Merge branch 'for-linus-update' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / net / sctp / associola.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP association.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Jon Grimm <jgrimm@us.ibm.com>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Ryan Layer <rmlayer@us.ibm.com>
41 * Kevin Gao <kevin.gao@intel.com>
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
50
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
56
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62
63 /* 1st Level Abstractions. */
64
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
67 const struct sctp_endpoint *ep,
68 const struct sock *sk,
69 sctp_scope_t scope,
70 gfp_t gfp)
71 {
72 struct net *net = sock_net(sk);
73 struct sctp_sock *sp;
74 int i;
75 sctp_paramhdr_t *p;
76 int err;
77
78 /* Retrieve the SCTP per socket area. */
79 sp = sctp_sk((struct sock *)sk);
80
81 /* Discarding const is appropriate here. */
82 asoc->ep = (struct sctp_endpoint *)ep;
83 asoc->base.sk = (struct sock *)sk;
84
85 sctp_endpoint_hold(asoc->ep);
86 sock_hold(asoc->base.sk);
87
88 /* Initialize the common base substructure. */
89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90
91 /* Initialize the object handling fields. */
92 atomic_set(&asoc->base.refcnt, 1);
93
94 /* Initialize the bind addr area. */
95 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
96
97 asoc->state = SCTP_STATE_CLOSED;
98 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
99 asoc->user_frag = sp->user_frag;
100
101 /* Set the association max_retrans and RTO values from the
102 * socket values.
103 */
104 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
105 asoc->pf_retrans = net->sctp.pf_retrans;
106
107 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
108 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
109 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
110
111 /* Initialize the association's heartbeat interval based on the
112 * sock configured value.
113 */
114 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
115
116 /* Initialize path max retrans value. */
117 asoc->pathmaxrxt = sp->pathmaxrxt;
118
119 /* Initialize default path MTU. */
120 asoc->pathmtu = sp->pathmtu;
121
122 /* Set association default SACK delay */
123 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
124 asoc->sackfreq = sp->sackfreq;
125
126 /* Set the association default flags controlling
127 * Heartbeat, SACK delay, and Path MTU Discovery.
128 */
129 asoc->param_flags = sp->param_flags;
130
131 /* Initialize the maximum number of new data packets that can be sent
132 * in a burst.
133 */
134 asoc->max_burst = sp->max_burst;
135
136 /* initialize association timers */
137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
140
141 /* sctpimpguide Section 2.12.2
142 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
143 * recommended value of 5 times 'RTO.Max'.
144 */
145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
146 = 5 * asoc->rto_max;
147
148 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
149 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
150
151 /* Initializes the timers */
152 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
153 setup_timer(&asoc->timers[i], sctp_timer_events[i],
154 (unsigned long)asoc);
155
156 /* Pull default initialization values from the sock options.
157 * Note: This assumes that the values have already been
158 * validated in the sock.
159 */
160 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
161 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
162 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
163
164 asoc->max_init_timeo =
165 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
166
167 /* Set the local window size for receive.
168 * This is also the rcvbuf space per association.
169 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
170 * 1500 bytes in one SCTP packet.
171 */
172 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
173 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
174 else
175 asoc->rwnd = sk->sk_rcvbuf/2;
176
177 asoc->a_rwnd = asoc->rwnd;
178
179 /* Use my own max window until I learn something better. */
180 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
181
182 /* Initialize the receive memory counter */
183 atomic_set(&asoc->rmem_alloc, 0);
184
185 init_waitqueue_head(&asoc->wait);
186
187 asoc->c.my_vtag = sctp_generate_tag(ep);
188 asoc->c.my_port = ep->base.bind_addr.port;
189
190 asoc->c.initial_tsn = sctp_generate_tsn(ep);
191
192 asoc->next_tsn = asoc->c.initial_tsn;
193
194 asoc->ctsn_ack_point = asoc->next_tsn - 1;
195 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
196 asoc->highest_sacked = asoc->ctsn_ack_point;
197 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
198
199 /* ADDIP Section 4.1 Asconf Chunk Procedures
200 *
201 * When an endpoint has an ASCONF signaled change to be sent to the
202 * remote endpoint it should do the following:
203 * ...
204 * A2) a serial number should be assigned to the chunk. The serial
205 * number SHOULD be a monotonically increasing number. The serial
206 * numbers SHOULD be initialized at the start of the
207 * association to the same value as the initial TSN.
208 */
209 asoc->addip_serial = asoc->c.initial_tsn;
210
211 INIT_LIST_HEAD(&asoc->addip_chunk_list);
212 INIT_LIST_HEAD(&asoc->asconf_ack_list);
213
214 /* Make an empty list of remote transport addresses. */
215 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
216
217 /* RFC 2960 5.1 Normal Establishment of an Association
218 *
219 * After the reception of the first data chunk in an
220 * association the endpoint must immediately respond with a
221 * sack to acknowledge the data chunk. Subsequent
222 * acknowledgements should be done as described in Section
223 * 6.2.
224 *
225 * [We implement this by telling a new association that it
226 * already received one packet.]
227 */
228 asoc->peer.sack_needed = 1;
229 asoc->peer.sack_generation = 1;
230
231 /* Assume that the peer will tell us if he recognizes ASCONF
232 * as part of INIT exchange.
233 * The sctp_addip_noauth option is there for backward compatibility
234 * and will revert old behavior.
235 */
236 if (net->sctp.addip_noauth)
237 asoc->peer.asconf_capable = 1;
238
239 /* Create an input queue. */
240 sctp_inq_init(&asoc->base.inqueue);
241 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
242
243 /* Create an output queue. */
244 sctp_outq_init(asoc, &asoc->outqueue);
245
246 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
247 goto fail_init;
248
249 /* Assume that peer would support both address types unless we are
250 * told otherwise.
