Merge tag 'edac_urgent_for_4.2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / net / rfkill / core.c
1 /*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 #include <linux/workqueue.h>
24 #include <linux/capability.h>
25 #include <linux/list.h>
26 #include <linux/mutex.h>
27 #include <linux/rfkill.h>
28 #include <linux/sched.h>
29 #include <linux/spinlock.h>
30 #include <linux/device.h>
31 #include <linux/miscdevice.h>
32 #include <linux/wait.h>
33 #include <linux/poll.h>
34 #include <linux/fs.h>
35 #include <linux/slab.h>
36
37 #include "rfkill.h"
38
39 #define POLL_INTERVAL (5 * HZ)
40
41 #define RFKILL_BLOCK_HW BIT(0)
42 #define RFKILL_BLOCK_SW BIT(1)
43 #define RFKILL_BLOCK_SW_PREV BIT(2)
44 #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
45 RFKILL_BLOCK_SW |\
46 RFKILL_BLOCK_SW_PREV)
47 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
48
49 struct rfkill {
50 spinlock_t lock;
51
52 const char *name;
53 enum rfkill_type type;
54
55 unsigned long state;
56
57 u32 idx;
58
59 bool registered;
60 bool persistent;
61
62 const struct rfkill_ops *ops;
63 void *data;
64
65 #ifdef CONFIG_RFKILL_LEDS
66 struct led_trigger led_trigger;
67 const char *ledtrigname;
68 #endif
69
70 struct device dev;
71 struct list_head node;
72
73 struct delayed_work poll_work;
74 struct work_struct uevent_work;
75 struct work_struct sync_work;
76 };
77 #define to_rfkill(d) container_of(d, struct rfkill, dev)
78
79 struct rfkill_int_event {
80 struct list_head list;
81 struct rfkill_event ev;
82 };
83
84 struct rfkill_data {
85 struct list_head list;
86 struct list_head events;
87 struct mutex mtx;
88 wait_queue_head_t read_wait;
89 bool input_handler;
90 };
91
92
93 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
94 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
95 MODULE_DESCRIPTION("RF switch support");
96 MODULE_LICENSE("GPL");
97
98
99 /*
100 * The locking here should be made much smarter, we currently have
101 * a bit of a stupid situation because drivers might want to register
102 * the rfkill struct under their own lock, and take this lock during
103 * rfkill method calls -- which will cause an AB-BA deadlock situation.
104 *
105 * To fix that, we need to rework this code here to be mostly lock-free
106 * and only use the mutex for list manipulations, not to protect the
107 * various other global variables. Then we can avoid holding the mutex
108 * around driver operations, and all is happy.
109 */
110 static LIST_HEAD(rfkill_list); /* list of registered rf switches */
111 static DEFINE_MUTEX(rfkill_global_mutex);
112 static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
113
114 static unsigned int rfkill_default_state = 1;
115 module_param_named(default_state, rfkill_default_state, uint, 0444);
116 MODULE_PARM_DESC(default_state,
117 "Default initial state for all radio types, 0 = radio off");
118
119 static struct {
120 bool cur, sav;
121 } rfkill_global_states[NUM_RFKILL_TYPES];
122
123 static bool rfkill_epo_lock_active;
124
125
126 #ifdef CONFIG_RFKILL_LEDS
127 static void rfkill_led_trigger_event(struct rfkill *rfkill)
128 {
129 struct led_trigger *trigger;
130
131 if (!rfkill->registered)
132 return;
133
134 trigger = &rfkill->led_trigger;
135
136 if (rfkill->state & RFKILL_BLOCK_ANY)
137 led_trigger_event(trigger, LED_OFF);
138 else
139 led_trigger_event(trigger, LED_FULL);
140 }
141
142 static void rfkill_led_trigger_activate(struct led_classdev *led)
143 {
144 struct rfkill *rfkill;
145
146 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
147
148 rfkill_led_trigger_event(rfkill);
149 }
150
151 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
152 {
153 return rfkill->led_trigger.name;
154 }
155 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
156
157 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
158 {
159 BUG_ON(!rfkill);
160
161 rfkill->ledtrigname = name;
162 }
163 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
164
165 static int rfkill_led_trigger_register(struct rfkill *rfkill)
166 {
167 rfkill->led_trigger.name = rfkill->ledtrigname
168 ? : dev_name(&rfkill->dev);
169 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
170 return led_trigger_register(&rfkill->led_trigger);
171 }
172
173 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
174 {
175 led_trigger_unregister(&rfkill->led_trigger);
176 }
177 #else
178 static void rfkill_led_trigger_event(struct rfkill *rfkill)
179 {
180 }
181
