Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / net / sctp / socket.c
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
34 *
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
38 *
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
41 *
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
55 *
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
58 */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62 #include <linux/types.h>
63 #include <linux/kernel.h>
64 #include <linux/wait.h>
65 #include <linux/time.h>
66 #include <linux/ip.h>
67 #include <linux/capability.h>
68 #include <linux/fcntl.h>
69 #include <linux/poll.h>
70 #include <linux/init.h>
71 #include <linux/crypto.h>
72 #include <linux/slab.h>
73 #include <linux/file.h>
74
75 #include <net/ip.h>
76 #include <net/icmp.h>
77 #include <net/route.h>
78 #include <net/ipv6.h>
79 #include <net/inet_common.h>
80
81 #include <linux/socket.h> /* for sa_family_t */
82 #include <linux/export.h>
83 #include <net/sock.h>
84 #include <net/sctp/sctp.h>
85 #include <net/sctp/sm.h>
86
87 /* WARNING: Please do not remove the SCTP_STATIC attribute to
88 * any of the functions below as they are used to export functions
89 * used by a project regression testsuite.
90 */
91
92 /* Forward declarations for internal helper functions. */
93 static int sctp_writeable(struct sock *sk);
94 static void sctp_wfree(struct sk_buff *skb);
95 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
96 size_t msg_len);
97 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
98 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
99 static int sctp_wait_for_accept(struct sock *sk, long timeo);
100 static void sctp_wait_for_close(struct sock *sk, long timeo);
101 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
102 union sctp_addr *addr, int len);
103 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
104 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
105 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
106 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
107 static int sctp_send_asconf(struct sctp_association *asoc,
108 struct sctp_chunk *chunk);
109 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
110 static int sctp_autobind(struct sock *sk);
111 static void sctp_sock_migrate(struct sock *, struct sock *,
112 struct sctp_association *, sctp_socket_type_t);
113
114 extern struct kmem_cache *sctp_bucket_cachep;
115 extern long sysctl_sctp_mem[3];
116 extern int sysctl_sctp_rmem[3];
117 extern int sysctl_sctp_wmem[3];
118
119 static int sctp_memory_pressure;
120 static atomic_long_t sctp_memory_allocated;
121 struct percpu_counter sctp_sockets_allocated;
122
123 static void sctp_enter_memory_pressure(struct sock *sk)
124 {
125 sctp_memory_pressure = 1;
126 }
127
128
129 /* Get the sndbuf space available at the time on the association. */
130 static inline int sctp_wspace(struct sctp_association *asoc)
131 {
132 int amt;
133
134 if (asoc->ep->sndbuf_policy)
135 amt = asoc->sndbuf_used;
136 else
137 amt = sk_wmem_alloc_get(asoc->base.sk);
138
139 if (amt >= asoc->base.sk->sk_sndbuf) {
140 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
141 amt = 0;
142 else {
143 amt = sk_stream_wspace(asoc->base.sk);
144 if (amt < 0)
145 amt = 0;
146 }
147 } else {
148 amt = asoc->base.sk->sk_sndbuf - amt;
149 }
150 return amt;
151 }
152
153 /* Increment the used sndbuf space count of the corresponding association by
154 * the size of the outgoing data chunk.
155 * Also, set the skb destructor for sndbuf accounting later.
156 *
157 * Since it is always 1-1 between chunk and skb, and also a new skb is always
158 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
159 * destructor in the data chunk skb for the purpose of the sndbuf space
160 * tracking.
161 */
162 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
163 {
164 struct sctp_association *asoc = chunk->asoc;
165 struct sock *sk = asoc->base.sk;
166
167 /* The sndbuf space is tracked per association. */
168 sctp_association_hold(asoc);
169
170 skb_set_owner_w(chunk->skb, sk);
171
172 chunk->skb->destructor = sctp_wfree;
173 /* Save the chunk pointer in skb for sctp_wfree to use later. */
174 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
175
176 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
177 sizeof(struct sk_buff) +
178 sizeof(struct sctp_chunk);
179
180 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
181 sk->sk_wmem_queued += chunk->skb->truesize;
182 sk_mem_charge(sk, chunk->skb->truesize);
183 }
184
185 /* Verify that this is a valid address. */
186 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
187 int len)
188 {
189 struct sctp_af *af;
190
191 /* Verify basic sockaddr. */
192 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
193 if (!af)
194 return -EINVAL;
195
196 /* Is this a valid SCTP address? */
197 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
198 return -EINVAL;
199
200 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
201 return -EINVAL;
202
203 return 0;
204 }
205
206 /* Look up the association by its id. If this is not a UDP-style
207 * socket, the ID field is always ignored.
208 */
209 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
210 {
211 struct sctp_association *asoc = NULL;
212
213 /* If this is not a UDP-style socket, assoc id should be ignored. */
214 if (!sctp_style(sk, UDP)) {
215 /* Return NULL if the socket state is not ESTABLISHED. It
216 * could be a TCP-style listening socket or a socket which
217 * hasn't yet called connect() to establish an association.
218 */
219 if (!sctp_sstate(sk, ESTABLISHED))
220 return NULL;
221
222 /* Get the first and the only association from the list. */
223 if (!list_empty(&sctp_sk(sk)->ep->asocs))
224 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
225 struct sctp_association, asocs);
226 return asoc;
227 }
228
229 /* Otherwise this is a UDP-style socket. */
230 if (!id || (id == (sctp_assoc_t)-1))
231 return NULL;
232
233 spin_lock_bh(&sctp_assocs_id_lock);
234 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
235 spin_unlock_bh(&sctp_assocs_id_lock);
236
237 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
238 return NULL;
239
240 return asoc;
241 }
242
243 /* Look up the transport from an address and an assoc id. If both address and
244 * id are specified, the associations matching the address and the id should be
245 * the same.
246 */
247 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
248 struct sockaddr_storage *addr,
249 sctp_assoc_t id)
250 {
251 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
252 struct sctp_transport *transport;
253 union sctp_addr *laddr = (union sctp_addr *)addr;
254
255 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
256 laddr,
257 &transport);
258
259 if (!addr_asoc)
260 return NULL;
261
262 id_asoc = sctp_id2assoc(sk, id);
263 if (id_asoc && (id_asoc != addr_asoc))
264 return NULL;
265
266 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
267 (union sctp_addr *)addr);
268
269 return transport;
270 }
271
272 /* API 3.1.2 bind() - UDP Style Syntax
273 * The syntax of bind() is,
274 *
275 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
276 *
277 * sd - the socket descriptor returned by socket().
278 * addr - the address structure (struct sockaddr_in or struct
279 * sockaddr_in6 [RFC 2553]),
280 * addr_len - the size of the address structure.
281 */
282 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
283 {
284 int retval = 0;
285
286 sctp_lock_sock(sk);
287
288 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
289 sk, addr, addr_len);
290
291 /* Disallow binding twice. */
292 if (!sctp_sk(sk)->ep->base.bind_addr.port)
293 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
294 addr_len);
295 else
296 retval = -EINVAL;
297
298 sctp_release_sock(sk);
299
300 return retval;
301 }
302
303 static long sctp_get_port_local(struct sock *, union sctp_addr *);
304
305 /* Verify this is a valid sockaddr. */
306 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
307 union sctp_addr *addr, int len)
308 {
309 struct sctp_af *af;
310
311 /* Check minimum size. */
312 if (len < sizeof (struct sockaddr))
313 return NULL;
314
315 /* V4 mapped address are really of AF_INET family */
316 if (addr->sa.sa_family == AF_INET6 &&
317 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
318 if (!opt->pf->af_supported(AF_INET, opt))
319 return NULL;
320 } else {
321 /* Does this PF support this AF? */
322 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
323 return NULL;
324 }
325
326 /* If we get this far, af is valid. */
327 af = sctp_get_af_specific(addr->sa.sa_family);
328
329 if (len < af->sockaddr_len)
330 return NULL;
331
332 return af;
333 }
334
335 /* Bind a local address either to an endpoint or to an association. */
336 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
337 {
338 struct net *net = sock_net(sk);
339 struct sctp_sock *sp = sctp_sk(sk);
340 struct sctp_endpoint *ep = sp->ep;
341 struct sctp_bind_addr *bp = &ep->base.bind_addr;
342 struct sctp_af *af;
343 unsigned short snum;
344 int ret = 0;
345
346 /* Common sockaddr verification. */
347 af = sctp_sockaddr_af(sp, addr, len);
348 if (!af) {
349 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
350 sk, addr, len);
351 return -EINVAL;
352 }
353
354 snum = ntohs(addr->v4.sin_port);
355
356 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
357 ", port: %d, new port: %d, len: %d)\n",
358 sk,
359 addr,
360 bp->port, snum,
361 len);
362
363 /* PF specific bind() address verification. */
364 if (!sp->pf->bind_verify(sp, addr))
365 return -EADDRNOTAVAIL;
366
367 /* We must either be unbound, or bind to the same port.
368 * It's OK to allow 0 ports if we are already bound.
369 * We'll just inhert an already bound port in this case
370 */
371 if (bp->port) {
372 if (!snum)
373 snum = bp->port;
374 else if (snum != bp->port) {
375 SCTP_DEBUG_PRINTK("sctp_do_bind:"
376 " New port %d does not match existing port "
377 "%d.\n", snum, bp->port);
378 return -EINVAL;
379 }
380 }
381
382 if (snum && snum < PROT_SOCK &&
383 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
384 return -EACCES;
385
386 /* See if the address matches any of the addresses we may have
387 * already bound before checking against other endpoints.
388 */
389 if (sctp_bind_addr_match(bp, addr, sp))
390 return -EINVAL;
391
392 /* Make sure we are allowed to bind here.
393 * The function sctp_get_port_local() does duplicate address
394 * detection.
395 */
396 addr->v4.sin_port = htons(snum);
397 if ((ret = sctp_get_port_local(sk, addr))) {
398 return -EADDRINUSE;
399 }
400
401 /* Refresh ephemeral port. */
402 if (!bp->port)
403 bp->port = inet_sk(sk)->inet_num;
404
405 /* Add the address to the bind address list.
406 * Use GFP_ATOMIC since BHs will be disabled.
407 */
408 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
409
410 /* Copy back into socket for getsockname() use. */
411 if (!ret) {
412 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
413 af->to_sk_saddr(addr, sk);
414 }
415
416 return ret;
417 }
418
419 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
420 *
421 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
422 * at any one time. If a sender, after sending an ASCONF chunk, decides
423 * it needs to transfer another ASCONF Chunk, it MUST wait until the
424 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
425 * subsequent ASCONF. Note this restriction binds each side, so at any
426 * time two ASCONF may be in-transit on any given association (one sent
427 * from each endpoint).
428 */
429 static int sctp_send_asconf(struct sctp_association *asoc,
430 struct sctp_chunk *chunk)
431 {
432 struct net *net = sock_net(asoc->base.sk);
433 int retval = 0;
434
435 /* If there is an outstanding ASCONF chunk, queue it for later
436 * transmission.
437 */
438 if (asoc->addip_last_asconf) {
439 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
440 goto out;
441 }
442
443 /* Hold the chunk until an ASCONF_ACK is received. */
444 sctp_chunk_hold(chunk);
445 retval = sctp_primitive_ASCONF(net, asoc, chunk);
446 if (retval)
447 sctp_chunk_free(chunk);
448 else
449 asoc->addip_last_asconf = chunk;
450
451 out:
452 return retval;
453 }
454
455 /* Add a list of addresses as bind addresses to local endpoint or
456 * association.
457 *
458 * Basically run through each address specified in the addrs/addrcnt
459 * array/length pair, determine if it is IPv6 or IPv4 and call
460 * sctp_do_bind() on it.
461 *
462 * If any of them fails, then the operation will be reversed and the
463 * ones that were added will be removed.
464 *
465 * Only sctp_setsockopt_bindx() is supposed to call this function.
466 */
467 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
468 {
469 int cnt;
470 int retval = 0;
471 void *addr_buf;
472 struct sockaddr *sa_addr;
473 struct sctp_af *af;
474
475 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
476 sk, addrs, addrcnt);
477
478 addr_buf = addrs;
479 for (cnt = 0; cnt < addrcnt; cnt++) {
480 /* The list may contain either IPv4 or IPv6 address;
481 * determine the address length for walking thru the list.
482 */
483 sa_addr = addr_buf;
484 af = sctp_get_af_specific(sa_addr->sa_family);
485 if (!af) {
486 retval = -EINVAL;
487 goto err_bindx_add;
488 }
489
490 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
491 af->sockaddr_len);
492
493 addr_buf += af->sockaddr_len;
494
495 err_bindx_add:
496 if (retval < 0) {
497 /* Failed. Cleanup the ones that have been added */
498 if (cnt > 0)
499 sctp_bindx_rem(sk, addrs, cnt);
500 return retval;
501 }
502 }
503
504 return retval;
505 }
506
507 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
508 * associations that are part of the endpoint indicating that a list of local
509 * addresses are added to the endpoint.
510 *
511 * If any of the addresses is already in the bind address list of the
512 * association, we do not send the chunk for that association. But it will not
513 * affect other associations.
514 *
515 * Only sctp_setsockopt_bindx() is supposed to call this function.
516 */
517 static int sctp_send_asconf_add_ip(struct sock *sk,
518 struct sockaddr *addrs,
519 int addrcnt)
520 {
521 struct net *net = sock_net(sk);
522 struct sctp_sock *sp;
523 struct sctp_endpoint *ep;
524 struct sctp_association *asoc;
525 struct sctp_bind_addr *bp;
526 struct sctp_chunk *chunk;
527 struct sctp_sockaddr_entry *laddr;
528 union sctp_addr *addr;
529 union sctp_addr saveaddr;
530 void *addr_buf;
531 struct sctp_af *af;
532 struct list_head *p;
533 int i;
534 int retval = 0;
535
536 if (!net->sctp.addip_enable)
537 return retval;
538
539 sp = sctp_sk(sk);
540 ep = sp->ep;
541
542 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
543 __func__, sk, addrs, addrcnt);
544
545 list_for_each_entry(asoc, &ep->asocs, asocs) {
546
547 if (!asoc->peer.asconf_capable)
548 continue;
549
550 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
551 continue;
552
553 if (!sctp_state(asoc, ESTABLISHED))
554 continue;
555
556 /* Check if any address in the packed array of addresses is
557 * in the bind address list of the association. If so,
558 * do not send the asconf chunk to its peer, but continue with
559 * other associations.
560 */
561 addr_buf = addrs;
562 for (i = 0; i < addrcnt; i++) {
563 addr = addr_buf;
564 af = sctp_get_af_specific(addr->v4.sin_family);
565 if (!af) {
566 retval = -EINVAL;
567 goto out;
568 }
569
570 if (sctp_assoc_lookup_laddr(asoc, addr))
571 break;
572
573 addr_buf += af->sockaddr_len;
574 }
575 if (i < addrcnt)
576 continue;
577
578 /* Use the first valid address in bind addr list of
579 * association as Address Parameter of ASCONF CHUNK.
580 */
581 bp = &asoc->base.bind_addr;
582 p = bp->address_list.next;
583 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
584 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
585 addrcnt, SCTP_PARAM_ADD_IP);
586 if (!chunk) {
587 retval = -ENOMEM;
588 goto out;
589 }
590
591 /* Add the new addresses to the bind address list with
592 * use_as_src set to 0.
593 */
594 addr_buf = addrs;
595 for (i = 0; i < addrcnt; i++) {
596 addr = addr_buf;
597 af = sctp_get_af_specific(addr->v4.sin_family);
598 memcpy(&saveaddr, addr, af->sockaddr_len);
599 retval = sctp_add_bind_addr(bp, &saveaddr,
600 SCTP_ADDR_NEW, GFP_ATOMIC);
601 addr_buf += af->sockaddr_len;
602 }
603 if (asoc->src_out_of_asoc_ok) {
604 struct sctp_transport *trans;
605
606 list_for_each_entry(trans,
607 &asoc->peer.transport_addr_list, transports) {
608 /* Clear the source and route cache */
609 dst_release(trans->dst);
610 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
611 2*asoc->pathmtu, 4380));
612 trans->ssthresh = asoc->peer.i.a_rwnd;
613 trans->rto = asoc->rto_initial;
614 sctp_max_rto(asoc, trans);
615 trans->rtt = trans->srtt = trans->rttvar = 0;
616 sctp_transport_route(trans, NULL,
617 sctp_sk(asoc->base.sk));
618 }
619 }
620 retval = sctp_send_asconf(asoc, chunk);
621 }
622
623 out:
624 return retval;
625 }
626
627 /* Remove a list of addresses from bind addresses list. Do not remove the
628 * last address.
629 *
630 * Basically run through each address specified in the addrs/addrcnt
631 * array/length pair, determine if it is IPv6 or IPv4 and call
632 * sctp_del_bind() on it.
633 *
634 * If any of them fails, then the operation will be reversed and the
635 * ones that were removed will be added back.
636 *
637 * At least one address has to be left; if only one address is
638 * available, the operation will return -EBUSY.
639 *
640 * Only sctp_setsockopt_bindx() is supposed to call this function.
641 */
642 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
643 {
644 struct sctp_sock *sp = sctp_sk(sk);
645 struct sctp_endpoint *ep = sp->ep;
646 int cnt;
647 struct sctp_bind_addr *bp = &ep->base.bind_addr;
648 int retval = 0;
649 void *addr_buf;
650 union sctp_addr *sa_addr;
651 struct sctp_af *af;
652
653 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
654 sk, addrs, addrcnt);
655
656 addr_buf = addrs;
657 for (cnt = 0; cnt < addrcnt; cnt++) {
658 /* If the bind address list is empty or if there is only one
659 * bind address, there is nothing more to be removed (we need
660 * at least one address here).
661 */
662 if (list_empty(&bp->address_list) ||
663 (sctp_list_single_entry(&bp->address_list))) {
664 retval = -EBUSY;
665 goto err_bindx_rem;
666 }
667
668 sa_addr = addr_buf;
669 af = sctp_get_af_specific(sa_addr->sa.sa_family);
670 if (!af) {
671 retval = -EINVAL;
672 goto err_bindx_rem;
673 }
674
675 if (!af->addr_valid(sa_addr, sp, NULL)) {
676 retval = -EADDRNOTAVAIL;
677 goto err_bindx_rem;
678 }
679
680 if (sa_addr->v4.sin_port &&
681 sa_addr->v4.sin_port != htons(bp->port)) {
682 retval = -EINVAL;
683 goto err_bindx_rem;
684 }
685
686 if (!sa_addr->v4.sin_port)
687 sa_addr->v4.sin_port = htons(bp->port);
688
689 /* FIXME - There is probably a need to check if sk->sk_saddr and
690 * sk->sk_rcv_addr are currently set to one of the addresses to
691 * be removed. This is something which needs to be looked into
692 * when we are fixing the outstanding issues with multi-homing
693 * socket routing and failover schemes. Refer to comments in
694 * sctp_do_bind(). -daisy
695 */
696 retval = sctp_del_bind_addr(bp, sa_addr);
697
698 addr_buf += af->sockaddr_len;
699 err_bindx_rem:
700 if (retval < 0) {
701 /* Failed. Add the ones that has been removed back */
702 if (cnt > 0)
703 sctp_bindx_add(sk, addrs, cnt);
704 return retval;
705 }
706 }
707
708 return retval;
709 }
710
711 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
712 * the associations that are part of the endpoint indicating that a list of
713 * local addresses are removed from the endpoint.
714 *
715 * If any of the addresses is already in the bind address list of the
716 * association, we do not send the chunk for that association. But it will not
717 * affect other associations.
718 *
719 * Only sctp_setsockopt_bindx() is supposed to call this function.
720 */
721 static int sctp_send_asconf_del_ip(struct sock *sk,
722 struct sockaddr *addrs,
723 int addrcnt)
724 {
725 struct net *net = sock_net(sk);
726 struct sctp_sock *sp;
727 struct sctp_endpoint *ep;
728 struct sctp_association *asoc;
729 struct sctp_transport *transport;
730 struct sctp_bind_addr *bp;
731 struct sctp_chunk *chunk;
732 union sctp_addr *laddr;
733 void *addr_buf;
734 struct sctp_af *af;
735 struct sctp_sockaddr_entry *saddr;
736 int i;
737 int retval = 0;
738 int stored = 0;
739
740 chunk = NULL;
741 if (!net->sctp.addip_enable)
742 return retval;
743
744 sp = sctp_sk(sk);
745 ep = sp->ep;
746
747 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
748 __func__, sk, addrs, addrcnt);
749
750 list_for_each_entry(asoc, &ep->asocs, asocs) {
751
752 if (!asoc->peer.asconf_capable)
753 continue;
754
755 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
756 continue;
757
758 if (!sctp_state(asoc, ESTABLISHED))
759 continue;
760
761 /* Check if any address in the packed array of addresses is
762 * not present in the bind address list of the association.
763 * If so, do not send the asconf chunk to its peer, but
764 * continue with other associations.
765 */
766 addr_buf = addrs;
767 for (i = 0; i < addrcnt; i++) {
768 laddr = addr_buf;
769 af = sctp_get_af_specific(laddr->v4.sin_family);
770 if (!af) {
771 retval = -EINVAL;
772 goto out;
773 }
774
775 if (!sctp_assoc_lookup_laddr(asoc, laddr))
776 break;
777
778 addr_buf += af->sockaddr_len;
779 }
780 if (i < addrcnt)
781 continue;
782
783 /* Find one address in the association's bind address list
784 * that is not in the packed array of addresses. This is to
785 * make sure that we do not delete all the addresses in the
786 * association.
787 */
788 bp = &asoc->base.bind_addr;
789 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
790 addrcnt, sp);
791 if ((laddr == NULL) && (addrcnt == 1)) {
792 if (asoc->asconf_addr_del_pending)
793 continue;
794 asoc->asconf_addr_del_pending =
795 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
796 if (asoc->asconf_addr_del_pending == NULL) {
797 retval = -ENOMEM;
798 goto out;
799 }
800 asoc->asconf_addr_del_pending->sa.sa_family =
801 addrs->sa_family;
802 asoc->asconf_addr_del_pending->v4.sin_port =
803 htons(bp->port);
804 if (addrs->sa_family == AF_INET) {
805 struct sockaddr_in *sin;
806
807 sin = (struct sockaddr_in *)addrs;
808 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
809 } else if (addrs->sa_family == AF_INET6) {
810 struct sockaddr_in6 *sin6;
811
812 sin6 = (struct sockaddr_in6 *)addrs;
813 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
814 }
815 SCTP_DEBUG_PRINTK_IPADDR("send_asconf_del_ip: keep the last address asoc: %p ",
816 " at %p\n", asoc, asoc->asconf_addr_del_pending,
817 asoc->asconf_addr_del_pending);
818 asoc->src_out_of_asoc_ok = 1;
819 stored = 1;
820 goto skip_mkasconf;
821 }
822
823 /* We do not need RCU protection throughout this loop
824 * because this is done under a socket lock from the
825 * setsockopt call.
826 */
827 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
828 SCTP_PARAM_DEL_IP);
829 if (!chunk) {
830 retval = -ENOMEM;
831 goto out;
832 }
833
834 skip_mkasconf:
835 /* Reset use_as_src flag for the addresses in the bind address
836 * list that are to be deleted.
837 */
838 addr_buf = addrs;
839 for (i = 0; i < addrcnt; i++) {
840 laddr = addr_buf;
841 af = sctp_get_af_specific(laddr->v4.sin_family);
842 list_for_each_entry(saddr, &bp->address_list, list) {
843 if (sctp_cmp_addr_exact(&saddr->a, laddr))
844 saddr->state = SCTP_ADDR_DEL;
845 }
846 addr_buf += af->sockaddr_len;
847 }
848
849 /* Update the route and saddr entries for all the transports
850 * as some of the addresses in the bind address list are
851 * about to be deleted and cannot be used as source addresses.
852 */
853 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
854 transports) {
855 dst_release(transport->dst);
856 sctp_transport_route(transport, NULL,
857 sctp_sk(asoc->base.sk));
858 }
859
860 if (stored)
861 /* We don't need to transmit ASCONF */
862 continue;
863 retval = sctp_send_asconf(asoc, chunk);
864 }
865 out:
866 return retval;
867 }
868
869 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
870 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
871 {
872 struct sock *sk = sctp_opt2sk(sp);
873 union sctp_addr *addr;
874 struct sctp_af *af;
875
876 /* It is safe to write port space in caller. */
877 addr = &addrw->a;
878 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
879 af = sctp_get_af_specific(addr->sa.sa_family);
880 if (!af)
881 return -EINVAL;
882 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
883 return -EINVAL;
884
885 if (addrw->state == SCTP_ADDR_NEW)
886 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
887 else
888 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
889 }
890
891 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
892 *
893 * API 8.1
894 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
895 * int flags);
896 *
897 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
898 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
899 * or IPv6 addresses.
900 *
901 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
902 * Section 3.1.2 for this usage.
903 *
904 * addrs is a pointer to an array of one or more socket addresses. Each
905 * address is contained in its appropriate structure (i.e. struct
906 * sockaddr_in or struct sockaddr_in6) the family of the address type
907 * must be used to distinguish the address length (note that this
908 * representation is termed a "packed array" of addresses). The caller
909 * specifies the number of addresses in the array with addrcnt.
910 *
911 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
912 * -1, and sets errno to the appropriate error code.
913 *
914 * For SCTP, the port given in each socket address must be the same, or
915 * sctp_bindx() will fail, setting errno to EINVAL.
916 *
917 * The flags parameter is formed from the bitwise OR of zero or more of
918 * the following currently defined flags:
919 *
920 * SCTP_BINDX_ADD_ADDR
921 *
922 * SCTP_BINDX_REM_ADDR
923 *
924 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
925 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
926 * addresses from the association. The two flags are mutually exclusive;
927 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
928 * not remove all addresses from an association; sctp_bindx() will
929 * reject such an attempt with EINVAL.
930 *
931 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
932 * additional addresses with an endpoint after calling bind(). Or use
933 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
934 * socket is associated with so that no new association accepted will be
935 * associated with those addresses. If the endpoint supports dynamic
936 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
937 * endpoint to send the appropriate message to the peer to change the
938 * peers address lists.
939 *
940 * Adding and removing addresses from a connected association is
941 * optional functionality. Implementations that do not support this
942 * functionality should return EOPNOTSUPP.
943 *
944 * Basically do nothing but copying the addresses from user to kernel
945 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
946 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
947 * from userspace.
948 *
949 * We don't use copy_from_user() for optimization: we first do the
950 * sanity checks (buffer size -fast- and access check-healthy
951 * pointer); if all of those succeed, then we can alloc the memory
952 * (expensive operation) needed to copy the data to kernel. Then we do
953 * the copying without checking the user space area
954 * (__copy_from_user()).