251 */
252 asoc->peer.ipv4_address = 1;
253 if (asoc->base.sk->sk_family == PF_INET6)
254 asoc->peer.ipv6_address = 1;
255 INIT_LIST_HEAD(&asoc->asocs);
256
257 asoc->default_stream = sp->default_stream;
258 asoc->default_ppid = sp->default_ppid;
259 asoc->default_flags = sp->default_flags;
260 asoc->default_context = sp->default_context;
261 asoc->default_timetolive = sp->default_timetolive;
262 asoc->default_rcv_context = sp->default_rcv_context;
263
264 /* AUTH related initializations */
265 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
266 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
267 if (err)
268 goto fail_init;
269
270 asoc->active_key_id = ep->active_key_id;
271
272 /* Save the hmacs and chunks list into this association */
273 if (ep->auth_hmacs_list)
274 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
275 ntohs(ep->auth_hmacs_list->param_hdr.length));
276 if (ep->auth_chunk_list)
277 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
278 ntohs(ep->auth_chunk_list->param_hdr.length));
279
280 /* Get the AUTH random number for this association */
281 p = (sctp_paramhdr_t *)asoc->c.auth_random;
282 p->type = SCTP_PARAM_RANDOM;
283 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
284 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
285
286 return asoc;
287
288 fail_init:
289 sock_put(asoc->base.sk);
290 sctp_endpoint_put(asoc->ep);
291 return NULL;
292 }
293
294 /* Allocate and initialize a new association */
295 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
296 const struct sock *sk,
297 sctp_scope_t scope,
298 gfp_t gfp)
299 {
300 struct sctp_association *asoc;
301
302 asoc = kzalloc(sizeof(*asoc), gfp);
303 if (!asoc)
304 goto fail;
305
306 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
307 goto fail_init;
308
309 SCTP_DBG_OBJCNT_INC(assoc);
310
311 pr_debug("Created asoc %p\n", asoc);
312
313 return asoc;
314
315 fail_init:
316 kfree(asoc);
317 fail:
318 return NULL;
319 }
320
321 /* Free this association if possible. There may still be users, so
322 * the actual deallocation may be delayed.
323 */
324 void sctp_association_free(struct sctp_association *asoc)
325 {
326 struct sock *sk = asoc->base.sk;
327 struct sctp_transport *transport;
328 struct list_head *pos, *temp;
329 int i;
330
331 /* Only real associations count against the endpoint, so
332 * don't bother for if this is a temporary association.
333 */
334 if (!list_empty(&asoc->asocs)) {
335 list_del(&asoc->asocs);
336
337 /* Decrement the backlog value for a TCP-style listening
338 * socket.
339 */
340 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
341 sk->sk_ack_backlog--;
342 }
343
344 /* Mark as dead, so other users can know this structure is
345 * going away.
346 */
347 asoc->base.dead = true;
348
349 /* Dispose of any data lying around in the outqueue. */
350 sctp_outq_free(&asoc->outqueue);
351
352 /* Dispose of any pending messages for the upper layer. */
353 sctp_ulpq_free(&asoc->ulpq);
354
355 /* Dispose of any pending chunks on the inqueue. */
356 sctp_inq_free(&asoc->base.inqueue);
357
358 sctp_tsnmap_free(&asoc->peer.tsn_map);
359
360 /* Free ssnmap storage. */
361 sctp_ssnmap_free(asoc->ssnmap);
362
363 /* Clean up the bound address list. */
364 sctp_bind_addr_free(&asoc->base.bind_addr);
365
366 /* Do we need to go through all of our timers and
367 * delete them? To be safe we will try to delete all, but we
368 * should be able to go through and make a guess based
369 * on our state.
370 */
371 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
372 if (del_timer(&asoc->timers[i]))
373 sctp_association_put(asoc);
374 }
375
376 /* Free peer's cached cookie. */
377 kfree(asoc->peer.cookie);
378 kfree(asoc->peer.peer_random);
379 kfree(asoc->peer.peer_chunks);
380 kfree(asoc->peer.peer_hmacs);
381
382 /* Release the transport structures. */
383 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
384 transport = list_entry(pos, struct sctp_transport, transports);
385 list_del_rcu(pos);
386 sctp_transport_free(transport);
387 }
388
389 asoc->peer.transport_count = 0;
390
391 sctp_asconf_queue_teardown(asoc);
392
393 /* Free pending address space being deleted */
394 if (asoc->asconf_addr_del_pending != NULL)
395 kfree(asoc->asconf_addr_del_pending);
396
397 /* AUTH - Free the endpoint shared keys */
398 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
399
400 /* AUTH - Free the association shared key */
401 sctp_auth_key_put(asoc->asoc_shared_key);
402
403 sctp_association_put(asoc);
404 }
405
406 /* Cleanup and free up an association. */
407 static void sctp_association_destroy(struct sctp_association *asoc)
408 {
409 if (unlikely(!asoc->base.dead)) {
410 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
411 return;
412 }
413
414 sctp_endpoint_put(asoc->ep);
415 sock_put(asoc->base.sk);
416
417 if (asoc->assoc_id != 0) {
418 spin_lock_bh(&sctp_assocs_id_lock);
419 idr_remove(&sctp_assocs_id, asoc->assoc_id);
420 spin_unlock_bh(&sctp_assocs_id_lock);
421 }
422
423 WARN_ON(atomic_read(&asoc->rmem_alloc));
424
425 kfree(asoc);
426 SCTP_DBG_OBJCNT_DEC(assoc);
427 }
428
429 /* Change the primary destination address for the peer. */
430 void sctp_assoc_set_primary(struct sctp_association *asoc,
431 struct sctp_transport *transport)
432 {
433 int changeover = 0;
434
435 /* it's a changeover only if we already have a primary path
436 * that we are changing
437 */
438 if (asoc->peer.primary_path != NULL &&
439 asoc->peer.primary_path != transport)
440 changeover = 1 ;
441
442 asoc->peer.primary_path = transport;
443
444 /* Set a default msg_name for events. */
445 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
446 sizeof(union sctp_addr));
447
448 /* If the primary path is changing, assume that the
449 * user wants to use this new path.
450 */
451 if ((transport->state == SCTP_ACTIVE) ||
452 (transport->state == SCTP_UNKNOWN))
453 asoc->peer.active_path = transport;
454
455 /*
456 * SFR-CACC algorithm:
457 * Upon the receipt of a request to change the primary
458 * destination address, on the data structure for the new
459 * primary destination, the sender MUST do the following:
460 *
461 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
462 * to this destination address earlier. The sender MUST set
463 * CYCLING_CHANGEOVER to indicate that this switch is a
464 * double switch to the same destination address.
465 *
466 * Really, only bother is we have data queued or outstanding on
467 * the association.
