 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
826 }
827
828 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
829 const struct ovs_key_mpls *mpls_key;
830
831 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
832 SW_FLOW_KEY_PUT(match, mpls.top_lse,
833 mpls_key->mpls_lse, is_mask);
834
835 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
836 }
837
838 if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
839 const struct ovs_key_tcp *tcp_key;
840
841 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
842 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
843 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
844 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
845 }
846
847 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
848 SW_FLOW_KEY_PUT(match, tp.flags,
849 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
850 is_mask);
851 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
852 }
853
854 if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
855 const struct ovs_key_udp *udp_key;
856
857 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
858 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
859 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
860 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
861 }
862
863 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
864 const struct ovs_key_sctp *sctp_key;
865
866 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
867 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
868 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
869 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
870 }
871
872 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
873 const struct ovs_key_icmp *icmp_key;
874
875 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
876 SW_FLOW_KEY_PUT(match, tp.src,
877 htons(icmp_key->icmp_type), is_mask);
878 SW_FLOW_KEY_PUT(match, tp.dst,
879 htons(icmp_key->icmp_code), is_mask);
880 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
881 }
882
883 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
884 const struct ovs_key_icmpv6 *icmpv6_key;
885
886 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
887 SW_FLOW_KEY_PUT(match, tp.src,
888 htons(icmpv6_key->icmpv6_type), is_mask);
889 SW_FLOW_KEY_PUT(match, tp.dst,
890 htons(icmpv6_key->icmpv6_code), is_mask);
891 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
892 }
893
894 if (attrs & (1 << OVS_KEY_ATTR_ND)) {
895 const struct ovs_key_nd *nd_key;
896
897 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
898 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
899 nd_key->nd_target,
900 sizeof(match->key->ipv6.nd.target),
901 is_mask);
902 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
903 nd_key->nd_sll, ETH_ALEN, is_mask);
904 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
905 nd_key->nd_tll, ETH_ALEN, is_mask);
906 attrs &= ~(1 << OVS_KEY_ATTR_ND);
907 }
908
909 if (attrs != 0) {
910 OVS_NLERR(log, "Unknown key attributes %llx",
911 (unsigned long long)attrs);
912 return -EINVAL;
913 }
914
915 return 0;
916 }
917
918 static void nlattr_set(struct nlattr *attr, u8 val, bool is_attr_mask_key)
919 {
920 struct nlattr *nla;
921 int rem;
922
923 /* The nlattr stream should already have been validated */
924 nla_for_each_nested(nla, attr, rem) {
925 /* We assume that ovs_key_lens[type] == -1 means that type is a
926 * nested attribute
927 */
928 if (is_attr_mask_key && ovs_key_lens[nla_type(nla)] == -1)
929 nlattr_set(nla, val, false);
930 else
931 memset(nla_data(nla), val, nla_len(nla));
932 }
933 }
934
935 static void mask_set_nlattr(struct nlattr *attr, u8 val)
936 {
937 nlattr_set(attr, val, true);
938 }
939
940 /**
941 * ovs_nla_get_match - parses Netlink attributes into a flow key and
942 * mask. In case the 'mask' is NULL, the flow is treated as exact match
943 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
944 * does not include any don't care bit.
945 * @match: receives the extracted flow match information.
946 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
947 * sequence. The fields should of the packet that triggered the creation
948 * of this flow.
949 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
950 * attribute specifies the mask field of the wildcarded flow.
951 * @log: Boolean to allow kernel error logging. Normally true, but when
952 * probing for feature compatibility this should be passed in as false to
953 * suppress unnecessary error logging.
954 */
955 int ovs_nla_get_match(struct sw_flow_match *match,
956 const struct nlattr *nla_key,
957 const struct nlattr *nla_mask,
958 bool log)
959 {
960 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
961 const struct nlattr *encap;
962 struct nlattr *newmask = NULL;
963 u64 key_attrs = 0;
964 u64 mask_attrs = 0;
965 bool encap_valid = false;
966 int err;
967
968 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
969 if (err)
970 return err;
971
972 if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
973 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
974 (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
975 __be16 tci;
976
977 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
978 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
979 OVS_NLERR(log, "Invalid Vlan frame.");
980 return -EINVAL;
981 }
982
983 key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
984 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
985 encap = a[OVS_KEY_ATTR_ENCAP];
986 key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
987 encap_valid = true;
988
989 if (tci & htons(VLAN_TAG_PRESENT)) {
990 err = parse_flow_nlattrs(encap, a, &key_attrs, log);
991 if (err)
992 return err;
993 } else if (!tci) {
994 /* Corner case for truncated 802.1Q header. */
995 if (nla_len(encap)) {
996 OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
997 return -EINVAL;
998 }
999 } else {
1000 OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1001 return -EINVAL;
1002 }
1003 }
1004
1005 err = ovs_key_from_nlattrs(match, key_attrs, a, false, log);
1006 if (err)
1007 return err;
1008
1009 if (match->mask) {
1010 if (!nla_mask) {
1011 /* Create an exact match mask. We need to set to 0xff
1012 * all the 'match->mask' fields that have been touched
1013 * in 'match->key'. We cannot simply memset
1014 * 'match->mask', because padding bytes and fields not
1015 * specified in 'match->key' should be left to 0.