955 *
956 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
957 * it.
958 *
959 * sk The sk of the socket
960 * addrs The pointer to the addresses in user land
961 * addrssize Size of the addrs buffer
962 * op Operation to perform (add or remove, see the flags of
963 * sctp_bindx)
964 *
965 * Returns 0 if ok, <0 errno code on error.
966 */
967 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
968 struct sockaddr __user *addrs,
969 int addrs_size, int op)
970 {
971 struct sockaddr *kaddrs;
972 int err;
973 int addrcnt = 0;
974 int walk_size = 0;
975 struct sockaddr *sa_addr;
976 void *addr_buf;
977 struct sctp_af *af;
978
979 SCTP_DEBUG_PRINTK("sctp_setsockopt_bindx: sk %p addrs %p"
980 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
981
982 if (unlikely(addrs_size <= 0))
983 return -EINVAL;
984
985 /* Check the user passed a healthy pointer. */
986 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
987 return -EFAULT;
988
989 /* Alloc space for the address array in kernel memory. */
990 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
991 if (unlikely(!kaddrs))
992 return -ENOMEM;
993
994 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
995 kfree(kaddrs);
996 return -EFAULT;
997 }
998
999 /* Walk through the addrs buffer and count the number of addresses. */
1000 addr_buf = kaddrs;
1001 while (walk_size < addrs_size) {
1002 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1003 kfree(kaddrs);
1004 return -EINVAL;
1005 }
1006
1007 sa_addr = addr_buf;
1008 af = sctp_get_af_specific(sa_addr->sa_family);
1009
1010 /* If the address family is not supported or if this address
1011 * causes the address buffer to overflow return EINVAL.
1012 */
1013 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1014 kfree(kaddrs);
1015 return -EINVAL;
1016 }
1017 addrcnt++;
1018 addr_buf += af->sockaddr_len;
1019 walk_size += af->sockaddr_len;
1020 }
1021
1022 /* Do the work. */
1023 switch (op) {
1024 case SCTP_BINDX_ADD_ADDR:
1025 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1026 if (err)
1027 goto out;
1028 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1029 break;
1030
1031 case SCTP_BINDX_REM_ADDR:
1032 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1033 if (err)
1034 goto out;
1035 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1036 break;
1037
1038 default:
1039 err = -EINVAL;
1040 break;
1041 }
1042
1043 out:
1044 kfree(kaddrs);
1045
1046 return err;
1047 }
1048
1049 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1050 *
1051 * Common routine for handling connect() and sctp_connectx().
1052 * Connect will come in with just a single address.
1053 */
1054 static int __sctp_connect(struct sock* sk,
1055 struct sockaddr *kaddrs,
1056 int addrs_size,
1057 sctp_assoc_t *assoc_id)
1058 {
1059 struct net *net = sock_net(sk);
1060 struct sctp_sock *sp;
1061 struct sctp_endpoint *ep;
1062 struct sctp_association *asoc = NULL;
1063 struct sctp_association *asoc2;
1064 struct sctp_transport *transport;
1065 union sctp_addr to;
1066 struct sctp_af *af;
1067 sctp_scope_t scope;
1068 long timeo;
1069 int err = 0;
1070 int addrcnt = 0;
1071 int walk_size = 0;
1072 union sctp_addr *sa_addr = NULL;
1073 void *addr_buf;
1074 unsigned short port;
1075 unsigned int f_flags = 0;
1076
1077 sp = sctp_sk(sk);
1078 ep = sp->ep;
1079
1080 /* connect() cannot be done on a socket that is already in ESTABLISHED
1081 * state - UDP-style peeled off socket or a TCP-style socket that
1082 * is already connected.
1083 * It cannot be done even on a TCP-style listening socket.
1084 */
1085 if (sctp_sstate(sk, ESTABLISHED) ||
1086 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1087 err = -EISCONN;
1088 goto out_free;
1089 }
1090
1091 /* Walk through the addrs buffer and count the number of addresses. */
1092 addr_buf = kaddrs;
1093 while (walk_size < addrs_size) {
1094 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1095 err = -EINVAL;
1096 goto out_free;
1097 }
1098
1099 sa_addr = addr_buf;
1100 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1101
1102 /* If the address family is not supported or if this address
1103 * causes the address buffer to overflow return EINVAL.
1104 */
1105 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1106 err = -EINVAL;
1107 goto out_free;
1108 }
1109
1110 port = ntohs(sa_addr->v4.sin_port);
1111
1112 /* Save current address so we can work with it */
1113 memcpy(&to, sa_addr, af->sockaddr_len);
1114
1115 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1116 if (err)
1117 goto out_free;
1118
1119 /* Make sure the destination port is correctly set
1120 * in all addresses.
1121 */
1122 if (asoc && asoc->peer.port && asoc->peer.port != port)
1123 goto out_free;
1124
1125
1126 /* Check if there already is a matching association on the
1127 * endpoint (other than the one created here).
1128 */
1129 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1130 if (asoc2 && asoc2 != asoc) {
1131 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1132 err = -EISCONN;
1133 else
1134 err = -EALREADY;
1135 goto out_free;
1136 }
1137
1138 /* If we could not find a matching association on the endpoint,
1139 * make sure that there is no peeled-off association matching
1140 * the peer address even on another socket.
1141 */
1142 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1143 err = -EADDRNOTAVAIL;
1144 goto out_free;
1145 }
1146
1147 if (!asoc) {
1148 /* If a bind() or sctp_bindx() is not called prior to
1149 * an sctp_connectx() call, the system picks an
1150 * ephemeral port and will choose an address set
1151 * equivalent to binding with a wildcard address.
1152 */
1153 if (!ep->base.bind_addr.port) {
1154 if (sctp_autobind(sk)) {
1155 err = -EAGAIN;
1156 goto out_free;
1157 }
1158 } else {
1159 /*
1160 * If an unprivileged user inherits a 1-many
1161 * style socket with open associations on a
1162 * privileged port, it MAY be permitted to
1163 * accept new associations, but it SHOULD NOT
1164 * be permitted to open new associations.
1165 */
1166 if (ep->base.bind_addr.port < PROT_SOCK &&
1167 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1168 err = -EACCES;
1169 goto out_free;
1170 }
1171 }
1172
1173 scope = sctp_scope(&to);
1174 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1175 if (!asoc) {
1176 err = -ENOMEM;
1177 goto out_free;
1178 }
1179
1180 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1181 GFP_KERNEL);
1182 if (err < 0) {
1183 goto out_free;
1184 }
1185
1186 }
1187
1188 /* Prime the peer's transport structures. */
1189 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1190 SCTP_UNKNOWN);
1191 if (!transport) {
1192 err = -ENOMEM;
1193 goto out_free;
1194 }
1195
1196 addrcnt++;
1197 addr_buf += af->sockaddr_len;
1198 walk_size += af->sockaddr_len;
1199 }
1200
1201 /* In case the user of sctp_connectx() wants an association
1202 * id back, assign one now.
1203 */
1204 if (assoc_id) {
1205 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1206 if (err < 0)
1207 goto out_free;
1208 }
1209
1210 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1211 if (err < 0) {
1212 goto out_free;
1213 }
1214
1215 /* Initialize sk's dport and daddr for getpeername() */
1216 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1217 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1218 af->to_sk_daddr(sa_addr, sk);
1219 sk->sk_err = 0;
1220
1221 /* in-kernel sockets don't generally have a file allocated to them
1222 * if all they do is call sock_create_kern().
1223 */
1224 if (sk->sk_socket->file)
1225 f_flags = sk->sk_socket->file->f_flags;
1226
1227 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1228
1229 err = sctp_wait_for_connect(asoc, &timeo);
1230 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1231 *assoc_id = asoc->assoc_id;
1232
1233 /* Don't free association on exit. */
1234 asoc = NULL;
1235
1236 out_free:
1237
1238 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1239 " kaddrs: %p err: %d\n",
1240 asoc, kaddrs, err);
1241 if (asoc) {
1242 /* sctp_primitive_ASSOCIATE may have added this association
1243 * To the hash table, try to unhash it, just in case, its a noop
1244 * if it wasn't hashed so we're safe
1245 */
1246 sctp_unhash_established(asoc);
1247 sctp_association_free(asoc);
1248 }
1249 return err;
1250 }
1251
1252 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1253 *
1254 * API 8.9
1255 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1256 * sctp_assoc_t *asoc);
1257 *
1258 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1259 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1260 * or IPv6 addresses.
1261 *
1262 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1263 * Section 3.1.2 for this usage.
1264 *
1265 * addrs is a pointer to an array of one or more socket addresses. Each
1266 * address is contained in its appropriate structure (i.e. struct
1267 * sockaddr_in or struct sockaddr_in6) the family of the address type
1268 * must be used to distengish the address length (note that this
1269 * representation is termed a "packed array" of addresses). The caller
1270 * specifies the number of addresses in the array with addrcnt.
1271 *
1272 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1273 * the association id of the new association. On failure, sctp_connectx()
1274 * returns -1, and sets errno to the appropriate error code. The assoc_id
1275 * is not touched by the kernel.
1276 *
1277 * For SCTP, the port given in each socket address must be the same, or
1278 * sctp_connectx() will fail, setting errno to EINVAL.
1279 *
1280 * An application can use sctp_connectx to initiate an association with
1281 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1282 * allows a caller to specify multiple addresses at which a peer can be
1283 * reached. The way the SCTP stack uses the list of addresses to set up
1284 * the association is implementation dependent. This function only
1285 * specifies that the stack will try to make use of all the addresses in
1286 * the list when needed.
1287 *
1288 * Note that the list of addresses passed in is only used for setting up
1289 * the association. It does not necessarily equal the set of addresses
1290 * the peer uses for the resulting association. If the caller wants to
1291 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1292 * retrieve them after the association has been set up.
1293 *
1294 * Basically do nothing but copying the addresses from user to kernel
1295 * land and invoking either sctp_connectx(). This is used for tunneling
1296 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1297 *
1298 * We don't use copy_from_user() for optimization: we first do the
1299 * sanity checks (buffer size -fast- and access check-healthy
1300 * pointer); if all of those succeed, then we can alloc the memory
1301 * (expensive operation) needed to copy the data to kernel. Then we do
1302 * the copying without checking the user space area
1303 * (__copy_from_user()).
1304 *
1305 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1306 * it.
1307 *
1308 * sk The sk of the socket
1309 * addrs The pointer to the addresses in user land
1310 * addrssize Size of the addrs buffer
1311 *
1312 * Returns >=0 if ok, <0 errno code on error.
1313 */
1314 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1315 struct sockaddr __user *addrs,
1316 int addrs_size,
1317 sctp_assoc_t *assoc_id)
1318 {
1319 int err = 0;
1320 struct sockaddr *kaddrs;
1321
1322 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1323 __func__, sk, addrs, addrs_size);
1324
1325 if (unlikely(addrs_size <= 0))
1326 return -EINVAL;
1327
1328 /* Check the user passed a healthy pointer. */
1329 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1330 return -EFAULT;
1331
1332 /* Alloc space for the address array in kernel memory. */
1333 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1334 if (unlikely(!kaddrs))
1335 return -ENOMEM;
1336
1337 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1338 err = -EFAULT;
1339 } else {
1340 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1341 }
1342
1343 kfree(kaddrs);
1344
1345 return err;
1346 }
1347
1348 /*
1349 * This is an older interface. It's kept for backward compatibility
1350 * to the option that doesn't provide association id.
1351 */
1352 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1353 struct sockaddr __user *addrs,
1354 int addrs_size)
1355 {
1356 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1357 }
1358
1359 /*
1360 * New interface for the API. The since the API is done with a socket
1361 * option, to make it simple we feed back the association id is as a return
1362 * indication to the call. Error is always negative and association id is
1363 * always positive.
1364 */
1365 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1366 struct sockaddr __user *addrs,
1367 int addrs_size)
1368 {
1369 sctp_assoc_t assoc_id = 0;
1370 int err = 0;
1371
1372 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1373
1374 if (err)
1375 return err;
1376 else
1377 return assoc_id;
1378 }
1379
1380 /*
1381 * New (hopefully final) interface for the API.
1382 * We use the sctp_getaddrs_old structure so that use-space library
1383 * can avoid any unnecessary allocations. The only defferent part
1384 * is that we store the actual length of the address buffer into the
1385 * addrs_num structure member. That way we can re-use the existing
1386 * code.
1387 */
1388 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1389 char __user *optval,
1390 int __user *optlen)
1391 {
1392 struct sctp_getaddrs_old param;
1393 sctp_assoc_t assoc_id = 0;
1394 int err = 0;
1395
1396 if (len < sizeof(param))
1397 return -EINVAL;
1398
1399 if (copy_from_user(&param, optval, sizeof(param)))
1400 return -EFAULT;
1401
1402 err = __sctp_setsockopt_connectx(sk,
1403 (struct sockaddr __user *)param.addrs,
1404 param.addr_num, &assoc_id);
1405
1406 if (err == 0 || err == -EINPROGRESS) {
1407 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1408 return -EFAULT;
1409 if (put_user(sizeof(assoc_id), optlen))
1410 return -EFAULT;
1411 }
1412
1413 return err;
1414 }
1415
1416 /* API 3.1.4 close() - UDP Style Syntax
1417 * Applications use close() to perform graceful shutdown (as described in
1418 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1419 * by a UDP-style socket.
1420 *
1421 * The syntax is
1422 *
1423 * ret = close(int sd);
1424 *
1425 * sd - the socket descriptor of the associations to be closed.
1426 *
1427 * To gracefully shutdown a specific association represented by the
1428 * UDP-style socket, an application should use the sendmsg() call,
1429 * passing no user data, but including the appropriate flag in the
1430 * ancillary data (see Section xxxx).
1431 *
1432 * If sd in the close() call is a branched-off socket representing only
1433 * one association, the shutdown is performed on that association only.
1434 *
1435 * 4.1.6 close() - TCP Style Syntax
1436 *
1437 * Applications use close() to gracefully close down an association.
1438 *
1439 * The syntax is:
1440 *
1441 * int close(int sd);
1442 *
1443 * sd - the socket descriptor of the association to be closed.
1444 *
1445 * After an application calls close() on a socket descriptor, no further
1446 * socket operations will succeed on that descriptor.
1447 *
1448 * API 7.1.4 SO_LINGER
1449 *
1450 * An application using the TCP-style socket can use this option to
1451 * perform the SCTP ABORT primitive. The linger option structure is:
1452 *
1453 * struct linger {
1454 * int l_onoff; // option on/off
1455 * int l_linger; // linger time
1456 * };
1457 *
1458 * To enable the option, set l_onoff to 1. If the l_linger value is set
1459 * to 0, calling close() is the same as the ABORT primitive. If the
1460 * value is set to a negative value, the setsockopt() call will return
1461 * an error. If the value is set to a positive value linger_time, the
1462 * close() can be blocked for at most linger_time ms. If the graceful
1463 * shutdown phase does not finish during this period, close() will
1464 * return but the graceful shutdown phase continues in the system.
1465 */
1466 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1467 {
1468 struct net *net = sock_net(sk);
1469 struct sctp_endpoint *ep;
1470 struct sctp_association *asoc;
1471 struct list_head *pos, *temp;
1472 unsigned int data_was_unread;
1473
1474 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1475
1476 sctp_lock_sock(sk);
1477 sk->sk_shutdown = SHUTDOWN_MASK;
1478 sk->sk_state = SCTP_SS_CLOSING;
1479
1480 ep = sctp_sk(sk)->ep;
1481
1482 /* Clean up any skbs sitting on the receive queue. */
1483 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1484 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1485
1486 /* Walk all associations on an endpoint. */
1487 list_for_each_safe(pos, temp, &ep->asocs) {
1488 asoc = list_entry(pos, struct sctp_association, asocs);
1489
1490 if (sctp_style(sk, TCP)) {
1491 /* A closed association can still be in the list if
1492 * it belongs to a TCP-style listening socket that is
1493 * not yet accepted. If so, free it. If not, send an
1494 * ABORT or SHUTDOWN based on the linger options.
1495 */
1496 if (sctp_state(asoc, CLOSED)) {
1497 sctp_unhash_established(asoc);
1498 sctp_association_free(asoc);
1499 continue;
1500 }
1501 }
1502
1503 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1504 !skb_queue_empty(&asoc->ulpq.reasm) ||
1505 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1506 struct sctp_chunk *chunk;
1507
1508 chunk = sctp_make_abort_user(asoc, NULL, 0);
1509 if (chunk)
1510 sctp_primitive_ABORT(net, asoc, chunk);
1511 } else
1512 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1513 }
1514
1515 /* On a TCP-style socket, block for at most linger_time if set. */
1516 if (sctp_style(sk, TCP) && timeout)
1517 sctp_wait_for_close(sk, timeout);
1518
1519 /* This will run the backlog queue. */
1520 sctp_release_sock(sk);
1521
1522 /* Supposedly, no process has access to the socket, but
1523 * the net layers still may.
1524 */
1525 sctp_local_bh_disable();
1526 sctp_bh_lock_sock(sk);
1527
1528 /* Hold the sock, since sk_common_release() will put sock_put()
1529 * and we have just a little more cleanup.
1530 */
1531 sock_hold(sk);
1532 sk_common_release(sk);
1533
1534 sctp_bh_unlock_sock(sk);
1535 sctp_local_bh_enable();
1536
1537 sock_put(sk);
1538
1539 SCTP_DBG_OBJCNT_DEC(sock);
1540 }
1541
1542 /* Handle EPIPE error. */
1543 static int sctp_error(struct sock *sk, int flags, int err)
1544 {
1545 if (err == -EPIPE)
1546 err = sock_error(sk) ? : -EPIPE;
1547 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1548 send_sig(SIGPIPE, current, 0);
1549 return err;
1550 }
1551
1552 /* API 3.1.3 sendmsg() - UDP Style Syntax
1553 *
1554 * An application uses sendmsg() and recvmsg() calls to transmit data to
1555 * and receive data from its peer.
1556 *
1557 * ssize_t sendmsg(int socket, const struct msghdr *message,
1558 * int flags);
1559 *
1560 * socket - the socket descriptor of the endpoint.
1561 * message - pointer to the msghdr structure which contains a single
1562 * user message and possibly some ancillary data.
1563 *
1564 * See Section 5 for complete description of the data
1565 * structures.
1566 *
1567 * flags - flags sent or received with the user message, see Section
1568 * 5 for complete description of the flags.
1569 *
1570 * Note: This function could use a rewrite especially when explicit
1571 * connect support comes in.
1572 */
1573 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1574
1575 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1576
1577 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1578 struct msghdr *msg, size_t msg_len)
1579 {
1580 struct net *net = sock_net(sk);
1581 struct sctp_sock *sp;
1582 struct sctp_endpoint *ep;
1583 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1584 struct sctp_transport *transport, *chunk_tp;
1585 struct sctp_chunk *chunk;
1586 union sctp_addr to;
1587 struct sockaddr *msg_name = NULL;
1588 struct sctp_sndrcvinfo default_sinfo;
1589 struct sctp_sndrcvinfo *sinfo;
1590 struct sctp_initmsg *sinit;
1591 sctp_assoc_t associd = 0;
1592 sctp_cmsgs_t cmsgs = { NULL };
1593 int err;
1594 sctp_scope_t scope;
1595 long timeo;
1596 __u16 sinfo_flags = 0;
1597 struct sctp_datamsg *datamsg;
1598 int msg_flags = msg->msg_flags;
1599
1600 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1601 sk, msg, msg_len);
1602
1603 err = 0;
1604 sp = sctp_sk(sk);
1605 ep = sp->ep;
1606
1607 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1608
1609 /* We cannot send a message over a TCP-style listening socket. */
1610 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1611 err = -EPIPE;
1612 goto out_nounlock;
1613 }
1614
1615 /* Parse out the SCTP CMSGs. */
1616 err = sctp_msghdr_parse(msg, &cmsgs);
1617
1618 if (err) {
1619 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1620 goto out_nounlock;
1621 }
1622
1623 /* Fetch the destination address for this packet. This
1624 * address only selects the association--it is not necessarily
1625 * the address we will send to.
1626 * For a peeled-off socket, msg_name is ignored.
1627 */
1628 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1629 int msg_namelen = msg->msg_namelen;
1630
1631 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1632 msg_namelen);
1633 if (err)
1634 return err;
1635
1636 if (msg_namelen > sizeof(to))
1637 msg_namelen = sizeof(to);
1638 memcpy(&to, msg->msg_name, msg_namelen);
1639 msg_name = msg->msg_name;
1640 }
1641
1642 sinfo = cmsgs.info;
1643 sinit = cmsgs.init;
1644
1645 /* Did the user specify SNDRCVINFO? */
1646 if (sinfo) {
1647 sinfo_flags = sinfo->sinfo_flags;
1648 associd = sinfo->sinfo_assoc_id;
1649 }
1650
1651 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1652 msg_len, sinfo_flags);
1653
1654 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1655 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1656 err = -EINVAL;
1657 goto out_nounlock;
1658 }
1659
1660 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1661 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1662 * If SCTP_ABORT is set, the message length could be non zero with
1663 * the msg_iov set to the user abort reason.
1664 */
1665 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1666 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1667 err = -EINVAL;
1668 goto out_nounlock;
1669 }
1670
1671 /* If SCTP_ADDR_OVER is set, there must be an address
1672 * specified in msg_name.
1673 */
1674 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1675 err = -EINVAL;
1676 goto out_nounlock;
1677 }
1678
1679 transport = NULL;
1680
1681 SCTP_DEBUG_PRINTK("About to look up association.\n");
1682
1683 sctp_lock_sock(sk);
1684
1685 /* If a msg_name has been specified, assume this is to be used. */
1686 if (msg_name) {
1687 /* Look for a matching association on the endpoint. */
1688 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1689 if (!asoc) {
1690 /* If we could not find a matching association on the
1691 * endpoint, make sure that it is not a TCP-style
1692 * socket that already has an association or there is
1693 * no peeled-off association on another socket.
1694 */
1695 if ((sctp_style(sk, TCP) &&
1696 sctp_sstate(sk, ESTABLISHED)) ||
1697 sctp_endpoint_is_peeled_off(ep, &to)) {
1698 err = -EADDRNOTAVAIL;
1699 goto out_unlock;
1700 }
1701 }
1702 } else {
1703 asoc = sctp_id2assoc(sk, associd);
1704 if (!asoc) {
1705 err = -EPIPE;
1706 goto out_unlock;
1707 }
1708 }
1709
1710 if (asoc) {
1711 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1712
1713 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1714 * socket that has an association in CLOSED state. This can
1715 * happen when an accepted socket has an association that is
1716 * already CLOSED.
1717 */
1718 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1719 err = -EPIPE;
1720 goto out_unlock;
1721 }
1722
1723 if (sinfo_flags & SCTP_EOF) {
1724 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1725 asoc);
1726 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1727 err = 0;
1728 goto out_unlock;
1729 }
1730 if (sinfo_flags & SCTP_ABORT) {
1731
1732 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1733 if (!chunk) {
1734 err = -ENOMEM;
1735 goto out_unlock;
1736 }
1737
1738 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1739 sctp_primitive_ABORT(net, asoc, chunk);
1740 err = 0;
1741 goto out_unlock;
1742 }
1743 }
1744
1745 /* Do we need to create the association? */
1746 if (!asoc) {
1747 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1748
1749 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1750 err = -EINVAL;
1751 goto out_unlock;
1752 }
1753
1754 /* Check for invalid stream against the stream counts,
1755 * either the default or the user specified stream counts.
1756 */
1757 if (sinfo) {
1758 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1759 /* Check against the defaults. */
1760 if (sinfo->sinfo_stream >=
1761 sp->initmsg.sinit_num_ostreams) {
1762 err = -EINVAL;
1763 goto out_unlock;
1764 }
1765 } else {
1766 /* Check against the requested. */
1767 if (sinfo->sinfo_stream >=
1768 sinit->sinit_num_ostreams) {
1769 err = -EINVAL;
1770 goto out_unlock;
1771 }
1772 }
1773 }
1774
1775 /*
1776 * API 3.1.2 bind() - UDP Style Syntax
1777 * If a bind() or sctp_bindx() is not called prior to a
1778 * sendmsg() call that initiates a new association, the
1779 * system picks an ephemeral port and will choose an address
1780 * set equivalent to binding with a wildcard address.
1781 */
1782 if (!ep->base.bind_addr.port) {
1783 if (sctp_autobind(sk)) {
1784 err = -EAGAIN;
1785 goto out_unlock;
1786 }
1787 } else {
1788 /*
1789 * If an unprivileged user inherits a one-to-many
1790 * style socket with open associations on a privileged
1791 * port, it MAY be permitted to accept new associations,
1792 * but it SHOULD NOT be permitted to open new
1793 * associations.
1794 */
1795 if (ep->base.bind_addr.port < PROT_SOCK &&
1796 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1797 err = -EACCES;
1798 goto out_unlock;
1799 }
1800 }
1801
1802 scope = sctp_scope(&to);
1803 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1804 if (!new_asoc) {
1805 err = -ENOMEM;
1806 goto out_unlock;
1807 }
1808 asoc = new_asoc;
1809 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1810 if (err < 0) {
1811 err = -ENOMEM;
1812 goto out_free;
1813 }
1814
1815 /* If the SCTP_INIT ancillary data is specified, set all
1816 * the association init values accordingly.
1817 */
1818 if (sinit) {
1819 if (sinit->sinit_num_ostreams) {
1820 asoc->c.sinit_num_ostreams =
1821 sinit->sinit_num_ostreams;
1822 }
1823 if (sinit->sinit_max_instreams) {
1824 asoc->c.sinit_max_instreams =
1825 sinit->sinit_max_instreams;
1826 }
1827 if (sinit->sinit_max_attempts) {
1828 asoc->max_init_attempts
1829 = sinit->sinit_max_attempts;
1830 }
1831 if (sinit->sinit_max_init_timeo) {
1832 asoc->max_init_timeo =
1833 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1834 }
1835 }
1836
1837 /* Prime the peer's transport structures. */
1838 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1839 if (!transport) {
1840 err = -ENOMEM;
1841 goto out_free;
1842 }
1843 }
1844
1845 /* ASSERT: we have a valid association at this point. */
1846 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1847
1848 if (!sinfo) {
1849 /* If the user didn't specify SNDRCVINFO, make up one with
1850 * some defaults.
1851 */
1852 memset(&default_sinfo, 0, sizeof(default_sinfo));
1853 default_sinfo.sinfo_stream = asoc->default_stream;
1854 default_sinfo.sinfo_flags = asoc->default_flags;
1855 default_sinfo.sinfo_ppid = asoc->default_ppid;
1856 default_sinfo.sinfo_context = asoc->default_context;
1857 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1858 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1859 sinfo = &default_sinfo;
1860 }
1861
1862 /* API 7.1.7, the sndbuf size per association bounds the
1863 * maximum size of data that can be sent in a single send call.
