Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / net / sched / sch_qfq.c
1 /*
2 * net/sched/sch_qfq.c Quick Fair Queueing Scheduler.
3 *
4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * version 2 as published by the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/bitops.h>
14 #include <linux/errno.h>
15 #include <linux/netdevice.h>
16 #include <linux/pkt_sched.h>
17 #include <net/sch_generic.h>
18 #include <net/pkt_sched.h>
19 #include <net/pkt_cls.h>
20
21
22 /* Quick Fair Queueing
23 ===================
24
25 Sources:
26
27 Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
28 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
29
30 See also:
31 http://retis.sssup.it/~fabio/linux/qfq/
32 */
33
34 /*
35
36 Virtual time computations.
37
38 S, F and V are all computed in fixed point arithmetic with
39 FRAC_BITS decimal bits.
40
41 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
42 one bit per index.
43 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
44
45 The layout of the bits is as below:
46
47 [ MTU_SHIFT ][ FRAC_BITS ]
48 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
49 ^.__grp->index = 0
50 *.__grp->slot_shift
51
52 where MIN_SLOT_SHIFT is derived by difference from the others.
53
54 The max group index corresponds to Lmax/w_min, where
55 Lmax=1<<MTU_SHIFT, w_min = 1 .
56 From this, and knowing how many groups (MAX_INDEX) we want,
57 we can derive the shift corresponding to each group.
58
59 Because we often need to compute
60 F = S + len/w_i and V = V + len/wsum
61 instead of storing w_i store the value
62 inv_w = (1<<FRAC_BITS)/w_i
63 so we can do F = S + len * inv_w * wsum.
64 We use W_TOT in the formulas so we can easily move between
65 static and adaptive weight sum.
66
67 The per-scheduler-instance data contain all the data structures
68 for the scheduler: bitmaps and bucket lists.
69
70 */
71
72 /*
73 * Maximum number of consecutive slots occupied by backlogged classes
74 * inside a group.
75 */
76 #define QFQ_MAX_SLOTS 32
77
78 /*
79 * Shifts used for class<->group mapping. We allow class weights that are
80 * in the range [1, 2^MAX_WSHIFT], and we try to map each class i to the
81 * group with the smallest index that can support the L_i / r_i configured
82 * for the class.
83 *
84 * grp->index is the index of the group; and grp->slot_shift
85 * is the shift for the corresponding (scaled) sigma_i.
86 */
87 #define QFQ_MAX_INDEX 24
88 #define QFQ_MAX_WSHIFT 12
89
90 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT)
91 #define QFQ_MAX_WSUM (16*QFQ_MAX_WEIGHT)
92
93 #define FRAC_BITS 30 /* fixed point arithmetic */
94 #define ONE_FP (1UL << FRAC_BITS)
95 #define IWSUM (ONE_FP/QFQ_MAX_WSUM)
96
97 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
98 #define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
99 #define QFQ_MIN_LMAX 256 /* min possible lmax for a class */
100
101 /*
102 * Possible group states. These values are used as indexes for the bitmaps
103 * array of struct qfq_queue.
104 */
105 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
106
107 struct qfq_group;
108
109 struct qfq_class {
110 struct Qdisc_class_common common;
111
112 unsigned int refcnt;
113 unsigned int filter_cnt;
114
115 struct gnet_stats_basic_packed bstats;
116 struct gnet_stats_queue qstats;
117 struct gnet_stats_rate_est rate_est;
118 struct Qdisc *qdisc;
119
120 struct hlist_node next; /* Link for the slot list. */
121 u64 S, F; /* flow timestamps (exact) */
122
123 /* group we belong to. In principle we would need the index,
124 * which is log_2(lmax/weight), but we never reference it
125 * directly, only the group.
126 */
127 struct qfq_group *grp;
128
129 /* these are copied from the flowset. */
130 u32 inv_w; /* ONE_FP/weight */
131 u32 lmax; /* Max packet size for this flow. */
132 };
133
134 struct qfq_group {
135 u64 S, F; /* group timestamps (approx). */
136 unsigned int slot_shift; /* Slot shift. */
137 unsigned int index; /* Group index. */
138 unsigned int front; /* Index of the front slot. */
139 unsigned long full_slots; /* non-empty slots */
140
141 /* Array of RR lists of active classes. */
142 struct hlist_head slots[QFQ_MAX_SLOTS];
143 };
144
145 struct qfq_sched {
146 struct tcf_proto *filter_list;
147 struct Qdisc_class_hash clhash;
148
149 u64 V; /* Precise virtual time. */
150 u32 wsum; /* weight sum */
151
152 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
153 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
154 };
155
156 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
157 {
158 struct qfq_sched *q = qdisc_priv(sch);
159 struct Qdisc_class_common *clc;
160
161 clc = qdisc_class_find(&q->clhash, classid);
162 if (clc == NULL)
163 return NULL;
164 return container_of(clc, struct qfq_class, common);
165 }
166
167 static void qfq_purge_queue(struct qfq_class *cl)
168 {
169 unsigned int len = cl->qdisc->q.qlen;
170
171 qdisc_reset(cl->qdisc);
172 qdisc_tree_decrease_qlen(cl->qdisc, len);
173 }
174
175 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
176 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
177 [TCA_QFQ_LMAX] = { .type = NLA_U32 },
178 };
179
180 /*
181 * Calculate a flow index, given its weight and maximum packet length.
