drm: add 32/64 support for MGA/R128/i915
[deliverable/linux.git] / net / sctp / associola.c
1 /* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel reference Implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * The SCTP reference implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * The SCTP reference implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
28 *
29 * Please send any bug reports or fixes you make to the
30 * email address(es):
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
32 *
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
35 *
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Jon Grimm <jgrimm@us.ibm.com>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Daisy Chang <daisyc@us.ibm.com>
44 * Ryan Layer <rmlayer@us.ibm.com>
45 * Kevin Gao <kevin.gao@intel.com>
46 *
47 * Any bugs reported given to us we will try to fix... any fixes shared will
48 * be incorporated into the next SCTP release.
49 */
50
51 #include <linux/types.h>
52 #include <linux/fcntl.h>
53 #include <linux/poll.h>
54 #include <linux/init.h>
55 #include <linux/sched.h>
56
57 #include <linux/slab.h>
58 #include <linux/in.h>
59 #include <net/ipv6.h>
60 #include <net/sctp/sctp.h>
61 #include <net/sctp/sm.h>
62
63 /* Forward declarations for internal functions. */
64 static void sctp_assoc_bh_rcv(struct sctp_association *asoc);
65
66
67 /* 1st Level Abstractions. */
68
69 /* Initialize a new association from provided memory. */
70 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
71 const struct sctp_endpoint *ep,
72 const struct sock *sk,
73 sctp_scope_t scope,
74 int gfp)
75 {
76 struct sctp_sock *sp;
77 int i;
78
79 /* Retrieve the SCTP per socket area. */
80 sp = sctp_sk((struct sock *)sk);
81
82 /* Init all variables to a known value. */
83 memset(asoc, 0, sizeof(struct sctp_association));
84
85 /* Discarding const is appropriate here. */
86 asoc->ep = (struct sctp_endpoint *)ep;
87 sctp_endpoint_hold(asoc->ep);
88
89 /* Hold the sock. */
90 asoc->base.sk = (struct sock *)sk;
91 sock_hold(asoc->base.sk);
92
93 /* Initialize the common base substructure. */
94 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
95
96 /* Initialize the object handling fields. */
97 atomic_set(&asoc->base.refcnt, 1);
98 asoc->base.dead = 0;
99 asoc->base.malloced = 0;
100
101 /* Initialize the bind addr area. */
102 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
103 rwlock_init(&asoc->base.addr_lock);
104
105 asoc->state = SCTP_STATE_CLOSED;
106
107 /* Set these values from the socket values, a conversion between
108 * millsecons to seconds/microseconds must also be done.
109 */
110 asoc->cookie_life.tv_sec = sp->assocparams.sasoc_cookie_life / 1000;
111 asoc->cookie_life.tv_usec = (sp->assocparams.sasoc_cookie_life % 1000)
112 * 1000;
113 asoc->pmtu = 0;
114 asoc->frag_point = 0;
115
116 /* Set the association max_retrans and RTO values from the
117 * socket values.
118 */
119 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
120 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
121 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
122 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
123
124 asoc->overall_error_count = 0;
125
126 /* Initialize the maximum mumber of new data packets that can be sent
127 * in a burst.
128 */
129 asoc->max_burst = sctp_max_burst;
130
131 /* Copy things from the endpoint. */
132 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
133 asoc->timeouts[i] = ep->timeouts[i];
134 init_timer(&asoc->timers[i]);
135 asoc->timers[i].function = sctp_timer_events[i];
136 asoc->timers[i].data = (unsigned long) asoc;
137 }
138
139 /* Pull default initialization values from the sock options.
140 * Note: This assumes that the values have already been
141 * validated in the sock.
142 */
143 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
144 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
145 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
146
147 asoc->max_init_timeo =
148 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
149
150 /* Allocate storage for the ssnmap after the inbound and outbound
151 * streams have been negotiated during Init.
152 */
153 asoc->ssnmap = NULL;
154
155 /* Set the local window size for receive.
156 * This is also the rcvbuf space per association.
157 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
158 * 1500 bytes in one SCTP packet.
159 */
160 if (sk->sk_rcvbuf < SCTP_DEFAULT_MINWINDOW)
161 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
162 else
163 asoc->rwnd = sk->sk_rcvbuf;
164
165 asoc->a_rwnd = asoc->rwnd;
166
167 asoc->rwnd_over = 0;
168
169 /* Use my own max window until I learn something better. */
170 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
171
172 /* Set the sndbuf size for transmit. */
173 asoc->sndbuf_used = 0;
174
175 init_waitqueue_head(&asoc->wait);
176
177 asoc->c.my_vtag = sctp_generate_tag(ep);
178 asoc->peer.i.init_tag = 0; /* INIT needs a vtag of 0. */
179 asoc->c.peer_vtag = 0;
180 asoc->c.my_ttag = 0;
181 asoc->c.peer_ttag = 0;
182 asoc->c.my_port = ep->base.bind_addr.port;
183
184 asoc->c.initial_tsn = sctp_generate_tsn(ep);
185
186 asoc->next_tsn = asoc->c.initial_tsn;
187
188 asoc->ctsn_ack_point = asoc->next_tsn - 1;
189 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
190 asoc->highest_sacked = asoc->ctsn_ack_point;
191 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
192 asoc->unack_data = 0;
193
194 /* ADDIP Section 4.1 Asconf Chunk Procedures
195 *
196 * When an endpoint has an ASCONF signaled change to be sent to the
197 * remote endpoint it should do the following:
198 * ...