1864 */
1865 if (msg_len > sk->sk_sndbuf) {
1866 err = -EMSGSIZE;
1867 goto out_free;
1868 }
1869
1870 if (asoc->pmtu_pending)
1871 sctp_assoc_pending_pmtu(sk, asoc);
1872
1873 /* If fragmentation is disabled and the message length exceeds the
1874 * association fragmentation point, return EMSGSIZE. The I-D
1875 * does not specify what this error is, but this looks like
1876 * a great fit.
1877 */
1878 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1879 err = -EMSGSIZE;
1880 goto out_free;
1881 }
1882
1883 /* Check for invalid stream. */
1884 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1885 err = -EINVAL;
1886 goto out_free;
1887 }
1888
1889 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1890 if (!sctp_wspace(asoc)) {
1891 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1892 if (err)
1893 goto out_free;
1894 }
1895
1896 /* If an address is passed with the sendto/sendmsg call, it is used
1897 * to override the primary destination address in the TCP model, or
1898 * when SCTP_ADDR_OVER flag is set in the UDP model.
1899 */
1900 if ((sctp_style(sk, TCP) && msg_name) ||
1901 (sinfo_flags & SCTP_ADDR_OVER)) {
1902 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1903 if (!chunk_tp) {
1904 err = -EINVAL;
1905 goto out_free;
1906 }
1907 } else
1908 chunk_tp = NULL;
1909
1910 /* Auto-connect, if we aren't connected already. */
1911 if (sctp_state(asoc, CLOSED)) {
1912 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1913 if (err < 0)
1914 goto out_free;
1915 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1916 }
1917
1918 /* Break the message into multiple chunks of maximum size. */
1919 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1920 if (IS_ERR(datamsg)) {
1921 err = PTR_ERR(datamsg);
1922 goto out_free;
1923 }
1924
1925 /* Now send the (possibly) fragmented message. */
1926 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1927 sctp_chunk_hold(chunk);
1928
1929 /* Do accounting for the write space. */
1930 sctp_set_owner_w(chunk);
1931
1932 chunk->transport = chunk_tp;
1933 }
1934
1935 /* Send it to the lower layers. Note: all chunks
1936 * must either fail or succeed. The lower layer
1937 * works that way today. Keep it that way or this
1938 * breaks.
1939 */
1940 err = sctp_primitive_SEND(net, asoc, datamsg);
1941 /* Did the lower layer accept the chunk? */
1942 if (err)
1943 sctp_datamsg_free(datamsg);
1944 else
1945 sctp_datamsg_put(datamsg);
1946
1947 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1948
1949 if (err)
1950 goto out_free;
1951 else
1952 err = msg_len;
1953
1954 /* If we are already past ASSOCIATE, the lower
1955 * layers are responsible for association cleanup.
1956 */
1957 goto out_unlock;
1958
1959 out_free:
1960 if (new_asoc) {
1961 sctp_unhash_established(asoc);
1962 sctp_association_free(asoc);
1963 }
1964 out_unlock:
1965 sctp_release_sock(sk);
1966
1967 out_nounlock:
1968 return sctp_error(sk, msg_flags, err);
1969
1970 #if 0
1971 do_sock_err:
1972 if (msg_len)
1973 err = msg_len;
1974 else
1975 err = sock_error(sk);
1976 goto out;
1977
1978 do_interrupted:
1979 if (msg_len)
1980 err = msg_len;
1981 goto out;
1982 #endif /* 0 */
1983 }
1984
1985 /* This is an extended version of skb_pull() that removes the data from the
1986 * start of a skb even when data is spread across the list of skb's in the
1987 * frag_list. len specifies the total amount of data that needs to be removed.
1988 * when 'len' bytes could be removed from the skb, it returns 0.
1989 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1990 * could not be removed.
1991 */
1992 static int sctp_skb_pull(struct sk_buff *skb, int len)
1993 {
1994 struct sk_buff *list;
1995 int skb_len = skb_headlen(skb);
1996 int rlen;
1997
1998 if (len <= skb_len) {
1999 __skb_pull(skb, len);
2000 return 0;
2001 }
2002 len -= skb_len;
2003 __skb_pull(skb, skb_len);
2004
2005 skb_walk_frags(skb, list) {
2006 rlen = sctp_skb_pull(list, len);
2007 skb->len -= (len-rlen);
2008 skb->data_len -= (len-rlen);
2009
2010 if (!rlen)
2011 return 0;
2012
2013 len = rlen;
2014 }
2015
2016 return len;
2017 }
2018
2019 /* API 3.1.3 recvmsg() - UDP Style Syntax
2020 *
2021 * ssize_t recvmsg(int socket, struct msghdr *message,
2022 * int flags);
2023 *
2024 * socket - the socket descriptor of the endpoint.
2025 * message - pointer to the msghdr structure which contains a single
2026 * user message and possibly some ancillary data.
2027 *
2028 * See Section 5 for complete description of the data
2029 * structures.
2030 *
2031 * flags - flags sent or received with the user message, see Section
2032 * 5 for complete description of the flags.
2033 */
2034 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
2035
2036 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2037 struct msghdr *msg, size_t len, int noblock,
2038 int flags, int *addr_len)
2039 {
2040 struct sctp_ulpevent *event = NULL;
2041 struct sctp_sock *sp = sctp_sk(sk);
2042 struct sk_buff *skb;
2043 int copied;
2044 int err = 0;
2045 int skb_len;
2046
2047 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
2048 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
2049 "len", len, "knoblauch", noblock,
2050 "flags", flags, "addr_len", addr_len);
2051
2052 sctp_lock_sock(sk);
2053
2054 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2055 err = -ENOTCONN;
2056 goto out;
2057 }
2058
2059 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2060 if (!skb)
2061 goto out;
2062
2063 /* Get the total length of the skb including any skb's in the
2064 * frag_list.
2065 */
2066 skb_len = skb->len;
2067
2068 copied = skb_len;
2069 if (copied > len)
2070 copied = len;
2071
2072 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2073
2074 event = sctp_skb2event(skb);
2075
2076 if (err)
2077 goto out_free;
2078
2079 sock_recv_ts_and_drops(msg, sk, skb);
2080 if (sctp_ulpevent_is_notification(event)) {
2081 msg->msg_flags |= MSG_NOTIFICATION;
2082 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2083 } else {
2084 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2085 }
2086
2087 /* Check if we allow SCTP_SNDRCVINFO. */
2088 if (sp->subscribe.sctp_data_io_event)
2089 sctp_ulpevent_read_sndrcvinfo(event, msg);
2090 #if 0
2091 /* FIXME: we should be calling IP/IPv6 layers. */
2092 if (sk->sk_protinfo.af_inet.cmsg_flags)
2093 ip_cmsg_recv(msg, skb);
2094 #endif
2095
2096 err = copied;
2097
2098 /* If skb's length exceeds the user's buffer, update the skb and
2099 * push it back to the receive_queue so that the next call to
2100 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2101 */
2102 if (skb_len > copied) {
2103 msg->msg_flags &= ~MSG_EOR;
2104 if (flags & MSG_PEEK)
2105 goto out_free;
2106 sctp_skb_pull(skb, copied);
2107 skb_queue_head(&sk->sk_receive_queue, skb);
2108
2109 /* When only partial message is copied to the user, increase
2110 * rwnd by that amount. If all the data in the skb is read,
2111 * rwnd is updated when the event is freed.
2112 */
2113 if (!sctp_ulpevent_is_notification(event))
2114 sctp_assoc_rwnd_increase(event->asoc, copied);
2115 goto out;
2116 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2117 (event->msg_flags & MSG_EOR))
2118 msg->msg_flags |= MSG_EOR;
2119 else
2120 msg->msg_flags &= ~MSG_EOR;
2121
2122 out_free:
2123 if (flags & MSG_PEEK) {
2124 /* Release the skb reference acquired after peeking the skb in
2125 * sctp_skb_recv_datagram().
2126 */
2127 kfree_skb(skb);
2128 } else {
2129 /* Free the event which includes releasing the reference to
2130 * the owner of the skb, freeing the skb and updating the
2131 * rwnd.
2132 */
2133 sctp_ulpevent_free(event);
2134 }
2135 out:
2136 sctp_release_sock(sk);
2137 return err;
2138 }
2139
2140 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2141 *
2142 * This option is a on/off flag. If enabled no SCTP message
2143 * fragmentation will be performed. Instead if a message being sent
2144 * exceeds the current PMTU size, the message will NOT be sent and
2145 * instead a error will be indicated to the user.
2146 */
2147 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2148 char __user *optval,
2149 unsigned int optlen)
2150 {
2151 int val;
2152
2153 if (optlen < sizeof(int))
2154 return -EINVAL;
2155
2156 if (get_user(val, (int __user *)optval))
2157 return -EFAULT;
2158
2159 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2160
2161 return 0;
2162 }
2163
2164 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2165 unsigned int optlen)
2166 {
2167 struct sctp_association *asoc;
2168 struct sctp_ulpevent *event;
2169
2170 if (optlen > sizeof(struct sctp_event_subscribe))
2171 return -EINVAL;
2172 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2173 return -EFAULT;
2174
2175 /*
2176 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2177 * if there is no data to be sent or retransmit, the stack will
2178 * immediately send up this notification.
2179 */
2180 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2181 &sctp_sk(sk)->subscribe)) {
2182 asoc = sctp_id2assoc(sk, 0);
2183
2184 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2185 event = sctp_ulpevent_make_sender_dry_event(asoc,
2186 GFP_ATOMIC);
2187 if (!event)
2188 return -ENOMEM;
2189
2190 sctp_ulpq_tail_event(&asoc->ulpq, event);
2191 }
2192 }
2193
2194 return 0;
2195 }
2196
2197 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2198 *
2199 * This socket option is applicable to the UDP-style socket only. When
2200 * set it will cause associations that are idle for more than the
2201 * specified number of seconds to automatically close. An association
2202 * being idle is defined an association that has NOT sent or received
2203 * user data. The special value of '0' indicates that no automatic
2204 * close of any associations should be performed. The option expects an
2205 * integer defining the number of seconds of idle time before an
2206 * association is closed.
2207 */
2208 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2209 unsigned int optlen)
2210 {
2211 struct sctp_sock *sp = sctp_sk(sk);
2212
2213 /* Applicable to UDP-style socket only */
2214 if (sctp_style(sk, TCP))
2215 return -EOPNOTSUPP;
2216 if (optlen != sizeof(int))
2217 return -EINVAL;
2218 if (copy_from_user(&sp->autoclose, optval, optlen))
2219 return -EFAULT;
2220
2221 return 0;
2222 }
2223
2224 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2225 *
2226 * Applications can enable or disable heartbeats for any peer address of
2227 * an association, modify an address's heartbeat interval, force a
2228 * heartbeat to be sent immediately, and adjust the address's maximum
2229 * number of retransmissions sent before an address is considered
2230 * unreachable. The following structure is used to access and modify an
2231 * address's parameters:
2232 *
2233 * struct sctp_paddrparams {
2234 * sctp_assoc_t spp_assoc_id;
2235 * struct sockaddr_storage spp_address;
2236 * uint32_t spp_hbinterval;
2237 * uint16_t spp_pathmaxrxt;
2238 * uint32_t spp_pathmtu;
2239 * uint32_t spp_sackdelay;
2240 * uint32_t spp_flags;
2241 * };
2242 *
2243 * spp_assoc_id - (one-to-many style socket) This is filled in the
2244 * application, and identifies the association for
2245 * this query.
2246 * spp_address - This specifies which address is of interest.
2247 * spp_hbinterval - This contains the value of the heartbeat interval,
2248 * in milliseconds. If a value of zero
2249 * is present in this field then no changes are to
2250 * be made to this parameter.
2251 * spp_pathmaxrxt - This contains the maximum number of
2252 * retransmissions before this address shall be
2253 * considered unreachable. If a value of zero
2254 * is present in this field then no changes are to
2255 * be made to this parameter.
2256 * spp_pathmtu - When Path MTU discovery is disabled the value
2257 * specified here will be the "fixed" path mtu.
2258 * Note that if the spp_address field is empty
2259 * then all associations on this address will
2260 * have this fixed path mtu set upon them.
2261 *
2262 * spp_sackdelay - When delayed sack is enabled, this value specifies
2263 * the number of milliseconds that sacks will be delayed
2264 * for. This value will apply to all addresses of an
2265 * association if the spp_address field is empty. Note
2266 * also, that if delayed sack is enabled and this
2267 * value is set to 0, no change is made to the last
2268 * recorded delayed sack timer value.
2269 *
2270 * spp_flags - These flags are used to control various features
2271 * on an association. The flag field may contain
2272 * zero or more of the following options.
2273 *
2274 * SPP_HB_ENABLE - Enable heartbeats on the
2275 * specified address. Note that if the address
2276 * field is empty all addresses for the association
2277 * have heartbeats enabled upon them.
2278 *
2279 * SPP_HB_DISABLE - Disable heartbeats on the
2280 * speicifed address. Note that if the address
2281 * field is empty all addresses for the association
2282 * will have their heartbeats disabled. Note also
2283 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2284 * mutually exclusive, only one of these two should
2285 * be specified. Enabling both fields will have
2286 * undetermined results.
2287 *
2288 * SPP_HB_DEMAND - Request a user initiated heartbeat
2289 * to be made immediately.
2290 *
2291 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2292 * heartbeat delayis to be set to the value of 0
2293 * milliseconds.
2294 *
2295 * SPP_PMTUD_ENABLE - This field will enable PMTU
2296 * discovery upon the specified address. Note that
2297 * if the address feild is empty then all addresses
2298 * on the association are effected.
2299 *
2300 * SPP_PMTUD_DISABLE - This field will disable PMTU
2301 * discovery upon the specified address. Note that
2302 * if the address feild is empty then all addresses
2303 * on the association are effected. Not also that
2304 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2305 * exclusive. Enabling both will have undetermined
2306 * results.
2307 *
2308 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2309 * on delayed sack. The time specified in spp_sackdelay
2310 * is used to specify the sack delay for this address. Note
2311 * that if spp_address is empty then all addresses will
2312 * enable delayed sack and take on the sack delay
2313 * value specified in spp_sackdelay.
2314 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2315 * off delayed sack. If the spp_address field is blank then
2316 * delayed sack is disabled for the entire association. Note
2317 * also that this field is mutually exclusive to
2318 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2319 * results.
2320 */
2321 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2322 struct sctp_transport *trans,
2323 struct sctp_association *asoc,
2324 struct sctp_sock *sp,
2325 int hb_change,
2326 int pmtud_change,
2327 int sackdelay_change)
2328 {
2329 int error;
2330
2331 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2332 struct net *net = sock_net(trans->asoc->base.sk);
2333
2334 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2335 if (error)
2336 return error;
2337 }
2338
2339 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2340 * this field is ignored. Note also that a value of zero indicates
2341 * the current setting should be left unchanged.
2342 */
2343 if (params->spp_flags & SPP_HB_ENABLE) {
2344
2345 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2346 * set. This lets us use 0 value when this flag
2347 * is set.
2348 */
2349 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2350 params->spp_hbinterval = 0;
2351
2352 if (params->spp_hbinterval ||
2353 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2354 if (trans) {
2355 trans->hbinterval =
2356 msecs_to_jiffies(params->spp_hbinterval);
2357 } else if (asoc) {
2358 asoc->hbinterval =
2359 msecs_to_jiffies(params->spp_hbinterval);
2360 } else {
2361 sp->hbinterval = params->spp_hbinterval;
2362 }
2363 }
2364 }
2365
2366 if (hb_change) {
2367 if (trans) {
2368 trans->param_flags =
2369 (trans->param_flags & ~SPP_HB) | hb_change;
2370 } else if (asoc) {
2371 asoc->param_flags =
2372 (asoc->param_flags & ~SPP_HB) | hb_change;
2373 } else {
2374 sp->param_flags =
2375 (sp->param_flags & ~SPP_HB) | hb_change;
2376 }
2377 }
2378
2379 /* When Path MTU discovery is disabled the value specified here will
2380 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2381 * include the flag SPP_PMTUD_DISABLE for this field to have any
2382 * effect).
2383 */
2384 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2385 if (trans) {
2386 trans->pathmtu = params->spp_pathmtu;
2387 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2388 } else if (asoc) {
2389 asoc->pathmtu = params->spp_pathmtu;
2390 sctp_frag_point(asoc, params->spp_pathmtu);
2391 } else {
2392 sp->pathmtu = params->spp_pathmtu;
2393 }
2394 }
2395
2396 if (pmtud_change) {
2397 if (trans) {
2398 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2399 (params->spp_flags & SPP_PMTUD_ENABLE);
2400 trans->param_flags =
2401 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2402 if (update) {
2403 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2404 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2405 }
2406 } else if (asoc) {
2407 asoc->param_flags =
2408 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2409 } else {
2410 sp->param_flags =
2411 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2412 }
2413 }
2414
2415 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2416 * value of this field is ignored. Note also that a value of zero
2417 * indicates the current setting should be left unchanged.
2418 */
2419 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2420 if (trans) {
2421 trans->sackdelay =
2422 msecs_to_jiffies(params->spp_sackdelay);
2423 } else if (asoc) {
2424 asoc->sackdelay =
2425 msecs_to_jiffies(params->spp_sackdelay);
2426 } else {
2427 sp->sackdelay = params->spp_sackdelay;
2428 }
2429 }
2430
2431 if (sackdelay_change) {
2432 if (trans) {
2433 trans->param_flags =
2434 (trans->param_flags & ~SPP_SACKDELAY) |
2435 sackdelay_change;
2436 } else if (asoc) {
2437 asoc->param_flags =
2438 (asoc->param_flags & ~SPP_SACKDELAY) |
2439 sackdelay_change;
2440 } else {
2441 sp->param_flags =
2442 (sp->param_flags & ~SPP_SACKDELAY) |
2443 sackdelay_change;
2444 }
2445 }
2446
2447 /* Note that a value of zero indicates the current setting should be
2448 left unchanged.
2449 */
2450 if (params->spp_pathmaxrxt) {
2451 if (trans) {
2452 trans->pathmaxrxt = params->spp_pathmaxrxt;
2453 } else if (asoc) {
2454 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2455 } else {
2456 sp->pathmaxrxt = params->spp_pathmaxrxt;
2457 }
2458 }
2459
2460 return 0;
2461 }
2462
2463 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2464 char __user *optval,
2465 unsigned int optlen)
2466 {
2467 struct sctp_paddrparams params;
2468 struct sctp_transport *trans = NULL;
2469 struct sctp_association *asoc = NULL;
2470 struct sctp_sock *sp = sctp_sk(sk);
2471 int error;
2472 int hb_change, pmtud_change, sackdelay_change;
2473
2474 if (optlen != sizeof(struct sctp_paddrparams))
2475 return - EINVAL;
2476
2477 if (copy_from_user(&params, optval, optlen))
2478 return -EFAULT;
2479
2480 /* Validate flags and value parameters. */
2481 hb_change = params.spp_flags & SPP_HB;
2482 pmtud_change = params.spp_flags & SPP_PMTUD;
2483 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2484
2485 if (hb_change == SPP_HB ||
2486 pmtud_change == SPP_PMTUD ||
2487 sackdelay_change == SPP_SACKDELAY ||
2488 params.spp_sackdelay > 500 ||
2489 (params.spp_pathmtu &&
2490 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2491 return -EINVAL;
2492
2493 /* If an address other than INADDR_ANY is specified, and
2494 * no transport is found, then the request is invalid.
2495 */
2496 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2497 trans = sctp_addr_id2transport(sk, &params.spp_address,
2498 params.spp_assoc_id);
2499 if (!trans)
2500 return -EINVAL;
2501 }
2502
2503 /* Get association, if assoc_id != 0 and the socket is a one
2504 * to many style socket, and an association was not found, then
2505 * the id was invalid.
2506 */
2507 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2508 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2509 return -EINVAL;
2510
2511 /* Heartbeat demand can only be sent on a transport or
2512 * association, but not a socket.
2513 */
2514 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2515 return -EINVAL;
2516
2517 /* Process parameters. */
2518 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2519 hb_change, pmtud_change,
2520 sackdelay_change);
2521
2522 if (error)
2523 return error;
2524
2525 /* If changes are for association, also apply parameters to each
2526 * transport.
2527 */
2528 if (!trans && asoc) {
2529 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2530 transports) {
2531 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2532 hb_change, pmtud_change,
2533 sackdelay_change);
2534 }
2535 }
2536
2537 return 0;
2538 }
2539
2540 /*
2541 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2542 *
2543 * This option will effect the way delayed acks are performed. This
2544 * option allows you to get or set the delayed ack time, in
2545 * milliseconds. It also allows changing the delayed ack frequency.
2546 * Changing the frequency to 1 disables the delayed sack algorithm. If
2547 * the assoc_id is 0, then this sets or gets the endpoints default
2548 * values. If the assoc_id field is non-zero, then the set or get
2549 * effects the specified association for the one to many model (the
2550 * assoc_id field is ignored by the one to one model). Note that if
2551 * sack_delay or sack_freq are 0 when setting this option, then the
2552 * current values will remain unchanged.
2553 *
2554 * struct sctp_sack_info {
2555 * sctp_assoc_t sack_assoc_id;
2556 * uint32_t sack_delay;
2557 * uint32_t sack_freq;
2558 * };
2559 *
2560 * sack_assoc_id - This parameter, indicates which association the user
2561 * is performing an action upon. Note that if this field's value is
2562 * zero then the endpoints default value is changed (effecting future
2563 * associations only).
2564 *
2565 * sack_delay - This parameter contains the number of milliseconds that
2566 * the user is requesting the delayed ACK timer be set to. Note that
2567 * this value is defined in the standard to be between 200 and 500
2568 * milliseconds.
2569 *
2570 * sack_freq - This parameter contains the number of packets that must
2571 * be received before a sack is sent without waiting for the delay
2572 * timer to expire. The default value for this is 2, setting this
2573 * value to 1 will disable the delayed sack algorithm.
2574 */
2575
2576 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2577 char __user *optval, unsigned int optlen)
2578 {
2579 struct sctp_sack_info params;
2580 struct sctp_transport *trans = NULL;
2581 struct sctp_association *asoc = NULL;
2582 struct sctp_sock *sp = sctp_sk(sk);
2583
2584 if (optlen == sizeof(struct sctp_sack_info)) {
2585 if (copy_from_user(&params, optval, optlen))
2586 return -EFAULT;
2587
2588 if (params.sack_delay == 0 && params.sack_freq == 0)
2589 return 0;
2590 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2591 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2592 pr_warn("Use struct sctp_sack_info instead\n");
2593 if (copy_from_user(&params, optval, optlen))
2594 return -EFAULT;
2595
2596 if (params.sack_delay == 0)
2597 params.sack_freq = 1;
2598 else
2599 params.sack_freq = 0;
2600 } else
2601 return - EINVAL;
2602
2603 /* Validate value parameter. */
2604 if (params.sack_delay > 500)
2605 return -EINVAL;
2606
2607 /* Get association, if sack_assoc_id != 0 and the socket is a one
2608 * to many style socket, and an association was not found, then
2609 * the id was invalid.
2610 */
2611 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2612 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2613 return -EINVAL;
2614
2615 if (params.sack_delay) {
2616 if (asoc) {
2617 asoc->sackdelay =
2618 msecs_to_jiffies(params.sack_delay);
2619 asoc->param_flags =
2620 (asoc->param_flags & ~SPP_SACKDELAY) |
2621 SPP_SACKDELAY_ENABLE;
2622 } else {
2623 sp->sackdelay = params.sack_delay;
2624 sp->param_flags =
2625 (sp->param_flags & ~SPP_SACKDELAY) |
2626 SPP_SACKDELAY_ENABLE;
2627 }
2628 }
2629
2630 if (params.sack_freq == 1) {
2631 if (asoc) {
2632 asoc->param_flags =
2633 (asoc->param_flags & ~SPP_SACKDELAY) |
2634 SPP_SACKDELAY_DISABLE;
2635 } else {
2636 sp->param_flags =
2637 (sp->param_flags & ~SPP_SACKDELAY) |
2638 SPP_SACKDELAY_DISABLE;
2639 }
2640 } else if (params.sack_freq > 1) {
2641 if (asoc) {
2642 asoc->sackfreq = params.sack_freq;
2643 asoc->param_flags =
2644 (asoc->param_flags & ~SPP_SACKDELAY) |
2645 SPP_SACKDELAY_ENABLE;
2646 } else {
2647 sp->sackfreq = params.sack_freq;
2648 sp->param_flags =
2649 (sp->param_flags & ~SPP_SACKDELAY) |
2650 SPP_SACKDELAY_ENABLE;
2651 }
2652 }
2653
2654 /* If change is for association, also apply to each transport. */
2655 if (asoc) {
2656 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2657 transports) {
2658 if (params.sack_delay) {
2659 trans->sackdelay =
2660 msecs_to_jiffies(params.sack_delay);
2661 trans->param_flags =
2662 (trans->param_flags & ~SPP_SACKDELAY) |
2663 SPP_SACKDELAY_ENABLE;
2664 }
2665 if (params.sack_freq == 1) {
2666 trans->param_flags =
2667 (trans->param_flags & ~SPP_SACKDELAY) |
2668 SPP_SACKDELAY_DISABLE;
2669 } else if (params.sack_freq > 1) {
2670 trans->sackfreq = params.sack_freq;
2671 trans->param_flags =
2672 (trans->param_flags & ~SPP_SACKDELAY) |
2673 SPP_SACKDELAY_ENABLE;
2674 }
2675 }
2676 }
2677
2678 return 0;
2679 }
2680
2681 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2682 *
2683 * Applications can specify protocol parameters for the default association
2684 * initialization. The option name argument to setsockopt() and getsockopt()
2685 * is SCTP_INITMSG.
2686 *
2687 * Setting initialization parameters is effective only on an unconnected
2688 * socket (for UDP-style sockets only future associations are effected
2689 * by the change). With TCP-style sockets, this option is inherited by
2690 * sockets derived from a listener socket.
2691 */
2692 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2693 {
2694 struct sctp_initmsg sinit;
2695 struct sctp_sock *sp = sctp_sk(sk);
2696
2697 if (optlen != sizeof(struct sctp_initmsg))
2698 return -EINVAL;
2699 if (copy_from_user(&sinit, optval, optlen))
2700 return -EFAULT;
2701
2702 if (sinit.sinit_num_ostreams)
2703 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2704 if (sinit.sinit_max_instreams)
2705 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2706 if (sinit.sinit_max_attempts)
2707 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2708 if (sinit.sinit_max_init_timeo)
2709 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2710
2711 return 0;
2712 }
2713
2714 /*
2715 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2716 *
2717 * Applications that wish to use the sendto() system call may wish to
2718 * specify a default set of parameters that would normally be supplied
2719 * through the inclusion of ancillary data. This socket option allows
2720 * such an application to set the default sctp_sndrcvinfo structure.