182 * index = log_2(maxlen/weight) but we need to apply the scaling.
183 * This is used only once at flow creation.
184 */
185 static int qfq_calc_index(u32 inv_w, unsigned int maxlen)
186 {
187 u64 slot_size = (u64)maxlen * inv_w;
188 unsigned long size_map;
189 int index = 0;
190
191 size_map = slot_size >> QFQ_MIN_SLOT_SHIFT;
192 if (!size_map)
193 goto out;
194
195 index = __fls(size_map) + 1; /* basically a log_2 */
196 index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
197
198 if (index < 0)
199 index = 0;
200 out:
201 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
202 (unsigned long) ONE_FP/inv_w, maxlen, index);
203
204 return index;
205 }
206
207 /* Length of the next packet (0 if the queue is empty). */
208 static unsigned int qdisc_peek_len(struct Qdisc *sch)
209 {
210 struct sk_buff *skb;
211
212 skb = sch->ops->peek(sch);
213 return skb ? qdisc_pkt_len(skb) : 0;
214 }
215
216 static void qfq_deactivate_class(struct qfq_sched *, struct qfq_class *);
217 static void qfq_activate_class(struct qfq_sched *q, struct qfq_class *cl,
218 unsigned int len);
219
220 static void qfq_update_class_params(struct qfq_sched *q, struct qfq_class *cl,
221 u32 lmax, u32 inv_w, int delta_w)
222 {
223 int i;
224
225 /* update qfq-specific data */
226 cl->lmax = lmax;
227 cl->inv_w = inv_w;
228 i = qfq_calc_index(cl->inv_w, cl->lmax);
229
230 cl->grp = &q->groups[i];
231
232 q->wsum += delta_w;
233 }
234
235 static void qfq_update_reactivate_class(struct qfq_sched *q,
236 struct qfq_class *cl,
237 u32 inv_w, u32 lmax, int delta_w)
238 {
239 bool need_reactivation = false;
240 int i = qfq_calc_index(inv_w, lmax);
241
242 if (&q->groups[i] != cl->grp && cl->qdisc->q.qlen > 0) {
243 /*
244 * shift cl->F back, to not charge the
245 * class for the not-yet-served head
246 * packet
247 */
248 cl->F = cl->S;
249 /* remove class from its slot in the old group */
250 qfq_deactivate_class(q, cl);
251 need_reactivation = true;
252 }
253
254 qfq_update_class_params(q, cl, lmax, inv_w, delta_w);
255
256 if (need_reactivation) /* activate in new group */
257 qfq_activate_class(q, cl, qdisc_peek_len(cl->qdisc));
258 }
259
260
261 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
262 struct nlattr **tca, unsigned long *arg)
263 {
264 struct qfq_sched *q = qdisc_priv(sch);
265 struct qfq_class *cl = (struct qfq_class *)*arg;
266 struct nlattr *tb[TCA_QFQ_MAX + 1];
267 u32 weight, lmax, inv_w;
268 int err;
269 int delta_w;
270
271 if (tca[TCA_OPTIONS] == NULL) {
272 pr_notice("qfq: no options\n");
273 return -EINVAL;
274 }
275
276 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
277 if (err < 0)
278 return err;
279
280 if (tb[TCA_QFQ_WEIGHT]) {
281 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
282 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
283 pr_notice("qfq: invalid weight %u\n", weight);
284 return -EINVAL;
285 }
286 } else
287 weight = 1;
288
289 inv_w = ONE_FP / weight;
290 weight = ONE_FP / inv_w;
291 delta_w = weight - (cl ? ONE_FP / cl->inv_w : 0);
292 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
293 pr_notice("qfq: total weight out of range (%u + %u)\n",
294 delta_w, q->wsum);
295 return -EINVAL;
296 }
297
298 if (tb[TCA_QFQ_LMAX]) {
299 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
300 if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
301 pr_notice("qfq: invalid max length %u\n", lmax);
302 return -EINVAL;
303 }
304 } else
305 lmax = psched_mtu(qdisc_dev(sch));
306
307 if (cl != NULL) {
308 if (tca[TCA_RATE]) {
309 err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
310 qdisc_root_sleeping_lock(sch),
311 tca[TCA_RATE]);
312 if (err)
313 return err;
314 }
315
316 if (lmax == cl->lmax && inv_w == cl->inv_w)
317 return 0; /* nothing to update */
318
319 sch_tree_lock(sch);
320 qfq_update_reactivate_class(q, cl, inv_w, lmax, delta_w);
321 sch_tree_unlock(sch);
322
323 return 0;
324 }
325
326 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
327 if (cl == NULL)
328 return -ENOBUFS;
