Merge tag 'batman-adv-for-davem' of git://git.open-mesh.org/linux-merge
[deliverable/linux.git] / net / rds / send.c
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41
42 #include "rds.h"
43
44 /* When transmitting messages in rds_send_xmit, we need to emerge from
45 * time to time and briefly release the CPU. Otherwise the softlock watchdog
46 * will kick our shin.
47 * Also, it seems fairer to not let one busy connection stall all the
48 * others.
49 *
50 * send_batch_count is the number of times we'll loop in send_xmit. Setting
51 * it to 0 will restore the old behavior (where we looped until we had
52 * drained the queue).
53 */
54 static int send_batch_count = 64;
55 module_param(send_batch_count, int, 0444);
56 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
57
58 static void rds_send_remove_from_sock(struct list_head *messages, int status);
59
60 /*
61 * Reset the send state. Callers must ensure that this doesn't race with
62 * rds_send_xmit().
63 */
64 void rds_send_reset(struct rds_connection *conn)
65 {
66 struct rds_message *rm, *tmp;
67 unsigned long flags;
68
69 if (conn->c_xmit_rm) {
70 rm = conn->c_xmit_rm;
71 conn->c_xmit_rm = NULL;
72 /* Tell the user the RDMA op is no longer mapped by the
73 * transport. This isn't entirely true (it's flushed out
74 * independently) but as the connection is down, there's
75 * no ongoing RDMA to/from that memory */
76 rds_message_unmapped(rm);
77 rds_message_put(rm);
78 }
79
80 conn->c_xmit_sg = 0;
81 conn->c_xmit_hdr_off = 0;
82 conn->c_xmit_data_off = 0;
83 conn->c_xmit_atomic_sent = 0;
84 conn->c_xmit_rdma_sent = 0;
85 conn->c_xmit_data_sent = 0;
86
87 conn->c_map_queued = 0;
88
89 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
90 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
91
92 /* Mark messages as retransmissions, and move them to the send q */
93 spin_lock_irqsave(&conn->c_lock, flags);
94 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
95 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
96 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
97 }
98 list_splice_init(&conn->c_retrans, &conn->c_send_queue);
99 spin_unlock_irqrestore(&conn->c_lock, flags);
100 }
101
102 static int acquire_in_xmit(struct rds_connection *conn)
103 {
104 return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0;
105 }
106
107 static void release_in_xmit(struct rds_connection *conn)
108 {
109 clear_bit(RDS_IN_XMIT, &conn->c_flags);
110 smp_mb__after_atomic();
111 /*
112 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
113 * hot path and finding waiters is very rare. We don't want to walk
114 * the system-wide hashed waitqueue buckets in the fast path only to
115 * almost never find waiters.
116 */
117 if (waitqueue_active(&conn->c_waitq))
118 wake_up_all(&conn->c_waitq);
119 }
120
121 /*
122 * We're making the conscious trade-off here to only send one message
123 * down the connection at a time.
124 * Pro:
125 * - tx queueing is a simple fifo list
126 * - reassembly is optional and easily done by transports per conn
127 * - no per flow rx lookup at all, straight to the socket
128 * - less per-frag memory and wire overhead
129 * Con:
130 * - queued acks can be delayed behind large messages
131 * Depends:
132 * - small message latency is higher behind queued large messages
133 * - large message latency isn't starved by intervening small sends
134 */
135 int rds_send_xmit(struct rds_connection *conn)
136 {
137 struct rds_message *rm;
138 unsigned long flags;
139 unsigned int tmp;
140 struct scatterlist *sg;
141 int ret = 0;
142 LIST_HEAD(to_be_dropped);
143 int batch_count;
144 unsigned long send_gen = 0;
145
146 restart:
147 batch_count = 0;
148
149 /*
150 * sendmsg calls here after having queued its message on the send
151 * queue. We only have one task feeding the connection at a time. If
152 * another thread is already feeding the queue then we back off. This
153 * avoids blocking the caller and trading per-connection data between
154 * caches per message.
155 */
156 if (!acquire_in_xmit(conn)) {
157 rds_stats_inc(s_send_lock_contention);
158 ret = -ENOMEM;
159 goto out;
160 }
161
162 /*
163 * we record the send generation after doing the xmit acquire.
164 * if someone else manages to jump in and do some work, we'll use
165 * this to avoid a goto restart farther down.
