Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / net / sctp / associola.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Jon Grimm <jgrimm@us.ibm.com>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Ryan Layer <rmlayer@us.ibm.com>
41 * Kevin Gao <kevin.gao@intel.com>
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
50
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
56
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62
63 /* 1st Level Abstractions. */
64
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
67 const struct sctp_endpoint *ep,
68 const struct sock *sk,
69 sctp_scope_t scope,
70 gfp_t gfp)
71 {
72 struct net *net = sock_net(sk);
73 struct sctp_sock *sp;
74 int i;
75 sctp_paramhdr_t *p;
76 int err;
77
78 /* Retrieve the SCTP per socket area. */
79 sp = sctp_sk((struct sock *)sk);
80
81 /* Discarding const is appropriate here. */
82 asoc->ep = (struct sctp_endpoint *)ep;
83 asoc->base.sk = (struct sock *)sk;
84
85 sctp_endpoint_hold(asoc->ep);
86 sock_hold(asoc->base.sk);
87
88 /* Initialize the common base substructure. */
89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90
91 /* Initialize the object handling fields. */
92 atomic_set(&asoc->base.refcnt, 1);
93
94 /* Initialize the bind addr area. */
95 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
96
97 asoc->state = SCTP_STATE_CLOSED;
98 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
99 asoc->user_frag = sp->user_frag;
100
101 /* Set the association max_retrans and RTO values from the
102 * socket values.
103 */
104 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
105 asoc->pf_retrans = net->sctp.pf_retrans;
106
107 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
108 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
109 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
110
111 /* Initialize the association's heartbeat interval based on the
112 * sock configured value.
113 */
114 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
115
116 /* Initialize path max retrans value. */
117 asoc->pathmaxrxt = sp->pathmaxrxt;
118
119 /* Initialize default path MTU. */
120 asoc->pathmtu = sp->pathmtu;
121
122 /* Set association default SACK delay */
123 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
124 asoc->sackfreq = sp->sackfreq;
125
126 /* Set the association default flags controlling
127 * Heartbeat, SACK delay, and Path MTU Discovery.
128 */
129 asoc->param_flags = sp->param_flags;
130
131 /* Initialize the maximum number of new data packets that can be sent
132 * in a burst.
133 */
134 asoc->max_burst = sp->max_burst;
135
136 /* initialize association timers */
137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
140
141 /* sctpimpguide Section 2.12.2
142 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
143 * recommended value of 5 times 'RTO.Max'.
144 */
145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
146 = 5 * asoc->rto_max;
147
148 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
149 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
150
151 /* Initializes the timers */
152 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
153 setup_timer(&asoc->timers[i], sctp_timer_events[i],
154 (unsigned long)asoc);
155
156 /* Pull default initialization values from the sock options.
157 * Note: This assumes that the values have already been
158 * validated in the sock.
159 */
160 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
161 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
162 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
163
164 asoc->max_init_timeo =
165 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
166
167 /* Set the local window size for receive.
168 * This is also the rcvbuf space per association.
169 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
170 * 1500 bytes in one SCTP packet.
171 */
172 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
173 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
174 else
175 asoc->rwnd = sk->sk_rcvbuf/2;
176
177 asoc->a_rwnd = asoc->rwnd;
178
179 /* Use my own max window until I learn something better. */
180 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
181
182 /* Initialize the receive memory counter */
183 atomic_set(&asoc->rmem_alloc, 0);
184
185 init_waitqueue_head(&asoc->wait);
186
187 asoc->c.my_vtag = sctp_generate_tag(ep);
188 asoc->c.my_port = ep->base.bind_addr.port;
189
190 asoc->c.initial_tsn = sctp_generate_tsn(ep);
191
192 asoc->next_tsn = asoc->c.initial_tsn;
193
194 asoc->ctsn_ack_point = asoc->next_tsn - 1;
195 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
196 asoc->highest_sacked = asoc->ctsn_ack_point;
197 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
198
199 /* ADDIP Section 4.1 Asconf Chunk Procedures
200 *
201 * When an endpoint has an ASCONF signaled change to be sent to the
202 * remote endpoint it should do the following:
203 * ...
204 * A2) a serial number should be assigned to the chunk. The serial
205 * number SHOULD be a monotonically increasing number. The serial
206 * numbers SHOULD be initialized at the start of the
207 * association to the same value as the initial TSN.
208 */
209 asoc->addip_serial = asoc->c.initial_tsn;
210
211 INIT_LIST_HEAD(&asoc->addip_chunk_list);
212 INIT_LIST_HEAD(&asoc->asconf_ack_list);
213
214 /* Make an empty list of remote transport addresses. */
215 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
216
217 /* RFC 2960 5.1 Normal Establishment of an Association
218 *
219 * After the reception of the first data chunk in an
220 * association the endpoint must immediately respond with a
221 * sack to acknowledge the data chunk. Subsequent
222 * acknowledgements should be done as described in Section
223 * 6.2.
224 *
225 * [We implement this by telling a new association that it
226 * already received one packet.]
227 */
228 asoc->peer.sack_needed = 1;
229 asoc->peer.sack_generation = 1;
230
231 /* Assume that the peer will tell us if he recognizes ASCONF
232 * as part of INIT exchange.
233 * The sctp_addip_noauth option is there for backward compatibility
234 * and will revert old behavior.
235 */
236 if (net->sctp.addip_noauth)
237 asoc->peer.asconf_capable = 1;
238
239 /* Create an input queue. */
240 sctp_inq_init(&asoc->base.inqueue);
241 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
242
243 /* Create an output queue. */
244 sctp_outq_init(asoc, &asoc->outqueue);
245
246 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
247 goto fail_init;
248
249 /* Assume that peer would support both address types unless we are
250 * told otherwise.