199 * A2) a serial number should be assigned to the chunk. The serial
200 * number SHOULD be a monotonically increasing number. The serial
201 * numbers SHOULD be initialized at the start of the
202 * association to the same value as the initial TSN.
203 */
204 asoc->addip_serial = asoc->c.initial_tsn;
205
206 skb_queue_head_init(&asoc->addip_chunks);
207
208 /* Make an empty list of remote transport addresses. */
209 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
210 asoc->peer.transport_count = 0;
211
212 /* RFC 2960 5.1 Normal Establishment of an Association
213 *
214 * After the reception of the first data chunk in an
215 * association the endpoint must immediately respond with a
216 * sack to acknowledge the data chunk. Subsequent
217 * acknowledgements should be done as described in Section
218 * 6.2.
219 *
220 * [We implement this by telling a new association that it
221 * already received one packet.]
222 */
223 asoc->peer.sack_needed = 1;
224
225 /* Assume that the peer recongizes ASCONF until reported otherwise
226 * via an ERROR chunk.
227 */
228 asoc->peer.asconf_capable = 1;
229
230 /* Create an input queue. */
231 sctp_inq_init(&asoc->base.inqueue);
232 sctp_inq_set_th_handler(&asoc->base.inqueue,
233 (void (*)(void *))sctp_assoc_bh_rcv,
234 asoc);
235
236 /* Create an output queue. */
237 sctp_outq_init(asoc, &asoc->outqueue);
238
239 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
240 goto fail_init;
241
242 /* Set up the tsn tracking. */
243 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE, 0);
244
245 asoc->need_ecne = 0;
246
247 asoc->assoc_id = 0;
248
249 /* Assume that peer would support both address types unless we are
250 * told otherwise.
251 */
252 asoc->peer.ipv4_address = 1;
253 asoc->peer.ipv6_address = 1;
254 INIT_LIST_HEAD(&asoc->asocs);
255
256 asoc->autoclose = sp->autoclose;
257
258 asoc->default_stream = sp->default_stream;
259 asoc->default_ppid = sp->default_ppid;
260 asoc->default_flags = sp->default_flags;
261 asoc->default_context = sp->default_context;
262 asoc->default_timetolive = sp->default_timetolive;
263
264 return asoc;
265
266 fail_init:
267 sctp_endpoint_put(asoc->ep);
268 sock_put(asoc->base.sk);
269 return NULL;
270 }
271
272 /* Allocate and initialize a new association */
273 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
274 const struct sock *sk,
275 sctp_scope_t scope, int gfp)
276 {
277 struct sctp_association *asoc;
278
279 asoc = t_new(struct sctp_association, gfp);
280 if (!asoc)
281 goto fail;
282
283 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
284 goto fail_init;
285
286 asoc->base.malloced = 1;
287 SCTP_DBG_OBJCNT_INC(assoc);
288 SCTP_DEBUG_PRINTK("Created asoc %p\n", asoc);
289
290 return asoc;
291
292 fail_init:
293 kfree(asoc);
294 fail:
295 return NULL;
296 }
297
298 /* Free this association if possible. There may still be users, so
299 * the actual deallocation may be delayed.
300 */
301 void sctp_association_free(struct sctp_association *asoc)
302 {
303 struct sock *sk = asoc->base.sk;
304 struct sctp_transport *transport;
305 struct list_head *pos, *temp;
306 int i;
307
308 list_del(&asoc->asocs);
309
310 /* Decrement the backlog value for a TCP-style listening socket. */
311 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
312 sk->sk_ack_backlog--;
313
314 /* Mark as dead, so other users can know this structure is
315 * going away.
316 */
317 asoc->base.dead = 1;
318
319 /* Dispose of any data lying around in the outqueue. */
320 sctp_outq_free(&asoc->outqueue);
321
322 /* Dispose of any pending messages for the upper layer. */
323 sctp_ulpq_free(&asoc->ulpq);
324
325 /* Dispose of any pending chunks on the inqueue. */
326 sctp_inq_free(&asoc->base.inqueue);
327
328 /* Free ssnmap storage. */
329 sctp_ssnmap_free(asoc->ssnmap);
330
331 /* Clean up the bound address list. */
332 sctp_bind_addr_free(&asoc->base.bind_addr);
333
334 /* Do we need to go through all of our timers and
335 * delete them? To be safe we will try to delete all, but we
336 * should be able to go through and make a guess based
337 * on our state.