166 *
167 * The acquire_in_xmit() check above ensures that only one
168 * caller can increment c_send_gen at any time.
169 */
170 conn->c_send_gen++;
171 send_gen = conn->c_send_gen;
172
173 /*
174 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
175 * we do the opposite to avoid races.
176 */
177 if (!rds_conn_up(conn)) {
178 release_in_xmit(conn);
179 ret = 0;
180 goto out;
181 }
182
183 if (conn->c_trans->xmit_prepare)
184 conn->c_trans->xmit_prepare(conn);
185
186 /*
187 * spin trying to push headers and data down the connection until
188 * the connection doesn't make forward progress.
189 */
190 while (1) {
191
192 rm = conn->c_xmit_rm;
193
194 /*
195 * If between sending messages, we can send a pending congestion
196 * map update.
197 */
198 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
199 rm = rds_cong_update_alloc(conn);
200 if (IS_ERR(rm)) {
201 ret = PTR_ERR(rm);
202 break;
203 }
204 rm->data.op_active = 1;
205
206 conn->c_xmit_rm = rm;
207 }
208
209 /*
210 * If not already working on one, grab the next message.
211 *
212 * c_xmit_rm holds a ref while we're sending this message down
213 * the connction. We can use this ref while holding the
214 * send_sem.. rds_send_reset() is serialized with it.
215 */
216 if (!rm) {
217 unsigned int len;
218
219 batch_count++;
220
221 /* we want to process as big a batch as we can, but
222 * we also want to avoid softlockups. If we've been
223 * through a lot of messages, lets back off and see
224 * if anyone else jumps in
225 */
226 if (batch_count >= 1024)
227 goto over_batch;
228
229 spin_lock_irqsave(&conn->c_lock, flags);
230
231 if (!list_empty(&conn->c_send_queue)) {
232 rm = list_entry(conn->c_send_queue.next,
233 struct rds_message,
234 m_conn_item);
235 rds_message_addref(rm);
236
237 /*
238 * Move the message from the send queue to the retransmit
239 * list right away.
240 */
241 list_move_tail(&rm->m_conn_item, &conn->c_retrans);
242 }
243
244 spin_unlock_irqrestore(&conn->c_lock, flags);
245
246 if (!rm)
247 break;
248
249 /* Unfortunately, the way Infiniband deals with
250 * RDMA to a bad MR key is by moving the entire
251 * queue pair to error state. We cold possibly
252 * recover from that, but right now we drop the
253 * connection.
254 * Therefore, we never retransmit messages with RDMA ops.
255 */
256 if (rm->rdma.op_active &&
257 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
258 spin_lock_irqsave(&conn->c_lock, flags);
259 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
260 list_move(&rm->m_conn_item, &to_be_dropped);
261 spin_unlock_irqrestore(&conn->c_lock, flags);
262 continue;
263 }
264
265 /* Require an ACK every once in a while */
266 len = ntohl(rm->m_inc.i_hdr.h_len);
267 if (conn->c_unacked_packets == 0 ||
268 conn->c_unacked_bytes < len) {
269 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
270
271 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
272 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
273 rds_stats_inc(s_send_ack_required);
274 } else {
275 conn->c_unacked_bytes -= len;
276 conn->c_unacked_packets--;
277 }
278
279 conn->c_xmit_rm = rm;
280 }
281
282 /* The transport either sends the whole rdma or none of it */
283 if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
284 rm->m_final_op = &rm->rdma;
285 /* The transport owns the mapped memory for now.
286 * You can't unmap it while it's on the send queue
287 */
288 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
289 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
290 if (ret) {
291 clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
292 wake_up_interruptible(&rm->m_flush_wait);
293 break;
294 }
295 conn->c_xmit_rdma_sent = 1;
296
297 }
298
299 if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
300 rm->m_final_op = &rm->atomic;
301 /* The transport owns the mapped memory for now.
302 * You can't unmap it while it's on the send queue
303 */
304 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
305 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
306 if (ret) {
307 clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
308 wake_up_interruptible(&rm->m_flush_wait);
309 break;
310 }
311 conn->c_xmit_atomic_sent = 1;
312
313 }
314
315 /*
316 * A number of cases require an RDS header to be sent
317 * even if there is no data.
318 * We permit 0-byte sends; rds-ping depends on this.
319 * However, if there are exclusively attached silent ops,
320 * we skip the hdr/data send, to enable silent operation.