329
330 cl->refcnt = 1;
331 cl->common.classid = classid;
332
333 qfq_update_class_params(q, cl, lmax, inv_w, delta_w);
334
335 cl->qdisc = qdisc_create_dflt(sch->dev_queue,
336 &pfifo_qdisc_ops, classid);
337 if (cl->qdisc == NULL)
338 cl->qdisc = &noop_qdisc;
339
340 if (tca[TCA_RATE]) {
341 err = gen_new_estimator(&cl->bstats, &cl->rate_est,
342 qdisc_root_sleeping_lock(sch),
343 tca[TCA_RATE]);
344 if (err) {
345 qdisc_destroy(cl->qdisc);
346 kfree(cl);
347 return err;
348 }
349 }
350
351 sch_tree_lock(sch);
352 qdisc_class_hash_insert(&q->clhash, &cl->common);
353 sch_tree_unlock(sch);
354
355 qdisc_class_hash_grow(sch, &q->clhash);
356
357 *arg = (unsigned long)cl;
358 return 0;
359 }
360
361 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
362 {
363 struct qfq_sched *q = qdisc_priv(sch);
364
365 if (cl->inv_w) {
366 q->wsum -= ONE_FP / cl->inv_w;
367 cl->inv_w = 0;
368 }
369
370 gen_kill_estimator(&cl->bstats, &cl->rate_est);
371 qdisc_destroy(cl->qdisc);
372 kfree(cl);
373 }
374
375 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
376 {
377 struct qfq_sched *q = qdisc_priv(sch);
378 struct qfq_class *cl = (struct qfq_class *)arg;
379
380 if (cl->filter_cnt > 0)
381 return -EBUSY;
382
383 sch_tree_lock(sch);
384
385 qfq_purge_queue(cl);
386 qdisc_class_hash_remove(&q->clhash, &cl->common);
387
388 BUG_ON(--cl->refcnt == 0);
389 /*
390 * This shouldn't happen: we "hold" one cops->get() when called
391 * from tc_ctl_tclass; the destroy method is done from cops->put().
392 */
393
394 sch_tree_unlock(sch);
395 return 0;
396 }
397
398 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
399 {
400 struct qfq_class *cl = qfq_find_class(sch, classid);
401
402 if (cl != NULL)
403 cl->refcnt++;
404
405 return (unsigned long)cl;
406 }
407
408 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
409 {
410 struct qfq_class *cl = (struct qfq_class *)arg;
411
412 if (--cl->refcnt == 0)
413 qfq_destroy_class(sch, cl);
414 }
415
416 static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl)
417 {
418 struct qfq_sched *q = qdisc_priv(sch);
419
420 if (cl)
421 return NULL;
422
423 return &q->filter_list;
424 }
425
426 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
427 u32 classid)
428 {
429 struct qfq_class *cl = qfq_find_class(sch, classid);
430
431 if (cl != NULL)
432 cl->filter_cnt++;
433
434 return (unsigned long)cl;
435 }
436
437 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
438 {
439 struct qfq_class *cl = (struct qfq_class *)arg;
440
441 cl->filter_cnt--;
442 }
443
444 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
445 struct Qdisc *new, struct Qdisc **old)
446 {
447 struct qfq_class *cl = (struct qfq_class *)arg;
448
449 if (new == NULL) {
450 new = qdisc_create_dflt(sch->dev_queue,
451 &pfifo_qdisc_ops, cl->common.classid);
452 if (new == NULL)
453 new = &noop_qdisc;
454 }
455
456 sch_tree_lock(sch);
457 qfq_purge_queue(cl);
458 *old = cl->qdisc;
459 cl->qdisc = new;
460 sch_tree_unlock(sch);
461 return 0;
462 }
463
464 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
465 {
466 struct qfq_class *cl = (struct qfq_class *)arg;
467
468 return cl->qdisc;
469 }
470
471 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
472 struct sk_buff *skb, struct tcmsg *tcm)
473 {
474 struct qfq_class *cl = (struct qfq_class *)arg;
475 struct nlattr *nest;
476
477 tcm->tcm_parent = TC_H_ROOT;
478 tcm->tcm_handle = cl->common.classid;
479 tcm->tcm_info = cl->qdisc->handle;
480
481 nest = nla_nest_start(skb, TCA_OPTIONS);
482 if (nest == NULL)
483 goto nla_put_failure;
484 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, ONE_FP/cl->inv_w) ||
485 nla_put_u32(skb, TCA_QFQ_LMAX, cl->lmax))
486 goto nla_put_failure;
487 return nla_nest_end(skb, nest);
488
489 nla_put_failure:
490 nla_nest_cancel(skb, nest);
491 return -EMSGSIZE;
492 }
493
494 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
495 struct gnet_dump *d)
496 {
497 struct qfq_class *cl = (struct qfq_class *)arg;
498 struct tc_qfq_stats xstats;