338 */
339 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
340 if (timer_pending(&asoc->timers[i]) &&
341 del_timer(&asoc->timers[i]))
342 sctp_association_put(asoc);
343 }
344
345 /* Free peer's cached cookie. */
346 if (asoc->peer.cookie) {
347 kfree(asoc->peer.cookie);
348 }
349
350 /* Release the transport structures. */
351 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
352 transport = list_entry(pos, struct sctp_transport, transports);
353 list_del(pos);
354 sctp_transport_free(transport);
355 }
356
357 asoc->peer.transport_count = 0;
358
359 /* Free any cached ASCONF_ACK chunk. */
360 if (asoc->addip_last_asconf_ack)
361 sctp_chunk_free(asoc->addip_last_asconf_ack);
362
363 /* Free any cached ASCONF chunk. */
364 if (asoc->addip_last_asconf)
365 sctp_chunk_free(asoc->addip_last_asconf);
366
367 sctp_association_put(asoc);
368 }
369
370 /* Cleanup and free up an association. */
371 static void sctp_association_destroy(struct sctp_association *asoc)
372 {
373 SCTP_ASSERT(asoc->base.dead, "Assoc is not dead", return);
374
375 sctp_endpoint_put(asoc->ep);
376 sock_put(asoc->base.sk);
377
378 if (asoc->assoc_id != 0) {
379 spin_lock_bh(&sctp_assocs_id_lock);
380 idr_remove(&sctp_assocs_id, asoc->assoc_id);
381 spin_unlock_bh(&sctp_assocs_id_lock);
382 }
383
384 if (asoc->base.malloced) {
385 kfree(asoc);
386 SCTP_DBG_OBJCNT_DEC(assoc);
387 }
388 }
389
390 /* Change the primary destination address for the peer. */
391 void sctp_assoc_set_primary(struct sctp_association *asoc,
392 struct sctp_transport *transport)
393 {
394 asoc->peer.primary_path = transport;
395
396 /* Set a default msg_name for events. */
397 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
398 sizeof(union sctp_addr));
399
400 /* If the primary path is changing, assume that the
401 * user wants to use this new path.
402 */
403 if (transport->state != SCTP_INACTIVE)
404 asoc->peer.active_path = transport;
405
406 /*
407 * SFR-CACC algorithm:
408 * Upon the receipt of a request to change the primary
409 * destination address, on the data structure for the new
410 * primary destination, the sender MUST do the following:
411 *
412 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
413 * to this destination address earlier. The sender MUST set
414 * CYCLING_CHANGEOVER to indicate that this switch is a
415 * double switch to the same destination address.
416 */
417 if (transport->cacc.changeover_active)
418 transport->cacc.cycling_changeover = 1;
419
420 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
421 * a changeover has occurred.
422 */
423 transport->cacc.changeover_active = 1;
424
425 /* 3) The sender MUST store the next TSN to be sent in
426 * next_tsn_at_change.
427 */
428 transport->cacc.next_tsn_at_change = asoc->next_tsn;
429 }
430
431 /* Remove a transport from an association. */
432 void sctp_assoc_rm_peer(struct sctp_association *asoc,
433 struct sctp_transport *peer)
434 {
435 struct list_head *pos;
436 struct sctp_transport *transport;
437
438 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_rm_peer:association %p addr: ",
439 " port: %d\n",
440 asoc,
441 (&peer->ipaddr),
442 peer->ipaddr.v4.sin_port);
443
444 /* If we are to remove the current retran_path, update it
445 * to the next peer before removing this peer from the list.
446 */
447 if (asoc->peer.retran_path == peer)
448 sctp_assoc_update_retran_path(asoc);
449
450 /* Remove this peer from the list. */
451 list_del(&peer->transports);
452
453 /* Get the first transport of asoc. */
454 pos = asoc->peer.transport_addr_list.next;
455 transport = list_entry(pos, struct sctp_transport, transports);
456
457 /* Update any entries that match the peer to be deleted. */
458 if (asoc->peer.primary_path == peer)
459 sctp_assoc_set_primary(asoc, transport);
460 if (asoc->peer.active_path == peer)
461 asoc->peer.active_path = transport;
462 if (asoc->peer.last_data_from == peer)
463 asoc->peer.last_data_from = transport;
464
465 /* If we remove the transport an INIT was last sent to, set it to
466 * NULL. Combined with the update of the retran path above, this
467 * will cause the next INIT to be sent to the next available
468 * transport, maintaining the cycle.