251 */
252 asoc->peer.ipv4_address = 1;
253 if (asoc->base.sk->sk_family == PF_INET6)
254 asoc->peer.ipv6_address = 1;
255 INIT_LIST_HEAD(&asoc->asocs);
256
257 asoc->default_stream = sp->default_stream;
258 asoc->default_ppid = sp->default_ppid;
259 asoc->default_flags = sp->default_flags;
260 asoc->default_context = sp->default_context;
261 asoc->default_timetolive = sp->default_timetolive;
262 asoc->default_rcv_context = sp->default_rcv_context;
263
264 /* AUTH related initializations */
265 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
266 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
267 if (err)
268 goto fail_init;
269
270 asoc->active_key_id = ep->active_key_id;
271 asoc->prsctp_enable = ep->prsctp_enable;
272
273 /* Save the hmacs and chunks list into this association */
274 if (ep->auth_hmacs_list)
275 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
276 ntohs(ep->auth_hmacs_list->param_hdr.length));
277 if (ep->auth_chunk_list)
278 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
279 ntohs(ep->auth_chunk_list->param_hdr.length));
280
281 /* Get the AUTH random number for this association */
282 p = (sctp_paramhdr_t *)asoc->c.auth_random;
283 p->type = SCTP_PARAM_RANDOM;
284 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
285 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
286
287 return asoc;
288
289 fail_init:
290 sock_put(asoc->base.sk);
291 sctp_endpoint_put(asoc->ep);
292 return NULL;
293 }
294
295 /* Allocate and initialize a new association */
296 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
297 const struct sock *sk,
298 sctp_scope_t scope,
299 gfp_t gfp)
300 {
301 struct sctp_association *asoc;
302
303 asoc = kzalloc(sizeof(*asoc), gfp);
304 if (!asoc)
305 goto fail;
306
307 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
308 goto fail_init;
309
310 SCTP_DBG_OBJCNT_INC(assoc);
311
312 pr_debug("Created asoc %p\n", asoc);
313
314 return asoc;
315
316 fail_init:
317 kfree(asoc);
318 fail:
319 return NULL;
320 }
321
322 /* Free this association if possible. There may still be users, so
323 * the actual deallocation may be delayed.
324 */
325 void sctp_association_free(struct sctp_association *asoc)
326 {
327 struct sock *sk = asoc->base.sk;
328 struct sctp_transport *transport;
329 struct list_head *pos, *temp;
330 int i;
331
332 /* Only real associations count against the endpoint, so
333 * don't bother for if this is a temporary association.
334 */
335 if (!list_empty(&asoc->asocs)) {
336 list_del(&asoc->asocs);
337
338 /* Decrement the backlog value for a TCP-style listening
339 * socket.
340 */
341 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
342 sk->sk_ack_backlog--;
343 }
344
345 /* Mark as dead, so other users can know this structure is
346 * going away.
347 */
348 asoc->base.dead = true;
349
350 /* Dispose of any data lying around in the outqueue. */
351 sctp_outq_free(&asoc->outqueue);
352
353 /* Dispose of any pending messages for the upper layer. */
354 sctp_ulpq_free(&asoc->ulpq);
355
356 /* Dispose of any pending chunks on the inqueue. */
357 sctp_inq_free(&asoc->base.inqueue);
358
359 sctp_tsnmap_free(&asoc->peer.tsn_map);
360
361 /* Free ssnmap storage. */
362 sctp_ssnmap_free(asoc->ssnmap);
363
364 /* Clean up the bound address list. */
365 sctp_bind_addr_free(&asoc->base.bind_addr);
366
367 /* Do we need to go through all of our timers and
368 * delete them? To be safe we will try to delete all, but we
369 * should be able to go through and make a guess based
370 * on our state.
371 */
372 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
373 if (del_timer(&asoc->timers[i]))
374 sctp_association_put(asoc);
375 }
376
377 /* Free peer's cached cookie. */
378 kfree(asoc->peer.cookie);
379 kfree(asoc->peer.peer_random);
380 kfree(asoc->peer.peer_chunks);
381 kfree(asoc->peer.peer_hmacs);
382
383 /* Release the transport structures. */
384 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
385 transport = list_entry(pos, struct sctp_transport, transports);
386 list_del_rcu(pos);
387 sctp_unhash_transport(transport);
388 sctp_transport_free(transport);
389 }
390
391 asoc->peer.transport_count = 0;
392
393 sctp_asconf_queue_teardown(asoc);
394
395 /* Free pending address space being deleted */
396 kfree(asoc->asconf_addr_del_pending);
397
398 /* AUTH - Free the endpoint shared keys */
399 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
400
401 /* AUTH - Free the association shared key */
402 sctp_auth_key_put(asoc->asoc_shared_key);
403
404 sctp_association_put(asoc);
405 }
406
407 /* Cleanup and free up an association. */
408 static void sctp_association_destroy(struct sctp_association *asoc)
409 {
410 if (unlikely(!asoc->base.dead)) {
411 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
412 return;
413 }
414
415 sctp_endpoint_put(asoc->ep);
416 sock_put(asoc->base.sk);
417
418 if (asoc->assoc_id != 0) {
419 spin_lock_bh(&sctp_assocs_id_lock);
420 idr_remove(&sctp_assocs_id, asoc->assoc_id);
421 spin_unlock_bh(&sctp_assocs_id_lock);
422 }
423
424 WARN_ON(atomic_read(&asoc->rmem_alloc));
425
426 kfree(asoc);
427 SCTP_DBG_OBJCNT_DEC(assoc);
428 }
429
430 /* Change the primary destination address for the peer. */
431 void sctp_assoc_set_primary(struct sctp_association *asoc,
432 struct sctp_transport *transport)
433 {
434 int changeover = 0;
435
436 /* it's a changeover only if we already have a primary path
437 * that we are changing
438 */
439 if (asoc->peer.primary_path != NULL &&
440 asoc->peer.primary_path != transport)
441 changeover = 1 ;
442
443 asoc->peer.primary_path = transport;
444
445 /* Set a default msg_name for events. */
446 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
447 sizeof(union sctp_addr));
448
449 /* If the primary path is changing, assume that the
450 * user wants to use this new path.
451 */
452 if ((transport->state == SCTP_ACTIVE) ||
453 (transport->state == SCTP_UNKNOWN))
454 asoc->peer.active_path = transport;
455
456 /*
457 * SFR-CACC algorithm:
458 * Upon the receipt of a request to change the primary
459 * destination address, on the data structure for the new
460 * primary destination, the sender MUST do the following:
461 *
462 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
463 * to this destination address earlier. The sender MUST set
464 * CYCLING_CHANGEOVER to indicate that this switch is a
465 * double switch to the same destination address.
466 *
467 * Really, only bother is we have data queued or outstanding on
468 * the association.
469 */
470 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
471 return;
472
473 if (transport->cacc.changeover_active)
474 transport->cacc.cycling_changeover = changeover;
475
476 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
477 * a changeover has occurred.