468 */
469 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
470 return;
471
472 if (transport->cacc.changeover_active)
473 transport->cacc.cycling_changeover = changeover;
474
475 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
476 * a changeover has occurred.
477 */
478 transport->cacc.changeover_active = changeover;
479
480 /* 3) The sender MUST store the next TSN to be sent in
481 * next_tsn_at_change.
482 */
483 transport->cacc.next_tsn_at_change = asoc->next_tsn;
484 }
485
486 /* Remove a transport from an association. */
487 void sctp_assoc_rm_peer(struct sctp_association *asoc,
488 struct sctp_transport *peer)
489 {
490 struct list_head *pos;
491 struct sctp_transport *transport;
492
493 pr_debug("%s: association:%p addr:%pISpc\n",
494 __func__, asoc, &peer->ipaddr.sa);
495
496 /* If we are to remove the current retran_path, update it
497 * to the next peer before removing this peer from the list.
498 */
499 if (asoc->peer.retran_path == peer)
500 sctp_assoc_update_retran_path(asoc);
501
502 /* Remove this peer from the list. */
503 list_del_rcu(&peer->transports);
504
505 /* Get the first transport of asoc. */
506 pos = asoc->peer.transport_addr_list.next;
507 transport = list_entry(pos, struct sctp_transport, transports);
508
509 /* Update any entries that match the peer to be deleted. */
510 if (asoc->peer.primary_path == peer)
511 sctp_assoc_set_primary(asoc, transport);
512 if (asoc->peer.active_path == peer)
513 asoc->peer.active_path = transport;
514 if (asoc->peer.retran_path == peer)
515 asoc->peer.retran_path = transport;
516 if (asoc->peer.last_data_from == peer)
517 asoc->peer.last_data_from = transport;
518
519 /* If we remove the transport an INIT was last sent to, set it to
520 * NULL. Combined with the update of the retran path above, this
521 * will cause the next INIT to be sent to the next available
522 * transport, maintaining the cycle.
523 */
524 if (asoc->init_last_sent_to == peer)
525 asoc->init_last_sent_to = NULL;
526
527 /* If we remove the transport an SHUTDOWN was last sent to, set it
528 * to NULL. Combined with the update of the retran path above, this
529 * will cause the next SHUTDOWN to be sent to the next available
530 * transport, maintaining the cycle.
531 */
532 if (asoc->shutdown_last_sent_to == peer)
533 asoc->shutdown_last_sent_to = NULL;
534
535 /* If we remove the transport an ASCONF was last sent to, set it to
536 * NULL.
537 */
538 if (asoc->addip_last_asconf &&
539 asoc->addip_last_asconf->transport == peer)
540 asoc->addip_last_asconf->transport = NULL;
541
542 /* If we have something on the transmitted list, we have to
543 * save it off. The best place is the active path.
544 */
545 if (!list_empty(&peer->transmitted)) {
546 struct sctp_transport *active = asoc->peer.active_path;
547 struct sctp_chunk *ch;
548
549 /* Reset the transport of each chunk on this list */
550 list_for_each_entry(ch, &peer->transmitted,
551 transmitted_list) {
552 ch->transport = NULL;
553 ch->rtt_in_progress = 0;
554 }
555
556 list_splice_tail_init(&peer->transmitted,
557 &active->transmitted);
558
559 /* Start a T3 timer here in case it wasn't running so
560 * that these migrated packets have a chance to get
561 * retransmitted.
562 */
563 if (!timer_pending(&active->T3_rtx_timer))
564 if (!mod_timer(&active->T3_rtx_timer,
565 jiffies + active->rto))
566 sctp_transport_hold(active);
567 }
568
569 asoc->peer.transport_count--;
570
571 sctp_transport_free(peer);
572 }
573
574 /* Add a transport address to an association. */
575 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
576 const union sctp_addr *addr,
577 const gfp_t gfp,
578 const int peer_state)
579 {
580 struct net *net = sock_net(asoc->base.sk);
581 struct sctp_transport *peer;
582 struct sctp_sock *sp;
583 unsigned short port;
584
585 sp = sctp_sk(asoc->base.sk);
586
587 /* AF_INET and AF_INET6 share common port field. */
588 port = ntohs(addr->v4.sin_port);
589
590 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
591 asoc, &addr->sa, peer_state);
592
593 /* Set the port if it has not been set yet. */
594 if (0 == asoc->peer.port)
595 asoc->peer.port = port;
596
597 /* Check to see if this is a duplicate. */
598 peer = sctp_assoc_lookup_paddr(asoc, addr);
599 if (peer) {
600 /* An UNKNOWN state is only set on transports added by
601 * user in sctp_connectx() call. Such transports should be
602 * considered CONFIRMED per RFC 4960, Section 5.4.
603 */
604 if (peer->state == SCTP_UNKNOWN) {
605 peer->state = SCTP_ACTIVE;
606 }
607 return peer;
608 }
609
610 peer = sctp_transport_new(net, addr, gfp);
611 if (!peer)
612 return NULL;
613
614 sctp_transport_set_owner(peer, asoc);
615
616 /* Initialize the peer's heartbeat interval based on the
617 * association configured value.
618 */
619 peer->hbinterval = asoc->hbinterval;
620
621 /* Set the path max_retrans. */
622 peer->pathmaxrxt = asoc->pathmaxrxt;
623
624 /* And the partial failure retrans threshold */
625 peer->pf_retrans = asoc->pf_retrans;
626
627 /* Initialize the peer's SACK delay timeout based on the
628 * association configured value.
629 */
630 peer->sackdelay = asoc->sackdelay;
631 peer->sackfreq = asoc->sackfreq;
632
633 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
634 * based on association setting.
635 */
636 peer->param_flags = asoc->param_flags;
637
638 sctp_transport_route(peer, NULL, sp);
639
640 /* Initialize the pmtu of the transport. */
641 if (peer->param_flags & SPP_PMTUD_DISABLE) {
642 if (asoc->pathmtu)
643 peer->pathmtu = asoc->pathmtu;
644 else
645 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
646 }
647
648 /* If this is the first transport addr on this association,
649 * initialize the association PMTU to the peer's PMTU.
650 * If not and the current association PMTU is higher than the new
651 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
652 */
653 if (asoc->pathmtu)
654 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
655 else
656 asoc->pathmtu = peer->pathmtu;
657
658 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
659 asoc->pathmtu);
660
661 peer->pmtu_pending = 0;
662
663 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
664
665 /* The asoc->peer.port might not be meaningful yet, but
666 * initialize the packet structure anyway.