1016 * Instead, we use a stream of netlink attributes,
1017 * copied from 'key' and set to 0xff.
1018 * ovs_key_from_nlattrs() will take care of filling
1019 * 'match->mask' appropriately.
1020 */
1021 newmask = kmemdup(nla_key,
1022 nla_total_size(nla_len(nla_key)),
1023 GFP_KERNEL);
1024 if (!newmask)
1025 return -ENOMEM;
1026
1027 mask_set_nlattr(newmask, 0xff);
1028
1029 /* The userspace does not send tunnel attributes that
1030 * are 0, but we should not wildcard them nonetheless.
1031 */
1032 if (match->key->tun_key.ipv4_dst)
1033 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1034 0xff, true);
1035
1036 nla_mask = newmask;
1037 }
1038
1039 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1040 if (err)
1041 goto free_newmask;
1042
1043 /* Always match on tci. */
1044 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1045
1046 if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
1047 __be16 eth_type = 0;
1048 __be16 tci = 0;
1049
1050 if (!encap_valid) {
1051 OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1052 err = -EINVAL;
1053 goto free_newmask;
1054 }
1055
1056 mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1057 if (a[OVS_KEY_ATTR_ETHERTYPE])
1058 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1059
1060 if (eth_type == htons(0xffff)) {
1061 mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1062 encap = a[OVS_KEY_ATTR_ENCAP];
1063 err = parse_flow_mask_nlattrs(encap, a,
1064 &mask_attrs, log);
1065 if (err)
1066 goto free_newmask;
1067 } else {
1068 OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
1069 ntohs(eth_type));
1070 err = -EINVAL;
1071 goto free_newmask;
1072 }
1073
1074 if (a[OVS_KEY_ATTR_VLAN])
1075 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1076
1077 if (!(tci & htons(VLAN_TAG_PRESENT))) {
1078 OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1079 ntohs(tci));
1080 err = -EINVAL;
1081 goto free_newmask;
1082 }
1083 }
1084
1085 err = ovs_key_from_nlattrs(match, mask_attrs, a, true, log);
1086 if (err)
1087 goto free_newmask;
1088 }
1089
1090 if (!match_validate(match, key_attrs, mask_attrs, log))
1091 err = -EINVAL;
1092
1093 free_newmask:
1094 kfree(newmask);
1095 return err;
1096 }
1097
1098 /**
1099 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1100 * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1101 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1102 * sequence.
1103 * @log: Boolean to allow kernel error logging. Normally true, but when
1104 * probing for feature compatibility this should be passed in as false to
1105 * suppress unnecessary error logging.
1106 *
1107 * This parses a series of Netlink attributes that form a flow key, which must
1108 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1109 * get the metadata, that is, the parts of the flow key that cannot be
1110 * extracted from the packet itself.