478 */
479 transport->cacc.changeover_active = changeover;
480
481 /* 3) The sender MUST store the next TSN to be sent in
482 * next_tsn_at_change.
483 */
484 transport->cacc.next_tsn_at_change = asoc->next_tsn;
485 }
486
487 /* Remove a transport from an association. */
488 void sctp_assoc_rm_peer(struct sctp_association *asoc,
489 struct sctp_transport *peer)
490 {
491 struct list_head *pos;
492 struct sctp_transport *transport;
493
494 pr_debug("%s: association:%p addr:%pISpc\n",
495 __func__, asoc, &peer->ipaddr.sa);
496
497 /* If we are to remove the current retran_path, update it
498 * to the next peer before removing this peer from the list.
499 */
500 if (asoc->peer.retran_path == peer)
501 sctp_assoc_update_retran_path(asoc);
502
503 /* Remove this peer from the list. */
504 list_del_rcu(&peer->transports);
505 /* Remove this peer from the transport hashtable */
506 sctp_unhash_transport(peer);
507
508 /* Get the first transport of asoc. */
509 pos = asoc->peer.transport_addr_list.next;
510 transport = list_entry(pos, struct sctp_transport, transports);
511
512 /* Update any entries that match the peer to be deleted. */
513 if (asoc->peer.primary_path == peer)
514 sctp_assoc_set_primary(asoc, transport);
515 if (asoc->peer.active_path == peer)
516 asoc->peer.active_path = transport;
517 if (asoc->peer.retran_path == peer)
518 asoc->peer.retran_path = transport;
519 if (asoc->peer.last_data_from == peer)
520 asoc->peer.last_data_from = transport;
521
522 /* If we remove the transport an INIT was last sent to, set it to
523 * NULL. Combined with the update of the retran path above, this
524 * will cause the next INIT to be sent to the next available
525 * transport, maintaining the cycle.
526 */
527 if (asoc->init_last_sent_to == peer)
528 asoc->init_last_sent_to = NULL;
529
530 /* If we remove the transport an SHUTDOWN was last sent to, set it
531 * to NULL. Combined with the update of the retran path above, this
532 * will cause the next SHUTDOWN to be sent to the next available
533 * transport, maintaining the cycle.
534 */
535 if (asoc->shutdown_last_sent_to == peer)
536 asoc->shutdown_last_sent_to = NULL;
537
538 /* If we remove the transport an ASCONF was last sent to, set it to
539 * NULL.
540 */
541 if (asoc->addip_last_asconf &&
542 asoc->addip_last_asconf->transport == peer)
543 asoc->addip_last_asconf->transport = NULL;
544
545 /* If we have something on the transmitted list, we have to
546 * save it off. The best place is the active path.
547 */
548 if (!list_empty(&peer->transmitted)) {
549 struct sctp_transport *active = asoc->peer.active_path;
550 struct sctp_chunk *ch;
551
552 /* Reset the transport of each chunk on this list */
553 list_for_each_entry(ch, &peer->transmitted,
554 transmitted_list) {
555 ch->transport = NULL;
556 ch->rtt_in_progress = 0;
557 }
558
559 list_splice_tail_init(&peer->transmitted,
560 &active->transmitted);
561
562 /* Start a T3 timer here in case it wasn't running so
563 * that these migrated packets have a chance to get
564 * retransmitted.
565 */
566 if (!timer_pending(&active->T3_rtx_timer))
567 if (!mod_timer(&active->T3_rtx_timer,
568 jiffies + active->rto))
569 sctp_transport_hold(active);
570 }
571
572 asoc->peer.transport_count--;
573
574 sctp_transport_free(peer);
575 }
576
577 /* Add a transport address to an association. */
578 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
579 const union sctp_addr *addr,
580 const gfp_t gfp,
581 const int peer_state)
582 {
583 struct net *net = sock_net(asoc->base.sk);
584 struct sctp_transport *peer;
585 struct sctp_sock *sp;
586 unsigned short port;
587
588 sp = sctp_sk(asoc->base.sk);
589
590 /* AF_INET and AF_INET6 share common port field. */
591 port = ntohs(addr->v4.sin_port);
592
593 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
594 asoc, &addr->sa, peer_state);
595
596 /* Set the port if it has not been set yet. */
597 if (0 == asoc->peer.port)
598 asoc->peer.port = port;
599
600 /* Check to see if this is a duplicate. */
601 peer = sctp_assoc_lookup_paddr(asoc, addr);
602 if (peer) {
603 /* An UNKNOWN state is only set on transports added by
604 * user in sctp_connectx() call. Such transports should be
605 * considered CONFIRMED per RFC 4960, Section 5.4.
606 */
607 if (peer->state == SCTP_UNKNOWN) {
608 peer->state = SCTP_ACTIVE;
609 }
610 return peer;
611 }
612
613 peer = sctp_transport_new(net, addr, gfp);
614 if (!peer)
615 return NULL;
616
617 sctp_transport_set_owner(peer, asoc);
618
619 /* Initialize the peer's heartbeat interval based on the
620 * association configured value.
621 */
622 peer->hbinterval = asoc->hbinterval;
623
624 /* Set the path max_retrans. */
625 peer->pathmaxrxt = asoc->pathmaxrxt;
626
627 /* And the partial failure retrans threshold */
628 peer->pf_retrans = asoc->pf_retrans;
629
630 /* Initialize the peer's SACK delay timeout based on the
631 * association configured value.
632 */
633 peer->sackdelay = asoc->sackdelay;
634 peer->sackfreq = asoc->sackfreq;
635
636 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
637 * based on association setting.
638 */
639 peer->param_flags = asoc->param_flags;
640
641 sctp_transport_route(peer, NULL, sp);
642
643 /* Initialize the pmtu of the transport. */
644 if (peer->param_flags & SPP_PMTUD_DISABLE) {
645 if (asoc->pathmtu)
646 peer->pathmtu = asoc->pathmtu;
647 else
648 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
649 }
650
651 /* If this is the first transport addr on this association,
652 * initialize the association PMTU to the peer's PMTU.
653 * If not and the current association PMTU is higher than the new
654 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
655 */
656 if (asoc->pathmtu)
657 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
658 else
659 asoc->pathmtu = peer->pathmtu;
660
661 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
662 asoc->pathmtu);
663
664 peer->pmtu_pending = 0;
665
666 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
667
668 /* The asoc->peer.port might not be meaningful yet, but
669 * initialize the packet structure anyway.
