Merge tag 'remoteproc-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/ohad...
[deliverable/linux.git] / net / sched / sch_qfq.c
1 /*
2 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
3 *
4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5 * Copyright (c) 2012 Paolo Valente.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * version 2 as published by the Free Software Foundation.
10 */
11
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/bitops.h>
15 #include <linux/errno.h>
16 #include <linux/netdevice.h>
17 #include <linux/pkt_sched.h>
18 #include <net/sch_generic.h>
19 #include <net/pkt_sched.h>
20 #include <net/pkt_cls.h>
21
22
23 /* Quick Fair Queueing Plus
24 ========================
25
26 Sources:
27
28 [1] Paolo Valente,
29 "Reducing the Execution Time of Fair-Queueing Schedulers."
30 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31
32 Sources for QFQ:
33
34 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
35 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
36
37 See also:
38 http://retis.sssup.it/~fabio/linux/qfq/
39 */
40
41 /*
42
43 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
44 classes. Each aggregate is timestamped with a virtual start time S
45 and a virtual finish time F, and scheduled according to its
46 timestamps. S and F are computed as a function of a system virtual
47 time function V. The classes within each aggregate are instead
48 scheduled with DRR.
49
50 To speed up operations, QFQ+ divides also aggregates into a limited
51 number of groups. Which group a class belongs to depends on the
52 ratio between the maximum packet length for the class and the weight
53 of the class. Groups have their own S and F. In the end, QFQ+
54 schedules groups, then aggregates within groups, then classes within
55 aggregates. See [1] and [2] for a full description.
56
57 Virtual time computations.
58
59 S, F and V are all computed in fixed point arithmetic with
60 FRAC_BITS decimal bits.
61
62 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
63 one bit per index.
64 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
65
66 The layout of the bits is as below:
67
68 [ MTU_SHIFT ][ FRAC_BITS ]
69 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
70 ^.__grp->index = 0
71 *.__grp->slot_shift
72
73 where MIN_SLOT_SHIFT is derived by difference from the others.
74
75 The max group index corresponds to Lmax/w_min, where
76 Lmax=1<<MTU_SHIFT, w_min = 1 .
77 From this, and knowing how many groups (MAX_INDEX) we want,
78 we can derive the shift corresponding to each group.
79
80 Because we often need to compute
81 F = S + len/w_i and V = V + len/wsum
82 instead of storing w_i store the value
83 inv_w = (1<<FRAC_BITS)/w_i
84 so we can do F = S + len * inv_w * wsum.
85 We use W_TOT in the formulas so we can easily move between
86 static and adaptive weight sum.
87
88 The per-scheduler-instance data contain all the data structures
89 for the scheduler: bitmaps and bucket lists.
90
91 */
92
93 /*
94 * Maximum number of consecutive slots occupied by backlogged classes
95 * inside a group.
96 */
97 #define QFQ_MAX_SLOTS 32
98
99 /*
100 * Shifts used for aggregate<->group mapping. We allow class weights that are
101 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
102 * group with the smallest index that can support the L_i / r_i configured
103 * for the classes in the aggregate.
104 *
105 * grp->index is the index of the group; and grp->slot_shift
106 * is the shift for the corresponding (scaled) sigma_i.
107 */
108 #define QFQ_MAX_INDEX 24
109 #define QFQ_MAX_WSHIFT 10
110
111 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
112 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
113
114 #define FRAC_BITS 30 /* fixed point arithmetic */
115 #define ONE_FP (1UL << FRAC_BITS)
116
117 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
118 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
119
120 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
121
122 /*
123 * Possible group states. These values are used as indexes for the bitmaps
124 * array of struct qfq_queue.
125 */
126 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
127
128 struct qfq_group;
129
130 struct qfq_aggregate;
131
132 struct qfq_class {
133 struct Qdisc_class_common common;
134
135 unsigned int refcnt;
136 unsigned int filter_cnt;
137
138 struct gnet_stats_basic_packed bstats;
139 struct gnet_stats_queue qstats;
140 struct gnet_stats_rate_est64 rate_est;
141 struct Qdisc *qdisc;
142 struct list_head alist; /* Link for active-classes list. */
143 struct qfq_aggregate *agg; /* Parent aggregate. */
144 int deficit; /* DRR deficit counter. */
145 };
146
147 struct qfq_aggregate {
148 struct hlist_node next; /* Link for the slot list. */
149 u64 S, F; /* flow timestamps (exact) */
150
151 /* group we belong to. In principle we would need the index,
152 * which is log_2(lmax/weight), but we never reference it
153 * directly, only the group.
154 */
155 struct qfq_group *grp;
156
157 /* these are copied from the flowset. */
158 u32 class_weight; /* Weight of each class in this aggregate. */
159 /* Max pkt size for the classes in this aggregate, DRR quantum. */
160 int lmax;
161
162 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
163 u32 budgetmax; /* Max budget for this aggregate. */
164 u32 initial_budget, budget; /* Initial and current budget. */
165
166 int num_classes; /* Number of classes in this aggr. */
167 struct list_head active; /* DRR queue of active classes. */
168
169 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
170 };
171
172 struct qfq_group {
173 u64 S, F; /* group timestamps (approx). */
174 unsigned int slot_shift; /* Slot shift. */
175 unsigned int index; /* Group index. */
176 unsigned int front; /* Index of the front slot. */
177 unsigned long full_slots; /* non-empty slots */
178
179 /* Array of RR lists of active aggregates. */
180 struct hlist_head slots[QFQ_MAX_SLOTS];
181 };
182
183 struct qfq_sched {
184 struct tcf_proto __rcu *filter_list;
185 struct Qdisc_class_hash clhash;
186
187 u64 oldV, V; /* Precise virtual times. */
188 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
189 u32 num_active_agg; /* Num. of active aggregates */
190 u32 wsum; /* weight sum */
191 u32 iwsum; /* inverse weight sum */
192
193 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
194 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
195 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
196
197 u32 max_agg_classes; /* Max number of classes per aggr. */
198 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
199 };
200
201 /*
202 * Possible reasons why the timestamps of an aggregate are updated
203 * enqueue: the aggregate switches from idle to active and must scheduled
204 * for service
205 * requeue: the aggregate finishes its budget, so it stops being served and
206 * must be rescheduled for service
207 */
208 enum update_reason {enqueue, requeue};
209
210 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
211 {
212 struct qfq_sched *q = qdisc_priv(sch);
213 struct Qdisc_class_common *clc;
214
215 clc = qdisc_class_find(&q->clhash, classid);
216 if (clc == NULL)
217 return NULL;
218 return container_of(clc, struct qfq_class, common);
219 }
220
221 static void qfq_purge_queue(struct qfq_class *cl)
222 {
223 unsigned int len = cl->qdisc->q.qlen;
224
225 qdisc_reset(cl->qdisc);
226 qdisc_tree_decrease_qlen(cl->qdisc, len);
227 }
228
229 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
230 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
231 [TCA_QFQ_LMAX] = { .type = NLA_U32 },
232 };
233
234 /*
235 * Calculate a flow index, given its weight and maximum packet length.