182 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
183 {
184 return 0;
185 }
186
187 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
188 {
189 }
190 #endif /* CONFIG_RFKILL_LEDS */
191
192 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
193 enum rfkill_operation op)
194 {
195 unsigned long flags;
196
197 ev->idx = rfkill->idx;
198 ev->type = rfkill->type;
199 ev->op = op;
200
201 spin_lock_irqsave(&rfkill->lock, flags);
202 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
203 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
204 RFKILL_BLOCK_SW_PREV));
205 spin_unlock_irqrestore(&rfkill->lock, flags);
206 }
207
208 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
209 {
210 struct rfkill_data *data;
211 struct rfkill_int_event *ev;
212
213 list_for_each_entry(data, &rfkill_fds, list) {
214 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
215 if (!ev)
216 continue;
217 rfkill_fill_event(&ev->ev, rfkill, op);
218 mutex_lock(&data->mtx);
219 list_add_tail(&ev->list, &data->events);
220 mutex_unlock(&data->mtx);
221 wake_up_interruptible(&data->read_wait);
222 }
223 }
224
225 static void rfkill_event(struct rfkill *rfkill)
226 {
227 if (!rfkill->registered)
228 return;
229
230 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
231
232 /* also send event to /dev/rfkill */
233 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
234 }
235
236 static bool __rfkill_set_hw_state(struct rfkill *rfkill,
237 bool blocked, bool *change)
238 {
239 unsigned long flags;
240 bool prev, any;
241
242 BUG_ON(!rfkill);
243
244 spin_lock_irqsave(&rfkill->lock, flags);
245 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
246 if (blocked)
247 rfkill->state |= RFKILL_BLOCK_HW;
248 else
249 rfkill->state &= ~RFKILL_BLOCK_HW;
250 *change = prev != blocked;
251 any = !!(rfkill->state & RFKILL_BLOCK_ANY);
252 spin_unlock_irqrestore(&rfkill->lock, flags);
253
254 rfkill_led_trigger_event(rfkill);
255
256 return any;
257 }
258
259 /**
260 * rfkill_set_block - wrapper for set_block method
261 *
262 * @rfkill: the rfkill struct to use
263 * @blocked: the new software state
264 *
265 * Calls the set_block method (when applicable) and handles notifications
266 * etc. as well.
267 */
268 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
269 {
270 unsigned long flags;
271 bool prev, curr;
272 int err;
273
274 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
275 return;
276
277 /*
278 * Some platforms (...!) generate input events which affect the
279 * _hard_ kill state -- whenever something tries to change the
280 * current software state query the hardware state too.
281 */
282 if (rfkill->ops->query)
283 rfkill->ops->query(rfkill, rfkill->data);
284
285 spin_lock_irqsave(&rfkill->lock, flags);
286 prev = rfkill->state & RFKILL_BLOCK_SW;
287
288 if (rfkill->state & RFKILL_BLOCK_SW)
289 rfkill->state |= RFKILL_BLOCK_SW_PREV;
290 else
291 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
292
293 if (blocked)
294 rfkill->state |= RFKILL_BLOCK_SW;
295 else
296 rfkill->state &= ~RFKILL_BLOCK_SW;
297
298 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
299 spin_unlock_irqrestore(&rfkill->lock, flags);
300
301 err = rfkill->ops->set_block(rfkill->data, blocked);
302
303 spin_lock_irqsave(&rfkill->lock, flags);
304 if (err) {
305 /*
306 * Failed -- reset status to _prev, this may be different
307 * from what set set _PREV to earlier in this function
308 * if rfkill_set_sw_state was invoked.
309 */
310 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
311 rfkill->state |= RFKILL_BLOCK_SW;
312 else
313 rfkill->state &= ~RFKILL_BLOCK_SW;
314 }
315 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
316 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
317 curr = rfkill->state & RFKILL_BLOCK_SW;
318 spin_unlock_irqrestore(&rfkill->lock, flags);
319
320 rfkill_led_trigger_event(rfkill);
321
322 if (prev != curr)
323 rfkill_event(rfkill);
324 }
325
326 #ifdef CONFIG_RFKILL_INPUT
327 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
328
329 /**
330 * __rfkill_switch_all - Toggle state of all switches of given type
331 * @type: type of interfaces to be affected
332 * @blocked: the new state
333 *
334 * This function sets the state of all switches of given type,
335 * unless a specific switch is claimed by userspace (in which case,
336 * that switch is left alone) or suspended.
337 *
338 * Caller must have acquired rfkill_global_mutex.