670 */
671 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
672 asoc->peer.port);
673
674 /* 7.2.1 Slow-Start
675 *
676 * o The initial cwnd before DATA transmission or after a sufficiently
677 * long idle period MUST be set to
678 * min(4*MTU, max(2*MTU, 4380 bytes))
679 *
680 * o The initial value of ssthresh MAY be arbitrarily high
681 * (for example, implementations MAY use the size of the
682 * receiver advertised window).
683 */
684 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
685
686 /* At this point, we may not have the receiver's advertised window,
687 * so initialize ssthresh to the default value and it will be set
688 * later when we process the INIT.
689 */
690 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
691
692 peer->partial_bytes_acked = 0;
693 peer->flight_size = 0;
694 peer->burst_limited = 0;
695
696 /* Set the transport's RTO.initial value */
697 peer->rto = asoc->rto_initial;
698 sctp_max_rto(asoc, peer);
699
700 /* Set the peer's active state. */
701 peer->state = peer_state;
702
703 /* Attach the remote transport to our asoc. */
704 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
705 asoc->peer.transport_count++;
706 /* Add this peer into the transport hashtable */
707 sctp_hash_transport(peer);
708
709 /* If we do not yet have a primary path, set one. */
710 if (!asoc->peer.primary_path) {
711 sctp_assoc_set_primary(asoc, peer);
712 asoc->peer.retran_path = peer;
713 }
714
715 if (asoc->peer.active_path == asoc->peer.retran_path &&
716 peer->state != SCTP_UNCONFIRMED) {
717 asoc->peer.retran_path = peer;
718 }
719
720 return peer;
721 }
722
723 /* Delete a transport address from an association. */
724 void sctp_assoc_del_peer(struct sctp_association *asoc,
725 const union sctp_addr *addr)
726 {
727 struct list_head *pos;
728 struct list_head *temp;
729 struct sctp_transport *transport;
730
731 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
732 transport = list_entry(pos, struct sctp_transport, transports);
733 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
734 /* Do book keeping for removing the peer and free it. */
735 sctp_assoc_rm_peer(asoc, transport);
736 break;
737 }
738 }
739 }
740
741 /* Lookup a transport by address. */
742 struct sctp_transport *sctp_assoc_lookup_paddr(
743 const struct sctp_association *asoc,
744 const union sctp_addr *address)
745 {
746 struct sctp_transport *t;
747
748 /* Cycle through all transports searching for a peer address. */
749
750 list_for_each_entry(t, &asoc->peer.transport_addr_list,
751 transports) {
752 if (sctp_cmp_addr_exact(address, &t->ipaddr))
753 return t;
754 }
755
756 return NULL;
757 }
758
759 /* Remove all transports except a give one */
760 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
761 struct sctp_transport *primary)
762 {
763 struct sctp_transport *temp;
764 struct sctp_transport *t;
765
766 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
767 transports) {
768 /* if the current transport is not the primary one, delete it */
769 if (t != primary)
770 sctp_assoc_rm_peer(asoc, t);
771 }
772 }
773
774 /* Engage in transport control operations.
775 * Mark the transport up or down and send a notification to the user.
776 * Select and update the new active and retran paths.
777 */
778 void sctp_assoc_control_transport(struct sctp_association *asoc,
779 struct sctp_transport *transport,
780 sctp_transport_cmd_t command,
781 sctp_sn_error_t error)
782 {
783 struct sctp_ulpevent *event;
784 struct sockaddr_storage addr;
785 int spc_state = 0;
786 bool ulp_notify = true;
787
788 /* Record the transition on the transport. */
789 switch (command) {
790 case SCTP_TRANSPORT_UP:
791 /* If we are moving from UNCONFIRMED state due
792 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
793 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
794 */
795 if (SCTP_UNCONFIRMED == transport->state &&
796 SCTP_HEARTBEAT_SUCCESS == error)
797 spc_state = SCTP_ADDR_CONFIRMED;
798 else
799 spc_state = SCTP_ADDR_AVAILABLE;
800 /* Don't inform ULP about transition from PF to
801 * active state and set cwnd to 1 MTU, see SCTP
802 * Quick failover draft section 5.1, point 5
803 */
804 if (transport->state == SCTP_PF) {
805 ulp_notify = false;
806 transport->cwnd = asoc->pathmtu;
807 }
808 transport->state = SCTP_ACTIVE;
809 break;
810
811 case SCTP_TRANSPORT_DOWN:
812 /* If the transport was never confirmed, do not transition it
813 * to inactive state. Also, release the cached route since
814 * there may be a better route next time.
815 */
816 if (transport->state != SCTP_UNCONFIRMED)
817 transport->state = SCTP_INACTIVE;
818 else {
819 dst_release(transport->dst);
820 transport->dst = NULL;
821 ulp_notify = false;
822 }
823
824 spc_state = SCTP_ADDR_UNREACHABLE;
825 break;
826
827 case SCTP_TRANSPORT_PF:
828 transport->state = SCTP_PF;
829 ulp_notify = false;
830 break;
831
832 default:
833 return;
834 }
835
836 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
837 * to the user.
838 */
839 if (ulp_notify) {
840 memset(&addr, 0, sizeof(struct sockaddr_storage));
841 memcpy(&addr, &transport->ipaddr,
842 transport->af_specific->sockaddr_len);
843
844 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
845 0, spc_state, error, GFP_ATOMIC);
846 if (event)
847 sctp_ulpq_tail_event(&asoc->ulpq, event);
848 }
849
850 /* Select new active and retran paths. */
851 sctp_select_active_and_retran_path(asoc);
852 }
853
854 /* Hold a reference to an association. */
855 void sctp_association_hold(struct sctp_association *asoc)
856 {
857 atomic_inc(&asoc->base.refcnt);
858 }
859
860 /* Release a reference to an association and cleanup
861 * if there are no more references.
862 */
863 void sctp_association_put(struct sctp_association *asoc)
864 {
865 if (atomic_dec_and_test(&asoc->base.refcnt))
866 sctp_association_destroy(asoc);
867 }
868
869 /* Allocate the next TSN, Transmission Sequence Number, for the given
870 * association.