236 * index = log_2(maxlen/weight) but we need to apply the scaling.
237 * This is used only once at flow creation.
238 */
239 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
240 {
241 u64 slot_size = (u64)maxlen * inv_w;
242 unsigned long size_map;
243 int index = 0;
244
245 size_map = slot_size >> min_slot_shift;
246 if (!size_map)
247 goto out;
248
249 index = __fls(size_map) + 1; /* basically a log_2 */
250 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
251
252 if (index < 0)
253 index = 0;
254 out:
255 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
256 (unsigned long) ONE_FP/inv_w, maxlen, index);
257
258 return index;
259 }
260
261 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
262 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
263 enum update_reason);
264
265 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
266 u32 lmax, u32 weight)
267 {
268 INIT_LIST_HEAD(&agg->active);
269 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
270
271 agg->lmax = lmax;
272 agg->class_weight = weight;
273 }
274
275 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
276 u32 lmax, u32 weight)
277 {
278 struct qfq_aggregate *agg;
279
280 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
281 if (agg->lmax == lmax && agg->class_weight == weight)
282 return agg;
283
284 return NULL;
285 }
286
287
288 /* Update aggregate as a function of the new number of classes. */
289 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
290 int new_num_classes)
291 {
292 u32 new_agg_weight;
293
294 if (new_num_classes == q->max_agg_classes)
295 hlist_del_init(&agg->nonfull_next);
296
297 if (agg->num_classes > new_num_classes &&
298 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
299 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
300
301 /* The next assignment may let
302 * agg->initial_budget > agg->budgetmax
303 * hold, we will take it into account in charge_actual_service().
304 */
305 agg->budgetmax = new_num_classes * agg->lmax;
306 new_agg_weight = agg->class_weight * new_num_classes;
307 agg->inv_w = ONE_FP/new_agg_weight;
308
309 if (agg->grp == NULL) {
310 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
311 q->min_slot_shift);
312 agg->grp = &q->groups[i];
313 }
314
315 q->wsum +=
316 (int) agg->class_weight * (new_num_classes - agg->num_classes);
317 q->iwsum = ONE_FP / q->wsum;
318
319 agg->num_classes = new_num_classes;
320 }
321
322 /* Add class to aggregate. */
323 static void qfq_add_to_agg(struct qfq_sched *q,
324 struct qfq_aggregate *agg,
325 struct qfq_class *cl)
326 {
327 cl->agg = agg;
328
329 qfq_update_agg(q, agg, agg->num_classes+1);
330 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
331 list_add_tail(&cl->alist, &agg->active);
332 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
333 cl && q->in_serv_agg != agg) /* agg was inactive */
334 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
335 }
336 }
337
338 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
339
340 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
341 {
342 hlist_del_init(&agg->nonfull_next);
343 q->wsum -= agg->class_weight;
344 if (q->wsum != 0)
345 q->iwsum = ONE_FP / q->wsum;
346
347 if (q->in_serv_agg == agg)
348 q->in_serv_agg = qfq_choose_next_agg(q);
349 kfree(agg);
350 }
351
352 /* Deschedule class from within its parent aggregate. */
353 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
354 {
355 struct qfq_aggregate *agg = cl->agg;
356
357
358 list_del(&cl->alist); /* remove from RR queue of the aggregate */
359 if (list_empty(&agg->active)) /* agg is now inactive */
360 qfq_deactivate_agg(q, agg);
361 }
362
363 /* Remove class from its parent aggregate. */
364 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
365 {
366 struct qfq_aggregate *agg = cl->agg;
367
368 cl->agg = NULL;
369 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
370 qfq_destroy_agg(q, agg);
371 return;
372 }
373 qfq_update_agg(q, agg, agg->num_classes-1);
374 }
375
376 /* Deschedule class and remove it from its parent aggregate. */
377 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
378 {
379 if (cl->qdisc->q.qlen > 0) /* class is active */
380 qfq_deactivate_class(q, cl);
381
382 qfq_rm_from_agg(q, cl);
383 }
384
385 /* Move class to a new aggregate, matching the new class weight and/or lmax */
386 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
387 u32 lmax)