667 */
668 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
669 asoc->peer.port);
670
671 /* 7.2.1 Slow-Start
672 *
673 * o The initial cwnd before DATA transmission or after a sufficiently
674 * long idle period MUST be set to
675 * min(4*MTU, max(2*MTU, 4380 bytes))
676 *
677 * o The initial value of ssthresh MAY be arbitrarily high
678 * (for example, implementations MAY use the size of the
679 * receiver advertised window).
680 */
681 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
682
683 /* At this point, we may not have the receiver's advertised window,
684 * so initialize ssthresh to the default value and it will be set
685 * later when we process the INIT.
686 */
687 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
688
689 peer->partial_bytes_acked = 0;
690 peer->flight_size = 0;
691 peer->burst_limited = 0;
692
693 /* Set the transport's RTO.initial value */
694 peer->rto = asoc->rto_initial;
695 sctp_max_rto(asoc, peer);
696
697 /* Set the peer's active state. */
698 peer->state = peer_state;
699
700 /* Attach the remote transport to our asoc. */
701 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
702 asoc->peer.transport_count++;
703
704 /* If we do not yet have a primary path, set one. */
705 if (!asoc->peer.primary_path) {
706 sctp_assoc_set_primary(asoc, peer);
707 asoc->peer.retran_path = peer;
708 }
709
710 if (asoc->peer.active_path == asoc->peer.retran_path &&
711 peer->state != SCTP_UNCONFIRMED) {
712 asoc->peer.retran_path = peer;
713 }
714
715 return peer;
716 }
717
718 /* Delete a transport address from an association. */
719 void sctp_assoc_del_peer(struct sctp_association *asoc,
720 const union sctp_addr *addr)
721 {
722 struct list_head *pos;
723 struct list_head *temp;
724 struct sctp_transport *transport;
725
726 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
727 transport = list_entry(pos, struct sctp_transport, transports);
728 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
729 /* Do book keeping for removing the peer and free it. */
730 sctp_assoc_rm_peer(asoc, transport);
731 break;
732 }
733 }
734 }
735
736 /* Lookup a transport by address. */
737 struct sctp_transport *sctp_assoc_lookup_paddr(
738 const struct sctp_association *asoc,
739 const union sctp_addr *address)
740 {
741 struct sctp_transport *t;
742
743 /* Cycle through all transports searching for a peer address. */
744
745 list_for_each_entry(t, &asoc->peer.transport_addr_list,
746 transports) {
747 if (sctp_cmp_addr_exact(address, &t->ipaddr))
748 return t;
749 }
750
751 return NULL;
752 }
753
754 /* Remove all transports except a give one */
755 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
756 struct sctp_transport *primary)
757 {
758 struct sctp_transport *temp;
759 struct sctp_transport *t;
760
761 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
762 transports) {
763 /* if the current transport is not the primary one, delete it */
764 if (t != primary)
765 sctp_assoc_rm_peer(asoc, t);
766 }
767 }
768
769 /* Engage in transport control operations.
770 * Mark the transport up or down and send a notification to the user.
771 * Select and update the new active and retran paths.
772 */
773 void sctp_assoc_control_transport(struct sctp_association *asoc,
774 struct sctp_transport *transport,
775 sctp_transport_cmd_t command,
776 sctp_sn_error_t error)
777 {
778 struct sctp_ulpevent *event;
779 struct sockaddr_storage addr;
780 int spc_state = 0;
781 bool ulp_notify = true;
782
783 /* Record the transition on the transport. */
784 switch (command) {
785 case SCTP_TRANSPORT_UP:
786 /* If we are moving from UNCONFIRMED state due
787 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
788 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
789 */
790 if (SCTP_UNCONFIRMED == transport->state &&
791 SCTP_HEARTBEAT_SUCCESS == error)
792 spc_state = SCTP_ADDR_CONFIRMED;
793 else
794 spc_state = SCTP_ADDR_AVAILABLE;
795 /* Don't inform ULP about transition from PF to
796 * active state and set cwnd to 1 MTU, see SCTP
797 * Quick failover draft section 5.1, point 5
798 */
799 if (transport->state == SCTP_PF) {
800 ulp_notify = false;
801 transport->cwnd = asoc->pathmtu;
802 }
803 transport->state = SCTP_ACTIVE;
804 break;
805
806 case SCTP_TRANSPORT_DOWN:
807 /* If the transport was never confirmed, do not transition it
808 * to inactive state. Also, release the cached route since
809 * there may be a better route next time.
810 */
811 if (transport->state != SCTP_UNCONFIRMED)
812 transport->state = SCTP_INACTIVE;
813 else {
814 dst_release(transport->dst);
815 transport->dst = NULL;
816 ulp_notify = false;
817 }
818
819 spc_state = SCTP_ADDR_UNREACHABLE;
820 break;
821
822 case SCTP_TRANSPORT_PF:
823 transport->state = SCTP_PF;
824 ulp_notify = false;
825 break;
826
827 default:
828 return;
829 }
830
831 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
832 * to the user.
833 */
834 if (ulp_notify) {
835 memset(&addr, 0, sizeof(struct sockaddr_storage));
836 memcpy(&addr, &transport->ipaddr,
837 transport->af_specific->sockaddr_len);
838
839 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
840 0, spc_state, error, GFP_ATOMIC);
841 if (event)
842 sctp_ulpq_tail_event(&asoc->ulpq, event);
843 }
844
845 /* Select new active and retran paths. */
846 sctp_select_active_and_retran_path(asoc);
847 }
848
849 /* Hold a reference to an association. */
850 void sctp_association_hold(struct sctp_association *asoc)
851 {
852 atomic_inc(&asoc->base.refcnt);
853 }
854
855 /* Release a reference to an association and cleanup
856 * if there are no more references.
857 */
858 void sctp_association_put(struct sctp_association *asoc)
859 {
860 if (atomic_dec_and_test(&asoc->base.refcnt))
861 sctp_association_destroy(asoc);
862 }
863
864 /* Allocate the next TSN, Transmission Sequence Number, for the given
865 * association.
866 */
867 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
868 {
869 /* From Section 1.6 Serial Number Arithmetic:
870 * Transmission Sequence Numbers wrap around when they reach
871 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
872 * after transmitting TSN = 2*32 - 1 is TSN = 0.