871 */
872 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
873 {
874 /* From Section 1.6 Serial Number Arithmetic:
875 * Transmission Sequence Numbers wrap around when they reach
876 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
877 * after transmitting TSN = 2*32 - 1 is TSN = 0.
878 */
879 __u32 retval = asoc->next_tsn;
880 asoc->next_tsn++;
881 asoc->unack_data++;
882
883 return retval;
884 }
885
886 /* Compare two addresses to see if they match. Wildcard addresses
887 * only match themselves.
888 */
889 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
890 const union sctp_addr *ss2)
891 {
892 struct sctp_af *af;
893
894 af = sctp_get_af_specific(ss1->sa.sa_family);
895 if (unlikely(!af))
896 return 0;
897
898 return af->cmp_addr(ss1, ss2);
899 }
900
901 /* Return an ecne chunk to get prepended to a packet.
902 * Note: We are sly and return a shared, prealloced chunk. FIXME:
903 * No we don't, but we could/should.
904 */
905 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
906 {
907 if (!asoc->need_ecne)
908 return NULL;
909
910 /* Send ECNE if needed.
911 * Not being able to allocate a chunk here is not deadly.
912 */
913 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
914 }
915
916 /*
917 * Find which transport this TSN was sent on.
918 */
919 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
920 __u32 tsn)
921 {
922 struct sctp_transport *active;
923 struct sctp_transport *match;
924 struct sctp_transport *transport;
925 struct sctp_chunk *chunk;
926 __be32 key = htonl(tsn);
927
928 match = NULL;
929
930 /*
931 * FIXME: In general, find a more efficient data structure for
932 * searching.
933 */
934
935 /*
936 * The general strategy is to search each transport's transmitted
937 * list. Return which transport this TSN lives on.
938 *
939 * Let's be hopeful and check the active_path first.
940 * Another optimization would be to know if there is only one
941 * outbound path and not have to look for the TSN at all.
942 *
943 */
944
945 active = asoc->peer.active_path;
946
947 list_for_each_entry(chunk, &active->transmitted,
948 transmitted_list) {
949
950 if (key == chunk->subh.data_hdr->tsn) {
951 match = active;
952 goto out;
953 }
954 }
955
956 /* If not found, go search all the other transports. */
957 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
958 transports) {
959
960 if (transport == active)
961 continue;
962 list_for_each_entry(chunk, &transport->transmitted,
963 transmitted_list) {
964 if (key == chunk->subh.data_hdr->tsn) {
965 match = transport;
966 goto out;
967 }
968 }
969 }
970 out:
971 return match;
972 }
973
974 /* Is this the association we are looking for? */
975 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
976 struct net *net,
977 const union sctp_addr *laddr,
978 const union sctp_addr *paddr)
979 {
980 struct sctp_transport *transport;
981
982 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
983 (htons(asoc->peer.port) == paddr->v4.sin_port) &&
984 net_eq(sock_net(asoc->base.sk), net)) {
985 transport = sctp_assoc_lookup_paddr(asoc, paddr);
986 if (!transport)
987 goto out;
988
989 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
990 sctp_sk(asoc->base.sk)))
991 goto out;
992 }
993 transport = NULL;
994
995 out:
996 return transport;
997 }
998
999 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
1000 static void sctp_assoc_bh_rcv(struct work_struct *work)
1001 {
1002 struct sctp_association *asoc =
1003 container_of(work, struct sctp_association,
1004 base.inqueue.immediate);
1005 struct net *net = sock_net(asoc->base.sk);
1006 struct sctp_endpoint *ep;
1007 struct sctp_chunk *chunk;
1008 struct sctp_inq *inqueue;
1009 int state;
1010 sctp_subtype_t subtype;
1011 int error = 0;
1012
1013 /* The association should be held so we should be safe. */
1014 ep = asoc->ep;
1015
1016 inqueue = &asoc->base.inqueue;
1017 sctp_association_hold(asoc);
1018 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1019 state = asoc->state;
1020 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1021
1022 /* SCTP-AUTH, Section 6.3:
1023 * The receiver has a list of chunk types which it expects
1024 * to be received only after an AUTH-chunk. This list has
1025 * been sent to the peer during the association setup. It
1026 * MUST silently discard these chunks if they are not placed
1027 * after an AUTH chunk in the packet.
1028 */
1029 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1030 continue;
1031
1032 /* Remember where the last DATA chunk came from so we
1033 * know where to send the SACK.
1034 */
1035 if (sctp_chunk_is_data(chunk))
1036 asoc->peer.last_data_from = chunk->transport;
1037 else {
1038 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1039 asoc->stats.ictrlchunks++;
1040 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1041 asoc->stats.isacks++;
1042 }
1043
1044 if (chunk->transport)
1045 chunk->transport->last_time_heard = ktime_get();
1046
1047 /* Run through the state machine. */
1048 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1049 state, ep, asoc, chunk, GFP_ATOMIC);
1050
1051 /* Check to see if the association is freed in response to
1052 * the incoming chunk. If so, get out of the while loop.
1053 */
1054 if (asoc->base.dead)
1055 break;
1056
1057 /* If there is an error on chunk, discard this packet. */
1058 if (error && chunk)
1059 chunk->pdiscard = 1;
1060 }
1061 sctp_association_put(asoc);
1062 }
1063
1064 /* This routine moves an association from its old sk to a new sk. */
1065 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1066 {
1067 struct sctp_sock *newsp = sctp_sk(newsk);
1068 struct sock *oldsk = assoc->base.sk;
1069
1070 /* Delete the association from the old endpoint's list of
1071 * associations.