469 */
470 if (asoc->init_last_sent_to == peer)
471 asoc->init_last_sent_to = NULL;
472
473 asoc->peer.transport_count--;
474
475 sctp_transport_free(peer);
476 }
477
478 /* Add a transport address to an association. */
479 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
480 const union sctp_addr *addr,
481 const int gfp,
482 const int peer_state)
483 {
484 struct sctp_transport *peer;
485 struct sctp_sock *sp;
486 unsigned short port;
487
488 sp = sctp_sk(asoc->base.sk);
489
490 /* AF_INET and AF_INET6 share common port field. */
491 port = addr->v4.sin_port;
492
493 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_add_peer:association %p addr: ",
494 " port: %d state:%s\n",
495 asoc,
496 addr,
497 addr->v4.sin_port,
498 peer_state == SCTP_UNKNOWN?"UNKNOWN":"ACTIVE");
499
500 /* Set the port if it has not been set yet. */
501 if (0 == asoc->peer.port)
502 asoc->peer.port = port;
503
504 /* Check to see if this is a duplicate. */
505 peer = sctp_assoc_lookup_paddr(asoc, addr);
506 if (peer) {
507 if (peer_state == SCTP_ACTIVE &&
508 peer->state == SCTP_UNKNOWN)
509 peer->state = SCTP_ACTIVE;
510 return peer;
511 }
512
513 peer = sctp_transport_new(addr, gfp);
514 if (!peer)
515 return NULL;
516
517 sctp_transport_set_owner(peer, asoc);
518
519 /* Initialize the pmtu of the transport. */
520 sctp_transport_pmtu(peer);
521
522 /* If this is the first transport addr on this association,
523 * initialize the association PMTU to the peer's PMTU.
524 * If not and the current association PMTU is higher than the new
525 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
526 */
527 if (asoc->pmtu)
528 asoc->pmtu = min_t(int, peer->pmtu, asoc->pmtu);
529 else
530 asoc->pmtu = peer->pmtu;
531
532 SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
533 "%d\n", asoc, asoc->pmtu);
534
535 asoc->frag_point = sctp_frag_point(sp, asoc->pmtu);
536
537 /* The asoc->peer.port might not be meaningful yet, but
538 * initialize the packet structure anyway.
539 */
540 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
541 asoc->peer.port);
542
543 /* 7.2.1 Slow-Start
544 *
545 * o The initial cwnd before DATA transmission or after a sufficiently
546 * long idle period MUST be set to
547 * min(4*MTU, max(2*MTU, 4380 bytes))
548 *
549 * o The initial value of ssthresh MAY be arbitrarily high
550 * (for example, implementations MAY use the size of the
551 * receiver advertised window).
552 */
553 peer->cwnd = min(4*asoc->pmtu, max_t(__u32, 2*asoc->pmtu, 4380));
554
555 /* At this point, we may not have the receiver's advertised window,
556 * so initialize ssthresh to the default value and it will be set
557 * later when we process the INIT.
558 */
559 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
560
561 peer->partial_bytes_acked = 0;
562 peer->flight_size = 0;
563
564 /* By default, enable heartbeat for peer address. */
565 peer->hb_allowed = 1;
566
567 /* Initialize the peer's heartbeat interval based on the
568 * sock configured value.
569 */
570 peer->hb_interval = msecs_to_jiffies(sp->paddrparam.spp_hbinterval);
571
572 /* Set the path max_retrans. */
573 peer->max_retrans = sp->paddrparam.spp_pathmaxrxt;
574
575 /* Set the transport's RTO.initial value */
576 peer->rto = asoc->rto_initial;
577
578 /* Set the peer's active state. */
579 peer->state = peer_state;
580
581 /* Attach the remote transport to our asoc. */
582 list_add_tail(&peer->transports, &asoc->peer.transport_addr_list);
583 asoc->peer.transport_count++;
584
585 /* If we do not yet have a primary path, set one. */
586 if (!asoc->peer.primary_path) {
587 sctp_assoc_set_primary(asoc, peer);
588 asoc->peer.retran_path = peer;
589 }
590
591 if (asoc->peer.active_path == asoc->peer.retran_path) {
592 asoc->peer.retran_path = peer;
593 }
594
595 return peer;
596 }
597
598 /* Delete a transport address from an association. */
599 void sctp_assoc_del_peer(struct sctp_association *asoc,
600 const union sctp_addr *addr)
601 {
602 struct list_head *pos;
603 struct list_head *temp;
604 struct sctp_transport *transport;
605
606 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
607 transport = list_entry(pos, struct sctp_transport, transports);
608 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
609 /* Do book keeping for removing the peer and free it. */
610 sctp_assoc_rm_peer(asoc, transport);
611 break;
612 }
613 }
614 }
615
616 /* Lookup a transport by address. */
617 struct sctp_transport *sctp_assoc_lookup_paddr(
618 const struct sctp_association *asoc,
619 const union sctp_addr *address)
620 {
621 struct sctp_transport *t;
622 struct list_head *pos;
623
624 /* Cycle through all transports searching for a peer address. */
625
626 list_for_each(pos, &asoc->peer.transport_addr_list) {
627 t = list_entry(pos, struct sctp_transport, transports);
628 if (sctp_cmp_addr_exact(address, &t->ipaddr))
629 return t;
630 }
631
632 return NULL;
633 }
634
635 /* Engage in transport control operations.
636 * Mark the transport up or down and send a notification to the user.
637 * Select and update the new active and retran paths.