388 {
389 struct qfq_sched *q = qdisc_priv(sch);
390 struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
391
392 if (new_agg == NULL) { /* create new aggregate */
393 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
394 if (new_agg == NULL)
395 return -ENOBUFS;
396 qfq_init_agg(q, new_agg, lmax, weight);
397 }
398 qfq_deact_rm_from_agg(q, cl);
399 qfq_add_to_agg(q, new_agg, cl);
400
401 return 0;
402 }
403
404 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
405 struct nlattr **tca, unsigned long *arg)
406 {
407 struct qfq_sched *q = qdisc_priv(sch);
408 struct qfq_class *cl = (struct qfq_class *)*arg;
409 bool existing = false;
410 struct nlattr *tb[TCA_QFQ_MAX + 1];
411 struct qfq_aggregate *new_agg = NULL;
412 u32 weight, lmax, inv_w;
413 int err;
414 int delta_w;
415
416 if (tca[TCA_OPTIONS] == NULL) {
417 pr_notice("qfq: no options\n");
418 return -EINVAL;
419 }
420
421 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
422 if (err < 0)
423 return err;
424
425 if (tb[TCA_QFQ_WEIGHT]) {
426 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
427 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
428 pr_notice("qfq: invalid weight %u\n", weight);
429 return -EINVAL;
430 }
431 } else
432 weight = 1;
433
434 if (tb[TCA_QFQ_LMAX]) {
435 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
436 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
437 pr_notice("qfq: invalid max length %u\n", lmax);
438 return -EINVAL;
439 }
440 } else
441 lmax = psched_mtu(qdisc_dev(sch));
442
443 inv_w = ONE_FP / weight;
444 weight = ONE_FP / inv_w;
445
446 if (cl != NULL &&
447 lmax == cl->agg->lmax &&
448 weight == cl->agg->class_weight)
449 return 0; /* nothing to change */
450
451 delta_w = weight - (cl ? cl->agg->class_weight : 0);
452
453 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
454 pr_notice("qfq: total weight out of range (%d + %u)\n",
455 delta_w, q->wsum);
456 return -EINVAL;
457 }
458
459 if (cl != NULL) { /* modify existing class */
460 if (tca[TCA_RATE]) {
461 err = gen_replace_estimator(&cl->bstats, NULL,
462 &cl->rate_est,
463 qdisc_root_sleeping_lock(sch),
464 tca[TCA_RATE]);
465 if (err)
466 return err;
467 }
468 existing = true;
469 goto set_change_agg;
470 }
471
472 /* create and init new class */
473 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
474 if (cl == NULL)
475 return -ENOBUFS;
476
477 cl->refcnt = 1;
478 cl->common.classid = classid;
479 cl->deficit = lmax;
480
481 cl->qdisc = qdisc_create_dflt(sch->dev_queue,
482 &pfifo_qdisc_ops, classid);
483 if (cl->qdisc == NULL)
484 cl->qdisc = &noop_qdisc;
485
486 if (tca[TCA_RATE]) {
487 err = gen_new_estimator(&cl->bstats, NULL,
488 &cl->rate_est,
489 qdisc_root_sleeping_lock(sch),
490 tca[TCA_RATE]);
491 if (err)
492 goto destroy_class;
493 }
494
495 sch_tree_lock(sch);
496 qdisc_class_hash_insert(&q->clhash, &cl->common);
497 sch_tree_unlock(sch);
498
499 qdisc_class_hash_grow(sch, &q->clhash);
500
501 set_change_agg:
502 sch_tree_lock(sch);
503 new_agg = qfq_find_agg(q, lmax, weight);
504 if (new_agg == NULL) { /* create new aggregate */
505 sch_tree_unlock(sch);
506 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
507 if (new_agg == NULL) {
508 err = -ENOBUFS;
509 gen_kill_estimator(&cl->bstats, &cl->rate_est);
510 goto destroy_class;
511 }
512 sch_tree_lock(sch);
513 qfq_init_agg(q, new_agg, lmax, weight);
514 }
515 if (existing)
516 qfq_deact_rm_from_agg(q, cl);
517 qfq_add_to_agg(q, new_agg, cl);
518 sch_tree_unlock(sch);
519
520 *arg = (unsigned long)cl;
521 return 0;
522
523 destroy_class:
524 qdisc_destroy(cl->qdisc);
525 kfree(cl);
526 return err;
527 }
528
529 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
530 {
531 struct qfq_sched *q = qdisc_priv(sch);
532
533 qfq_rm_from_agg(q, cl);
534 gen_kill_estimator(&cl->bstats, &cl->rate_est);
535 qdisc_destroy(cl->qdisc);
536 kfree(cl);
537 }
538
539 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
540 {
541 struct qfq_sched *q = qdisc_priv(sch);
542 struct qfq_class *cl = (struct qfq_class *)arg;
543
544 if (cl->filter_cnt > 0)
545 return -EBUSY;
546
547 sch_tree_lock(sch);
548
549 qfq_purge_queue(cl);
550 qdisc_class_hash_remove(&q->clhash, &cl->common);
551
552 BUG_ON(--cl->refcnt == 0);
553 /*
554 * This shouldn't happen: we "hold" one cops->get() when called
555 * from tc_ctl_tclass; the destroy method is done from cops->put().