321 */
322 if (rm->data.op_nents == 0) {
323 int ops_present;
324 int all_ops_are_silent = 1;
325
326 ops_present = (rm->atomic.op_active || rm->rdma.op_active);
327 if (rm->atomic.op_active && !rm->atomic.op_silent)
328 all_ops_are_silent = 0;
329 if (rm->rdma.op_active && !rm->rdma.op_silent)
330 all_ops_are_silent = 0;
331
332 if (ops_present && all_ops_are_silent
333 && !rm->m_rdma_cookie)
334 rm->data.op_active = 0;
335 }
336
337 if (rm->data.op_active && !conn->c_xmit_data_sent) {
338 rm->m_final_op = &rm->data;
339 ret = conn->c_trans->xmit(conn, rm,
340 conn->c_xmit_hdr_off,
341 conn->c_xmit_sg,
342 conn->c_xmit_data_off);
343 if (ret <= 0)
344 break;
345
346 if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
347 tmp = min_t(int, ret,
348 sizeof(struct rds_header) -
349 conn->c_xmit_hdr_off);
350 conn->c_xmit_hdr_off += tmp;
351 ret -= tmp;
352 }
353
354 sg = &rm->data.op_sg[conn->c_xmit_sg];
355 while (ret) {
356 tmp = min_t(int, ret, sg->length -
357 conn->c_xmit_data_off);
358 conn->c_xmit_data_off += tmp;
359 ret -= tmp;
360 if (conn->c_xmit_data_off == sg->length) {
361 conn->c_xmit_data_off = 0;
362 sg++;
363 conn->c_xmit_sg++;
364 BUG_ON(ret != 0 &&
365 conn->c_xmit_sg == rm->data.op_nents);
366 }
367 }
368
369 if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
370 (conn->c_xmit_sg == rm->data.op_nents))
371 conn->c_xmit_data_sent = 1;
372 }
373
374 /*
375 * A rm will only take multiple times through this loop
376 * if there is a data op. Thus, if the data is sent (or there was
377 * none), then we're done with the rm.
378 */
379 if (!rm->data.op_active || conn->c_xmit_data_sent) {
380 conn->c_xmit_rm = NULL;
381 conn->c_xmit_sg = 0;
382 conn->c_xmit_hdr_off = 0;
383 conn->c_xmit_data_off = 0;
384 conn->c_xmit_rdma_sent = 0;
385 conn->c_xmit_atomic_sent = 0;
386 conn->c_xmit_data_sent = 0;
387
388 rds_message_put(rm);
389 }
390 }
391
392 over_batch:
393 if (conn->c_trans->xmit_complete)
394 conn->c_trans->xmit_complete(conn);
395 release_in_xmit(conn);
396
397 /* Nuke any messages we decided not to retransmit. */
398 if (!list_empty(&to_be_dropped)) {
399 /* irqs on here, so we can put(), unlike above */
400 list_for_each_entry(rm, &to_be_dropped, m_conn_item)
401 rds_message_put(rm);
402 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
403 }
404
405 /*
406 * Other senders can queue a message after we last test the send queue
407 * but before we clear RDS_IN_XMIT. In that case they'd back off and
408 * not try and send their newly queued message. We need to check the
409 * send queue after having cleared RDS_IN_XMIT so that their message
410 * doesn't get stuck on the send queue.
411 *
412 * If the transport cannot continue (i.e ret != 0), then it must
413 * call us when more room is available, such as from the tx
414 * completion handler.
415 *
416 * We have an extra generation check here so that if someone manages
417 * to jump in after our release_in_xmit, we'll see that they have done
418 * some work and we will skip our goto
419 */
420 if (ret == 0) {
421 smp_mb();
422 if ((test_bit(0, &conn->c_map_queued) ||
423 !list_empty(&conn->c_send_queue)) &&
424 send_gen == conn->c_send_gen) {
425 rds_stats_inc(s_send_lock_queue_raced);
426 goto restart;
427 }
428 }
429 out:
430 return ret;
431 }
432
433 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
434 {
435 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
436
437 assert_spin_locked(&rs->rs_lock);
438
439 BUG_ON(rs->rs_snd_bytes < len);
440 rs->rs_snd_bytes -= len;
441
442 if (rs->rs_snd_bytes == 0)
443 rds_stats_inc(s_send_queue_empty);
444 }
445
446 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
447 is_acked_func is_acked)
448 {
449 if (is_acked)
450 return is_acked(rm, ack);
451 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
452 }
453
454 /*
455 * This is pretty similar to what happens below in the ACK
456 * handling code - except that we call here as soon as we get
457 * the IB send completion on the RDMA op and the accompanying
458 * message.