339 */
340 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
341 {
342 struct rfkill *rfkill;
343
344 rfkill_global_states[type].cur = blocked;
345 list_for_each_entry(rfkill, &rfkill_list, node) {
346 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
347 continue;
348
349 rfkill_set_block(rfkill, blocked);
350 }
351 }
352
353 /**
354 * rfkill_switch_all - Toggle state of all switches of given type
355 * @type: type of interfaces to be affected
356 * @blocked: the new state
357 *
358 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
359 * Please refer to __rfkill_switch_all() for details.
360 *
361 * Does nothing if the EPO lock is active.
362 */
363 void rfkill_switch_all(enum rfkill_type type, bool blocked)
364 {
365 if (atomic_read(&rfkill_input_disabled))
366 return;
367
368 mutex_lock(&rfkill_global_mutex);
369
370 if (!rfkill_epo_lock_active)
371 __rfkill_switch_all(type, blocked);
372
373 mutex_unlock(&rfkill_global_mutex);
374 }
375
376 /**
377 * rfkill_epo - emergency power off all transmitters
378 *
379 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
380 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
381 *
382 * The global state before the EPO is saved and can be restored later
383 * using rfkill_restore_states().
384 */
385 void rfkill_epo(void)
386 {
387 struct rfkill *rfkill;
388 int i;
389
390 if (atomic_read(&rfkill_input_disabled))
391 return;
392
393 mutex_lock(&rfkill_global_mutex);
394
395 rfkill_epo_lock_active = true;
396 list_for_each_entry(rfkill, &rfkill_list, node)
397 rfkill_set_block(rfkill, true);
398
399 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
400 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
401 rfkill_global_states[i].cur = true;
402 }
403
404 mutex_unlock(&rfkill_global_mutex);
405 }
406
407 /**
408 * rfkill_restore_states - restore global states
409 *
410 * Restore (and sync switches to) the global state from the
411 * states in rfkill_default_states. This can undo the effects of
412 * a call to rfkill_epo().
413 */
414 void rfkill_restore_states(void)
415 {
416 int i;
417
418 if (atomic_read(&rfkill_input_disabled))
419 return;
420
421 mutex_lock(&rfkill_global_mutex);
422
423 rfkill_epo_lock_active = false;
424 for (i = 0; i < NUM_RFKILL_TYPES; i++)
425 __rfkill_switch_all(i, rfkill_global_states[i].sav);
426 mutex_unlock(&rfkill_global_mutex);
427 }
428
429 /**
430 * rfkill_remove_epo_lock - unlock state changes
431 *
432 * Used by rfkill-input manually unlock state changes, when
433 * the EPO switch is deactivated.
434 */
435 void rfkill_remove_epo_lock(void)
436 {
437 if (atomic_read(&rfkill_input_disabled))
438 return;
439
440 mutex_lock(&rfkill_global_mutex);
441 rfkill_epo_lock_active = false;
442 mutex_unlock(&rfkill_global_mutex);
443 }
444
445 /**
446 * rfkill_is_epo_lock_active - returns true EPO is active
447 *
448 * Returns 0 (false) if there is NOT an active EPO contidion,
449 * and 1 (true) if there is an active EPO contition, which
450 * locks all radios in one of the BLOCKED states.
451 *
452 * Can be called in atomic context.
453 */
454 bool rfkill_is_epo_lock_active(void)
455 {
456 return rfkill_epo_lock_active;
457 }
458
459 /**
460 * rfkill_get_global_sw_state - returns global state for a type
461 * @type: the type to get the global state of
462 *
463 * Returns the current global state for a given wireless
464 * device type.
465 */
466 bool rfkill_get_global_sw_state(const enum rfkill_type type)
467 {
468 return rfkill_global_states[type].cur;
469 }
470 #endif
471
472
473 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
474 {
475 bool ret, change;
476
477 ret = __rfkill_set_hw_state(rfkill, blocked, &change);
478
479 if (!rfkill->registered)
480 return ret;
481
482 if (change)
483 schedule_work(&rfkill->uevent_work);
484
485 return ret;
486 }
487 EXPORT_SYMBOL(rfkill_set_hw_state);
488
489 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
490 {
491 u32 bit = RFKILL_BLOCK_SW;
492
493 /* if in a ops->set_block right now, use other bit */
494 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
495 bit = RFKILL_BLOCK_SW_PREV;
496
497 if (blocked)
498 rfkill->state |= bit;
499 else
500 rfkill->state &= ~bit;
501 }
502
503 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
504 {
505 unsigned long flags;
506 bool prev, hwblock;
507
508 BUG_ON(!rfkill);
509
510 spin_lock_irqsave(&rfkill->lock, flags);
511 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
512 __rfkill_set_sw_state(rfkill, blocked);
513 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
514 blocked = blocked || hwblock;
515 spin_unlock_irqrestore(&rfkill->lock, flags);
516
517 if (!rfkill->registered)
518 return blocked;
519
520 if (prev != blocked && !hwblock)
521 schedule_work(&rfkill->uevent_work);
522
523 rfkill_led_trigger_event(rfkill);
524
525 return blocked;
526 }
527 EXPORT_SYMBOL(rfkill_set_sw_state);
528
529 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
530 {
531 unsigned long flags;
532
533 BUG_ON(!rfkill);
534 BUG_ON(rfkill->registered);
535
536 spin_lock_irqsave(&rfkill->lock, flags);
537 __rfkill_set_sw_state(rfkill, blocked);
538 rfkill->persistent = true;
539 spin_unlock_irqrestore(&rfkill->lock, flags);
540 }
541 EXPORT_SYMBOL(rfkill_init_sw_state);
542
543 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
544 {
545 unsigned long flags;
546 bool swprev, hwprev;
547
548 BUG_ON(!rfkill);
549
550 spin_lock_irqsave(&rfkill->lock, flags);
551
552 /*
553 * No need to care about prev/setblock ... this is for uevent only
554 * and that will get triggered by rfkill_set_block anyway.