556 */
557
558 sch_tree_unlock(sch);
559 return 0;
560 }
561
562 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
563 {
564 struct qfq_class *cl = qfq_find_class(sch, classid);
565
566 if (cl != NULL)
567 cl->refcnt++;
568
569 return (unsigned long)cl;
570 }
571
572 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
573 {
574 struct qfq_class *cl = (struct qfq_class *)arg;
575
576 if (--cl->refcnt == 0)
577 qfq_destroy_class(sch, cl);
578 }
579
580 static struct tcf_proto __rcu **qfq_tcf_chain(struct Qdisc *sch,
581 unsigned long cl)
582 {
583 struct qfq_sched *q = qdisc_priv(sch);
584
585 if (cl)
586 return NULL;
587
588 return &q->filter_list;
589 }
590
591 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
592 u32 classid)
593 {
594 struct qfq_class *cl = qfq_find_class(sch, classid);
595
596 if (cl != NULL)
597 cl->filter_cnt++;
598
599 return (unsigned long)cl;
600 }
601
602 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
603 {
604 struct qfq_class *cl = (struct qfq_class *)arg;
605
606 cl->filter_cnt--;
607 }
608
609 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
610 struct Qdisc *new, struct Qdisc **old)
611 {
612 struct qfq_class *cl = (struct qfq_class *)arg;
613
614 if (new == NULL) {
615 new = qdisc_create_dflt(sch->dev_queue,
616 &pfifo_qdisc_ops, cl->common.classid);
617 if (new == NULL)
618 new = &noop_qdisc;
619 }
620
621 sch_tree_lock(sch);
622 qfq_purge_queue(cl);
623 *old = cl->qdisc;
624 cl->qdisc = new;
625 sch_tree_unlock(sch);
626 return 0;
627 }
628
629 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
630 {
631 struct qfq_class *cl = (struct qfq_class *)arg;
632
633 return cl->qdisc;
634 }
635
636 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
637 struct sk_buff *skb, struct tcmsg *tcm)
638 {
639 struct qfq_class *cl = (struct qfq_class *)arg;
640 struct nlattr *nest;
641
642 tcm->tcm_parent = TC_H_ROOT;
643 tcm->tcm_handle = cl->common.classid;
644 tcm->tcm_info = cl->qdisc->handle;
645
646 nest = nla_nest_start(skb, TCA_OPTIONS);
647 if (nest == NULL)
648 goto nla_put_failure;
649 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
650 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
651 goto nla_put_failure;
652 return nla_nest_end(skb, nest);
653
654 nla_put_failure:
655 nla_nest_cancel(skb, nest);
656 return -EMSGSIZE;
657 }
658
659 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
660 struct gnet_dump *d)
661 {
662 struct qfq_class *cl = (struct qfq_class *)arg;
663 struct tc_qfq_stats xstats;
664
665 memset(&xstats, 0, sizeof(xstats));
666
667 xstats.weight = cl->agg->class_weight;
668 xstats.lmax = cl->agg->lmax;
669
670 if (gnet_stats_copy_basic(d, NULL, &cl->bstats) < 0 ||
671 gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
672 gnet_stats_copy_queue(d, NULL,
673 &cl->qdisc->qstats, cl->qdisc->q.qlen) < 0)
674 return -1;
675
676 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
677 }
678
679 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
680 {
681 struct qfq_sched *q = qdisc_priv(sch);
682 struct qfq_class *cl;
683 unsigned int i;
684
685 if (arg->stop)
686 return;
687
688 for (i = 0; i < q->clhash.hashsize; i++) {
689 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
690 if (arg->count < arg->skip) {
691 arg->count++;
692 continue;
693 }
694 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
695 arg->stop = 1;
696 return;
697 }
698 arg->count++;
699 }
700 }
701 }
702
703 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
704 int *qerr)
705 {
706 struct qfq_sched *q = qdisc_priv(sch);
707 struct qfq_class *cl;
708 struct tcf_result res;
709 struct tcf_proto *fl;
710 int result;
711
712 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
713 pr_debug("qfq_classify: found %d\n", skb->priority);
714 cl = qfq_find_class(sch, skb->priority);
715 if (cl != NULL)
716 return cl;
717 }
718
719 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
720 fl = rcu_dereference_bh(q->filter_list);
721 result = tc_classify(skb, fl, &res);
722 if (result >= 0) {
723 #ifdef CONFIG_NET_CLS_ACT
724 switch (result) {
725 case TC_ACT_QUEUED:
726 case TC_ACT_STOLEN:
727 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
728 case TC_ACT_SHOT:
729 return NULL;
730 }
731 #endif
732 cl = (struct qfq_class *)res.class;
733 if (cl == NULL)
734 cl = qfq_find_class(sch, res.classid);
735 return cl;
736 }
737
738 return NULL;
739 }
740
741 /* Generic comparison function, handling wraparound. */
742 static inline int qfq_gt(u64 a, u64 b)
743 {
744 return (s64)(a - b) > 0;
745 }
746
747 /* Round a precise timestamp to its slotted value. */
748 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
749 {
750 return ts & ~((1ULL << shift) - 1);
751 }
752
753 /* return the pointer to the group with lowest index in the bitmap */
754 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
755 unsigned long bitmap)
756 {
757 int index = __ffs(bitmap);
758 return &q->groups[index];
759 }
760 /* Calculate a mask to mimic what would be ffs_from(). */
761 static inline unsigned long mask_from(unsigned long bitmap, int from)
762 {
763 return bitmap & ~((1UL << from) - 1);
764 }
765
766 /*
767 * The state computation relies on ER=0, IR=1, EB=2, IB=3
768 * First compute eligibility comparing grp->S, q->V,
769 * then check if someone is blocking us and possibly add EB
770 */
771 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
772 {
773 /* if S > V we are not eligible */
774 unsigned int state = qfq_gt(grp->S, q->V);
775 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
776 struct qfq_group *next;
777
778 if (mask) {
779 next = qfq_ffs(q, mask);
780 if (qfq_gt(grp->F, next->F))
781 state |= EB;
782 }
783
784 return state;
785 }
786
787
788 /*
789 * In principle
790 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
791 * q->bitmaps[src] &= ~mask;
792 * but we should make sure that src != dst
793 */
794 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
795 int src, int dst)
796 {
797 q->bitmaps[dst] |= q->bitmaps[src] & mask;
798 q->bitmaps[src] &= ~mask;
799 }
800
801 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
802 {
803 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
804 struct qfq_group *next;
805
806 if (mask) {
807 next = qfq_ffs(q, mask);
808 if (!qfq_gt(next->F, old_F))
809 return;
810 }
811
812 mask = (1UL << index) - 1;
813 qfq_move_groups(q, mask, EB, ER);
814 qfq_move_groups(q, mask, IB, IR);
815 }
816
817 /*
818 * perhaps
819 *
820 old_V ^= q->V;
821 old_V >>= q->min_slot_shift;
822 if (old_V) {
823 ...
824 }
825 *
826 */
827 static void qfq_make_eligible(struct qfq_sched *q)
828 {
829 unsigned long vslot = q->V >> q->min_slot_shift;
830 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
831
832 if (vslot != old_vslot) {
833 unsigned long mask;
834 int last_flip_pos = fls(vslot ^ old_vslot);
835
836 if (last_flip_pos > 31) /* higher than the number of groups */
837 mask = ~0UL; /* make all groups eligible */
838 else
839 mask = (1UL << last_flip_pos) - 1;
840
841 qfq_move_groups(q, mask, IR, ER);
842 qfq_move_groups(q, mask, IB, EB);
843 }
844 }
845
846 /*
847 * The index of the slot in which the input aggregate agg is to be
848 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
849 * and not a '-1' because the start time of the group may be moved
850 * backward by one slot after the aggregate has been inserted, and
851 * this would cause non-empty slots to be right-shifted by one
852 * position.