499
500 memset(&xstats, 0, sizeof(xstats));
501 cl->qdisc->qstats.qlen = cl->qdisc->q.qlen;
502
503 xstats.weight = ONE_FP/cl->inv_w;
504 xstats.lmax = cl->lmax;
505
506 if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
507 gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
508 gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0)
509 return -1;
510
511 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
512 }
513
514 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
515 {
516 struct qfq_sched *q = qdisc_priv(sch);
517 struct qfq_class *cl;
518 struct hlist_node *n;
519 unsigned int i;
520
521 if (arg->stop)
522 return;
523
524 for (i = 0; i < q->clhash.hashsize; i++) {
525 hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) {
526 if (arg->count < arg->skip) {
527 arg->count++;
528 continue;
529 }
530 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
531 arg->stop = 1;
532 return;
533 }
534 arg->count++;
535 }
536 }
537 }
538
539 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
540 int *qerr)
541 {
542 struct qfq_sched *q = qdisc_priv(sch);
543 struct qfq_class *cl;
544 struct tcf_result res;
545 int result;
546
547 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
548 pr_debug("qfq_classify: found %d\n", skb->priority);
549 cl = qfq_find_class(sch, skb->priority);
550 if (cl != NULL)
551 return cl;
552 }
553
554 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
555 result = tc_classify(skb, q->filter_list, &res);
556 if (result >= 0) {
557 #ifdef CONFIG_NET_CLS_ACT
558 switch (result) {
559 case TC_ACT_QUEUED:
560 case TC_ACT_STOLEN:
561 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
562 case TC_ACT_SHOT:
563 return NULL;
564 }
565 #endif
566 cl = (struct qfq_class *)res.class;
567 if (cl == NULL)
568 cl = qfq_find_class(sch, res.classid);
569 return cl;
570 }
571
572 return NULL;
573 }
574
575 /* Generic comparison function, handling wraparound. */
576 static inline int qfq_gt(u64 a, u64 b)
577 {
578 return (s64)(a - b) > 0;
579 }
580
581 /* Round a precise timestamp to its slotted value. */
582 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
583 {
584 return ts & ~((1ULL << shift) - 1);
585 }
586
587 /* return the pointer to the group with lowest index in the bitmap */
588 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
589 unsigned long bitmap)
590 {
591 int index = __ffs(bitmap);
592 return &q->groups[index];
593 }
594 /* Calculate a mask to mimic what would be ffs_from(). */
595 static inline unsigned long mask_from(unsigned long bitmap, int from)
596 {
597 return bitmap & ~((1UL << from) - 1);
598 }
599
600 /*
601 * The state computation relies on ER=0, IR=1, EB=2, IB=3
602 * First compute eligibility comparing grp->S, q->V,
603 * then check if someone is blocking us and possibly add EB
604 */
605 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
606 {
607 /* if S > V we are not eligible */
608 unsigned int state = qfq_gt(grp->S, q->V);
609 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
610 struct qfq_group *next;
611
612 if (mask) {
613 next = qfq_ffs(q, mask);
614 if (qfq_gt(grp->F, next->F))
615 state |= EB;
616 }
617
618 return state;
619 }
620
621
622 /*
623 * In principle
624 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
625 * q->bitmaps[src] &= ~mask;
626 * but we should make sure that src != dst
627 */
628 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
629 int src, int dst)
630 {
631 q->bitmaps[dst] |= q->bitmaps[src] & mask;
632 q->bitmaps[src] &= ~mask;
633 }
634
635 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
636 {
637 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
638 struct qfq_group *next;
639
640 if (mask) {
641 next = qfq_ffs(q, mask);
642 if (!qfq_gt(next->F, old_F))
643 return;
644 }
645
646 mask = (1UL << index) - 1;
647 qfq_move_groups(q, mask, EB, ER);
648 qfq_move_groups(q, mask, IB, IR);
649 }
650
651 /*
652 * perhaps
653 *
654 old_V ^= q->V;
655 old_V >>= QFQ_MIN_SLOT_SHIFT;
656 if (old_V) {
657 ...