1111 */
1112
1113 int ovs_nla_get_flow_metadata(const struct nlattr *attr,
1114 struct sw_flow_key *key,
1115 bool log)
1116 {
1117 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1118 struct sw_flow_match match;
1119 u64 attrs = 0;
1120 int err;
1121
1122 err = parse_flow_nlattrs(attr, a, &attrs, log);
1123 if (err)
1124 return -EINVAL;
1125
1126 memset(&match, 0, sizeof(match));
1127 match.key = key;
1128
1129 key->phy.in_port = DP_MAX_PORTS;
1130
1131 return metadata_from_nlattrs(&match, &attrs, a, false, log);
1132 }
1133
1134 int ovs_nla_put_flow(const struct sw_flow_key *swkey,
1135 const struct sw_flow_key *output, struct sk_buff *skb)
1136 {
1137 struct ovs_key_ethernet *eth_key;
1138 struct nlattr *nla, *encap;
1139 bool is_mask = (swkey != output);
1140
1141 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1142 goto nla_put_failure;
1143
1144 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1145 goto nla_put_failure;
1146
1147 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1148 goto nla_put_failure;
1149
1150 if ((swkey->tun_key.ipv4_dst || is_mask)) {
1151 const struct geneve_opt *opts = NULL;
1152
1153 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1154 opts = GENEVE_OPTS(output, swkey->tun_opts_len);
1155
1156 if (ipv4_tun_to_nlattr(skb, &output->tun_key, opts,
1157 swkey->tun_opts_len))
1158 goto nla_put_failure;
1159 }
1160
1161 if (swkey->phy.in_port == DP_MAX_PORTS) {
1162 if (is_mask && (output->phy.in_port == 0xffff))
1163 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1164 goto nla_put_failure;
1165 } else {
1166 u16 upper_u16;
1167 upper_u16 = !is_mask ? 0 : 0xffff;
1168
1169 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1170 (upper_u16 << 16) | output->phy.in_port))
1171 goto nla_put_failure;
1172 }
1173
1174 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1175 goto nla_put_failure;
1176
1177 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1178 if (!nla)
1179 goto nla_put_failure;
1180
1181 eth_key = nla_data(nla);
1182 ether_addr_copy(eth_key->eth_src, output->eth.src);
1183 ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1184
1185 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1186 __be16 eth_type;
1187 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1188 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1189 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1190 goto nla_put_failure;
1191 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1192 if (!swkey->eth.tci)
1193 goto unencap;
1194 } else
1195 encap = NULL;
1196
1197 if (swkey->eth.type == htons(ETH_P_802_2)) {
1198 /*
1199 * Ethertype 802.2 is represented in the netlink with omitted
1200 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1201 * 0xffff in the mask attribute. Ethertype can also
1202 * be wildcarded.
1203 */
1204 if (is_mask && output->eth.type)
1205 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1206 output->eth.type))
1207 goto nla_put_failure;
1208 goto unencap;
1209 }
1210
1211 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1212 goto nla_put_failure;
1213
1214 if (swkey->eth.type == htons(ETH_P_IP)) {
1215 struct ovs_key_ipv4 *ipv4_key;
1216
1217 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1218 if (!nla)
1219 goto nla_put_failure;
1220 ipv4_key = nla_data(nla);
1221 ipv4_key->ipv4_src = output->ipv4.addr.src;
1222 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1223 ipv4_key->ipv4_proto = output->ip.proto;
1224 ipv4_key->ipv4_tos = output->ip.tos;
1225 ipv4_key->ipv4_ttl = output->ip.ttl;
1226 ipv4_key->ipv4_frag = output->ip.frag;
1227 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1228 struct ovs_key_ipv6 *ipv6_key;
1229
1230 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1231 if (!nla)
1232 goto nla_put_failure;
1233 ipv6_key = nla_data(nla);
1234 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1235 sizeof(ipv6_key->ipv6_src));
1236 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1237 sizeof(ipv6_key->ipv6_dst));
1238 ipv6_key->ipv6_label = output->ipv6.label;
1239 ipv6_key->ipv6_proto = output->ip.proto;
1240 ipv6_key->ipv6_tclass = output->ip.tos;
1241 ipv6_key->ipv6_hlimit = output->ip.ttl;
1242 ipv6_key->ipv6_frag = output->ip.frag;
1243 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1244 swkey->eth.type == htons(ETH_P_RARP)) {
1245 struct ovs_key_arp *arp_key;
1246
1247 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1248 if (!nla)
1249 goto nla_put_failure;
1250 arp_key = nla_data(nla);
1251 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1252 arp_key->arp_sip = output->ipv4.addr.src;
1253 arp_key->arp_tip = output->ipv4.addr.dst;
1254 arp_key->arp_op = htons(output->ip.proto);
1255 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1256 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1257 } else if (eth_p_mpls(swkey->eth.type)) {
