Merge branch 'fixes' of git://git.linaro.org/people/rmk/linux-arm
[deliverable/linux.git] / net / sched / sch_tbf.c
1 /*
2 * net/sched/sch_tbf.c Token Bucket Filter queue.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 * Dmitry Torokhov <dtor@mail.ru> - allow attaching inner qdiscs -
11 * original idea by Martin Devera
12 *
13 */
14
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/string.h>
19 #include <linux/errno.h>
20 #include <linux/skbuff.h>
21 #include <net/netlink.h>
22 #include <net/sch_generic.h>
23 #include <net/pkt_sched.h>
24
25
26 /* Simple Token Bucket Filter.
27 =======================================
28
29 SOURCE.
30 -------
31
32 None.
33
34 Description.
35 ------------
36
37 A data flow obeys TBF with rate R and depth B, if for any
38 time interval t_i...t_f the number of transmitted bits
39 does not exceed B + R*(t_f-t_i).
40
41 Packetized version of this definition:
42 The sequence of packets of sizes s_i served at moments t_i
43 obeys TBF, if for any i<=k:
44
45 s_i+....+s_k <= B + R*(t_k - t_i)
46
47 Algorithm.
48 ----------
49
50 Let N(t_i) be B/R initially and N(t) grow continuously with time as:
51
52 N(t+delta) = min{B/R, N(t) + delta}
53
54 If the first packet in queue has length S, it may be
55 transmitted only at the time t_* when S/R <= N(t_*),
56 and in this case N(t) jumps:
57
58 N(t_* + 0) = N(t_* - 0) - S/R.
59
60
61
62 Actually, QoS requires two TBF to be applied to a data stream.
63 One of them controls steady state burst size, another
64 one with rate P (peak rate) and depth M (equal to link MTU)
65 limits bursts at a smaller time scale.
66
67 It is easy to see that P>R, and B>M. If P is infinity, this double
68 TBF is equivalent to a single one.
69
70 When TBF works in reshaping mode, latency is estimated as:
71
72 lat = max ((L-B)/R, (L-M)/P)
73
74
75 NOTES.
76 ------
77
78 If TBF throttles, it starts a watchdog timer, which will wake it up
79 when it is ready to transmit.
80 Note that the minimal timer resolution is 1/HZ.
81 If no new packets arrive during this period,
82 or if the device is not awaken by EOI for some previous packet,
83 TBF can stop its activity for 1/HZ.
84
85
86 This means, that with depth B, the maximal rate is
87
88 R_crit = B*HZ
89
90 F.e. for 10Mbit ethernet and HZ=100 the minimal allowed B is ~10Kbytes.
91
92 Note that the peak rate TBF is much more tough: with MTU 1500
93 P_crit = 150Kbytes/sec. So, if you need greater peak
94 rates, use alpha with HZ=1000 :-)
95
96 With classful TBF, limit is just kept for backwards compatibility.
97 It is passed to the default bfifo qdisc - if the inner qdisc is
98 changed the limit is not effective anymore.
99 */
100
101 struct tbf_sched_data {
102 /* Parameters */
103 u32 limit; /* Maximal length of backlog: bytes */
104 s64 buffer; /* Token bucket depth/rate: MUST BE >= MTU/B */
105 s64 mtu;
106 u32 max_size;
107 struct psched_ratecfg rate;
108 struct psched_ratecfg peak;
109 bool peak_present;
110
111 /* Variables */
112 s64 tokens; /* Current number of B tokens */
113 s64 ptokens; /* Current number of P tokens */
114 s64 t_c; /* Time check-point */
115 struct Qdisc *qdisc; /* Inner qdisc, default - bfifo queue */
116 struct qdisc_watchdog watchdog; /* Watchdog timer */