658 }
659 *
660 */
661 static void qfq_make_eligible(struct qfq_sched *q, u64 old_V)
662 {
663 unsigned long vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
664 unsigned long old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
665
666 if (vslot != old_vslot) {
667 unsigned long mask = (1UL << fls(vslot ^ old_vslot)) - 1;
668 qfq_move_groups(q, mask, IR, ER);
669 qfq_move_groups(q, mask, IB, EB);
670 }
671 }
672
673
674 /*
675 * If the weight and lmax (max_pkt_size) of the classes do not change,
676 * then QFQ guarantees that the slot index is never higher than
677 * 2 + ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) * (QFQ_MAX_WEIGHT/QFQ_MAX_WSUM).
678 *
679 * With the current values of the above constants, the index is
680 * then guaranteed to never be higher than 2 + 256 * (1 / 16) = 18.
681 *
682 * When the weight of a class is increased or the lmax of the class is
683 * decreased, a new class with smaller slot size may happen to be
684 * activated. The activation of this class should be properly delayed
685 * to when the service of the class has finished in the ideal system
686 * tracked by QFQ. If the activation of the class is not delayed to
687 * this reference time instant, then this class may be unjustly served
688 * before other classes waiting for service. This may cause
689 * (unfrequently) the above bound to the slot index to be violated for
690 * some of these unlucky classes.
691 *
692 * Instead of delaying the activation of the new class, which is quite
693 * complex, the following inaccurate but simple solution is used: if
694 * the slot index is higher than QFQ_MAX_SLOTS-2, then the timestamps
695 * of the class are shifted backward so as to let the slot index
696 * become equal to QFQ_MAX_SLOTS-2. This threshold is used because, if
697 * the slot index is above it, then the data structure implementing
698 * the bucket list either gets immediately corrupted or may get
699 * corrupted on a possible next packet arrival that causes the start
700 * time of the group to be shifted backward.
701 */
702 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl,
703 u64 roundedS)
704 {
705 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
706 unsigned int i; /* slot index in the bucket list */
707
708 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
709 u64 deltaS = roundedS - grp->S -
710 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
711 cl->S -= deltaS;
712 cl->F -= deltaS;
713 slot = QFQ_MAX_SLOTS - 2;
714 }
715
716 i = (grp->front + slot) % QFQ_MAX_SLOTS;
717
718 hlist_add_head(&cl->next, &grp->slots[i]);
719 __set_bit(slot, &grp->full_slots);
720 }
721
722 /* Maybe introduce hlist_first_entry?? */
723 static struct qfq_class *qfq_slot_head(struct qfq_group *grp)
724 {
725 return hlist_entry(grp->slots[grp->front].first,
726 struct qfq_class, next);
727 }
728
729 /*
730 * remove the entry from the slot
731 */
732 static void qfq_front_slot_remove(struct qfq_group *grp)
733 {
734 struct qfq_class *cl = qfq_slot_head(grp);
735
736 BUG_ON(!cl);
737 hlist_del(&cl->next);
738 if (hlist_empty(&grp->slots[grp->front]))
739 __clear_bit(0, &grp->full_slots);
740 }
741
742 /*
743 * Returns the first full queue in a group. As a side effect,
744 * adjust the bucket list so the first non-empty bucket is at
745 * position 0 in full_slots.
746 */
747 static struct qfq_class *qfq_slot_scan(struct qfq_group *grp)
748 {
749 unsigned int i;
750
751 pr_debug("qfq slot_scan: grp %u full %#lx\n",
752 grp->index, grp->full_slots);
753
754 if (grp->full_slots == 0)
755 return NULL;
756
757 i = __ffs(grp->full_slots); /* zero based */
758 if (i > 0) {
759 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
760 grp->full_slots >>= i;
761 }
762
763 return qfq_slot_head(grp);
764 }
765
766 /*
767 * adjust the bucket list. When the start time of a group decreases,
768 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
769 * move the objects. The mask of occupied slots must be shifted
770 * because we use ffs() to find the first non-empty slot.
771 * This covers decreases in the group's start time, but what about
772 * increases of the start time ?
773 * Here too we should make sure that i is less than 32
774 */
775 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
776 {
777 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
778
779 grp->full_slots <<= i;
780 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
781 }
782
783 static void qfq_update_eligible(struct qfq_sched *q, u64 old_V)
784 {
785 struct qfq_group *grp;
786 unsigned long ineligible;
787
788 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
789 if (ineligible) {
790 if (!q->bitmaps[ER]) {
791 grp = qfq_ffs(q, ineligible);
792 if (qfq_gt(grp->S, q->V))
793 q->V = grp->S;
794 }
795 qfq_make_eligible(q, old_V);
796 }
797 }
798
799 /*
800 * Updates the class, returns true if also the group needs to be updated.