2721 * The application that wishes to use this socket option simply passes
2722 * in to this call the sctp_sndrcvinfo structure defined in Section
2723 * 5.2.2) The input parameters accepted by this call include
2724 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2725 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2726 * to this call if the caller is using the UDP model.
2727 */
2728 static int sctp_setsockopt_default_send_param(struct sock *sk,
2729 char __user *optval,
2730 unsigned int optlen)
2731 {
2732 struct sctp_sndrcvinfo info;
2733 struct sctp_association *asoc;
2734 struct sctp_sock *sp = sctp_sk(sk);
2735
2736 if (optlen != sizeof(struct sctp_sndrcvinfo))
2737 return -EINVAL;
2738 if (copy_from_user(&info, optval, optlen))
2739 return -EFAULT;
2740
2741 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2742 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2743 return -EINVAL;
2744
2745 if (asoc) {
2746 asoc->default_stream = info.sinfo_stream;
2747 asoc->default_flags = info.sinfo_flags;
2748 asoc->default_ppid = info.sinfo_ppid;
2749 asoc->default_context = info.sinfo_context;
2750 asoc->default_timetolive = info.sinfo_timetolive;
2751 } else {
2752 sp->default_stream = info.sinfo_stream;
2753 sp->default_flags = info.sinfo_flags;
2754 sp->default_ppid = info.sinfo_ppid;
2755 sp->default_context = info.sinfo_context;
2756 sp->default_timetolive = info.sinfo_timetolive;
2757 }
2758
2759 return 0;
2760 }
2761
2762 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2763 *
2764 * Requests that the local SCTP stack use the enclosed peer address as
2765 * the association primary. The enclosed address must be one of the
2766 * association peer's addresses.
2767 */
2768 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2769 unsigned int optlen)
2770 {
2771 struct sctp_prim prim;
2772 struct sctp_transport *trans;
2773
2774 if (optlen != sizeof(struct sctp_prim))
2775 return -EINVAL;
2776
2777 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2778 return -EFAULT;
2779
2780 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2781 if (!trans)
2782 return -EINVAL;
2783
2784 sctp_assoc_set_primary(trans->asoc, trans);
2785
2786 return 0;
2787 }
2788
2789 /*
2790 * 7.1.5 SCTP_NODELAY
2791 *
2792 * Turn on/off any Nagle-like algorithm. This means that packets are
2793 * generally sent as soon as possible and no unnecessary delays are
2794 * introduced, at the cost of more packets in the network. Expects an
2795 * integer boolean flag.
2796 */
2797 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2798 unsigned int optlen)
2799 {
2800 int val;
2801
2802 if (optlen < sizeof(int))
2803 return -EINVAL;
2804 if (get_user(val, (int __user *)optval))
2805 return -EFAULT;
2806
2807 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2808 return 0;
2809 }
2810
2811 /*
2812 *
2813 * 7.1.1 SCTP_RTOINFO
2814 *
2815 * The protocol parameters used to initialize and bound retransmission
2816 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2817 * and modify these parameters.
2818 * All parameters are time values, in milliseconds. A value of 0, when
2819 * modifying the parameters, indicates that the current value should not
2820 * be changed.
2821 *
2822 */
2823 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2824 {
2825 struct sctp_rtoinfo rtoinfo;
2826 struct sctp_association *asoc;
2827
2828 if (optlen != sizeof (struct sctp_rtoinfo))
2829 return -EINVAL;
2830
2831 if (copy_from_user(&rtoinfo, optval, optlen))
2832 return -EFAULT;
2833
2834 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2835
2836 /* Set the values to the specific association */
2837 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2838 return -EINVAL;
2839
2840 if (asoc) {
2841 if (rtoinfo.srto_initial != 0)
2842 asoc->rto_initial =
2843 msecs_to_jiffies(rtoinfo.srto_initial);
2844 if (rtoinfo.srto_max != 0)
2845 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2846 if (rtoinfo.srto_min != 0)
2847 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2848 } else {
2849 /* If there is no association or the association-id = 0
2850 * set the values to the endpoint.
2851 */
2852 struct sctp_sock *sp = sctp_sk(sk);
2853
2854 if (rtoinfo.srto_initial != 0)
2855 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2856 if (rtoinfo.srto_max != 0)
2857 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2858 if (rtoinfo.srto_min != 0)
2859 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2860 }
2861
2862 return 0;
2863 }
2864
2865 /*
2866 *
2867 * 7.1.2 SCTP_ASSOCINFO
2868 *
2869 * This option is used to tune the maximum retransmission attempts
2870 * of the association.
2871 * Returns an error if the new association retransmission value is
2872 * greater than the sum of the retransmission value of the peer.
2873 * See [SCTP] for more information.
2874 *
2875 */
2876 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2877 {
2878
2879 struct sctp_assocparams assocparams;
2880 struct sctp_association *asoc;
2881
2882 if (optlen != sizeof(struct sctp_assocparams))
2883 return -EINVAL;
2884 if (copy_from_user(&assocparams, optval, optlen))
2885 return -EFAULT;
2886
2887 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2888
2889 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2890 return -EINVAL;
2891
2892 /* Set the values to the specific association */
2893 if (asoc) {
2894 if (assocparams.sasoc_asocmaxrxt != 0) {
2895 __u32 path_sum = 0;
2896 int paths = 0;
2897 struct sctp_transport *peer_addr;
2898
2899 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2900 transports) {
2901 path_sum += peer_addr->pathmaxrxt;
2902 paths++;
2903 }
2904
2905 /* Only validate asocmaxrxt if we have more than
2906 * one path/transport. We do this because path
2907 * retransmissions are only counted when we have more
2908 * then one path.
2909 */
2910 if (paths > 1 &&
2911 assocparams.sasoc_asocmaxrxt > path_sum)
2912 return -EINVAL;
2913
2914 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2915 }
2916
2917 if (assocparams.sasoc_cookie_life != 0) {
2918 asoc->cookie_life.tv_sec =
2919 assocparams.sasoc_cookie_life / 1000;
2920 asoc->cookie_life.tv_usec =
2921 (assocparams.sasoc_cookie_life % 1000)
2922 * 1000;
2923 }
2924 } else {
2925 /* Set the values to the endpoint */
2926 struct sctp_sock *sp = sctp_sk(sk);
2927
2928 if (assocparams.sasoc_asocmaxrxt != 0)
2929 sp->assocparams.sasoc_asocmaxrxt =
2930 assocparams.sasoc_asocmaxrxt;
2931 if (assocparams.sasoc_cookie_life != 0)
2932 sp->assocparams.sasoc_cookie_life =
2933 assocparams.sasoc_cookie_life;
2934 }
2935 return 0;
2936 }
2937
2938 /*
2939 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2940 *
2941 * This socket option is a boolean flag which turns on or off mapped V4
2942 * addresses. If this option is turned on and the socket is type
2943 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2944 * If this option is turned off, then no mapping will be done of V4
2945 * addresses and a user will receive both PF_INET6 and PF_INET type
2946 * addresses on the socket.
2947 */
2948 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2949 {
2950 int val;
2951 struct sctp_sock *sp = sctp_sk(sk);
2952
2953 if (optlen < sizeof(int))
2954 return -EINVAL;
2955 if (get_user(val, (int __user *)optval))
2956 return -EFAULT;
2957 if (val)
2958 sp->v4mapped = 1;
2959 else
2960 sp->v4mapped = 0;
2961
2962 return 0;
2963 }
2964
2965 /*
2966 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2967 * This option will get or set the maximum size to put in any outgoing
2968 * SCTP DATA chunk. If a message is larger than this size it will be
2969 * fragmented by SCTP into the specified size. Note that the underlying
2970 * SCTP implementation may fragment into smaller sized chunks when the
2971 * PMTU of the underlying association is smaller than the value set by
2972 * the user. The default value for this option is '0' which indicates
2973 * the user is NOT limiting fragmentation and only the PMTU will effect
2974 * SCTP's choice of DATA chunk size. Note also that values set larger
2975 * than the maximum size of an IP datagram will effectively let SCTP
2976 * control fragmentation (i.e. the same as setting this option to 0).
2977 *
2978 * The following structure is used to access and modify this parameter:
2979 *
2980 * struct sctp_assoc_value {
2981 * sctp_assoc_t assoc_id;
2982 * uint32_t assoc_value;
2983 * };
2984 *
2985 * assoc_id: This parameter is ignored for one-to-one style sockets.
2986 * For one-to-many style sockets this parameter indicates which
2987 * association the user is performing an action upon. Note that if
2988 * this field's value is zero then the endpoints default value is
2989 * changed (effecting future associations only).
2990 * assoc_value: This parameter specifies the maximum size in bytes.
2991 */
2992 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2993 {
2994 struct sctp_assoc_value params;
2995 struct sctp_association *asoc;
2996 struct sctp_sock *sp = sctp_sk(sk);
2997 int val;
2998
2999 if (optlen == sizeof(int)) {
3000 pr_warn("Use of int in maxseg socket option deprecated\n");
3001 pr_warn("Use struct sctp_assoc_value instead\n");
3002 if (copy_from_user(&val, optval, optlen))
3003 return -EFAULT;
3004 params.assoc_id = 0;
3005 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3006 if (copy_from_user(&params, optval, optlen))
3007 return -EFAULT;
3008 val = params.assoc_value;
3009 } else
3010 return -EINVAL;
3011
3012 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3013 return -EINVAL;
3014
3015 asoc = sctp_id2assoc(sk, params.assoc_id);
3016 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3017 return -EINVAL;
3018
3019 if (asoc) {
3020 if (val == 0) {
3021 val = asoc->pathmtu;
3022 val -= sp->pf->af->net_header_len;
3023 val -= sizeof(struct sctphdr) +
3024 sizeof(struct sctp_data_chunk);
3025 }
3026 asoc->user_frag = val;
3027 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3028 } else {
3029 sp->user_frag = val;
3030 }
3031
3032 return 0;
3033 }
3034
3035
3036 /*
3037 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3038 *
3039 * Requests that the peer mark the enclosed address as the association
3040 * primary. The enclosed address must be one of the association's
3041 * locally bound addresses. The following structure is used to make a
3042 * set primary request:
3043 */
3044 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3045 unsigned int optlen)
3046 {
3047 struct net *net = sock_net(sk);
3048 struct sctp_sock *sp;
3049 struct sctp_association *asoc = NULL;
3050 struct sctp_setpeerprim prim;
3051 struct sctp_chunk *chunk;
3052 struct sctp_af *af;
3053 int err;
3054
3055 sp = sctp_sk(sk);
3056
3057 if (!net->sctp.addip_enable)
3058 return -EPERM;
3059
3060 if (optlen != sizeof(struct sctp_setpeerprim))
3061 return -EINVAL;
3062
3063 if (copy_from_user(&prim, optval, optlen))
3064 return -EFAULT;
3065
3066 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3067 if (!asoc)
3068 return -EINVAL;
3069
3070 if (!asoc->peer.asconf_capable)
3071 return -EPERM;
3072
3073 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3074 return -EPERM;
3075
3076 if (!sctp_state(asoc, ESTABLISHED))
3077 return -ENOTCONN;
3078
3079 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3080 if (!af)
3081 return -EINVAL;
3082
3083 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3084 return -EADDRNOTAVAIL;
3085
3086 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3087 return -EADDRNOTAVAIL;
3088
3089 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3090 chunk = sctp_make_asconf_set_prim(asoc,
3091 (union sctp_addr *)&prim.sspp_addr);
3092 if (!chunk)
3093 return -ENOMEM;
3094
3095 err = sctp_send_asconf(asoc, chunk);
3096
3097 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3098
3099 return err;
3100 }
3101
3102 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3103 unsigned int optlen)
3104 {
3105 struct sctp_setadaptation adaptation;
3106
3107 if (optlen != sizeof(struct sctp_setadaptation))
3108 return -EINVAL;
3109 if (copy_from_user(&adaptation, optval, optlen))
3110 return -EFAULT;
3111
3112 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3113
3114 return 0;
3115 }
3116
3117 /*
3118 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3119 *
3120 * The context field in the sctp_sndrcvinfo structure is normally only
3121 * used when a failed message is retrieved holding the value that was
3122 * sent down on the actual send call. This option allows the setting of
3123 * a default context on an association basis that will be received on
3124 * reading messages from the peer. This is especially helpful in the
3125 * one-2-many model for an application to keep some reference to an
3126 * internal state machine that is processing messages on the
3127 * association. Note that the setting of this value only effects
3128 * received messages from the peer and does not effect the value that is
3129 * saved with outbound messages.
3130 */
3131 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3132 unsigned int optlen)
3133 {
3134 struct sctp_assoc_value params;
3135 struct sctp_sock *sp;
3136 struct sctp_association *asoc;
3137
3138 if (optlen != sizeof(struct sctp_assoc_value))
3139 return -EINVAL;
3140 if (copy_from_user(&params, optval, optlen))
3141 return -EFAULT;
3142
3143 sp = sctp_sk(sk);
3144
3145 if (params.assoc_id != 0) {
3146 asoc = sctp_id2assoc(sk, params.assoc_id);
3147 if (!asoc)
3148 return -EINVAL;
3149 asoc->default_rcv_context = params.assoc_value;
3150 } else {
3151 sp->default_rcv_context = params.assoc_value;
3152 }
3153
3154 return 0;
3155 }
3156
3157 /*
3158 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3159 *
3160 * This options will at a minimum specify if the implementation is doing
3161 * fragmented interleave. Fragmented interleave, for a one to many
3162 * socket, is when subsequent calls to receive a message may return
3163 * parts of messages from different associations. Some implementations
3164 * may allow you to turn this value on or off. If so, when turned off,
3165 * no fragment interleave will occur (which will cause a head of line
3166 * blocking amongst multiple associations sharing the same one to many
3167 * socket). When this option is turned on, then each receive call may
3168 * come from a different association (thus the user must receive data
3169 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3170 * association each receive belongs to.
3171 *
3172 * This option takes a boolean value. A non-zero value indicates that
3173 * fragmented interleave is on. A value of zero indicates that
3174 * fragmented interleave is off.
3175 *
3176 * Note that it is important that an implementation that allows this
3177 * option to be turned on, have it off by default. Otherwise an unaware
3178 * application using the one to many model may become confused and act
3179 * incorrectly.
3180 */
3181 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3182 char __user *optval,
3183 unsigned int optlen)
3184 {
3185 int val;
3186
3187 if (optlen != sizeof(int))
3188 return -EINVAL;
3189 if (get_user(val, (int __user *)optval))
3190 return -EFAULT;
3191
3192 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3193
3194 return 0;
3195 }
3196
3197 /*
3198 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3199 * (SCTP_PARTIAL_DELIVERY_POINT)
3200 *
3201 * This option will set or get the SCTP partial delivery point. This
3202 * point is the size of a message where the partial delivery API will be
3203 * invoked to help free up rwnd space for the peer. Setting this to a
3204 * lower value will cause partial deliveries to happen more often. The
3205 * calls argument is an integer that sets or gets the partial delivery
3206 * point. Note also that the call will fail if the user attempts to set
3207 * this value larger than the socket receive buffer size.
3208 *
3209 * Note that any single message having a length smaller than or equal to
3210 * the SCTP partial delivery point will be delivered in one single read
3211 * call as long as the user provided buffer is large enough to hold the
3212 * message.
3213 */
3214 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3215 char __user *optval,
3216 unsigned int optlen)
3217 {
3218 u32 val;
3219
3220 if (optlen != sizeof(u32))
3221 return -EINVAL;
3222 if (get_user(val, (int __user *)optval))
3223 return -EFAULT;
3224
3225 /* Note: We double the receive buffer from what the user sets
3226 * it to be, also initial rwnd is based on rcvbuf/2.
3227 */
3228 if (val > (sk->sk_rcvbuf >> 1))
3229 return -EINVAL;
3230
3231 sctp_sk(sk)->pd_point = val;
3232
3233 return 0; /* is this the right error code? */
3234 }
3235
3236 /*
3237 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3238 *
3239 * This option will allow a user to change the maximum burst of packets
3240 * that can be emitted by this association. Note that the default value
3241 * is 4, and some implementations may restrict this setting so that it
3242 * can only be lowered.
3243 *
3244 * NOTE: This text doesn't seem right. Do this on a socket basis with
3245 * future associations inheriting the socket value.
3246 */
3247 static int sctp_setsockopt_maxburst(struct sock *sk,
3248 char __user *optval,
3249 unsigned int optlen)
3250 {
3251 struct sctp_assoc_value params;
3252 struct sctp_sock *sp;
3253 struct sctp_association *asoc;
3254 int val;
3255 int assoc_id = 0;
3256
3257 if (optlen == sizeof(int)) {
3258 pr_warn("Use of int in max_burst socket option deprecated\n");
3259 pr_warn("Use struct sctp_assoc_value instead\n");
3260 if (copy_from_user(&val, optval, optlen))
3261 return -EFAULT;
3262 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3263 if (copy_from_user(&params, optval, optlen))
3264 return -EFAULT;
3265 val = params.assoc_value;
3266 assoc_id = params.assoc_id;
3267 } else
3268 return -EINVAL;
3269
3270 sp = sctp_sk(sk);
3271
3272 if (assoc_id != 0) {
3273 asoc = sctp_id2assoc(sk, assoc_id);
3274 if (!asoc)
3275 return -EINVAL;
3276 asoc->max_burst = val;
3277 } else
3278 sp->max_burst = val;
3279
3280 return 0;
3281 }
3282
3283 /*
3284 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3285 *
3286 * This set option adds a chunk type that the user is requesting to be
3287 * received only in an authenticated way. Changes to the list of chunks
3288 * will only effect future associations on the socket.
3289 */
3290 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3291 char __user *optval,
3292 unsigned int optlen)
3293 {
3294 struct net *net = sock_net(sk);
3295 struct sctp_authchunk val;
3296
3297 if (!net->sctp.auth_enable)
3298 return -EACCES;
3299
3300 if (optlen != sizeof(struct sctp_authchunk))
3301 return -EINVAL;
3302 if (copy_from_user(&val, optval, optlen))
3303 return -EFAULT;
3304
3305 switch (val.sauth_chunk) {
3306 case SCTP_CID_INIT:
3307 case SCTP_CID_INIT_ACK:
3308 case SCTP_CID_SHUTDOWN_COMPLETE:
3309 case SCTP_CID_AUTH:
3310 return -EINVAL;
3311 }
3312
3313 /* add this chunk id to the endpoint */
3314 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3315 }
3316
3317 /*
3318 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3319 *
3320 * This option gets or sets the list of HMAC algorithms that the local
3321 * endpoint requires the peer to use.
3322 */
3323 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3324 char __user *optval,
3325 unsigned int optlen)
3326 {
3327 struct net *net = sock_net(sk);
3328 struct sctp_hmacalgo *hmacs;
3329 u32 idents;
3330 int err;
3331
3332 if (!net->sctp.auth_enable)
3333 return -EACCES;
3334
3335 if (optlen < sizeof(struct sctp_hmacalgo))
3336 return -EINVAL;
3337
3338 hmacs= memdup_user(optval, optlen);
3339 if (IS_ERR(hmacs))
3340 return PTR_ERR(hmacs);
3341
3342 idents = hmacs->shmac_num_idents;
3343 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3344 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3345 err = -EINVAL;
3346 goto out;
3347 }
3348
3349 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3350 out:
3351 kfree(hmacs);
3352 return err;
3353 }
3354
3355 /*
3356 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3357 *
3358 * This option will set a shared secret key which is used to build an
3359 * association shared key.
3360 */
3361 static int sctp_setsockopt_auth_key(struct sock *sk,
3362 char __user *optval,
3363 unsigned int optlen)
3364 {
3365 struct net *net = sock_net(sk);
3366 struct sctp_authkey *authkey;
3367 struct sctp_association *asoc;
3368 int ret;
3369
3370 if (!net->sctp.auth_enable)
3371 return -EACCES;
3372
3373 if (optlen <= sizeof(struct sctp_authkey))
3374 return -EINVAL;
3375
3376 authkey= memdup_user(optval, optlen);
3377 if (IS_ERR(authkey))
3378 return PTR_ERR(authkey);
3379
3380 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3381 ret = -EINVAL;
3382 goto out;
3383 }
3384
3385 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3386 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3387 ret = -EINVAL;
3388 goto out;
3389 }
3390
3391 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3392 out:
3393 kfree(authkey);
3394 return ret;
3395 }
3396
3397 /*
3398 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3399 *
3400 * This option will get or set the active shared key to be used to build
3401 * the association shared key.
3402 */
3403 static int sctp_setsockopt_active_key(struct sock *sk,
3404 char __user *optval,
3405 unsigned int optlen)
3406 {
3407 struct net *net = sock_net(sk);
3408 struct sctp_authkeyid val;
3409 struct sctp_association *asoc;
3410
3411 if (!net->sctp.auth_enable)
3412 return -EACCES;
3413
3414 if (optlen != sizeof(struct sctp_authkeyid))
3415 return -EINVAL;
3416 if (copy_from_user(&val, optval, optlen))
3417 return -EFAULT;
3418
3419 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3420 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3421 return -EINVAL;
3422
3423 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3424 val.scact_keynumber);
3425 }
3426
3427 /*
3428 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3429 *
3430 * This set option will delete a shared secret key from use.
3431 */
3432 static int sctp_setsockopt_del_key(struct sock *sk,
3433 char __user *optval,
3434 unsigned int optlen)
3435 {
3436 struct net *net = sock_net(sk);
3437 struct sctp_authkeyid val;
3438 struct sctp_association *asoc;
3439
3440 if (!net->sctp.auth_enable)
3441 return -EACCES;
3442
3443 if (optlen != sizeof(struct sctp_authkeyid))
3444 return -EINVAL;
3445 if (copy_from_user(&val, optval, optlen))
3446 return -EFAULT;
3447
3448 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3449 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3450 return -EINVAL;
3451
3452 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3453 val.scact_keynumber);
3454
3455 }
3456
3457 /*
3458 * 8.1.23 SCTP_AUTO_ASCONF
3459 *
3460 * This option will enable or disable the use of the automatic generation of
3461 * ASCONF chunks to add and delete addresses to an existing association. Note
3462 * that this option has two caveats namely: a) it only affects sockets that
3463 * are bound to all addresses available to the SCTP stack, and b) the system
3464 * administrator may have an overriding control that turns the ASCONF feature
3465 * off no matter what setting the socket option may have.
3466 * This option expects an integer boolean flag, where a non-zero value turns on
3467 * the option, and a zero value turns off the option.
3468 * Note. In this implementation, socket operation overrides default parameter
3469 * being set by sysctl as well as FreeBSD implementation
3470 */
3471 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3472 unsigned int optlen)
3473 {
3474 int val;
3475 struct sctp_sock *sp = sctp_sk(sk);
3476
3477 if (optlen < sizeof(int))
3478 return -EINVAL;
3479 if (get_user(val, (int __user *)optval))
3480 return -EFAULT;
3481 if (!sctp_is_ep_boundall(sk) && val)
3482 return -EINVAL;
3483 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3484 return 0;
3485
3486 if (val == 0 && sp->do_auto_asconf) {
3487 list_del(&sp->auto_asconf_list);
3488 sp->do_auto_asconf = 0;
3489 } else if (val && !sp->do_auto_asconf) {
3490 list_add_tail(&sp->auto_asconf_list,
3491 &sock_net(sk)->sctp.auto_asconf_splist);
3492 sp->do_auto_asconf = 1;
3493 }
3494 return 0;
3495 }
3496
3497
3498 /*
3499 * SCTP_PEER_ADDR_THLDS
3500 *
3501 * This option allows us to alter the partially failed threshold for one or all
3502 * transports in an association. See Section 6.1 of:
3503 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3504 */
3505 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3506 char __user *optval,
3507 unsigned int optlen)
3508 {
3509 struct sctp_paddrthlds val;
3510 struct sctp_transport *trans;
3511 struct sctp_association *asoc;
3512
3513 if (optlen < sizeof(struct sctp_paddrthlds))
3514 return -EINVAL;
3515 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3516 sizeof(struct sctp_paddrthlds)))
3517 return -EFAULT;
3518
3519
3520 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3521 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3522 if (!asoc)
3523 return -ENOENT;
3524 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3525 transports) {
3526 if (val.spt_pathmaxrxt)
3527 trans->pathmaxrxt = val.spt_pathmaxrxt;
3528 trans->pf_retrans = val.spt_pathpfthld;
3529 }
3530
3531 if (val.spt_pathmaxrxt)
3532 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3533 asoc->pf_retrans = val.spt_pathpfthld;
3534 } else {
3535 trans = sctp_addr_id2transport(sk, &val.spt_address,
3536 val.spt_assoc_id);
3537 if (!trans)
3538 return -ENOENT;
3539
3540 if (val.spt_pathmaxrxt)
3541 trans->pathmaxrxt = val.spt_pathmaxrxt;
3542 trans->pf_retrans = val.spt_pathpfthld;
3543 }
3544
3545 return 0;
3546 }
3547
3548 /* API 6.2 setsockopt(), getsockopt()
3549 *
3550 * Applications use setsockopt() and getsockopt() to set or retrieve
3551 * socket options. Socket options are used to change the default
3552 * behavior of sockets calls. They are described in Section 7.
3553 *
3554 * The syntax is:
3555 *
3556 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3557 * int __user *optlen);
3558 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3559 * int optlen);
3560 *
3561 * sd - the socket descript.
3562 * level - set to IPPROTO_SCTP for all SCTP options.
3563 * optname - the option name.
3564 * optval - the buffer to store the value of the option.
3565 * optlen - the size of the buffer.
3566 */
3567 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3568 char __user *optval, unsigned int optlen)
3569 {
3570 int retval = 0;
3571
3572 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3573 sk, optname);
3574
3575 /* I can hardly begin to describe how wrong this is. This is
3576 * so broken as to be worse than useless. The API draft
3577 * REALLY is NOT helpful here... I am not convinced that the
3578 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3579 * are at all well-founded.