1258 struct ovs_key_mpls *mpls_key;
1259
1260 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1261 if (!nla)
1262 goto nla_put_failure;
1263 mpls_key = nla_data(nla);
1264 mpls_key->mpls_lse = output->mpls.top_lse;
1265 }
1266
1267 if ((swkey->eth.type == htons(ETH_P_IP) ||
1268 swkey->eth.type == htons(ETH_P_IPV6)) &&
1269 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1270
1271 if (swkey->ip.proto == IPPROTO_TCP) {
1272 struct ovs_key_tcp *tcp_key;
1273
1274 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1275 if (!nla)
1276 goto nla_put_failure;
1277 tcp_key = nla_data(nla);
1278 tcp_key->tcp_src = output->tp.src;
1279 tcp_key->tcp_dst = output->tp.dst;
1280 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1281 output->tp.flags))
1282 goto nla_put_failure;
1283 } else if (swkey->ip.proto == IPPROTO_UDP) {
1284 struct ovs_key_udp *udp_key;
1285
1286 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1287 if (!nla)
1288 goto nla_put_failure;
1289 udp_key = nla_data(nla);
1290 udp_key->udp_src = output->tp.src;
1291 udp_key->udp_dst = output->tp.dst;
1292 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1293 struct ovs_key_sctp *sctp_key;
1294
1295 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1296 if (!nla)
1297 goto nla_put_failure;
1298 sctp_key = nla_data(nla);
1299 sctp_key->sctp_src = output->tp.src;
1300 sctp_key->sctp_dst = output->tp.dst;
1301 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1302 swkey->ip.proto == IPPROTO_ICMP) {
1303 struct ovs_key_icmp *icmp_key;
1304
1305 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1306 if (!nla)
1307 goto nla_put_failure;
1308 icmp_key = nla_data(nla);
1309 icmp_key->icmp_type = ntohs(output->tp.src);
1310 icmp_key->icmp_code = ntohs(output->tp.dst);
1311 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1312 swkey->ip.proto == IPPROTO_ICMPV6) {
1313 struct ovs_key_icmpv6 *icmpv6_key;
1314
1315 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1316 sizeof(*icmpv6_key));
1317 if (!nla)
1318 goto nla_put_failure;
1319 icmpv6_key = nla_data(nla);
1320 icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1321 icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1322
1323 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1324 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1325 struct ovs_key_nd *nd_key;
1326
1327 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1328 if (!nla)
1329 goto nla_put_failure;
1330 nd_key = nla_data(nla);
1331 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1332 sizeof(nd_key->nd_target));
1333 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1334 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1335 }
1336 }
1337 }
1338
1339 unencap:
1340 if (encap)
1341 nla_nest_end(skb, encap);
1342
1343 return 0;
1344
1345 nla_put_failure:
1346 return -EMSGSIZE;
1347 }
1348
1349 #define MAX_ACTIONS_BUFSIZE (32 * 1024)
1350
1351 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1352 {
1353 struct sw_flow_actions *sfa;
1354
1355 if (size > MAX_ACTIONS_BUFSIZE) {
1356 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1357 return ERR_PTR(-EINVAL);
1358 }
1359
1360 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1361 if (!sfa)
1362 return ERR_PTR(-ENOMEM);
1363
1364 sfa->actions_len = 0;
1365 return sfa;
1366 }
1367
1368 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1369 * The caller must hold rcu_read_lock for this to be sensible. */
1370 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1371 {
1372 kfree_rcu(sf_acts, rcu);
1373 }
1374
1375 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1376 int attr_len, bool log)
1377 {
1378
1379 struct sw_flow_actions *acts;
1380 int new_acts_size;
1381 int req_size = NLA_ALIGN(attr_len);
1382 int next_offset = offsetof(struct sw_flow_actions, actions) +
1383 (*sfa)->actions_len;
1384
1385 if (req_size <= (ksize(*sfa) - next_offset))
1386 goto out;
1387
1388 new_acts_size = ksize(*sfa) * 2;
1389
1390 if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1391 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1392 return ERR_PTR(-EMSGSIZE);
1393 new_acts_size = MAX_ACTIONS_BUFSIZE;
1394 }
1395
1396 acts = nla_alloc_flow_actions(new_acts_size, log);
1397 if (IS_ERR(acts))
1398 return (void *)acts;
1399
1400 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1401 acts->actions_len = (*sfa)->actions_len;
1402 kfree(*sfa);
1403 *sfa = acts;
1404
1405 out:
1406 (*sfa)->actions_len += req_size;
1407 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1408 }
1409
1410 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1411 int attrtype, void *data, int len, bool log)
1412 {
1413 struct nlattr *a;
1414
1415 a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1416 if (IS_ERR(a))
1417 return a;
1418
1419 a->nla_type = attrtype;
1420 a->nla_len = nla_attr_size(len);
1421
1422 if (data)
1423 memcpy(nla_data(a), data, len);