801 */
802 static bool qfq_update_class(struct qfq_group *grp, struct qfq_class *cl)
803 {
804 unsigned int len = qdisc_peek_len(cl->qdisc);
805
806 cl->S = cl->F;
807 if (!len)
808 qfq_front_slot_remove(grp); /* queue is empty */
809 else {
810 u64 roundedS;
811
812 cl->F = cl->S + (u64)len * cl->inv_w;
813 roundedS = qfq_round_down(cl->S, grp->slot_shift);
814 if (roundedS == grp->S)
815 return false;
816
817 qfq_front_slot_remove(grp);
818 qfq_slot_insert(grp, cl, roundedS);
819 }
820
821 return true;
822 }
823
824 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
825 {
826 struct qfq_sched *q = qdisc_priv(sch);
827 struct qfq_group *grp;
828 struct qfq_class *cl;
829 struct sk_buff *skb;
830 unsigned int len;
831 u64 old_V;
832
833 if (!q->bitmaps[ER])
834 return NULL;
835
836 grp = qfq_ffs(q, q->bitmaps[ER]);
837
838 cl = qfq_slot_head(grp);
839 skb = qdisc_dequeue_peeked(cl->qdisc);
840 if (!skb) {
841 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
842 return NULL;
843 }
844
845 sch->q.qlen--;
846 qdisc_bstats_update(sch, skb);
847
848 old_V = q->V;
849 len = qdisc_pkt_len(skb);
850 q->V += (u64)len * IWSUM;
851 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
852 len, (unsigned long long) cl->F, (unsigned long long) q->V);
853
854 if (qfq_update_class(grp, cl)) {
855 u64 old_F = grp->F;
856
857 cl = qfq_slot_scan(grp);
858 if (!cl)
859 __clear_bit(grp->index, &q->bitmaps[ER]);
860 else {
861 u64 roundedS = qfq_round_down(cl->S, grp->slot_shift);
862 unsigned int s;
863
864 if (grp->S == roundedS)
865 goto skip_unblock;
866 grp->S = roundedS;
867 grp->F = roundedS + (2ULL << grp->slot_shift);
868 __clear_bit(grp->index, &q->bitmaps[ER]);
869 s = qfq_calc_state(q, grp);
870 __set_bit(grp->index, &q->bitmaps[s]);
871 }
872
873 qfq_unblock_groups(q, grp->index, old_F);
874 }
875
876 skip_unblock:
877 qfq_update_eligible(q, old_V);
878
879 return skb;
880 }
881
882 /*
883 * Assign a reasonable start time for a new flow k in group i.
884 * Admissible values for \hat(F) are multiples of \sigma_i
885 * no greater than V+\sigma_i . Larger values mean that
886 * we had a wraparound so we consider the timestamp to be stale.
887 *
888 * If F is not stale and F >= V then we set S = F.
889 * Otherwise we should assign S = V, but this may violate
890 * the ordering in ER. So, if we have groups in ER, set S to
891 * the F_j of the first group j which would be blocking us.
892 * We are guaranteed not to move S backward because
893 * otherwise our group i would still be blocked.
894 */
895 static void qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
896 {
897 unsigned long mask;
898 u64 limit, roundedF;
899 int slot_shift = cl->grp->slot_shift;
900
901 roundedF = qfq_round_down(cl->F, slot_shift);
902 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
903
904 if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
905 /* timestamp was stale */
906 mask = mask_from(q->bitmaps[ER], cl->grp->index);
907 if (mask) {
908 struct qfq_group *next = qfq_ffs(q, mask);
909 if (qfq_gt(roundedF, next->F)) {
910 if (qfq_gt(limit, next->F))
911 cl->S = next->F;
912 else /* preserve timestamp correctness */
913 cl->S = limit;
914 return;
915 }
916 }
917 cl->S = q->V;
918 } else /* timestamp is not stale */
919 cl->S = cl->F;
920 }
921
922 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
923 {
924 struct qfq_sched *q = qdisc_priv(sch);
925 struct qfq_class *cl;
926 int err = 0;
927
928 cl = qfq_classify(skb, sch, &err);
929 if (cl == NULL) {
930 if (err & __NET_XMIT_BYPASS)
931 sch->qstats.drops++;
932 kfree_skb(skb);
933 return err;
934 }
935 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
936
937 if (unlikely(cl->lmax < qdisc_pkt_len(skb))) {
938 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
939 cl->lmax, qdisc_pkt_len(skb), cl->common.classid);
940 qfq_update_reactivate_class(q, cl, cl->inv_w,
941 qdisc_pkt_len(skb), 0);
942 }
943
944 err = qdisc_enqueue(skb, cl->qdisc);
945 if (unlikely(err != NET_XMIT_SUCCESS)) {
946 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
947 if (net_xmit_drop_count(err)) {
948 cl->qstats.drops++;
949 sch->qstats.drops++;
950 }
951 return err;
952 }
953
954 bstats_update(&cl->bstats, skb);
955 ++sch->q.qlen;
956
957 /* If the new skb is not the head of queue, then done here. */
958 if (cl->qdisc->q.qlen != 1)
959 return err;
960
961 /* If reach this point, queue q was idle */
962 qfq_activate_class(q, cl, qdisc_pkt_len(skb));
963
964 return err;
965 }
966
967 /*
968 * Handle class switch from idle to backlogged.