853 *
854 * QFQ+ fully satisfies this bound to the slot index if the parameters
855 * of the classes are not changed dynamically, and if QFQ+ never
856 * happens to postpone the service of agg unjustly, i.e., it never
857 * happens that the aggregate becomes backlogged and eligible, or just
858 * eligible, while an aggregate with a higher approximated finish time
859 * is being served. In particular, in this case QFQ+ guarantees that
860 * the timestamps of agg are low enough that the slot index is never
861 * higher than 2. Unfortunately, QFQ+ cannot provide the same
862 * guarantee if it happens to unjustly postpone the service of agg, or
863 * if the parameters of some class are changed.
864 *
865 * As for the first event, i.e., an out-of-order service, the
866 * upper bound to the slot index guaranteed by QFQ+ grows to
867 * 2 +
868 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
869 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
870 *
871 * The following function deals with this problem by backward-shifting
872 * the timestamps of agg, if needed, so as to guarantee that the slot
873 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
874 * cause the service of other aggregates to be postponed, yet the
875 * worst-case guarantees of these aggregates are not violated. In
876 * fact, in case of no out-of-order service, the timestamps of agg
877 * would have been even lower than they are after the backward shift,
878 * because QFQ+ would have guaranteed a maximum value equal to 2 for
879 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
880 * service is postponed because of the backward-shift would have
881 * however waited for the service of agg before being served.
882 *
883 * The other event that may cause the slot index to be higher than 2
884 * for agg is a recent change of the parameters of some class. If the
885 * weight of a class is increased or the lmax (max_pkt_size) of the
886 * class is decreased, then a new aggregate with smaller slot size
887 * than the original parent aggregate of the class may happen to be
888 * activated. The activation of this aggregate should be properly
889 * delayed to when the service of the class has finished in the ideal
890 * system tracked by QFQ+. If the activation of the aggregate is not
891 * delayed to this reference time instant, then this aggregate may be
892 * unjustly served before other aggregates waiting for service. This
893 * may cause the above bound to the slot index to be violated for some
894 * of these unlucky aggregates.
895 *
896 * Instead of delaying the activation of the new aggregate, which is
897 * quite complex, the above-discussed capping of the slot index is
898 * used to handle also the consequences of a change of the parameters
899 * of a class.
900 */
901 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
902 u64 roundedS)
903 {
904 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
905 unsigned int i; /* slot index in the bucket list */
906
907 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
908 u64 deltaS = roundedS - grp->S -
909 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
910 agg->S -= deltaS;
911 agg->F -= deltaS;
912 slot = QFQ_MAX_SLOTS - 2;
913 }
914
915 i = (grp->front + slot) % QFQ_MAX_SLOTS;
916
917 hlist_add_head(&agg->next, &grp->slots[i]);
918 __set_bit(slot, &grp->full_slots);
919 }
920
921 /* Maybe introduce hlist_first_entry?? */
922 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
923 {
924 return hlist_entry(grp->slots[grp->front].first,
925 struct qfq_aggregate, next);
926 }
927
928 /*
929 * remove the entry from the slot
930 */
931 static void qfq_front_slot_remove(struct qfq_group *grp)
932 {
933 struct qfq_aggregate *agg = qfq_slot_head(grp);
934
935 BUG_ON(!agg);
936 hlist_del(&agg->next);
937 if (hlist_empty(&grp->slots[grp->front]))
938 __clear_bit(0, &grp->full_slots);
939 }
940
941 /*
942 * Returns the first aggregate in the first non-empty bucket of the
943 * group. As a side effect, adjusts the bucket list so the first
944 * non-empty bucket is at position 0 in full_slots.
945 */
946 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
947 {
948 unsigned int i;
949
950 pr_debug("qfq slot_scan: grp %u full %#lx\n",
951 grp->index, grp->full_slots);
952
953 if (grp->full_slots == 0)
954 return NULL;
955
956 i = __ffs(grp->full_slots); /* zero based */
957 if (i > 0) {
958 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
959 grp->full_slots >>= i;
960 }
961
962 return qfq_slot_head(grp);
963 }
964
965 /*
966 * adjust the bucket list. When the start time of a group decreases,
967 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
968 * move the objects. The mask of occupied slots must be shifted
969 * because we use ffs() to find the first non-empty slot.
970 * This covers decreases in the group's start time, but what about
971 * increases of the start time ?
972 * Here too we should make sure that i is less than 32
973 */
974 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
975 {
976 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
977
978 grp->full_slots <<= i;
979 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
980 }
981
982 static void qfq_update_eligible(struct qfq_sched *q)
983 {
984 struct qfq_group *grp;
985 unsigned long ineligible;
986
987 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
988 if (ineligible) {
989 if (!q->bitmaps[ER]) {
990 grp = qfq_ffs(q, ineligible);
991 if (qfq_gt(grp->S, q->V))
992 q->V = grp->S;
993 }
994 qfq_make_eligible(q);
995 }
996 }
997
998 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
999 static void agg_dequeue(struct qfq_aggregate *agg,
1000 struct qfq_class *cl, unsigned int len)
1001 {
1002 qdisc_dequeue_peeked(cl->qdisc);
1003
1004 cl->deficit -= (int) len;
1005
1006 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
1007 list_del(&cl->alist);
1008 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
1009 cl->deficit += agg->lmax;
1010 list_move_tail(&cl->alist, &agg->active);
1011 }
1012 }
1013
1014 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
1015 struct qfq_class **cl,
1016 unsigned int *len)
1017 {
1018 struct sk_buff *skb;
1019
1020 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1021 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1022 if (skb == NULL)
1023 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
1024 else
1025 *len = qdisc_pkt_len(skb);
1026
1027 return skb;
1028 }
1029
1030 /* Update F according to the actual service received by the aggregate. */
1031 static inline void charge_actual_service(struct qfq_aggregate *agg)
1032 {
1033 /* Compute the service received by the aggregate, taking into
1034 * account that, after decreasing the number of classes in
1035 * agg, it may happen that
1036 * agg->initial_budget - agg->budget > agg->bugdetmax
1037 */
1038 u32 service_received = min(agg->budgetmax,
1039 agg->initial_budget - agg->budget);
1040
1041 agg->F = agg->S + (u64)service_received * agg->inv_w;
1042 }
1043
1044 /* Assign a reasonable start time for a new aggregate in group i.