1424 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1425
1426 return a;
1427 }
1428
1429 static int add_action(struct sw_flow_actions **sfa, int attrtype,
1430 void *data, int len, bool log)
1431 {
1432 struct nlattr *a;
1433
1434 a = __add_action(sfa, attrtype, data, len, log);
1435
1436 return PTR_ERR_OR_ZERO(a);
1437 }
1438
1439 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1440 int attrtype, bool log)
1441 {
1442 int used = (*sfa)->actions_len;
1443 int err;
1444
1445 err = add_action(sfa, attrtype, NULL, 0, log);
1446 if (err)
1447 return err;
1448
1449 return used;
1450 }
1451
1452 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1453 int st_offset)
1454 {
1455 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1456 st_offset);
1457
1458 a->nla_len = sfa->actions_len - st_offset;
1459 }
1460
1461 static int __ovs_nla_copy_actions(const struct nlattr *attr,
1462 const struct sw_flow_key *key,
1463 int depth, struct sw_flow_actions **sfa,
1464 __be16 eth_type, __be16 vlan_tci, bool log);
1465
1466 static int validate_and_copy_sample(const struct nlattr *attr,
1467 const struct sw_flow_key *key, int depth,
1468 struct sw_flow_actions **sfa,
1469 __be16 eth_type, __be16 vlan_tci, bool log)
1470 {
1471 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1472 const struct nlattr *probability, *actions;
1473 const struct nlattr *a;
1474 int rem, start, err, st_acts;
1475
1476 memset(attrs, 0, sizeof(attrs));
1477 nla_for_each_nested(a, attr, rem) {
1478 int type = nla_type(a);
1479 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1480 return -EINVAL;
1481 attrs[type] = a;
1482 }
1483 if (rem)
1484 return -EINVAL;
1485
1486 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1487 if (!probability || nla_len(probability) != sizeof(u32))
1488 return -EINVAL;
1489
1490 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1491 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1492 return -EINVAL;
1493
1494 /* validation done, copy sample action. */
1495 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1496 if (start < 0)
1497 return start;
1498 err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1499 nla_data(probability), sizeof(u32), log);
1500 if (err)
1501 return err;
1502 st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1503 if (st_acts < 0)
1504 return st_acts;
1505
1506 err = __ovs_nla_copy_actions(actions, key, depth + 1, sfa,
1507 eth_type, vlan_tci, log);
1508 if (err)
1509 return err;
1510
1511 add_nested_action_end(*sfa, st_acts);
1512 add_nested_action_end(*sfa, start);
1513
1514 return 0;
1515 }
1516
1517 static int validate_tp_port(const struct sw_flow_key *flow_key,
1518 __be16 eth_type)
1519 {
1520 if ((eth_type == htons(ETH_P_IP) || eth_type == htons(ETH_P_IPV6)) &&
1521 (flow_key->tp.src || flow_key->tp.dst))
1522 return 0;
1523
1524 return -EINVAL;
1525 }
1526
1527 void ovs_match_init(struct sw_flow_match *match,
1528 struct sw_flow_key *key,
1529 struct sw_flow_mask *mask)
1530 {
1531 memset(match, 0, sizeof(*match));
1532 match->key = key;
1533 match->mask = mask;
1534
1535 memset(key, 0, sizeof(*key));
1536
1537 if (mask) {
1538 memset(&mask->key, 0, sizeof(mask->key));
1539 mask->range.start = mask->range.end = 0;
1540 }
1541 }
1542
1543 static int validate_and_copy_set_tun(const struct nlattr *attr,
1544 struct sw_flow_actions **sfa, bool log)
1545 {
1546 struct sw_flow_match match;
1547 struct sw_flow_key key;
1548 struct ovs_tunnel_info *tun_info;
1549 struct nlattr *a;
1550 int err, start;
1551
1552 ovs_match_init(&match, &key, NULL);
1553 err = ipv4_tun_from_nlattr(nla_data(attr), &match, false, log);
1554 if (err)
1555 return err;
1556
1557 if (key.tun_opts_len) {
1558 struct geneve_opt *option = GENEVE_OPTS(&key,
1559 key.tun_opts_len);
1560 int opts_len = key.tun_opts_len;
1561 bool crit_opt = false;
1562
1563 while (opts_len > 0) {
1564 int len;
1565
1566 if (opts_len < sizeof(*option))
1567 return -EINVAL;
1568
1569 len = sizeof(*option) + option->length * 4;
1570 if (len > opts_len)
1571 return -EINVAL;
1572
1573 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1574
1575 option = (struct geneve_opt *)((u8 *)option + len);
1576 opts_len -= len;
1577 };
1578
1579 key.tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1580 };
1581
1582 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1583 if (start < 0)
1584 return start;
1585
1586 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1587 sizeof(*tun_info) + key.tun_opts_len, log);
1588 if (IS_ERR(a))
1589 return PTR_ERR(a);
1590
1591 tun_info = nla_data(a);
1592 tun_info->tunnel = key.tun_key;
1593 tun_info->options_len = key.tun_opts_len;
1594
1595 if (tun_info->options_len) {
1596 /* We need to store the options in the action itself since
1597 * everything else will go away after flow setup. We can append
1598 * it to tun_info and then point there.