969 */
970 static void qfq_activate_class(struct qfq_sched *q, struct qfq_class *cl,
971 unsigned int pkt_len)
972 {
973 struct qfq_group *grp = cl->grp;
974 u64 roundedS;
975 int s;
976
977 qfq_update_start(q, cl);
978
979 /* compute new finish time and rounded start. */
980 cl->F = cl->S + (u64)pkt_len * cl->inv_w;
981 roundedS = qfq_round_down(cl->S, grp->slot_shift);
982
983 /*
984 * insert cl in the correct bucket.
985 * If cl->S >= grp->S we don't need to adjust the
986 * bucket list and simply go to the insertion phase.
987 * Otherwise grp->S is decreasing, we must make room
988 * in the bucket list, and also recompute the group state.
989 * Finally, if there were no flows in this group and nobody
990 * was in ER make sure to adjust V.
991 */
992 if (grp->full_slots) {
993 if (!qfq_gt(grp->S, cl->S))
994 goto skip_update;
995
996 /* create a slot for this cl->S */
997 qfq_slot_rotate(grp, roundedS);
998 /* group was surely ineligible, remove */
999 __clear_bit(grp->index, &q->bitmaps[IR]);
1000 __clear_bit(grp->index, &q->bitmaps[IB]);
1001 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
1002 q->V = roundedS;
1003
1004 grp->S = roundedS;
1005 grp->F = roundedS + (2ULL << grp->slot_shift);
1006 s = qfq_calc_state(q, grp);
1007 __set_bit(grp->index, &q->bitmaps[s]);
1008
1009 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1010 s, q->bitmaps[s],
1011 (unsigned long long) cl->S,
1012 (unsigned long long) cl->F,
1013 (unsigned long long) q->V);
1014
1015 skip_update:
1016 qfq_slot_insert(grp, cl, roundedS);
1017 }
1018
1019
1020 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1021 struct qfq_class *cl)
1022 {
1023 unsigned int i, offset;
1024 u64 roundedS;
1025
1026 roundedS = qfq_round_down(cl->S, grp->slot_shift);
1027 offset = (roundedS - grp->S) >> grp->slot_shift;
1028 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1029
1030 hlist_del(&cl->next);
1031 if (hlist_empty(&grp->slots[i]))
1032 __clear_bit(offset, &grp->full_slots);
1033 }
1034
1035 /*
1036 * called to forcibly destroy a queue.
1037 * If the queue is not in the front bucket, or if it has
1038 * other queues in the front bucket, we can simply remove
1039 * the queue with no other side effects.
1040 * Otherwise we must propagate the event up.
1041 */
1042 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
1043 {
1044 struct qfq_group *grp = cl->grp;
1045 unsigned long mask;
1046 u64 roundedS;
1047 int s;
1048
1049 cl->F = cl->S;
1050 qfq_slot_remove(q, grp, cl);
1051
1052 if (!grp->full_slots) {
1053 __clear_bit(grp->index, &q->bitmaps[IR]);
1054 __clear_bit(grp->index, &q->bitmaps[EB]);
1055 __clear_bit(grp->index, &q->bitmaps[IB]);
1056
1057 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1058 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1059 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1060 if (mask)
1061 mask = ~((1UL << __fls(mask)) - 1);
1062 else
1063 mask = ~0UL;
1064 qfq_move_groups(q, mask, EB, ER);
1065 qfq_move_groups(q, mask, IB, IR);
1066 }
1067 __clear_bit(grp->index, &q->bitmaps[ER]);
1068 } else if (hlist_empty(&grp->slots[grp->front])) {
1069 cl = qfq_slot_scan(grp);
1070 roundedS = qfq_round_down(cl->S, grp->slot_shift);
1071 if (grp->S != roundedS) {
1072 __clear_bit(grp->index, &q->bitmaps[ER]);
1073 __clear_bit(grp->index, &q->bitmaps[IR]);
1074 __clear_bit(grp->index, &q->bitmaps[EB]);
1075 __clear_bit(grp->index, &q->bitmaps[IB]);
1076 grp->S = roundedS;
1077 grp->F = roundedS + (2ULL << grp->slot_shift);
1078 s = qfq_calc_state(q, grp);
1079 __set_bit(grp->index, &q->bitmaps[s]);
1080 }
1081 }
1082
1083 qfq_update_eligible(q, q->V);
1084 }
1085
1086 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1087 {
1088 struct qfq_sched *q = qdisc_priv(sch);