459 */
460 void rds_rdma_send_complete(struct rds_message *rm, int status)
461 {
462 struct rds_sock *rs = NULL;
463 struct rm_rdma_op *ro;
464 struct rds_notifier *notifier;
465 unsigned long flags;
466
467 spin_lock_irqsave(&rm->m_rs_lock, flags);
468
469 ro = &rm->rdma;
470 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
471 ro->op_active && ro->op_notify && ro->op_notifier) {
472 notifier = ro->op_notifier;
473 rs = rm->m_rs;
474 sock_hold(rds_rs_to_sk(rs));
475
476 notifier->n_status = status;
477 spin_lock(&rs->rs_lock);
478 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
479 spin_unlock(&rs->rs_lock);
480
481 ro->op_notifier = NULL;
482 }
483
484 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
485
486 if (rs) {
487 rds_wake_sk_sleep(rs);
488 sock_put(rds_rs_to_sk(rs));
489 }
490 }
491 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
492
493 /*
494 * Just like above, except looks at atomic op
495 */
496 void rds_atomic_send_complete(struct rds_message *rm, int status)
497 {
498 struct rds_sock *rs = NULL;
499 struct rm_atomic_op *ao;
500 struct rds_notifier *notifier;
501 unsigned long flags;
502
503 spin_lock_irqsave(&rm->m_rs_lock, flags);
504
505 ao = &rm->atomic;
506 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
507 && ao->op_active && ao->op_notify && ao->op_notifier) {
508 notifier = ao->op_notifier;
509 rs = rm->m_rs;
510 sock_hold(rds_rs_to_sk(rs));
511
512 notifier->n_status = status;
513 spin_lock(&rs->rs_lock);
514 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
515 spin_unlock(&rs->rs_lock);
516
517 ao->op_notifier = NULL;
518 }
519
520 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
521
522 if (rs) {
523 rds_wake_sk_sleep(rs);
524 sock_put(rds_rs_to_sk(rs));
525 }
526 }
527 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
528
529 /*
530 * This is the same as rds_rdma_send_complete except we
531 * don't do any locking - we have all the ingredients (message,
532 * socket, socket lock) and can just move the notifier.
533 */
534 static inline void
535 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
536 {
537 struct rm_rdma_op *ro;
538 struct rm_atomic_op *ao;
539
540 ro = &rm->rdma;
541 if (ro->op_active && ro->op_notify && ro->op_notifier) {
542 ro->op_notifier->n_status = status;
543 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
544 ro->op_notifier = NULL;
545 }
546
547 ao = &rm->atomic;
548 if (ao->op_active && ao->op_notify && ao->op_notifier) {
549 ao->op_notifier->n_status = status;
550 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
551 ao->op_notifier = NULL;
552 }
553
554 /* No need to wake the app - caller does this */
555 }
556
557 /*
558 * This is called from the IB send completion when we detect
559 * a RDMA operation that failed with remote access error.
560 * So speed is not an issue here.
561 */
562 struct rds_message *rds_send_get_message(struct rds_connection *conn,
563 struct rm_rdma_op *op)
564 {
565 struct rds_message *rm, *tmp, *found = NULL;
566 unsigned long flags;
567
568 spin_lock_irqsave(&conn->c_lock, flags);
569
570 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
571 if (&rm->rdma == op) {
572 atomic_inc(&rm->m_refcount);
573 found = rm;
574 goto out;
575 }
576 }
577
578 list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
579 if (&rm->rdma == op) {
580 atomic_inc(&rm->m_refcount);
581 found = rm;
582 break;
583 }
584 }
585
586 out:
587 spin_unlock_irqrestore(&conn->c_lock, flags);
588
589 return found;
590 }
591 EXPORT_SYMBOL_GPL(rds_send_get_message);
592
593 /*
594 * This removes messages from the socket's list if they're on it. The list
595 * argument must be private to the caller, we must be able to modify it
596 * without locks. The messages must have a reference held for their
597 * position on the list. This function will drop that reference after
598 * removing the messages from the 'messages' list regardless of if it found
599 * the messages on the socket list or not.