3580 */
3581 if (level != SOL_SCTP) {
3582 struct sctp_af *af = sctp_sk(sk)->pf->af;
3583 retval = af->setsockopt(sk, level, optname, optval, optlen);
3584 goto out_nounlock;
3585 }
3586
3587 sctp_lock_sock(sk);
3588
3589 switch (optname) {
3590 case SCTP_SOCKOPT_BINDX_ADD:
3591 /* 'optlen' is the size of the addresses buffer. */
3592 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3593 optlen, SCTP_BINDX_ADD_ADDR);
3594 break;
3595
3596 case SCTP_SOCKOPT_BINDX_REM:
3597 /* 'optlen' is the size of the addresses buffer. */
3598 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3599 optlen, SCTP_BINDX_REM_ADDR);
3600 break;
3601
3602 case SCTP_SOCKOPT_CONNECTX_OLD:
3603 /* 'optlen' is the size of the addresses buffer. */
3604 retval = sctp_setsockopt_connectx_old(sk,
3605 (struct sockaddr __user *)optval,
3606 optlen);
3607 break;
3608
3609 case SCTP_SOCKOPT_CONNECTX:
3610 /* 'optlen' is the size of the addresses buffer. */
3611 retval = sctp_setsockopt_connectx(sk,
3612 (struct sockaddr __user *)optval,
3613 optlen);
3614 break;
3615
3616 case SCTP_DISABLE_FRAGMENTS:
3617 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3618 break;
3619
3620 case SCTP_EVENTS:
3621 retval = sctp_setsockopt_events(sk, optval, optlen);
3622 break;
3623
3624 case SCTP_AUTOCLOSE:
3625 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3626 break;
3627
3628 case SCTP_PEER_ADDR_PARAMS:
3629 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3630 break;
3631
3632 case SCTP_DELAYED_SACK:
3633 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3634 break;
3635 case SCTP_PARTIAL_DELIVERY_POINT:
3636 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3637 break;
3638
3639 case SCTP_INITMSG:
3640 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3641 break;
3642 case SCTP_DEFAULT_SEND_PARAM:
3643 retval = sctp_setsockopt_default_send_param(sk, optval,
3644 optlen);
3645 break;
3646 case SCTP_PRIMARY_ADDR:
3647 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3648 break;
3649 case SCTP_SET_PEER_PRIMARY_ADDR:
3650 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3651 break;
3652 case SCTP_NODELAY:
3653 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3654 break;
3655 case SCTP_RTOINFO:
3656 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3657 break;
3658 case SCTP_ASSOCINFO:
3659 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3660 break;
3661 case SCTP_I_WANT_MAPPED_V4_ADDR:
3662 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3663 break;
3664 case SCTP_MAXSEG:
3665 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3666 break;
3667 case SCTP_ADAPTATION_LAYER:
3668 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3669 break;
3670 case SCTP_CONTEXT:
3671 retval = sctp_setsockopt_context(sk, optval, optlen);
3672 break;
3673 case SCTP_FRAGMENT_INTERLEAVE:
3674 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3675 break;
3676 case SCTP_MAX_BURST:
3677 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3678 break;
3679 case SCTP_AUTH_CHUNK:
3680 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3681 break;
3682 case SCTP_HMAC_IDENT:
3683 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3684 break;
3685 case SCTP_AUTH_KEY:
3686 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3687 break;
3688 case SCTP_AUTH_ACTIVE_KEY:
3689 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3690 break;
3691 case SCTP_AUTH_DELETE_KEY:
3692 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3693 break;
3694 case SCTP_AUTO_ASCONF:
3695 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3696 break;
3697 case SCTP_PEER_ADDR_THLDS:
3698 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3699 break;
3700 default:
3701 retval = -ENOPROTOOPT;
3702 break;
3703 }
3704
3705 sctp_release_sock(sk);
3706
3707 out_nounlock:
3708 return retval;
3709 }
3710
3711 /* API 3.1.6 connect() - UDP Style Syntax
3712 *
3713 * An application may use the connect() call in the UDP model to initiate an
3714 * association without sending data.
3715 *
3716 * The syntax is:
3717 *
3718 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3719 *
3720 * sd: the socket descriptor to have a new association added to.
3721 *
3722 * nam: the address structure (either struct sockaddr_in or struct
3723 * sockaddr_in6 defined in RFC2553 [7]).
3724 *
3725 * len: the size of the address.
3726 */
3727 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3728 int addr_len)
3729 {
3730 int err = 0;
3731 struct sctp_af *af;
3732
3733 sctp_lock_sock(sk);
3734
3735 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3736 __func__, sk, addr, addr_len);
3737
3738 /* Validate addr_len before calling common connect/connectx routine. */
3739 af = sctp_get_af_specific(addr->sa_family);
3740 if (!af || addr_len < af->sockaddr_len) {
3741 err = -EINVAL;
3742 } else {
3743 /* Pass correct addr len to common routine (so it knows there
3744 * is only one address being passed.
3745 */
3746 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3747 }
3748
3749 sctp_release_sock(sk);
3750 return err;
3751 }
3752
3753 /* FIXME: Write comments. */
3754 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3755 {
3756 return -EOPNOTSUPP; /* STUB */
3757 }
3758
3759 /* 4.1.4 accept() - TCP Style Syntax
3760 *
3761 * Applications use accept() call to remove an established SCTP
3762 * association from the accept queue of the endpoint. A new socket
3763 * descriptor will be returned from accept() to represent the newly
3764 * formed association.
3765 */
3766 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3767 {
3768 struct sctp_sock *sp;
3769 struct sctp_endpoint *ep;
3770 struct sock *newsk = NULL;
3771 struct sctp_association *asoc;
3772 long timeo;
3773 int error = 0;
3774
3775 sctp_lock_sock(sk);
3776
3777 sp = sctp_sk(sk);
3778 ep = sp->ep;
3779
3780 if (!sctp_style(sk, TCP)) {
3781 error = -EOPNOTSUPP;
3782 goto out;
3783 }
3784
3785 if (!sctp_sstate(sk, LISTENING)) {
3786 error = -EINVAL;
3787 goto out;
3788 }
3789
3790 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3791
3792 error = sctp_wait_for_accept(sk, timeo);
3793 if (error)
3794 goto out;
3795
3796 /* We treat the list of associations on the endpoint as the accept
3797 * queue and pick the first association on the list.
3798 */
3799 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3800
3801 newsk = sp->pf->create_accept_sk(sk, asoc);
3802 if (!newsk) {
3803 error = -ENOMEM;
3804 goto out;
3805 }
3806
3807 /* Populate the fields of the newsk from the oldsk and migrate the
3808 * asoc to the newsk.
3809 */
3810 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3811
3812 out:
3813 sctp_release_sock(sk);
3814 *err = error;
3815 return newsk;
3816 }
3817
3818 /* The SCTP ioctl handler. */
3819 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3820 {
3821 int rc = -ENOTCONN;
3822
3823 sctp_lock_sock(sk);
3824
3825 /*
3826 * SEQPACKET-style sockets in LISTENING state are valid, for
3827 * SCTP, so only discard TCP-style sockets in LISTENING state.
3828 */
3829 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3830 goto out;
3831
3832 switch (cmd) {
3833 case SIOCINQ: {
3834 struct sk_buff *skb;
3835 unsigned int amount = 0;
3836
3837 skb = skb_peek(&sk->sk_receive_queue);
3838 if (skb != NULL) {
3839 /*
3840 * We will only return the amount of this packet since
3841 * that is all that will be read.
3842 */
3843 amount = skb->len;
3844 }
3845 rc = put_user(amount, (int __user *)arg);
3846 break;
3847 }
3848 default:
3849 rc = -ENOIOCTLCMD;
3850 break;
3851 }
3852 out:
3853 sctp_release_sock(sk);
3854 return rc;
3855 }
3856
3857 /* This is the function which gets called during socket creation to
3858 * initialized the SCTP-specific portion of the sock.
3859 * The sock structure should already be zero-filled memory.
3860 */
3861 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3862 {
3863 struct net *net = sock_net(sk);
3864 struct sctp_endpoint *ep;
3865 struct sctp_sock *sp;
3866
3867 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3868
3869 sp = sctp_sk(sk);
3870
3871 /* Initialize the SCTP per socket area. */
3872 switch (sk->sk_type) {
3873 case SOCK_SEQPACKET:
3874 sp->type = SCTP_SOCKET_UDP;
3875 break;
3876 case SOCK_STREAM:
3877 sp->type = SCTP_SOCKET_TCP;
3878 break;
3879 default:
3880 return -ESOCKTNOSUPPORT;
3881 }
3882
3883 /* Initialize default send parameters. These parameters can be
3884 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3885 */
3886 sp->default_stream = 0;
3887 sp->default_ppid = 0;
3888 sp->default_flags = 0;
3889 sp->default_context = 0;
3890 sp->default_timetolive = 0;
3891
3892 sp->default_rcv_context = 0;
3893 sp->max_burst = net->sctp.max_burst;
3894
3895 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
3896
3897 /* Initialize default setup parameters. These parameters
3898 * can be modified with the SCTP_INITMSG socket option or
3899 * overridden by the SCTP_INIT CMSG.
3900 */
3901 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3902 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3903 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
3904 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
3905
3906 /* Initialize default RTO related parameters. These parameters can
3907 * be modified for with the SCTP_RTOINFO socket option.
3908 */
3909 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
3910 sp->rtoinfo.srto_max = net->sctp.rto_max;
3911 sp->rtoinfo.srto_min = net->sctp.rto_min;
3912
3913 /* Initialize default association related parameters. These parameters
3914 * can be modified with the SCTP_ASSOCINFO socket option.
3915 */
3916 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
3917 sp->assocparams.sasoc_number_peer_destinations = 0;
3918 sp->assocparams.sasoc_peer_rwnd = 0;
3919 sp->assocparams.sasoc_local_rwnd = 0;
3920 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
3921
3922 /* Initialize default event subscriptions. By default, all the
3923 * options are off.
3924 */
3925 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3926
3927 /* Default Peer Address Parameters. These defaults can
3928 * be modified via SCTP_PEER_ADDR_PARAMS
3929 */
3930 sp->hbinterval = net->sctp.hb_interval;
3931 sp->pathmaxrxt = net->sctp.max_retrans_path;
3932 sp->pathmtu = 0; // allow default discovery
3933 sp->sackdelay = net->sctp.sack_timeout;
3934 sp->sackfreq = 2;
3935 sp->param_flags = SPP_HB_ENABLE |
3936 SPP_PMTUD_ENABLE |
3937 SPP_SACKDELAY_ENABLE;
3938
3939 /* If enabled no SCTP message fragmentation will be performed.
3940 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3941 */
3942 sp->disable_fragments = 0;
3943
3944 /* Enable Nagle algorithm by default. */
3945 sp->nodelay = 0;
3946
3947 /* Enable by default. */
3948 sp->v4mapped = 1;
3949
3950 /* Auto-close idle associations after the configured
3951 * number of seconds. A value of 0 disables this
3952 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3953 * for UDP-style sockets only.
3954 */
3955 sp->autoclose = 0;
3956
3957 /* User specified fragmentation limit. */
3958 sp->user_frag = 0;
3959
3960 sp->adaptation_ind = 0;
3961
3962 sp->pf = sctp_get_pf_specific(sk->sk_family);
3963
3964 /* Control variables for partial data delivery. */
3965 atomic_set(&sp->pd_mode, 0);
3966 skb_queue_head_init(&sp->pd_lobby);
3967 sp->frag_interleave = 0;
3968
3969 /* Create a per socket endpoint structure. Even if we
3970 * change the data structure relationships, this may still
3971 * be useful for storing pre-connect address information.
3972 */
3973 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3974 if (!ep)
3975 return -ENOMEM;
3976
3977 sp->ep = ep;
3978 sp->hmac = NULL;
3979
3980 SCTP_DBG_OBJCNT_INC(sock);
3981
3982 local_bh_disable();
3983 percpu_counter_inc(&sctp_sockets_allocated);
3984 sock_prot_inuse_add(net, sk->sk_prot, 1);
3985 if (net->sctp.default_auto_asconf) {
3986 list_add_tail(&sp->auto_asconf_list,
3987 &net->sctp.auto_asconf_splist);
3988 sp->do_auto_asconf = 1;
3989 } else
3990 sp->do_auto_asconf = 0;
3991 local_bh_enable();
3992
3993 return 0;
3994 }
3995
3996 /* Cleanup any SCTP per socket resources. */
3997 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3998 {
3999 struct sctp_sock *sp;
4000
4001 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
4002
4003 /* Release our hold on the endpoint. */
4004 sp = sctp_sk(sk);
4005 if (sp->do_auto_asconf) {
4006 sp->do_auto_asconf = 0;
4007 list_del(&sp->auto_asconf_list);
4008 }
4009 sctp_endpoint_free(sp->ep);
4010 local_bh_disable();
4011 percpu_counter_dec(&sctp_sockets_allocated);
4012 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4013 local_bh_enable();
4014 }
4015
4016 /* API 4.1.7 shutdown() - TCP Style Syntax
4017 * int shutdown(int socket, int how);
4018 *
4019 * sd - the socket descriptor of the association to be closed.
4020 * how - Specifies the type of shutdown. The values are
4021 * as follows:
4022 * SHUT_RD
4023 * Disables further receive operations. No SCTP
4024 * protocol action is taken.
4025 * SHUT_WR
4026 * Disables further send operations, and initiates
4027 * the SCTP shutdown sequence.
4028 * SHUT_RDWR
4029 * Disables further send and receive operations
4030 * and initiates the SCTP shutdown sequence.
4031 */
4032 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
4033 {
4034 struct net *net = sock_net(sk);
4035 struct sctp_endpoint *ep;
4036 struct sctp_association *asoc;
4037
4038 if (!sctp_style(sk, TCP))
4039 return;
4040
4041 if (how & SEND_SHUTDOWN) {
4042 ep = sctp_sk(sk)->ep;
4043 if (!list_empty(&ep->asocs)) {
4044 asoc = list_entry(ep->asocs.next,
4045 struct sctp_association, asocs);
4046 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4047 }
4048 }
4049 }
4050
4051 /* 7.2.1 Association Status (SCTP_STATUS)
4052
4053 * Applications can retrieve current status information about an
4054 * association, including association state, peer receiver window size,
4055 * number of unacked data chunks, and number of data chunks pending
4056 * receipt. This information is read-only.
4057 */
4058 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4059 char __user *optval,
4060 int __user *optlen)
4061 {
4062 struct sctp_status status;
4063 struct sctp_association *asoc = NULL;
4064 struct sctp_transport *transport;
4065 sctp_assoc_t associd;
4066 int retval = 0;
4067
4068 if (len < sizeof(status)) {
4069 retval = -EINVAL;
4070 goto out;
4071 }
4072
4073 len = sizeof(status);
4074 if (copy_from_user(&status, optval, len)) {
4075 retval = -EFAULT;
4076 goto out;
4077 }
4078
4079 associd = status.sstat_assoc_id;
4080 asoc = sctp_id2assoc(sk, associd);
4081 if (!asoc) {
4082 retval = -EINVAL;
4083 goto out;
4084 }
4085
4086 transport = asoc->peer.primary_path;
4087
4088 status.sstat_assoc_id = sctp_assoc2id(asoc);
4089 status.sstat_state = asoc->state;
4090 status.sstat_rwnd = asoc->peer.rwnd;
4091 status.sstat_unackdata = asoc->unack_data;
4092
4093 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4094 status.sstat_instrms = asoc->c.sinit_max_instreams;
4095 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4096 status.sstat_fragmentation_point = asoc->frag_point;
4097 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4098 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4099 transport->af_specific->sockaddr_len);
4100 /* Map ipv4 address into v4-mapped-on-v6 address. */
4101 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4102 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4103 status.sstat_primary.spinfo_state = transport->state;
4104 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4105 status.sstat_primary.spinfo_srtt = transport->srtt;
4106 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4107 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4108
4109 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4110 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4111
4112 if (put_user(len, optlen)) {
4113 retval = -EFAULT;
4114 goto out;
4115 }
4116
4117 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
4118 len, status.sstat_state, status.sstat_rwnd,
4119 status.sstat_assoc_id);
4120
4121 if (copy_to_user(optval, &status, len)) {
4122 retval = -EFAULT;
4123 goto out;
4124 }
4125
4126 out:
4127 return retval;
4128 }
4129
4130
4131 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4132 *
4133 * Applications can retrieve information about a specific peer address
4134 * of an association, including its reachability state, congestion
4135 * window, and retransmission timer values. This information is
4136 * read-only.
4137 */
4138 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4139 char __user *optval,
4140 int __user *optlen)
4141 {
4142 struct sctp_paddrinfo pinfo;
4143 struct sctp_transport *transport;
4144 int retval = 0;
4145
4146 if (len < sizeof(pinfo)) {
4147 retval = -EINVAL;
4148 goto out;
4149 }
4150
4151 len = sizeof(pinfo);
4152 if (copy_from_user(&pinfo, optval, len)) {
4153 retval = -EFAULT;
4154 goto out;
4155 }
4156
4157 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4158 pinfo.spinfo_assoc_id);
4159 if (!transport)
4160 return -EINVAL;
4161
4162 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4163 pinfo.spinfo_state = transport->state;
4164 pinfo.spinfo_cwnd = transport->cwnd;
4165 pinfo.spinfo_srtt = transport->srtt;
4166 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4167 pinfo.spinfo_mtu = transport->pathmtu;
4168
4169 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4170 pinfo.spinfo_state = SCTP_ACTIVE;
4171
4172 if (put_user(len, optlen)) {
4173 retval = -EFAULT;
4174 goto out;
4175 }
4176
4177 if (copy_to_user(optval, &pinfo, len)) {
4178 retval = -EFAULT;
4179 goto out;
4180 }
4181
4182 out:
4183 return retval;
4184 }
4185
4186 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4187 *
4188 * This option is a on/off flag. If enabled no SCTP message
4189 * fragmentation will be performed. Instead if a message being sent
4190 * exceeds the current PMTU size, the message will NOT be sent and
4191 * instead a error will be indicated to the user.
4192 */
4193 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4194 char __user *optval, int __user *optlen)
4195 {
4196 int val;
4197
4198 if (len < sizeof(int))
4199 return -EINVAL;
4200
4201 len = sizeof(int);
4202 val = (sctp_sk(sk)->disable_fragments == 1);
4203 if (put_user(len, optlen))
4204 return -EFAULT;
4205 if (copy_to_user(optval, &val, len))
4206 return -EFAULT;
4207 return 0;
4208 }
4209
4210 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4211 *
4212 * This socket option is used to specify various notifications and
4213 * ancillary data the user wishes to receive.
4214 */
4215 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4216 int __user *optlen)
4217 {
4218 if (len <= 0)
4219 return -EINVAL;
4220 if (len > sizeof(struct sctp_event_subscribe))
4221 len = sizeof(struct sctp_event_subscribe);
4222 if (put_user(len, optlen))
4223 return -EFAULT;
4224 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4225 return -EFAULT;
4226 return 0;
4227 }
4228
4229 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4230 *
4231 * This socket option is applicable to the UDP-style socket only. When
4232 * set it will cause associations that are idle for more than the
4233 * specified number of seconds to automatically close. An association
4234 * being idle is defined an association that has NOT sent or received
4235 * user data. The special value of '0' indicates that no automatic
4236 * close of any associations should be performed. The option expects an
4237 * integer defining the number of seconds of idle time before an
4238 * association is closed.
4239 */
4240 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4241 {
4242 /* Applicable to UDP-style socket only */
4243 if (sctp_style(sk, TCP))
4244 return -EOPNOTSUPP;
4245 if (len < sizeof(int))
4246 return -EINVAL;
4247 len = sizeof(int);
4248 if (put_user(len, optlen))
4249 return -EFAULT;
4250 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4251 return -EFAULT;
4252 return 0;
4253 }
4254
4255 /* Helper routine to branch off an association to a new socket. */
4256 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4257 {
4258 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4259 struct socket *sock;
4260 struct sctp_af *af;
4261 int err = 0;
4262
4263 if (!asoc)
4264 return -EINVAL;
4265
4266 /* An association cannot be branched off from an already peeled-off
4267 * socket, nor is this supported for tcp style sockets.
4268 */
4269 if (!sctp_style(sk, UDP))
4270 return -EINVAL;
4271
4272 /* Create a new socket. */
4273 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4274 if (err < 0)
4275 return err;
4276
4277 sctp_copy_sock(sock->sk, sk, asoc);
4278
4279 /* Make peeled-off sockets more like 1-1 accepted sockets.
4280 * Set the daddr and initialize id to something more random
4281 */
4282 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4283 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4284
4285 /* Populate the fields of the newsk from the oldsk and migrate the
4286 * asoc to the newsk.
4287 */
4288 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4289
4290 *sockp = sock;
4291
4292 return err;
4293 }
4294 EXPORT_SYMBOL(sctp_do_peeloff);
4295
4296 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4297 {
4298 sctp_peeloff_arg_t peeloff;
4299 struct socket *newsock;
4300 struct file *newfile;
4301 int retval = 0;
4302
4303 if (len < sizeof(sctp_peeloff_arg_t))
4304 return -EINVAL;
4305 len = sizeof(sctp_peeloff_arg_t);
4306 if (copy_from_user(&peeloff, optval, len))
4307 return -EFAULT;
4308
4309 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4310 if (retval < 0)
4311 goto out;
4312
4313 /* Map the socket to an unused fd that can be returned to the user. */
4314 retval = get_unused_fd();
4315 if (retval < 0) {
4316 sock_release(newsock);
4317 goto out;
4318 }
4319
4320 newfile = sock_alloc_file(newsock, 0, NULL);
4321 if (unlikely(IS_ERR(newfile))) {
4322 put_unused_fd(retval);
4323 sock_release(newsock);
4324 return PTR_ERR(newfile);
4325 }
4326
4327 SCTP_DEBUG_PRINTK("%s: sk: %p newsk: %p sd: %d\n",
4328 __func__, sk, newsock->sk, retval);
4329
4330 /* Return the fd mapped to the new socket. */
4331 if (put_user(len, optlen)) {
4332 fput(newfile);
4333 put_unused_fd(retval);
4334 return -EFAULT;
4335 }
4336 peeloff.sd = retval;
4337 if (copy_to_user(optval, &peeloff, len)) {
4338 fput(newfile);
4339 put_unused_fd(retval);
4340 return -EFAULT;
4341 }
4342 fd_install(retval, newfile);
4343 out:
4344 return retval;
4345 }
4346
4347 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4348 *
4349 * Applications can enable or disable heartbeats for any peer address of
4350 * an association, modify an address's heartbeat interval, force a
4351 * heartbeat to be sent immediately, and adjust the address's maximum
4352 * number of retransmissions sent before an address is considered
4353 * unreachable. The following structure is used to access and modify an
4354 * address's parameters:
4355 *
4356 * struct sctp_paddrparams {
4357 * sctp_assoc_t spp_assoc_id;
4358 * struct sockaddr_storage spp_address;
4359 * uint32_t spp_hbinterval;
4360 * uint16_t spp_pathmaxrxt;
4361 * uint32_t spp_pathmtu;
4362 * uint32_t spp_sackdelay;
4363 * uint32_t spp_flags;
4364 * };
4365 *
4366 * spp_assoc_id - (one-to-many style socket) This is filled in the
4367 * application, and identifies the association for
4368 * this query.
4369 * spp_address - This specifies which address is of interest.
4370 * spp_hbinterval - This contains the value of the heartbeat interval,
4371 * in milliseconds. If a value of zero
4372 * is present in this field then no changes are to
4373 * be made to this parameter.
4374 * spp_pathmaxrxt - This contains the maximum number of
4375 * retransmissions before this address shall be
4376 * considered unreachable. If a value of zero
4377 * is present in this field then no changes are to
4378 * be made to this parameter.
4379 * spp_pathmtu - When Path MTU discovery is disabled the value
4380 * specified here will be the "fixed" path mtu.
4381 * Note that if the spp_address field is empty
4382 * then all associations on this address will
4383 * have this fixed path mtu set upon them.
4384 *
4385 * spp_sackdelay - When delayed sack is enabled, this value specifies
4386 * the number of milliseconds that sacks will be delayed
4387 * for. This value will apply to all addresses of an
4388 * association if the spp_address field is empty. Note
4389 * also, that if delayed sack is enabled and this
4390 * value is set to 0, no change is made to the last
4391 * recorded delayed sack timer value.
4392 *
4393 * spp_flags - These flags are used to control various features
4394 * on an association. The flag field may contain
4395 * zero or more of the following options.
4396 *
4397 * SPP_HB_ENABLE - Enable heartbeats on the
4398 * specified address. Note that if the address
4399 * field is empty all addresses for the association
4400 * have heartbeats enabled upon them.
4401 *
4402 * SPP_HB_DISABLE - Disable heartbeats on the
4403 * speicifed address. Note that if the address
4404 * field is empty all addresses for the association
4405 * will have their heartbeats disabled. Note also
4406 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4407 * mutually exclusive, only one of these two should
4408 * be specified. Enabling both fields will have
4409 * undetermined results.
4410 *
4411 * SPP_HB_DEMAND - Request a user initiated heartbeat
4412 * to be made immediately.
4413 *
4414 * SPP_PMTUD_ENABLE - This field will enable PMTU
4415 * discovery upon the specified address. Note that
4416 * if the address feild is empty then all addresses
4417 * on the association are effected.
4418 *
4419 * SPP_PMTUD_DISABLE - This field will disable PMTU
4420 * discovery upon the specified address. Note that
4421 * if the address feild is empty then all addresses
4422 * on the association are effected. Not also that
4423 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4424 * exclusive. Enabling both will have undetermined
4425 * results.
4426 *
4427 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4428 * on delayed sack. The time specified in spp_sackdelay
4429 * is used to specify the sack delay for this address. Note
4430 * that if spp_address is empty then all addresses will
4431 * enable delayed sack and take on the sack delay
4432 * value specified in spp_sackdelay.
4433 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4434 * off delayed sack. If the spp_address field is blank then
4435 * delayed sack is disabled for the entire association. Note
4436 * also that this field is mutually exclusive to
4437 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4438 * results.
4439 */
4440 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4441 char __user *optval, int __user *optlen)
4442 {
4443 struct sctp_paddrparams params;
4444 struct sctp_transport *trans = NULL;
4445 struct sctp_association *asoc = NULL;
4446 struct sctp_sock *sp = sctp_sk(sk);
4447
4448 if (len < sizeof(struct sctp_paddrparams))
4449 return -EINVAL;
4450 len = sizeof(struct sctp_paddrparams);
4451 if (copy_from_user(&params, optval, len))
4452 return -EFAULT;
4453
4454 /* If an address other than INADDR_ANY is specified, and
4455 * no transport is found, then the request is invalid.
4456 */
4457 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4458 trans = sctp_addr_id2transport(sk, &params.spp_address,
4459 params.spp_assoc_id);
4460 if (!trans) {
4461 SCTP_DEBUG_PRINTK("Failed no transport\n");
4462 return -EINVAL;
4463 }
4464 }
4465
4466 /* Get association, if assoc_id != 0 and the socket is a one
4467 * to many style socket, and an association was not found, then
4468 * the id was invalid.