555 */
556 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
557 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
558 __rfkill_set_sw_state(rfkill, sw);
559 if (hw)
560 rfkill->state |= RFKILL_BLOCK_HW;
561 else
562 rfkill->state &= ~RFKILL_BLOCK_HW;
563
564 spin_unlock_irqrestore(&rfkill->lock, flags);
565
566 if (!rfkill->registered) {
567 rfkill->persistent = true;
568 } else {
569 if (swprev != sw || hwprev != hw)
570 schedule_work(&rfkill->uevent_work);
571
572 rfkill_led_trigger_event(rfkill);
573 }
574 }
575 EXPORT_SYMBOL(rfkill_set_states);
576
577 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
578 char *buf)
579 {
580 struct rfkill *rfkill = to_rfkill(dev);
581
582 return sprintf(buf, "%s\n", rfkill->name);
583 }
584 static DEVICE_ATTR_RO(name);
585
586 static const char *rfkill_get_type_str(enum rfkill_type type)
587 {
588 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_NFC + 1);
589
590 switch (type) {
591 case RFKILL_TYPE_WLAN:
592 return "wlan";
593 case RFKILL_TYPE_BLUETOOTH:
594 return "bluetooth";
595 case RFKILL_TYPE_UWB:
596 return "ultrawideband";
597 case RFKILL_TYPE_WIMAX:
598 return "wimax";
599 case RFKILL_TYPE_WWAN:
600 return "wwan";
601 case RFKILL_TYPE_GPS:
602 return "gps";
603 case RFKILL_TYPE_FM:
604 return "fm";
605 case RFKILL_TYPE_NFC:
606 return "nfc";
607 default:
608 BUG();
609 }
610 }
611
612 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
613 char *buf)
614 {
615 struct rfkill *rfkill = to_rfkill(dev);
616
617 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
618 }
619 static DEVICE_ATTR_RO(type);
620
621 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
622 char *buf)
623 {
624 struct rfkill *rfkill = to_rfkill(dev);
625
626 return sprintf(buf, "%d\n", rfkill->idx);
627 }
628 static DEVICE_ATTR_RO(index);
629
630 static ssize_t persistent_show(struct device *dev,
631 struct device_attribute *attr, char *buf)
632 {
633 struct rfkill *rfkill = to_rfkill(dev);
634
635 return sprintf(buf, "%d\n", rfkill->persistent);
636 }
637 static DEVICE_ATTR_RO(persistent);
638
639 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
640 char *buf)
641 {
642 struct rfkill *rfkill = to_rfkill(dev);
643
644 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
645 }
646 static DEVICE_ATTR_RO(hard);
647
648 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
649 char *buf)
650 {
651 struct rfkill *rfkill = to_rfkill(dev);
652
653 return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
654 }
655
656 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
657 const char *buf, size_t count)
658 {
659 struct rfkill *rfkill = to_rfkill(dev);
660 unsigned long state;
661 int err;
662
663 if (!capable(CAP_NET_ADMIN))
664 return -EPERM;
665
666 err = kstrtoul(buf, 0, &state);
667 if (err)
668 return err;
669
670 if (state > 1 )
671 return -EINVAL;
672
673 mutex_lock(&rfkill_global_mutex);
674 rfkill_set_block(rfkill, state);
675 mutex_unlock(&rfkill_global_mutex);
676
677 return count;
678 }
679 static DEVICE_ATTR_RW(soft);
680
681 static u8 user_state_from_blocked(unsigned long state)
682 {
683 if (state & RFKILL_BLOCK_HW)
684 return RFKILL_USER_STATE_HARD_BLOCKED;
685 if (state & RFKILL_BLOCK_SW)
686 return RFKILL_USER_STATE_SOFT_BLOCKED;
687
688 return RFKILL_USER_STATE_UNBLOCKED;
689 }
690
691 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
692 char *buf)
693 {
694 struct rfkill *rfkill = to_rfkill(dev);
695
696 return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
697 }
698
699 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
700 const char *buf, size_t count)
701 {
702 struct rfkill *rfkill = to_rfkill(dev);
703 unsigned long state;