600 */
601 static void rds_send_remove_from_sock(struct list_head *messages, int status)
602 {
603 unsigned long flags;
604 struct rds_sock *rs = NULL;
605 struct rds_message *rm;
606
607 while (!list_empty(messages)) {
608 int was_on_sock = 0;
609
610 rm = list_entry(messages->next, struct rds_message,
611 m_conn_item);
612 list_del_init(&rm->m_conn_item);
613
614 /*
615 * If we see this flag cleared then we're *sure* that someone
616 * else beat us to removing it from the sock. If we race
617 * with their flag update we'll get the lock and then really
618 * see that the flag has been cleared.
619 *
620 * The message spinlock makes sure nobody clears rm->m_rs
621 * while we're messing with it. It does not prevent the
622 * message from being removed from the socket, though.
623 */
624 spin_lock_irqsave(&rm->m_rs_lock, flags);
625 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
626 goto unlock_and_drop;
627
628 if (rs != rm->m_rs) {
629 if (rs) {
630 rds_wake_sk_sleep(rs);
631 sock_put(rds_rs_to_sk(rs));
632 }
633 rs = rm->m_rs;
634 if (rs)
635 sock_hold(rds_rs_to_sk(rs));
636 }
637 if (!rs)
638 goto unlock_and_drop;
639 spin_lock(&rs->rs_lock);
640
641 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
642 struct rm_rdma_op *ro = &rm->rdma;
643 struct rds_notifier *notifier;
644
645 list_del_init(&rm->m_sock_item);
646 rds_send_sndbuf_remove(rs, rm);
647
648 if (ro->op_active && ro->op_notifier &&
649 (ro->op_notify || (ro->op_recverr && status))) {
650 notifier = ro->op_notifier;
651 list_add_tail(&notifier->n_list,
652 &rs->rs_notify_queue);
653 if (!notifier->n_status)
654 notifier->n_status = status;
655 rm->rdma.op_notifier = NULL;
656 }
657 was_on_sock = 1;
658 rm->m_rs = NULL;
659 }
660 spin_unlock(&rs->rs_lock);
661
662 unlock_and_drop:
663 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
664 rds_message_put(rm);
665 if (was_on_sock)
666 rds_message_put(rm);
667 }
668
669 if (rs) {
670 rds_wake_sk_sleep(rs);
671 sock_put(rds_rs_to_sk(rs));
672 }
673 }
674
675 /*
676 * Transports call here when they've determined that the receiver queued
677 * messages up to, and including, the given sequence number. Messages are
678 * moved to the retrans queue when rds_send_xmit picks them off the send
679 * queue. This means that in the TCP case, the message may not have been
680 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
681 * checks the RDS_MSG_HAS_ACK_SEQ bit.
682 */
683 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
684 is_acked_func is_acked)
685 {
686 struct rds_message *rm, *tmp;
687 unsigned long flags;
688 LIST_HEAD(list);
689
690 spin_lock_irqsave(&conn->c_lock, flags);
691
692 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
693 if (!rds_send_is_acked(rm, ack, is_acked))
694 break;
695
696 list_move(&rm->m_conn_item, &list);
697 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
698 }
699
700 /* order flag updates with spin locks */
701 if (!list_empty(&list))
702 smp_mb__after_atomic();
703
704 spin_unlock_irqrestore(&conn->c_lock, flags);
705
706 /* now remove the messages from the sock list as needed */
707 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
708 }
709 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
710
711 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
712 {
713 struct rds_message *rm, *tmp;
714 struct rds_connection *conn;
715 unsigned long flags;
716 LIST_HEAD(list);
717
718 /* get all the messages we're dropping under the rs lock */
719 spin_lock_irqsave(&rs->rs_lock, flags);
720
721 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
722 if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
723 dest->sin_port != rm->m_inc.i_hdr.h_dport))
724 continue;
725
726 list_move(&rm->m_sock_item, &list);
727 rds_send_sndbuf_remove(rs, rm);
728 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
729 }
730
731 /* order flag updates with the rs lock */
732 smp_mb__after_atomic();
733
734 spin_unlock_irqrestore(&rs->rs_lock, flags);
735
736 if (list_empty(&list))
737 return;
738
739 /* Remove the messages from the conn */
740 list_for_each_entry(rm, &list, m_sock_item) {
741
742 conn = rm->m_inc.i_conn;
743
744 spin_lock_irqsave(&conn->c_lock, flags);
745 /*
746 * Maybe someone else beat us to removing rm from the conn.