638 */
639 void sctp_assoc_control_transport(struct sctp_association *asoc,
640 struct sctp_transport *transport,
641 sctp_transport_cmd_t command,
642 sctp_sn_error_t error)
643 {
644 struct sctp_transport *t = NULL;
645 struct sctp_transport *first;
646 struct sctp_transport *second;
647 struct sctp_ulpevent *event;
648 struct list_head *pos;
649 int spc_state = 0;
650
651 /* Record the transition on the transport. */
652 switch (command) {
653 case SCTP_TRANSPORT_UP:
654 transport->state = SCTP_ACTIVE;
655 spc_state = SCTP_ADDR_AVAILABLE;
656 break;
657
658 case SCTP_TRANSPORT_DOWN:
659 transport->state = SCTP_INACTIVE;
660 spc_state = SCTP_ADDR_UNREACHABLE;
661 break;
662
663 default:
664 return;
665 };
666
667 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
668 * user.
669 */
670 event = sctp_ulpevent_make_peer_addr_change(asoc,
671 (struct sockaddr_storage *) &transport->ipaddr,
672 0, spc_state, error, GFP_ATOMIC);
673 if (event)
674 sctp_ulpq_tail_event(&asoc->ulpq, event);
675
676 /* Select new active and retran paths. */
677
678 /* Look for the two most recently used active transports.
679 *
680 * This code produces the wrong ordering whenever jiffies
681 * rolls over, but we still get usable transports, so we don't
682 * worry about it.
683 */
684 first = NULL; second = NULL;
685
686 list_for_each(pos, &asoc->peer.transport_addr_list) {
687 t = list_entry(pos, struct sctp_transport, transports);
688
689 if (t->state == SCTP_INACTIVE)
690 continue;
691 if (!first || t->last_time_heard > first->last_time_heard) {
692 second = first;
693 first = t;
694 }
695 if (!second || t->last_time_heard > second->last_time_heard)
696 second = t;
697 }
698
699 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
700 *
701 * By default, an endpoint should always transmit to the
702 * primary path, unless the SCTP user explicitly specifies the
703 * destination transport address (and possibly source
704 * transport address) to use.
705 *
706 * [If the primary is active but not most recent, bump the most
707 * recently used transport.]
708 */
709 if (asoc->peer.primary_path->state != SCTP_INACTIVE &&
710 first != asoc->peer.primary_path) {
711 second = first;
712 first = asoc->peer.primary_path;
713 }
714
715 /* If we failed to find a usable transport, just camp on the
716 * primary, even if it is inactive.
717 */
718 if (!first) {
719 first = asoc->peer.primary_path;
720 second = asoc->peer.primary_path;
721 }
722
723 /* Set the active and retran transports. */
724 asoc->peer.active_path = first;
725 asoc->peer.retran_path = second;
726 }
727
728 /* Hold a reference to an association. */
729 void sctp_association_hold(struct sctp_association *asoc)
730 {
731 atomic_inc(&asoc->base.refcnt);
732 }
733
734 /* Release a reference to an association and cleanup
735 * if there are no more references.
736 */
737 void sctp_association_put(struct sctp_association *asoc)
738 {
739 if (atomic_dec_and_test(&asoc->base.refcnt))
740 sctp_association_destroy(asoc);
741 }
742
743 /* Allocate the next TSN, Transmission Sequence Number, for the given
744 * association.
745 */
746 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
747 {
748 /* From Section 1.6 Serial Number Arithmetic:
749 * Transmission Sequence Numbers wrap around when they reach
750 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
751 * after transmitting TSN = 2*32 - 1 is TSN = 0.
752 */
753 __u32 retval = asoc->next_tsn;
754 asoc->next_tsn++;
755 asoc->unack_data++;
756
757 return retval;
758 }
759
760 /* Compare two addresses to see if they match. Wildcard addresses
761 * only match themselves.
762 */
763 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
764 const union sctp_addr *ss2)
765 {
766 struct sctp_af *af;
767
768 af = sctp_get_af_specific(ss1->sa.sa_family);
769 if (unlikely(!af))
770 return 0;
771
772 return af->cmp_addr(ss1, ss2);
773 }
774
775 /* Return an ecne chunk to get prepended to a packet.
776 * Note: We are sly and return a shared, prealloced chunk. FIXME:
777 * No we don't, but we could/should.
778 */
779 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
780 {
781 struct sctp_chunk *chunk;
782
783 /* Send ECNE if needed.
784 * Not being able to allocate a chunk here is not deadly.
785 */
786 if (asoc->need_ecne)
787 chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
788 else
789 chunk = NULL;
790
791 return chunk;
792 }
793
794 /*
795 * Find which transport this TSN was sent on.
796 */
797 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
798 __u32 tsn)
799 {
800 struct sctp_transport *active;
801 struct sctp_transport *match;
802 struct list_head *entry, *pos;
803 struct sctp_transport *transport;
804 struct sctp_chunk *chunk;
805 __u32 key = htonl(tsn);
806
807 match = NULL;
808
809 /*
810 * FIXME: In general, find a more efficient data structure for
811 * searching.
812 */
813
814 /*
815 * The general strategy is to search each transport's transmitted
816 * list. Return which transport this TSN lives on.
817 *
818 * Let's be hopeful and check the active_path first.
819 * Another optimization would be to know if there is only one
820 * outbound path and not have to look for the TSN at all.