1599 */
1600 memcpy((tun_info + 1), GENEVE_OPTS(&key, key.tun_opts_len),
1601 key.tun_opts_len);
1602 tun_info->options = (struct geneve_opt *)(tun_info + 1);
1603 } else {
1604 tun_info->options = NULL;
1605 }
1606
1607 add_nested_action_end(*sfa, start);
1608
1609 return err;
1610 }
1611
1612 static int validate_set(const struct nlattr *a,
1613 const struct sw_flow_key *flow_key,
1614 struct sw_flow_actions **sfa,
1615 bool *set_tun, __be16 eth_type, bool log)
1616 {
1617 const struct nlattr *ovs_key = nla_data(a);
1618 int key_type = nla_type(ovs_key);
1619
1620 /* There can be only one key in a action */
1621 if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
1622 return -EINVAL;
1623
1624 if (key_type > OVS_KEY_ATTR_MAX ||
1625 (ovs_key_lens[key_type] != nla_len(ovs_key) &&
1626 ovs_key_lens[key_type] != -1))
1627 return -EINVAL;
1628
1629 switch (key_type) {
1630 const struct ovs_key_ipv4 *ipv4_key;
1631 const struct ovs_key_ipv6 *ipv6_key;
1632 int err;
1633
1634 case OVS_KEY_ATTR_PRIORITY:
1635 case OVS_KEY_ATTR_SKB_MARK:
1636 case OVS_KEY_ATTR_ETHERNET:
1637 break;
1638
1639 case OVS_KEY_ATTR_TUNNEL:
1640 if (eth_p_mpls(eth_type))
1641 return -EINVAL;
1642
1643 *set_tun = true;
1644 err = validate_and_copy_set_tun(a, sfa, log);
1645 if (err)
1646 return err;
1647 break;
1648
1649 case OVS_KEY_ATTR_IPV4:
1650 if (eth_type != htons(ETH_P_IP))
1651 return -EINVAL;
1652
1653 if (!flow_key->ip.proto)
1654 return -EINVAL;
1655
1656 ipv4_key = nla_data(ovs_key);
1657 if (ipv4_key->ipv4_proto != flow_key->ip.proto)
1658 return -EINVAL;
1659
1660 if (ipv4_key->ipv4_frag != flow_key->ip.frag)
1661 return -EINVAL;
1662
1663 break;
1664
1665 case OVS_KEY_ATTR_IPV6:
1666 if (eth_type != htons(ETH_P_IPV6))
1667 return -EINVAL;
1668
1669 if (!flow_key->ip.proto)
1670 return -EINVAL;
1671
1672 ipv6_key = nla_data(ovs_key);
1673 if (ipv6_key->ipv6_proto != flow_key->ip.proto)
1674 return -EINVAL;
1675
1676 if (ipv6_key->ipv6_frag != flow_key->ip.frag)
1677 return -EINVAL;
1678
1679 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
1680 return -EINVAL;
1681
1682 break;
1683
1684 case OVS_KEY_ATTR_TCP:
1685 if (flow_key->ip.proto != IPPROTO_TCP)
1686 return -EINVAL;
1687
1688 return validate_tp_port(flow_key, eth_type);
1689
1690 case OVS_KEY_ATTR_UDP:
1691 if (flow_key->ip.proto != IPPROTO_UDP)
1692 return -EINVAL;
1693
1694 return validate_tp_port(flow_key, eth_type);
1695
1696 case OVS_KEY_ATTR_MPLS:
1697 if (!eth_p_mpls(eth_type))
1698 return -EINVAL;
1699 break;
1700
1701 case OVS_KEY_ATTR_SCTP:
1702 if (flow_key->ip.proto != IPPROTO_SCTP)
1703 return -EINVAL;
1704
1705 return validate_tp_port(flow_key, eth_type);
1706
1707 default:
1708 return -EINVAL;
1709 }
1710
1711 return 0;
1712 }
1713
1714 static int validate_userspace(const struct nlattr *attr)
1715 {
1716 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
1717 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
1718 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
1719 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
1720 };
1721 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
1722 int error;
1723
1724 error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
1725 attr, userspace_policy);
1726 if (error)
1727 return error;
1728
1729 if (!a[OVS_USERSPACE_ATTR_PID] ||
1730 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
1731 return -EINVAL;
1732
1733 return 0;
1734 }
1735
1736 static int copy_action(const struct nlattr *from,
1737 struct sw_flow_actions **sfa, bool log)