747 * If we race with their flag update we'll get the lock and
748 * then really see that the flag has been cleared.
749 */
750 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
751 spin_unlock_irqrestore(&conn->c_lock, flags);
752 spin_lock_irqsave(&rm->m_rs_lock, flags);
753 rm->m_rs = NULL;
754 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
755 continue;
756 }
757 list_del_init(&rm->m_conn_item);
758 spin_unlock_irqrestore(&conn->c_lock, flags);
759
760 /*
761 * Couldn't grab m_rs_lock in top loop (lock ordering),
762 * but we can now.
763 */
764 spin_lock_irqsave(&rm->m_rs_lock, flags);
765
766 spin_lock(&rs->rs_lock);
767 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
768 spin_unlock(&rs->rs_lock);
769
770 rm->m_rs = NULL;
771 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
772
773 rds_message_put(rm);
774 }
775
776 rds_wake_sk_sleep(rs);
777
778 while (!list_empty(&list)) {
779 rm = list_entry(list.next, struct rds_message, m_sock_item);
780 list_del_init(&rm->m_sock_item);
781 rds_message_wait(rm);
782
783 /* just in case the code above skipped this message
784 * because RDS_MSG_ON_CONN wasn't set, run it again here
785 * taking m_rs_lock is the only thing that keeps us
786 * from racing with ack processing.
787 */
788 spin_lock_irqsave(&rm->m_rs_lock, flags);
789
790 spin_lock(&rs->rs_lock);
791 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
792 spin_unlock(&rs->rs_lock);
793
794 rm->m_rs = NULL;
795 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
796
797 rds_message_put(rm);
798 }
799 }
800
801 /*
802 * we only want this to fire once so we use the callers 'queued'. It's
803 * possible that another thread can race with us and remove the
804 * message from the flow with RDS_CANCEL_SENT_TO.
805 */
806 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
807 struct rds_message *rm, __be16 sport,
808 __be16 dport, int *queued)
809 {
810 unsigned long flags;
811 u32 len;
812
813 if (*queued)
814 goto out;
815
816 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
817
818 /* this is the only place which holds both the socket's rs_lock
819 * and the connection's c_lock */
820 spin_lock_irqsave(&rs->rs_lock, flags);
821
822 /*
823 * If there is a little space in sndbuf, we don't queue anything,
824 * and userspace gets -EAGAIN. But poll() indicates there's send
825 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
826 * freed up by incoming acks. So we check the *old* value of
827 * rs_snd_bytes here to allow the last msg to exceed the buffer,
828 * and poll() now knows no more data can be sent.
829 */
830 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
831 rs->rs_snd_bytes += len;
832
833 /* let recv side know we are close to send space exhaustion.
834 * This is probably not the optimal way to do it, as this
835 * means we set the flag on *all* messages as soon as our
836 * throughput hits a certain threshold.
837 */
838 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
839 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
840
841 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
842 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
843 rds_message_addref(rm);
844 rm->m_rs = rs;
845
846 /* The code ordering is a little weird, but we're
847 trying to minimize the time we hold c_lock */
848 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
849 rm->m_inc.i_conn = conn;
850 rds_message_addref(rm);
851
852 spin_lock(&conn->c_lock);
853 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
854 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
855 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
856 spin_unlock(&conn->c_lock);
857
858 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
859 rm, len, rs, rs->rs_snd_bytes,
860 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
861
862 *queued = 1;
863 }
864
865 spin_unlock_irqrestore(&rs->rs_lock, flags);
866 out:
867 return *queued;
868 }
869
870 /*
871 * rds_message is getting to be quite complicated, and we'd like to allocate
872 * it all in one go. This figures out how big it needs to be up front.