4469 */
4470 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4471 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4472 SCTP_DEBUG_PRINTK("Failed no association\n");
4473 return -EINVAL;
4474 }
4475
4476 if (trans) {
4477 /* Fetch transport values. */
4478 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4479 params.spp_pathmtu = trans->pathmtu;
4480 params.spp_pathmaxrxt = trans->pathmaxrxt;
4481 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4482
4483 /*draft-11 doesn't say what to return in spp_flags*/
4484 params.spp_flags = trans->param_flags;
4485 } else if (asoc) {
4486 /* Fetch association values. */
4487 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4488 params.spp_pathmtu = asoc->pathmtu;
4489 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4490 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4491
4492 /*draft-11 doesn't say what to return in spp_flags*/
4493 params.spp_flags = asoc->param_flags;
4494 } else {
4495 /* Fetch socket values. */
4496 params.spp_hbinterval = sp->hbinterval;
4497 params.spp_pathmtu = sp->pathmtu;
4498 params.spp_sackdelay = sp->sackdelay;
4499 params.spp_pathmaxrxt = sp->pathmaxrxt;
4500
4501 /*draft-11 doesn't say what to return in spp_flags*/
4502 params.spp_flags = sp->param_flags;
4503 }
4504
4505 if (copy_to_user(optval, &params, len))
4506 return -EFAULT;
4507
4508 if (put_user(len, optlen))
4509 return -EFAULT;
4510
4511 return 0;
4512 }
4513
4514 /*
4515 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4516 *
4517 * This option will effect the way delayed acks are performed. This
4518 * option allows you to get or set the delayed ack time, in
4519 * milliseconds. It also allows changing the delayed ack frequency.
4520 * Changing the frequency to 1 disables the delayed sack algorithm. If
4521 * the assoc_id is 0, then this sets or gets the endpoints default
4522 * values. If the assoc_id field is non-zero, then the set or get
4523 * effects the specified association for the one to many model (the
4524 * assoc_id field is ignored by the one to one model). Note that if
4525 * sack_delay or sack_freq are 0 when setting this option, then the
4526 * current values will remain unchanged.
4527 *
4528 * struct sctp_sack_info {
4529 * sctp_assoc_t sack_assoc_id;
4530 * uint32_t sack_delay;
4531 * uint32_t sack_freq;
4532 * };
4533 *
4534 * sack_assoc_id - This parameter, indicates which association the user
4535 * is performing an action upon. Note that if this field's value is
4536 * zero then the endpoints default value is changed (effecting future
4537 * associations only).
4538 *
4539 * sack_delay - This parameter contains the number of milliseconds that
4540 * the user is requesting the delayed ACK timer be set to. Note that
4541 * this value is defined in the standard to be between 200 and 500
4542 * milliseconds.
4543 *
4544 * sack_freq - This parameter contains the number of packets that must
4545 * be received before a sack is sent without waiting for the delay
4546 * timer to expire. The default value for this is 2, setting this
4547 * value to 1 will disable the delayed sack algorithm.
4548 */
4549 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4550 char __user *optval,
4551 int __user *optlen)
4552 {
4553 struct sctp_sack_info params;
4554 struct sctp_association *asoc = NULL;
4555 struct sctp_sock *sp = sctp_sk(sk);
4556
4557 if (len >= sizeof(struct sctp_sack_info)) {
4558 len = sizeof(struct sctp_sack_info);
4559
4560 if (copy_from_user(&params, optval, len))
4561 return -EFAULT;
4562 } else if (len == sizeof(struct sctp_assoc_value)) {
4563 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4564 pr_warn("Use struct sctp_sack_info instead\n");
4565 if (copy_from_user(&params, optval, len))
4566 return -EFAULT;
4567 } else
4568 return - EINVAL;
4569
4570 /* Get association, if sack_assoc_id != 0 and the socket is a one
4571 * to many style socket, and an association was not found, then
4572 * the id was invalid.
4573 */
4574 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4575 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4576 return -EINVAL;
4577
4578 if (asoc) {
4579 /* Fetch association values. */
4580 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4581 params.sack_delay = jiffies_to_msecs(
4582 asoc->sackdelay);
4583 params.sack_freq = asoc->sackfreq;
4584
4585 } else {
4586 params.sack_delay = 0;
4587 params.sack_freq = 1;
4588 }
4589 } else {
4590 /* Fetch socket values. */
4591 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4592 params.sack_delay = sp->sackdelay;
4593 params.sack_freq = sp->sackfreq;
4594 } else {
4595 params.sack_delay = 0;
4596 params.sack_freq = 1;
4597 }
4598 }
4599
4600 if (copy_to_user(optval, &params, len))
4601 return -EFAULT;
4602
4603 if (put_user(len, optlen))
4604 return -EFAULT;
4605
4606 return 0;
4607 }
4608
4609 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4610 *
4611 * Applications can specify protocol parameters for the default association
4612 * initialization. The option name argument to setsockopt() and getsockopt()
4613 * is SCTP_INITMSG.
4614 *
4615 * Setting initialization parameters is effective only on an unconnected
4616 * socket (for UDP-style sockets only future associations are effected
4617 * by the change). With TCP-style sockets, this option is inherited by
4618 * sockets derived from a listener socket.
4619 */
4620 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4621 {
4622 if (len < sizeof(struct sctp_initmsg))
4623 return -EINVAL;
4624 len = sizeof(struct sctp_initmsg);
4625 if (put_user(len, optlen))
4626 return -EFAULT;
4627 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4628 return -EFAULT;
4629 return 0;
4630 }
4631
4632
4633 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4634 char __user *optval, int __user *optlen)
4635 {
4636 struct sctp_association *asoc;
4637 int cnt = 0;
4638 struct sctp_getaddrs getaddrs;
4639 struct sctp_transport *from;
4640 void __user *to;
4641 union sctp_addr temp;
4642 struct sctp_sock *sp = sctp_sk(sk);
4643 int addrlen;
4644 size_t space_left;
4645 int bytes_copied;
4646
4647 if (len < sizeof(struct sctp_getaddrs))
4648 return -EINVAL;
4649
4650 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4651 return -EFAULT;
4652
4653 /* For UDP-style sockets, id specifies the association to query. */
4654 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4655 if (!asoc)
4656 return -EINVAL;
4657
4658 to = optval + offsetof(struct sctp_getaddrs,addrs);
4659 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4660
4661 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4662 transports) {
4663 memcpy(&temp, &from->ipaddr, sizeof(temp));
4664 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4665 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4666 if (space_left < addrlen)
4667 return -ENOMEM;
4668 if (copy_to_user(to, &temp, addrlen))
4669 return -EFAULT;
4670 to += addrlen;
4671 cnt++;
4672 space_left -= addrlen;
4673 }
4674
4675 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4676 return -EFAULT;
4677 bytes_copied = ((char __user *)to) - optval;
4678 if (put_user(bytes_copied, optlen))
4679 return -EFAULT;
4680
4681 return 0;
4682 }
4683
4684 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4685 size_t space_left, int *bytes_copied)
4686 {
4687 struct sctp_sockaddr_entry *addr;
4688 union sctp_addr temp;
4689 int cnt = 0;
4690 int addrlen;
4691 struct net *net = sock_net(sk);
4692
4693 rcu_read_lock();
4694 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4695 if (!addr->valid)
4696 continue;
4697
4698 if ((PF_INET == sk->sk_family) &&
4699 (AF_INET6 == addr->a.sa.sa_family))
4700 continue;
4701 if ((PF_INET6 == sk->sk_family) &&
4702 inet_v6_ipv6only(sk) &&
4703 (AF_INET == addr->a.sa.sa_family))
4704 continue;
4705 memcpy(&temp, &addr->a, sizeof(temp));
4706 if (!temp.v4.sin_port)
4707 temp.v4.sin_port = htons(port);
4708
4709 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4710 &temp);
4711 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4712 if (space_left < addrlen) {
4713 cnt = -ENOMEM;
4714 break;
4715 }
4716 memcpy(to, &temp, addrlen);
4717
4718 to += addrlen;
4719 cnt ++;
4720 space_left -= addrlen;
4721 *bytes_copied += addrlen;
4722 }
4723 rcu_read_unlock();
4724
4725 return cnt;
4726 }
4727
4728
4729 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4730 char __user *optval, int __user *optlen)
4731 {
4732 struct sctp_bind_addr *bp;
4733 struct sctp_association *asoc;
4734 int cnt = 0;
4735 struct sctp_getaddrs getaddrs;
4736 struct sctp_sockaddr_entry *addr;
4737 void __user *to;
4738 union sctp_addr temp;
4739 struct sctp_sock *sp = sctp_sk(sk);
4740 int addrlen;
4741 int err = 0;
4742 size_t space_left;
4743 int bytes_copied = 0;
4744 void *addrs;
4745 void *buf;
4746
4747 if (len < sizeof(struct sctp_getaddrs))
4748 return -EINVAL;
4749
4750 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4751 return -EFAULT;
4752
4753 /*
4754 * For UDP-style sockets, id specifies the association to query.
4755 * If the id field is set to the value '0' then the locally bound
4756 * addresses are returned without regard to any particular
4757 * association.
4758 */
4759 if (0 == getaddrs.assoc_id) {
4760 bp = &sctp_sk(sk)->ep->base.bind_addr;
4761 } else {
4762 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4763 if (!asoc)
4764 return -EINVAL;
4765 bp = &asoc->base.bind_addr;
4766 }
4767
4768 to = optval + offsetof(struct sctp_getaddrs,addrs);
4769 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4770
4771 addrs = kmalloc(space_left, GFP_KERNEL);
4772 if (!addrs)
4773 return -ENOMEM;
4774
4775 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4776 * addresses from the global local address list.
4777 */
4778 if (sctp_list_single_entry(&bp->address_list)) {
4779 addr = list_entry(bp->address_list.next,
4780 struct sctp_sockaddr_entry, list);
4781 if (sctp_is_any(sk, &addr->a)) {
4782 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4783 space_left, &bytes_copied);
4784 if (cnt < 0) {
4785 err = cnt;
4786 goto out;
4787 }
4788 goto copy_getaddrs;
4789 }
4790 }
4791
4792 buf = addrs;
4793 /* Protection on the bound address list is not needed since
4794 * in the socket option context we hold a socket lock and
4795 * thus the bound address list can't change.
4796 */
4797 list_for_each_entry(addr, &bp->address_list, list) {
4798 memcpy(&temp, &addr->a, sizeof(temp));
4799 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4800 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4801 if (space_left < addrlen) {
4802 err = -ENOMEM; /*fixme: right error?*/
4803 goto out;
4804 }
4805 memcpy(buf, &temp, addrlen);
4806 buf += addrlen;
4807 bytes_copied += addrlen;
4808 cnt ++;
4809 space_left -= addrlen;
4810 }
4811
4812 copy_getaddrs:
4813 if (copy_to_user(to, addrs, bytes_copied)) {
4814 err = -EFAULT;
4815 goto out;
4816 }
4817 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4818 err = -EFAULT;
4819 goto out;
4820 }
4821 if (put_user(bytes_copied, optlen))
4822 err = -EFAULT;
4823 out:
4824 kfree(addrs);
4825 return err;
4826 }
4827
4828 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4829 *
4830 * Requests that the local SCTP stack use the enclosed peer address as
4831 * the association primary. The enclosed address must be one of the
4832 * association peer's addresses.
4833 */
4834 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4835 char __user *optval, int __user *optlen)
4836 {
4837 struct sctp_prim prim;
4838 struct sctp_association *asoc;
4839 struct sctp_sock *sp = sctp_sk(sk);
4840
4841 if (len < sizeof(struct sctp_prim))
4842 return -EINVAL;
4843
4844 len = sizeof(struct sctp_prim);
4845
4846 if (copy_from_user(&prim, optval, len))
4847 return -EFAULT;
4848
4849 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4850 if (!asoc)
4851 return -EINVAL;
4852
4853 if (!asoc->peer.primary_path)
4854 return -ENOTCONN;
4855
4856 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4857 asoc->peer.primary_path->af_specific->sockaddr_len);
4858
4859 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4860 (union sctp_addr *)&prim.ssp_addr);
4861
4862 if (put_user(len, optlen))
4863 return -EFAULT;
4864 if (copy_to_user(optval, &prim, len))
4865 return -EFAULT;
4866
4867 return 0;
4868 }
4869
4870 /*
4871 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4872 *
4873 * Requests that the local endpoint set the specified Adaptation Layer
4874 * Indication parameter for all future INIT and INIT-ACK exchanges.
4875 */
4876 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4877 char __user *optval, int __user *optlen)
4878 {
4879 struct sctp_setadaptation adaptation;
4880
4881 if (len < sizeof(struct sctp_setadaptation))
4882 return -EINVAL;
4883
4884 len = sizeof(struct sctp_setadaptation);
4885
4886 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4887
4888 if (put_user(len, optlen))
4889 return -EFAULT;
4890 if (copy_to_user(optval, &adaptation, len))
4891 return -EFAULT;
4892
4893 return 0;
4894 }
4895
4896 /*
4897 *
4898 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4899 *
4900 * Applications that wish to use the sendto() system call may wish to
4901 * specify a default set of parameters that would normally be supplied
4902 * through the inclusion of ancillary data. This socket option allows
4903 * such an application to set the default sctp_sndrcvinfo structure.
4904
4905
4906 * The application that wishes to use this socket option simply passes
4907 * in to this call the sctp_sndrcvinfo structure defined in Section
4908 * 5.2.2) The input parameters accepted by this call include
4909 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4910 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4911 * to this call if the caller is using the UDP model.
4912 *
4913 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4914 */
4915 static int sctp_getsockopt_default_send_param(struct sock *sk,
4916 int len, char __user *optval,
4917 int __user *optlen)
4918 {
4919 struct sctp_sndrcvinfo info;
4920 struct sctp_association *asoc;
4921 struct sctp_sock *sp = sctp_sk(sk);
4922
4923 if (len < sizeof(struct sctp_sndrcvinfo))
4924 return -EINVAL;
4925
4926 len = sizeof(struct sctp_sndrcvinfo);
4927
4928 if (copy_from_user(&info, optval, len))
4929 return -EFAULT;
4930
4931 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4932 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4933 return -EINVAL;
4934
4935 if (asoc) {
4936 info.sinfo_stream = asoc->default_stream;
4937 info.sinfo_flags = asoc->default_flags;
4938 info.sinfo_ppid = asoc->default_ppid;
4939 info.sinfo_context = asoc->default_context;
4940 info.sinfo_timetolive = asoc->default_timetolive;
4941 } else {
4942 info.sinfo_stream = sp->default_stream;
4943 info.sinfo_flags = sp->default_flags;
4944 info.sinfo_ppid = sp->default_ppid;
4945 info.sinfo_context = sp->default_context;
4946 info.sinfo_timetolive = sp->default_timetolive;
4947 }
4948
4949 if (put_user(len, optlen))
4950 return -EFAULT;
4951 if (copy_to_user(optval, &info, len))
4952 return -EFAULT;
4953
4954 return 0;
4955 }
4956
4957 /*
4958 *
4959 * 7.1.5 SCTP_NODELAY
4960 *
4961 * Turn on/off any Nagle-like algorithm. This means that packets are
4962 * generally sent as soon as possible and no unnecessary delays are
4963 * introduced, at the cost of more packets in the network. Expects an
4964 * integer boolean flag.
4965 */
4966
4967 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4968 char __user *optval, int __user *optlen)
4969 {
4970 int val;
4971
4972 if (len < sizeof(int))
4973 return -EINVAL;
4974
4975 len = sizeof(int);
4976 val = (sctp_sk(sk)->nodelay == 1);
4977 if (put_user(len, optlen))
4978 return -EFAULT;
4979 if (copy_to_user(optval, &val, len))
4980 return -EFAULT;
4981 return 0;
4982 }
4983
4984 /*
4985 *
4986 * 7.1.1 SCTP_RTOINFO
4987 *
4988 * The protocol parameters used to initialize and bound retransmission
4989 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4990 * and modify these parameters.
4991 * All parameters are time values, in milliseconds. A value of 0, when
4992 * modifying the parameters, indicates that the current value should not
4993 * be changed.
4994 *
4995 */
4996 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4997 char __user *optval,
4998 int __user *optlen) {
4999 struct sctp_rtoinfo rtoinfo;
5000 struct sctp_association *asoc;
5001
5002 if (len < sizeof (struct sctp_rtoinfo))
5003 return -EINVAL;
5004
5005 len = sizeof(struct sctp_rtoinfo);
5006
5007 if (copy_from_user(&rtoinfo, optval, len))
5008 return -EFAULT;
5009
5010 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5011
5012 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5013 return -EINVAL;
5014
5015 /* Values corresponding to the specific association. */
5016 if (asoc) {
5017 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5018 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5019 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5020 } else {
5021 /* Values corresponding to the endpoint. */
5022 struct sctp_sock *sp = sctp_sk(sk);
5023
5024 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5025 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5026 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5027 }
5028
5029 if (put_user(len, optlen))
5030 return -EFAULT;
5031
5032 if (copy_to_user(optval, &rtoinfo, len))
5033 return -EFAULT;
5034
5035 return 0;
5036 }
5037
5038 /*
5039 *
5040 * 7.1.2 SCTP_ASSOCINFO
5041 *
5042 * This option is used to tune the maximum retransmission attempts
5043 * of the association.
5044 * Returns an error if the new association retransmission value is
5045 * greater than the sum of the retransmission value of the peer.
5046 * See [SCTP] for more information.
5047 *
5048 */
5049 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5050 char __user *optval,
5051 int __user *optlen)
5052 {
5053
5054 struct sctp_assocparams assocparams;
5055 struct sctp_association *asoc;
5056 struct list_head *pos;
5057 int cnt = 0;
5058
5059 if (len < sizeof (struct sctp_assocparams))
5060 return -EINVAL;
5061
5062 len = sizeof(struct sctp_assocparams);
5063
5064 if (copy_from_user(&assocparams, optval, len))
5065 return -EFAULT;
5066
5067 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5068
5069 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5070 return -EINVAL;
5071
5072 /* Values correspoinding to the specific association */
5073 if (asoc) {
5074 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5075 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5076 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5077 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
5078 * 1000) +
5079 (asoc->cookie_life.tv_usec
5080 / 1000);
5081
5082 list_for_each(pos, &asoc->peer.transport_addr_list) {
5083 cnt ++;
5084 }
5085
5086 assocparams.sasoc_number_peer_destinations = cnt;
5087 } else {
5088 /* Values corresponding to the endpoint */
5089 struct sctp_sock *sp = sctp_sk(sk);
5090
5091 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5092 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5093 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5094 assocparams.sasoc_cookie_life =
5095 sp->assocparams.sasoc_cookie_life;
5096 assocparams.sasoc_number_peer_destinations =
5097 sp->assocparams.
5098 sasoc_number_peer_destinations;
5099 }
5100
5101 if (put_user(len, optlen))
5102 return -EFAULT;
5103
5104 if (copy_to_user(optval, &assocparams, len))
5105 return -EFAULT;
5106
5107 return 0;
5108 }
5109
5110 /*
5111 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5112 *
5113 * This socket option is a boolean flag which turns on or off mapped V4
5114 * addresses. If this option is turned on and the socket is type
5115 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5116 * If this option is turned off, then no mapping will be done of V4
5117 * addresses and a user will receive both PF_INET6 and PF_INET type
5118 * addresses on the socket.
5119 */
5120 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5121 char __user *optval, int __user *optlen)
5122 {
5123 int val;
5124 struct sctp_sock *sp = sctp_sk(sk);
5125
5126 if (len < sizeof(int))
5127 return -EINVAL;
5128
5129 len = sizeof(int);
5130 val = sp->v4mapped;
5131 if (put_user(len, optlen))
5132 return -EFAULT;
5133 if (copy_to_user(optval, &val, len))
5134 return -EFAULT;
5135
5136 return 0;
5137 }
5138
5139 /*
5140 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5141 * (chapter and verse is quoted at sctp_setsockopt_context())
5142 */
5143 static int sctp_getsockopt_context(struct sock *sk, int len,
5144 char __user *optval, int __user *optlen)
5145 {
5146 struct sctp_assoc_value params;
5147 struct sctp_sock *sp;
5148 struct sctp_association *asoc;
5149
5150 if (len < sizeof(struct sctp_assoc_value))
5151 return -EINVAL;
5152
5153 len = sizeof(struct sctp_assoc_value);
5154
5155 if (copy_from_user(&params, optval, len))
5156 return -EFAULT;
5157
5158 sp = sctp_sk(sk);
5159
5160 if (params.assoc_id != 0) {
5161 asoc = sctp_id2assoc(sk, params.assoc_id);
5162 if (!asoc)
5163 return -EINVAL;
5164 params.assoc_value = asoc->default_rcv_context;
5165 } else {
5166 params.assoc_value = sp->default_rcv_context;
5167 }
5168
5169 if (put_user(len, optlen))
5170 return -EFAULT;
5171 if (copy_to_user(optval, &params, len))
5172 return -EFAULT;
5173
5174 return 0;
5175 }
5176
5177 /*
5178 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5179 * This option will get or set the maximum size to put in any outgoing
5180 * SCTP DATA chunk. If a message is larger than this size it will be
5181 * fragmented by SCTP into the specified size. Note that the underlying
5182 * SCTP implementation may fragment into smaller sized chunks when the
5183 * PMTU of the underlying association is smaller than the value set by
5184 * the user. The default value for this option is '0' which indicates
5185 * the user is NOT limiting fragmentation and only the PMTU will effect
5186 * SCTP's choice of DATA chunk size. Note also that values set larger
5187 * than the maximum size of an IP datagram will effectively let SCTP
5188 * control fragmentation (i.e. the same as setting this option to 0).
5189 *
5190 * The following structure is used to access and modify this parameter:
5191 *
5192 * struct sctp_assoc_value {
5193 * sctp_assoc_t assoc_id;
5194 * uint32_t assoc_value;
5195 * };
5196 *
5197 * assoc_id: This parameter is ignored for one-to-one style sockets.
5198 * For one-to-many style sockets this parameter indicates which
5199 * association the user is performing an action upon. Note that if
5200 * this field's value is zero then the endpoints default value is
5201 * changed (effecting future associations only).
5202 * assoc_value: This parameter specifies the maximum size in bytes.
5203 */
5204 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5205 char __user *optval, int __user *optlen)
5206 {
5207 struct sctp_assoc_value params;
5208 struct sctp_association *asoc;
5209
5210 if (len == sizeof(int)) {
5211 pr_warn("Use of int in maxseg socket option deprecated\n");
5212 pr_warn("Use struct sctp_assoc_value instead\n");
5213 params.assoc_id = 0;
5214 } else if (len >= sizeof(struct sctp_assoc_value)) {
5215 len = sizeof(struct sctp_assoc_value);
5216 if (copy_from_user(&params, optval, sizeof(params)))
5217 return -EFAULT;
5218 } else
5219 return -EINVAL;
5220
5221 asoc = sctp_id2assoc(sk, params.assoc_id);
5222 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5223 return -EINVAL;
5224
5225 if (asoc)
5226 params.assoc_value = asoc->frag_point;
5227 else
5228 params.assoc_value = sctp_sk(sk)->user_frag;
5229
5230 if (put_user(len, optlen))
5231 return -EFAULT;
5232 if (len == sizeof(int)) {
5233 if (copy_to_user(optval, &params.assoc_value, len))
5234 return -EFAULT;
5235 } else {
5236 if (copy_to_user(optval, &params, len))
5237 return -EFAULT;
5238 }
5239
5240 return 0;
5241 }
5242
5243 /*
5244 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5245 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5246 */
5247 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5248 char __user *optval, int __user *optlen)
5249 {
5250 int val;
5251
5252 if (len < sizeof(int))
5253 return -EINVAL;
5254
5255 len = sizeof(int);
5256
5257 val = sctp_sk(sk)->frag_interleave;
5258 if (put_user(len, optlen))
5259 return -EFAULT;
5260 if (copy_to_user(optval, &val, len))
5261 return -EFAULT;
5262
5263 return 0;
5264 }
5265
5266 /*
5267 * 7.1.25. Set or Get the sctp partial delivery point
5268 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5269 */
5270 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5271 char __user *optval,
5272 int __user *optlen)
5273 {
5274 u32 val;
5275
5276 if (len < sizeof(u32))
5277 return -EINVAL;
5278
5279 len = sizeof(u32);
5280
5281 val = sctp_sk(sk)->pd_point;
5282 if (put_user(len, optlen))
5283 return -EFAULT;
5284 if (copy_to_user(optval, &val, len))
5285 return -EFAULT;
5286
5287 return 0;
5288 }
5289
5290 /*
5291 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5292 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5293 */
5294 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5295 char __user *optval,
5296 int __user *optlen)
5297 {
5298 struct sctp_assoc_value params;
5299 struct sctp_sock *sp;
5300 struct sctp_association *asoc;
5301
5302 if (len == sizeof(int)) {
5303 pr_warn("Use of int in max_burst socket option deprecated\n");
5304 pr_warn("Use struct sctp_assoc_value instead\n");
5305 params.assoc_id = 0;
5306 } else if (len >= sizeof(struct sctp_assoc_value)) {
5307 len = sizeof(struct sctp_assoc_value);
5308 if (copy_from_user(&params, optval, len))
5309 return -EFAULT;
5310 } else
5311 return -EINVAL;
5312
5313 sp = sctp_sk(sk);
5314
5315 if (params.assoc_id != 0) {
5316 asoc = sctp_id2assoc(sk, params.assoc_id);
5317 if (!asoc)
5318 return -EINVAL;
5319 params.assoc_value = asoc->max_burst;
5320 } else
5321 params.assoc_value = sp->max_burst;
5322
5323 if (len == sizeof(int)) {
5324 if (copy_to_user(optval, &params.assoc_value, len))
5325 return -EFAULT;
5326 } else {
5327 if (copy_to_user(optval, &params, len))
5328 return -EFAULT;
5329 }
5330
5331 return 0;
5332
5333 }
5334
5335 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5336 char __user *optval, int __user *optlen)
5337 {
5338 struct net *net = sock_net(sk);
5339 struct sctp_hmacalgo __user *p = (void __user *)optval;
5340 struct sctp_hmac_algo_param *hmacs;
5341 __u16 data_len = 0;
5342 u32 num_idents;
5343
5344 if (!net->sctp.auth_enable)
5345 return -EACCES;
5346
5347 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5348 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5349
5350 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5351 return -EINVAL;
5352
5353 len = sizeof(struct sctp_hmacalgo) + data_len;
5354 num_idents = data_len / sizeof(u16);
5355
5356 if (put_user(len, optlen))
5357 return -EFAULT;
5358 if (put_user(num_idents, &p->shmac_num_idents))
5359 return -EFAULT;
5360 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5361 return -EFAULT;
5362 return 0;
5363 }
5364
5365 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5366 char __user *optval, int __user *optlen)
5367 {
5368 struct net *net = sock_net(sk);
5369 struct sctp_authkeyid val;
5370 struct sctp_association *asoc;
5371
5372 if (!net->sctp.auth_enable)
5373 return -EACCES;
5374
5375 if (len < sizeof(struct sctp_authkeyid))
5376 return -EINVAL;
5377 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5378 return -EFAULT;
5379
5380 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5381 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5382 return -EINVAL;
5383
5384 if (asoc)
5385 val.scact_keynumber = asoc->active_key_id;
5386 else
5387 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5388
5389 len = sizeof(struct sctp_authkeyid);
5390 if (put_user(len, optlen))
5391 return -EFAULT;
5392 if (copy_to_user(optval, &val, len))
5393 return -EFAULT;
5394
5395 return 0;
5396 }
5397
5398 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5399 char __user *optval, int __user *optlen)
5400 {
5401 struct net *net = sock_net(sk);
5402 struct sctp_authchunks __user *p = (void __user *)optval;
5403 struct sctp_authchunks val;
5404 struct sctp_association *asoc;
5405 struct sctp_chunks_param *ch;
5406 u32 num_chunks = 0;
5407 char __user *to;
5408
5409 if (!net->sctp.auth_enable)
5410 return -EACCES;
5411
5412 if (len < sizeof(struct sctp_authchunks))
5413 return -EINVAL;
5414
5415 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5416 return -EFAULT;
5417
5418 to = p->gauth_chunks;
5419 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5420 if (!asoc)
5421 return -EINVAL;
5422
5423 ch = asoc->peer.peer_chunks;
5424 if (!ch)
5425 goto num;
5426
5427 /* See if the user provided enough room for all the data */
5428 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5429 if (len < num_chunks)
5430 return -EINVAL;
5431
5432 if (copy_to_user(to, ch->chunks, num_chunks))
5433 return -EFAULT;
5434 num:
5435 len = sizeof(struct sctp_authchunks) + num_chunks;
5436 if (put_user(len, optlen)) return -EFAULT;
5437 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5438 return -EFAULT;
5439 return 0;
5440 }
5441
5442 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5443 char __user *optval, int __user *optlen)
5444 {
5445 struct net *net = sock_net(sk);
5446 struct sctp_authchunks __user *p = (void __user *)optval;
5447 struct sctp_authchunks val;
5448 struct sctp_association *asoc;
5449 struct sctp_chunks_param *ch;
5450 u32 num_chunks = 0;
5451 char __user *to;
5452
5453 if (!net->sctp.auth_enable)
5454 return -EACCES;
5455
5456 if (len < sizeof(struct sctp_authchunks))
5457 return -EINVAL;
5458
5459 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5460 return -EFAULT;
5461
5462 to = p->gauth_chunks;
5463 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5464 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5465 return -EINVAL;
5466
5467 if (asoc)
5468 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5469 else
5470 ch = sctp_sk(sk)->ep->auth_chunk_list;
5471
5472 if (!ch)
5473 goto num;
5474
5475 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5476 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5477 return -EINVAL;
5478
5479 if (copy_to_user(to, ch->chunks, num_chunks))
5480 return -EFAULT;
5481 num:
5482 len = sizeof(struct sctp_authchunks) + num_chunks;
5483 if (put_user(len, optlen))
5484 return -EFAULT;
5485 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5486 return -EFAULT;
5487
5488 return 0;
5489 }
5490
5491 /*
5492 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5493 * This option gets the current number of associations that are attached
5494 * to a one-to-many style socket. The option value is an uint32_t.