1738 {
1739 int totlen = NLA_ALIGN(from->nla_len);
1740 struct nlattr *to;
1741
1742 to = reserve_sfa_size(sfa, from->nla_len, log);
1743 if (IS_ERR(to))
1744 return PTR_ERR(to);
1745
1746 memcpy(to, from, totlen);
1747 return 0;
1748 }
1749
1750 static int __ovs_nla_copy_actions(const struct nlattr *attr,
1751 const struct sw_flow_key *key,
1752 int depth, struct sw_flow_actions **sfa,
1753 __be16 eth_type, __be16 vlan_tci, bool log)
1754 {
1755 const struct nlattr *a;
1756 int rem, err;
1757
1758 if (depth >= SAMPLE_ACTION_DEPTH)
1759 return -EOVERFLOW;
1760
1761 nla_for_each_nested(a, attr, rem) {
1762 /* Expected argument lengths, (u32)-1 for variable length. */
1763 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
1764 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
1765 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
1766 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
1767 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
1768 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
1769 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
1770 [OVS_ACTION_ATTR_POP_VLAN] = 0,
1771 [OVS_ACTION_ATTR_SET] = (u32)-1,
1772 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
1773 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash)
1774 };
1775 const struct ovs_action_push_vlan *vlan;
1776 int type = nla_type(a);
1777 bool skip_copy;
1778
1779 if (type > OVS_ACTION_ATTR_MAX ||
1780 (action_lens[type] != nla_len(a) &&
1781 action_lens[type] != (u32)-1))
1782 return -EINVAL;
1783
1784 skip_copy = false;
1785 switch (type) {
1786 case OVS_ACTION_ATTR_UNSPEC:
1787 return -EINVAL;
1788
1789 case OVS_ACTION_ATTR_USERSPACE:
1790 err = validate_userspace(a);
1791 if (err)
1792 return err;
1793 break;
1794
1795 case OVS_ACTION_ATTR_OUTPUT:
1796 if (nla_get_u32(a) >= DP_MAX_PORTS)
1797 return -EINVAL;
1798 break;
1799
1800 case OVS_ACTION_ATTR_HASH: {
1801 const struct ovs_action_hash *act_hash = nla_data(a);
1802
1803 switch (act_hash->hash_alg) {
1804 case OVS_HASH_ALG_L4:
1805 break;
1806 default:
1807 return -EINVAL;
1808 }
1809
1810 break;
1811 }
1812
1813 case OVS_ACTION_ATTR_POP_VLAN:
1814 vlan_tci = htons(0);
1815 break;
1816
1817 case OVS_ACTION_ATTR_PUSH_VLAN:
1818 vlan = nla_data(a);
1819 if (vlan->vlan_tpid != htons(ETH_P_8021Q))
1820 return -EINVAL;
1821 if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
1822 return -EINVAL;
1823 vlan_tci = vlan->vlan_tci;
1824 break;
1825
1826 case OVS_ACTION_ATTR_RECIRC:
1827 break;
1828
1829 case OVS_ACTION_ATTR_PUSH_MPLS: {
1830 const struct ovs_action_push_mpls *mpls = nla_data(a);
1831
1832 if (!eth_p_mpls(mpls->mpls_ethertype))
1833 return -EINVAL;
1834 /* Prohibit push MPLS other than to a white list
1835 * for packets that have a known tag order.
1836 */
1837 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
1838 (eth_type != htons(ETH_P_IP) &&
1839 eth_type != htons(ETH_P_IPV6) &&
1840 eth_type != htons(ETH_P_ARP) &&
1841 eth_type != htons(ETH_P_RARP) &&
1842 !eth_p_mpls(eth_type)))
1843 return -EINVAL;
1844 eth_type = mpls->mpls_ethertype;
1845 break;
1846 }
1847
1848 case OVS_ACTION_ATTR_POP_MPLS:
1849 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
1850 !eth_p_mpls(eth_type))
1851 return -EINVAL;
1852
1853 /* Disallow subsequent L2.5+ set and mpls_pop actions
1854 * as there is no check here to ensure that the new
1855 * eth_type is valid and thus set actions could
1856 * write off the end of the packet or otherwise
1857 * corrupt it.