873 */
874 static int rds_rm_size(struct msghdr *msg, int data_len)
875 {
876 struct cmsghdr *cmsg;
877 int size = 0;
878 int cmsg_groups = 0;
879 int retval;
880
881 for_each_cmsghdr(cmsg, msg) {
882 if (!CMSG_OK(msg, cmsg))
883 return -EINVAL;
884
885 if (cmsg->cmsg_level != SOL_RDS)
886 continue;
887
888 switch (cmsg->cmsg_type) {
889 case RDS_CMSG_RDMA_ARGS:
890 cmsg_groups |= 1;
891 retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
892 if (retval < 0)
893 return retval;
894 size += retval;
895
896 break;
897
898 case RDS_CMSG_RDMA_DEST:
899 case RDS_CMSG_RDMA_MAP:
900 cmsg_groups |= 2;
901 /* these are valid but do no add any size */
902 break;
903
904 case RDS_CMSG_ATOMIC_CSWP:
905 case RDS_CMSG_ATOMIC_FADD:
906 case RDS_CMSG_MASKED_ATOMIC_CSWP:
907 case RDS_CMSG_MASKED_ATOMIC_FADD:
908 cmsg_groups |= 1;
909 size += sizeof(struct scatterlist);
910 break;
911
912 default:
913 return -EINVAL;
914 }
915
916 }
917
918 size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
919
920 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
921 if (cmsg_groups == 3)
922 return -EINVAL;
923
924 return size;
925 }
926
927 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
928 struct msghdr *msg, int *allocated_mr)
929 {
930 struct cmsghdr *cmsg;
931 int ret = 0;
932
933 for_each_cmsghdr(cmsg, msg) {
934 if (!CMSG_OK(msg, cmsg))
935 return -EINVAL;
936
937 if (cmsg->cmsg_level != SOL_RDS)
938 continue;
939
940 /* As a side effect, RDMA_DEST and RDMA_MAP will set
941 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
942 */
943 switch (cmsg->cmsg_type) {
944 case RDS_CMSG_RDMA_ARGS:
945 ret = rds_cmsg_rdma_args(rs, rm, cmsg);
946 break;
947
948 case RDS_CMSG_RDMA_DEST:
949 ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
950 break;
951
952 case RDS_CMSG_RDMA_MAP:
953 ret = rds_cmsg_rdma_map(rs, rm, cmsg);
954 if (!ret)
955 *allocated_mr = 1;
956 break;
957 case RDS_CMSG_ATOMIC_CSWP:
958 case RDS_CMSG_ATOMIC_FADD:
959 case RDS_CMSG_MASKED_ATOMIC_CSWP:
960 case RDS_CMSG_MASKED_ATOMIC_FADD:
961 ret = rds_cmsg_atomic(rs, rm, cmsg);
962 break;
963
964 default:
965 return -EINVAL;
966 }
967
968 if (ret)
969 break;
970 }
971
972 return ret;
973 }
974
975 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
976 {
977 struct sock *sk = sock->sk;
978 struct rds_sock *rs = rds_sk_to_rs(sk);
979 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
980 __be32 daddr;
981 __be16 dport;
982 struct rds_message *rm = NULL;
983 struct rds_connection *conn;
984 int ret = 0;
985 int queued = 0, allocated_mr = 0;
986 int nonblock = msg->msg_flags & MSG_DONTWAIT;
987 long timeo = sock_sndtimeo(sk, nonblock);
988
989 /* Mirror Linux UDP mirror of BSD error message compatibility */
990 /* XXX: Perhaps MSG_MORE someday */
991 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
992 ret = -EOPNOTSUPP;
993 goto out;
994 }
995
996 if (msg->msg_namelen) {
997 /* XXX fail non-unicast destination IPs? */
998 if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
999 ret = -EINVAL;
1000 goto out;
1001 }
1002 daddr = usin->sin_addr.s_addr;
1003 dport = usin->sin_port;
1004 } else {
1005 /* We only care about consistency with ->connect() */
1006 lock_sock(sk);
1007 daddr = rs->rs_conn_addr;
1008 dport = rs->rs_conn_port;
1009 release_sock(sk);
1010 }
1011
1012 /* racing with another thread binding seems ok here */
1013 if (daddr == 0 || rs->rs_bound_addr == 0) {
1014 ret = -ENOTCONN; /* XXX not a great errno */
1015 goto out;
1016 }
1017
1018 if (payload_len > rds_sk_sndbuf(rs)) {
1019 ret = -EMSGSIZE;
1020 goto out;
1021 }
1022
1023 /* size of rm including all sgs */
1024 ret = rds_rm_size(msg, payload_len);
1025 if (ret < 0)
1026 goto out;
1027
1028 rm = rds_message_alloc(ret, GFP_KERNEL);
1029 if (!rm) {
1030 ret = -ENOMEM;
1031 goto out;
1032 }
1033
1034 /* Attach data to the rm */
1035 if (payload_len) {
1036 rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
1037 if (!rm->data.op_sg) {
1038 ret = -ENOMEM;
1039 goto out;
1040 }
1041 ret = rds_message_copy_from_user(rm, &msg->msg_iter);
1042 if (ret)
1043 goto out;
1044 }
1045 rm->data.op_active = 1;
1046
1047 rm->m_daddr = daddr;
1048
1049 /* rds_conn_create has a spinlock that runs with IRQ off.