1072 */
1073 list_del_init(&assoc->asocs);
1074
1075 /* Decrement the backlog value for a TCP-style socket. */
1076 if (sctp_style(oldsk, TCP))
1077 oldsk->sk_ack_backlog--;
1078
1079 /* Release references to the old endpoint and the sock. */
1080 sctp_endpoint_put(assoc->ep);
1081 sock_put(assoc->base.sk);
1082
1083 /* Get a reference to the new endpoint. */
1084 assoc->ep = newsp->ep;
1085 sctp_endpoint_hold(assoc->ep);
1086
1087 /* Get a reference to the new sock. */
1088 assoc->base.sk = newsk;
1089 sock_hold(assoc->base.sk);
1090
1091 /* Add the association to the new endpoint's list of associations. */
1092 sctp_endpoint_add_asoc(newsp->ep, assoc);
1093 }
1094
1095 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1096 void sctp_assoc_update(struct sctp_association *asoc,
1097 struct sctp_association *new)
1098 {
1099 struct sctp_transport *trans;
1100 struct list_head *pos, *temp;
1101
1102 /* Copy in new parameters of peer. */
1103 asoc->c = new->c;
1104 asoc->peer.rwnd = new->peer.rwnd;
1105 asoc->peer.sack_needed = new->peer.sack_needed;
1106 asoc->peer.auth_capable = new->peer.auth_capable;
1107 asoc->peer.i = new->peer.i;
1108 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1109 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1110
1111 /* Remove any peer addresses not present in the new association. */
1112 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1113 trans = list_entry(pos, struct sctp_transport, transports);
1114 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1115 sctp_assoc_rm_peer(asoc, trans);
1116 continue;
1117 }
1118
1119 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1120 sctp_transport_reset(trans);
1121 }
1122
1123 /* If the case is A (association restart), use
1124 * initial_tsn as next_tsn. If the case is B, use
1125 * current next_tsn in case data sent to peer
1126 * has been discarded and needs retransmission.
1127 */
1128 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1129 asoc->next_tsn = new->next_tsn;
1130 asoc->ctsn_ack_point = new->ctsn_ack_point;
1131 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1132
1133 /* Reinitialize SSN for both local streams
1134 * and peer's streams.
1135 */
1136 sctp_ssnmap_clear(asoc->ssnmap);
1137
1138 /* Flush the ULP reassembly and ordered queue.
1139 * Any data there will now be stale and will
1140 * cause problems.
1141 */
1142 sctp_ulpq_flush(&asoc->ulpq);
1143
1144 /* reset the overall association error count so
1145 * that the restarted association doesn't get torn
1146 * down on the next retransmission timer.
1147 */
1148 asoc->overall_error_count = 0;
1149
1150 } else {
1151 /* Add any peer addresses from the new association. */
1152 list_for_each_entry(trans, &new->peer.transport_addr_list,
1153 transports) {
1154 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1155 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1156 GFP_ATOMIC, trans->state);
1157 }
1158
1159 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1160 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1161 if (!asoc->ssnmap) {
1162 /* Move the ssnmap. */
1163 asoc->ssnmap = new->ssnmap;
1164 new->ssnmap = NULL;
1165 }
1166
1167 if (!asoc->assoc_id) {
1168 /* get a new association id since we don't have one
1169 * yet.
1170 */
1171 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1172 }
1173 }
1174
1175 /* SCTP-AUTH: Save the peer parameters from the new associations
1176 * and also move the association shared keys over
1177 */
1178 kfree(asoc->peer.peer_random);
1179 asoc->peer.peer_random = new->peer.peer_random;
1180 new->peer.peer_random = NULL;
1181
1182 kfree(asoc->peer.peer_chunks);
1183 asoc->peer.peer_chunks = new->peer.peer_chunks;
1184 new->peer.peer_chunks = NULL;
1185
1186 kfree(asoc->peer.peer_hmacs);
1187 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1188 new->peer.peer_hmacs = NULL;
1189
1190 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1191 }
1192
1193 /* Update the retran path for sending a retransmitted packet.
1194 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1195 *
1196 * When there is outbound data to send and the primary path
1197 * becomes inactive (e.g., due to failures), or where the
1198 * SCTP user explicitly requests to send data to an
1199 * inactive destination transport address, before reporting
1200 * an error to its ULP, the SCTP endpoint should try to send
1201 * the data to an alternate active destination transport
1202 * address if one exists.
1203 *
1204 * When retransmitting data that timed out, if the endpoint
1205 * is multihomed, it should consider each source-destination
1206 * address pair in its retransmission selection policy.
1207 * When retransmitting timed-out data, the endpoint should
1208 * attempt to pick the most divergent source-destination
1209 * pair from the original source-destination pair to which
1210 * the packet was transmitted.
1211 *
1212 * Note: Rules for picking the most divergent source-destination
1213 * pair are an implementation decision and are not specified
1214 * within this document.
1215 *
1216 * Our basic strategy is to round-robin transports in priorities
1217 * according to sctp_trans_score() e.g., if no such
1218 * transport with state SCTP_ACTIVE exists, round-robin through
1219 * SCTP_UNKNOWN, etc. You get the picture.
1220 */
1221 static u8 sctp_trans_score(const struct sctp_transport *trans)
1222 {
1223 switch (trans->state) {
1224 case SCTP_ACTIVE:
1225 return 3; /* best case */
1226 case SCTP_UNKNOWN:
1227 return 2;
1228 case SCTP_PF:
1229 return 1;
1230 default: /* case SCTP_INACTIVE */
1231 return 0; /* worst case */
1232 }
1233 }
1234
1235 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1236 struct sctp_transport *trans2)
1237 {
1238 if (trans1->error_count > trans2->error_count) {
1239 return trans2;
1240 } else if (trans1->error_count == trans2->error_count &&
1241 ktime_after(trans2->last_time_heard,
1242 trans1->last_time_heard)) {
1243 return trans2;
1244 } else {
1245 return trans1;
1246 }
1247 }
1248
1249 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1250 struct sctp_transport *best)
1251 {
1252 u8 score_curr, score_best;
1253
1254 if (best == NULL || curr == best)
1255 return curr;
1256
1257 score_curr = sctp_trans_score(curr);
1258 score_best = sctp_trans_score(best);
1259
1260 /* First, try a score-based selection if both transport states
1261 * differ. If we're in a tie, lets try to make a more clever
1262 * decision here based on error counts and last time heard.
1263 */
1264 if (score_curr > score_best)
1265 return curr;
1266 else if (score_curr == score_best)
1267 return sctp_trans_elect_tie(best, curr);
1268 else
1269 return best;
1270 }
1271
1272 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1273 {
1274 struct sctp_transport *trans = asoc->peer.retran_path;
1275 struct sctp_transport *trans_next = NULL;
1276
1277 /* We're done as we only have the one and only path. */
1278 if (asoc->peer.transport_count == 1)
1279 return;
1280 /* If active_path and retran_path are the same and active,
1281 * then this is the only active path. Use it.