1045 * Admissible values for \hat(F) are multiples of \sigma_i
1046 * no greater than V+\sigma_i . Larger values mean that
1047 * we had a wraparound so we consider the timestamp to be stale.
1048 *
1049 * If F is not stale and F >= V then we set S = F.
1050 * Otherwise we should assign S = V, but this may violate
1051 * the ordering in EB (see [2]). So, if we have groups in ER,
1052 * set S to the F_j of the first group j which would be blocking us.
1053 * We are guaranteed not to move S backward because
1054 * otherwise our group i would still be blocked.
1055 */
1056 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1057 {
1058 unsigned long mask;
1059 u64 limit, roundedF;
1060 int slot_shift = agg->grp->slot_shift;
1061
1062 roundedF = qfq_round_down(agg->F, slot_shift);
1063 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1064
1065 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1066 /* timestamp was stale */
1067 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1068 if (mask) {
1069 struct qfq_group *next = qfq_ffs(q, mask);
1070 if (qfq_gt(roundedF, next->F)) {
1071 if (qfq_gt(limit, next->F))
1072 agg->S = next->F;
1073 else /* preserve timestamp correctness */
1074 agg->S = limit;
1075 return;
1076 }
1077 }
1078 agg->S = q->V;
1079 } else /* timestamp is not stale */
1080 agg->S = agg->F;
1081 }
1082
1083 /* Update the timestamps of agg before scheduling/rescheduling it for
1084 * service. In particular, assign to agg->F its maximum possible
1085 * value, i.e., the virtual finish time with which the aggregate
1086 * should be labeled if it used all its budget once in service.
1087 */
1088 static inline void
1089 qfq_update_agg_ts(struct qfq_sched *q,
1090 struct qfq_aggregate *agg, enum update_reason reason)
1091 {
1092 if (reason != requeue)
1093 qfq_update_start(q, agg);
1094 else /* just charge agg for the service received */
1095 agg->S = agg->F;
1096
1097 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1098 }
1099
1100 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1101
1102 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1103 {
1104 struct qfq_sched *q = qdisc_priv(sch);
1105 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1106 struct qfq_class *cl;
1107 struct sk_buff *skb = NULL;
1108 /* next-packet len, 0 means no more active classes in in-service agg */
1109 unsigned int len = 0;
1110
1111 if (in_serv_agg == NULL)
1112 return NULL;
1113
1114 if (!list_empty(&in_serv_agg->active))
1115 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1116
1117 /*
1118 * If there are no active classes in the in-service aggregate,
1119 * or if the aggregate has not enough budget to serve its next
1120 * class, then choose the next aggregate to serve.
1121 */
1122 if (len == 0 || in_serv_agg->budget < len) {
1123 charge_actual_service(in_serv_agg);
1124
1125 /* recharge the budget of the aggregate */
1126 in_serv_agg->initial_budget = in_serv_agg->budget =
1127 in_serv_agg->budgetmax;
1128
1129 if (!list_empty(&in_serv_agg->active)) {
1130 /*
1131 * Still active: reschedule for
1132 * service. Possible optimization: if no other
1133 * aggregate is active, then there is no point
1134 * in rescheduling this aggregate, and we can
1135 * just keep it as the in-service one. This
1136 * should be however a corner case, and to
1137 * handle it, we would need to maintain an
1138 * extra num_active_aggs field.
1139 */
1140 qfq_update_agg_ts(q, in_serv_agg, requeue);
1141 qfq_schedule_agg(q, in_serv_agg);
1142 } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1143 q->in_serv_agg = NULL;
1144 return NULL;
1145 }
1146
1147 /*
1148 * If we get here, there are other aggregates queued:
1149 * choose the new aggregate to serve.
1150 */
1151 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1152 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1153 }
1154 if (!skb)
1155 return NULL;
1156
1157 sch->q.qlen--;
1158 qdisc_bstats_update(sch, skb);
1159
1160 agg_dequeue(in_serv_agg, cl, len);
1161 /* If lmax is lowered, through qfq_change_class, for a class
1162 * owning pending packets with larger size than the new value
1163 * of lmax, then the following condition may hold.