1089 struct qfq_class *cl = (struct qfq_class *)arg;
1090
1091 if (cl->qdisc->q.qlen == 0)
1092 qfq_deactivate_class(q, cl);
1093 }
1094
1095 static unsigned int qfq_drop(struct Qdisc *sch)
1096 {
1097 struct qfq_sched *q = qdisc_priv(sch);
1098 struct qfq_group *grp;
1099 unsigned int i, j, len;
1100
1101 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1102 grp = &q->groups[i];
1103 for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1104 struct qfq_class *cl;
1105 struct hlist_node *n;
1106
1107 hlist_for_each_entry(cl, n, &grp->slots[j], next) {
1108
1109 if (!cl->qdisc->ops->drop)
1110 continue;
1111
1112 len = cl->qdisc->ops->drop(cl->qdisc);
1113 if (len > 0) {
1114 sch->q.qlen--;
1115 if (!cl->qdisc->q.qlen)
1116 qfq_deactivate_class(q, cl);
1117
1118 return len;
1119 }
1120 }
1121 }
1122 }
1123
1124 return 0;
1125 }
1126
1127 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1128 {
1129 struct qfq_sched *q = qdisc_priv(sch);
1130 struct qfq_group *grp;
1131 int i, j, err;
1132
1133 err = qdisc_class_hash_init(&q->clhash);
1134 if (err < 0)
1135 return err;
1136
1137 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1138 grp = &q->groups[i];
1139 grp->index = i;
1140 grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS
1141 - (QFQ_MAX_INDEX - i);
1142 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1143 INIT_HLIST_HEAD(&grp->slots[j]);
1144 }
1145
1146 return 0;
1147 }
1148
1149 static void qfq_reset_qdisc(struct Qdisc *sch)
1150 {
1151 struct qfq_sched *q = qdisc_priv(sch);
1152 struct qfq_group *grp;
1153 struct qfq_class *cl;
1154 struct hlist_node *n, *tmp;
1155 unsigned int i, j;
1156
1157 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1158 grp = &q->groups[i];
1159 for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1160 hlist_for_each_entry_safe(cl, n, tmp,
1161 &grp->slots[j], next) {
1162 qfq_deactivate_class(q, cl);
1163 }
1164 }
1165 }
1166
1167 for (i = 0; i < q->clhash.hashsize; i++) {
1168 hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode)
1169 qdisc_reset(cl->qdisc);
1170 }
1171 sch->q.qlen = 0;
1172 }
1173
1174 static void qfq_destroy_qdisc(struct Qdisc *sch)
1175 {
1176 struct qfq_sched *q = qdisc_priv(sch);
1177 struct qfq_class *cl;
1178 struct hlist_node *n, *next;
1179 unsigned int i;
1180
1181 tcf_destroy_chain(&q->filter_list);
1182
1183 for (i = 0; i < q->clhash.hashsize; i++) {
1184 hlist_for_each_entry_safe(cl, n, next, &q->clhash.hash[i],
1185 common.hnode) {
1186 qfq_destroy_class(sch, cl);
1187 }
1188 }
1189 qdisc_class_hash_destroy(&q->clhash);
1190 }
1191
1192 static const struct Qdisc_class_ops qfq_class_ops = {
1193 .change = qfq_change_class,
1194 .delete = qfq_delete_class,
1195 .get = qfq_get_class,
1196 .put = qfq_put_class,
1197 .tcf_chain = qfq_tcf_chain,
1198 .bind_tcf = qfq_bind_tcf,
1199 .unbind_tcf = qfq_unbind_tcf,
1200 .graft = qfq_graft_class,
1201 .leaf = qfq_class_leaf,
1202 .qlen_notify = qfq_qlen_notify,
1203 .dump = qfq_dump_class,
1204 .dump_stats = qfq_dump_class_stats,
1205 .walk = qfq_walk,
1206 };
1207
1208 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1209 .cl_ops = &qfq_class_ops,
1210 .id = "qfq",
1211 .priv_size = sizeof(struct qfq_sched),
1212 .enqueue = qfq_enqueue,
1213 .dequeue = qfq_dequeue,
1214 .peek = qdisc_peek_dequeued,
1215 .drop = qfq_drop,
1216 .init = qfq_init_qdisc,
1217 .reset = qfq_reset_qdisc,
1218 .destroy = qfq_destroy_qdisc,
1219 .owner = THIS_MODULE,
1220 };
1221
1222 static int __init qfq_init(void)
1223 {
1224 return register_qdisc(&qfq_qdisc_ops);
1225 }
1226
1227 static void __exit qfq_exit(void)
1228 {
1229 unregister_qdisc(&qfq_qdisc_ops);
1230 }
1231
1232 module_init(qfq_init);
1233 module_exit(qfq_exit);
1234 MODULE_LICENSE("GPL");
This page took 0.055691 seconds and 6 git commands to generate.