873 */
874 __u32 retval = asoc->next_tsn;
875 asoc->next_tsn++;
876 asoc->unack_data++;
877
878 return retval;
879 }
880
881 /* Compare two addresses to see if they match. Wildcard addresses
882 * only match themselves.
883 */
884 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
885 const union sctp_addr *ss2)
886 {
887 struct sctp_af *af;
888
889 af = sctp_get_af_specific(ss1->sa.sa_family);
890 if (unlikely(!af))
891 return 0;
892
893 return af->cmp_addr(ss1, ss2);
894 }
895
896 /* Return an ecne chunk to get prepended to a packet.
897 * Note: We are sly and return a shared, prealloced chunk. FIXME:
898 * No we don't, but we could/should.
899 */
900 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
901 {
902 if (!asoc->need_ecne)
903 return NULL;
904
905 /* Send ECNE if needed.
906 * Not being able to allocate a chunk here is not deadly.
907 */
908 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
909 }
910
911 /*
912 * Find which transport this TSN was sent on.
913 */
914 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
915 __u32 tsn)
916 {
917 struct sctp_transport *active;
918 struct sctp_transport *match;
919 struct sctp_transport *transport;
920 struct sctp_chunk *chunk;
921 __be32 key = htonl(tsn);
922
923 match = NULL;
924
925 /*
926 * FIXME: In general, find a more efficient data structure for
927 * searching.
928 */
929
930 /*
931 * The general strategy is to search each transport's transmitted
932 * list. Return which transport this TSN lives on.
933 *
934 * Let's be hopeful and check the active_path first.
935 * Another optimization would be to know if there is only one
936 * outbound path and not have to look for the TSN at all.
937 *
938 */
939
940 active = asoc->peer.active_path;
941
942 list_for_each_entry(chunk, &active->transmitted,
943 transmitted_list) {
944
945 if (key == chunk->subh.data_hdr->tsn) {
946 match = active;
947 goto out;
948 }
949 }
950
951 /* If not found, go search all the other transports. */
952 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
953 transports) {
954
955 if (transport == active)
956 continue;
957 list_for_each_entry(chunk, &transport->transmitted,
958 transmitted_list) {
959 if (key == chunk->subh.data_hdr->tsn) {
960 match = transport;
961 goto out;
962 }
963 }
964 }
965 out:
966 return match;
967 }
968
969 /* Is this the association we are looking for? */
970 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
971 struct net *net,
972 const union sctp_addr *laddr,
973 const union sctp_addr *paddr)
974 {
975 struct sctp_transport *transport;
976
977 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
978 (htons(asoc->peer.port) == paddr->v4.sin_port) &&
979 net_eq(sock_net(asoc->base.sk), net)) {
980 transport = sctp_assoc_lookup_paddr(asoc, paddr);
981 if (!transport)
982 goto out;
983
984 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
985 sctp_sk(asoc->base.sk)))
986 goto out;
987 }
988 transport = NULL;
989
990 out:
991 return transport;
992 }
993
994 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
995 static void sctp_assoc_bh_rcv(struct work_struct *work)
996 {
997 struct sctp_association *asoc =
998 container_of(work, struct sctp_association,
999 base.inqueue.immediate);
1000 struct net *net = sock_net(asoc->base.sk);
1001 struct sctp_endpoint *ep;
1002 struct sctp_chunk *chunk;
1003 struct sctp_inq *inqueue;
1004 int state;
1005 sctp_subtype_t subtype;
1006 int error = 0;
1007
1008 /* The association should be held so we should be safe. */
1009 ep = asoc->ep;
1010
1011 inqueue = &asoc->base.inqueue;
1012 sctp_association_hold(asoc);
1013 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1014 state = asoc->state;
1015 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1016
1017 /* SCTP-AUTH, Section 6.3:
1018 * The receiver has a list of chunk types which it expects
1019 * to be received only after an AUTH-chunk. This list has
1020 * been sent to the peer during the association setup. It
1021 * MUST silently discard these chunks if they are not placed
1022 * after an AUTH chunk in the packet.
1023 */
1024 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1025 continue;
1026
1027 /* Remember where the last DATA chunk came from so we
1028 * know where to send the SACK.
1029 */
1030 if (sctp_chunk_is_data(chunk))
1031 asoc->peer.last_data_from = chunk->transport;
1032 else {
1033 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1034 asoc->stats.ictrlchunks++;
1035 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1036 asoc->stats.isacks++;
1037 }
1038
1039 if (chunk->transport)
1040 chunk->transport->last_time_heard = ktime_get();
1041
1042 /* Run through the state machine. */
1043 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1044 state, ep, asoc, chunk, GFP_ATOMIC);
1045
1046 /* Check to see if the association is freed in response to
1047 * the incoming chunk. If so, get out of the while loop.
1048 */
1049 if (asoc->base.dead)
1050 break;
1051
1052 /* If there is an error on chunk, discard this packet. */
1053 if (error && chunk)
1054 chunk->pdiscard = 1;
1055 }
1056 sctp_association_put(asoc);
1057 }
1058
1059 /* This routine moves an association from its old sk to a new sk. */
1060 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1061 {
1062 struct sctp_sock *newsp = sctp_sk(newsk);
1063 struct sock *oldsk = assoc->base.sk;
1064
1065 /* Delete the association from the old endpoint's list of
1066 * associations.