821 *
822 */
823
824 active = asoc->peer.active_path;
825
826 list_for_each(entry, &active->transmitted) {
827 chunk = list_entry(entry, struct sctp_chunk, transmitted_list);
828
829 if (key == chunk->subh.data_hdr->tsn) {
830 match = active;
831 goto out;
832 }
833 }
834
835 /* If not found, go search all the other transports. */
836 list_for_each(pos, &asoc->peer.transport_addr_list) {
837 transport = list_entry(pos, struct sctp_transport, transports);
838
839 if (transport == active)
840 break;
841 list_for_each(entry, &transport->transmitted) {
842 chunk = list_entry(entry, struct sctp_chunk,
843 transmitted_list);
844 if (key == chunk->subh.data_hdr->tsn) {
845 match = transport;
846 goto out;
847 }
848 }
849 }
850 out:
851 return match;
852 }
853
854 /* Is this the association we are looking for? */
855 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
856 const union sctp_addr *laddr,
857 const union sctp_addr *paddr)
858 {
859 struct sctp_transport *transport;
860
861 sctp_read_lock(&asoc->base.addr_lock);
862
863 if ((asoc->base.bind_addr.port == laddr->v4.sin_port) &&
864 (asoc->peer.port == paddr->v4.sin_port)) {
865 transport = sctp_assoc_lookup_paddr(asoc, paddr);
866 if (!transport)
867 goto out;
868
869 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
870 sctp_sk(asoc->base.sk)))
871 goto out;
872 }
873 transport = NULL;
874
875 out:
876 sctp_read_unlock(&asoc->base.addr_lock);
877 return transport;
878 }
879
880 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
881 static void sctp_assoc_bh_rcv(struct sctp_association *asoc)
882 {
883 struct sctp_endpoint *ep;
884 struct sctp_chunk *chunk;
885 struct sock *sk;
886 struct sctp_inq *inqueue;
887 int state;
888 sctp_subtype_t subtype;
889 int error = 0;
890
891 /* The association should be held so we should be safe. */
892 ep = asoc->ep;
893 sk = asoc->base.sk;
894
895 inqueue = &asoc->base.inqueue;
896 sctp_association_hold(asoc);
897 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
898 state = asoc->state;
899 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
900
901 /* Remember where the last DATA chunk came from so we
902 * know where to send the SACK.
903 */
904 if (sctp_chunk_is_data(chunk))
905 asoc->peer.last_data_from = chunk->transport;
906 else
907 SCTP_INC_STATS(SCTP_MIB_INCTRLCHUNKS);
908
909 if (chunk->transport)
910 chunk->transport->last_time_heard = jiffies;
911
912 /* Run through the state machine. */
913 error = sctp_do_sm(SCTP_EVENT_T_CHUNK, subtype,
914 state, ep, asoc, chunk, GFP_ATOMIC);
915
916 /* Check to see if the association is freed in response to
917 * the incoming chunk. If so, get out of the while loop.
918 */
919 if (asoc->base.dead)
920 break;
921
922 /* If there is an error on chunk, discard this packet. */
923 if (error && chunk)
924 chunk->pdiscard = 1;
925 }
926 sctp_association_put(asoc);
927 }
928
929 /* This routine moves an association from its old sk to a new sk. */
930 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
931 {
932 struct sctp_sock *newsp = sctp_sk(newsk);
933 struct sock *oldsk = assoc->base.sk;
934
935 /* Delete the association from the old endpoint's list of
936 * associations.
937 */
938 list_del_init(&assoc->asocs);
939
940 /* Decrement the backlog value for a TCP-style socket. */
941 if (sctp_style(oldsk, TCP))
942 oldsk->sk_ack_backlog--;
943
944 /* Release references to the old endpoint and the sock. */
945 sctp_endpoint_put(assoc->ep);
946 sock_put(assoc->base.sk);
947
948 /* Get a reference to the new endpoint. */
949 assoc->ep = newsp->ep;
950 sctp_endpoint_hold(assoc->ep);
951
952 /* Get a reference to the new sock. */
953 assoc->base.sk = newsk;
954 sock_hold(assoc->base.sk);
955
956 /* Add the association to the new endpoint's list of associations. */
957 sctp_endpoint_add_asoc(newsp->ep, assoc);
958 }
959
960 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
961 void sctp_assoc_update(struct sctp_association *asoc,
962 struct sctp_association *new)
963 {
964 struct sctp_transport *trans;
965 struct list_head *pos, *temp;
966
967 /* Copy in new parameters of peer. */
968 asoc->c = new->c;
969 asoc->peer.rwnd = new->peer.rwnd;
970 asoc->peer.sack_needed = new->peer.sack_needed;
971 asoc->peer.i = new->peer.i;
972 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_SIZE,
973 asoc->peer.i.initial_tsn);
974
975 /* Remove any peer addresses not present in the new association. */
976 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
977 trans = list_entry(pos, struct sctp_transport, transports);
978 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr))
979 sctp_assoc_del_peer(asoc, &trans->ipaddr);
980 }
981
982 /* If the case is A (association restart), use
983 * initial_tsn as next_tsn. If the case is B, use
984 * current next_tsn in case data sent to peer
985 * has been discarded and needs retransmission.