704 int err;
705
706 if (!capable(CAP_NET_ADMIN))
707 return -EPERM;
708
709 err = kstrtoul(buf, 0, &state);
710 if (err)
711 return err;
712
713 if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
714 state != RFKILL_USER_STATE_UNBLOCKED)
715 return -EINVAL;
716
717 mutex_lock(&rfkill_global_mutex);
718 rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
719 mutex_unlock(&rfkill_global_mutex);
720
721 return count;
722 }
723 static DEVICE_ATTR_RW(state);
724
725 static ssize_t claim_show(struct device *dev, struct device_attribute *attr,
726 char *buf)
727 {
728 return sprintf(buf, "%d\n", 0);
729 }
730 static DEVICE_ATTR_RO(claim);
731
732 static struct attribute *rfkill_dev_attrs[] = {
733 &dev_attr_name.attr,
734 &dev_attr_type.attr,
735 &dev_attr_index.attr,
736 &dev_attr_persistent.attr,
737 &dev_attr_state.attr,
738 &dev_attr_claim.attr,
739 &dev_attr_soft.attr,
740 &dev_attr_hard.attr,
741 NULL,
742 };
743 ATTRIBUTE_GROUPS(rfkill_dev);
744
745 static void rfkill_release(struct device *dev)
746 {
747 struct rfkill *rfkill = to_rfkill(dev);
748
749 kfree(rfkill);
750 }
751
752 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
753 {
754 struct rfkill *rfkill = to_rfkill(dev);
755 unsigned long flags;
756 u32 state;
757 int error;
758
759 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
760 if (error)
761 return error;
762 error = add_uevent_var(env, "RFKILL_TYPE=%s",
763 rfkill_get_type_str(rfkill->type));
764 if (error)
765 return error;
766 spin_lock_irqsave(&rfkill->lock, flags);
767 state = rfkill->state;
768 spin_unlock_irqrestore(&rfkill->lock, flags);
769 error = add_uevent_var(env, "RFKILL_STATE=%d",
770 user_state_from_blocked(state));
771 return error;
772 }
773
774 void rfkill_pause_polling(struct rfkill *rfkill)
775 {
776 BUG_ON(!rfkill);
777
778 if (!rfkill->ops->poll)
779 return;
780
781 cancel_delayed_work_sync(&rfkill->poll_work);
782 }
783 EXPORT_SYMBOL(rfkill_pause_polling);
784
785 void rfkill_resume_polling(struct rfkill *rfkill)
786 {
787 BUG_ON(!rfkill);
788
789 if (!rfkill->ops->poll)
790 return;
791
792 queue_delayed_work(system_power_efficient_wq,
793 &rfkill->poll_work, 0);
794 }
795 EXPORT_SYMBOL(rfkill_resume_polling);
796
797 #ifdef CONFIG_PM_SLEEP
798 static int rfkill_suspend(struct device *dev)
799 {
800 struct rfkill *rfkill = to_rfkill(dev);
801
802 rfkill_pause_polling(rfkill);
803
804 return 0;
805 }
806
807 static int rfkill_resume(struct device *dev)
808 {
809 struct rfkill *rfkill = to_rfkill(dev);
810 bool cur;
811
812 if (!rfkill->persistent) {
813 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
814 rfkill_set_block(rfkill, cur);
815 }
816
817 rfkill_resume_polling(rfkill);
818
819 return 0;
820 }
821
822 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
823 #define RFKILL_PM_OPS (&rfkill_pm_ops)
824 #else
825 #define RFKILL_PM_OPS NULL
826 #endif
827
828 static struct class rfkill_class = {
829 .name = "rfkill",
830 .dev_release = rfkill_release,
831 .dev_groups = rfkill_dev_groups,
832 .dev_uevent = rfkill_dev_uevent,
833 .pm = RFKILL_PM_OPS,
834 };
835
836 bool rfkill_blocked(struct rfkill *rfkill)
837 {
838 unsigned long flags;
839 u32 state;
840
841 spin_lock_irqsave(&rfkill->lock, flags);
842 state = rfkill->state;
843 spin_unlock_irqrestore(&rfkill->lock, flags);
844
845 return !!(state & RFKILL_BLOCK_ANY);
846 }
847 EXPORT_SYMBOL(rfkill_blocked);
848
849
850 struct rfkill * __must_check rfkill_alloc(const char *name,
851 struct device *parent,
852 const enum rfkill_type type,
853 const struct rfkill_ops *ops,
854 void *ops_data)
855 {
856 struct rfkill *rfkill;
857 struct device *dev;
858
859 if (WARN_ON(!ops))
860 return NULL;
861