117 };
118
119
120 /* GSO packet is too big, segment it so that tbf can transmit
121 * each segment in time
122 */
123 static int tbf_segment(struct sk_buff *skb, struct Qdisc *sch)
124 {
125 struct tbf_sched_data *q = qdisc_priv(sch);
126 struct sk_buff *segs, *nskb;
127 netdev_features_t features = netif_skb_features(skb);
128 int ret, nb;
129
130 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
131
132 if (IS_ERR_OR_NULL(segs))
133 return qdisc_reshape_fail(skb, sch);
134
135 nb = 0;
136 while (segs) {
137 nskb = segs->next;
138 segs->next = NULL;
139 if (likely(segs->len <= q->max_size)) {
140 qdisc_skb_cb(segs)->pkt_len = segs->len;
141 ret = qdisc_enqueue(segs, q->qdisc);
142 } else {
143 ret = qdisc_reshape_fail(skb, sch);
144 }
145 if (ret != NET_XMIT_SUCCESS) {
146 if (net_xmit_drop_count(ret))
147 sch->qstats.drops++;
148 } else {
149 nb++;
150 }
151 segs = nskb;
152 }
153 sch->q.qlen += nb;
154 if (nb > 1)
155 qdisc_tree_decrease_qlen(sch, 1 - nb);
156 consume_skb(skb);
157 return nb > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
158 }
159
160 static int tbf_enqueue(struct sk_buff *skb, struct Qdisc *sch)
161 {
162 struct tbf_sched_data *q = qdisc_priv(sch);
163 int ret;
164
165 if (qdisc_pkt_len(skb) > q->max_size) {
166 if (skb_is_gso(skb))
167 return tbf_segment(skb, sch);
168 return qdisc_reshape_fail(skb, sch);
169 }
170 ret = qdisc_enqueue(skb, q->qdisc);
171 if (ret != NET_XMIT_SUCCESS) {
172 if (net_xmit_drop_count(ret))
173 sch->qstats.drops++;
174 return ret;
175 }
176
177 sch->q.qlen++;
178 return NET_XMIT_SUCCESS;
179 }
180
181 static unsigned int tbf_drop(struct Qdisc *sch)
182 {
183 struct tbf_sched_data *q = qdisc_priv(sch);
184 unsigned int len = 0;
185
186 if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
187 sch->q.qlen--;
188 sch->qstats.drops++;
189 }
190 return len;
191 }
192
193 static struct sk_buff *tbf_dequeue(struct Qdisc *sch)
194 {
195 struct tbf_sched_data *q = qdisc_priv(sch);
196 struct sk_buff *skb;
197
198 skb = q->qdisc->ops->peek(q->qdisc);
199
200 if (skb) {
201 s64 now;
202 s64 toks;
203 s64 ptoks = 0;
204 unsigned int len = qdisc_pkt_len(skb);
205
206 now = ktime_to_ns(ktime_get());
207 toks = min_t(s64, now - q->t_c, q->buffer);
208
209 if (q->peak_present) {
210 ptoks = toks + q->ptokens;
211 if (ptoks > q->mtu)
212 ptoks = q->mtu;
213 ptoks -= (s64) psched_l2t_ns(&q->peak, len);
214 }
215 toks += q->tokens;
216 if (toks > q->buffer)
217 toks = q->buffer;
218 toks -= (s64) psched_l2t_ns(&q->rate, len);
219
220 if ((toks|ptoks) >= 0) {
221 skb = qdisc_dequeue_peeked(q->qdisc);
222 if (unlikely(!skb))
223 return NULL;
224
225 q->t_c = now;
226 q->tokens = toks;
227 q->ptokens = ptoks;
228 sch->q.qlen--;
229 qdisc_unthrottled(sch);
230 qdisc_bstats_update(sch, skb);
231 return skb;
232 }
233
234 qdisc_watchdog_schedule_ns(&q->watchdog,
235 now + max_t(long, -toks, -ptoks));
236
237 /* Maybe we have a shorter packet in the queue,
238 which can be sent now. It sounds cool,
239 but, however, this is wrong in principle.
240 We MUST NOT reorder packets under these circumstances.
241
242 Really, if we split the flow into independent
243 subflows, it would be a very good solution.