1282 */
1283 if (asoc->peer.active_path == asoc->peer.retran_path &&
1284 asoc->peer.active_path->state == SCTP_ACTIVE)
1285 return;
1286
1287 /* Iterate from retran_path's successor back to retran_path. */
1288 for (trans = list_next_entry(trans, transports); 1;
1289 trans = list_next_entry(trans, transports)) {
1290 /* Manually skip the head element. */
1291 if (&trans->transports == &asoc->peer.transport_addr_list)
1292 continue;
1293 if (trans->state == SCTP_UNCONFIRMED)
1294 continue;
1295 trans_next = sctp_trans_elect_best(trans, trans_next);
1296 /* Active is good enough for immediate return. */
1297 if (trans_next->state == SCTP_ACTIVE)
1298 break;
1299 /* We've reached the end, time to update path. */
1300 if (trans == asoc->peer.retran_path)
1301 break;
1302 }
1303
1304 asoc->peer.retran_path = trans_next;
1305
1306 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1307 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1308 }
1309
1310 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1311 {
1312 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1313 struct sctp_transport *trans_pf = NULL;
1314
1315 /* Look for the two most recently used active transports. */
1316 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1317 transports) {
1318 /* Skip uninteresting transports. */
1319 if (trans->state == SCTP_INACTIVE ||
1320 trans->state == SCTP_UNCONFIRMED)
1321 continue;
1322 /* Keep track of the best PF transport from our
1323 * list in case we don't find an active one.
1324 */
1325 if (trans->state == SCTP_PF) {
1326 trans_pf = sctp_trans_elect_best(trans, trans_pf);
1327 continue;
1328 }
1329 /* For active transports, pick the most recent ones. */
1330 if (trans_pri == NULL ||
1331 ktime_after(trans->last_time_heard,
1332 trans_pri->last_time_heard)) {
1333 trans_sec = trans_pri;
1334 trans_pri = trans;
1335 } else if (trans_sec == NULL ||
1336 ktime_after(trans->last_time_heard,
1337 trans_sec->last_time_heard)) {
1338 trans_sec = trans;
1339 }
1340 }
1341
1342 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1343 *
1344 * By default, an endpoint should always transmit to the primary
1345 * path, unless the SCTP user explicitly specifies the
1346 * destination transport address (and possibly source transport
1347 * address) to use. [If the primary is active but not most recent,
1348 * bump the most recently used transport.]
1349 */
1350 if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1351 asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1352 asoc->peer.primary_path != trans_pri) {
1353 trans_sec = trans_pri;
1354 trans_pri = asoc->peer.primary_path;
1355 }
1356
1357 /* We did not find anything useful for a possible retransmission
1358 * path; either primary path that we found is the the same as
1359 * the current one, or we didn't generally find an active one.
1360 */
1361 if (trans_sec == NULL)
1362 trans_sec = trans_pri;
1363
1364 /* If we failed to find a usable transport, just camp on the
1365 * active or pick a PF iff it's the better choice.
1366 */
1367 if (trans_pri == NULL) {
1368 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1369 trans_sec = trans_pri;
1370 }
1371
1372 /* Set the active and retran transports. */
1373 asoc->peer.active_path = trans_pri;
1374 asoc->peer.retran_path = trans_sec;
1375 }
1376
1377 struct sctp_transport *
1378 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1379 struct sctp_transport *last_sent_to)
1380 {
1381 /* If this is the first time packet is sent, use the active path,
1382 * else use the retran path. If the last packet was sent over the
1383 * retran path, update the retran path and use it.
1384 */
1385 if (last_sent_to == NULL) {
1386 return asoc->peer.active_path;
1387 } else {
1388 if (last_sent_to == asoc->peer.retran_path)
1389 sctp_assoc_update_retran_path(asoc);
1390
1391 return asoc->peer.retran_path;
1392 }
1393 }
1394
1395 /* Update the association's pmtu and frag_point by going through all the
1396 * transports. This routine is called when a transport's PMTU has changed.
1397 */
1398 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1399 {
1400 struct sctp_transport *t;
1401 __u32 pmtu = 0;
1402
1403 if (!asoc)
1404 return;
1405
1406 /* Get the lowest pmtu of all the transports. */
1407 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1408 transports) {
1409 if (t->pmtu_pending && t->dst) {
1410 sctp_transport_update_pmtu(sk, t,
1411 WORD_TRUNC(dst_mtu(t->dst)));
1412 t->pmtu_pending = 0;
1413 }
1414 if (!pmtu || (t->pathmtu < pmtu))
1415 pmtu = t->pathmtu;
1416 }
1417
1418 if (pmtu) {
1419 asoc->pathmtu = pmtu;
1420 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1421 }
1422
1423 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1424 asoc->pathmtu, asoc->frag_point);
1425 }
1426
1427 /* Should we send a SACK to update our peer? */
1428 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1429 {
1430 struct net *net = sock_net(asoc->base.sk);
1431 switch (asoc->state) {
1432 case SCTP_STATE_ESTABLISHED:
1433 case SCTP_STATE_SHUTDOWN_PENDING:
1434 case SCTP_STATE_SHUTDOWN_RECEIVED:
1435 case SCTP_STATE_SHUTDOWN_SENT:
1436 if ((asoc->rwnd > asoc->a_rwnd) &&
1437 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1438 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1439 asoc->pathmtu)))
1440 return true;
1441 break;
1442 default:
1443 break;
1444 }
1445 return false;
1446 }
1447
1448 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1449 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1450 {
1451 struct sctp_chunk *sack;
1452 struct timer_list *timer;
1453
1454 if (asoc->rwnd_over) {
1455 if (asoc->rwnd_over >= len) {
1456 asoc->rwnd_over -= len;
1457 } else {
1458 asoc->rwnd += (len - asoc->rwnd_over);
1459 asoc->rwnd_over = 0;
1460 }
1461 } else {
1462 asoc->rwnd += len;
1463 }
1464
1465 /* If we had window pressure, start recovering it
1466 * once our rwnd had reached the accumulated pressure
1467 * threshold. The idea is to recover slowly, but up
1468 * to the initial advertised window.
1469 */
1470 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1471 int change = min(asoc->pathmtu, asoc->rwnd_press);
1472 asoc->rwnd += change;
1473 asoc->rwnd_press -= change;
1474 }
1475
1476 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1477 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1478 asoc->a_rwnd);
1479
1480 /* Send a window update SACK if the rwnd has increased by at least the
1481 * minimum of the association's PMTU and half of the receive buffer.