986 */
987 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
988 asoc->next_tsn = new->next_tsn;
989 asoc->ctsn_ack_point = new->ctsn_ack_point;
990 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
991
992 /* Reinitialize SSN for both local streams
993 * and peer's streams.
994 */
995 sctp_ssnmap_clear(asoc->ssnmap);
996
997 } else {
998 /* Add any peer addresses from the new association. */
999 list_for_each(pos, &new->peer.transport_addr_list) {
1000 trans = list_entry(pos, struct sctp_transport,
1001 transports);
1002 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1003 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1004 GFP_ATOMIC, SCTP_ACTIVE);
1005 }
1006
1007 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1008 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1009 if (!asoc->ssnmap) {
1010 /* Move the ssnmap. */
1011 asoc->ssnmap = new->ssnmap;
1012 new->ssnmap = NULL;
1013 }
1014 }
1015 }
1016
1017 /* Update the retran path for sending a retransmitted packet.
1018 * Round-robin through the active transports, else round-robin
1019 * through the inactive transports as this is the next best thing
1020 * we can try.
1021 */
1022 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1023 {
1024 struct sctp_transport *t, *next;
1025 struct list_head *head = &asoc->peer.transport_addr_list;
1026 struct list_head *pos;
1027
1028 /* Find the next transport in a round-robin fashion. */
1029 t = asoc->peer.retran_path;
1030 pos = &t->transports;
1031 next = NULL;
1032
1033 while (1) {
1034 /* Skip the head. */
1035 if (pos->next == head)
1036 pos = head->next;
1037 else
1038 pos = pos->next;
1039
1040 t = list_entry(pos, struct sctp_transport, transports);
1041
1042 /* Try to find an active transport. */
1043
1044 if (t->state != SCTP_INACTIVE) {
1045 break;
1046 } else {
1047 /* Keep track of the next transport in case
1048 * we don't find any active transport.
1049 */
1050 if (!next)
1051 next = t;
1052 }
1053
1054 /* We have exhausted the list, but didn't find any
1055 * other active transports. If so, use the next
1056 * transport.
1057 */
1058 if (t == asoc->peer.retran_path) {
1059 t = next;
1060 break;
1061 }
1062 }
1063
1064 asoc->peer.retran_path = t;
1065
1066 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1067 " %p addr: ",
1068 " port: %d\n",
1069 asoc,
1070 (&t->ipaddr),
1071 t->ipaddr.v4.sin_port);
1072 }
1073
1074 /* Choose the transport for sending a INIT packet. */
1075 struct sctp_transport *sctp_assoc_choose_init_transport(
1076 struct sctp_association *asoc)
1077 {
1078 struct sctp_transport *t;
1079
1080 /* Use the retran path. If the last INIT was sent over the
1081 * retran path, update the retran path and use it.
1082 */
1083 if (!asoc->init_last_sent_to) {
1084 t = asoc->peer.active_path;
1085 } else {
1086 if (asoc->init_last_sent_to == asoc->peer.retran_path)
1087 sctp_assoc_update_retran_path(asoc);
1088 t = asoc->peer.retran_path;
1089 }
1090
1091 SCTP_DEBUG_PRINTK_IPADDR("sctp_assoc_update_retran_path:association"
1092 " %p addr: ",
1093 " port: %d\n",
1094 asoc,
1095 (&t->ipaddr),
1096 t->ipaddr.v4.sin_port);
1097
1098 return t;
1099 }
1100
1101 /* Choose the transport for sending a SHUTDOWN packet. */
1102 struct sctp_transport *sctp_assoc_choose_shutdown_transport(
1103 struct sctp_association *asoc)
1104 {
1105 /* If this is the first time SHUTDOWN is sent, use the active path,
1106 * else use the retran path. If the last SHUTDOWN was sent over the
1107 * retran path, update the retran path and use it.
1108 */
1109 if (!asoc->shutdown_last_sent_to)
1110 return asoc->peer.active_path;
1111 else {
1112 if (asoc->shutdown_last_sent_to == asoc->peer.retran_path)
1113 sctp_assoc_update_retran_path(asoc);
1114 return asoc->peer.retran_path;
1115 }
1116
1117 }
1118
1119 /* Update the association's pmtu and frag_point by going through all the
1120 * transports. This routine is called when a transport's PMTU has changed.