244 This is the main idea of all FQ algorithms
245 (cf. CSZ, HPFQ, HFSC)
246 */
247
248 sch->qstats.overlimits++;
249 }
250 return NULL;
251 }
252
253 static void tbf_reset(struct Qdisc *sch)
254 {
255 struct tbf_sched_data *q = qdisc_priv(sch);
256
257 qdisc_reset(q->qdisc);
258 sch->q.qlen = 0;
259 q->t_c = ktime_to_ns(ktime_get());
260 q->tokens = q->buffer;
261 q->ptokens = q->mtu;
262 qdisc_watchdog_cancel(&q->watchdog);
263 }
264
265 static const struct nla_policy tbf_policy[TCA_TBF_MAX + 1] = {
266 [TCA_TBF_PARMS] = { .len = sizeof(struct tc_tbf_qopt) },
267 [TCA_TBF_RTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
268 [TCA_TBF_PTAB] = { .type = NLA_BINARY, .len = TC_RTAB_SIZE },
269 };
270
271 static int tbf_change(struct Qdisc *sch, struct nlattr *opt)
272 {
273 int err;
274 struct tbf_sched_data *q = qdisc_priv(sch);
275 struct nlattr *tb[TCA_TBF_PTAB + 1];
276 struct tc_tbf_qopt *qopt;
277 struct qdisc_rate_table *rtab = NULL;
278 struct qdisc_rate_table *ptab = NULL;
279 struct Qdisc *child = NULL;
280 int max_size, n;
281
282 err = nla_parse_nested(tb, TCA_TBF_PTAB, opt, tbf_policy);
283 if (err < 0)
284 return err;
285
286 err = -EINVAL;
287 if (tb[TCA_TBF_PARMS] == NULL)
288 goto done;
289
290 qopt = nla_data(tb[TCA_TBF_PARMS]);
291 rtab = qdisc_get_rtab(&qopt->rate, tb[TCA_TBF_RTAB]);
292 if (rtab == NULL)
293 goto done;
294
295 if (qopt->peakrate.rate) {
296 if (qopt->peakrate.rate > qopt->rate.rate)
297 ptab = qdisc_get_rtab(&qopt->peakrate, tb[TCA_TBF_PTAB]);
298 if (ptab == NULL)
299 goto done;
300 }
301
302 for (n = 0; n < 256; n++)
303 if (rtab->data[n] > qopt->buffer)
304 break;
305 max_size = (n << qopt->rate.cell_log) - 1;
306 if (ptab) {
307 int size;
308
309 for (n = 0; n < 256; n++)
310 if (ptab->data[n] > qopt->mtu)
311 break;
312 size = (n << qopt->peakrate.cell_log) - 1;
313 if (size < max_size)
314 max_size = size;
315 }
316 if (max_size < 0)
317 goto done;
318
319 if (q->qdisc != &noop_qdisc) {
320 err = fifo_set_limit(q->qdisc, qopt->limit);
321 if (err)
322 goto done;
323 } else if (qopt->limit > 0) {
324 child = fifo_create_dflt(sch, &bfifo_qdisc_ops, qopt->limit);
325 if (IS_ERR(child)) {
326 err = PTR_ERR(child);
327 goto done;
328 }
329 }
330
331 sch_tree_lock(sch);
332 if (child) {
333 qdisc_tree_decrease_qlen(q->qdisc, q->qdisc->q.qlen);
334 qdisc_destroy(q->qdisc);
335 q->qdisc = child;
336 }
337 q->limit = qopt->limit;
338 q->mtu = PSCHED_TICKS2NS(qopt->mtu);
339 q->max_size = max_size;
340 q->buffer = PSCHED_TICKS2NS(qopt->buffer);
341 q->tokens = q->buffer;
342 q->ptokens = q->mtu;
343
344 psched_ratecfg_precompute(&q->rate, &rtab->rate);
345 if (ptab) {
346 psched_ratecfg_precompute(&q->peak, &ptab->rate);
347 q->peak_present = true;
348 } else {
349 q->peak_present = false;
350 }
351
352 sch_tree_unlock(sch);
353 err = 0;
354 done:
355 if (rtab)
356 qdisc_put_rtab(rtab);
357 if (ptab)
358 qdisc_put_rtab(ptab);
359 return err;
360 }
361
362 static int tbf_init(struct Qdisc *sch, struct nlattr *opt)
363 {
364 struct tbf_sched_data *q = qdisc_priv(sch);
365
366 if (opt == NULL)
367 return -EINVAL;
368
369 q->t_c = ktime_to_ns(ktime_get());
370 qdisc_watchdog_init(&q->watchdog, sch);
371 q->qdisc = &noop_qdisc;
372
373 return tbf_change(sch, opt);
374 }
375