862 if (WARN_ON(!ops->set_block))
863 return NULL;
864
865 if (WARN_ON(!name))
866 return NULL;
867
868 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
869 return NULL;
870
871 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
872 if (!rfkill)
873 return NULL;
874
875 spin_lock_init(&rfkill->lock);
876 INIT_LIST_HEAD(&rfkill->node);
877 rfkill->type = type;
878 rfkill->name = name;
879 rfkill->ops = ops;
880 rfkill->data = ops_data;
881
882 dev = &rfkill->dev;
883 dev->class = &rfkill_class;
884 dev->parent = parent;
885 device_initialize(dev);
886
887 return rfkill;
888 }
889 EXPORT_SYMBOL(rfkill_alloc);
890
891 static void rfkill_poll(struct work_struct *work)
892 {
893 struct rfkill *rfkill;
894
895 rfkill = container_of(work, struct rfkill, poll_work.work);
896
897 /*
898 * Poll hardware state -- driver will use one of the
899 * rfkill_set{,_hw,_sw}_state functions and use its
900 * return value to update the current status.
901 */
902 rfkill->ops->poll(rfkill, rfkill->data);
903
904 queue_delayed_work(system_power_efficient_wq,
905 &rfkill->poll_work,
906 round_jiffies_relative(POLL_INTERVAL));
907 }
908
909 static void rfkill_uevent_work(struct work_struct *work)
910 {
911 struct rfkill *rfkill;
912
913 rfkill = container_of(work, struct rfkill, uevent_work);
914
915 mutex_lock(&rfkill_global_mutex);
916 rfkill_event(rfkill);
917 mutex_unlock(&rfkill_global_mutex);
918 }
919
920 static void rfkill_sync_work(struct work_struct *work)
921 {
922 struct rfkill *rfkill;
923 bool cur;
924
925 rfkill = container_of(work, struct rfkill, sync_work);
926
927 mutex_lock(&rfkill_global_mutex);
928 cur = rfkill_global_states[rfkill->type].cur;
929 rfkill_set_block(rfkill, cur);
930 mutex_unlock(&rfkill_global_mutex);
931 }
932
933 int __must_check rfkill_register(struct rfkill *rfkill)
934 {
935 static unsigned long rfkill_no;
936 struct device *dev = &rfkill->dev;
937 int error;
938
939 BUG_ON(!rfkill);
940
941 mutex_lock(&rfkill_global_mutex);
942
943 if (rfkill->registered) {
944 error = -EALREADY;
945 goto unlock;
946 }
947
948 rfkill->idx = rfkill_no;
949 dev_set_name(dev, "rfkill%lu", rfkill_no);
950 rfkill_no++;
951
952 list_add_tail(&rfkill->node, &rfkill_list);
953
954 error = device_add(dev);
955 if (error)
956 goto remove;
957
958 error = rfkill_led_trigger_register(rfkill);
959 if (error)
960 goto devdel;
961
962 rfkill->registered = true;
963
964 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
965 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
966 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
967
968 if (rfkill->ops->poll)
969 queue_delayed_work(system_power_efficient_wq,
970 &rfkill->poll_work,
971 round_jiffies_relative(POLL_INTERVAL));
972
973 if (!rfkill->persistent || rfkill_epo_lock_active) {
974 schedule_work(&rfkill->sync_work);
975 } else {
976 #ifdef CONFIG_RFKILL_INPUT
977 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
978
979 if (!atomic_read(&rfkill_input_disabled))
980 __rfkill_switch_all(rfkill->type, soft_blocked);
981 #endif
982 }
983
984 rfkill_send_events(rfkill, RFKILL_OP_ADD);
985
986 mutex_unlock(&rfkill_global_mutex);
987 return 0;
988
989 devdel:
990 device_del(&rfkill->dev);
991 remove:
992 list_del_init(&rfkill->node);
993 unlock:
994 mutex_unlock(&rfkill_global_mutex);
995 return error;
996 }
997 EXPORT_SYMBOL(rfkill_register);
998
999 void rfkill_unregister(struct rfkill *rfkill)
1000 {
1001 BUG_ON(!rfkill);
1002
1003 if (rfkill->ops->poll)
1004 cancel_delayed_work_sync(&rfkill->poll_work);
1005
1006 cancel_work_sync(&rfkill->uevent_work);
1007 cancel_work_sync(&rfkill->sync_work);
1008
1009 rfkill->registered = false;
1010
1011 device_del(&rfkill->dev);