1067 */
1068 list_del_init(&assoc->asocs);
1069
1070 /* Decrement the backlog value for a TCP-style socket. */
1071 if (sctp_style(oldsk, TCP))
1072 oldsk->sk_ack_backlog--;
1073
1074 /* Release references to the old endpoint and the sock. */
1075 sctp_endpoint_put(assoc->ep);
1076 sock_put(assoc->base.sk);
1077
1078 /* Get a reference to the new endpoint. */
1079 assoc->ep = newsp->ep;
1080 sctp_endpoint_hold(assoc->ep);
1081
1082 /* Get a reference to the new sock. */
1083 assoc->base.sk = newsk;
1084 sock_hold(assoc->base.sk);
1085
1086 /* Add the association to the new endpoint's list of associations. */
1087 sctp_endpoint_add_asoc(newsp->ep, assoc);
1088 }
1089
1090 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1091 void sctp_assoc_update(struct sctp_association *asoc,
1092 struct sctp_association *new)
1093 {
1094 struct sctp_transport *trans;
1095 struct list_head *pos, *temp;
1096
1097 /* Copy in new parameters of peer. */
1098 asoc->c = new->c;
1099 asoc->peer.rwnd = new->peer.rwnd;
1100 asoc->peer.sack_needed = new->peer.sack_needed;
1101 asoc->peer.auth_capable = new->peer.auth_capable;
1102 asoc->peer.i = new->peer.i;
1103 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1104 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1105
1106 /* Remove any peer addresses not present in the new association. */
1107 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1108 trans = list_entry(pos, struct sctp_transport, transports);
1109 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1110 sctp_assoc_rm_peer(asoc, trans);
1111 continue;
1112 }
1113
1114 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1115 sctp_transport_reset(trans);
1116 }
1117
1118 /* If the case is A (association restart), use
1119 * initial_tsn as next_tsn. If the case is B, use
1120 * current next_tsn in case data sent to peer
1121 * has been discarded and needs retransmission.
1122 */
1123 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1124 asoc->next_tsn = new->next_tsn;
1125 asoc->ctsn_ack_point = new->ctsn_ack_point;
1126 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1127
1128 /* Reinitialize SSN for both local streams
1129 * and peer's streams.
1130 */
1131 sctp_ssnmap_clear(asoc->ssnmap);
1132
1133 /* Flush the ULP reassembly and ordered queue.
1134 * Any data there will now be stale and will
1135 * cause problems.
1136 */
1137 sctp_ulpq_flush(&asoc->ulpq);
1138
1139 /* reset the overall association error count so
1140 * that the restarted association doesn't get torn
1141 * down on the next retransmission timer.
1142 */
1143 asoc->overall_error_count = 0;
1144
1145 } else {
1146 /* Add any peer addresses from the new association. */
1147 list_for_each_entry(trans, &new->peer.transport_addr_list,
1148 transports) {
1149 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1150 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1151 GFP_ATOMIC, trans->state);
1152 }
1153
1154 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1155 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1156 if (!asoc->ssnmap) {
1157 /* Move the ssnmap. */
1158 asoc->ssnmap = new->ssnmap;
1159 new->ssnmap = NULL;
1160 }
1161
1162 if (!asoc->assoc_id) {
1163 /* get a new association id since we don't have one
1164 * yet.
1165 */
1166 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1167 }
1168 }
1169
1170 /* SCTP-AUTH: Save the peer parameters from the new associations
1171 * and also move the association shared keys over
1172 */
1173 kfree(asoc->peer.peer_random);
1174 asoc->peer.peer_random = new->peer.peer_random;
1175 new->peer.peer_random = NULL;
1176
1177 kfree(asoc->peer.peer_chunks);
1178 asoc->peer.peer_chunks = new->peer.peer_chunks;
1179 new->peer.peer_chunks = NULL;
1180
1181 kfree(asoc->peer.peer_hmacs);
1182 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1183 new->peer.peer_hmacs = NULL;
1184
1185 sctp_auth_key_put(asoc->asoc_shared_key);
1186 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1187 }
1188
1189 /* Update the retran path for sending a retransmitted packet.
1190 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1191 *
1192 * When there is outbound data to send and the primary path
1193 * becomes inactive (e.g., due to failures), or where the
1194 * SCTP user explicitly requests to send data to an
1195 * inactive destination transport address, before reporting
1196 * an error to its ULP, the SCTP endpoint should try to send
1197 * the data to an alternate active destination transport
1198 * address if one exists.
1199 *
1200 * When retransmitting data that timed out, if the endpoint
1201 * is multihomed, it should consider each source-destination
1202 * address pair in its retransmission selection policy.
1203 * When retransmitting timed-out data, the endpoint should
1204 * attempt to pick the most divergent source-destination
1205 * pair from the original source-destination pair to which
1206 * the packet was transmitted.
1207 *
1208 * Note: Rules for picking the most divergent source-destination
1209 * pair are an implementation decision and are not specified
1210 * within this document.
1211 *
1212 * Our basic strategy is to round-robin transports in priorities
1213 * according to sctp_state_prio_map[] e.g., if no such
1214 * transport with state SCTP_ACTIVE exists, round-robin through
1215 * SCTP_UNKNOWN, etc. You get the picture.
1216 */
1217 static const u8 sctp_trans_state_to_prio_map[] = {
1218 [SCTP_ACTIVE] = 3, /* best case */
1219 [SCTP_UNKNOWN] = 2,
1220 [SCTP_PF] = 1,
1221 [SCTP_INACTIVE] = 0, /* worst case */
1222 };
1223
1224 static u8 sctp_trans_score(const struct sctp_transport *trans)
1225 {
1226 return sctp_trans_state_to_prio_map[trans->state];
1227 }
1228
1229 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1230 struct sctp_transport *trans2)
1231 {
1232 if (trans1->error_count > trans2->error_count) {
1233 return trans2;
1234 } else if (trans1->error_count == trans2->error_count &&
1235 ktime_after(trans2->last_time_heard,
1236 trans1->last_time_heard)) {
1237 return trans2;
1238 } else {
1239 return trans1;
1240 }
1241 }
1242
1243 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1244 struct sctp_transport *best)
1245 {
1246 u8 score_curr, score_best;
1247
1248 if (best == NULL || curr == best)
1249 return curr;
1250
1251 score_curr = sctp_trans_score(curr);
1252 score_best = sctp_trans_score(best);
1253
1254 /* First, try a score-based selection if both transport states
1255 * differ. If we're in a tie, lets try to make a more clever
1256 * decision here based on error counts and last time heard.
1257 */
1258 if (score_curr > score_best)
1259 return curr;
1260 else if (score_curr == score_best)
1261 return sctp_trans_elect_tie(curr, best);
1262 else
1263 return best;
1264 }
1265
1266 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1267 {
1268 struct sctp_transport *trans = asoc->peer.retran_path;
1269 struct sctp_transport *trans_next = NULL;
1270
1271 /* We're done as we only have the one and only path. */
1272 if (asoc->peer.transport_count == 1)
1273 return;
1274 /* If active_path and retran_path are the same and active,
1275 * then this is the only active path. Use it.