1164 */
1165 if (unlikely(in_serv_agg->budget < len))
1166 in_serv_agg->budget = 0;
1167 else
1168 in_serv_agg->budget -= len;
1169
1170 q->V += (u64)len * q->iwsum;
1171 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1172 len, (unsigned long long) in_serv_agg->F,
1173 (unsigned long long) q->V);
1174
1175 return skb;
1176 }
1177
1178 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1179 {
1180 struct qfq_group *grp;
1181 struct qfq_aggregate *agg, *new_front_agg;
1182 u64 old_F;
1183
1184 qfq_update_eligible(q);
1185 q->oldV = q->V;
1186
1187 if (!q->bitmaps[ER])
1188 return NULL;
1189
1190 grp = qfq_ffs(q, q->bitmaps[ER]);
1191 old_F = grp->F;
1192
1193 agg = qfq_slot_head(grp);
1194
1195 /* agg starts to be served, remove it from schedule */
1196 qfq_front_slot_remove(grp);
1197
1198 new_front_agg = qfq_slot_scan(grp);
1199
1200 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1201 __clear_bit(grp->index, &q->bitmaps[ER]);
1202 else {
1203 u64 roundedS = qfq_round_down(new_front_agg->S,
1204 grp->slot_shift);
1205 unsigned int s;
1206
1207 if (grp->S == roundedS)
1208 return agg;
1209 grp->S = roundedS;
1210 grp->F = roundedS + (2ULL << grp->slot_shift);
1211 __clear_bit(grp->index, &q->bitmaps[ER]);
1212 s = qfq_calc_state(q, grp);
1213 __set_bit(grp->index, &q->bitmaps[s]);
1214 }
1215
1216 qfq_unblock_groups(q, grp->index, old_F);
1217
1218 return agg;
1219 }
1220
1221 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
1222 {
1223 struct qfq_sched *q = qdisc_priv(sch);
1224 struct qfq_class *cl;
1225 struct qfq_aggregate *agg;
1226 int err = 0;
1227
1228 cl = qfq_classify(skb, sch, &err);
1229 if (cl == NULL) {
1230 if (err & __NET_XMIT_BYPASS)
1231 qdisc_qstats_drop(sch);
1232 kfree_skb(skb);
1233 return err;
1234 }
1235 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1236
1237 if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
1238 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1239 cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
1240 err = qfq_change_agg(sch, cl, cl->agg->class_weight,
1241 qdisc_pkt_len(skb));
1242 if (err)
1243 return err;
1244 }
1245
1246 err = qdisc_enqueue(skb, cl->qdisc);
1247 if (unlikely(err != NET_XMIT_SUCCESS)) {
1248 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1249 if (net_xmit_drop_count(err)) {
1250 cl->qstats.drops++;
1251 qdisc_qstats_drop(sch);
1252 }
1253 return err;
1254 }
1255
1256 bstats_update(&cl->bstats, skb);
1257 ++sch->q.qlen;
1258
1259 agg = cl->agg;
1260 /* if the queue was not empty, then done here */
1261 if (cl->qdisc->q.qlen != 1) {
1262 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1263 list_first_entry(&agg->active, struct qfq_class, alist)
1264 == cl && cl->deficit < qdisc_pkt_len(skb))
1265 list_move_tail(&cl->alist, &agg->active);
1266
1267 return err;
1268 }
1269
1270 /* schedule class for service within the aggregate */
1271 cl->deficit = agg->lmax;
1272 list_add_tail(&cl->alist, &agg->active);
1273
1274 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1275 q->in_serv_agg == agg)
1276 return err; /* non-empty or in service, nothing else to do */
1277
1278 qfq_activate_agg(q, agg, enqueue);
1279
1280 return err;
1281 }
1282
1283 /*
1284 * Schedule aggregate according to its timestamps.
1285 */
1286 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1287 {
1288 struct qfq_group *grp = agg->grp;
1289 u64 roundedS;
1290 int s;
1291
1292 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1293
1294 /*
1295 * Insert agg in the correct bucket.
1296 * If agg->S >= grp->S we don't need to adjust the
1297 * bucket list and simply go to the insertion phase.
1298 * Otherwise grp->S is decreasing, we must make room
1299 * in the bucket list, and also recompute the group state.
1300 * Finally, if there were no flows in this group and nobody
1301 * was in ER make sure to adjust V.
1302 */
1303 if (grp->full_slots) {
1304 if (!qfq_gt(grp->S, agg->S))
1305 goto skip_update;
1306
1307 /* create a slot for this agg->S */
1308 qfq_slot_rotate(grp, roundedS);
1309 /* group was surely ineligible, remove */
1310 __clear_bit(grp->index, &q->bitmaps[IR]);
1311 __clear_bit(grp->index, &q->bitmaps[IB]);
1312 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1313 q->in_serv_agg == NULL)
1314 q->V = roundedS;
1315
1316 grp->S = roundedS;
1317 grp->F = roundedS + (2ULL << grp->slot_shift);
1318 s = qfq_calc_state(q, grp);
1319 __set_bit(grp->index, &q->bitmaps[s]);
1320
1321 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1322 s, q->bitmaps[s],
1323 (unsigned long long) agg->S,
1324 (unsigned long long) agg->F,
1325 (unsigned long long) q->V);
1326
1327 skip_update:
1328 qfq_slot_insert(grp, agg, roundedS);
1329 }
1330
1331
1332 /* Update agg ts and schedule agg for service */
1333 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1334 enum update_reason reason)
1335 {
1336 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1337
1338 qfq_update_agg_ts(q, agg, reason);
1339 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1340 q->in_serv_agg = agg; /* start serving this aggregate */
1341 /* update V: to be in service, agg must be eligible */
1342 q->oldV = q->V = agg->S;
1343 } else if (agg != q->in_serv_agg)
1344 qfq_schedule_agg(q, agg);
1345 }
1346
1347 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1348 struct qfq_aggregate *agg)
1349 {
1350 unsigned int i, offset;
1351 u64 roundedS;
1352
1353 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1354 offset = (roundedS - grp->S) >> grp->slot_shift;
1355
1356 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1357
1358 hlist_del(&agg->next);
1359 if (hlist_empty(&grp->slots[i]))
1360 __clear_bit(offset, &grp->full_slots);
1361 }
1362
1363 /*
1364 * Called to forcibly deschedule an aggregate. If the aggregate is
1365 * not in the front bucket, or if the latter has other aggregates in
1366 * the front bucket, we can simply remove the aggregate with no other
1367 * side effects.
1368 * Otherwise we must propagate the event up.