1012
1013 mutex_lock(&rfkill_global_mutex);
1014 rfkill_send_events(rfkill, RFKILL_OP_DEL);
1015 list_del_init(&rfkill->node);
1016 mutex_unlock(&rfkill_global_mutex);
1017
1018 rfkill_led_trigger_unregister(rfkill);
1019 }
1020 EXPORT_SYMBOL(rfkill_unregister);
1021
1022 void rfkill_destroy(struct rfkill *rfkill)
1023 {
1024 if (rfkill)
1025 put_device(&rfkill->dev);
1026 }
1027 EXPORT_SYMBOL(rfkill_destroy);
1028
1029 static int rfkill_fop_open(struct inode *inode, struct file *file)
1030 {
1031 struct rfkill_data *data;
1032 struct rfkill *rfkill;
1033 struct rfkill_int_event *ev, *tmp;
1034
1035 data = kzalloc(sizeof(*data), GFP_KERNEL);
1036 if (!data)
1037 return -ENOMEM;
1038
1039 INIT_LIST_HEAD(&data->events);
1040 mutex_init(&data->mtx);
1041 init_waitqueue_head(&data->read_wait);
1042
1043 mutex_lock(&rfkill_global_mutex);
1044 mutex_lock(&data->mtx);
1045 /*
1046 * start getting events from elsewhere but hold mtx to get
1047 * startup events added first
1048 */
1049
1050 list_for_each_entry(rfkill, &rfkill_list, node) {
1051 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1052 if (!ev)
1053 goto free;
1054 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1055 list_add_tail(&ev->list, &data->events);
1056 }
1057 list_add(&data->list, &rfkill_fds);
1058 mutex_unlock(&data->mtx);
1059 mutex_unlock(&rfkill_global_mutex);
1060
1061 file->private_data = data;
1062
1063 return nonseekable_open(inode, file);
1064
1065 free:
1066 mutex_unlock(&data->mtx);
1067 mutex_unlock(&rfkill_global_mutex);
1068 mutex_destroy(&data->mtx);
1069 list_for_each_entry_safe(ev, tmp, &data->events, list)
1070 kfree(ev);
1071 kfree(data);
1072 return -ENOMEM;
1073 }
1074
1075 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
1076 {
1077 struct rfkill_data *data = file->private_data;
1078 unsigned int res = POLLOUT | POLLWRNORM;
1079
1080 poll_wait(file, &data->read_wait, wait);
1081
1082 mutex_lock(&data->mtx);
1083 if (!list_empty(&data->events))
1084 res = POLLIN | POLLRDNORM;
1085 mutex_unlock(&data->mtx);
1086
1087 return res;
1088 }
1089
1090 static bool rfkill_readable(struct rfkill_data *data)
1091 {
1092 bool r;
1093
1094 mutex_lock(&data->mtx);
1095 r = !list_empty(&data->events);
1096 mutex_unlock(&data->mtx);
1097
1098 return r;
1099 }
1100
1101 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1102 size_t count, loff_t *pos)
1103 {
1104 struct rfkill_data *data = file->private_data;
1105 struct rfkill_int_event *ev;
1106 unsigned long sz;
1107 int ret;
1108
1109 mutex_lock(&data->mtx);
1110
1111 while (list_empty(&data->events)) {
1112 if (file->f_flags & O_NONBLOCK) {
1113 ret = -EAGAIN;
1114 goto out;
1115 }
1116 mutex_unlock(&data->mtx);
1117 ret = wait_event_interruptible(data->read_wait,
1118 rfkill_readable(data));
1119 mutex_lock(&data->mtx);
1120
1121 if (ret)
1122 goto out;
1123 }
1124
1125 ev = list_first_entry(&data->events, struct rfkill_int_event,
1126 list);
1127
1128 sz = min_t(unsigned long, sizeof(ev->ev), count);
1129 ret = sz;
1130 if (copy_to_user(buf, &ev->ev, sz))
1131 ret = -EFAULT;
1132
1133 list_del(&ev->list);
1134 kfree(ev);
1135 out:
1136 mutex_unlock(&data->mtx);
1137 return ret;
1138 }
1139
1140 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1141 size_t count, loff_t *pos)
1142 {
1143 struct rfkill *rfkill;
1144 struct rfkill_event ev;
1145
1146 /* we don't need the 'hard' variable but accept it */
1147 if (count < RFKILL_EVENT_SIZE_V1 - 1)
1148 return -EINVAL;
1149
1150 /*
1151 * Copy as much data as we can accept into our 'ev' buffer,
1152 * but tell userspace how much we've copied so it can determine
1153 * our API version even in a write() call, if it cares.