1858 *
1859 * Support for these actions is planned using packet
1860 * recirculation.
1861 */
1862 eth_type = htons(0);
1863 break;
1864
1865 case OVS_ACTION_ATTR_SET:
1866 err = validate_set(a, key, sfa,
1867 &skip_copy, eth_type, log);
1868 if (err)
1869 return err;
1870 break;
1871
1872 case OVS_ACTION_ATTR_SAMPLE:
1873 err = validate_and_copy_sample(a, key, depth, sfa,
1874 eth_type, vlan_tci, log);
1875 if (err)
1876 return err;
1877 skip_copy = true;
1878 break;
1879
1880 default:
1881 OVS_NLERR(log, "Unknown Action type %d", type);
1882 return -EINVAL;
1883 }
1884 if (!skip_copy) {
1885 err = copy_action(a, sfa, log);
1886 if (err)
1887 return err;
1888 }
1889 }
1890
1891 if (rem > 0)
1892 return -EINVAL;
1893
1894 return 0;
1895 }
1896
1897 int ovs_nla_copy_actions(const struct nlattr *attr,
1898 const struct sw_flow_key *key,
1899 struct sw_flow_actions **sfa, bool log)
1900 {
1901 int err;
1902
1903 *sfa = nla_alloc_flow_actions(nla_len(attr), log);
1904 if (IS_ERR(*sfa))
1905 return PTR_ERR(*sfa);
1906
1907 err = __ovs_nla_copy_actions(attr, key, 0, sfa, key->eth.type,
1908 key->eth.tci, log);
1909 if (err)
1910 kfree(*sfa);
1911
1912 return err;
1913 }
1914
1915 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
1916 {
1917 const struct nlattr *a;
1918 struct nlattr *start;
1919 int err = 0, rem;
1920
1921 start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
1922 if (!start)
1923 return -EMSGSIZE;
1924
1925 nla_for_each_nested(a, attr, rem) {
1926 int type = nla_type(a);
1927 struct nlattr *st_sample;
1928
1929 switch (type) {
1930 case OVS_SAMPLE_ATTR_PROBABILITY:
1931 if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
1932 sizeof(u32), nla_data(a)))
1933 return -EMSGSIZE;
1934 break;
1935 case OVS_SAMPLE_ATTR_ACTIONS:
1936 st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
1937 if (!st_sample)
1938 return -EMSGSIZE;
1939 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
1940 if (err)
1941 return err;
1942 nla_nest_end(skb, st_sample);
1943 break;
1944 }
1945 }
1946
1947 nla_nest_end(skb, start);
1948 return err;
1949 }
1950
1951 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
1952 {
1953 const struct nlattr *ovs_key = nla_data(a);
1954 int key_type = nla_type(ovs_key);
1955 struct nlattr *start;
1956 int err;
1957
1958 switch (key_type) {
1959 case OVS_KEY_ATTR_TUNNEL_INFO: {
1960 struct ovs_tunnel_info *tun_info = nla_data(ovs_key);
1961
1962 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
1963 if (!start)
1964 return -EMSGSIZE;
1965
1966 err = ipv4_tun_to_nlattr(skb, &tun_info->tunnel,
1967 tun_info->options_len ?
1968 tun_info->options : NULL,
1969 tun_info->options_len);
1970 if (err)
1971 return err;
1972 nla_nest_end(skb, start);
1973 break;
1974 }
1975 default:
1976 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
1977 return -EMSGSIZE;
1978 break;
1979 }
1980
1981 return 0;
1982 }
1983
1984 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
1985 {
1986 const struct nlattr *a;
1987 int rem, err;
1988
1989 nla_for_each_attr(a, attr, len, rem) {
1990 int type = nla_type(a);
1991
1992 switch (type) {
1993 case OVS_ACTION_ATTR_SET:
1994 err = set_action_to_attr(a, skb);
1995 if (err)
1996 return err;
1997 break;
1998
1999 case OVS_ACTION_ATTR_SAMPLE:
2000 err = sample_action_to_attr(a, skb);
2001 if (err)
2002 return err;
2003 break;
2004 default:
2005 if (nla_put(skb, type, nla_len(a), nla_data(a)))
2006 return -EMSGSIZE;
2007 break;
2008 }
2009 }
2010
2011 return 0;
2012 }
This page took 0.070176 seconds and 6 git commands to generate.