1121 */
1122 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1123 {
1124 struct sctp_transport *t;
1125 struct list_head *pos;
1126 __u32 pmtu = 0;
1127
1128 if (!asoc)
1129 return;
1130
1131 /* Get the lowest pmtu of all the transports. */
1132 list_for_each(pos, &asoc->peer.transport_addr_list) {
1133 t = list_entry(pos, struct sctp_transport, transports);
1134 if (!pmtu || (t->pmtu < pmtu))
1135 pmtu = t->pmtu;
1136 }
1137
1138 if (pmtu) {
1139 struct sctp_sock *sp = sctp_sk(asoc->base.sk);
1140 asoc->pmtu = pmtu;
1141 asoc->frag_point = sctp_frag_point(sp, pmtu);
1142 }
1143
1144 SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
1145 __FUNCTION__, asoc, asoc->pmtu, asoc->frag_point);
1146 }
1147
1148 /* Should we send a SACK to update our peer? */
1149 static inline int sctp_peer_needs_update(struct sctp_association *asoc)
1150 {
1151 switch (asoc->state) {
1152 case SCTP_STATE_ESTABLISHED:
1153 case SCTP_STATE_SHUTDOWN_PENDING:
1154 case SCTP_STATE_SHUTDOWN_RECEIVED:
1155 case SCTP_STATE_SHUTDOWN_SENT:
1156 if ((asoc->rwnd > asoc->a_rwnd) &&
1157 ((asoc->rwnd - asoc->a_rwnd) >=
1158 min_t(__u32, (asoc->base.sk->sk_rcvbuf >> 1), asoc->pmtu)))
1159 return 1;
1160 break;
1161 default:
1162 break;
1163 }
1164 return 0;
1165 }
1166
1167 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1168 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned len)
1169 {
1170 struct sctp_chunk *sack;
1171 struct timer_list *timer;
1172
1173 if (asoc->rwnd_over) {
1174 if (asoc->rwnd_over >= len) {
1175 asoc->rwnd_over -= len;
1176 } else {
1177 asoc->rwnd += (len - asoc->rwnd_over);
1178 asoc->rwnd_over = 0;
1179 }
1180 } else {
1181 asoc->rwnd += len;
1182 }
1183
1184 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd increased by %d to (%u, %u) "
1185 "- %u\n", __FUNCTION__, asoc, len, asoc->rwnd,
1186 asoc->rwnd_over, asoc->a_rwnd);
1187
1188 /* Send a window update SACK if the rwnd has increased by at least the
1189 * minimum of the association's PMTU and half of the receive buffer.
1190 * The algorithm used is similar to the one described in
1191 * Section 4.2.3.3 of RFC 1122.
1192 */
1193 if (sctp_peer_needs_update(asoc)) {
1194 asoc->a_rwnd = asoc->rwnd;
1195 SCTP_DEBUG_PRINTK("%s: Sending window update SACK- asoc: %p "
1196 "rwnd: %u a_rwnd: %u\n", __FUNCTION__,
1197 asoc, asoc->rwnd, asoc->a_rwnd);
1198 sack = sctp_make_sack(asoc);
1199 if (!sack)
1200 return;
1201
1202 asoc->peer.sack_needed = 0;
1203
1204 sctp_outq_tail(&asoc->outqueue, sack);
1205
1206 /* Stop the SACK timer. */
1207 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1208 if (timer_pending(timer) && del_timer(timer))
1209 sctp_association_put(asoc);
1210 }
1211 }
1212
1213 /* Decrease asoc's rwnd by len. */
1214 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
1215 {
1216 SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
1217 SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
1218 if (asoc->rwnd >= len) {
1219 asoc->rwnd -= len;
1220 } else {
1221 asoc->rwnd_over = len - asoc->rwnd;
1222 asoc->rwnd = 0;
1223 }
1224 SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n",
1225 __FUNCTION__, asoc, len, asoc->rwnd,
1226 asoc->rwnd_over);
1227 }
1228
1229 /* Build the bind address list for the association based on info from the
1230 * local endpoint and the remote peer.
1231 */
1232 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, int gfp)
1233 {
1234 sctp_scope_t scope;
1235 int flags;
1236
1237 /* Use scoping rules to determine the subset of addresses from
1238 * the endpoint.
1239 */
1240 scope = sctp_scope(&asoc->peer.active_path->ipaddr);
1241 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1242 if (asoc->peer.ipv4_address)
1243 flags |= SCTP_ADDR4_PEERSUPP;
1244 if (asoc->peer.ipv6_address)
1245 flags |= SCTP_ADDR6_PEERSUPP;
1246
1247 return sctp_bind_addr_copy(&asoc->base.bind_addr,
1248 &asoc->ep->base.bind_addr,
1249 scope, gfp, flags);
1250 }
1251
1252 /* Build the association's bind address list from the cookie. */
1253 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1254 struct sctp_cookie *cookie, int gfp)
1255 {
1256 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1257 int var_size3 = cookie->raw_addr_list_len;
1258 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1259
1260 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1261 asoc->ep->base.bind_addr.port, gfp);
1262 }
1263
1264 /* Lookup laddr in the bind address list of an association. */
1265 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1266 const union sctp_addr *laddr)
1267 {
1268 int found;
1269
1270 sctp_read_lock(&asoc->base.addr_lock);
1271 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1272 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1273 sctp_sk(asoc->base.sk))) {
1274 found = 1;
1275 goto out;
1276 }
1277
1278 found = 0;
1279 out:
1280 sctp_read_unlock(&asoc->base.addr_lock);
1281 return found;
1282 }
This page took 0.077278 seconds and 5 git commands to generate.