1154 */
1155 count = min(count, sizeof(ev));
1156 if (copy_from_user(&ev, buf, count))
1157 return -EFAULT;
1158
1159 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1160 return -EINVAL;
1161
1162 if (ev.type >= NUM_RFKILL_TYPES)
1163 return -EINVAL;
1164
1165 mutex_lock(&rfkill_global_mutex);
1166
1167 if (ev.op == RFKILL_OP_CHANGE_ALL) {
1168 if (ev.type == RFKILL_TYPE_ALL) {
1169 enum rfkill_type i;
1170 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1171 rfkill_global_states[i].cur = ev.soft;
1172 } else {
1173 rfkill_global_states[ev.type].cur = ev.soft;
1174 }
1175 }
1176
1177 list_for_each_entry(rfkill, &rfkill_list, node) {
1178 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1179 continue;
1180
1181 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1182 continue;
1183
1184 rfkill_set_block(rfkill, ev.soft);
1185 }
1186 mutex_unlock(&rfkill_global_mutex);
1187
1188 return count;
1189 }
1190
1191 static int rfkill_fop_release(struct inode *inode, struct file *file)
1192 {
1193 struct rfkill_data *data = file->private_data;
1194 struct rfkill_int_event *ev, *tmp;
1195
1196 mutex_lock(&rfkill_global_mutex);
1197 list_del(&data->list);
1198 mutex_unlock(&rfkill_global_mutex);
1199
1200 mutex_destroy(&data->mtx);
1201 list_for_each_entry_safe(ev, tmp, &data->events, list)
1202 kfree(ev);
1203
1204 #ifdef CONFIG_RFKILL_INPUT
1205 if (data->input_handler)
1206 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1207 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1208 #endif
1209
1210 kfree(data);
1211
1212 return 0;
1213 }
1214
1215 #ifdef CONFIG_RFKILL_INPUT
1216 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1217 unsigned long arg)
1218 {
1219 struct rfkill_data *data = file->private_data;
1220
1221 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1222 return -ENOSYS;
1223
1224 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1225 return -ENOSYS;
1226
1227 mutex_lock(&data->mtx);
1228
1229 if (!data->input_handler) {
1230 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1231 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1232 data->input_handler = true;
1233 }
1234
1235 mutex_unlock(&data->mtx);
1236
1237 return 0;
1238 }
1239 #endif
1240
1241 static const struct file_operations rfkill_fops = {
1242 .owner = THIS_MODULE,
1243 .open = rfkill_fop_open,
1244 .read = rfkill_fop_read,
1245 .write = rfkill_fop_write,
1246 .poll = rfkill_fop_poll,
1247 .release = rfkill_fop_release,
1248 #ifdef CONFIG_RFKILL_INPUT
1249 .unlocked_ioctl = rfkill_fop_ioctl,
1250 .compat_ioctl = rfkill_fop_ioctl,
1251 #endif
1252 .llseek = no_llseek,
1253 };
1254
1255 static struct miscdevice rfkill_miscdev = {
1256 .name = "rfkill",
1257 .fops = &rfkill_fops,
1258 .minor = MISC_DYNAMIC_MINOR,
1259 };
1260
1261 static int __init rfkill_init(void)
1262 {
1263 int error;
1264 int i;
1265
1266 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1267 rfkill_global_states[i].cur = !rfkill_default_state;
1268
1269 error = class_register(&rfkill_class);
1270 if (error)
1271 goto out;
1272
1273 error = misc_register(&rfkill_miscdev);
1274 if (error) {
1275 class_unregister(&rfkill_class);
1276 goto out;
1277 }
1278
1279 #ifdef CONFIG_RFKILL_INPUT
1280 error = rfkill_handler_init();
1281 if (error) {
1282 misc_deregister(&rfkill_miscdev);
1283 class_unregister(&rfkill_class);
1284 goto out;
1285 }
1286 #endif
1287
1288 out:
1289 return error;
1290 }
1291 subsys_initcall(rfkill_init);
1292
1293 static void __exit rfkill_exit(void)
1294 {
1295 #ifdef CONFIG_RFKILL_INPUT
1296 rfkill_handler_exit();
1297 #endif
1298 misc_deregister(&rfkill_miscdev);
1299 class_unregister(&rfkill_class);
1300 }
1301 module_exit(rfkill_exit);
This page took 0.056055 seconds and 6 git commands to generate.