1050 * Caching the conn in the socket helps a lot. */
1051 if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1052 conn = rs->rs_conn;
1053 else {
1054 conn = rds_conn_create_outgoing(sock_net(sock->sk),
1055 rs->rs_bound_addr, daddr,
1056 rs->rs_transport,
1057 sock->sk->sk_allocation);
1058 if (IS_ERR(conn)) {
1059 ret = PTR_ERR(conn);
1060 goto out;
1061 }
1062 rs->rs_conn = conn;
1063 }
1064
1065 /* Parse any control messages the user may have included. */
1066 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1067 if (ret)
1068 goto out;
1069
1070 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1071 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1072 &rm->rdma, conn->c_trans->xmit_rdma);
1073 ret = -EOPNOTSUPP;
1074 goto out;
1075 }
1076
1077 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1078 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1079 &rm->atomic, conn->c_trans->xmit_atomic);
1080 ret = -EOPNOTSUPP;
1081 goto out;
1082 }
1083
1084 rds_conn_connect_if_down(conn);
1085
1086 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1087 if (ret) {
1088 rs->rs_seen_congestion = 1;
1089 goto out;
1090 }
1091
1092 while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1093 dport, &queued)) {
1094 rds_stats_inc(s_send_queue_full);
1095
1096 if (nonblock) {
1097 ret = -EAGAIN;
1098 goto out;
1099 }
1100
1101 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1102 rds_send_queue_rm(rs, conn, rm,
1103 rs->rs_bound_port,
1104 dport,
1105 &queued),
1106 timeo);
1107 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1108 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1109 continue;
1110
1111 ret = timeo;
1112 if (ret == 0)
1113 ret = -ETIMEDOUT;
1114 goto out;
1115 }
1116
1117 /*
1118 * By now we've committed to the send. We reuse rds_send_worker()
1119 * to retry sends in the rds thread if the transport asks us to.
1120 */
1121 rds_stats_inc(s_send_queued);
1122
1123 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1124 rds_send_xmit(conn);
1125
1126 rds_message_put(rm);
1127 return payload_len;
1128
1129 out:
1130 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1131 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1132 * or in any other way, we need to destroy the MR again */
1133 if (allocated_mr)
1134 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1135
1136 if (rm)
1137 rds_message_put(rm);
1138 return ret;
1139 }
1140
1141 /*
1142 * Reply to a ping packet.
1143 */
1144 int
1145 rds_send_pong(struct rds_connection *conn, __be16 dport)
1146 {
1147 struct rds_message *rm;
1148 unsigned long flags;
1149 int ret = 0;
1150
1151 rm = rds_message_alloc(0, GFP_ATOMIC);
1152 if (!rm) {
1153 ret = -ENOMEM;
1154 goto out;
1155 }
1156
1157 rm->m_daddr = conn->c_faddr;
1158 rm->data.op_active = 1;
1159
1160 rds_conn_connect_if_down(conn);
1161
1162 ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1163 if (ret)
1164 goto out;
1165
1166 spin_lock_irqsave(&conn->c_lock, flags);
1167 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1168 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1169 rds_message_addref(rm);
1170 rm->m_inc.i_conn = conn;
1171
1172 rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1173 conn->c_next_tx_seq);
1174 conn->c_next_tx_seq++;
1175 spin_unlock_irqrestore(&conn->c_lock, flags);
1176
1177 rds_stats_inc(s_send_queued);
1178 rds_stats_inc(s_send_pong);
1179
1180 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1181 queue_delayed_work(rds_wq, &conn->c_send_w, 0);
1182
1183 rds_message_put(rm);
1184 return 0;
1185
1186 out:
1187 if (rm)
1188 rds_message_put(rm);
1189 return ret;
1190 }
This page took 0.060688 seconds and 6 git commands to generate.