376 static void tbf_destroy(struct Qdisc *sch)
377 {
378 struct tbf_sched_data *q = qdisc_priv(sch);
379
380 qdisc_watchdog_cancel(&q->watchdog);
381 qdisc_destroy(q->qdisc);
382 }
383
384 static int tbf_dump(struct Qdisc *sch, struct sk_buff *skb)
385 {
386 struct tbf_sched_data *q = qdisc_priv(sch);
387 struct nlattr *nest;
388 struct tc_tbf_qopt opt;
389
390 sch->qstats.backlog = q->qdisc->qstats.backlog;
391 nest = nla_nest_start(skb, TCA_OPTIONS);
392 if (nest == NULL)
393 goto nla_put_failure;
394
395 opt.limit = q->limit;
396 psched_ratecfg_getrate(&opt.rate, &q->rate);
397 if (q->peak_present)
398 psched_ratecfg_getrate(&opt.peakrate, &q->peak);
399 else
400 memset(&opt.peakrate, 0, sizeof(opt.peakrate));
401 opt.mtu = PSCHED_NS2TICKS(q->mtu);
402 opt.buffer = PSCHED_NS2TICKS(q->buffer);
403 if (nla_put(skb, TCA_TBF_PARMS, sizeof(opt), &opt))
404 goto nla_put_failure;
405
406 nla_nest_end(skb, nest);
407 return skb->len;
408
409 nla_put_failure:
410 nla_nest_cancel(skb, nest);
411 return -1;
412 }
413
414 static int tbf_dump_class(struct Qdisc *sch, unsigned long cl,
415 struct sk_buff *skb, struct tcmsg *tcm)
416 {
417 struct tbf_sched_data *q = qdisc_priv(sch);
418
419 tcm->tcm_handle |= TC_H_MIN(1);
420 tcm->tcm_info = q->qdisc->handle;
421
422 return 0;
423 }
424
425 static int tbf_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
426 struct Qdisc **old)
427 {
428 struct tbf_sched_data *q = qdisc_priv(sch);
429
430 if (new == NULL)
431 new = &noop_qdisc;
432
433 sch_tree_lock(sch);
434 *old = q->qdisc;
435 q->qdisc = new;
436 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
437 qdisc_reset(*old);
438 sch_tree_unlock(sch);
439
440 return 0;
441 }
442
443 static struct Qdisc *tbf_leaf(struct Qdisc *sch, unsigned long arg)
444 {
445 struct tbf_sched_data *q = qdisc_priv(sch);
446 return q->qdisc;
447 }
448
449 static unsigned long tbf_get(struct Qdisc *sch, u32 classid)
450 {
451 return 1;
452 }
453
454 static void tbf_put(struct Qdisc *sch, unsigned long arg)
455 {
456 }
457
458 static void tbf_walk(struct Qdisc *sch, struct qdisc_walker *walker)
459 {
460 if (!walker->stop) {
461 if (walker->count >= walker->skip)
462 if (walker->fn(sch, 1, walker) < 0) {
463 walker->stop = 1;
464 return;
465 }
466 walker->count++;
467 }
468 }
469
470 static const struct Qdisc_class_ops tbf_class_ops = {
471 .graft = tbf_graft,
472 .leaf = tbf_leaf,
473 .get = tbf_get,
474 .put = tbf_put,
475 .walk = tbf_walk,
476 .dump = tbf_dump_class,
477 };
478
479 static struct Qdisc_ops tbf_qdisc_ops __read_mostly = {
480 .next = NULL,
481 .cl_ops = &tbf_class_ops,
482 .id = "tbf",
483 .priv_size = sizeof(struct tbf_sched_data),
484 .enqueue = tbf_enqueue,
485 .dequeue = tbf_dequeue,
486 .peek = qdisc_peek_dequeued,
487 .drop = tbf_drop,
488 .init = tbf_init,
489 .reset = tbf_reset,
490 .destroy = tbf_destroy,
491 .change = tbf_change,
492 .dump = tbf_dump,
493 .owner = THIS_MODULE,
494 };
495
496 static int __init tbf_module_init(void)
497 {
498 return register_qdisc(&tbf_qdisc_ops);
499 }
500
501 static void __exit tbf_module_exit(void)
502 {
503 unregister_qdisc(&tbf_qdisc_ops);
504 }
505 module_init(tbf_module_init)
506 module_exit(tbf_module_exit)
507 MODULE_LICENSE("GPL");
This page took 0.047239 seconds and 5 git commands to generate.