1482 * The algorithm used is similar to the one described in
1483 * Section 4.2.3.3 of RFC 1122.
1484 */
1485 if (sctp_peer_needs_update(asoc)) {
1486 asoc->a_rwnd = asoc->rwnd;
1487
1488 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1489 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1490 asoc->a_rwnd);
1491
1492 sack = sctp_make_sack(asoc);
1493 if (!sack)
1494 return;
1495
1496 asoc->peer.sack_needed = 0;
1497
1498 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1499
1500 /* Stop the SACK timer. */
1501 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1502 if (del_timer(timer))
1503 sctp_association_put(asoc);
1504 }
1505 }
1506
1507 /* Decrease asoc's rwnd by len. */
1508 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1509 {
1510 int rx_count;
1511 int over = 0;
1512
1513 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1514 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1515 "asoc->rwnd_over:%u!\n", __func__, asoc,
1516 asoc->rwnd, asoc->rwnd_over);
1517
1518 if (asoc->ep->rcvbuf_policy)
1519 rx_count = atomic_read(&asoc->rmem_alloc);
1520 else
1521 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1522
1523 /* If we've reached or overflowed our receive buffer, announce
1524 * a 0 rwnd if rwnd would still be positive. Store the
1525 * the potential pressure overflow so that the window can be restored
1526 * back to original value.
1527 */
1528 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1529 over = 1;
1530
1531 if (asoc->rwnd >= len) {
1532 asoc->rwnd -= len;
1533 if (over) {
1534 asoc->rwnd_press += asoc->rwnd;
1535 asoc->rwnd = 0;
1536 }
1537 } else {
1538 asoc->rwnd_over = len - asoc->rwnd;
1539 asoc->rwnd = 0;
1540 }
1541
1542 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1543 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1544 asoc->rwnd_press);
1545 }
1546
1547 /* Build the bind address list for the association based on info from the
1548 * local endpoint and the remote peer.
1549 */
1550 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1551 sctp_scope_t scope, gfp_t gfp)
1552 {
1553 int flags;
1554
1555 /* Use scoping rules to determine the subset of addresses from
1556 * the endpoint.
1557 */
1558 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1559 if (asoc->peer.ipv4_address)
1560 flags |= SCTP_ADDR4_PEERSUPP;
1561 if (asoc->peer.ipv6_address)
1562 flags |= SCTP_ADDR6_PEERSUPP;
1563
1564 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1565 &asoc->base.bind_addr,
1566 &asoc->ep->base.bind_addr,
1567 scope, gfp, flags);
1568 }
1569
1570 /* Build the association's bind address list from the cookie. */
1571 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1572 struct sctp_cookie *cookie,
1573 gfp_t gfp)
1574 {
1575 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1576 int var_size3 = cookie->raw_addr_list_len;
1577 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1578
1579 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1580 asoc->ep->base.bind_addr.port, gfp);
1581 }
1582
1583 /* Lookup laddr in the bind address list of an association. */
1584 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1585 const union sctp_addr *laddr)
1586 {
1587 int found = 0;
1588
1589 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1590 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1591 sctp_sk(asoc->base.sk)))
1592 found = 1;
1593
1594 return found;
1595 }
1596
1597 /* Set an association id for a given association */
1598 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1599 {
1600 bool preload = gfpflags_allow_blocking(gfp);
1601 int ret;
1602
1603 /* If the id is already assigned, keep it. */
1604 if (asoc->assoc_id)
1605 return 0;
1606
1607 if (preload)
1608 idr_preload(gfp);
1609 spin_lock_bh(&sctp_assocs_id_lock);
1610 /* 0 is not a valid assoc_id, must be >= 1 */
1611 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1612 spin_unlock_bh(&sctp_assocs_id_lock);
1613 if (preload)
1614 idr_preload_end();
1615 if (ret < 0)
1616 return ret;
1617
1618 asoc->assoc_id = (sctp_assoc_t)ret;
1619 return 0;
1620 }
1621
1622 /* Free the ASCONF queue */
1623 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1624 {
1625 struct sctp_chunk *asconf;
1626 struct sctp_chunk *tmp;
1627
1628 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1629 list_del_init(&asconf->list);
1630 sctp_chunk_free(asconf);
1631 }
1632 }
1633
1634 /* Free asconf_ack cache */
1635 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1636 {
1637 struct sctp_chunk *ack;
1638 struct sctp_chunk *tmp;
1639
1640 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1641 transmitted_list) {
1642 list_del_init(&ack->transmitted_list);
1643 sctp_chunk_free(ack);
1644 }
1645 }
1646
1647 /* Clean up the ASCONF_ACK queue */
1648 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1649 {
1650 struct sctp_chunk *ack;
1651 struct sctp_chunk *tmp;
1652
1653 /* We can remove all the entries from the queue up to
1654 * the "Peer-Sequence-Number".
1655 */
1656 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1657 transmitted_list) {
1658 if (ack->subh.addip_hdr->serial ==
1659 htonl(asoc->peer.addip_serial))
1660 break;
1661
1662 list_del_init(&ack->transmitted_list);
1663 sctp_chunk_free(ack);
1664 }
1665 }
1666
1667 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1668 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1669 const struct sctp_association *asoc,
1670 __be32 serial)
1671 {
1672 struct sctp_chunk *ack;
1673
1674 /* Walk through the list of cached ASCONF-ACKs and find the
1675 * ack chunk whose serial number matches that of the request.
1676 */
1677 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1678 if (sctp_chunk_pending(ack))
1679 continue;
1680 if (ack->subh.addip_hdr->serial == serial) {
1681 sctp_chunk_hold(ack);
1682 return ack;
1683 }
1684 }
1685
1686 return NULL;
1687 }
1688
1689 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1690 {
1691 /* Free any cached ASCONF_ACK chunk. */
1692 sctp_assoc_free_asconf_acks(asoc);
1693
1694 /* Free the ASCONF queue. */
1695 sctp_assoc_free_asconf_queue(asoc);
1696
1697 /* Free any cached ASCONF chunk. */
1698 if (asoc->addip_last_asconf)
1699 sctp_chunk_free(asoc->addip_last_asconf);
1700 }
This page took 0.068538 seconds and 6 git commands to generate.