1276 */
1277 if (asoc->peer.active_path == asoc->peer.retran_path &&
1278 asoc->peer.active_path->state == SCTP_ACTIVE)
1279 return;
1280
1281 /* Iterate from retran_path's successor back to retran_path. */
1282 for (trans = list_next_entry(trans, transports); 1;
1283 trans = list_next_entry(trans, transports)) {
1284 /* Manually skip the head element. */
1285 if (&trans->transports == &asoc->peer.transport_addr_list)
1286 continue;
1287 if (trans->state == SCTP_UNCONFIRMED)
1288 continue;
1289 trans_next = sctp_trans_elect_best(trans, trans_next);
1290 /* Active is good enough for immediate return. */
1291 if (trans_next->state == SCTP_ACTIVE)
1292 break;
1293 /* We've reached the end, time to update path. */
1294 if (trans == asoc->peer.retran_path)
1295 break;
1296 }
1297
1298 asoc->peer.retran_path = trans_next;
1299
1300 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1301 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1302 }
1303
1304 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1305 {
1306 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1307 struct sctp_transport *trans_pf = NULL;
1308
1309 /* Look for the two most recently used active transports. */
1310 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1311 transports) {
1312 /* Skip uninteresting transports. */
1313 if (trans->state == SCTP_INACTIVE ||
1314 trans->state == SCTP_UNCONFIRMED)
1315 continue;
1316 /* Keep track of the best PF transport from our
1317 * list in case we don't find an active one.
1318 */
1319 if (trans->state == SCTP_PF) {
1320 trans_pf = sctp_trans_elect_best(trans, trans_pf);
1321 continue;
1322 }
1323 /* For active transports, pick the most recent ones. */
1324 if (trans_pri == NULL ||
1325 ktime_after(trans->last_time_heard,
1326 trans_pri->last_time_heard)) {
1327 trans_sec = trans_pri;
1328 trans_pri = trans;
1329 } else if (trans_sec == NULL ||
1330 ktime_after(trans->last_time_heard,
1331 trans_sec->last_time_heard)) {
1332 trans_sec = trans;
1333 }
1334 }
1335
1336 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1337 *
1338 * By default, an endpoint should always transmit to the primary
1339 * path, unless the SCTP user explicitly specifies the
1340 * destination transport address (and possibly source transport
1341 * address) to use. [If the primary is active but not most recent,
1342 * bump the most recently used transport.]
1343 */
1344 if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1345 asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1346 asoc->peer.primary_path != trans_pri) {
1347 trans_sec = trans_pri;
1348 trans_pri = asoc->peer.primary_path;
1349 }
1350
1351 /* We did not find anything useful for a possible retransmission
1352 * path; either primary path that we found is the the same as
1353 * the current one, or we didn't generally find an active one.
1354 */
1355 if (trans_sec == NULL)
1356 trans_sec = trans_pri;
1357
1358 /* If we failed to find a usable transport, just camp on the
1359 * active or pick a PF iff it's the better choice.
1360 */
1361 if (trans_pri == NULL) {
1362 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1363 trans_sec = trans_pri;
1364 }
1365
1366 /* Set the active and retran transports. */
1367 asoc->peer.active_path = trans_pri;
1368 asoc->peer.retran_path = trans_sec;
1369 }
1370
1371 struct sctp_transport *
1372 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1373 struct sctp_transport *last_sent_to)
1374 {
1375 /* If this is the first time packet is sent, use the active path,
1376 * else use the retran path. If the last packet was sent over the
1377 * retran path, update the retran path and use it.
1378 */
1379 if (last_sent_to == NULL) {
1380 return asoc->peer.active_path;
1381 } else {
1382 if (last_sent_to == asoc->peer.retran_path)
1383 sctp_assoc_update_retran_path(asoc);
1384
1385 return asoc->peer.retran_path;
1386 }
1387 }
1388
1389 /* Update the association's pmtu and frag_point by going through all the
1390 * transports. This routine is called when a transport's PMTU has changed.
1391 */
1392 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1393 {
1394 struct sctp_transport *t;
1395 __u32 pmtu = 0;
1396
1397 if (!asoc)
1398 return;
1399
1400 /* Get the lowest pmtu of all the transports. */
1401 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1402 transports) {
1403 if (t->pmtu_pending && t->dst) {
1404 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1405 t->pmtu_pending = 0;
1406 }
1407 if (!pmtu || (t->pathmtu < pmtu))
1408 pmtu = t->pathmtu;
1409 }
1410
1411 if (pmtu) {
1412 asoc->pathmtu = pmtu;
1413 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1414 }
1415
1416 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1417 asoc->pathmtu, asoc->frag_point);
1418 }
1419
1420 /* Should we send a SACK to update our peer? */
1421 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1422 {
1423 struct net *net = sock_net(asoc->base.sk);
1424 switch (asoc->state) {
1425 case SCTP_STATE_ESTABLISHED:
1426 case SCTP_STATE_SHUTDOWN_PENDING:
1427 case SCTP_STATE_SHUTDOWN_RECEIVED:
1428 case SCTP_STATE_SHUTDOWN_SENT:
1429 if ((asoc->rwnd > asoc->a_rwnd) &&
1430 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1431 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1432 asoc->pathmtu)))
1433 return true;
1434 break;
1435 default:
1436 break;
1437 }
1438 return false;
1439 }
1440
1441 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1442 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1443 {
1444 struct sctp_chunk *sack;
1445 struct timer_list *timer;
1446
1447 if (asoc->rwnd_over) {
1448 if (asoc->rwnd_over >= len) {
1449 asoc->rwnd_over -= len;
1450 } else {
1451 asoc->rwnd += (len - asoc->rwnd_over);
1452 asoc->rwnd_over = 0;
1453 }
1454 } else {
1455 asoc->rwnd += len;
1456 }
1457
1458 /* If we had window pressure, start recovering it
1459 * once our rwnd had reached the accumulated pressure
1460 * threshold. The idea is to recover slowly, but up
1461 * to the initial advertised window.
1462 */
1463 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1464 int change = min(asoc->pathmtu, asoc->rwnd_press);
1465 asoc->rwnd += change;
1466 asoc->rwnd_press -= change;
1467 }
1468
1469 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1470 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1471 asoc->a_rwnd);
1472
1473 /* Send a window update SACK if the rwnd has increased by at least the
1474 * minimum of the association's PMTU and half of the receive buffer.