1369 */
1370 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1371 {
1372 struct qfq_group *grp = agg->grp;
1373 unsigned long mask;
1374 u64 roundedS;
1375 int s;
1376
1377 if (agg == q->in_serv_agg) {
1378 charge_actual_service(agg);
1379 q->in_serv_agg = qfq_choose_next_agg(q);
1380 return;
1381 }
1382
1383 agg->F = agg->S;
1384 qfq_slot_remove(q, grp, agg);
1385
1386 if (!grp->full_slots) {
1387 __clear_bit(grp->index, &q->bitmaps[IR]);
1388 __clear_bit(grp->index, &q->bitmaps[EB]);
1389 __clear_bit(grp->index, &q->bitmaps[IB]);
1390
1391 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1392 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1393 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1394 if (mask)
1395 mask = ~((1UL << __fls(mask)) - 1);
1396 else
1397 mask = ~0UL;
1398 qfq_move_groups(q, mask, EB, ER);
1399 qfq_move_groups(q, mask, IB, IR);
1400 }
1401 __clear_bit(grp->index, &q->bitmaps[ER]);
1402 } else if (hlist_empty(&grp->slots[grp->front])) {
1403 agg = qfq_slot_scan(grp);
1404 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1405 if (grp->S != roundedS) {
1406 __clear_bit(grp->index, &q->bitmaps[ER]);
1407 __clear_bit(grp->index, &q->bitmaps[IR]);
1408 __clear_bit(grp->index, &q->bitmaps[EB]);
1409 __clear_bit(grp->index, &q->bitmaps[IB]);
1410 grp->S = roundedS;
1411 grp->F = roundedS + (2ULL << grp->slot_shift);
1412 s = qfq_calc_state(q, grp);
1413 __set_bit(grp->index, &q->bitmaps[s]);
1414 }
1415 }
1416 }
1417
1418 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1419 {
1420 struct qfq_sched *q = qdisc_priv(sch);
1421 struct qfq_class *cl = (struct qfq_class *)arg;
1422
1423 if (cl->qdisc->q.qlen == 0)
1424 qfq_deactivate_class(q, cl);
1425 }
1426
1427 static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
1428 struct hlist_head *slot)
1429 {
1430 struct qfq_aggregate *agg;
1431 struct qfq_class *cl;
1432 unsigned int len;
1433
1434 hlist_for_each_entry(agg, slot, next) {
1435 list_for_each_entry(cl, &agg->active, alist) {
1436
1437 if (!cl->qdisc->ops->drop)
1438 continue;
1439
1440 len = cl->qdisc->ops->drop(cl->qdisc);
1441 if (len > 0) {
1442 if (cl->qdisc->q.qlen == 0)
1443 qfq_deactivate_class(q, cl);
1444
1445 return len;
1446 }
1447 }
1448 }
1449 return 0;
1450 }
1451
1452 static unsigned int qfq_drop(struct Qdisc *sch)
1453 {
1454 struct qfq_sched *q = qdisc_priv(sch);
1455 struct qfq_group *grp;
1456 unsigned int i, j, len;
1457
1458 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1459 grp = &q->groups[i];
1460 for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1461 len = qfq_drop_from_slot(q, &grp->slots[j]);
1462 if (len > 0) {
1463 sch->q.qlen--;
1464 return len;
1465 }
1466 }
1467
1468 }
1469
1470 return 0;
1471 }
1472
1473 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1474 {
1475 struct qfq_sched *q = qdisc_priv(sch);
1476 struct qfq_group *grp;
1477 int i, j, err;
1478 u32 max_cl_shift, maxbudg_shift, max_classes;
1479
1480 err = qdisc_class_hash_init(&q->clhash);
1481 if (err < 0)
1482 return err;
1483
1484 if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
1485 max_classes = QFQ_MAX_AGG_CLASSES;
1486 else
1487 max_classes = qdisc_dev(sch)->tx_queue_len + 1;
1488 /* max_cl_shift = floor(log_2(max_classes)) */
1489 max_cl_shift = __fls(max_classes);
1490 q->max_agg_classes = 1<<max_cl_shift;
1491
1492 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1493 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1494 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1495
1496 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1497 grp = &q->groups[i];
1498 grp->index = i;
1499 grp->slot_shift = q->min_slot_shift + i;
1500 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1501 INIT_HLIST_HEAD(&grp->slots[j]);
1502 }
1503
1504 INIT_HLIST_HEAD(&q->nonfull_aggs);
1505
1506 return 0;
1507 }
1508
1509 static void qfq_reset_qdisc(struct Qdisc *sch)
1510 {
1511 struct qfq_sched *q = qdisc_priv(sch);
1512 struct qfq_class *cl;
1513 unsigned int i;
1514
1515 for (i = 0; i < q->clhash.hashsize; i++) {
1516 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1517 if (cl->qdisc->q.qlen > 0)
1518 qfq_deactivate_class(q, cl);
1519
1520 qdisc_reset(cl->qdisc);
1521 }
1522 }
1523 sch->q.qlen = 0;
1524 }
1525
1526 static void qfq_destroy_qdisc(struct Qdisc *sch)
1527 {
1528 struct qfq_sched *q = qdisc_priv(sch);
1529 struct qfq_class *cl;
1530 struct hlist_node *next;
1531 unsigned int i;
1532
1533 tcf_destroy_chain(&q->filter_list);
1534
1535 for (i = 0; i < q->clhash.hashsize; i++) {
1536 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1537 common.hnode) {
1538 qfq_destroy_class(sch, cl);
1539 }
1540 }
1541 qdisc_class_hash_destroy(&q->clhash);
1542 }
1543
1544 static const struct Qdisc_class_ops qfq_class_ops = {
1545 .change = qfq_change_class,
1546 .delete = qfq_delete_class,
1547 .get = qfq_get_class,
1548 .put = qfq_put_class,
1549 .tcf_chain = qfq_tcf_chain,
1550 .bind_tcf = qfq_bind_tcf,
1551 .unbind_tcf = qfq_unbind_tcf,
1552 .graft = qfq_graft_class,
1553 .leaf = qfq_class_leaf,
1554 .qlen_notify = qfq_qlen_notify,
1555 .dump = qfq_dump_class,
1556 .dump_stats = qfq_dump_class_stats,
1557 .walk = qfq_walk,
1558 };
1559
1560 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1561 .cl_ops = &qfq_class_ops,
1562 .id = "qfq",
1563 .priv_size = sizeof(struct qfq_sched),
1564 .enqueue = qfq_enqueue,
1565 .dequeue = qfq_dequeue,
1566 .peek = qdisc_peek_dequeued,
1567 .drop = qfq_drop,
1568 .init = qfq_init_qdisc,
1569 .reset = qfq_reset_qdisc,
1570 .destroy = qfq_destroy_qdisc,
1571 .owner = THIS_MODULE,
1572 };
1573
1574 static int __init qfq_init(void)
1575 {
1576 return register_qdisc(&qfq_qdisc_ops);
1577 }
1578
1579 static void __exit qfq_exit(void)
1580 {
1581 unregister_qdisc(&qfq_qdisc_ops);
1582 }
1583
1584 module_init(qfq_init);
1585 module_exit(qfq_exit);
1586 MODULE_LICENSE("GPL");
This page took 0.066055 seconds and 6 git commands to generate.