5495 */
5496 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5497 char __user *optval, int __user *optlen)
5498 {
5499 struct sctp_sock *sp = sctp_sk(sk);
5500 struct sctp_association *asoc;
5501 u32 val = 0;
5502
5503 if (sctp_style(sk, TCP))
5504 return -EOPNOTSUPP;
5505
5506 if (len < sizeof(u32))
5507 return -EINVAL;
5508
5509 len = sizeof(u32);
5510
5511 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5512 val++;
5513 }
5514
5515 if (put_user(len, optlen))
5516 return -EFAULT;
5517 if (copy_to_user(optval, &val, len))
5518 return -EFAULT;
5519
5520 return 0;
5521 }
5522
5523 /*
5524 * 8.1.23 SCTP_AUTO_ASCONF
5525 * See the corresponding setsockopt entry as description
5526 */
5527 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5528 char __user *optval, int __user *optlen)
5529 {
5530 int val = 0;
5531
5532 if (len < sizeof(int))
5533 return -EINVAL;
5534
5535 len = sizeof(int);
5536 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5537 val = 1;
5538 if (put_user(len, optlen))
5539 return -EFAULT;
5540 if (copy_to_user(optval, &val, len))
5541 return -EFAULT;
5542 return 0;
5543 }
5544
5545 /*
5546 * 8.2.6. Get the Current Identifiers of Associations
5547 * (SCTP_GET_ASSOC_ID_LIST)
5548 *
5549 * This option gets the current list of SCTP association identifiers of
5550 * the SCTP associations handled by a one-to-many style socket.
5551 */
5552 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5553 char __user *optval, int __user *optlen)
5554 {
5555 struct sctp_sock *sp = sctp_sk(sk);
5556 struct sctp_association *asoc;
5557 struct sctp_assoc_ids *ids;
5558 u32 num = 0;
5559
5560 if (sctp_style(sk, TCP))
5561 return -EOPNOTSUPP;
5562
5563 if (len < sizeof(struct sctp_assoc_ids))
5564 return -EINVAL;
5565
5566 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5567 num++;
5568 }
5569
5570 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5571 return -EINVAL;
5572
5573 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5574
5575 ids = kmalloc(len, GFP_KERNEL);
5576 if (unlikely(!ids))
5577 return -ENOMEM;
5578
5579 ids->gaids_number_of_ids = num;
5580 num = 0;
5581 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5582 ids->gaids_assoc_id[num++] = asoc->assoc_id;
5583 }
5584
5585 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5586 kfree(ids);
5587 return -EFAULT;
5588 }
5589
5590 kfree(ids);
5591 return 0;
5592 }
5593
5594 /*
5595 * SCTP_PEER_ADDR_THLDS
5596 *
5597 * This option allows us to fetch the partially failed threshold for one or all
5598 * transports in an association. See Section 6.1 of:
5599 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5600 */
5601 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5602 char __user *optval,
5603 int len,
5604 int __user *optlen)
5605 {
5606 struct sctp_paddrthlds val;
5607 struct sctp_transport *trans;
5608 struct sctp_association *asoc;
5609
5610 if (len < sizeof(struct sctp_paddrthlds))
5611 return -EINVAL;
5612 len = sizeof(struct sctp_paddrthlds);
5613 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5614 return -EFAULT;
5615
5616 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5617 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5618 if (!asoc)
5619 return -ENOENT;
5620
5621 val.spt_pathpfthld = asoc->pf_retrans;
5622 val.spt_pathmaxrxt = asoc->pathmaxrxt;
5623 } else {
5624 trans = sctp_addr_id2transport(sk, &val.spt_address,
5625 val.spt_assoc_id);
5626 if (!trans)
5627 return -ENOENT;
5628
5629 val.spt_pathmaxrxt = trans->pathmaxrxt;
5630 val.spt_pathpfthld = trans->pf_retrans;
5631 }
5632
5633 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5634 return -EFAULT;
5635
5636 return 0;
5637 }
5638
5639 /*
5640 * SCTP_GET_ASSOC_STATS
5641 *
5642 * This option retrieves local per endpoint statistics. It is modeled
5643 * after OpenSolaris' implementation
5644 */
5645 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5646 char __user *optval,
5647 int __user *optlen)
5648 {
5649 struct sctp_assoc_stats sas;
5650 struct sctp_association *asoc = NULL;
5651
5652 /* User must provide at least the assoc id */
5653 if (len < sizeof(sctp_assoc_t))
5654 return -EINVAL;
5655
5656 if (copy_from_user(&sas, optval, len))
5657 return -EFAULT;
5658
5659 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5660 if (!asoc)
5661 return -EINVAL;
5662
5663 sas.sas_rtxchunks = asoc->stats.rtxchunks;
5664 sas.sas_gapcnt = asoc->stats.gapcnt;
5665 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5666 sas.sas_osacks = asoc->stats.osacks;
5667 sas.sas_isacks = asoc->stats.isacks;
5668 sas.sas_octrlchunks = asoc->stats.octrlchunks;
5669 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5670 sas.sas_oodchunks = asoc->stats.oodchunks;
5671 sas.sas_iodchunks = asoc->stats.iodchunks;
5672 sas.sas_ouodchunks = asoc->stats.ouodchunks;
5673 sas.sas_iuodchunks = asoc->stats.iuodchunks;
5674 sas.sas_idupchunks = asoc->stats.idupchunks;
5675 sas.sas_opackets = asoc->stats.opackets;
5676 sas.sas_ipackets = asoc->stats.ipackets;
5677
5678 /* New high max rto observed, will return 0 if not a single
5679 * RTO update took place. obs_rto_ipaddr will be bogus
5680 * in such a case
5681 */
5682 sas.sas_maxrto = asoc->stats.max_obs_rto;
5683 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5684 sizeof(struct sockaddr_storage));
5685
5686 /* Mark beginning of a new observation period */
5687 asoc->stats.max_obs_rto = asoc->rto_min;
5688
5689 /* Allow the struct to grow and fill in as much as possible */
5690 len = min_t(size_t, len, sizeof(sas));
5691
5692 if (put_user(len, optlen))
5693 return -EFAULT;
5694
5695 SCTP_DEBUG_PRINTK("sctp_getsockopt_assoc_stat(%d): %d\n",
5696 len, sas.sas_assoc_id);
5697
5698 if (copy_to_user(optval, &sas, len))
5699 return -EFAULT;
5700
5701 return 0;
5702 }
5703
5704 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5705 char __user *optval, int __user *optlen)
5706 {
5707 int retval = 0;
5708 int len;
5709
5710 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5711 sk, optname);
5712
5713 /* I can hardly begin to describe how wrong this is. This is
5714 * so broken as to be worse than useless. The API draft
5715 * REALLY is NOT helpful here... I am not convinced that the
5716 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5717 * are at all well-founded.
5718 */
5719 if (level != SOL_SCTP) {
5720 struct sctp_af *af = sctp_sk(sk)->pf->af;
5721
5722 retval = af->getsockopt(sk, level, optname, optval, optlen);
5723 return retval;
5724 }
5725
5726 if (get_user(len, optlen))
5727 return -EFAULT;
5728
5729 sctp_lock_sock(sk);
5730
5731 switch (optname) {
5732 case SCTP_STATUS:
5733 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5734 break;
5735 case SCTP_DISABLE_FRAGMENTS:
5736 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5737 optlen);
5738 break;
5739 case SCTP_EVENTS:
5740 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5741 break;
5742 case SCTP_AUTOCLOSE:
5743 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5744 break;
5745 case SCTP_SOCKOPT_PEELOFF:
5746 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5747 break;
5748 case SCTP_PEER_ADDR_PARAMS:
5749 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5750 optlen);
5751 break;
5752 case SCTP_DELAYED_SACK:
5753 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5754 optlen);
5755 break;
5756 case SCTP_INITMSG:
5757 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5758 break;
5759 case SCTP_GET_PEER_ADDRS:
5760 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5761 optlen);
5762 break;
5763 case SCTP_GET_LOCAL_ADDRS:
5764 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5765 optlen);
5766 break;
5767 case SCTP_SOCKOPT_CONNECTX3:
5768 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5769 break;
5770 case SCTP_DEFAULT_SEND_PARAM:
5771 retval = sctp_getsockopt_default_send_param(sk, len,
5772 optval, optlen);
5773 break;
5774 case SCTP_PRIMARY_ADDR:
5775 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5776 break;
5777 case SCTP_NODELAY:
5778 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5779 break;
5780 case SCTP_RTOINFO:
5781 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5782 break;
5783 case SCTP_ASSOCINFO:
5784 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5785 break;
5786 case SCTP_I_WANT_MAPPED_V4_ADDR:
5787 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5788 break;
5789 case SCTP_MAXSEG:
5790 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5791 break;
5792 case SCTP_GET_PEER_ADDR_INFO:
5793 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5794 optlen);
5795 break;
5796 case SCTP_ADAPTATION_LAYER:
5797 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5798 optlen);
5799 break;
5800 case SCTP_CONTEXT:
5801 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5802 break;
5803 case SCTP_FRAGMENT_INTERLEAVE:
5804 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5805 optlen);
5806 break;
5807 case SCTP_PARTIAL_DELIVERY_POINT:
5808 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5809 optlen);
5810 break;
5811 case SCTP_MAX_BURST:
5812 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5813 break;
5814 case SCTP_AUTH_KEY:
5815 case SCTP_AUTH_CHUNK:
5816 case SCTP_AUTH_DELETE_KEY:
5817 retval = -EOPNOTSUPP;
5818 break;
5819 case SCTP_HMAC_IDENT:
5820 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5821 break;
5822 case SCTP_AUTH_ACTIVE_KEY:
5823 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5824 break;
5825 case SCTP_PEER_AUTH_CHUNKS:
5826 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5827 optlen);
5828 break;
5829 case SCTP_LOCAL_AUTH_CHUNKS:
5830 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5831 optlen);
5832 break;
5833 case SCTP_GET_ASSOC_NUMBER:
5834 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5835 break;
5836 case SCTP_GET_ASSOC_ID_LIST:
5837 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5838 break;
5839 case SCTP_AUTO_ASCONF:
5840 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
5841 break;
5842 case SCTP_PEER_ADDR_THLDS:
5843 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
5844 break;
5845 case SCTP_GET_ASSOC_STATS:
5846 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
5847 break;
5848 default:
5849 retval = -ENOPROTOOPT;
5850 break;
5851 }
5852
5853 sctp_release_sock(sk);
5854 return retval;
5855 }
5856
5857 static void sctp_hash(struct sock *sk)
5858 {
5859 /* STUB */
5860 }
5861
5862 static void sctp_unhash(struct sock *sk)
5863 {
5864 /* STUB */
5865 }
5866
5867 /* Check if port is acceptable. Possibly find first available port.
5868 *
5869 * The port hash table (contained in the 'global' SCTP protocol storage
5870 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5871 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5872 * list (the list number is the port number hashed out, so as you
5873 * would expect from a hash function, all the ports in a given list have
5874 * such a number that hashes out to the same list number; you were
5875 * expecting that, right?); so each list has a set of ports, with a
5876 * link to the socket (struct sock) that uses it, the port number and
5877 * a fastreuse flag (FIXME: NPI ipg).
5878 */
5879 static struct sctp_bind_bucket *sctp_bucket_create(
5880 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
5881
5882 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5883 {
5884 struct sctp_bind_hashbucket *head; /* hash list */
5885 struct sctp_bind_bucket *pp; /* hash list port iterator */
5886 struct hlist_node *node;
5887 unsigned short snum;
5888 int ret;
5889
5890 snum = ntohs(addr->v4.sin_port);
5891
5892 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5893 sctp_local_bh_disable();
5894
5895 if (snum == 0) {
5896 /* Search for an available port. */
5897 int low, high, remaining, index;
5898 unsigned int rover;
5899
5900 inet_get_local_port_range(&low, &high);
5901 remaining = (high - low) + 1;
5902 rover = net_random() % remaining + low;
5903
5904 do {
5905 rover++;
5906 if ((rover < low) || (rover > high))
5907 rover = low;
5908 if (inet_is_reserved_local_port(rover))
5909 continue;
5910 index = sctp_phashfn(sock_net(sk), rover);
5911 head = &sctp_port_hashtable[index];
5912 sctp_spin_lock(&head->lock);
5913 sctp_for_each_hentry(pp, node, &head->chain)
5914 if ((pp->port == rover) &&
5915 net_eq(sock_net(sk), pp->net))
5916 goto next;
5917 break;
5918 next:
5919 sctp_spin_unlock(&head->lock);
5920 } while (--remaining > 0);
5921
5922 /* Exhausted local port range during search? */
5923 ret = 1;
5924 if (remaining <= 0)
5925 goto fail;
5926
5927 /* OK, here is the one we will use. HEAD (the port
5928 * hash table list entry) is non-NULL and we hold it's
5929 * mutex.
5930 */
5931 snum = rover;
5932 } else {
5933 /* We are given an specific port number; we verify
5934 * that it is not being used. If it is used, we will
5935 * exahust the search in the hash list corresponding
5936 * to the port number (snum) - we detect that with the
5937 * port iterator, pp being NULL.
5938 */
5939 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
5940 sctp_spin_lock(&head->lock);
5941 sctp_for_each_hentry(pp, node, &head->chain) {
5942 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
5943 goto pp_found;
5944 }
5945 }
5946 pp = NULL;
5947 goto pp_not_found;
5948 pp_found:
5949 if (!hlist_empty(&pp->owner)) {
5950 /* We had a port hash table hit - there is an
5951 * available port (pp != NULL) and it is being
5952 * used by other socket (pp->owner not empty); that other
5953 * socket is going to be sk2.
5954 */
5955 int reuse = sk->sk_reuse;
5956 struct sock *sk2;
5957
5958 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5959 if (pp->fastreuse && sk->sk_reuse &&
5960 sk->sk_state != SCTP_SS_LISTENING)
5961 goto success;
5962
5963 /* Run through the list of sockets bound to the port
5964 * (pp->port) [via the pointers bind_next and
5965 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5966 * we get the endpoint they describe and run through
5967 * the endpoint's list of IP (v4 or v6) addresses,
5968 * comparing each of the addresses with the address of
5969 * the socket sk. If we find a match, then that means
5970 * that this port/socket (sk) combination are already
5971 * in an endpoint.
5972 */
5973 sk_for_each_bound(sk2, node, &pp->owner) {
5974 struct sctp_endpoint *ep2;
5975 ep2 = sctp_sk(sk2)->ep;
5976
5977 if (sk == sk2 ||
5978 (reuse && sk2->sk_reuse &&
5979 sk2->sk_state != SCTP_SS_LISTENING))
5980 continue;
5981
5982 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5983 sctp_sk(sk2), sctp_sk(sk))) {
5984 ret = (long)sk2;
5985 goto fail_unlock;
5986 }
5987 }
5988 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5989 }
5990 pp_not_found:
5991 /* If there was a hash table miss, create a new port. */
5992 ret = 1;
5993 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
5994 goto fail_unlock;
5995
5996 /* In either case (hit or miss), make sure fastreuse is 1 only
5997 * if sk->sk_reuse is too (that is, if the caller requested
5998 * SO_REUSEADDR on this socket -sk-).
5999 */
6000 if (hlist_empty(&pp->owner)) {
6001 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6002 pp->fastreuse = 1;
6003 else
6004 pp->fastreuse = 0;
6005 } else if (pp->fastreuse &&
6006 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6007 pp->fastreuse = 0;
6008
6009 /* We are set, so fill up all the data in the hash table
6010 * entry, tie the socket list information with the rest of the
6011 * sockets FIXME: Blurry, NPI (ipg).
6012 */
6013 success:
6014 if (!sctp_sk(sk)->bind_hash) {
6015 inet_sk(sk)->inet_num = snum;
6016 sk_add_bind_node(sk, &pp->owner);
6017 sctp_sk(sk)->bind_hash = pp;
6018 }
6019 ret = 0;
6020
6021 fail_unlock:
6022 sctp_spin_unlock(&head->lock);
6023
6024 fail:
6025 sctp_local_bh_enable();
6026 return ret;
6027 }
6028
6029 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6030 * port is requested.
6031 */
6032 static int sctp_get_port(struct sock *sk, unsigned short snum)
6033 {
6034 long ret;
6035 union sctp_addr addr;
6036 struct sctp_af *af = sctp_sk(sk)->pf->af;
6037
6038 /* Set up a dummy address struct from the sk. */
6039 af->from_sk(&addr, sk);
6040 addr.v4.sin_port = htons(snum);
6041
6042 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6043 ret = sctp_get_port_local(sk, &addr);
6044
6045 return ret ? 1 : 0;
6046 }
6047
6048 /*
6049 * Move a socket to LISTENING state.
6050 */
6051 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
6052 {
6053 struct sctp_sock *sp = sctp_sk(sk);
6054 struct sctp_endpoint *ep = sp->ep;
6055 struct crypto_hash *tfm = NULL;
6056 char alg[32];
6057
6058 /* Allocate HMAC for generating cookie. */
6059 if (!sp->hmac && sp->sctp_hmac_alg) {
6060 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6061 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6062 if (IS_ERR(tfm)) {
6063 net_info_ratelimited("failed to load transform for %s: %ld\n",
6064 sp->sctp_hmac_alg, PTR_ERR(tfm));
6065 return -ENOSYS;
6066 }
6067 sctp_sk(sk)->hmac = tfm;
6068 }
6069
6070 /*
6071 * If a bind() or sctp_bindx() is not called prior to a listen()
6072 * call that allows new associations to be accepted, the system
6073 * picks an ephemeral port and will choose an address set equivalent
6074 * to binding with a wildcard address.
6075 *
6076 * This is not currently spelled out in the SCTP sockets
6077 * extensions draft, but follows the practice as seen in TCP
6078 * sockets.
6079 *
6080 */
6081 sk->sk_state = SCTP_SS_LISTENING;
6082 if (!ep->base.bind_addr.port) {
6083 if (sctp_autobind(sk))
6084 return -EAGAIN;
6085 } else {
6086 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6087 sk->sk_state = SCTP_SS_CLOSED;
6088 return -EADDRINUSE;
6089 }
6090 }
6091
6092 sk->sk_max_ack_backlog = backlog;
6093 sctp_hash_endpoint(ep);
6094 return 0;
6095 }
6096
6097 /*
6098 * 4.1.3 / 5.1.3 listen()
6099 *
6100 * By default, new associations are not accepted for UDP style sockets.
6101 * An application uses listen() to mark a socket as being able to
6102 * accept new associations.
6103 *
6104 * On TCP style sockets, applications use listen() to ready the SCTP
6105 * endpoint for accepting inbound associations.
6106 *
6107 * On both types of endpoints a backlog of '0' disables listening.
6108 *
6109 * Move a socket to LISTENING state.
6110 */
6111 int sctp_inet_listen(struct socket *sock, int backlog)
6112 {
6113 struct sock *sk = sock->sk;
6114 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6115 int err = -EINVAL;
6116
6117 if (unlikely(backlog < 0))
6118 return err;
6119
6120 sctp_lock_sock(sk);
6121
6122 /* Peeled-off sockets are not allowed to listen(). */
6123 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6124 goto out;
6125
6126 if (sock->state != SS_UNCONNECTED)
6127 goto out;
6128
6129 /* If backlog is zero, disable listening. */
6130 if (!backlog) {
6131 if (sctp_sstate(sk, CLOSED))
6132 goto out;
6133
6134 err = 0;
6135 sctp_unhash_endpoint(ep);
6136 sk->sk_state = SCTP_SS_CLOSED;
6137 if (sk->sk_reuse)
6138 sctp_sk(sk)->bind_hash->fastreuse = 1;
6139 goto out;
6140 }
6141
6142 /* If we are already listening, just update the backlog */
6143 if (sctp_sstate(sk, LISTENING))
6144 sk->sk_max_ack_backlog = backlog;
6145 else {
6146 err = sctp_listen_start(sk, backlog);
6147 if (err)
6148 goto out;
6149 }
6150
6151 err = 0;
6152 out:
6153 sctp_release_sock(sk);
6154 return err;
6155 }
6156
6157 /*
6158 * This function is done by modeling the current datagram_poll() and the
6159 * tcp_poll(). Note that, based on these implementations, we don't
6160 * lock the socket in this function, even though it seems that,
6161 * ideally, locking or some other mechanisms can be used to ensure
6162 * the integrity of the counters (sndbuf and wmem_alloc) used
6163 * in this place. We assume that we don't need locks either until proven
6164 * otherwise.
6165 *
6166 * Another thing to note is that we include the Async I/O support
6167 * here, again, by modeling the current TCP/UDP code. We don't have
6168 * a good way to test with it yet.
6169 */
6170 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6171 {
6172 struct sock *sk = sock->sk;
6173 struct sctp_sock *sp = sctp_sk(sk);
6174 unsigned int mask;
6175
6176 poll_wait(file, sk_sleep(sk), wait);
6177
6178 /* A TCP-style listening socket becomes readable when the accept queue
6179 * is not empty.
6180 */
6181 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6182 return (!list_empty(&sp->ep->asocs)) ?
6183 (POLLIN | POLLRDNORM) : 0;
6184
6185 mask = 0;
6186
6187 /* Is there any exceptional events? */
6188 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6189 mask |= POLLERR;
6190 if (sk->sk_shutdown & RCV_SHUTDOWN)
6191 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6192 if (sk->sk_shutdown == SHUTDOWN_MASK)
6193 mask |= POLLHUP;
6194
6195 /* Is it readable? Reconsider this code with TCP-style support. */
6196 if (!skb_queue_empty(&sk->sk_receive_queue))
6197 mask |= POLLIN | POLLRDNORM;
6198
6199 /* The association is either gone or not ready. */
6200 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6201 return mask;
6202
6203 /* Is it writable? */
6204 if (sctp_writeable(sk)) {
6205 mask |= POLLOUT | POLLWRNORM;
6206 } else {
6207 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6208 /*
6209 * Since the socket is not locked, the buffer
6210 * might be made available after the writeable check and
6211 * before the bit is set. This could cause a lost I/O
6212 * signal. tcp_poll() has a race breaker for this race
6213 * condition. Based on their implementation, we put
6214 * in the following code to cover it as well.
6215 */
6216 if (sctp_writeable(sk))
6217 mask |= POLLOUT | POLLWRNORM;
6218 }
6219 return mask;
6220 }
6221
6222 /********************************************************************
6223 * 2nd Level Abstractions
6224 ********************************************************************/
6225
6226 static struct sctp_bind_bucket *sctp_bucket_create(
6227 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6228 {
6229 struct sctp_bind_bucket *pp;
6230
6231 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6232 if (pp) {
6233 SCTP_DBG_OBJCNT_INC(bind_bucket);
6234 pp->port = snum;
6235 pp->fastreuse = 0;
6236 INIT_HLIST_HEAD(&pp->owner);
6237 pp->net = net;
6238 hlist_add_head(&pp->node, &head->chain);
6239 }
6240 return pp;
6241 }
6242
6243 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6244 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6245 {
6246 if (pp && hlist_empty(&pp->owner)) {
6247 __hlist_del(&pp->node);
6248 kmem_cache_free(sctp_bucket_cachep, pp);
6249 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6250 }
6251 }
6252
6253 /* Release this socket's reference to a local port. */
6254 static inline void __sctp_put_port(struct sock *sk)
6255 {
6256 struct sctp_bind_hashbucket *head =
6257 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6258 inet_sk(sk)->inet_num)];
6259 struct sctp_bind_bucket *pp;
6260
6261 sctp_spin_lock(&head->lock);
6262 pp = sctp_sk(sk)->bind_hash;
6263 __sk_del_bind_node(sk);
6264 sctp_sk(sk)->bind_hash = NULL;
6265 inet_sk(sk)->inet_num = 0;
6266 sctp_bucket_destroy(pp);
6267 sctp_spin_unlock(&head->lock);
6268 }
6269
6270 void sctp_put_port(struct sock *sk)
6271 {
6272 sctp_local_bh_disable();
6273 __sctp_put_port(sk);
6274 sctp_local_bh_enable();
6275 }
6276
6277 /*
6278 * The system picks an ephemeral port and choose an address set equivalent
6279 * to binding with a wildcard address.