1475 * The algorithm used is similar to the one described in
1476 * Section 4.2.3.3 of RFC 1122.
1477 */
1478 if (sctp_peer_needs_update(asoc)) {
1479 asoc->a_rwnd = asoc->rwnd;
1480
1481 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1482 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1483 asoc->a_rwnd);
1484
1485 sack = sctp_make_sack(asoc);
1486 if (!sack)
1487 return;
1488
1489 asoc->peer.sack_needed = 0;
1490
1491 sctp_outq_tail(&asoc->outqueue, sack);
1492
1493 /* Stop the SACK timer. */
1494 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1495 if (del_timer(timer))
1496 sctp_association_put(asoc);
1497 }
1498 }
1499
1500 /* Decrease asoc's rwnd by len. */
1501 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1502 {
1503 int rx_count;
1504 int over = 0;
1505
1506 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1507 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1508 "asoc->rwnd_over:%u!\n", __func__, asoc,
1509 asoc->rwnd, asoc->rwnd_over);
1510
1511 if (asoc->ep->rcvbuf_policy)
1512 rx_count = atomic_read(&asoc->rmem_alloc);
1513 else
1514 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1515
1516 /* If we've reached or overflowed our receive buffer, announce
1517 * a 0 rwnd if rwnd would still be positive. Store the
1518 * the potential pressure overflow so that the window can be restored
1519 * back to original value.
1520 */
1521 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1522 over = 1;
1523
1524 if (asoc->rwnd >= len) {
1525 asoc->rwnd -= len;
1526 if (over) {
1527 asoc->rwnd_press += asoc->rwnd;
1528 asoc->rwnd = 0;
1529 }
1530 } else {
1531 asoc->rwnd_over = len - asoc->rwnd;
1532 asoc->rwnd = 0;
1533 }
1534
1535 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1536 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1537 asoc->rwnd_press);
1538 }
1539
1540 /* Build the bind address list for the association based on info from the
1541 * local endpoint and the remote peer.
1542 */
1543 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1544 sctp_scope_t scope, gfp_t gfp)
1545 {
1546 int flags;
1547
1548 /* Use scoping rules to determine the subset of addresses from
1549 * the endpoint.
1550 */
1551 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1552 if (asoc->peer.ipv4_address)
1553 flags |= SCTP_ADDR4_PEERSUPP;
1554 if (asoc->peer.ipv6_address)
1555 flags |= SCTP_ADDR6_PEERSUPP;
1556
1557 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1558 &asoc->base.bind_addr,
1559 &asoc->ep->base.bind_addr,
1560 scope, gfp, flags);
1561 }
1562
1563 /* Build the association's bind address list from the cookie. */
1564 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1565 struct sctp_cookie *cookie,
1566 gfp_t gfp)
1567 {
1568 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1569 int var_size3 = cookie->raw_addr_list_len;
1570 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1571
1572 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1573 asoc->ep->base.bind_addr.port, gfp);
1574 }
1575
1576 /* Lookup laddr in the bind address list of an association. */
1577 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1578 const union sctp_addr *laddr)
1579 {
1580 int found = 0;
1581
1582 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1583 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1584 sctp_sk(asoc->base.sk)))
1585 found = 1;
1586
1587 return found;
1588 }
1589
1590 /* Set an association id for a given association */
1591 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1592 {
1593 bool preload = !!(gfp & __GFP_WAIT);
1594 int ret;
1595
1596 /* If the id is already assigned, keep it. */
1597 if (asoc->assoc_id)
1598 return 0;
1599
1600 if (preload)
1601 idr_preload(gfp);
1602 spin_lock_bh(&sctp_assocs_id_lock);
1603 /* 0 is not a valid assoc_id, must be >= 1 */
1604 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1605 spin_unlock_bh(&sctp_assocs_id_lock);
1606 if (preload)
1607 idr_preload_end();
1608 if (ret < 0)
1609 return ret;
1610
1611 asoc->assoc_id = (sctp_assoc_t)ret;
1612 return 0;
1613 }
1614
1615 /* Free the ASCONF queue */
1616 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1617 {
1618 struct sctp_chunk *asconf;
1619 struct sctp_chunk *tmp;
1620
1621 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1622 list_del_init(&asconf->list);
1623 sctp_chunk_free(asconf);
1624 }
1625 }
1626
1627 /* Free asconf_ack cache */
1628 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1629 {
1630 struct sctp_chunk *ack;
1631 struct sctp_chunk *tmp;
1632
1633 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1634 transmitted_list) {
1635 list_del_init(&ack->transmitted_list);
1636 sctp_chunk_free(ack);
1637 }
1638 }
1639
1640 /* Clean up the ASCONF_ACK queue */
1641 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1642 {
1643 struct sctp_chunk *ack;
1644 struct sctp_chunk *tmp;
1645
1646 /* We can remove all the entries from the queue up to
1647 * the "Peer-Sequence-Number".
1648 */
1649 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1650 transmitted_list) {
1651 if (ack->subh.addip_hdr->serial ==
1652 htonl(asoc->peer.addip_serial))
1653 break;
1654
1655 list_del_init(&ack->transmitted_list);
1656 sctp_chunk_free(ack);
1657 }
1658 }
1659
1660 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1661 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1662 const struct sctp_association *asoc,
1663 __be32 serial)
1664 {
1665 struct sctp_chunk *ack;
1666
1667 /* Walk through the list of cached ASCONF-ACKs and find the
1668 * ack chunk whose serial number matches that of the request.
1669 */
1670 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1671 if (sctp_chunk_pending(ack))
1672 continue;
1673 if (ack->subh.addip_hdr->serial == serial) {
1674 sctp_chunk_hold(ack);
1675 return ack;
1676 }
1677 }
1678
1679 return NULL;
1680 }
1681
1682 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1683 {
1684 /* Free any cached ASCONF_ACK chunk. */
1685 sctp_assoc_free_asconf_acks(asoc);
1686
1687 /* Free the ASCONF queue. */
1688 sctp_assoc_free_asconf_queue(asoc);
1689
1690 /* Free any cached ASCONF chunk. */
1691 if (asoc->addip_last_asconf)
1692 sctp_chunk_free(asoc->addip_last_asconf);
1693 }
This page took 0.064193 seconds and 6 git commands to generate.