6280 * One of those addresses will be the primary address for the association.
6281 * This automatically enables the multihoming capability of SCTP.
6282 */
6283 static int sctp_autobind(struct sock *sk)
6284 {
6285 union sctp_addr autoaddr;
6286 struct sctp_af *af;
6287 __be16 port;
6288
6289 /* Initialize a local sockaddr structure to INADDR_ANY. */
6290 af = sctp_sk(sk)->pf->af;
6291
6292 port = htons(inet_sk(sk)->inet_num);
6293 af->inaddr_any(&autoaddr, port);
6294
6295 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6296 }
6297
6298 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
6299 *
6300 * From RFC 2292
6301 * 4.2 The cmsghdr Structure *
6302 *
6303 * When ancillary data is sent or received, any number of ancillary data
6304 * objects can be specified by the msg_control and msg_controllen members of
6305 * the msghdr structure, because each object is preceded by
6306 * a cmsghdr structure defining the object's length (the cmsg_len member).
6307 * Historically Berkeley-derived implementations have passed only one object
6308 * at a time, but this API allows multiple objects to be
6309 * passed in a single call to sendmsg() or recvmsg(). The following example
6310 * shows two ancillary data objects in a control buffer.
6311 *
6312 * |<--------------------------- msg_controllen -------------------------->|
6313 * | |
6314 *
6315 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
6316 *
6317 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6318 * | | |
6319 *
6320 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
6321 *
6322 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
6323 * | | | | |
6324 *
6325 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6326 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
6327 *
6328 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
6329 *
6330 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6331 * ^
6332 * |
6333 *
6334 * msg_control
6335 * points here
6336 */
6337 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
6338 sctp_cmsgs_t *cmsgs)
6339 {
6340 struct cmsghdr *cmsg;
6341 struct msghdr *my_msg = (struct msghdr *)msg;
6342
6343 for (cmsg = CMSG_FIRSTHDR(msg);
6344 cmsg != NULL;
6345 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6346 if (!CMSG_OK(my_msg, cmsg))
6347 return -EINVAL;
6348
6349 /* Should we parse this header or ignore? */
6350 if (cmsg->cmsg_level != IPPROTO_SCTP)
6351 continue;
6352
6353 /* Strictly check lengths following example in SCM code. */
6354 switch (cmsg->cmsg_type) {
6355 case SCTP_INIT:
6356 /* SCTP Socket API Extension
6357 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
6358 *
6359 * This cmsghdr structure provides information for
6360 * initializing new SCTP associations with sendmsg().
6361 * The SCTP_INITMSG socket option uses this same data
6362 * structure. This structure is not used for
6363 * recvmsg().
6364 *
6365 * cmsg_level cmsg_type cmsg_data[]
6366 * ------------ ------------ ----------------------
6367 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6368 */
6369 if (cmsg->cmsg_len !=
6370 CMSG_LEN(sizeof(struct sctp_initmsg)))
6371 return -EINVAL;
6372 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6373 break;
6374
6375 case SCTP_SNDRCV:
6376 /* SCTP Socket API Extension
6377 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6378 *
6379 * This cmsghdr structure specifies SCTP options for
6380 * sendmsg() and describes SCTP header information
6381 * about a received message through recvmsg().
6382 *
6383 * cmsg_level cmsg_type cmsg_data[]
6384 * ------------ ------------ ----------------------
6385 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6386 */
6387 if (cmsg->cmsg_len !=
6388 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6389 return -EINVAL;
6390
6391 cmsgs->info =
6392 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6393
6394 /* Minimally, validate the sinfo_flags. */
6395 if (cmsgs->info->sinfo_flags &
6396 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6397 SCTP_ABORT | SCTP_EOF))
6398 return -EINVAL;
6399 break;
6400
6401 default:
6402 return -EINVAL;
6403 }
6404 }
6405 return 0;
6406 }
6407
6408 /*
6409 * Wait for a packet..
6410 * Note: This function is the same function as in core/datagram.c
6411 * with a few modifications to make lksctp work.
6412 */
6413 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6414 {
6415 int error;
6416 DEFINE_WAIT(wait);
6417
6418 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6419
6420 /* Socket errors? */
6421 error = sock_error(sk);
6422 if (error)
6423 goto out;
6424
6425 if (!skb_queue_empty(&sk->sk_receive_queue))
6426 goto ready;
6427
6428 /* Socket shut down? */
6429 if (sk->sk_shutdown & RCV_SHUTDOWN)
6430 goto out;
6431
6432 /* Sequenced packets can come disconnected. If so we report the
6433 * problem.
6434 */
6435 error = -ENOTCONN;
6436
6437 /* Is there a good reason to think that we may receive some data? */
6438 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6439 goto out;
6440
6441 /* Handle signals. */
6442 if (signal_pending(current))
6443 goto interrupted;
6444
6445 /* Let another process have a go. Since we are going to sleep
6446 * anyway. Note: This may cause odd behaviors if the message
6447 * does not fit in the user's buffer, but this seems to be the
6448 * only way to honor MSG_DONTWAIT realistically.
6449 */
6450 sctp_release_sock(sk);
6451 *timeo_p = schedule_timeout(*timeo_p);
6452 sctp_lock_sock(sk);
6453
6454 ready:
6455 finish_wait(sk_sleep(sk), &wait);
6456 return 0;
6457
6458 interrupted:
6459 error = sock_intr_errno(*timeo_p);
6460
6461 out:
6462 finish_wait(sk_sleep(sk), &wait);
6463 *err = error;
6464 return error;
6465 }
6466
6467 /* Receive a datagram.
6468 * Note: This is pretty much the same routine as in core/datagram.c
6469 * with a few changes to make lksctp work.
6470 */
6471 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6472 int noblock, int *err)
6473 {
6474 int error;
6475 struct sk_buff *skb;
6476 long timeo;
6477
6478 timeo = sock_rcvtimeo(sk, noblock);
6479
6480 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6481 timeo, MAX_SCHEDULE_TIMEOUT);
6482
6483 do {
6484 /* Again only user level code calls this function,
6485 * so nothing interrupt level
6486 * will suddenly eat the receive_queue.
6487 *
6488 * Look at current nfs client by the way...
6489 * However, this function was correct in any case. 8)
6490 */
6491 if (flags & MSG_PEEK) {
6492 spin_lock_bh(&sk->sk_receive_queue.lock);
6493 skb = skb_peek(&sk->sk_receive_queue);
6494 if (skb)
6495 atomic_inc(&skb->users);
6496 spin_unlock_bh(&sk->sk_receive_queue.lock);
6497 } else {
6498 skb = skb_dequeue(&sk->sk_receive_queue);
6499 }
6500
6501 if (skb)
6502 return skb;
6503
6504 /* Caller is allowed not to check sk->sk_err before calling. */
6505 error = sock_error(sk);
6506 if (error)
6507 goto no_packet;
6508
6509 if (sk->sk_shutdown & RCV_SHUTDOWN)
6510 break;
6511
6512 /* User doesn't want to wait. */
6513 error = -EAGAIN;
6514 if (!timeo)
6515 goto no_packet;
6516 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6517
6518 return NULL;
6519
6520 no_packet:
6521 *err = error;
6522 return NULL;
6523 }
6524
6525 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6526 static void __sctp_write_space(struct sctp_association *asoc)
6527 {
6528 struct sock *sk = asoc->base.sk;
6529 struct socket *sock = sk->sk_socket;
6530
6531 if ((sctp_wspace(asoc) > 0) && sock) {
6532 if (waitqueue_active(&asoc->wait))
6533 wake_up_interruptible(&asoc->wait);
6534
6535 if (sctp_writeable(sk)) {
6536 wait_queue_head_t *wq = sk_sleep(sk);
6537
6538 if (wq && waitqueue_active(wq))
6539 wake_up_interruptible(wq);
6540
6541 /* Note that we try to include the Async I/O support
6542 * here by modeling from the current TCP/UDP code.
6543 * We have not tested with it yet.
6544 */
6545 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6546 sock_wake_async(sock,
6547 SOCK_WAKE_SPACE, POLL_OUT);
6548 }
6549 }
6550 }
6551
6552 /* Do accounting for the sndbuf space.
6553 * Decrement the used sndbuf space of the corresponding association by the
6554 * data size which was just transmitted(freed).
6555 */
6556 static void sctp_wfree(struct sk_buff *skb)
6557 {
6558 struct sctp_association *asoc;
6559 struct sctp_chunk *chunk;
6560 struct sock *sk;
6561
6562 /* Get the saved chunk pointer. */
6563 chunk = *((struct sctp_chunk **)(skb->cb));
6564 asoc = chunk->asoc;
6565 sk = asoc->base.sk;
6566 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6567 sizeof(struct sk_buff) +
6568 sizeof(struct sctp_chunk);
6569
6570 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6571
6572 /*
6573 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6574 */
6575 sk->sk_wmem_queued -= skb->truesize;
6576 sk_mem_uncharge(sk, skb->truesize);
6577
6578 sock_wfree(skb);
6579 __sctp_write_space(asoc);
6580
6581 sctp_association_put(asoc);
6582 }
6583
6584 /* Do accounting for the receive space on the socket.
6585 * Accounting for the association is done in ulpevent.c
6586 * We set this as a destructor for the cloned data skbs so that
6587 * accounting is done at the correct time.
6588 */
6589 void sctp_sock_rfree(struct sk_buff *skb)
6590 {
6591 struct sock *sk = skb->sk;
6592 struct sctp_ulpevent *event = sctp_skb2event(skb);
6593
6594 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6595
6596 /*
6597 * Mimic the behavior of sock_rfree
6598 */
6599 sk_mem_uncharge(sk, event->rmem_len);
6600 }
6601
6602
6603 /* Helper function to wait for space in the sndbuf. */
6604 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6605 size_t msg_len)
6606 {
6607 struct sock *sk = asoc->base.sk;
6608 int err = 0;
6609 long current_timeo = *timeo_p;
6610 DEFINE_WAIT(wait);
6611
6612 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6613 asoc, (long)(*timeo_p), msg_len);
6614
6615 /* Increment the association's refcnt. */
6616 sctp_association_hold(asoc);
6617
6618 /* Wait on the association specific sndbuf space. */
6619 for (;;) {
6620 prepare_to_wait_exclusive(&asoc->wait, &wait,
6621 TASK_INTERRUPTIBLE);
6622 if (!*timeo_p)
6623 goto do_nonblock;
6624 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6625 asoc->base.dead)
6626 goto do_error;
6627 if (signal_pending(current))
6628 goto do_interrupted;
6629 if (msg_len <= sctp_wspace(asoc))
6630 break;
6631
6632 /* Let another process have a go. Since we are going
6633 * to sleep anyway.
6634 */
6635 sctp_release_sock(sk);
6636 current_timeo = schedule_timeout(current_timeo);
6637 BUG_ON(sk != asoc->base.sk);
6638 sctp_lock_sock(sk);
6639
6640 *timeo_p = current_timeo;
6641 }
6642
6643 out:
6644 finish_wait(&asoc->wait, &wait);
6645
6646 /* Release the association's refcnt. */
6647 sctp_association_put(asoc);
6648
6649 return err;
6650
6651 do_error:
6652 err = -EPIPE;
6653 goto out;
6654
6655 do_interrupted:
6656 err = sock_intr_errno(*timeo_p);
6657 goto out;
6658
6659 do_nonblock:
6660 err = -EAGAIN;
6661 goto out;
6662 }
6663
6664 void sctp_data_ready(struct sock *sk, int len)
6665 {
6666 struct socket_wq *wq;
6667
6668 rcu_read_lock();
6669 wq = rcu_dereference(sk->sk_wq);
6670 if (wq_has_sleeper(wq))
6671 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6672 POLLRDNORM | POLLRDBAND);
6673 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6674 rcu_read_unlock();
6675 }
6676
6677 /* If socket sndbuf has changed, wake up all per association waiters. */
6678 void sctp_write_space(struct sock *sk)
6679 {
6680 struct sctp_association *asoc;
6681
6682 /* Wake up the tasks in each wait queue. */
6683 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6684 __sctp_write_space(asoc);
6685 }
6686 }
6687
6688 /* Is there any sndbuf space available on the socket?
6689 *
6690 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6691 * associations on the same socket. For a UDP-style socket with
6692 * multiple associations, it is possible for it to be "unwriteable"
6693 * prematurely. I assume that this is acceptable because
6694 * a premature "unwriteable" is better than an accidental "writeable" which
6695 * would cause an unwanted block under certain circumstances. For the 1-1
6696 * UDP-style sockets or TCP-style sockets, this code should work.
6697 * - Daisy
6698 */
6699 static int sctp_writeable(struct sock *sk)
6700 {
6701 int amt = 0;
6702
6703 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6704 if (amt < 0)
6705 amt = 0;
6706 return amt;
6707 }
6708
6709 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6710 * returns immediately with EINPROGRESS.
6711 */
6712 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6713 {
6714 struct sock *sk = asoc->base.sk;
6715 int err = 0;
6716 long current_timeo = *timeo_p;
6717 DEFINE_WAIT(wait);
6718
6719 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6720 (long)(*timeo_p));
6721
6722 /* Increment the association's refcnt. */
6723 sctp_association_hold(asoc);
6724
6725 for (;;) {
6726 prepare_to_wait_exclusive(&asoc->wait, &wait,
6727 TASK_INTERRUPTIBLE);
6728 if (!*timeo_p)
6729 goto do_nonblock;
6730 if (sk->sk_shutdown & RCV_SHUTDOWN)
6731 break;
6732 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6733 asoc->base.dead)
6734 goto do_error;
6735 if (signal_pending(current))
6736 goto do_interrupted;
6737
6738 if (sctp_state(asoc, ESTABLISHED))
6739 break;
6740
6741 /* Let another process have a go. Since we are going
6742 * to sleep anyway.
6743 */
6744 sctp_release_sock(sk);
6745 current_timeo = schedule_timeout(current_timeo);
6746 sctp_lock_sock(sk);
6747
6748 *timeo_p = current_timeo;
6749 }
6750
6751 out:
6752 finish_wait(&asoc->wait, &wait);
6753
6754 /* Release the association's refcnt. */
6755 sctp_association_put(asoc);
6756
6757 return err;
6758
6759 do_error:
6760 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6761 err = -ETIMEDOUT;
6762 else
6763 err = -ECONNREFUSED;
6764 goto out;
6765
6766 do_interrupted:
6767 err = sock_intr_errno(*timeo_p);
6768 goto out;
6769
6770 do_nonblock:
6771 err = -EINPROGRESS;
6772 goto out;
6773 }
6774
6775 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6776 {
6777 struct sctp_endpoint *ep;
6778 int err = 0;
6779 DEFINE_WAIT(wait);
6780
6781 ep = sctp_sk(sk)->ep;
6782
6783
6784 for (;;) {
6785 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6786 TASK_INTERRUPTIBLE);
6787
6788 if (list_empty(&ep->asocs)) {
6789 sctp_release_sock(sk);
6790 timeo = schedule_timeout(timeo);
6791 sctp_lock_sock(sk);
6792 }
6793
6794 err = -EINVAL;
6795 if (!sctp_sstate(sk, LISTENING))
6796 break;
6797
6798 err = 0;
6799 if (!list_empty(&ep->asocs))
6800 break;
6801
6802 err = sock_intr_errno(timeo);
6803 if (signal_pending(current))
6804 break;
6805
6806 err = -EAGAIN;
6807 if (!timeo)
6808 break;
6809 }
6810
6811 finish_wait(sk_sleep(sk), &wait);
6812
6813 return err;
6814 }
6815
6816 static void sctp_wait_for_close(struct sock *sk, long timeout)
6817 {
6818 DEFINE_WAIT(wait);
6819
6820 do {
6821 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6822 if (list_empty(&sctp_sk(sk)->ep->asocs))
6823 break;
6824 sctp_release_sock(sk);
6825 timeout = schedule_timeout(timeout);
6826 sctp_lock_sock(sk);
6827 } while (!signal_pending(current) && timeout);
6828
6829 finish_wait(sk_sleep(sk), &wait);
6830 }
6831
6832 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6833 {
6834 struct sk_buff *frag;
6835
6836 if (!skb->data_len)
6837 goto done;
6838
6839 /* Don't forget the fragments. */
6840 skb_walk_frags(skb, frag)
6841 sctp_skb_set_owner_r_frag(frag, sk);
6842
6843 done:
6844 sctp_skb_set_owner_r(skb, sk);
6845 }
6846
6847 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6848 struct sctp_association *asoc)
6849 {
6850 struct inet_sock *inet = inet_sk(sk);
6851 struct inet_sock *newinet;
6852
6853 newsk->sk_type = sk->sk_type;
6854 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6855 newsk->sk_flags = sk->sk_flags;
6856 newsk->sk_no_check = sk->sk_no_check;
6857 newsk->sk_reuse = sk->sk_reuse;
6858
6859 newsk->sk_shutdown = sk->sk_shutdown;
6860 newsk->sk_destruct = inet_sock_destruct;
6861 newsk->sk_family = sk->sk_family;
6862 newsk->sk_protocol = IPPROTO_SCTP;
6863 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6864 newsk->sk_sndbuf = sk->sk_sndbuf;
6865 newsk->sk_rcvbuf = sk->sk_rcvbuf;
6866 newsk->sk_lingertime = sk->sk_lingertime;
6867 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6868 newsk->sk_sndtimeo = sk->sk_sndtimeo;
6869
6870 newinet = inet_sk(newsk);
6871
6872 /* Initialize sk's sport, dport, rcv_saddr and daddr for
6873 * getsockname() and getpeername()
6874 */
6875 newinet->inet_sport = inet->inet_sport;
6876 newinet->inet_saddr = inet->inet_saddr;
6877 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6878 newinet->inet_dport = htons(asoc->peer.port);
6879 newinet->pmtudisc = inet->pmtudisc;
6880 newinet->inet_id = asoc->next_tsn ^ jiffies;
6881
6882 newinet->uc_ttl = inet->uc_ttl;
6883 newinet->mc_loop = 1;
6884 newinet->mc_ttl = 1;
6885 newinet->mc_index = 0;
6886 newinet->mc_list = NULL;
6887 }
6888
6889 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6890 * and its messages to the newsk.
6891 */
6892 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6893 struct sctp_association *assoc,
6894 sctp_socket_type_t type)
6895 {
6896 struct sctp_sock *oldsp = sctp_sk(oldsk);
6897 struct sctp_sock *newsp = sctp_sk(newsk);
6898 struct sctp_bind_bucket *pp; /* hash list port iterator */
6899 struct sctp_endpoint *newep = newsp->ep;
6900 struct sk_buff *skb, *tmp;
6901 struct sctp_ulpevent *event;
6902 struct sctp_bind_hashbucket *head;
6903 struct list_head tmplist;
6904
6905 /* Migrate socket buffer sizes and all the socket level options to the
6906 * new socket.
6907 */
6908 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6909 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6910 /* Brute force copy old sctp opt. */
6911 if (oldsp->do_auto_asconf) {
6912 memcpy(&tmplist, &newsp->auto_asconf_list, sizeof(tmplist));
6913 inet_sk_copy_descendant(newsk, oldsk);
6914 memcpy(&newsp->auto_asconf_list, &tmplist, sizeof(tmplist));
6915 } else
6916 inet_sk_copy_descendant(newsk, oldsk);
6917
6918 /* Restore the ep value that was overwritten with the above structure
6919 * copy.
6920 */
6921 newsp->ep = newep;
6922 newsp->hmac = NULL;
6923
6924 /* Hook this new socket in to the bind_hash list. */
6925 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
6926 inet_sk(oldsk)->inet_num)];
6927 sctp_local_bh_disable();
6928 sctp_spin_lock(&head->lock);
6929 pp = sctp_sk(oldsk)->bind_hash;
6930 sk_add_bind_node(newsk, &pp->owner);
6931 sctp_sk(newsk)->bind_hash = pp;
6932 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6933 sctp_spin_unlock(&head->lock);
6934 sctp_local_bh_enable();
6935
6936 /* Copy the bind_addr list from the original endpoint to the new
6937 * endpoint so that we can handle restarts properly
6938 */
6939 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6940 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6941
6942 /* Move any messages in the old socket's receive queue that are for the
6943 * peeled off association to the new socket's receive queue.
6944 */
6945 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6946 event = sctp_skb2event(skb);
6947 if (event->asoc == assoc) {
6948 __skb_unlink(skb, &oldsk->sk_receive_queue);
6949 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6950 sctp_skb_set_owner_r_frag(skb, newsk);
6951 }
6952 }
6953
6954 /* Clean up any messages pending delivery due to partial
6955 * delivery. Three cases:
6956 * 1) No partial deliver; no work.
6957 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6958 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6959 */
6960 skb_queue_head_init(&newsp->pd_lobby);
6961 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6962
6963 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6964 struct sk_buff_head *queue;
6965
6966 /* Decide which queue to move pd_lobby skbs to. */
6967 if (assoc->ulpq.pd_mode) {
6968 queue = &newsp->pd_lobby;
6969 } else
6970 queue = &newsk->sk_receive_queue;
6971
6972 /* Walk through the pd_lobby, looking for skbs that
6973 * need moved to the new socket.
6974 */
6975 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6976 event = sctp_skb2event(skb);
6977 if (event->asoc == assoc) {
6978 __skb_unlink(skb, &oldsp->pd_lobby);
6979 __skb_queue_tail(queue, skb);
6980 sctp_skb_set_owner_r_frag(skb, newsk);
6981 }
6982 }
6983
6984 /* Clear up any skbs waiting for the partial
6985 * delivery to finish.
6986 */
6987 if (assoc->ulpq.pd_mode)
6988 sctp_clear_pd(oldsk, NULL);
6989
6990 }
6991
6992 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6993 sctp_skb_set_owner_r_frag(skb, newsk);
6994
6995 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6996 sctp_skb_set_owner_r_frag(skb, newsk);
6997
6998 /* Set the type of socket to indicate that it is peeled off from the
6999 * original UDP-style socket or created with the accept() call on a
7000 * TCP-style socket..
7001 */
7002 newsp->type = type;
7003
7004 /* Mark the new socket "in-use" by the user so that any packets
7005 * that may arrive on the association after we've moved it are
7006 * queued to the backlog. This prevents a potential race between
7007 * backlog processing on the old socket and new-packet processing
7008 * on the new socket.
7009 *
7010 * The caller has just allocated newsk so we can guarantee that other
7011 * paths won't try to lock it and then oldsk.
7012 */
7013 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7014 sctp_assoc_migrate(assoc, newsk);
7015
7016 /* If the association on the newsk is already closed before accept()
7017 * is called, set RCV_SHUTDOWN flag.
7018 */
7019 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7020 newsk->sk_shutdown |= RCV_SHUTDOWN;
7021
7022 newsk->sk_state = SCTP_SS_ESTABLISHED;
7023 sctp_release_sock(newsk);
7024 }
7025
7026
7027 /* This proto struct describes the ULP interface for SCTP. */
7028 struct proto sctp_prot = {
7029 .name = "SCTP",
7030 .owner = THIS_MODULE,
7031 .close = sctp_close,
7032 .connect = sctp_connect,
7033 .disconnect = sctp_disconnect,
7034 .accept = sctp_accept,
7035 .ioctl = sctp_ioctl,
7036 .init = sctp_init_sock,
7037 .destroy = sctp_destroy_sock,
7038 .shutdown = sctp_shutdown,
7039 .setsockopt = sctp_setsockopt,
7040 .getsockopt = sctp_getsockopt,
7041 .sendmsg = sctp_sendmsg,
7042 .recvmsg = sctp_recvmsg,
7043 .bind = sctp_bind,
7044 .backlog_rcv = sctp_backlog_rcv,
7045 .hash = sctp_hash,
7046 .unhash = sctp_unhash,
7047 .get_port = sctp_get_port,
7048 .obj_size = sizeof(struct sctp_sock),
7049 .sysctl_mem = sysctl_sctp_mem,
7050 .sysctl_rmem = sysctl_sctp_rmem,
7051 .sysctl_wmem = sysctl_sctp_wmem,
7052 .memory_pressure = &sctp_memory_pressure,
7053 .enter_memory_pressure = sctp_enter_memory_pressure,
7054 .memory_allocated = &sctp_memory_allocated,
7055 .sockets_allocated = &sctp_sockets_allocated,
7056 };
7057
7058 #if IS_ENABLED(CONFIG_IPV6)
7059
7060 struct proto sctpv6_prot = {
7061 .name = "SCTPv6",
7062 .owner = THIS_MODULE,
7063 .close = sctp_close,
7064 .connect = sctp_connect,
7065 .disconnect = sctp_disconnect,
7066 .accept = sctp_accept,
7067 .ioctl = sctp_ioctl,
7068 .init = sctp_init_sock,
7069 .destroy = sctp_destroy_sock,
7070 .shutdown = sctp_shutdown,
7071 .setsockopt = sctp_setsockopt,
7072 .getsockopt = sctp_getsockopt,
7073 .sendmsg = sctp_sendmsg,
7074 .recvmsg = sctp_recvmsg,
7075 .bind = sctp_bind,
7076 .backlog_rcv = sctp_backlog_rcv,
7077 .hash = sctp_hash,
7078 .unhash = sctp_unhash,
7079 .get_port = sctp_get_port,
7080 .obj_size = sizeof(struct sctp6_sock),
7081 .sysctl_mem = sysctl_sctp_mem,
7082 .sysctl_rmem = sysctl_sctp_rmem,
7083 .sysctl_wmem = sysctl_sctp_wmem,
7084 .memory_pressure = &sctp_memory_pressure,
7085 .enter_memory_pressure = sctp_enter_memory_pressure,
7086 .memory_allocated = &sctp_memory_allocated,
7087 .sockets_allocated = &sctp_sockets_allocated,
7088 };
7089 #endif /* IS_ENABLED(CONFIG_IPV6) */
This page took 0.177712 seconds and 5 git commands to generate.